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Abstract: This article studies the stochastic evolution of incompressible non-Newtonian fluids of
differential type. More precisely, we consider the equations governing the dynamic of a third grade
fluid filling a three-dimensional bounded domain O, perturbed by a multiplicative white noise.
Taking the initial condition in the Sobolev space H2(O), and supplementing the equations with a
Navier slip boundary condition, we establish the existence of a global weak stochastic solution with
sample paths in L∞(0, T; H2(O)).

Keywords: non-Newtonian fluid; stochastic partial differential equation; third grade fluid;
turbulent flow

1. Introduction

The incompressible Newtonian fluids described by the Navier-Stokes equation are characterized
by the Newton law of the viscosity, which corresponds to a linear relation between the shear stress and
the rate-of-strain tensors. However, some biological fluids (as the blood) and many fluids used in the
industry and in the food processing do not satisfy such linear relation and are named non-Newtonian
fluids (see for instance [1–5]).

The fluids of grade n constitute a special class of non-Newtonian fluids. For these fluids the stress
tensor corresponds to a polynomial of degree n of the first n Rivlin-Ericksen kinematic tensors in [6]
A1, . . . , An,

A1(y) = ∇y + (∇y)>, (1)

Ak(y) =
d
dt

Ak−1(y) + Ak−1(y)(∇y) + (∇y)>Ak−1(y), k = 1, . . . , n, (2)

where y denotes the velocity vector field.
The Cauchy stress tensor is given by

T = T1 +T2 +T3, (3)

where

T1(y) = −pI+ νA1(y),

T2(y) = α1A2(y) + α2A2
1(y),

T3(y) = β1A3(y) + β2(A1(y)A2(y) + A2(y)A1(y)) + β3(trA2
1(y))A1(y),

here d
dt =

∂
∂t + y · ∇ stands for the material derivative, p is the pressure, I is the unit tensor, and α1, α2,

β1, β2 and β3 are material moduli.
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The momentum equation with an external deterministic body force F depending on the
solution reads

dy
dt

= divT(y) + F(t, y). (4)

Physical considerations in [1,2] impose the following restrictions on the parameters

ν ≥ 0, α1 ≥ 0, |α1 + α2| ≤
√

24νβ3, β1 = β2 = 0, β3 ≥ 0. (5)

We set β = β3.
Fluids of third grade are complex fluids that belong to the class of differential type viscoelastic

fluids and arise in polymer processing, coating, colloidal suspensions and emulsions, ink-jet prints,
geological flows, etc.; its mathematical analysis is crucial to predict and control its behavior, in order to
design optimal flows that can be successfully used and applied in the industry.

In the deterministic theory of the fluids dynamic, the momentum Equation (4) being a partial
differential equation can be supplemented with a boundary condition, in order to have a solution for
each initial condition in a suitable space of vector fields. The most used boundary condition is the
Dirichlet boundary condition, which corresponds to assume that the particles adjacent to the boundary
surface have the same velocity as the boundary. However practical studies show that some viscoelastic
fluids slip against the boundary surface. Let us refer, for instance, the articles [7] on capillary flow of
highly entangled polyethylene (PE) melts, and [8] on microgel pastes and concentrated emulsions
exhibiting a generic slip behavior at low stresses when sheared near smooth surfaces. In this work,
we consider an homogeneous slip boundary condition.

Essentially, the deterministic approach consists of the study of well-posedness and properties of
an individual solution, which describes quite well the laminar flows of fluids. However, most flows of
fluids existing in nature and used in industry have a turbulent behavior; and it is widely recognized
that the accurate description of turbulent flows requires a statistical approach, which relays on the
study of properties of ensembles of flows of fluids (see [9–12]).

In this framework, the flows of fluids are described by stochastic processes with values in
appropriate Sobolev spaces. Individual flows correspond to the realizations of the corresponding
stochastic process. From this perspective, we add to the momentum equation a multiplicative white
noise of Itô type, and describe the evolution of the velocity field by the following stochastic partial
differential equation

dY
dt

= divT(Y) + F(t, Y) + σ(t, Y)
dW
dt

. (6)

The stochastic perturbation of the momentum equation induces the appropriate randomness of
the evolutionary velocity field in order to model the intrinsic random effects of the turbulent dynamic,
as well as the external random disturbances of the physical system.

Other relevant stochastic perturbation can be performed by adding to the deterministic equation
an additive or a multiplicative white noise of Stratonovich type σ(t, Y) ◦ dW

dt . The nature of the two
stochastic perturbations is different and the practical choice of the more appropriate one to describe
the features of the physical system is not an easy issue. From our perspective the drawback of the
Stratonovich perturbation is not to be a purely stochastic perturbation, it can be written as a sum of an
Itô perturbation plus a deterministic perturbation, which clearly modifies the deterministic part of the
system. In the present work, we have chosen to deal with an Itô type perturbation maintaining the
deterministic part of the model. One of our main motivations relays on the application of the Large
deviation principle, in order to identify and to compute the probability of some specific rare events,
which can highlight the onset of turbulent behavior of the fluid. However, there are mathematical
and physical reasons that justify future research on the three dimensional stochastic third grade fluid
equations with a Stratonovich type perturbation, namely the Wong-Zakai principle and the existence
of stochastic variational principles [13,14].
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Introducing the expression of the Cauchy tensor T in Equation (6), we arrive at the following
stochastic partial differential equation

dυ(Y(t)) =
(
−∇p + ν∆Y− (Y · ∇)υ−∑

j
υj∇Y j + (α1 + α2)div

(
A2
)

+ β div
(
|A|2 A

)
+ F(t, Y)

)
dt + σ(t, Y) dW(t) in O × (0, T),

(7)

where
A = A(Y) = A1(Y) = 2D(Y) with D(Y) =

1
2

[
∇Y +∇Y>

]
,

υ = υ(Y) = Y− α1∆Y,

and σ(t, Y) is the diffusion coefficient.
In the case β = 0, the third grade fluid equations reduce to the second grade fluid equations,

which are mathematically more tractable (see [15–17]). Nevertheless, in order to capture important
rheological properties of certain fluids, as for instance the shear thinning and shear thickening effects,
we need to deal with a third grade fluid model.

As far as we know, the stochastic third grade fluid equations have been studied for the first time
in the article [18], where the authors proved the existence and the uniqueness of the strong solution
(in the stochastic sense) in dimension two. The strategy applied in [18] is based on a combination of
the deterministic methods developed in the articles [19,20] with a stochastic uniqueness type argument
introduced in [21] to study the stochastic Navier-Stokes equation. We should mention that the strategy
in [18] does not work in dimension three.

2. Results

In this article, we address the physically relevant three-dimensional problem. Having in mind the
statistical study of turbulent flows, the solution of the stochastic momentum equation is defined as a
stochastic process with values in the Sobolev space of the initial conditions. In Section 2, we formulate
the problem by adding a Navier slip boundary condition to the equation, and introducing the
appropriate functional spaces. The Section 3 constitutes the main part of the article. We present
the notion of a weak solution (in the probabilistic sense), with the Wiener process being part of the
solution, and establish its existence, for initial conditions in the Sobolev space H2(O). We prove that
the realizations of the stochastic process of the velocity field live in L∞(0, T; H2(O)). The methods
for showing existence are based on the Galerkin’s finite-dimensional approximations and on the
application of Prokhorov’s and Skorohod’s Theorems.

3. Functional Setting and Useful Results

We consider the stochastic third grade fluid Equation (7), with β > 0, in a bounded,
non-axisymmetric and simply connected domain O of R3 with a sufficiently regular boundary Γ,
and supplemented with a Navier slip boundary condition, which reads

d(υ(Y)) =
(
−∇p + ν∆Y− (Y · ∇)υ−∑j υj∇Y j + (α1 + α2)div

(
A2)

+βdiv
(
|A|2 A

)
+ F(t, Y)

)
dt + σ(t, Y) dW(t), in O × (0, T),

div Y = 0 in O × (0, T),

Y · n = 0, (n · D(Y))tan = 0 on Γ× (0, T),

Y(0) = Y0 in O,

(8)
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where Y = (Y1, Y2, Y3) is the fluid velocity field, n = (n1, n2, n3) is the unit normal to the boundary Γ,
(n · D(Y))tan denotes the tangent part of the vector n · D(Y), and the term σ(t, Y) dW(t) corresponds
to the stochastic perturbation, where W(t) is a standard Rm-valued Wiener process defined on a
stochastic basis (Ω,F , P, {Ft}t∈[0,T]). We assume that F0 is a complete σ-algebra with respect to P.

Taking an open and bounded subset O of R3, we consider the Lebesgue spaces Lp(O) and the
Sobolev spaces W j,p(O) endowed with the usual norms denoted by ‖ · ‖p and ‖ · ‖W j,p , respectively,
j ∈ N, p > 0. In the particular case p = 2, the spaces W j,p(O) and the norms ‖ · ‖W j,p will be denoted
by H j(O) and ‖ · ‖H j , respectively.

We introduce the following Hilbert spaces:

H =
{

y ∈ L2(O) : div y = 0 in O and y · n = 0 on Γ
}

,

V =
{

y ∈ H1(O) : div y = 0 in O and y · n = 0 on Γ
}

,

W =
{

y ∈ V ∩ H2(O) : (n · D(y))tan = 0 on Γ
}

.

(9)

The space H is endowed with the usual L2−inner product (·, ·) and the associated norm ‖ · ‖2.
Let us recall the Helmholtz-Leray projector P : L2(O) −→ H, which is the linear bounded

operator characterized by the following L2−orthogonal decomposition of vector fields

z = Pz +∇φ, φ ∈ H1(O).

Due to the structure of Equation (7), it is convenient to introduce on V ⊂ H1(O) the following
inner product

(u, z)V := (υ(u), z) = (u, z) + 2α1 (D(u), D(z)) , (10)

and define the associated norm ‖ · ‖V , which is equivalent to the norm ‖ · ‖H1 . Analogously, on W ⊂
H1(O), we introduce the inner product

(u, z)W := (u, z)V + (Pυ(u),Pυ(z)) , (11)

and denote by ‖ · ‖W the corresponding norm, which is equivalent to the norm ‖ · ‖H2 .
Throughout the article, we denote by C a generic positive constant that can assume different

values from line to line.
We consider the following auxiliary modified Stokes problem with Navier boundary condition

f̃ − α1∆ f̃ = f −∇p, div f̃ = 0 in O,

f̃ · n = 0, (n · D( f̃ ))tan = 0 on Γ.
(12)

We recall from [16] that assuming f ∈ Hm(O), m = 0, 1, the problem (12) has a solution ( f̃ , p) ∈
Hm+2(O)× Hm+1(O) verifying

‖ f̃ ‖H2 ≤ C‖ f ‖2. (13)

According to the definition of the inner product (10), we have

( f̃ , h)V = ( f , h), ∀h ∈ V. (14)

Let X be a real Banach space endowed with the norm ‖·‖X . We denote by Lp(0, T; X) the space of
X-valued measurable p−integrable functions y defined on [0, T] for p ≥ 1.
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Given η ∈ (0, 1), q ∈ (1, ∞), we consider the space Wη,q(0, T; X) endowed with the norm

‖y‖q
Wη,q(0,T;X)

= ‖y‖q
Lq(0,T;X)

+
∫ T

0

∫ T

0

‖y(t)− y(s)‖q
X

|t− s|1+ηq dtds.

If ηq > 1, we have the Sobolev’s continuous embedding

Wη,q(0, T; X) ⊂ C([0, T], X).

The Ascoli-Arzelá’s Theorem gives the next compactness result.

Lemma 1. Let X0 and X be Banach spaces with the compact embedding X0 ↪→ X. Then for all η ∈ (0, 1),
p ∈ (1, ∞), such that ηp > 1, the following compact embedding holds

Wη,p(0, T; X0) ↪→ C([0, T], X).

For the next lemma, we refer [22].

Lemma 2. Let us consider Banach spaces X0 ⊂ X ⊂ X1. Assume that the first inclusion is compact. Then for
η ∈ (0, 1) and p ∈ (1, ∞), the space

Lp(0, T; X0) ∩Wη,p(0, T; X1)

with the norm
‖y‖η,p,X0,X1 := ‖y‖Lp(0,T;X0)

+ ‖y‖Wη,p(0,T;X1)
(15)

is campactly embedded in the space Lp(0, T; X).

For p, r ≥ 1 let Lp(Ω, Lr(0, T; X)) be the space of stochastic processes Y = Y(ω, t) with values in
X defined on Ω× [0, T], adapted to the filtration {Ft}t∈[0,T] , and endowed with the norms

‖Y‖Lp(Ω,Lr(0,T;X)) =

(
E
(∫ T

0
‖Y‖r

X dt
) p

r
) 1

p

and

‖Y‖Lp(Ω,L∞(0,T;X)) =

(
E sup

t∈[0,T]
‖Y‖p

X

) 1
p

if r = ∞,

where E is the mathematical expectation with respect to the probability measure P.

Regularity Assumptions

We consider a deterministic initial condition Y0 ∈W. In addition, we assume that the deterministic
force F : [0, T]×V → L2(O), as well as the diffusion coefficient

σ : [0, T]×V → (L2(O))m, σ(t, y) = (σ1(t, y), . . . , σm(t, y)),

satisfy a growth condition and are Lipschitz, namely there exist positive constants L, K and 0 ≤ γ < 2
such that

‖F(t, y)‖2
2 ≤ L(1 + ‖y‖γ

W1,4), ∀y ∈W1,4(O) ∩V, (16)

‖F(t, y)− F(t, z)‖2
2 ≤ K ‖y− z‖2

V , ∀y, z ∈ V, t ∈ [0, T], (17)
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and
‖σ(t, y)‖2

2 ≤ L(1 + ‖y‖γ

W1,4), ∀y ∈W1,4(O) ∩V, (18)

‖σ(t, y)− σ(t, z)‖2
2 ≤ K ‖y− z‖2

V , ∀y, z ∈ V, t ∈ [0, T], (19)

where we consider that

‖σ(t, y)‖2
2 :=

m

∑
i=1

∥∥∥σi(t, y)
∥∥∥2

2
.

Analogously if σi(t, y) ∈ V or σi(t, y) ∈W , i = 1, . . . , m, we write

‖σ(t, y)‖2
V :=

m

∑
i=1

∥∥∥σi(t, y)
∥∥∥2

V
, ‖σ(t, y)‖2

W :=
m

∑
i=1

∥∥∥σi(t, y)
∥∥∥2

W
.

We also introduce the notation

(σ(t, y), z) :=
(
(σ1(t, y), z), . . . , (σm(t, y), z)

)
∀y ∈ V, z ∈ L2(O).

Accordingly

| (σ(t, y), z) | =
(

m

∑
k=1

(
σk(t, y), z

)2
)1/2

, ∀y ∈ V, z ∈ L2(O).

Remark 1. Let us emphasize that the assumptions (18)–(19) allow diffusion coefficients depending on a power
less that 1

2 of the first order derivatives of the velocity field y, with any intensity.
However, there are specific diffusion coefficients that do not satisfy the above assumptions, for which we can

still apply the same strategy to show the existence of the solution. This is the case for

σ(t, y) = σ0υ(y),

where σ0 is a constant small enough compared to the parameter β. The key point is that in the deduction of
the energy estimates, we can take advantage of the L2−symmetry of σ(t, y) through the integration by parts,
as for instance

(σ(t, y), y) = σ0(υ(y), y) = σ0‖y‖2
V ≤ Cσ0‖y‖2

W1,4 .

We should mention that the addition of this type of stochastic noises to the deterministic equations, may have
relevant physical consequences, namely it helps to stabilize the physical system, as t→ ∞.

4. Existence of Solution

This section is devoted to show the existence of the solution to the stochastic system (8). Let us
first introduce the notion of the solution.

Definition 1. Assume the hypothesis (16)–(19) and consider Y0 ∈W. A system

(Ω,F , P, {F t}t∈[0,T],W , Y)

is a stochastic weak solution of Equation (8) if

1. (Ω,F , P) is a complete probability space;
2. W is a Brownian motion defined on the probability space (Ω,F , P) for the filtration {F t}t∈[0,T];

3. for a.e. t, Y(t) is F t−measurable and belongs to Lp(Ω, L∞(0, T; W)) for every 2 ≤ p < ∞;
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4. a.e.−P the following integral equation holds

(
υ(Y(t)), φ

)
=
∫ t

0

[
ν
(
∆Y, φ

)
−
(
(Y · ∇)φ, υ(Y)

)
−∑

j

(
υj(Y)∇Y j, φ

)]
ds

−
∫ t

0

(
(α1 + α2)div

(
A2
)
+ β div

(
|A|2 A

)
, φ
)

ds

+ (υ(Y0), φ) +
∫ t

0

(
F(s, Y(s)), φ

)
ds +

∫ t

0

(
σ(s, Y(s)), φ

)
dW(s),

(20)

∀φ ∈ V, ∀t ∈ [0, T], where the stochastic integral is defined by

∫ t

0

(
σ(s, Y(s)), φ

)
dW(s) =

m

∑
k=1

∫ t

0

(
σk(s, Y(s)), φ

)
dW k

(s),

and A := A(Y).

Now we state the main result of the article.

Theorem 1. Assume the hypothesis (16)–(19) and consider Y0 ∈ W. Then there exists a solution
(Ω,F , P, {F t}t∈[0,T],W , Y) to Equation (8) according to the Definition 1.

The remaining of this section is devoted to the proof of Theorem 1. As in the articles [18,20,23],
we apply the Galerkin’s approximation method for an appropriate basis. We recall that the injection
operator I : W ↪→ V being a compact operator guarantees the existence of a basis {ei} ⊂ W of
eigenfunctions to the problem

(v, ei)W = λi (v, ei)V , ∀v ∈W, i ∈ N, (21)

which is an orthonormal basis in V and an orthogonal basis in W. In addition the sequence {λi} of
the corresponding eigenvalues fulfils the properties: λi > 0, ∀i ∈ N, and λi → ∞ as i→ ∞. Since the
ellipticity of Equation (21) increases the regularity of their solutions (see [24]), we may consider
{ei} ⊂ H4(O).

We consider the finite dimensional space Wn = span {e1, . . . , en}, and introduce the
Faedo-Galerkin approximation of the system (8). Namely, we look for a solution to the following
stochastic differential equation

d (υn, φ) =
(
ν∆Yn − (Yn · ∇)υn −∑j υ

j
n∇Y j

n + (α1 + α2)div
(

A2
n
)

+βdiv
(
|An|2 An

)
+ F(t, Yn), φ

)
dt + (σ(t, Yn), φ) dW(t), ∀φ ∈Wn,

Yn(0) = Yn,0,

(22)

where

Yn(t) =
n

∑
j=1

cn
j (t)ej.

Here Yn,0 denotes the projection of the initial condition Y0 onto the space Wn, υn = Yn − α1∆Yn

and An = ∇Yn + (∇Yn)>.
Due to the relation (21), the sequence {ẽj =

1√
λj

ej} is an orthonormal basis for W and

Yn,0 =
n

∑
j=1

(
Y0, ej

)
V ej =

n

∑
j=1

(
Y0, ẽj

)
W ẽj,
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The Parseval’s identity yields

‖Yn(0)‖V ≤ ‖Y0‖V and ‖Yn(0)‖W ≤ ‖Y0‖W .

The Equation (22) can be written as a system of stochastic ordinary differential equations in Rn

with locally Lipschitz nonlinearities. From classical results there exists a local-in-time solution Yn that
is an adapted stochastic process with values in C([0, Tn], Wn).

The existence of a global-in-time solution follows from the uniform estimates on n = 1, 2, . . . ,
that will be established in the next section (a similar reasoning can be found in [16,17,25]).

If we identify the Hilbert space V with its dual V∗, we have the Gelfand triplet

W ⊂ V = V∗ ⊂W∗.

The duality relations between u ∈ W∗ and y ∈ W is denoted by the inner product (u, y)V in V,
in the case of u ∈ V the duality coincide with the inner product in V.

4.1. Uniform Estimates

Here, we state two lemmas, which have been proved in the articles [18,23] within the
two-dimensional context. By performing straightforward adaptation, all steps of the proofs remain
valid if we consider O ⊂ R3.

Lemma 3 ([18]). Assume (16)–(19), and Y0 ∈W. The solution Yn to Equation (22) verifies

E sup
t∈[0,T]

‖Yn‖p
V ≤ C, (23)

Ee
β

16(K∗)4
∫ T

0 ‖Yn‖4
W1,4 ≤ C, (24)

E sup
t∈[0,T]

‖Yn‖p
W ≤ C, (25)

for every 2 ≤ p < ∞, where C is a constant independent of n, and K∗ is defined by the following inequality

‖y‖W1,4 ≤ K∗‖A(y)‖4, ∀y ∈ V. (26)

Let us notice that the inequality (26) is a consequence of the following version of the Korn
inequality, which holds for non-axisymmetric bounded domains (see Theorem 3 in [26])

‖∇y‖2 ≤ K‖A(y)‖2, ∀y ∈ V,

where K is a positive constant, conjugated with the Sobolev’s continuous embeddings H1(O) ↪→
L4(O) ↪→ L2(O) and the Poincaré inequality.

The main estimate (24) follows from the key remark that the nonlinear term β div
(
|A(y)|2 A(y)

)
for β > 0 is more regularizing than the linear term ν∆y, due to its symmetry and good sign. Namely,
it helps to absorb the other inconvenient nonlinear terms, in order to deduce the inequality

‖Yn(t)‖2
V +

β

4

∫ t

0
‖A(Yn)‖4

4 ds + 4ν
∫ t

0
‖DYn‖2

2 ds ≤ ‖Y0‖2
V

+ C
(

1 +
∫ t

0
‖Yn‖2

V ds
)
+ 2

∫ t

0
(σ(s, Yn), Yn) dWs, ∀t ∈ [0, T],

where C is a positive constant depending on the parameters of the equation. Next, by using standard
Sobolev’s inequalities, the inequality (26) and the exponential supermartingale process, we infer (24).
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Lemma 4 ([23]). Assume (16)–(19), and Y0 ∈ W. Let Yn be the unique solution to Equation (22). Then for
2 ≤ p < ∞ and 0 < η < 1

2 , we have
E ‖Yn‖p

Wη,p(0,T;V)
≤ C, (27)

where C is a positive constant independent of n.

These uniform estimates are crucial to apply a suitable compactness criterion, in order to pass to
the limit the sequence {Yn} of Galerkin approximations.

4.1.1. Tightness

Let us introduce the stochastic process Ψn(t) := (Yn(t),W(t)). For 1 ≤ q ≤ 6 fixed, we define
the set

E := L2(0, T, W1,q(O)) ∩ C([0, T], H).

The trajectories of the stochastic processes Ψn(t) belong to the space

E × C([0, T],Rm).

The laws µn, n ∈ N, of the random variables

Ψn : Ω→ E × C([0, T],Rm)

are defined by

µn(B) = P(Ψn ∈ B) for any Borel set B ∈ B(E × C([0, T],Rm)).

For any R > 0, let us consider the set

KR :=
{

y ∈ L2(0, T; W) ∩Wγ,2(0, T; V) : ‖y‖γ,2,W,V ≤ R
}

,

with the norm ‖ · ‖γ,2,W,V defined in (15). Since the embedding V ↪→ H is compact, Lemma 1 gives the
compact embedding

Wγ,p(0, T; V) ↪→ C([0, T], H);

and Lemma 2 yields the compact embedding

L2(0, T; W) ∩Wγ,2(0, T; V) ↪→ L2(0, T; W1,q(O)) for any 2 < q ≤ 6.

Therefore, the set KR is a relatively compact subset of E .
Due to estimate (25) of Lemma 3 and Lemma 4

P(Yn /∈ KR) = P(‖Yn‖γ,2,W,V > R) ≤ 1
R2E‖Yn‖2

γ,2,W,V ≤
C
R2 .

Then given δ > 0, we can choose Rδ big enough such that

P(Yn /∈ KRδ
) ≤ C

R2
δ

<
δ

2
.

On the other hand, for any L > 0, the set

K̃L :=

y ∈ C([0, T],Rm) : sup
t,s∈[0,T], |t−s|< T

2M

|y(t)− y(s)| ≤ L

2
M
8

, ∀M ∈ N


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is compact in C([0, T],Rm). From the properties of the Brownian motion, we have

P(W /∈ K̃L) ≤
C
L4 .

Hence given δ > 0, we can choose Lδ big enough such that

P(W /∈ K̃Lδ
) ≤ C

L4
δ

<
δ

2
.

Therefore, there exists a relatively compact set KRδ
× K̃Lδ

∈ B(E × C([0, T],Rm)) such that
µn(KRδ

× K̃Lδ
) ≥ 1 − δ, ∀n ∈ N, which gives the tightness of the family {µn} on the space E ×

C([0, T],Rm). Similar analysis can be found in [27,28]. It follows from the Prokhorov’s Theorem that
there exists a subsequence {µnk} of {µn} which converges weakly to a probability measure µ.

4.1.2. Passage to the Limit

Step 1. The Skorohod’s Theorem provides the existence of a probability space (Ω,F , P),
and random variables (Ynk ,Wnk ), (Y,W) defined on this probability space, with values in the space

E × C([0, T],Rm)

such that:

(i) the law of (Ynk ,Wnk ) is µnk ,
(ii) the law of (Y,W) is µ,
(iii)

a.e.− P, we have (Ynk ,Wnk )→ (Y,W) on E × C([0, T],Rm). (28)

To simplify the notation, we denote Yk := Ynk , Yk := Ynk andW k :=Wnk .
Let us define the filtration {F t}t∈[0,T] with

F t := σ(Y(λ),W(λ), 0 ≤ λ ≤ t).

Standard arguments show that the stochastic processW(t), t ∈ [0, T], defined on the stochastic
basis (Ω,F , P, {F t}t∈[0,T]) is a Wiener process.

Let us consider

f (Yk) := ν∆Yk − (Yk · ∇)υk −∑
j

υ
j
k∇Y j

k + (α1 + α2)div
(

A2
k

)
+ β div

(
|Ak|2 Ak

)
,

with υk = υ(Yk) and Ak = A(Yk).
Since Yk satisfies the equation

(υ(Yk(t)), ei) = (υ (Y0) , ei) +
∫ t

0

(
f (Yk), ei

)
ds +

∫ t

0
(F(s, Yk), ei) ds

+
∫ t

0
(σ(s, Yk), ei) dW(s), ∀i ∈ N,

(29)

where the term
∫ t

0 ((Yk · ∇)υk, ei) ds is undestood as
∫ t

0 ((Yk · ∇)ei, υk) ds.
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Step 2. It can be verified that Yk satisfies the following stochastic differential equation

(
υ(Yk(t)), ei

)
= (υ (Y0) , ei) +

∫ t

0

(
f (Yk), ei

)
ds +

∫ t

0

(
F(s, Yk), ei

)
ds

+
∫ t

0

(
σ(s, Yk), ei

)
dW k(s), ∀i ∈ N,

(30)

with ∫ t

0
((Yk · ∇)υk, ei) ds :=

∫ t

0
((Yk · ∇)ei, υk) ds.

Here we denote υk = υ(Yk), Ak = A(Yk)

Step 3. Taking into account that Yk verifies Equation (30), following the same reasoning as in the
proof of Lemma 3, we show that

EP sup
t∈[0,T]

‖Yk‖
p
W ≤ C for 2 ≤ p < ∞, (31)

with C independent of k, which gives

EP ‖Yk‖
p
L2(0,T;W1,q)

≤ C for 2 ≤ p, q < ∞, (32)

with C independent of k. Since Yk → Y a.e.−P strongly in L2(0, T; W1,q(O)) for 2 ≤ q ≤ 6, we have

‖Yk‖
p
L2(0,T;W1,q)

→ ‖Y‖p
L2(0,T;W1,q)

a.e.− P, 2 ≤ q ≤ 6, 2 ≤ p < ∞,

then the Fatou’s Lemma yields

EP ‖Y‖p
L2(0,T;W1,q)

≤ C for 2 ≤ q ≤ 6, 2 ≤ p < ∞. (33)

Therefore, the sequence {‖Yk −Y‖p
L2(0,T;W1,q)

} is uniformly integrable and converges to zero in
probabilty. As a consequence, we obtain

Yk → Y strongly in Lp(Ω, L2(0, T; W1,q(O))) for 2 ≤ q ≤ 6, 2 ≤ p < ∞. (34)

There exists a subsequence of {Yk}, still denoted by {Yk} such that

Yk → Y strongly in W1,q(O), a.e.− dt× P, for 2 ≤ q ≤ 6. (35)

In addition, from (31) we also have

Yk → Y weakly- ∗ in Lp(Ω, L∞(0, T; W)) for 2 ≤ p < ∞. (36)

Step 4. With the help of these two convergences, we will pass to the limit termwise in the stochastic
differential Equation (30) in order to show that for all t ∈ [0, T] and a.e.−P, the stochastic process Y
verifies the equation

(
υ(Y(t)), φ

)
= (υ (Y0) , φ) +

∫ t

0

(
f (Y), φ

)
ds +

∫ t

0

(
F(s, Y), φ

)
ds

+
∫ t

0
(σ(s, Y), φ) dW(s), ∀φ ∈ V.

Let ei, i ∈ N, an arbitrary element of the basis. Due to the convergence (35), we have(
υ(Yk(t)), ei

)
=
(
Yk(t), ei

)
V →

(
Y(t), ei

)
V = (υ(Y(t)), ei) , a.e.− dt× P.
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Let us write∫ t

0

(
f (Yk), ei

)
ds = ν

∫ t

0

(
∆Yk, ei

)
ds−

∫ t

0

(
(Yk · ∇)υk, ei

)
ds−

∫ t

0
∑

j

(
υ

j
k∇Ykj, ei

)
ds

+ (α1 + α2)
∫ t

0

(
div

(
A2

k

)
, ei

)
ds + β

∫ t

0

(
div

(
|Ak|2 Ak

)
, ei

)
ds.

For all test function ξ ∈ L∞([0, T]×Ω), the weak convergence (36) gives

E
∫ T

0

(
∆Yk, ξei

)
ds→ E

∫ T

0

(
∆Y, ξei

)
ds.

With the help of the convergences (34) and (36), we deduce that

E
∫ T

0

(
(Yk · ∇)υk, ξei

)
ds = E

∫ T

0

(
(Yk · ∇)ξei, υk

)
ds→ E

∫ T

0

(
(Y · ∇)ξei, υ

)
ds

= E
∫ T

0

(
(Y · ∇)υ, ξei

)
ds.

Notice that the term div
(
|Ak|2 Ak

)
can be written in the form D2YkDYkDYk where D2 is

a differential operator of second order, and D is a first order differential operator. The strong
convergence (34) yields

DYk → DY in L4(Ω, L2(0, T; L4(O)))

that implies
DYkDYk → DYDY in L2(Ω, L1(0, T; L2(O))).

On the other hand

D2Yk ⇀ D2Y weakly-* in L2(Ω, L∞(0, T; L2(O))).

Therefore, we have

E
∫ T

0

(
div

(
|Ak|2 Ak

)
, ξei

)
ds = E

∫ T

0

(
D2YkDYkDYk, ξei

)
ds→ E

∫ T

0

(
D2YDYDY, ξei

)
ds

= E
∫ T

0

(
div

(
|A|2 A

)
, ξei

)
ds.

Dealing in a similar way with the remaing term, we reach the convergence

E
∫ T

0

(
f (Yk), ξei

)
ds→ E

∫ T

0

(
f (Y), ξei

)
ds,

which yields

∫ t

0

(
f (Yk), ei

)
→
∫ t

0

(
f (Y), ei

)
weakly in L1(Ω).

In addition, considering the assumption (17), we derive

E
∣∣∣∣∫ t

0

(
F(s, Yk)− F(s, Y), ei

)
ds
∣∣∣∣ ≤ C‖Yk −Y‖L2(Ω,L2(0,T;V)) → 0.
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For the stochastic term, we will verify that for each t

∫ t

0

(
σ(s, Yk), ei

)
dW k(s)→

∫ t

0

(
σ(s, Y), ei

)
dW(s) weakly in L1(Ω). (37)

We argue as in [27] (see also [28]), taking a regularization of the diffusion coefficient. For the sake
of completeness, we sketch the main ideas. For each path y : [0, T]→ V, we define

σδ(τ, y) : [0, T]→ H, σδ(τ, y) :=
1
δ

∫ τ

0
e−

(τ−s)
δ σ(s, y(s))ds.

Since τ → σδ(τ, y) is regular, we integrate by parts and write the stochastic integral as a function
of the pair (Yk,W k) as follows

∫ t

0
(σδ(s, Yk), ei)W k(s) = G(Yk,W k)

= σδ(t, Yk), ei)W k(t)−
∫ t

0

d
ds

(σδ(s, Yk), ei)W k(s)ds.

In this expression, we use the convergence (28) in order to deduce that

∫ t

0
(σδ(s, Yk), ei)dW k(s)→

∫ t

0
(σδ(s, Y), ei)dW(s) a.e.− P. (38)

For any ϕ ∈ L∞(Ω) and each δ > 0, we apply the assumption (18) and Lemma 3 to obtain

E
(∫ t

0
(σδ(s, Yk), ϕei)dW k(s)

)2
≤ CE

∫ t

0
‖σδ(s, Yk)‖2

2ds ≤ CE
∫ t

0
‖σ(s, Yk)‖2

2ds ≤ C, ∀k ∈ N;

then the sequence {∫ t

0
(σδ(s, Yk), ϕei)dW k(s)

}
is uniformly integrable, and consequently

∫ t

0
(σδ(s, Yk), ei)dW k(s)→

∫ t

0
(σδ(s, Y), ei)dW(s) weakly in L1(Ω). (39)

On the other hand, for each k it holds that∫ t

0
(σδ(s, Yk), ei)dW k(s)→

∫ t

0
(σ(s, Yk), ei)dW k(s), (40)

and ∫ t

0
(σδ(s, Y), ei)dW(s)→

∫ t

0
(σ(s, Y), ei)dW(s) in L2(Ω), as δ→ 0. (41)

Taking into account that∣∣∣∣E ∫ t

0
(σ(s, Yk), ϕei)dW k(s)−E

∫ t

0
(σ(s, Y), ϕei)dW(s)

∣∣∣∣
≤
∣∣∣∣E ∫ t

0
(σ(s, Yk), ϕei)dW k(s)−E

∫ t

0
(σδ(s, Yk), ϕei)dW k(s)

∣∣∣∣
+

∣∣∣∣E ∫ t

0
(σδ(s, Yk), ϕei)dW k(s)−E

∫ t

0
(σδ(s, Y), ϕei)dW(s)

∣∣∣∣
+

∣∣∣∣E ∫ t

0
(σδ(s, Y), ϕei)dW(s)−E

∫ t

0
(σ(s, Y), ϕei)dW(s)

∣∣∣∣ ,
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and using (39)–(41), we deduce that

∫ t

0
(σ(s, Yk), ei)dW k(s)→ E

∫ t

0
(σ(s, Y), ei)dW(s) weakly in L1(Ω).

With the help of all deduced convergence results, we are able to pass to the limit each term
of Equation (30), showing that the stochastic process Y satisfies Equation (37) for φ = ei, ∀i ∈ N.
Since span{e1, . . . , en, . . . } = V, we conclude that Y satisfies Equation (37) for all φ ∈ V. Hence the
system (Ω,F , P, {F t}t∈[0,T],W , Y) is a solution of the equation.

5. Discussion and Methods

In this article, we studied the third grade fluid equations in the three-dimensional physical space,
perturbed by a multiplicative white noise. We established the existence of a weak stochastic solution,
where the velocity field corresponds to a stochastic process defined on a certain probability space with
sample paths in L∞(0, T; H2(O)), and the Wiener process is part of the solution.

We should mention that there are a few results in the literature on the stochastic third grade
fluid equations. The two-dimensional stochastic third grade fluid equations was recently studied
in [18], where the authors proved the existence and the uniqueness of the strong solution (in the
stochastic sense) by using a unicity type argument. In [23] it is proved that the strong two-dimensional
solution constructed in [18] satisfies a large deviation principle. As far as we know, the stochastic
three-dimensional problem is being studied here for the first time. Since the unicity type arguments and
the compactness strategy applied in dimension two do not work in dimension three; here, we followed
a more probabilistic approach based on the application of a tightness criterion combined with the
Prokhorov’s and Skorohod’s Theorems. The uniqueness in three dimensions is not an easy issue and
remains an open problem.

We expect that our approach and our result will have practical consequences, contributing to the
statistical description of non-Newtonian turbulent fluids, where typically the flows possess lack of
regularity in the time and space variables. In a forthcoming paper, we intend to show the existence
of less regular solutions by taking the initial conditions in H1(O), and to study the corresponding
moments and correlation functions. A relevant direction for future research concerns the existence of
stationary statistical solutions, or invariant measures.

6. Conclusions

In this work, we considered the equations for an incompressible third grade fluid on a
non-axisymmetric and simply connected bounded domainO ⊂ R3 with a sufficiently regular boundary
Γ, supplemented with a Navier slip boundary condition, and perturbed by a multiplicative white noise
of Itô type. Taking initial conditions in the Sobolev space H2(O), we proved the existence of a solution
in the space L∞(0, T; H2(O)), in the weak probabilistic sense.
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