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Dance," said the Sheep Man. "You gotta dance. As long as the music plays. You gotta 
dance. Don't even think why. Start to think, your feet stop. Your feet stop, we get stuck. 

We get stuck, you're stuck 
 
 

Haruki Murakami, Dance Dance Dance  
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Abstract  
 

TOMM40’523 is a poly-T polymorphism of the gene TOMM40 which was reported by 

Roses et al. to be associated with risk and age of onset (AOO) of Alzheimer’s Disease 

(AD) nearly a decade ago. Meanwhile, based on the distribution behavior of the number 

of thymine (T) residues, three categories (alleles) of repeat length were established: 

short (S, ≤ 19), long (L, 20– 29) and very long (VL, ≥ 30).  

Since the original discovery by Roses et al. multiple studies found associations 

between TOMM40’ 523 and LOAD-related features, such as AOO and risk of AD, brain 

structure and cognition, while other studies could not replicate these associations. 

Moreover, this polymorphism has been poorly addressed in mild cognitive impairment 

cohorts (MCI) and as far as we know, none of these studies fully addressed the 

connection between TOMM40’ 523 polymorphism and the risk and time of conversion 

from MCI to AD.  

Therefore, in the first part of this work our aim was to investigate the relationship 

between TOMM40’ 523 polymorphism with the risk and conversion time from MCI to 

AD, and replicate the association of TOMM40’523 polymorphism with AOO and risk of 

AD. Secondly, the association between TOMM40’ 523 genotype and AD cerebrospinal 

fluid (CSF) biomarkers, particularly Ab42, t-Tau and p-Tau, was also explored. For this 

purpose, 147 AD patients, 102 MCI patients and 105 cognitively normal controls were 

genotyped for poly-T polymorphism. MCI patients were subdivided into 2 groups, the 

group of patients that converted to AD (MCI-AD) and the group of those that remained 

stable (MCI-S). 

We first demonstrated that MCI non-converters (MCI-S) and converters (MCI-AD) had 

a different poli-T distribution, where the L allele was significantly more frequent in the 

MCI-AD group. We further evaluated how this difference impacted the risk of conversion 

and found that having at least one L allele significantly increased the risk of conversion 

from MCI to AD. However, when adjusted for the presence of APOE ε4 allele, both the L 

allele and ε4 allele lost significance in the model (p > 0.05). We then analysed the APOE 

ε4-TOMM40ʹ 523 L haplotype and observed that patients carrying this haplotype had 

significantly higher risk and mean lower times of conversion to AD. This haplotype was 

also significantly associated with a biomarker profile compatible with AD namely, 



 xxviii 

significantly lower levels of Ab42 and higher levels of t-Tau and p-Tau. Similar results 

were observed for AD where ε4-L haplotype carriers where associated with a 

significantly higher risk of AD and lower AOO of AD patients. 

TOMM40 gene encodes the Tom40 protein (translocase of the outer mitochondrial 

membrane, 40 kD) which forms the channel subunit of the outer mitochondrial 

membrane protein complex through which the majority of nuclear-encoded proteins 

enter mitochondria. As the import of mitochondrial proteins into mitochondria is 

essential for biogenesis and functioning of mitochondria, it is not surprising that TOM40 

is essential for life in eukaryotic organisms and that modifications in this protein could 

lead to mitochondrial dysfunction. Mitochondria dysfunction is a well characterized 

event in AD. Considering this, it was hypothesized that TOMM40’ 523 polymorphism 

could have a role on AD through mitochondrial dysfunction. However, the few studies 

performed so far did not reach clear conclusions. Using Peripheral Blood Mononuclear 

Cells (PBMCs) from AD patients, we addressed the impact of this polymorphism on 

different mitochondrial features, such as function, structure and apoptosis. We 

obtained PBMCs from patients homozygous for S, L and VL TOMM40’ 523 

polymorphisms, which are thereafter called S, L and VL groups.  

In this study, we observed that VL group had significant higher levels of TOM40 than 

S group, similar mitochondrial membrane potential, higher mitochondrial fission protein 

levels and lower caspase activation. Although these two last parameters did not reach 

statistical significance, our data reinforce the hypothesis that increased levels of TOM40, 

as have been observed by Zeitlow et al. seem to be protective to mitochondria, however 

these experiments should be replicated. 

In summary in this work we aimed to study the potential role of TOMM40’523 as a 

risk gene for AD and its involvement in AD pathophysiology through mitochondrial 

dysfunction, under the perspective “from clinics to mitochondria”.  
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Resumo 
 

TOMM40’523 é um polimorfismo poli-T do gene TOMM40 que foi descrito por Roses 

et al. como estando associado com o risco e idade de início da doença de Alzheimer 

(DA). Entretanto, e com base na distribuição do número de timinas, três tipos de alelos 

foram estabelecidos: “short” (S, ≤ 19), “long” (L, 20– 29) e “very long” (VL, ≥ 30). 

Desde a descoberta inicial de Roses et al. vários estudos encontraram associações 

entre o polimorfismo TOMM40’ 523 e características relacionadas com a DA entre elas, 

idade de início e risco de DA, alterações na morfologia cerebral e cognição, enquanto 

outros estudos não conseguiram replicar estas associações. Além do mais, este 

polimorfismo foi pouco estudado em populações com défice cognitivo ligeiro (DCL) e 

tanto quanto sabemos nenhum destes estudos se debruçou na relação entre o 

polimorfismo TOMM40’ 523 e o risco e tempo de conversão de DCL para DA.  

Assim, na primeira parte do trabalho aqui apresentado o nosso principal objetivo foi 

investigar a relação do polimorfismo TOMM40’ 523 com o risco e tempo de conversão 

de DCL para DA, bem como replicar a associação inicial descrita por Roses et al. com o 

risco e idade de início da DA. Em segundo lugar, explorámos a relação entre este 

polimorfismo e os níveis de biomarcadores de DA no líquido cefalorraquidiano (LCR), 

nomeadamente Ab42, Tau total e fosfo-Tau. Para este efeito, procedemos à 

genotipagem para o polimorfismo TOMM40’ 523 em 147 pacientes com DA, 102 

pacientes com DCL e 105 controlos cognitivamente normais. Os pacientes DCL foram 

subdivididos em dois grupos distintos: um grupo de pacientes DCL que converteram 

para AD (DCL-C) e um grupo de pacientes que permaneceu cognitivamente estável (DCL-

NC). 

Começámos neste estudo por demonstrar que os doentes DCL que não converteram 

(DCL-NC) e os doentes que converteram (DCL-C) apresentavam uma distribuição distinta 

do número de timinas neste polimorfismo, sendo o alelo L significativamente mais 

frequente no grupo DLC-C. Posteriormente, avaliámos como é que esta diferença 

afetava o risco de conversão de DCL para DA e verificámos que a presença de pelo 

menos um alelo L aumentava significativamente o risco de conversão de DCL para DA. 

Contudo, quando tido em conta o alelo ε4 do gene APOE, verificámos que tanto o alelo 

L como alelo ε4 perdiam significância no modelo de conversão (p > 0.05). Então 
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decidimos estudar o haplótipo APOE ε4-TOMM40ʹ 523 L e observámos que doentes com 

este haplótipo apresentavam um risco significativamente maior de conversão de DCL 

para DA e menores tempos de conversão. Verificou-se também uma associação 

significativa entre este haplótipo e um perfil de biomarcadores compatível com DA, 

nomeadamente menores níveis de Ab42 e níveis mais altos de Tau total e fosfo-Tau. 

Adicionalmente, verificamos que o haplótipo APOE ε4-TOMM40ʹ 523 L estava 

significativamente associado com um maior risco de desenvolver DA e com menor idade 

de início da doença. 

O gene TOMM40 codifica a proteína TOM40 (Translocase da membrana externa, 40 

kD) que forma o canal na membrana externa da mitocôndria através do qual a maioria 

das proteínas codificadas no citoplasma entram na mitocôndria. Sendo a importação de 

proteínas essencial para a biogénese e funcionamento da mitocôndria, não é de 

surpreender que a proteína TOM40 seja essencial para os seres eucarióticos, e que 

modificações nesta proteína possam eventualmente levar a disfunção mitocondrial. A 

disfunção mitocondrial é um evento bem caracterizado na DA. Tendo isto em conta, 

colocámos a hipótese de que o polimorfismo TOMM40’ 523 poderia ter um papel 

importante na disfunção mitocondrial e patogénese da DA. Utilizando células 

mononucleares do sangue periférico (PBMCs) de doentes com DA, estudámos o impacto 

deste polimorfismo em diferentes parâmetros mitocondriais como função, estrutura e 

apoptose. As PBMCs foram obtidas de doentes homozigóticos para os alelos S, L e VL, 

sendo denominados posteriormente como grupos S,L e VL. 

Neste estudo, podémos observar que o grupo VL apresentava níveis 

significativamente mais elevados da proteína TOM40, semelhante potencial de 

membrana mitocondrial, maiores níveis de proteínas de fissão mitocondrial e uma 

menor ativação da caspase 3 quando comparado com o grupo S. Apesar destes dois 

últimos parâmetros não alcançarem  significância estatística, estes dados reforçam a 

hipótese de que o aumento nos níveis de TOM40, tal como observado também por 

Zeitlow et al., poderão ser protetores para mitocôndria. Contudo estes dados têm de 

ser replicados em experiências futuras.  

Em jeito de sumário, neste trabalho pretendemos estudar o potencial papel do 

polimorfismo TOMM40’523 no risco de desenvolver DA, bem como o seu envolvimento 
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na fisiopatologia desta doença via disfunção mitocondrial, numa perspetiva “ da clinica 

para a mitocôndria”. 
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1.1 – Alzheimer’s disease: an overview 
 
1.1.1 – Social and economic impact of Alzheimer’s Disease 
 

Alzheimer‘s  disease  (AD)  was  described for the  first  time  by  the  German  

psychiatrist  Alois Alzheimer  as a “Strange Disorder of the Brain”. At  a  conference  in  

Tubingen  in  1906, Alois  Alzheimer described  a patient  and  the  clinical  picture  of  

the  dementia    (progressive  cognitive  impairment,  focal symptoms,   hallucinations,   

delusions,   and   psychosocial   incompetence),   as   well   as   the histological findings 

in the brain (amyloid plaques and neurofibrillary tangles) found at necropsy (see 1.1.5) 

[1]. Today, AD is the most common form of dementia [2], being estimated that 60%–

80% [3]  of   50 million people living with dementia worldwide suffer of AD. In other 

words, over the world there will be one new diagnosis of dementia every 3 seconds, 

leading to a number of cases that is expected to increase to 83 million in 2030 and 152 

million in 2050. Indeed, the number of people who have dementia is rising rapidly in 

low- and middle-income countries, as people live longer, whereas in high-income 

countries the incidence rate shows a tendency to decrease, probably due to the 

improvement in cardiovascular health, nutrition and education in these countries (see 

1.1.8). Regarding dementia costs, the total estimated worldwide cost of dementia in 

2018 was 1 trillion of dollars and is expected to double to 2 trillion dollars in 2030 [4]. 

Despite the economic impact, there is also an enormous social impact of dementia 

and AD. The long duration of illness before death contributes significantly to the public 

health impact of AD, because much of that time is spent in a state of disability and 

dependence. AD is a very burdensome disease, not only to the patients but also to their 

families and informal caregivers. In 2017, just in the US, it was estimated that caregivers 

of people with AD or other dementias provided 18.4 billion hours of informal (that is, 

unpaid) assistance, a contribution to the nation valued at $232.1 billion [3]. On the other 

hand, a meta-analysis study found dementia family caregivers to be significantly more 

stressed than non- dementia caregivers and to suffer more serious depressive 

symptoms and physical problems. Furthermore, another meta-analysis found overall 

prevalence rates of 34 and 44%, respectively, of elevated depressive and anxiety 

symptoms [5]. 
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Considering the facts aforementioned, AD is considered one of the great health-care 

challenges of the 21st century. In December 2013, the G8 Alliance stated that dementia 

should be made a global priority, aiming that a cure or a disease-modifying therapy 

should be available by 2025 [2]. 

 

1.1.2 – What is Dementia?  

 

Dementia is a syndrome (group of symptoms) caused by a disease of the brain, 

usually chronic, characterized by a progressive, global deterioration in intellect including 

memory, language, problem-solving and other cognitive skills that affect a person’s 

ability to perform everyday activities. These difficulties occur because neurons in areas 

of the brain involved in cognitive function have been damaged or destroyed. As 

previously stated, AD is the most common form of dementia in the elderly, but dementia 

is linked to a very large number of other underlying brain pathologies with distinct 

symptom patterns and brain abnormalities such as: Vascular Dementia (VaD), Dementia 

with Lewis Bodies (DLB), Fronto-Temporal lobar degeneration (FTLD), Parkinson’s 

Disease (PD), Creutzfeldt-Jakob disease (CJD) and Normal pressure hydrocephalus 

(Table 1.1)  

It is important to highlight that the boundaries between these subtypes are indistinct, 

and mixed forms may be the norm. Pathological studies in post-mortem brain indicate 

that mixed pathologies are much more common than ‘pure’ pathologies. In fact, mixed 

dementia is a form of dementia characterized by the hallmark abnormalities of more 

than one cause of dementia, most commonly AD combined with VaD, followed by AD 

with DLB, and AD with VaD and DLB, whereas the combined form of VaD with DLB is less 

common. Recent studies suggest that half of older people with dementia have 

pathologic evidence of more than one cause of dementia and that the likelihood of 

having mixed dementia increases with age and becomes the highest in  the elderly  

(people age 85 or older) [3]. Recently, another form of dementia was described: Limbic-

predominant age-related TDP-43 encephalopathy (LATE) [6]. The neuropathology of this 

disease is characterized by the presence of transactive response DNA binding protein of 

43kDa (TDP-43) proteinopathy in limbic brain structures and is commonly observed in 
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subjects past 80 years of age. This type of dementia has been associated with substantial 

cognitive impairment that mimics AD [6]. 

 

Table 1.1 – Causes of dementia. 

Dementia 
subtype 

Characteristic symptoms Neuropathology 

Alzheimer’s 
Disease (AD) 

Difficulty remembering recent conversations, names 
or events is often an early clinical symptom; apathy 
and depression are also often early symptoms. Later 
symptoms include impaired communication, 
disorientation, confusion, poor judgment, behaviour 
changes and, ultimately, difficulty speaking, 
swallowing and walking 
60 percent to 80 percent of cases.   

Progressive accumulation of 
amyloid plaques outside neurons 
and neurofibrillary tangles inside 
neurons. These changes are 
eventually accompanied by the 
damage and death of neurons. 

Vascular 
dementia (VaD) 

Impaired judgment or impaired ability to make 
decisions, plan or organize is more likely to be the 
initial symptom, as opposed to the memory loss 
often associated with the initial symptoms of AD. In 
addition to changes in cognition, people with VaD 
can have difficulty with motor function, especially 
slow gait and poor balance. 
10 percent of the cases 
 

Vessel blockage or damage 
leading to infarcts (strokes) or 
bleeding in the brain. The 
location, number and size of the 
brain injuries determine whether 
dementia will result and how the 
individual’s thinking and physical 
functioning will be affected. 

Dementia with 
Lewy Bodies 

(DLB) 

Some of the symptoms are common with AD but are 
more likely to have initial or early symptoms of sleep 
disturbances, well-formed visual hallucinations and 
slowness, gait imbalance or other parkinsonian 
movement features. These features, as well as early 
visuospatial impairment, may occur in the absence 
of significant memory impairment. 

Abnormal aggregation of the 
protein alpha-synuclein (Lewy 
bodies) in neurons. When they 
develop in a part of the brain 
called the cortex, dementia can 
result. 

Fronto- 
temporal lobar 
degeneration 

(FTLD) 

Typical early symptoms include marked changes in 
personality and behaviour and/or difficulty with 
producing or comprehending language. Unlike AD, 
memory is typically spared in the early stages of 
disease. The brain changes of FTLD may occur in 
those age 65 years and older, similar to AD, but most 
people with this form of dementia develop 
symptoms at a younger age. About 60 % of people 
with FTLD have ages from 45 to 60. 
10 percent of cases. 

Nerve cells in the front (frontal 
lobe) and side regions (temporal 
lobes) of the brain are especially 
affected, and these regions 
become markedly atrophied 
(shrunken). In addition, the upper 
layers of the cortex typically 
become soft and spongy and 
have protein inclusions (usually 
tau protein or the TDP-43 
protein). 

Parkinson’s 
disease (PD) 

 

Problems with movement (slowness, rigidity, tremor 
and changes in gait) are common symptoms of PD. 
As PD progresses, it often results in dementia 
secondary to the accumulation of Lewy bodies in the 
cortex (similar to DLB) or the accumulation of beta-
amyloid clumps and tau tangles (similar to AD). 

Alpha-synuclein aggregates 
appear in an area deep in the 
brain called the substantia nigra. 
The aggregates are thought to 
cause degeneration of the nerve 
cells that produce dopamine. 

Creutzfeldt- 
Jakob disease 

(CJD) 

Very rare and rapidly fatal disorder impairs memory 
and coordination and causes behaviour changes. 
May be hereditary, sporadic (unknown cause) or 
caused by a known prion infection. 

Misfolded protein (prion) that 
causes other proteins throughout 
the brain to misfold and 
malfunction. 
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Adapted from 2018 Alzheimer's Disease Facts and Figures [3]. 

 

On the other hand, in some cases individuals with symptoms of dementia do not 

actually have dementia, but instead have a condition whose symptoms mimic those of 

dementia, such as, depression, delirium, side effects from medications, thyroid 

problems, certain vitamin deficiencies and excessive use of alcohol, among others.  

Unlike dementia, these conditions often may be reversed with treatment [3].   

 

 

1.1.3 – Symptoms and diagnosis of Alzheimer’s Disease 

 

AD is a progressive disorder that begins with a gradual decline of memory and then 

increases in severity until the symptoms eventually become incapacitating (Table 1.2). 

These symptoms reflect the degree of damage to neurons in different parts of the brain. 

The pace at which the symptoms advance from mild to moderate to severe varies from 

person to person.  In early stages, differences between typical age-related cognitive 

changes and early signs of AD can be subtle. These symptoms include: memory loss; 

difficulty completing familiar tasks at home, at work or at leisure; challenges in planning 

or solving problems; confusion with time or place; problems with words in speaking or 

writing; decreased or poor judgment; withdrawal from work or social activities and 

changes in mood and personality. However, in late stage of disease other clinical 

problems appear such as: blood clots, skin infections due to bed bound and aspiration 

pneumonia, which is a contributing cause of death among many individuals with AD. 

Aspiration pneumonia is caused by the difficulty in eating and drinking, which in turn 

can result in food swallowing into the trachea instead of the esophagus. Ultimately, food 

particles may be deposited in the lungs and cause lung infection [3]. 

 

 

 

Normal pressure 
hydrocephalus 

Difficulty walking, memory loss and inability to 
control urination. Less of 5 percent of cases 

 

Impaired reabsorption of 
cerebrospinal fluid and the 
consequent build-up of fluid and 
increasing pressure in the brain. 
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Table 1.2 – Alzheimer’s disease stages and its characteristics. 

 

Disease Stage Characteristics 

Mild Stage • Most people are able to function independently in many areas but are 

likely to require assistance with some activities to maximize 

independence and remain safe. 

• May still be able to drive, work and participate in favorite activities. 

Moderate Stage • Become confused about where they are and begin wandering. 

• Start having personality and behavioral changes, including 

suspiciousness and agitation 

Severe stage • Individuals require help with basic activities of daily living, such as 

bathing, dressing and using the bathroom. 

• Their ability to verbally communicate is limited. 

• Individuals become bed-bound. 

• Difficult to eat and drink. 

Adapted from 2018 Alzheimer's Disease Facts and Figures [3]. 

 

There is no single test for AD. Instead, physicians use a variety of approaches and 

tools to make the AD diagnosis. These tools include: medical history with the patient 

and caregiver; general physical, neurological, and psychiatric examination; cognitive 

instruments; blood tests and brain imaging to rule out other potential causes of 

dementia symptoms, such as a tumor or certain vitamin deficiencies. In more specialized 

centers, cerebrospinal fluid (CSF)  biomarkers, imaging tools such as positron-emission 

tomography (PET), and genetic studies are used  [3,7].  

Dementia is diagnosed according to the Diagnostic and Statistical Manual of Mental 

Disorders (DSM) and AD, according to the 2011  National Institute on Aging and 

Alzheimer’s Association (NIA-AA) criteria [8]. A novel NIA-AA framework was launched 

in 2018 defining a biological rather a syndromal definition of AD [9]. In these 

recommendations, AD is defined by its underlying pathologic processes, which can be 

documented by postmortem examination or in vivo using biomarkers. This framework 

thus focuses on the diagnosis of AD with biomarkers in living people. Biomarkers are 

grouped in b-amyloid (Ab) deposition (A), pathologic Tau (T) and neurodegeneration (N) 

in a system denominated [AT(N)]. It was determined that these recommendations 

should be cast as “research framework” and not as diagnostic criteria or guidelines. 



 8 

Thus, unlike the 2011 NIA-AA criteria, the 2018 research framework is not intended for 

general clinical practice [9]. 

 

1.1.4 – Mild Cognitive Impairment 

 
Mild cognitive impairment (MCI) represents an intermediate state of cognitive 

function between the changes seen in aging and those fulfilling the criteria for dementia, 

namely AD. Since persons with MCI are at increased risk for developing dementia, this 

entity has been receiving considerable attention in clinical practice and research settings 

[10]. 

MCI is characterized by cognitive decline not fulfilling the criteria of dementia and is 

classified into two main subtypes: amnestic and non-amnestic. In amnestic MCI (aMCI) 

there is a memory impairment, although other cognitive capacities, such as executive 

function, use of language and visuospatial skills are relatively preserved. On the other 

hand, the non-amnestic MCI (naMCI) is characterized by a subtle decline in functions 

not related to memory, affecting attention, use of language, or visuospatial skills. aMCI 

and naMCI can be further classified as single domain or multiple domain [10,11] (Figure 

1.1). MCI can be diagnosed with the following criteria: (1) cognitive complaint by subject 

or informant; (2) notable decline in cognition; (3) cognitive deficits not normal for 

subject’s age;  (4) normal or near-normal functional activities; and (5) cognitive and 

functional difficulties not severe enough to yield diagnosis of dementia  [11,12]. The 

nonamnestic type of MCI is less common than the amnestic type and may be the 

forerunner of dementias that are not related to AD, such as FTLD or DLB. On the other 

hand, aMCI is more likely to convert to AD [10]. A meta-analysis of 42 MCI studies 

identified the annual progression rate to dementia from MCI as 10% in clinical settings 

(8% of the entire sample progressed to AD) [13] whereas the remaining percentage of  

MCI patients stay clinically stable or even revert to normal cognition [11]. 
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Figure 1.1 – Diagnostic algorithm for Mild Cognitive Impairment. Adapted from Petersen et al. [14]. 
 
 

 
1.1.5 – Neuropathological hallmarks 

 
The neuropathologic hallmarks of AD brains are extracellular accumulation of diffuse 

and neuritic amyloid plaques, composed of aggregated Aβ peptide, and the 

intra-neuronal accumulation of neurofibrillary tangles (NFTs) composed of 

hyperphosphorylated protein tau (p-tau). These pathologic features are accompanied 

by gliosis and the loss of neurons and synapses [15,16]. 

 Aβ peptide is the product of amyloid precursor protein (APP) cleavage in the 

amyloidogenic pathway. In this pathway, APP is cleaved by β-secretase (BACE 1 or 2) 

resulting in smaller ectodomain, soluble APP β (APPsβ), which is released into the 

extracellular space, and APP C-terminal fragment β (CTFβ) or C99, which remains 

embedded in the plasma membrane. CTFβ is further cleaved by γ- secretase releasing 

Aβ into the extracellular space and the AICD (APP intracellular domain) into the 

cytoplasm.  Different Aβ forms are produced (Aβ38, Aβ39, Aβ40, Aβ42, etc.) depending on 

the γ- secretase cleavage site [17,18]. However, the 42 amino acid form of Aβ (Aβ42) is 

the most associated and studied in AD. On the other hand, in the non-amyloidogenic 

pathway, APP is cleaved by α-secretase, releasing soluble APP (APPsα) into the 
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extracellular space. The other product C-terminal fragment α (CTFα) or C83, which  

remains embedded in the plasma membrane is further cleaved by γ-secretase, releasing 

a small p3 fragment into the extracellular space and the AICD into the cytoplasm (Figure 

1.2)  [18–20].The APP fragments aforementioned are known to have a physiological role 

in mammalian central nervous system (reviewed by Müller et al. [18]).  

 

 
 

Figure 1.2 – Amyloid Precursor Protein processing. In the nonamyloidogenic pathway (green background) 

APP is processed through sequential cleavages by α- and γ-secretases generating P3 and AICD. In the 

amyloidogenic pathway (red background). APP is processed through sequential cleavages by β- and γ-

secretases generating Aβ and AICD. Adapted from Müller et al [18]. 

 

Tau is a microtubule-associated protein that polymerizes tubulin into microtubules 

and participates in maintaining the complex neuronal cell microarchitecture, such as 

microtubule assembly and stabilization, particularly in the axon.  In adult human brains, 

high heterogeneity of the Tau protein is apparent. There are six different Tau isoforms, 

all of which are derived from a single gene by alternative messenger RNA (mRNA) 

splicing. The six isoforms of Tau protein differ from each other in the number of 

microtubule-binding domains (3R/4R) [21,22]. In AD, natively unfolded Tau becomes 

hyperphosphorylated and, by losing its affinity for microtubules, tends to aggregate and 

form NFTs [22].  
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Tau and Aβ forms are used in diagnostic tools. Aβ42, which shows cortical amyloid 

deposition; total Tau (t-Tau), which reflects the intensity of neurodegeneration; and 

phosphorylated tau (p-tau), which correlates with neurofibrillary pathological changes 

are used as core CSF biomarkers for AD [2]. Tracers for Aβ and Tau are also used on 

amyloid and Tau PET respectively  [2,23]. 

 

1.1.6 – Current pharmacological therapies for Alzheimer’s Disease 

 

 Only six drugs were so far approved for AD: four acetyl cholinesterase inhibitors 

(AChEIs), one N-methyl-d aspartate (NMDA) antagonist and one orexin receptor 

antagonist. Although these medications appear to be able to produce moderate 

symptomatic benefits, they do not  stop or delay  disease progression [24]. 

Treatment with AChEIs is mainly based on the “Cholinergic hypothesis of AD”. 

According to this hypothesis, the selective destruction of cholinergic neurons in the 

basal forebrain and the resulting deficit in the central cholinergic transmission 

contribute substantially to the characteristic cognitive symptoms observed in the 

patients [25,26]. Acetyl cholinesterase enzymes (AChE) are involved in the degradation 

of acetylcholine (ACh) and consequently, inhibition of AChE would be expected to lead 

to an increase in the ACh concentration in the synaptic cleft and would thus be expected 

to ameliorate the cholinergic deficit. In 1993, Tacrine, the first AChEI was approved by 

Food and Drug Administration (FDA). However, Tacrine is no longer used because of 

hepatoxicity [27]. Later on, FDA approved Donepezil (1996), Rivastigmine (2000) and 

Galantamine (2001) for the treatment of mild to moderate AD and these currently 

represent the standard and first-line treatment for AD. Donepezil and Galantamine are 

selective inhibitors of AChE, while Rivastigmine also inhibits butyrylcholinesterase that 

can also hydrolyze ACh in the brain and possibly plays a role in cholinergic transmission 

[24]. 

Another characteristic of AD is the increase of extracellular glutamate, which is 

thought to lead to excessive activation of NMDA receptors and consequently to 

intracellular accumulation of calcium (Ca2+) [28]. This intracellular accumulation of Ca2+ 

then initiates a cascade of events that results in further neuronal death [29] (see 1.3.6). 

Memantine, a non-competitive, moderate affinity NMDA antagonist can protect 
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neurons from excitotoxicity without preventing the physiological activation of the 

NMDA receptor. Memantine was approved in 2002 for the treatment of moderate to 

severe AD. 

In February 2020, Suvorexant, an orexin receptor antagonist became the first 

medication to be approved for treating sleep disorders in AD 

(https://www.alzforum.org/therapeutics/suvorexant ; accessed: 29th September 2020) 

 

 

1.1.7 – The Quest for an Alzheimer Therapy 

 

As stated before, the drugs so far approved for AD do not stop or delay the disease 

progression. The increasing awareness that dementia, and in particular AD, represents 

one of the major challenges to health systems in coming years has led to an 

unprecedented emphasis on the need for an effective therapy, now considered as a 

priority for science and society. The year 2025 has been set by world leaders as the 

target for the availability of an effective therapy or prevention of AD [2]. It has been 

estimated that the overall frequency of the disease would be decreased by nearly 50% 

if the onset of the disease could be delayed by 5 year [30]. However, despite the 

enormous efforts and costs in search for new and effective agents for AD treatment in 

the past decade, there are still no new drugs on the market [31].  

In the last decade, a major focus was put on disease modifying therapies (DMTs). 

DMTs are agents that prevent, delay, or slow progression and target the underlying 

pathophysiologic mechanisms of AD (e.g. amyloid targeted therapies) [30,32]. Up to 

date, 251 therapies for AD have been tested or are currently on clinical tests. From 

those, 6 therapeutics were approved (see 1.1.6), 106 are inactive or discontinued, 1 is 

not regulated and 129 still on clinical trials (https://www.alzforum.org/therapeutics; 

accessed: 29th September 2020). From the 129 drugs actually on clinical trials (Phase 1 

to 3), the majority are directed to amyloid, whereas the remaining therapies are focused 

on other targets such as: cholesterol, cholinergic system, inflammation, metals, 

neurotransmitters, Tau and other/ unknown mechanisms (Figure 1.3).  
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Figure 1.3 – AD drugs currently on clinical trials. (https://www.alzforum.org/therapeutics; accessed: 29th 

September 2020) 

 

The majority of the drugs tested so far on clinical trials were designed to target Aβ 

and based on the “amyloid cascade hypothesis”. This hypothesis proposed that 

deposition of Aβ was the causative agent of AD pathology and that the NFTs, cell loss, 

vascular damage, and dementia followed as a direct result of this deposition [33]. 

However, in recent years, this hypothesis has been modified and challenged principally 

due to substantial failures in clinical trial drugs based on it [17,34–37]. Nevertheless, in 

July 2020 Biogen submitted Aducanumab for FDA approval. Aducanumab is a 

therapeutic antibody developed to clear amyloid plaques from the brain. If approved, 

this would be the first biologic, first anti-amyloid treatment—and the first new drug for 

AD in more than 16 years in the U.S. (https://www.alzforum.org/news/research-

news/biogen-asks-fda-approve-aducanumab ; accessed: 29th September 2020). 

With the recent failures of clinical trials directed to amyloid, smaller companies are 

focusing on AD inflammation. The immune system is an important mediator in the 

pathogenesis of AD [38], so new and already approved (for other conditions) anti-

inflammatory agents are being tested for AD.  Drugs targeting different types of 

neuronal receptors involved in neuronal plasticity and signal transduction (neuronal 

transmitters) are another type of AD drug on clinical trials. These include: serotonin 
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receptors ligands, glutamate receptors ligands and ligands of other receptors and ionic 

channels. Tau is the component of one of the main pathological hallmarks of AD (NFTs), 

so drugs have also been designed against this molecule, namely Tau immunotherapies. 

Drugs that target metals, cholesterol and cholinergic system (see section 1.1.6) are less 

studied in actual clinical trials. However, the major number of drugs actually on clinical 

trials does not fit one of the categories aforementioned and are represented in figure 

1.3 in a miscellaneous group denominated as “others”. This group is composed mainly 

by small molecules which target a variety of signalling pathways involved in AD.  

To complete the picture, there are also other therapies in clinical trials for AD with 

unknown mechanisms such as deep brain stimulation or young plasma transfusion  

(https://www.alzforum.org/therapeutics, reviewed by Bachurin et al. [31]).  New targets 

such as vascular function, epigenetics, neurovascular junction, blood-brain barrier 

targets and  the role of gut microbiota are also being studied (reviewed by Loera-

Valencia [39]). The multifactorial nature of AD is commonly recognized, implying the 

involvement of a number of neurobiological mechanisms in the etiopathogenesis of this 

neurodegenerative disease. In this context, the concept of multitarget drugs having an 

integrated action on a number of biological targets involved in pathogenesis of the 

disease appears to be highly promising in the design of new drugs for treating AD [31]. 

 

1.1.8 – Risk factors for Alzheimer’s Disease 

 

With the exception of cases of AD caused by genetic mutations (see below), experts 

believe that AD, like other common chronic diseases, develops as a result of multiple 

factors rather than a single cause [3].  Age is considered the greatest risk factor for 

developing AD. Accordingly, AD can be classified as Early Onset AD (EOAD, <65 years) 

and late-onset AD (LOAD, ≥65 years) depending  on its age of onset (AOO) [40,41]. Of all 

AD patients, around 10% are diagnosed with EOAD. EOAD patients present with their 

first symptoms between 30 and 65 years with most of the EOAD patients being 

diagnosed between 45 and 60 years. These can present different symptoms compared 

to LOAD [40]. It is important to note that AD is not a normal part of aging, and older age 

alone is not sufficient to cause it.  
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Other risk factor is family history. Individuals who have a parent, brother or sister 

with AD are more likely to develop the disease than those who do not have a first-degree 

relative with the disease.  When diseases run in families, heredity (genetics) and shared 

environmental and lifestyle factors (for example, access to healthy foods and habits 

related to physical activity) may play a role. Another risk factor for AD is carrying one or 

two ε4 alleles  of apolipoprotein E  (APOE) gene [42,43] (see section 1.1.9). Although 

risk factors such as age, family history and number of ε4 alleles cannot be changed, 

others can be changed or modified, to reduce the risk of cognitive decline (Table 1.3). 

There is  strong evidence, from a population-based perspective, that regular physical 

activity and management of cardiovascular risk factors (specially diabetes, obesity, 

smoking and hypertension), a healthy diet and lifelong learning/cognitive training may 

reduce the risk of cognitive decline [44]. Livingston et al. estimated that as much as 35% 

of dementia cases could be prevented by targeting nine modifiable risk factors (early life 

education; midlife hypertension, obesity, hearing loss;  old-age smoking, depression, 

physical inactivity, diabetes, and social isolation) [45]. 

 

Table 1.3 – Modifiable risk factors for Alzheimer’s Disease. 

Modifiable risk factors Characteristics 

Alcohol Moderate alcohol consumption is a modifiable protective 

factor, while heavy alcohol consumption may promote 

dementia. 

Blood Pressure There is a suggestion of an age-dependent relationship, i.e., 

hypertension may be harmful in midlife and protective in 

late-life. 

Diabetes  There is an association between diabetes diagnosis and 

increased risk of AD, suggesting that measures to prevent 

diabetes such as exercise, weight reduction and diet control 

will likely provide some protective benefit. 

Dietary pattern There is an inverse relation between AD and a healthy 

dietary (diet high in fruits and vegetables, low in red and 

processed meats, and favouring mono- and polyunsaturated 

fats over saturated fat) 

Education People with more years of formal education are at lower risk 

for AD and other dementias.  Some researchers believe that 

having more years of education builds “cognitive reserve.”  
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Head Injury There is a harmful effect of head injuries, with risk especially 

elevated among those whose head injuries occur later in life 

or are more severe. 

Homocysteine Higher levels of plasma total homocysteine may be 

associated with an increased risk of incident AD 

Obesity There is some evidence suggesting that obesity may be 

associated with AD and total dementia. 

Physical Activity There is an inverse association between physical activity and 

risk for both AD and dementia 

Social and Cognitive Engagement Studies suggest that remaining socially and mentally active 

throughout life may support brain health and possibly 

reduce the risk of Alzheimer’s and other dementia 

Table based on information of Alzrisk Database [46]. 

 

1.1.9 – Alzheimer’s Disease genetics: an overview 

 

Both EOAD and LOAD have a strong genetic component. Whereas in contrast to 

LOAD, which is a complex disorder with a  heterogeneous etiology and an heritability of 

70 to 80%, EOAD is an almost entirely genetically determined disease with a heritability 

ranging between 92% to 100% [40]. The first genes associated with AD (APP, PSEN1, 

PSEN2, APOE and ADAM10) have been unveiled using linkage studies [41]. These studies 

have been performed in the early 1990s and played a major role in identifying the genes 

associated with AD. Moreover, they aimed to define independence of the transmission 

between disease and genetic markers using the joint segregation of disease, as well as 

genetic markers in a series of AD families [41,47]. 

APP was the first discovered gene associated with AD. In 1991 Goat et al. identified a 

mutation associated with AD in the APP gene (V717I; London mutation) [48]. APP 

encodes the APP protein, which generates Aβ through amyloidogenic pathway (see 

section 1.1.5). In 1995, further studies unveiled another gene locus harbouring AD 

associated mutations: PSEN 1 [49] and PSEN2 [50]. PSEN1 and PSEN2 encodes the 

aspartyl proteases Presenilin 1 and 2 (PS1 and PS2), which constitute the catalytic part 

of  γ – secretase complex [20,51]. Mutations in  these three genes are thought to affect 

AD by increasing the Ab42/Ab40 ratio (reviewed by Bekris and Cacace et al. [40,52]).  To 

date, 51, 219 and 16 different mutations have been identified in APP, PSEN1 and PSEN2 
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genes, respectively (http://www.molgen.ua.ac.be/ADMutations) [53] (Table 1.4). APP, 

PSEN1 and PSEN2 mutations are associated with EOAD. However, these mutations only 

explain 5-10% of EOAD patients, leaving a large group of autosomal dominant pedigrees 

genetically unexplained (reviewed by Cacace et al. [40])  (Figure 1.4).  The frequencies 

for the three genes mutations are 1% for APP, 6% for PSEN1, and 1% for PSEN2 in EOAD 

cohort  [40]. 

 

Table 1.4 – Causal Early Onset Alzheimer’s Disease genes. 

  
Adapted from Cacace et al. [40]. 

 

In 1993 the ε4-allele of the APOE gene was identified on chromosome 19q13.2 as a 

genetic risk factor for LOAD [43,54,55]. To date, the ε4 allele of  APOE is the most highly 

replicated genetic risk factor for LOAD [42,56,57],  being  also associated with EOAD 

(reviewed by Cacace et al. [40]). There are three common alleles of APOE: ε2, ε3, and ε4 

alleles, which have a worldwide frequency of 8.4%, 77.9% and 13.7%, 

respectively. However, the frequency of the ε4 allele is dramatically increased to  about 

40%, in patients with AD [58]. APOE ε4 increases LOAD risk, whereas APOE ε2 is 

associated with decreased LOAD risk [56]. The presence of one or two copies of the 

APOE ε4-allele increased the risk to develop LOAD by a factor of 3 to 15-fold in a dose-

dependent manner [42,58] . The presence of the ε4 allele of the APOE gene, not only 

dose dependently increases the risk for AD, but also lowers the AOO [42,56]. The 

frequency of AD and mean age at clinical onset are 91% and 68 years in ε4 homozygotes, 

47% and 76 years in ε4 heterozygotes, and 20% and 84 years in ε4 noncarriers [42]. 

Moreover, the impact of  the APOE ε4 could only account for  about  27% of the disease 

heritability [41]. APOE gene encodes the Apolipoprotein E (ApoE) protein, which is a 
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glycoprotein that regulates lipid homeostasis by mediating lipid transport from one 

tissue or cell type to another [56,57]. ApoE has also  a role on Aβ metabolism and 

clearance, Tau phosphorylation, brain activity and atrophy,  brain cholesterol 

transport, synaptic plasticity, inflammation and brain neurogenesis, as reviewed  by Liu 

et al. [57]. 

 The last gene unveiled by linkage studies was ADAM10 on chromosome 15q21.3. In 

2009, two variants (Q170H and R181G) of this gene have been reported to be associated 

with AD. ADAM10 is the catalytic component of a-secretase complex, which mediates 

the cleavage of APP in the non-amyloidogenic pathway [20]. It is thought  that these two 

variants contribute to the shift of APP proteolysis toward the amyloidogenic pathway, 

by  disrupting a-secretase activity [59] (see section 1.1.5). 

 
Figure 1.4 – Missing genetic etiology of Early Onset Alzheimer’s Disease. The pie charts indicate the 
distribution of EOAD and LOAD, the fraction of sporadic and familial EOAD patients with the sub-fraction 
of autosomal dominant patients (light emerald). The orange pie chart depicts the fraction of unexplained 
autosomal dominant families. The possible mechanisms that may explain the missing genetic etiology of 
EOAD are divided in two groups arising from the red pie chart: (1) possible undetected genetic alterations 
due to different causes, listed arising from the red pie chart (right side) and (2) possible undetected 
epigenetic dysregulation (left side). For both scenarios, some examples of study designs (e.g., family 
based, extreme trait design and so forth or investigation of DNA(de) methylation and so forth) and 
technological approaches such as next-generation sequencing (NGS), chromatin immunoprecipitation 
assay combined with sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) are schematically suggested. 
Adapted from Cacace et al. [40]. 
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More than a decade after the identification of APOE ε4, large European and 

international genome-wide association studies (GWAS) uncovered novel risk genes for 

AD. Until now, more than 20 genetic loci have been associated with AD by using GWAS. 

Similar to other genetic association studies, GWAS are also used to identify the 

association between genetic variants and AD or AD-related phenotype in different 

populations.  Nevertheless, since with this methodology millions of single-nucleotide 

polymorphisms (SNPs) are evaluated in thousands of samples,  its  success depends on 

sample size, frequency of risk alleles, and individual effect sizes [41,60]. The main gene 

hits discovered by GWAS according to the Alzgene database (http://www.alzgene.org/) 

[61] are described on Table 1.5 and reviewed by Giri and Zhu et al. [41,60]. Other genes 

such as: SORL1, HLA-DRB5-DRB1, PTK2B, CASS4, INPP5D, CELF1, MEF2C, SLC24A4-RIN3, 

ZCWPW1, NME8, FERMT2 have also been unveiled using GWAS [41,62]. Despite the 

utility of GWAS to unveil new risk genes for AD, genetic heritability, frequently caused 

by rare genetic variants with large effects for AD cannot be captured by GWAS.  

Other risk variants  such as: TREM2, PLD3, UNC5C, AKAP9, TM2D3 have been unveiled 

using Next Generation Sequencing (NGS), reviewed by Giri and Zhu et al. [41,60]).  All 

the genes described above and respective pathways in AD are depicted in Figure 1.5. 

 

Table 1.5 – Risk variants for Alzheimer’s Disease.  

Gene Location Polymorphism Known function    Pathways 

1. APOE* 19q13.2  ε4/ε4   

ε3/ε4  

Lipids transport 

 

  Cholesterol 

2.BIN1 2q14.3  rs7562528   

rs744373  

Synaptic vesicle endocytosis   Endocytosis 

3.CLU 8p21-p12  rs11136000, 

rs2279590 

rs93318  

Molecule Chaperone 

Lipid transport 

Cholesterol, immune 

response  

4.ABCA7 19p13.3  rs3764650 

rs3752246  

Transportation of phospholipids 

and phagocytosis  

Cholesterol  

5.CR1 1q32.2  rs6656401  

rs3818361 

rs1408077   

Modulation of complement 

system  

Immune response  
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6.PICALM 11q14.2  rs3851179  

rs541458  

Clathrin-mediated endocytosis  Endocytosis 

 7&9.MS4A6A/E 11q12.2  rs610932(A) 

rs670139(E) 

Signal transduction  Immune response  

9.CD33 19q13.41  rs3865444  Cell-cell interactions,  Immune response  

CD2AP 6p12.3  rs9296559  

rs934940  

Regulation actin cytoskeleton, 

vesicle movement  

Endocytosis 

 

Table based on AlzGene Top Results [62].In this table the top risk genes are ranked based on Hugenet 
interim guidelines for the assessment of genetic association studies [63]. *All genes in this table have 
been discovered using GWAS methodology with exception for APOE gene. 
 
 
 
 

 
 
 
Figure 1.5 – Potential pathways of susceptibility genes involved in the pathogenesis of Alzheimer’s 
Disease. Adapted from Zhu et al. [41]. 
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1.2 – TOMM40 as a risk gene for Alzheimer’s Disease 
 

1.2.1 – TOMM40 rs10524523 polymorphism 
 

The most relevant discoveries in fine-mapping and GWAS studies for LOAD are 

detected within a linkage disequilibrium (LD) region of Chr:19q13.32 that incorporates 

APOE, TOMM40 and APOC1 genes [64–66] (Figure 1.6). Within this region, multiple 

polymorphisms have been related with LOAD risk, namely within the TOMM40 gene. 

This  gene encodes the Tom40 protein (translocase of the outer mitochondrial 

membrane, 40 kD) which forms the channel subunit of the outer mitochondrial 

membrane through which the majority of nuclear-encoded proteins enter mitochondria 

[67,68] (See section 1.3.3). Different polymorphisms in this gene, such as rs11556505, 

rs17664883 and rs157584 [69]; rs157580 [70] and rs2075650 [71]  have been associated 

with AD risk and other AD-related features. Nevertheless, in this chapter I will focus in 

the rs10524523 polymorphism.  

 

 
 

Figure 1.6 – TOMM40-APOE-APOC1 linkage disequilibrium region. Linkage disequilibrium occurs when a 

particular marker allele is associated with the disease-trait locus at a greater than expected frequency 

across multiple families. Adapted from Roses et al. [72]. 

 

Using deep  sequencing and phylogenetic analysis, Roses et al. discovered a 

polymorphic poly-T variant, rs10524523 in the TOMM40 gene, which was associated 

with AOO and risk of AD [73] TOMM40 rs10524523 polymorphism (hereafter 
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TOMM40’523) is a variable length, deoxythymidine homopolymer located in 

chromosome 19 at position 45403049 (Genome Build 37.1) within intron 6 of the 

TOMM40 gene (Ensembl: ENSG00000130204).  

In the human reference sequence, the number of thymidine (T) residues in the 

homopolymer is 35, and the variant allele described by rs10524523 is a 19-base pair (bp) 

deletion (i.e. the variant allele is 16 T residues). However, a wide range of lengths have 

been described for this homopolymer (11-54 T residues)  in different ethnicities, where 

the  longest homopolymers were noted in the African-American (54 T residues) and the 

shortest in Japanese and Korean cohorts [74] (Table 1.6). Meanwhile, based on the 

modes of distribution of the number of T residues, three categories (alleles) of repeat 

length were established: short (S, ≤ 19), long (L, 20–29) or very long (VL, ≥ 30) [75] 

(Figure 1.7). Similar to the variation in the number of T residues, the frequency of S, L 

and VL alleles also varies across ethnicities. Far-Eastern cohorts (Japanese, Korean and 

Han Chinese) are enriched for VL allele with a concomitant decrease of S allele when 

compared to Caucasian cohort. In contrast, African-American and Ghanaian cohorts 

have an enrichment of the S allele and concomitant decrease of VL allele when 

compared to Caucasian cohort. Caucasian and Hispanic have a similar allele distribution 

(Table 1.6). These data show the importance of studying TOMM40’ 523 polymorphism 

in different ethnicities worldwide.  

In the Caucasian population it has been demonstrated in different studies that the 

APOE ε4 allele is almost exclusively linked to an L allele, whereas the ε3 allele is linked 

to either a S or a VL allele. (Figure 1.7)  [73,75]. The same was observed for the Hispanic 

population [74]. Unlike Caucasian and Hispanic cohorts, African American and Ghanaian 

population showed a significant number of ε4 alleles linked to S alleles. Interestingly, 

the Japanese population had a frequent occurrence of ε4-S haplotypes similar to 

African-American and Ghanaian populations. On the other hand, Korean and Han 

Chinese demonstrated a similar allelic distribution to that observed in Caucasian and 

Hispanic cohorts [74]. A later study confirmed some of the results above and concluded 

that the poly-T distribution observed in African-Americans is an admixture of West 

Africans (Yoruban) and Caucasian populations [76]. A subsequent study investigated the 

effect of ε4- TOMM40 ‘523 haplotype variations on the risk of incident AD dementia 

among older  Caucasians and African Americans [77].  Since the studies referred next 
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were performed in Caucasian populations, I will pay attention to the alleles occurring in 

this population. According to the relation observed between APOE and TOMM40 genes 

there are six different genotypes: S/S, S/VL and VL/VL for APOE ε3/ε3; S/L; L/VL for APOE 

ε3/ε4 and L/L for APOE ε4/ε4.  

 

Table 1.6 – TOMM40’523 allele frequencies in different ethnicities.  

 
Table based on Linnertz et al. [74]. 

 

  

1.2.2 – TOMM40’ 523 and Alzheimer’s Disease Risk and Age of 
Onset 
 

In the same study referred above, where Roses et al. described the TOMM40’ 523 

polymorphism the authors also demonstrated that individuals with longer poly-T 

repeats (> 27 T)  linked  to ε3 developed LOAD on average of 7 years earlier than 

individuals with shorter poly-T repeats (< 27 T) linked to ε3 (70.5±1.2 years versus 

77.6±2.1 years) in a ε3/ε4 cohort [73]. However, other independent studies failed to 

reproduce this result. In a larger cohort than the initial Roses’ cohort,  Cruchaga et al. 

found a significant association between TOMM40’523 and risk of LOAD in the opposite 

direction that Roses reported [78]. When analysis was restricted to APOE ε3/ε3 the 

authors’ found that VL allele was underrepresented in AD cases vs. controls, which 
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shows a protective role of VL allele. Moreover, in the whole population VL carriers show 

a higher, but not statistically significant different AOO than short allele carriers. 

Furthermore, the same was found for ε3/ε4 patients (same population addressed in the 

study by Roses et al. [73]). 

 

 

Figure 1.7 – Example of a poly-T distribution in a Caucasian cohort. TOMM40’ 523 alleles are classified 

into: short (S, ≤ 19), long (L, 20–29) or very long (VL, ≥ 30). APOE ε3/ε3 genotypes are associated with S 

and/or VL alleles whereas APOE ε4/ε4 genotypes are almost exclusively associated with L alleles. As a 

consequence, APOE ε3/ε4 have an admixture of S, L and VL alleles. Adapted from Helisalmi et al.[79].  

  

In line with the study by Cruchaga et al. [78], Maruszak et al. also reported 

significantly lower frequency of VL allele in LOAD cases compared to controls and 

centenarians [80]. It is important to emphasise that in both studies referred, the 

TOMM40’ 523 polymorphism was classified as S, L, and VL, where VL allele has ≥ 30 T 

residues. In contrast, in the Roses et al. study [73] the cut-off for “longer” alleles was > 

27 T residues, thus making comparisons difficult. To study the relation of AOO and 

TOMM40’ 523 and replicate Roses et al. findings, Chu et al. fitted models using as 

predictor variables:  the count of APOE ε4 and a binary variable with a division between 
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small and long repeats (long>27), as Roses et al. described [73] or an ordinal factor based 

on the poly-t allele distribution. After accounting for the ε4 allele counts, neither one of 

the poly-T predictors was significant [81]. Similarly, the association found by the effect 

of L allele both in risk and AOO by Jun et al. [82] and Helisalmi et al. [79]. was attributed 

to ε4 allele.  

Bernardi et al. investigated the association between TOMM40’ 523 and AOO, in 

patients with the PSEN1 M146L mutation in a large familial AD Calabrian kindred, and 

found that VL/VL patients had a tendency for an earlier AOO compared to those with 

VL/S and  S/S in APOE ε3/ε3 patients [83]. On the other hand, in a cohort of homozygous 

carriers of APP A713T mutation, Conidy et al. demonstrated that the the large span of 

AOO in this cohort of patients was not influenced by TOMM40’ 523 polymorphism [84]. 

In APOE ε3/ε3 individuals Li et al. observed that the presence of a long poly-T was 

associated with an earlier AOO in patients with PSEN2 mutation, whereas in families 

with a PSEN1 mutation or in patients with LOAD, this association was not found [85]. 

Note that in this study poly-T length was dichotomized into short (<20) and long (>20), 

where the vast majority of the alleles (98%) that were considered long had 34 or more 

T repeats, consistent with VL alleles.  

Lastly, Crenshaw et al. presented a stratification, by TOMM40’ 523 and APOE 

genotype of the AOO cognitive impairment for cognitively normal individuals followed 

in the prospective Joseph Bryan ADRC cohort  in order to create a risk algorithm for 

clinical trial enrichment (Figure 1.8) [86]. which was further evaluated in other studies  

[87,88]. 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.8 – Age of onset of cognitive impairment as a function of TOMM40’ 523 and APOE genotype. 
Adapted from Crenshaw et al. [86] 



 26 

1.2.3 – TOMM40’ 523 and Cerebrospinal fluid biomarkers  
 
 

To determine a possible mechanism underlying the observed disease risk associated 

with the TOMM40’ 523 polymorphism, Cruchaga et al. evaluated if CSF Aβ42, Aβ40, t-Tau, 

or p-Tau levels were associated with this polymorphism. However, no association was 

found between TOMM40’ 523 polymorphism and these CSF biomarkers. The authors 

argued that the TOMM40’ 523 polymorphism may affect AD risk through another 

mechanism [78]. These results were confirmed in an independent study by Helisalmi et 

al. [79],  in a smaller cohort of LOAD patients and  by Pomara et al. in cognitive intact 

elderly individuals [89]. The differences observed in Aβ42 by Helisalmi et al. were 

attributed to L/L group, which is strongly linked to APOE ε4/ε4, thus not attributed to 

TOMM40’523 genotype  [79].  In the same line Pomara et al. described  significant 

reductions of Aβ42 levels in ε4 carriers compared to  non ε4 carriers, but no differences 

were detected across TOMM40’523 variants [89]. Pomara et al. also addressed if 

TOMM40’523 variants affected or mediated the effects of APOE ε4 in the CFS levels of 

cortisol [90] and Neurofilament light (NFL) protein [91] in healthy, cognitively 

individuals. Cortisol is a glucocorticoid released upon stressful events and is essential for 

human survival and for the ability of individuals to cope with stress. Evidence also 

suggests an association between higher brain concentrations of glucocorticoids and AD 

hippocampal pathology (reviewed by Pomara et al. [92]). This author  demonstrated that 

the increase in CSF cortisol, associated with the presence of the APOE ε4 allele, was only 

detected when the S  ’523  allele was not present [90]. Similarly, Pomara et al.  also 

found  that individuals with APOE ε4 had higher CSF NFL levels than non-ε4 carriers, only 

when they do not carried a S allele of TOMM40’523 [91]. NFL proteins in CSF are a 

marker of neuronal damage, especially subcortical axonal injury and white matter 

disease [93]. Patients with AD have shown elevated levels of CSF NFL as compared to 

controls [94]. In summary, these results suggest that S TOMM40’ 523 allele might have 

a ‘‘protective’’ effect against the deleterious effects of APOE ε4 on cortisol and NFL 

levels. 
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1.2.4 – TOMM40’523 and brain structure 
 

In a group of asymptomatic late middle-aged ε3/ε3 individuals, a dose-dependent 

increase in the VL TOMM40’ 523 polymorphism (from no VL alleles, to S/VL 

heterozygous, to VL/VL homozygous) was associated with decreasing gray matter 

volume in the ventral posterior cingulate and medial ventral precuneus, which are 

regions of the brain associated with AD [95] . In PSEN1 and PSEN2 mutation carriers and 

LOAD APOE ε3/ε3 patients, Li et al. demonstrated that individuals with a higher number 

of long poly-t alleles (zero vs. one vs. two) were found to exhibit high levels of neuritic 

tangles (Braak stage of V– VI) and higher frequency of pathological defined AD. In this 

study poly-T length was dichotomized into short (<20) and long (>20), where the vast 

majority of the alleles (98%) that were considered long had 34 or more T repeats, which 

is consistent with VL alleles. However, in this study there was not an association with 

the presence of amyloid pathology, cerebrovascular damage or Lewy body pathology 

[85]. Using as sample the Lothian Birth Cohort 1936 (LBC1936), which is a longitudinal 

ageing sample of a generally healthy community-dwelling older adults [96], the impact 

of TOMM40’ 523 on different brain structure aspects has been addressed. In a first 

study, using brain structural magnetic resonance imaging (MRI), no significant effects of 

APOE  or TOMM40’523 genotype were found on hippocampal volumes when analyzed 

raw, or when adjusted for either intracranial or total brain tissue volume [97]. 

Nevertheless, other study performed in the same cohort demonstrated deleterious 

effects of the  TOMM40’523 S allele (vs L or VL) on specific tracts of white matter 

integrity [98]. In another study, Lyall et al. analyzed  the association between TOMM40’ 

523 and white matter hyperintensities and cerebral microbleeds, which commonly 

occur in people with AD [99] but no significant effects were found [100]. White matter 

tracts are thought to relate to cognitive functions [100]. Burggren et al. demonstrated 

that in older, normal control individuals who do not carried the APOE ε4 genotype, 

longer TOMM40 poly-T lengths were significantly associated with thinner entorhinal 

cortex (ERC) [101]. Substantial work has shown that the first brain changes in AD begin 

in ERC [102]. In line with this finding, Laczo et al. demonstrated that VL/VL group had 

thinner left entorhinal cortex and left posterior cingulate cortex  than the S/S group in 

aMCI patients [103] 
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1.2.5 – TOMM40’ 523 and cognition 

 

Similar to the findings on the impact of TOMM40’ 523 polymorphism on grey matter 

reported above, Johnson et al. also demonstrated that the VL/VL group had a lower 

performance than the S/S TOMM40 group on a test of primary retrieval from a verbal 

list learning task in a group of asymptomatic late middle-aged ε3/ε3 individuals [95]. 

Hayden et al. showed that in cognitively normal participants, the S/S homozygotes had 

better cognitive performance than those with the  VL allele and that subjects with L and 

VL TOMM40‘523’ genotypes had mild deficits in cognitive domains that are typically 

affected in early AD [104]. In a cohort of cognitively normal individuals aged 21 to 97 

years, Caselli et al. found that those homozygous for the VL were associated with 

accelerated memory decline using the test-retest flattening [105]. In another study, 

using the Lothian Birth Cohort 1921, Schiepers et al. found that  only the L TOMM40’523 

allele variant, which is linked to the APOE ε4 allele, was predictive of the rate of cognitive 

change in non- demented older individuals [106]. Using the LBC1936 (described above), 

Lyall et al. demonstrated that TOMM40’523 was not associated with cognitive ageing 

[107]. Among a sample of cognitively normal Jewish elderly with type 2 diabetes, 

Greenbaum et al. described that carriers of the TOMM40’523 S/S genotype performed 

significantly better than individuals with the TOMM40’523 VL/VL genotype on executive 

function and episodic memory tasks, when controlling for multiple relevant 

demographic and cardiovascular variables [108]. In a cohort of community-dwelling 

elderly volunteers who had been followed for changes in cognitive functioning over a 

period of 14 years, Payton et al. showed that the shorter poly-T variant was significantly 

associated with reduced vocabulary ability and a slower rate of vocabulary decline with 

age, compared to the very long poly-T variants [109]. Using annual cognitive data from 

community-based older caucasian Americans followed for up to 21 years, Yu et al. 

demonstrated that participants with TOMM40’523 S/S genotype had faster decline in 

global cognition than participants with S/VL or VL/VL TOMM40’523 genotypes and that 

this effect was driven primarily by episodic and semantic memory [110].  In a group 

of ε3/ε3 homozygotes with aMCI, Laczo et al. demonstrated that  the S/S group 

performed better on allocentric navigation than S/VL and VL/VL groups [103]. On the 
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other hand, in a cohort of cognitively normal, aMCI and AD subjects, Watts et al. 

demonstrated  that participants with two TOMM40 S alleles showed lower baseline  

performance compared to those with two very long alleles, regardless of clinical status 

using attention, verbal memory, and executive function tests [111]. 

 
1.2.6 – TOMM40’ 523 risk alleles and biological insights 

 

As reported above, several studies show an independent association of TOMM40’523 

variant with different AD-related features such as: AD risk and AOO; biomarkers; brain 

structure and cognition (Table 1.7), while others did not. A number of methodological 

aspects that may account for the contradictory results and requirements for the 

replication this type of studies are reviewed by Roses et al. [112]. Watts et al. further 

suggest that future research would benefit from harmonization of the cognitive domains 

studied, and more consistent methods of combining multiple test scores to enable  

better comparisons [111]. However, other authors defend that  TOMM40 poly-T 

associations with LOAD-related phenotypes are simply a consequence of LD with the 

APOE [113]. On the other hand, in studies where an independent association of 

TOMM40 poly-T was found,  the identity of the TOMM40 poly-T risk allele has been 

controversial (S vs VL; reviewed by Chiba-Falek et al.[114]). While several studies have 

suggested that VL allele has a risk effect, other studies have suggested a beneficial effect 

(Table 1.7). Chiba-Falek et al. suggest that the identity of the TOMM40 poly-T risk allele 

depends on the phenotype being evaluated, the age of the study individuals at the time 

of assessment, and the context of the APOE genotypes [114].  

Another example of alleles that display both risk and protective effects that depend 

on the evaluated phenotypes and/or age, are APOE alleles. In the context  of 

neurodegenerative disorders, APOE ε4 is associated with higher risk for LOAD, and APOE 

ε2 is considered as a protective allele (see 1.1.8), but with respect to the lipoprotein 

disorder type III dysbetalipoproteinemia, homozygosity for APOE ε2 is the primary 

causal genetic factor [115]. On the other hand, it was also suggested that the APOE ε4 

has beneficial effects on cognition and other traits in early ages (reviewed by Zetterberg 

et al. [116]).  To gain more insights on the risk associated with TOMM40’ 523 alleles, 

there is an unmet need to translate these findings to biological mechanism. Moreover, 



 30 

Linnertz et al. found that TOMM40 mRNA levels were dose-dependent on the number 

of VL alleles in brain samples from cognitively normal individuals [117]. These results 

were confirmed in the same study and other two studies using luciferase model 

constructs [69,109]. 

Understanding, in depth, the mechanistic role of the TOMM40 poly-T will provide 

insights on the phenotypic outcome of TOMM40 poly-T. Toward this goal, current 

research directions should focus on developing strategies, including in vitro and in vivo 

models (reviewed by Chiba-Falek et al. [114]). 

 

Table 1.7 – Independent associations of TOMM40 poly-T with LOAD-related features.   

 

Adapted from Chiba-Falek et al. [43]. 
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1.3 – Mitochondria in health and disease – an overview of 
mitochondria role in Alzheimer’s Disease. 
 

1.3.1 – An overview of mitochondria structure and function  

 

Mitochondria are essential for the viability of eukaryotic cells and are commonly seen 

as the powerhouses of the cell. However, despite the production of adenosine 

triphosphate (ATP),  many other functions performed by mitochondria are known, such 

as: ion homeostasis, small-molecule biosynthesis, cell cycle and growth, cell survival, 

cellular metabolism, cell signalling, cellular redox status maintenance, Ca2+ homeostasis, 

apoptosis, proteostasis and innate immunity [68,118,119]. In this section, I will review 

the main structure of mitochondria, its main functions and how unhealthy mitochondria 

can be involved in disease, focusing on AD.  

In 1948, Eugene Kennedy and Albert Lehninger discovered that oxidative 

phosphorylation (OXPHOS) occurs in mitochondria. Mitochondria consist of two 

membranes: the outer mitochondrial membrane (OMM) and the inner mitochondrial 

membrane (IMM). Moreover, mitochondria have two aqueous compartments: the 

intermembrane space (IMS) and the matrix. The OMM is permeable to small molecules 

and ions, whereas the IMM is impermeable to most small molecules and ions, including 

protons (H+).  The surface area of the IMM is several-fold larger than that of the OMM, 

forming numerous folds named cristae. Cristae width and length determine the 

efficiency of the electron transport chain (ETC) [120]. ETC comprises a group of four 

multimeric protein complexes (I to IV) embedded in the IMM and two membrane-

permeable electron (e-) carriers (ubiquinone and cytochrome c). Movement of e- 

through the ETC to O2, its terminal acceptor, is accompanied by H+ pumping across the 

IMM by complexes I, III and IV which in turn leads to an electrochemical gradient of H+, 

also referred to as mitochondrial membrane potential (ΔΨm). The resulting 

transmembrane potential and concentration of H+ in the intermembrane space drives 

H+ flow through the ATP synthase to provide the rotational energy for ATP synthesis 

[121] (Figure 1.9). 

During ATP production, e- can leak out of the ETC, in particular from complex I and III 

and react with oxygen to produce O2
-, which in the end leads to the production of 
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reactive oxygen species (ROS),  with superoxide anions, hydroxyl radicals, and hydrogen 

peroxide being the predominant forms  [122,123]. To prevent oxidative damage by O2
-, 

cells have different antioxidant defences such as: glutathione (GSH), manganese 

superoxide dismutase (MnSOD) and catalase (Cat) (reviewed by Andreyev et al. [124]) 

(Figure 1.9). The nuclear factor erythroid-derived 2-related factor 2 (NRF2) is a regulator 

of a variety of antioxidant and detoxifying enzymes and has been shown to directly 

affect mitochondrial homeostasis via its regulation of nuclear respiratory factor 1 (NRF1) 

[125] (see 1.3.2). 

 

 

Figure 1.9 – Antioxidant defences of mitochondria. In this figure the components of electron transport 
chain (ETC) are presented.  White stars indicate the processes and components involved in reactive 
oxygen species (ROS), while red stars mark the components of antioxidant defence. The mitochondria 
enzymes known to generate ROS include the tricarboxylic acid (TCA) cycle enzymes, aconitase (ACO) and 
α-ketoglutarate dehydrogenase (KGDH); the electron-transport chain (ETC) complexes I, II and III; 
dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH); glycerol-3-phosphate dehydrogenase 
(GPDH); dihydroorotate dehydrogenase (DHOH); the monoamine oxidases (MAO) A and B; and 
cytochrome b5 reductase (B5R). Cells have different antioxidants. Nonenzymatic components of the 
system include α-tocopherol (aTCP), coenzyme Q10 (Q), cytochrome c (C) and glutathione (GSH). 
Enzymatic components include manganese superoxide dismutase (MnSOD), catalase (Cat), glutathione 
peroxidase (GPX), phospholipid hydroperoxide glutathione peroxidase (PGPX), glutathione reductase 
(GR); peroxiredoxins (PRX3/5), glutaredoxin (GRX2), thioredoxin (TRX2) and thioredoxin reductase 
(TRXR2). In structurally and functionally intact mitochondria, a large antioxidant defence capacity 
balances ROS generation, and there is little net ROS production. Mitochondrial damage with decrease of 
antioxidant defence capacity is a prerequisite for net ROS production. Once this occurs, a vicious cycle 
(inset) can ensue, whereby ROS can further damage mitochondria, causing more free-radical generation 
and loss or consumption of antioxidant capacity. Adapted from Lin et al. [126]. 
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Mitochondria also play a central role on apoptosis. Apoptosis is an active mechanism 

of programmed cell death in response to stress-inducing or regulatory signals. When 

active, Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist killer (Bak) can 

form oligomers in the OMM, leading to the release of cytochrome c and other 

proapoptotic molecules such as Smac/Diablo and Omi/Htr2. Bax and Bak proteins 

belong to the B-cell lymphoma 2 family (Bcl-2), which is divided in tree functional 

groups: antiapoptocic, proapoptotic multidomain and proapoptotic BH3 only. The fate 

of the cell is determined by the balance of activity of proapoptotic and antiapoptotic 

family members, which act to regulate one another. [127]. Cytochrome c is an essential 

component of the respiratory chain that facilitates the transfer of electrons from 

complex III to complex IV, as reported earlier. However, the release of cytochrome c to 

the cytosol leads to the activation of the key initiator caspase (caspase-9), forming the 

apoptosome complex by binding to the apoptotic protease factor 1 (Apaf 1). Caspase-9 

then activates caspase-3 by proteolytic cleavage, which in turn liberates the caspase-

activated deoxyribonuclease (CAD) from its inhibitor, ICAD, resulting in apoptotic 

features of deoxyribonucleic acid (DNA) fragmentation and chromatin condensation. On 

the other hand, release of Smac/Diablo and Omi/Htr2 promotes cell death by inhibiting 

the action of IAPs (Inhibitor of apoptosis), which are inhibitors of caspases [127]. (Figure 

1.10). Cytochrome c is normally associated with cardiolipin in the IMM membrane. 

Thereby, the oxidation of cardiolipin results in both mitochondrial membrane 

permeabilization and cytochrome c dissociation and release.  Mitochondria can also 

trigger a  caspase-independent mechanism of apoptosis trough the release of 

proapoptotic proteins, such as apoptosis-inducing factor (AIF), which  can travel further 

into the nucleus where it causes DNA fragmentation and chromatin condensation 

[122,127,128]. 

Another important role of mitochondria is Ca2+ homeostasis, by which mitochondria 

can function as a Ca2+ storage organelle. Under normal physiological conditions, Ca2+ is 

continuously shuffled between the endoplasmic reticulum (ER) and the mitochondria 

through the mitochondrial-associated ER membrane (MAM). MAM is a lipid-raft-like ER 

membrane domain where mitochondria are adjacent to the ER (10-30 nm), 

communicating both physically and biochemically  [129,130] (Figure 1.11). At MAM, Ca2+ 

sorts the ER via IP3R (inositol 1,4,5- trisphosphate receptor) and enters in  
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Figure 1.10 – The mitochondrial pathway of apoptosis. When active, the proapoptotic multidomain BCL-

2 family (e.g Bax and Bak) form oligomers in the OMM of mitochondria, resulting in the release of 

cytochrome c and other proapoptotic molecules. Release of cytochrome c leads to the formation of the 

apoptosome and activation of caspase-9. Caspase-9 then activates caspase-3 by proteolytic cleavage 

which leads to cell death. On the other hand, release of Smac/Diablo and Omi/Htr2 promotes cell death 

by inhibiting the action of IAPs (Inhibitor of apoptosis), which are inhibitors of caspases. Adapted from 

Cooper et al. [127]. 

 

via voltage channel protein (VDAC) in the OMM and then is taken up to the 

mitochondrial matrix through a highly Ca2+    selective -dependent anion-selective 

Ion conductance channel called the mitochondrial calcium uniporter (MCU) [129] 

(Figure 1.11). Mitochondria can also uptake ER Ca2+ released through the ryanodine 

receptors (RyRs). An increase in Ca2+ transfer into the mitochondria promotes 

mitochondrial bioenergetics, but mitochondrial Ca2+ overload may suppress normal 

mitochondrial functions [131] (see 1.3.6). MAM is also involved in lipid and cholesterol 

metabolism, lipid transfer between the ER and  maintenance of mitochondrial function 

and morphology [130]. 
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Figure 1.11 – Mitochondrial-associated ER membrane structure. Schematic view of the inter-organelle 

interactions and protein composition of the membranes contact sites. Possible contact sites are marked 

in dotted brown line. ER, endoplasmic reticulum; IMM, inner mitochondrial membrane; OMM, outer 

mitochondrial membrane; PAMs, plasma membrane-associated membranes; PM, plasma membrane. 

Adapted from Bononi et al. [132]. 

 

1.3.2 – Mitochondrial dynamics 

 

Mitochondria are very dynamic organelles. In normal physiological conditions, 

mitochondria continuously go through fusion, fission, mitophagy, and biogenesis (Figure 

1.13). These tightly regulated processes are crucial for maintenance of mitochondrial 

homeostasis and therefore, proper functioning of the cell [119,122].  

Mitochondrial fusion is a process in which two or more mitochondria fuse together 

in an attempt to reduce mitochondrial stress. Fusion enables damaged mitochondria to 

repair their function and prevent the accumulation of mitochondrial DNA (mtDNA) 

mutations. In this process, mitofusins (Mfn1 and Mfn2) mediate mitochondrial OMM 

fusion, whereas (Opa1) mediates mitochondrial IMM fusion. Fission occurs when 

mitochondrial fusion is unable to restore mitochondrial homeostasis, leading to removal 

of damaged mitochondria. Mitochondrial fission compartmentalizes damaged 

mitochondrial components into daughter organelles to be removed and targeted for 

elimination by mitophagy. Mitochondrial fission occurs through dynamin related protein 

1 (Drp1), which forms a ring structure to encircle and constrict at a site on the OMM 

upon its interaction with fission protein 1 (Fis1). It is known that mitochondrial fission 
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proteins are regulated by a range of protein modifications, including 

phosphorylation. Phosphorylation of Serine at amino acid 616 (Ser616) is likely to 

activate fission, since it promotes binding to other fission proteins, whereas 

phosphorylation of Ser637 could be an inactivating step [122,133].  

Mitophagy consists in the process of elimination of irreversibly damaged 

mitochondria through an autophagic process. When mitochondria become damaged, 

sustained depolarization of their inner membrane occurs, stabilizing the protein PTEN-

induced kinase 1 (PINK1) at the OMM. There, PINK1 phosphorylates Mfn2 which, in turn, 

recruits Parkin to the OMM. Parkin ubiquitylates several proteins that are then 

recognized by the ubiquitin-binding proteins optineurin (OPTN), p62, NDP52, and NBR1, 

which recruit the mitochondria to the autophagy pathway. Once in the autophagic 

pathway, there is the formation of an autophagosome (mitophagosome), which will fuse 

to a lysosome and lead to the degradation of mitochondria [134] (Figure 1.12).   

 

 

 

Figure 1.1.2 – Molecular mechanism of mitophagy. When mitochondria become damaged, sustained 

depolarization of their inner membrane occurs, and this stabilizes the protein PTEN-induced kinase 1 

(PINK1) at the outer mitochondrial membrane (OMM). There, PINK1 phosphorylates mitofusin 2 (Mfn2) 

and ubiquitin, which, in turn, recruits Parkin to the OMM. Parkin ubiquitylates several proteins that are 

then recognized by the ubiquitin-binding proteins optineurin (OPTN), p62, NDP52, and NBR1, which 

recruit the mitochondria to the autophagy pathway. Adapted from Kerr et al. [134] 
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There is also a need to produce new mitochondria through a process named 

mitochondrial biogenesis, which consists in the replication of mtDNA and the synthesis 

and assembly of mitochondrial components. This process is regulated through the 

transcription coactivator: peroxisome proliferator-activated receptor γ coactivator-1α 

(PGC1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A 

(TFAM) [122]. Mitochondria homeostasis is especially important in neurons due to its 

complex architecture, energetic demands that fluctuate in time and space, and long 

lifespan. During neuronal lifetime, the mitochondrial network is continually remodelled 

and rebuilt in order to maintain a healthy mitochondrial pool [135,136]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.13 – Mitochondria homeostasis. Mitochondria pool is dynamically maintained by the processes 
of mitochondrial  (1) biogenesis, (2) mitochondrial fusion/fission, (3) mitophagy, and (4) apoptosis.(1) 
Biogenesis is regulated  by peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α), nuclear 
respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM) (2) Mitochondrial fusion is 
facilitated by mitofusin (MFN) 1 and 2 and OPA1 for the fusion of the outer and inner mitochondrial 
membranes, respectively, whereas mitochondrial fission involves dynamin-related protein 1 (Drp1) that 
interacts with fission protein 1 (FIS1), which compartmentalizes damaged mitochondrial components into 
daughter mitochondria for elimination via mitophagy (3). Dysfunctional mitochondria are detected by - 
PTEN-induced kinase 1 (PINK1) which recruits Parkin, initiating mitophagy and the subsequent formation 
of the autophagosome to degrade targeted mitochondria. Damaged mitochondria can also induce 
apoptosis (4) Apoptosis occurs through the permeabilization of the mitochondrial membrane, leading to 
the release of cytochrome c that can activate caspase-mediated apoptosis, as well as the release of 
proapoptotic proteins such as apoptosis-inducing factor (AIF) From: Huang et al. [122] 
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1.3.3 – Importance of TOM40 in mitochondria 
 

Mitochondria is the only intracellular organelle containing its own genome. However, 

only a small set of proteins (37 proteins) are encoded by the mtDNA. The proteins 

encoded by the mtDNA include 13 essential subunits of the OXPHOS system, as well as 

the ribosomal RNA (rRNA) and transfer RNA (tRNA) molecules needed for their 

expression. The remaining mitochondrial proteins (~99%) are encoded by nuclear genes 

and synthetized in the cytosol [68,118]. These proteins (preproteins) must be imported 

into mitochondria and have targeting signals that direct them to mitochondrial 

receptors and then into the proper mitochondrial sub-compartments. Different 

targeting signals revealed that mitochondria use at least five major pathways. Four of 

these pathways use the TOM40 for preprotein translocation across the outer membrane 

and all use the translocase of the outer membrane (TOM) complex (reviewed in Pfanner 

et al. [68]) (Figure 1.14). 

The complete TOM complex contains seven subunits: TOM40, TOM22, TOM20, and 

TOM70, and three smaller proteins, TOM5, TOM6 and TOM7 [118]. TOM40 is the pore-

forming protein of the TOM complex encoded by the TOMM40 gene [67]. TOM20, 

TOM22 and TOM70 act as receptors recognizing and binding preproteins. TOM6 is 

involved in the assembly and maintenance of the TOM complex, and TOM7 is involved 

in its disassembly. Finally, TOM22 and TOM5 assist the passage into the TOM40 channel 

(reviewed in Gottschalk et al. [118]) (Figure 1.14).  

As described above, the majority of nuclear-encoded proteins enter mitochondria via 

TOM40. As the import of mitochondrial proteins into mitochondria is essential for 

biogenesis and functioning of mitochondria, it is not surprising that TOM40 is essential 

for life in eukaryotic organisms. The importance of TOM40 was demonstrated in 

different eukaryotic models such as S. cerevisiae [137], N. crassa [138], human culture 

cells [139], C. elegans  [140] and mice [141]. In S. cerevisae, Baker et al. demonstrated 

that yeast cells depleted of TOM40 (then named ISP42) accumulated uncleaved 

mitochondrial precursor protein and then died, thus concluding that TOM40 is essential 

for the import of precursor proteins into   mitochondria   and consequently cell viability 
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Figure 1.14 – Preproteins import pathways. Different targeting signals revealed that mitochondria use at 

least five major pathways which have been well conserved from fungi (shown in this figure) to mammals. 

(1) In the presequence pathway, preproteins (~60% of all mitochondrial proteins) are transported through 

TOM40 pore and TIM23 toward the matrix, where presequences are removed by the mitochondrial 

processing peptidase (MPP). (2) Cysteine-rich proteins are imported into the intermembrane space (IMM) 

through TOM40 pore and the mitochondrial intermembrane assembly system, which consist in two main 

components: Mia40 and Erv1. Mia40 recognizes the cysteine-rich proteins and insert disulfide bonds into 

the imported proteins which lead to its stabilization. (3) Precursors of non- cleavable inner membrane 

proteins such as the carrier proteins are imported by the TOM complex followed by transfer to the small 

TIM chaperones in the IMS and insertion into the IMM by the TIM22 carrier translocase. (4) The precursors 

of OMM β- barrel proteins use the TOM complex and small TIM chaperones and are inserted into the 

OMM by the sorting and assembly machinery (SAM). (5) OMM proteins with α-helical transmembrane 

segments are inserted into the membrane by the mitochondrial import (MIM) complex. These proteins 

do not use the Tom40 channel, but Tom70 can be involved in their recognition. Adapted from: Pfanner et 

al. [68]. 
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[137]. By creating a TOM40 mutant of N. crassa, Taylor et al. also demonstrated that 

this gene is essential for the viability of the organism [138]. These authors demonstrated 

that mitochondria with reduced levels of Tom40 were deficient in the import of 

mitochondrial preproteins and contained reduced levels of Tom22 and Tom6, 

suggesting that the  import and/or stability of these proteins is dependent on presence 

of Tom40 [138]. In C. elegans, an RNAi screen demonstrated that reduced TOM40 levels 

arrested growth between the 1st and 3rd larval stages and TOMM40 knock-out animals 

exhibited a phenotype similar to that of knock-downs. Moreover, TOMM40 knock-down 

collapsed the ΔΨm, blocked the uptake of mitochondrial targeted proteins and elicited 

the mitochondrial stress response, but markers of cytoplasmic and ER stress were not 

affected. Unexpectedly, in C. elegans the TOMM40 knock-down also  suppressed DAF-

28/insulin secretion, which represents the major metabolic insulin pathway in C. elegans 

[140]. Zeh et al. studied the influence of a mutation in the TOMM40 gene on mice and 

demonstrated that homozygous Tom40-/- mice were not viable, while heterozygous 

Tom40+/- mice showed normal development but a reduced life span with a 30% higher 

mortality after two years. Heterozygous Tom40+/- mice had mild cardiac dysfunction and 

slowly progressing neurological impairments [141]. Altogether, these studies 

demonstrate the importance of Tom40 for cell and organism survival.  

In addition to its well-known role as a mitochondrial protein import translocase, 

ectopic TOM40 was identified on the cell surface of natural killer (NK) cells, where it was 

named as p38.5 (Haymaker) protein [142,143]. 

 

1.3.4 – Role of reactive oxygen species and oxidative damage in 

mitochondrial dysfunction 

 

An increasing body of evidence suggests that oxidative stress plays an important role 

in the pathogenesis and progression of AD. Oxidative stress results from the imbalance 

between the production of ROS and/or reactive nitrogen species (RNS) (Table 1.8) and 

anti-oxidant defences [144,145] (reviewed in 1.3.1). Under carefully controlled 

conditions, ROS act as signalling molecules [146]. However, high ROS levels are capable 

of oxidizing all major biomolecules, including DNA, RNA, protein and lipids causing 

oxidative damage and were thus described as a “double-edged sword” [147]. Different 
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ROS/RNS react with biomolecules causing oxidative or nitrosative damage. Since ROS 

and RNS are usually highly reactive, unstable and have a very short half-life, they are 

difficult to measure directly and thus specific products that result from oxidative or 

nitrosative damage are used as biomarkers  instead, as reviewed in Butterfield et al. 

[144]. 

 

Table 1.8 – Biologically important ROS and RNS 

 
Adapted from Butterfield et al. [144] 

 

Due to electron leakage during electron transfer in the ETC, mitochondria are the 

main source of ROS (90% of the endogenous ROS). On the other hand, mitochondria are 

also a major target of oxidative damage. Because of this, mitochondria play a central 

role on AD, where the relationship between oxidative stress and mitochondria 

dysfunction forms a downward spiral that amplifies AD-associated deficits. The brain is 

specifically highly susceptible to oxidative stress due to its high energy demand, high 

oxygen consumption, rich abundance of easily oxidized polyunsaturated fatty acids, high 

level of potent ROS catalyst iron and reduced antioxidant capacity [128,145]. However, 

oxidative stress in AD is not limited to the brain [148,149] and is also detect in the 

periphery [150,151] 

In AD, lipid peroxidation, protein oxidation and DNA/RNA oxidation are the major 

hallmarks of oxidative damage, as reviewed in Wang et al. [145]. Oxidative stress is an 

early event that can occur during MCI even before deposition of Ab and p-tau in senile 

plaques and NFTs, respectively [128,144]. Regarding lipid peroxidation, it was 

demonstrated that the levels of the isoprostane 8,12-iso-iPF2α-VI were significantly 
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increased in CSF, plasma, and urine of MCI subjects compared with age-matched control 

subjects, whereas the levels of AD cerebrospinal fluid markers such as Aβ or tau 

remained unchanged [152]. Enhanced overall protein peroxidation, as well as oxidative 

modification of specific proteins (protein carbonyls) were also found in the hippocampi 

, superior and middle temporal gyri and CSF from MCI subjects [153]. ROS also cause 

mtDNA damage, which leads to subsequent defects in mtDNA-encoded subunits, 

namely of the respiratory complex I and III [122]. One important tool to study defects in 

mtDNA is the cybrid cellular model. Cybrids are prepared through the fusion of  mtDNA-

depleted cells  (p0 cells) with cells without nuclear DNA, such as platelets, containing  the 

mtDNA of interest  [128]. In this way, the nuclear genetic complement is held constant 

so that the observed effects on OXPHOS can be linked to the introduced mtDNA.  Data 

from our laboratory showed that cybrids expressing mtDNA from AD subjects display 

reduced cytochrome oxidase (COX; also called complex IV) activity, elevated ROS, and 

reduced ATP levels, compared with the cells expressing mtDNA from age-matched 

control subjects [154] 

On the other hand, a significant decrease of antioxidant levels such as albumin, 

bilburin, uric acid vitamins A, C and E was found in AD patients [155,156] and MCI 

patients [7,157]. A significant decrease in the activity of antioxidant enzymes, such as 

MnSOD, Cat, GSH and heme-oxygenase was also reported in brain areas associated with 

AD even that in some cases the levels of this enzymes were increased [158–160]. The 

same was also observed in MCI patients [161,162].   

As referred previously, mitochondria is the major target of oxidative damage. In AD, 

brain oxidative modification of mitochondrial proteins, such as α-ketoglutarate 

dehydrogenase, pyruvate dehydrogenase complexes and COX, has been demonstrated 

by elevated levels of protein carbonyl  nitration of tyrosine residues and impaired 

metabolic activity [163]. Curiously, impaired COX activity also exacerbated 

mitochondrial-derived ROS production [164], supporting the idea that defective 

mitochondrial bioenergetics potentiates oxidative stress and vice-versa  [165]. There is 

also a line of evidence suggesting that  an  inefficient glucose utilization (and thus 

impaired ATP production) and oxidative damage are intimately related [144]. A major 

contributor to inefficient glucose utilization may well be oxidative modification of 
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biomolecules,  which often leads to decreased activity of the enzymes involved in 

glucose metabolism [165]. 

 

 

1.3.5 – Impaired bioenergetics in Alzheimer’s Disease 

 

One important process that becomes dysfunctional in AD and MCI is glucose 

metabolism. In fact, reduced energy metabolism in AD brains is one of the best 

documented abnormalities in the disease. The first evidences were obtained from PET 

imaging with the tracer 2-[18F] fluoro-2-deoxy-D-glucose, in which reductions in 

cerebral glucose transport and utilization were detected in brain areas affected by AD 

pathology [166,167]. At the moment, low glucose metabolism at baseline and 

longitudinal glucose metabolism decline in the brain are viewed as sensitive measures 

useful for monitoring change in cognition and functionality in AD and MCI, and are being 

increasingly adopted to assist diagnosis and used to predict future cognitive decline 

[9,168]. It is also known that decreased cerebral metabolism precedes the development 

of clinical (neuropsychological) or neuroanatomic (imaging) evidence of the disease 

[169]. 

Alterations in mitochondrial enzymes likely underlie the reduced energy metabolism 

in the AD brain through reduced expression or reduced activity. Chandrasekaran et al. 

demonstrated a decrease in COX I and III subunits mRNA in affected brain regions [170]. 

On the other hand, different studies, including from our laboratory demonstrated 

decrease activity of COX on AD brain [171,172] and platelets [173,174]. Bubber et al. 

demonstrated a  decrease in the activities of the pyruvate dehydrogenase complex, 

isocitrate dehydrogenase, and the a-ketoglutarate dehydrogenase [175]. As referred 

previously, a-ketoglutarate dehydrogenase, pyruvate dehydrogenase complexes and 

COX are also targets of oxidative damage. AD brain is also characterized by a reduction 

in the expression of glucose transporters-1 and -3 [176]. Another important aspect is 

the brain insulin resistance present in AD and MCI brain. Indeed, type 2 diabetes, a 

disease characterized by  insulin resistance, is a substantial risk factor for developing AD 

[165,177]. 
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1.3.6 – Calcium dyshomeostasis  

 

There is a growing body of evidence indicating that perturbed neuronal Ca2+ 

homeostasis is implicated in age-related cognitive impairment and AD [131,178,179]. 

Based on this, the “calcium hypothesis of brain aging” was formulated in 1982 by Dr. 

Kachaturian, in which he postulated that an imbalance of cellular Ca2+ disrupts neuronal 

functions and leads to neurodegenerative diseases, including AD [180]. This hypothesis 

was further revised in 1989 and  2017 [181,182]. The deregulation of Ca2+ homeostasis 

has been reported in  brain and peripheral cells of AD patients and also in AD animal 

models [183–185] 

Mitochondria has an important role in this process, since this organelle is a major 

short-term reservoir of Ca2+, as referred earlier. Ca2+ is a second messenger that 

regulates important facets of neuronal physiology [131,179,186], including ATP 

production, transmitter release, excitability, dynamics and traffic. However,  under 

excessive Ca2+ levels, the following mitochondria-related events occur: uncoupling of 

OXPHOS, increase ROS production and opening of the mitochondrial permeability 

transition pore (mPTP) [187]. The mPTP is a voltage- and Ca2+- dependent high-

conductance channel breaching the IMM that allows free passage of Ca2+ [188], as well 

as cytochrome c [189] and AIF, from the mitochondrial intermembrane space into the 

cytoplasm [128] . Release of cytochrome c initiates the apoptosis cascade that ultimately 

leads to neuronal death  [190,191].  On the other hand, AIF can travel further into the 

nucleus where it causes DNA and chromatin fragmentation in a caspase-independent 

mechanism (reviewed in 1.3.1). Moreover, enhanced ROS production activates redox-

sensitive RyR channels to augment the  release of Ca2+ from the ER, which then feed-

forwards into the mitochondria to further increase ROS production [192]. The function 

of other  Ca2+ pumps and channels are altered in AD leading to Ca2+  dyshomeostasis 

(reviewed in Wang et al. [129]). 

Aß aggregates are also responsible for the upregulation of Ca2+ concentration in the 

cytosol of neurons by forming Ca2+ permeable channels in the plasma membrane [193]. 

Another pathway by which Aß  can increase Ca2+ concentration in the cytosol of neurons 

is through excessive NMDA receptor activation and consequent cell Ca2+ overload 

[194,195].  
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Altered MAM also seems to have a role in calcium dyshomeostasis. Indeed, it was 

demonstrated that the function MAM and ER–mitochondrial communication proteins 

are increased significantly in fibroblasts from patients with both familial and sporadic 

forms of AD [196]. On the other hand, increased expression of several ER-mitochondria 

interface proteins was also observed in AD [197], which led to the formulation of the 

MAM hypothesis. 

 

1.3.7 – Mitochondrial-associated ER membrane hypothesis  

 

Besides Ca2+ dyshomeostasis, other processes related to MAM, such as aberrant 

cholesterol and phospholipid metabolism have been described to occur in  AD. Based 

on this information, the MAM hypothesis states that the pathogenesis of AD is mediated 

by increased ER-mitochondrial communication, which in turn alters the function of 

proteins that reside at the interface of these two organelles, both in degree and kind 

[130].  

The interest of the MAM role on AD pathogenesis started after finding that 

presenilins and γ-secretase activity are enriched in MAM [130]. Furthermore,  the same 

authors found that C99 or CTFβ, product of cleavage of full APP by BACE-1 (see 1.1.5), 

correlated with MAM structure and function [198]. C99 promotes the various features 

of the disease, including the Ca2+ and lipid dyshomeostasis, mitochondrial perturbations, 

and ultimately plaque and tangle formation in the brain.  These authors also observed 

that accumulation of C99 at MAM resulted in the upregulation of sphingomyelin 

hydrolysis by sphingomyelinases (SMases). The increase in SMase activity resulted in a 

notable elevation of the sphingomyelin hydrolysis product, ceramide, which is a 

proapoptotic molecule and inhibitor of respiration [198].  

The authors thus concluded that mitochondrial dysfunction is an early and significant 

defect in AD, and not a primary insult in the pathogenesis of the disease, but rather a 

consequence of MAM dysfunction driven by an increased presence of C99 at MAM 

[199]. 
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1.3.8 – Alterations in mitochondrial homeostasis 

 

Due to its complex architecture and high energetic demands that rely on time and 

space, neurons need a highly regulated mitochondrial pool. The mechanisms that 

control the homeostasis of this mitochondrial pool comprise the processes of fusion and 

fission, biogenesis, and mitophagy (reviewed by Cardoso et al. [135]) (Figure 1.13). 

Recent studies demonstrated significant changes in the expression of almost all 

mitochondrial fission and fusion proteins, including Drp1, OPA1, Mfn1/2, and Fis1 in 

both the brain [200,201] and peripheral tissues of AD patients [202,203]. It is known 

that levels of Drp1 phosphorylation at Ser616 are increased in AD [200], which leads to 

an increased recruitment to mitochondria and thus increased fission. Increased levels of 

Drp1 S-nitrosylation [204] are also observed  in AD. By modulating the GTPase activity 

of Drp1, this post-translation modification also favours the occurrence of mitochondrial 

fission. On the other hand, reduced levels of mitochondrial fusion proteins OPA1 and 

mitofusins were documented in hippocampal tissue  of  AD patients [200].  Excessive 

fission plays a critical role in ROS overproduction and consequently in  oxidative 

imbalance [205]. Moreover, it was demonstrated that ROS overproduction in AD models 

could be efficiently prevented or rescued by the inhibition of mitochondrial fission or 

the promotion of mitochondrial fusion, which demonstrates the contribution of 

abnormal mitochondrial dynamics to oxidative imbalance in AD [200,202,206]. Defects 

in mitochondrial fission and fusion can also increase ROS indirectly through negative 

impact on bioenergetics, Ca2+ handling, and mtDNA integrity. Excessive fission leads to 

rapid accumulation of mtDNA mutations and decreased Ca2+ buffering capacity 

[207,208]. On the other hand, the balance of mitochondria fission and fusion is also 

sensitive to oxidative imbalance. Studies demonstrated that, through regulation of 

mitochondrial fission and fusion proteins, such as Drp1 and Mfn2, both endogenous 

[209] and exogenous [210] applications of ROS might directly impair mitochondrial 

fission and fusion balance, induce mitochondrial fragmentation and further cause 

subsequent mitochondrial dysfunction including ROS overproduction and thus form a 

vicious cycle that amplifies oxidative stress. 



 47 

Regarding mitophagy, emerging findings suggest that this quality control mechanism 

is also compromised in AD (reviewed by Kerr et al. [134]). The first clue that mitophagy 

plays a role in AD derived from a study performed in post-mortem AD brain tissue, which 

revealed the presence of mtDNA and COX in the neuronal cytoplasm, with mtDNA being 

presented in lipofuscin-containing vacuoles [211]. Consistently, elevated levels of 

mitochondrial components, namely COX and lipoic acid, within autophagosomes were 

detected in human post mortem brain tissue, suggesting an increase in the rate of 

mitochondrial degradation by autophagy [212]. Lipofuscin (biological garbage) is known 

to accumulate in damaged organelles [128]. Neurons exhibiting abnormal accumulation 

of autophagosomal vacuoles are a prominent feature in AD and their accumulation may 

result from lysosomal dysfunction (elevated pH), perhaps secondary to dysregulation of 

neuronal Ca2+ homeostasis [213]. The undegraded dysfunctional mitochondria 

accumulate in the soma, which may result from the combination of local lysosome 

dysfunction and impaired mitochondrial transport [214]. These findings suggest that 

autophagy/mitophagy is stimulated (perhaps secondary to mitochondrial dysfunction 

and fission) while lysosome function is impaired thereby contributing to the prominent 

accumulation of autophagosomes in neurons in AD [134]. 

On the other hand, recent findings suggest that mitochondrial biogenesis is also 

impaired in AD, as indicated by reduced levels of the transcriptional regulator of 

mitochondrial biogenesis PGC1α [215]. Analyses of post mortem brain tissue from AD 

patients and age-matched control subjects have revealed reduced expression of genes 

related to mitochondrial biogenesis, including PGC1α, TFAM, and NRF1 [216], indicating 

that the refurbishment of an “old” mitochondrial pool via mitochondrial biogenesis is 

compromised [217]. 

 

 

1.3.9 – Role of TOM40 on mitochondrial dysfunction 

 

Mitochondrial dysfunction is also, at least in part, due Ab internalization via TOM40 

pore and blockage by APP of this mitochondrial import channel. Anandatheerthavarada 

et al. demonstrated for the first time that APP is incompletely translocated and 
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accumulated in the TOM40 channel. Incomplete translocation and progressive 

accumulation of APP lead to the impairment of mitochondrial functions and decreased 

cellular energy levels [218]. In the same study it was also demonstrated that APP 

interacts efficiently with mitochondrial outer and inner membrane translocase proteins 

TOM40, TIM23, and TIM44 [218]. Devi et al. reported that full-length and C-terminal 

truncated APP accumulates exclusively in the protein import channels of mitochondria 

of brains from AD patients, but not in age-matched controls [219]. Devi et al. also 

demonstrated that this accumulation varied with the severity of AD and levels of 

arrested mitochondrial APP directly correlated with mitochondrial dysfunction. It was 

also demonstrated that accumulation of APP inhibited the entry of nuclear encoded COX 

subunits IV and Vb, which was associated with decreased COX activity and increased 

levels of H2O2. Similar to Anandatheerthavarada et al., Devi et al. also  demonstrated 

that in AD brains, mitochondrial associated APP formed stable 480 kilodalton (kDa) 

complexes with TOM40 and a super complex of 620 kDa with both mitochondrial 

TOM40 and TIM23 [219]. 

In rats, Hansson Petersen et al. demonstrated that Ab is transported into 

mitochondria via the TOM machinery and that the import was insensitive to 

valinomycin, indicating that it is independent of the ΔΨm. Immunoelectron microscopy 

(immuno-EM) after import showed localization of Ab to mitochondrial cristae. A similar 

distribution pattern of Ab in mitochondria was shown by immuno-EM in human cortical 

brain biopsies obtained from living subjects with normal pressure hydrocephalus [220]. 

Curiously,  trapped APP in TOM40  can be cleaved by the mitochondrial γ-secretase, 

generating Ab inside the mitochondria [221,222]. Once inside the mitochondria, Ab can 

bind or interact with important mitochondrial proteins, leading to mitochondrial 

dysfunction. One of the main targets of Ab is the Ab-related alcohol dehydrogenase 

(ABAD). ABAD is responsible for the oxidation of short fatty acids and protection against 

metabolic damage. ABAD inhibition via Ab leads to oxidative stress and consequently 

mitochondrial and cellular damage, as referred earlier [223]. Another target of Ab inside 

the mitochondria is the mitochondrial peptide processing enzyme (PreP), which is 

responsible for the cleavage of presequences from mitochondrial preproteins (Figure 

1.14). Ab-mediated inhibition of this enzyme prevents maturation of mitochondrial 
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proteins, causing its accumulation in the mitochondrial matrix [224]. Ab also has the 

ability to bind heme groups, which constitute critical redox centers of COX,  thus 

interfering with  COX activity [225,226]. Inhibition of these proteins by Ab causes 

mitochondrial dysfunction at multiple levels, including: impaired respiration, OXPHOS, 

ATP production, ROS overproduction and increased oxidative damage, defects in 

maintaining the inner membrane potential and ion homeostasis, abnormal dynamics 

and increased apoptosis [118].  

APOE ε4 (1-272) fragment, a product from APOE ε4 cleavage was also associated with 

mitochondria, causing mitochondrial dysfunction [227,228]. Since mitochondrial 

localization of ApoE4 (1-272) was dependent on three positive charges in the receptor 

binding domain (aa 1-170) [227], it was proposed that  its mitochondrial localization is 

also mediated by the TOM complex [118].   

 

 

1.3.10 – Role of Ab, Tau and APOE ε4 in mitochondrial dysfunction 

 

The two main pathological hallmarks of AD are intracellular NFT and extracellular 

senile plaques. NFT are formed from paired helical filaments composed of 

neurofilaments and hyperphosphorylated Tau protein, whereas plaques are mainly 

composed of Ab protein (see 1.1.5). The ε4 allele of APOE gene is the most highly 

replicated genetic risk factor for LOAD [42,43] (see 1.1.9).  Ab, Tau and APOE ε4 are 

known to have an impact on mitochondria dysfunction. 

As referred above, Aβ can enter mitochondria via TOM40, inhibit ABAD, Prep and 

bind heme groups, thus causing mitochondrial dysfunction. The negative effects of Aβ 

were observed in different models (reviewed in Wlikins et al. [19]). In neuroblastoma 

cells, APP overexpression leads to elevated Aβ40 with consequent reduction in cellular 

respiration, ATP levels, and COX activity [229]. In PC12 cells, exogenous Aβ was shown 

to depolarize the ΔΨm and decrease activities of the mitochondrial ETC complexes I, III, 

and IV, while also reducing oxygen consumption [230]. Shorter Aβ fragments, such as 

Aβ25–35, also have been  shown to impact mitochondria, reducing cellular ATP 

production, levels of antioxidants, ΔΨm, and ETC activities (CI-IV) in primary cortical 
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neurons [231], also  impairing anterograde transport of mitochondria to synapses in 

mouse hippocampal neurons [232]. In N2a cell line, Aβ25–35 increased caspase activation, 

ROS production, and cytochrome c release. However, in ρ0 cells that lack a functional 

respiratory chain caused by an absence of mtDNA, Aβ25–35 failed to induce ROS 

production, caspase activation, or cytochrome c release, demonstrating  that Aβ 

requires functional mitochondria to induce toxicity [233]. Aβ may also alter 

mitochondrial dynamics by interacting with a mitochondrial fission protein, Drp1 [201] 

Hyperphosphorylated Tau is known to impair mitochondrial axonal transportation, 

mitochondrial dynamics and function (reviewed in Cheng et al. [21]). To meet high 

energy demands and regulate Ca2+ buffering of neuronal cells, efficient delivery of 

mitochondria in neurons is essential. Tau is a microtubule associated protein, which 

plays an important role in delivering cargoes across axons into synapses,  including 

mitochondria [21]. It has been described that overexpression and hyperphosphorylation 

of Tau impairs localization and distribution of mitochondria [234–236], which further 

causes defects in axonal function and synapse loss [237]. The effects of Tau aggregates 

and tau accumulation on mitochondria distribution have been observed both in animal 

models and human AD brains [236]. Evidence also suggests that pathological forms of 

Tau play a significant role in the impairment of mitochondrial fission/fusion dynamics in 

AD, mainly through a molecular mechanism of increasing mitochondrial fission protein 

such as Drp1 and decreasing fusion protein including OPA-1 and Mfn1/2. Manczak et al. 

demonstrated that hyperphosphorylated tau interacts with Drp1 causing excessive 

mitochondrial fission, leading to the degeneration of mitochondria and synapses in brain 

tissues of APP, APP/PS1, and 3xTg-AD mice. Similar findings were made in brains from 

AD patients [238]. On the other hand, it was found that truncated tau was combined 

with reduced levels of OPA-1 [239]. Tau-induced abnormal mitochondrial dynamics and 

impaired mitochondrial distribution may further lead to mitochondrial dysfunction, as 

addressed above. Tau dysfunction also leads to impaired mitochondrial function. In both 

cell culture and transgenic mice, overexpression of tau inhibits mitochondrial function 

by decreasing the activity of mitochondrial respiratory chain complexes, antioxidant 

enzymes, ATP synthesis and synaptic function (reviewed in Cheng et al. [21]). It was also 

described that N-terminal-truncated tau localized in mitochondrial membrane impaired 

ATP synthesis and ΔΨm [240]. Abnormal interaction of phosphorylated tau with voltage-
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dependent anion channel 1 protein (VDAC1) was observed in AD patients, as well as in 

mice, which broke the balance of the opening and closure of mitochondrial pores and 

led to mitochondrial dysfunction [241].  Mitochondrial dysfunction was also observed in 

the P301L tau transgenic mice, which presented notable mitochondrial dysfunction. 

Brains of these mice showed that the activity of mitochondrial complexes was 

significantly reduced, especially complex I and V. Moreover, impaired ATP synthesis 

together with decreased mitochondrial respiration and increased ROS levels were also 

noticed [242]. Similar findings were observed in other Tau animal models (reviewed in 

Cheng et al. [21]).   

APOE genotype has also been shown to impact on mitochondrial function (reviewed 

in Mahoney-Sanchez et al. [243]). In a post mortem cohort, cognitive history was shown 

to be more closely associated with a reporter of mitochondrial function (α-ketoglutarate 

dehydrogenase complex) than either plaque or tangle pathology in ε4 carriers, but the 

opposite was observed in non-ε4 carriers [244]. ApoE also decreases mitochondrial 

mobility in an isoform- specific manner (ApoE ε4 fragments > ApoE ε4 > ApoE ε3 > ApoE 

ε2) in cultured neuronal cells and transgenic mice expressing ApoE ε4 in neurons 

[245,246]. ApoE ε4 could also reduce the expression of mitochondrial respiratory 

enzymes, in particular ETC genes from complexes I–V (NADH dehydrogenase, succinate 

dehydrogenases, ubiquinol-cytochrome c reductase, amongst others) and translocases 

of the inner and outer mitochondrial membranes (TIMMs and TOMMs, respectively), 

which could alter mitochondria function and brain metabolism [247,248]. This effect of 

ApoE ε4 was observed in post mortem cortical tissue of young ε4 carriers, which 

suggests that mitochondrial dysfunction could be occurring early on in the development 

of the disease, before amyloid and tau pathology and cognitive impairment start, and 

could be linked to the onset and  progression of AD [249]. As stated above, ApoE ε4 

fragments (1– 272) are also associated with mitochondria dysfunction. Indeed, it has 

been demonstrated in N2a cells that ApoE ε4 fragments (1– 272) escaped the secretory 

pathway, co-localised with mitochondria and impaired their function and integrity [227], 

namely by  disrupting ΔΨm and by binding  directly to complexes of the ETC enzymes, 

reducing the respiratory activity of the mitochondria [228].  
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 Chapter 2 
Objectives 
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Nearly a decade ago, the association between the TOMM40 poly-T and LOAD was 

discovered, and since the original discovery multiple studies found associations between 

TOMM40 poly-T and LOAD-related features, such as AOO and risk of AD, brain structure 

and cognition, while other studies could not replicate these associations. Thus, 

investigating the genetic associations between LOAD-related features and TOMM40 

poly T, using additional cohorts, are required and highly valuable. On the other hand, 

the identity of the TOMM40 poly-T risk allele has been controversial and needs further 

exploration.  Furthermore, the association of TOMM40’ 523 polymorphism and MCI has 

been poorly addressed. To gain a better insight about the risk associated with TOMM40 

poly-T, there is an unmet need to translate these findings to the understanding of the 

biological mechanism leading to neurodegeneration. As TOMM40 encodes a critical 

mitochondrial membrane protein, our hypothesis is that different ‘523 poly-T lengths 

can ultimately affect mitochondrial function. In this context, and taking into 

consideration the state-of-the-art (Chapter 1), the major goals of this work were: 

 

1) Determine the TOMM40 poly-T profile in a Portuguese (Caucasian) cohort of 

controls, MCI and AD patients. 

2) Study the association of TOMM40’523 polymorphism with the risk and time of 

conversion from MCI to AD  

3) Replicate the independent association of TOMM40’523 polymorphism with AD 

risk and AOO. 

4) Study the association of TOMM40’523 polymorphism with AD CSF biomarkers, 

namely Ab42, t-tau and p-tau in MCI and AD patients. 

5) Study the impact of the TOMM40’523 polymorphism in mitochondrial function 

of AD patients. 
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Chapter 3 
TOMM40’523 and the risk of Mild Cognitive 

Impairment conversion to Alzheimer’s Disease 
 
The scientific content of the present chapter is based on the following international scientific publication: 

Cardoso R, Lemos C, Oliveiros B, Rosário Almeida M, Baldeiras I, Fragão Pereira C, Santos A, Duro D, Vieira 
D, Santana I, Resende Oliveira C. APOEɛ4-TOMM40L Haplotype Increases the Risk of Mild Cognitive 
Impairment Conversion to Alzheimer's Disease. J Alzheimers Dis. 2020 Sep 25. doi: 10.3233/JAD-200556. 
Epub ahead of print.  
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Abstract 
 
 
 

MCI has been considered as a pre-dementia stage, although the factors leading to AD 

conversion remain controversial. The TOMM40 poly-T polymorphism (TOMM40’ 523) 

discovered by Roses et al.  has been so far associated with different AD related features 

such as AOO and risk of AD, brain structure and cognition of AD patients and cognitively 

normal individuals. However, this polymorphism has been poorly addressed in MCI 

cohorts and as far as we know, none of these studies fully addressed the connection 

between TOMM40’ 523 polymorphism and the risk and time of conversion from MCI to 

AD. Thus, in this study we intended to evaluate whether TOMM40 poly-T polymorphism 

was associated with the risk and conversion time from MCI to AD and secondly with AD 

CSF biomarkers, disentangling the APOE genotype. For this purpose, 147 AD patients, 

102 MCI patients and 105 cognitively normal controls were genotyped for poly-T 

polymorphism. MCI patients were subdivided into 2 groups, the group of patients that 

converted to AD (MCI-AD) and the group of those that remained stable (MCI-S). We first 

observed that TOMM40’ 523 L allele was significantly more frequent in the MCI-AD 

group and having at least one L allele significantly increased the risk of conversion from 

MCI to AD (OR = 8.346, p < 0.001, 95%CI: 2.830 to 24.617). However, when adjusted for 

the presence of APOE ε4 allele, both the L allele and ε4 allele lost significance in the 

model (p>0.05). We then analysed the APOE ε4-TOMM40’ 523 L haplotype and 

observed that patients carrying this haplotype had significantly higher risk (OR=5.83; 

95% CI=2.30-14.83) and mean lower times of conversion to AD (p=0.003). This haplotype 

was also significantly associated with a biomarker profile compatible with AD (p = 0.007). 

This study shows that the APOE ε4-TOMM40’ 523 L haplotype is associated with a higher 

risk and shorter times of conversion from MCI to AD, possibly driven by CSF biomarkers 

and mitochondrial dysfunction. 
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3.1 – Introduction 

 

The term MCI describes an intermediate state of cognitive function between the 

changes seen in aging and those fulfilling the criteria for dementia, namely AD [10]. The 

rate of conversion from MCI to AD is estimated to reach 10-15% per year in contrast 

with  a rate of 1–2% per year among healthy elderly individuals [250]. When considering 

MCI as a prodromal state of AD (MCI due to AD) [251] it is of major importance to study 

the risk factors that predict which MCI patients will convert to AD, namely risk genes, as 

this group of patients represents a target for future disease modifying therapies [30].  

The APOE ε4 allele , the most highly replicated genetic risk factor for LOAD [42,43], 

has been shown to increase the susceptibility for MCI to AD progression, as 

demonstrated in previous meta-analysis [252,253]. However, the presence of an allele 

ε4 is neither necessary nor sufficient for MCI to AD progression, showing low sensitivity. 

Moreover, its use for MCI to AD prediction remains controversial. For this reason, recent 

models of MCI to AD progression incorporate other predictors besides allele ε4, such as: 

CSF biomarkers, neuroimaging biomarkers ((e.g. MRI and fluorodeoxyglucose positron 

emission tomography (FDG-PET)) and neuropsychological tests, in order to increase the 

accuracy when evaluating the conversion from MCI to AD [254–256]. Apart from APOE 

there is little information about genes that increase the susceptibility for MCI to AD 

progression. Interestingly, the most relevant discoveries in fine-mapping and genome-

wide association studies for AD are within a LD region in Chr:19q13.32 that incorporates 

APOE, TOMM40 and APOC1 genes [64–66]. By deep sequencing of this specific region, 

Roses’ group discovered a poly-T polymorphism, rs10524523, in TOMM40 gene 

(hereafter, TOMM40’ 523), reported to be associated with risk and AOO of AD [73]. 

Meanwhile, based on the distribution behaviour of the number of thymine (T) residues, 

three categories (alleles) of repeat length were established: short (S, ≤ 19), long (L, 20–

29) and very long (VL, ≥ 30) [75]. In the Caucasian population, it has been confirmed that 

the APOE ε4 allele is almost exclusively linked to a L poly-T repeat allele [73,75]. This 

strong LD (r2 = 0.941) [257] between TOMM40’ 523 L and APOE ε4 alleles complicates 

analytical approaches to disentangle independent effects between these two variants 

as fleshed out in previous studies [79,82,85]. Nevertheless, these effects could be due 
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to a combination of both APOE and TOMM40 [257]. As the APOE ε3 allele is almost 

always linked to either a S or a VL poly-T allele, in the Caucasian population, several 

studies attempted to find instead differences between S and VL alleles in ε3/ε4 or ε3/ε3 

cohorts in order to establish an effect of TOMM40’ 523 independent of APOE. However, 

differences between these two alleles (S and VL) are still controversial (reviewed in 

Chiba-Falek et al.) [114].  

Unlike the APOE ε4 allele, the role of TOMM40’ 523 has been poorly addressed in 

MCI cohorts. One study presented a stratification by TOMM40’ 523 and APOE genotype  

of the AOO of cognitive impairment for cognitively normal subjects followed in 

a prospective cohort, in order to create a risk algorithm for clinical trial enrichment [86], 

which was further evaluated in other studies [87,88]. A subsequent study evaluated, the 

utility of TOMM40 poly-T variable-length polymorphism alleles among other 247 

variables, for modelling progression from MCI to AD [258]. Lastly, an additional study 

reported the effect of TOMM40’ 523 on spatial navigation in amnestic MCI individuals 

[103]. However, as far as we know, none of these studies fully addressed the connection 

between TOMM40’ 523 polymorphism and the risk and time of conversion from MCI to 

AD.  

The main aim of this part of the study was to investigate the relationship between 

TOMM40’ 523 polymorphism with the risk and conversion time from MCI to AD, and 

replicate the association of TOMM40’523 polymorphism with AOO and risk of AD 

disentangling the effect of APOE genotype in that relationship. For this purpose, the 

poly-T profile was first characterized in three different groups: cognitively normal 

controls, AD and MCI patients subdivided into patients that converted from MCI to AD 

(MCI-AD), and patients that remained stable (MCI-S) within a minimum period of two 

years. Secondly, the association between TOMM40’ 523/APOE genotype and AD CSF 

biomarkers, particularly Ab42, t-Tau and p-Tau, was also explored.  
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3.2 – Materials and Methods 

3.2.1 – Study subjects 

 

This study included 354 Caucasian subjects: 147 AD patients, 102 MCI patients and 

105 cognitively normal controls. CSF and DNA from AD and MCI individuals were 

available, DNA samples were also available from controls.  

AD and MCI patients were recruited and diagnosed at the Dementia Clinic, Neurology 

Department of Coimbra University Hospital (CHUC), Coimbra, Portugal. The baseline 

study, as well as the follow-up protocol, have already been published [7]. In summary, 

patients were enrolled in a systematic way and were subject to biannual clinical 

observation and annual neuropsychological and functional evaluations. All patients 

undertook a thorough biochemical, neurological and imaging ((computed tomography 

(CT) or MRI)) evaluation. PET and genetic studies were more restricted, although 

considered in younger patients. Essentially, a neurologist completed a medical history 

with the patient and caregiver and conducted a general physical, neurological, and 

psychiatric examination in addition to a comprehensive battery-protocol diagnostic, 

including cognitive instruments.  Cognitive instruments included: the Portuguese 

versions, validated for the Portuguese population,  of the Mini Mental State Examination 

(MMSE) [259,260], the Montreal Cognitive Assessment (MoCA) [261,262], and the 

Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-Cog) [263–265]. A 

comprehensive neuropsychological battery with normative data for the Portuguese 

population (Lisbon Battery for Dementia Assessment (BLAD)) [266] exploring memory 

(Wechsler Memory Scale subtests) and other cognitive domains (including language, 

praxis, executive functions and visuoconstructive tests) were also used. The evaluation 

was completed applying standard staging scales which provided objective information 

about subject performance in various domains, including the Clinical Dementia Rating 

scale (CDR) [267] for global staging, the Disability Assessment for Dementia (DAD) 

[268,269]  to evaluate the functional status, and, the Neuropsychiatric Inventory (NPI) 

[270,271] to characterize the psychopathological profile, including the presence of 

depression. All the available information (baseline cognitive test, staging scales, clinical 

laboratory and imaging studies) was used to reach a consensus research diagnosis. A 
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similar approach was used to follow-up annual evaluations. 

MCI patients were amnestic type (aMCI) and the diagnosis was completed in 

agreement with the criteria defined by Petersen et al. [12]  and, more recently, with the 

framework for MCI due to AD proposed by NIA-AA criteria [251]. Petersen et al.’s criteria 

were implemented as follows: 1) A subjective complaint of memory decline (reported 

by the subject or informant); 2) An objective memory impairment (considered when 

scores on standard Wechsler memory tests were > 1.5 SDs below age/education 

adjusted norms) with or without deficits in other cognitive domains; 3) Normal general 

cognition suggested by normal scores in the MMSE and MoCA using the Portuguese cut-

off scores [260,262]; 4) Fairly normal daily life activities, evaluated with a functional 

scale – (DAD)  5) Absence of dementia, indicated by  a CDR rating of 0.5 [267]. All patients 

were in stable condition without acute comorbidities. As exclusion criteria for 

enrolment, we considered a significant underlying medical or neurological illness 

revealed by laboratory tests or imaging; a relevant psychiatric disease, including major 

depression, suggested in the medical interview and confirmed by the NPI; CT or MRI 

demonstration of significant vascular burden [272]. 

MCI cases were followed, at least for 2 years, under this comprehensive protocol and 

they were further dichotomized in those that were cognitively stable (MCI-S) and those 

that developed dementia due to AD (MCI-AD). Conversion to AD required fulfilling the 

criteria of the clinical diagnostic for probable AD (see below) and was confirmed by the 

coordinator of the clinical study (IS). As these criteria are not fully operational and the 

conversion status decision has some uncertainty and subjectivity, patients in this study 

were classified as having undergone conversion based on: 1) Objective evidence by 

cognitive testing of deterioration to dementia using the MMSE, the MoCA and the ADAS-

COG scores and qualitative evaluation (i.e., impairment of memory with the addition of 

other domains); 2) Changes in global CDR rating from 0.5 to 1 or more, confirming the 

cognitive profile of dementia and autonomy loss. Dementia was diagnosed according to 

the Diagnostic and Statistical Manual of Mental Disorders – fourth edition text review 

(DSM-IV-TR) criteria [273] , and AD, according to the National Institute of Neurological 

and Communicative Disorders and Stroke - Alzheimer’s Disease and Related Disorders 

(NINCDS- ADRDA) [274] and, more recently, the 2011 NIA-AA criteria [8] 

Cognitively normal controls (≥65 years) were recruited from a group of volunteers 
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from a Portuguese population study on aging [275], who were subjected to cognitive 

evaluation and showed no signs of cognitive impairment. These procedures have been 

approved by the Ethics Board of CHUC, Faculty of Medicine of Coimbra and NOVA 

Medical School of Universidade NOVA de Lisboa. Informed consent was required from 

all subjects or responsible caregivers, whatever appropriate.  

 

3.2.2 – APOE and TOMM40 Genotyping 

 

DNA was isolated from whole EDTA-blood using a commercial kit (Roche Diagnostics 

GmbH, Manheim, Germany). APOE genotype was determined by polymerase chain 

reaction-restriction fragment length polymorphisms (PCR-RFLP) assay, as previously 

described [276] 

TOMM40’ 523 polymorphism was genotyped as described formerly [74], with some 

modifications.  Briefly, each genomic DNA sample was amplified by the polymerase 

chain reaction (PCR) using fluorescently labelled forward 5’D4-

TGCTGACCTCAAGCTGTCCTC-3’ and reverse 5’-GAGGCTGAGAAGGGAGGATT-3’ primers. 

PCR amplification was performed in a 12 μL volume containing 20 ng of genomic DNA, 

2,5 μM of each primer and 6μl of Supreme NZYTaq 2x Green MasterMix (Nzytech, 

Lisbon, Portugal). Amplification was performed, with the following conditions: initial 

denaturation for 5 min at 96◦ C; 29 cycles of denaturing for 45s at 96◦C, annealing for 45 

s at 69◦C and elongation for 45s at 72º; concluded with a single 10 min final elongation 

step at 72◦C. PCR products with an expected length of 150 + n(T) pb were confirmed in 

a 2% agarose gel electrophoresis.  Afterwards, 1μl of each PCR product was mixed up 

with 20 μl of formamide (Beckam Coulter, USA) and 0.5μl of DNA Size Standard 400 

(Beckam Coulter, USA) and loaded on a capillary automated sequencer CEQ 8000 

(Beckman Coulter, USA).  

 

3.2.3 – Genotype Calling              

 

Since we were analysing a homopolymer, “slippage” during each DNA amplification 

was observed leading to a final product of amplicons with variable lengths around the 
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real poli-T length. However, as previously described [74,81], the PCR amplicons have a 

normal distribution with maximum intensity/area of signal near the true count of T 

(N[T]), but distributed continuously with error around the true value (Figure 3.1). 

Genotypes were determined using the tool Fragments of the Genome LabTM software 

version 10.2 (Beckman Coulter, USA) under the presumption that the highest area peak 

corresponded to the true count of “Ts”. This analysis was always performed by two 

independent observers who categorized the poly –T fragments according to the poly-T 

lengths into: short (S, ≤ 19), long (L, 20–29) or very long (VL, ≥ 30) repeats as as previously 

described [75]. In order to validate and compare the length of poly-T repeats, we 

sequenced 6 samples by Sanger sequencing and compared the poly-T size with the one 

determined from the fragment analysis. The results obtained by both techniques were 

similar, with an estimated error of +/- 1bp. 

 

 
 

Figure 3.1 – Electropherograms of fragment analysis. Count of polymerase chain reaction (PCR) 

fragments (intensity) versus size of fragment of a patient homozygous for TOMM40’ 523 allele (S/S) (left) 

and patient heterozygous for TOMM40’ 523 allele (S/VL) (right). The PCR amplicons have a normal 

distribution with maximum intensity of signal near the true count of T (N[T]). 

 

3.2.4 – Cerebrospinal Fluid Biomarkers Analysis     
                                    

CSF samples were collected from patients as part of their clinical diagnosis 

investigation routine. Pre-analytical and analytical procedures were done in accordance 

with previously published recommendations [277]. Briefly, CSF samples were collected 

into sterile polypropylene tubes, immediately centrifuged at 1800 g for 10 min at 4°C, 

aliquoted into polypropylene tubes and stored at – 80°C until analysed. CSF Ab42, t-Tau 
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and p-Tau-181 levels were measured separately,  via commercially available sandwich 

ELISA kits (Innotest; Innogenetics/Fujirebio, Ghent, Belgium), as aforesaid [278]. All 

samples were tested in duplicate and assays were performed sequentially in a clinical 

routine setting. External quality control of the assays was completed under the scope of 

the Alzheimer’s Association Quality Control Program for CSF Biomarkers [279]. The CSF 

biomarkers profile was classified using the Innotest Amyloid-Tau Index (IATI), with the 

following formula: Ab42/[240+(1.18xTau)], and a biomarker profile compatible with AD 

was defined with a score below 1 [280]. 

 

3.2.5 – Statistical Analysis 

 

Categorical data was presented in observed counts and percentages, whereas the 

mean, standard deviation and range were used for quantitative data. Group differences 

concerning qualitative data were analysed through the Chi-square test, adjusted for 

pairwise comparisons using a Bonferroni correction whenever justified, while non-

parametric Mann-Whitney and Kruskal Wallis were applied for comparisons between 

groups in quantitative data. Also, the association between the haplotype and risk for 

conversion was assessed by a Chi-Square test. Z test adjusted with the Bonferroni 

correction was used to compare the relative frequencies of poly-T lengths (S, L or VL) 

among different diagnosis groups. Logistic regression was applied to assess the risk of 

conversion in MCI patients and the risk of AD. Kaplan-Meyer survival analysis was used 

to search for predictors in time to conversion in MCI patients and in AOO of AD patients. 

Both analyses were adjusted for confounding factors such as gender, age and APOE 

genotype, specifically the ε4 allele. All tests were analysed at a significance level of 5 %. 

Statistical analysis was conducted in SPSS, version 25.  

 

3.3 – Results                                                                                                       

3.3.1 – Sample Characteristics                                                     

Demographic and clinical characteristics of the 354 participants involved in this study, 

as well as comparisons by diagnostic group, are summarized in Table 3.1. No differences 
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were found, between groups, in gender distribution (p=0.097). Regarding age, it was 

observed that controls and MCI-AD patients were significantly older than the remaining 

groups (p < 0.001). Similarly, we observed that MCI-AD patients were significantly older 

than AD and MCI-S groups regarding AOO (p < 0.001). AD and MCI-AD patients had a 

significant higher percentage of APOE ε4 allele carriers (45.6% and 59.7%, respectively) 

than MCI-S and controls (20% and 18.1%, respectively) (p < 0.001). Concerning CSF-AD 

biomarkers, AD and MCI-AD had significantly lower Ab42 levels and significantly higher 

t-tau and p-tau levels than MCI-S (p < 0.001).  

 

Table 3.1 – Demographics and clinical characteristics of the studied cohort. 

 

Data is presented as mean ± SD, except when indicated otherwise. ### P < 0.001 vs. AD; ## P<0.01 vs AD; §§ 

P<0.01 vs. MCI-S; §§§ P < 0.001 vs. MCI-S; ‡‡‡ P < 0.001 vs MCI-AD 
* AD n=(114); MCI-AD n=62; MCI-S n=40 (subjects with available age at onset data) 

 

        3.3.2 – TOMM40 poly-T distribution                                                 

In all clinical groups, we observed that the distribution frequency of TOMM40 poly-T 

lengths had several peaks in the fragment analysis, consistent with other published 

studies with European cohorts [79,80], confirming our TOMM40’ 523 genotyping 

methodology. Particularly, 4 clusters with peaks around 15, 22, 28 and 33/34 “Ts” with 

diminished count frequencies on either side of the peak, could be distinguished (Figure 

3.2). When comparing MCI-S and MCI-AD distribution of poly-T lengths, it was observed 

that despite an overall similar pattern, differences between poly-T relative frequencies 
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could be seen in these groups (Figure 3.2A). The same was observed when comparing 

controls and AD poly-T lengths distribution (Figure 3.2B). In order to evaluate if these 

differences were statistically significant, we compared the relative frequencies of poly-

T lengths classified as S, L or VL among different diagnosis groups using a Z test adjusted 

with the Bonferroni correction (Table 3.2). By comparing MCI-AD with MCI-S group we 

observed that MCI-AD group had significantly higher frequencies of L alleles (p < 0.001) 

than MCI-S group. Regarding S and VL alleles, MCI-AD group had lower relative 

frequencies of S and VL alleles than MCI-S group. However, these differences did not 

reach statistical significance (p>0.05) after Bonferroni correction (Table 3.2). Similar 

results were observed when comparing AD vs controls. Therefore, this data suggests 

that, in general MCI-AD is similar to AD and MCI-S to controls regarding TOMM40’ 523 

allele distribution (Table 3.2). 

 

Figure 3.2 – Distribution of TOMM40’ 523 poly-T lengths. (relative frequencies) in MCI-S vs MCI-AD group 

(a) and controls vs AD group (b). TOMM40’ 523 alleles are classified into: short (S, ≤ 19), long (L, 20–29) 

or very long (VL, ≥ 30). 
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The different TOMM40’ 523 genotypes, for MCI population and its correlation with 

APOE genotype are shown in Table 3.3. Here, we observed that in both MCI-S and MCI-

AD population, the TOMM40’ 523 genotype was significantly associated to APOE (p < 

0.001). APOE ε3 allele was found to be associated to TOMM40’ 523 S and VL alleles, 

whereas the ε4 allele was almost exclusively associated to L TOMM40’ 523, as previously 

described [73,75]. Despite the low frequency of APOE ε2 allele carriers, we found that 

similar to the ε3 allele, the ε2 alleles were also associated with the S and VL alleles. 

However, some discrepancies were found and are underlined and highlighted in bold in 

Table 3.3. The same association was found in the control and AD group (data not 

shown).  

 

Table 3.2 – Distribution of TOMM40 poly-T alleles in all clinical groups. 

Data is presented as relative frequencies of TOMM40 poly-T alleles (S, L and VL) in each clinical group. 
Statistical analysis was performed using Z test adjusted for pairwise comparisons using Bonferroni 
adjustment.; ### P < 0.001 vs. AD; ## P<0.01 vs AD; # P<0.05 vs AD; ‡‡‡ P < 0.001 vs MCI-AD 
 
 
Table 3.3 – Distribution of TOMM40’ 523 polymorphism according to APOE genotype for MCI-S and 
MCI-AD population.                                                                                           
     

 
Significantly statistic associations (Fisher test) between APOE genotypes and TOMM40’ 523 genotypes 
are highlighted in dark grey. Discrepancies are underlined and highlighted in bold.  
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           3.3.3 – TOMM40’ 523 Genotypes and Risk of Mild Cognitive 

Impairment Conversion to Alzheimer’s Disease 

 

We performed a logistic regression analysis in order to assess the risk conferred by 

the different TOMM40’ 523 genotypes for MCI to AD conversion. In a preliminary 

analysis, we observed that TOMM40 ’523 genotype was significantly associated with the 

risk of MCI to AD conversion and more specifically that TOMM40’ 523 genotypes S/L and 

L/L were associated with that risk. Curiously, the L allele, when combined with the VL 

allele (L/VL) did not reach statistical significance (data not shown). However, when we 

stratified by TOMM40’ 523 genotypes, the sample size was very small within each 

stratum, therefore we considered this analysis only as preliminary, due to low statistical 

power.  

We then analysed the impact of TOMM40’ 523 L allele on MCI to AD risk of conversion 

and observed that having at least one L allele significantly increased the risk of 

conversion (OR = 8.346, p < 0.001, 95%CI: 2.830 to 24.617). Age also showed to modestly 

impact the risk of conversion (OR = 1.140, p < 0.001, 95%CI: 1.064 to 1.221) but gender 

was not a significant factor (p > 0.05). However, as demonstrated previously, the L allele 

is almost exclusively linked to APOE ε4 allele, which also demonstrated to increase the 

risk of conversion (OR = 9.033, p < 0.001, 95%CI: 3.055 to 26.709). When we adjusted 

for ε4 allele, as expected, the L allele and ε4 allele were not independent significant 

factors for the risk of conversion (Table 3.4).  

 
Table 3.4 - Association of TOMM40’523 L and APOE ε4 with risk of MCI conversion to AD 
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3.3.4 – APOE ε4-TOMM40‘523 L Haplotype on Risk and Time of 

Conversion  

 

As it was not possible to disentangle if the effect would be due to ε4 allele or due to 

TOMM40' 523 L allele, we analysed instead the APOEε4-TOMM40’ 523 L haplotype 

(hereafter ε4-L haplotype)  since L allele in our sample occurs in 95.5% of ε4 carriers. We 

then performed a haplotypic analysis, where we compared the carriers of the ε4-L 

haplotype with those not carrying that haplotype, and observed a significantly higher 

risk of conversion for the haplotype carriers (O.R.=5.83; 95% CI=2.30-14.83), p<0.001. 

Similarly we also observed that ε4-L haplotype was associated with a significantly higher 

risk of AD (O.R.=3.8; 95% CI=1.96-7.39) , p<0.001. 

When evaluating the impact of the ε4-L haplotype on the time of conversion of MCI 

patients to AD, we also observed that carriers of this haplotype had significantly lower 

mean times of conversion: 4.8 years (95%CI: 3.7 to 5.9) than patients without the ε4-L 

haplotype:  9.1 years (95%CI: 7 to 11.1) (p=0.003) (Figure 3.3A). ε4-L haplotype was also 

associated with lower AOO of AD patients: 68,4 years (95%CI: 66,4 to 70.5) when 

compared to AOO of AD patients without this haplotype: 76,2 years. (95%CI: 73,8 to 

78.6) (p<0.001) (Figure 3.3B). Interestingly when stratified in the different TOMM40’523 

genotypes we observed that L/VL had significant higher AOO, 74,7 years (95%CI: 72,4 to 

77) than S/L, 66,6 years (CI: 63,5 to 69,6) (p=0,003) (data not shown). 

 

                             

 
 
 
Figure 3.3 – Impact of APOE ε4-TOMM40‘ 523 L on time of conversion from MCI to AD and AOO of AD 
patients. Survival analysis curves (Kaplan-Meier) for mean time of conversion from MCI to AD (years) (a) 
and for AOO of AD patients (b) with and without ε4-L haplotype. 



 72 

 
 

3.3.5 – APOE ε4-TOMM40‘ 523 L Haplotype Impact on AD 
Biomarkers 
 

We further observed that AD biomarkers significantly increased the risk of MCI 

conversion to AD. Indeed, when classified as having a profile compatible with AD, using 

the dichotomic variable IATI index [280], AD biomarkers significantly increased this risk 

of conversion from MCI to AD (O.R =15.6, p < 0.001, 95%CI: 5.2 to 46.3). We also 

evaluated the association of ε4-L haplotype with biomarkers and verified that this 

haplotype is significantly associated with biomarkers compatible with AD (p = 0.007) in 

whole MCI population (Table 3.5). Considering the values of the 3 biomarkers: Ab42, t-

Tau and p-Tau we further observed that the ε4-L is significantly associated with lower 

levels of Ab42 (p = 0.015) and higher levels of t-Tau (p = 0.006) and p-Tau (p<0.001) 

(Figure 3.4). On the other hand, in the AD population the ε4-L haplotype was only 

significantly associated with higher levels of p-Tau (p=0.039). The same association 

regarding Ab42 (p = 0.861) and t-Tau levels (p = 0.132) did not reach significance (data 

not shown). 

Table 3.5 – Cross tabulation of ε4-L haplotype and biomarkers classified as having a biomarker profile 
compatible or not compatible with AD (according to IATI index)  

 

More cases than expected are highlighted in grey. ε4-L haplotype is associated with a biomarker profile 
compatible with AD whereas patients without this haplotype are more associated with biomarker profile 
not compatible with AD 
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Figure 3.4 – Impact of APOE ε4-TOMM40‘ 523 L Haplotype on AD CSF biomarkers in MCI population. 

Box plots for CSF concentrations (pg/ml) of (a) Aβ42, (b) t-Tau and (c) p-Tau (means ± SD). Statistical 

significance between groups was determined using Mann Whitney test * p<0,05; ** p<0,01; *** p<0,001 

 
 
3.4 – Discussion                                                                                                       

In this study, we uncover the role of the APOE-TOMM40 haplotype on the risk and 

time of conversion from MCI to AD. We first demonstrated that MCI non-converters 

(MCI-S) and converters (MCI-AD) had a different poli-T distribution, where the L allele 

was significantly more frequent in the MCI-AD group. We further evaluated how this 

difference impacted the risk of conversion and found that, having at least one L allele 

significantly increased the risk of conversion from MCI to AD.  Due to the strong LD 

between APOE and TOMM40 [64–66] we were unable to statistically distinguish the 

independent effects of TOMM40-L and APOE-ε4. As it was not possible to disentangle if 

the effect would be due to APOE ε4 allele or due to TOMM40' 523 L allele, we analysed 

instead the APOE ε4-TOMM40’523 L haplotype performing a haplotype analysis and 

verified a significantly higher risk of conversion for the ε4-L haplotype carriers and that 

patients carrying this haplotype had significantly lower mean times of conversion. Lastly, 

we observed that the ε4-L haplotype was significantly associated with a CSF biomarker 

profile compatible with AD, namely, significantly lower levels of Ab42 and higher levels 

of Tau and p-Tau. Similar results were observed for AD where ε4-L haplotype carriers 

where associated with a significantly higher risk of AD and lower AOO of AD patients. 

Regarding the relation of ε4-L haplotype with AD biomarkers it was only significant for 

p-Tau levels.  



 74 

In contrast with AD, very few studies have focused on the impact of TOMM40’ 523 

polymorphism on MCI and, to our knowledge, none of them studied the impact of APOE-

TOMM40’ 523 haplotype on risk and conversion time, as we did in this study. Roses´ 

group, who identified this polymorphism, presented a stratification by TOMM40 ‘523 

and APOE genotype of ages of onset of cognitive impairment, in order to create a risk 

algorithm for clinical trial enrichment [86,87] . The major difference between these two 

studies and our study is that the other authors evaluated the risk of conversion from 

normal cognition to MCI and/or AD, whereas in our work the event studied was the risk 

of conversion from MCI to AD.  Other authors evaluated the utility of TOMM40 poly-T 

variable-length polymorphism among other 247 variables, for modelling the progression 

from MCI to AD but the TOMM40 ‘523 genotype variable was not present in the final 

model. On the other hand, it was not clear how the TOMM40 ‘523 poly-T variable was 

classified [258].  Lastly, Laczo et al. studied the impact of TOMM40 ‘523 genotype on 

cognition and brain structure among amnestic MCI individuals [103]. In contrast, 

regarding the APOE ε4 allele, dozens of studies reviewed in previous metanalysis 

[252,253] showed that the presence of the ε4 allele is a risk factor for the progression 

from MCI to AD, despite its low sensitivity [255] . Regarding the association of 

TOOM40’523 with AD AOO we observed that L/VL allele was associated with 

significantly higher AOO of AD than S/L in opposition to what was described by Roses et 

al.[73] . Similar results were described by Cruchaga et al. [78]. 

CSF biomarkers are also used as predictors for the progression from MCI to AD [256]. 

Li et al. showed in a metanalysis that abnormal levels of t-Tau, p-Tau and the ratio t-Tau 

/Aβ42 are associated with high risk of progression from MCI to AD [253]. Here, we also 

demonstrated that MCI patients with a CSF biomarker profile compatible with AD, using 

the dichotomic variable IATI index [280], were significantly at higher risk to convert from 

MCI to AD, and that ε4-L haplotype was significantly associated with a biomarker profile 

compatible with AD, namely higher levels of Ab42 and lower levels of t-Tau and p-Tau. 

Previous studies also demonstrated a similar  influence of APOE ε4 on CSF AD 

biomarkers [281–283]. Regarding TOMM40’523 L,   the associations observed with this 

allele and CSF biomarkers were attributed to ε4 allele [78,79,89]. Taking all this data into 

consideration, we hypothesize that the higher risk of conversion and lower mean times 

of conversion observed in ε4-L haplotype carriers, can be driven by CSF biomarkers. 
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In the present study we analysed the role of APOE ε4 TOMM40’523L haplotype on 

the risk of MCI to AD conversion instead of APOE ε4 and TOMM40' 523 L allele 

separately as explained earlier. A recent study also addressed the impact of the APOE-

TOMM40 haplotype on susceptibility to dementia with Lewis Bodies (DLB), Parkinson’s 

Disease Dementia (PDD) and Parkinson’s Disease (PD) in clinically and 

neuropathologically well-characterized individuals and found that the ε4-L haplotype 

increased the susceptibility and risk of earlier DLB onset. This association was explained 

by the co-occurrence of AD pathology [257]. Although in the Caucasian population the 

ε4 allele is almost exclusively associated with L allele, as demonstrated in this study, the 

same does not occur in other populations such as in Ghanaian, African Americans and 

Japanese population where, ε4 is commonly linked to ‘523-S in addition to the ‘523-L 

allele [74,76,284]. Considering this, Yu et al. compared the ε4-L haplotypes between 

older Caucasians and African Americans and demonstrated that the effect size and 

effect pattern on AD dementia incidence were similar between ε4 and ‘523-L on the 

Caucasian, but different in the African carriers. In the same study it was also 

demonstrated that the risk conferred by the APOE ε4 haplotype depends on the 

TOMM40’523 allele in LD, showing that African Americans with ε4-‘523-L haplotype 

show stronger effect on the increased risk for AD dementia than those with either ε4-

‘523-S or ε4-‘523-VL haplotypes [77].  In line with these results, Prokopenko also 

suggested the possibility that part of the liability of LOAD, commonly ascribed to ε4, 

might have been caused by TOMM40 on the basis of its strong LD [257]  . Thus, we 

propose the ε4-L haplotype as a risk factor for MCI to AD conversion as well for AD and 

that its effect may be due to the combination of both APOE and TOMM40 genes. APOE 

and TOMM40 encode two very distinct proteins. APOE encodes the Apolipoprotein E 

(ApoE) protein, which is a glycoprotein that regulates lipid homeostasis by mediating 

lipid transport from one tissue or cell type to another [56,57].  However, other important 

roles have been described for this protein, such as Aβ metabolism and clearance, Tau 

phosphorylation, brain activity and atrophy,  brain cholesterol transport, synaptic 

plasticity, inflammation and brain neurogenesis (reviewed in [57]). On the other hand, 

TOMM40 encodes the channel subunit of the outer mitochondrial membrane protein 

complex TOM40, through which the majority of nuclear-encoded proteins enter 

mitochondria [67,68], including Ab and APP, which further lead to mitochondrial 



 76 

dysfunction [218,220]. Mitochondria dysfunction has been shown to be an early and 

well characterized event in AD [285,286]. APOE ε4 contributes to mitochondrial 

dysfunction, decreasing mitochondrial mobility, expression of mitochondrial respiratory 

chain enzymes and translocases of the inner and outer mitochondrial membranes (TIMs 

and TOMs, respectively). It was also demonstrated that apoE4 (1-272), a bioactive 

carboxyl-terminal-truncated  product from apoE4 proteolytic cleavage [287] , is 

internalized into mitochondria, causing mitochondrial dysfunction [227,288], by 

reducing mitochondrial membrane potential [227]  and by bounding several 

mitochondrial proteins such as ubiquinol cytochrome c reductase core protein 2 and 

subunit 4 of cytochrome oxidase [288]. ApoE4 (1-272) internalization probably occurs 

via TOM40 [118]  which shows an interaction between the two genes of the APOE-

TOMM40 haplotype (Figure 3.5).To our knowledge only two studies focused on the 

relationship of TOMM40’ 523 and mitochondrial function whose results are 

contradictory [289,290].  Therefore, further studies addressing the cellular and 

mitochondrial role of APOE-TOMM40 haplotypes are needed, namely studying how 

TOMM40’ 523 alleles can affect apoE internalization into mitochondria and subsequent 

mitochondria function. 

In our study, two main limitations can be found: the low dimension of the sample of 

MCI subjects and the lack of familial data.  The low number of MCI subjects and 

conversion events decreased the statistical power when we stratified by TOMM40’ 523 

genotypes. The same happened when analyzing the ε3/ε3 and ε3/ε4 stratum, thus 

making it impossible to find any TOMM40 ’523 independent effect. We tried to 

overcome this limitation with specific statistical analysis focusing on APOE-

TOMM40’523 haplotype. Furthermore, in the logistic regression analysis, we tried to 

adjust for several confounding factors and applied multiple testing corrections.  

Regarding the lack of familial data, that made it impossible for us to establish the phase 

of the haplotype with the parent-offspring transmission, because we could not assess if 

the APOE ε4 and the L allele were in cis or in trans.  

One of the main strengths of our study is the fact of being performed in a well 

characterized cohort of patients both clinically and regarding CSF biomarkers of disease. 

Furthermore, the data presented here reinforce the hypothesis of mitochondrial 

dysfunction as an early event in the pathophysiology of AD. 
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In summary, our study shows that the APOE ε4 - TOMM40 ‘523 L haplotype is 

associated with a higher risk and shorter times of MCI to AD conversion possibly driven 

by CSF biomarkers and mitochondrial dysfunction. 

 

Figure 3.5 – Possible biological interaction between APOE and TOMM40 genes. A) The TOMM40 gene 

encodes the channel subunit of the outer mitochondrial membrane protein complex TOM40, through 

which the majority of nuclear-encoded proteins enter mitochondria. On the other hand, APOE codes the 

Apolipoprotein E (ApoE) protein, which is a glycoprotein that regulates lipid homeostasis by mediating 

lipid transport from one tissue or cell type to another, nevertheless other important roles in AD 

pathophysiology have been described for APOE. B) ApoE4 (1-272) a fragment from full ApoE4, was 

demonstrated to be internalized into mitochondria, causing mitochondrial dysfunction. ApoE4 (1-272) 

internalization probably occurs via TOM40 channel which shows an interaction between the two genes, 

which can have a possible modulatory effect, turning the APOE-TOMM40 haplotype analysis important to 

address this possible joint effect. Therefore, studies addressing how TOMM40’523 alleles can affect apoE 

internalization into mitochondria and subsequent mitochondrial dysfunction are also needed. 
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Chapter 4 

TOMM40’523 and mitochondrial dysfunction 
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Abstract 
 

TOMM40’ 523 polymorphism has been associated with different AD related features 

such as AOO and risk of AD, brain structure and cognition. TOMM40 gene encodes the 

channel subunit of the outer mitochondrial membrane protein complex TOM40, 

through which most of nuclear-encoded proteins enter mitochondria. Mitochondrial 

dysfunction is one of the earliest events in AD. Considering this, it was hypothesized that 

TOMM40’ 523 could have a role on AD through mitochondrial dysfunction. However, 

the few studies performed so far did not reach clear conclusions. Using Peripheral Blood 

Mononuclear Cells (PBMCs) from AD patients, we addressed the impact of TOMM40’ 

523 on different mitochondrial features, such as function, structure and apoptosis. We 

obtained PBMCs from patients homozygous for S, L and VL TOMM40’ 523 

polymorphism, which are thereafter called S, L and VL groups. In this study, we observed 

that VL group had significant higher levels of TOM40 than S group, similar mitochondrial 

membrane potential, Dym, higher mitochondrial fission and lower caspase activation. 

Although these two last parameters did not reach statistical significance, our data 

reinforce the hypothesis that. increased levels of TOM40, as have been observed by 

Zeitlow et al. [290] seem to be protective to mitochondria. 
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4.1 – Introduction 
 

Over 40 years ago, electron microscopy (EM) studies of AD brains revealed altered 

mitochondria morphology [291]. Nowadays, mitochondria dysfunction is a well 

characterized event in AD. Mitochondrial dysfunction is an early event  in AD and 

precedes detectable amyloid pathology both in humans [169,292,293] and animal 

models [294,295]. Several mitochondrial changes have been shown to be involved in 

AD, such as increased levels of ROS and oxidative damage [128,144,145], impaired 

bioenergetics [165], calcium dyshomeostasis [131,179], alterations in mitochondrial-

associated ER membrane (MAM) [130,199] and mitochondrial fitness [134,165]. 

Alterations in mitochondrial fitness include alterations in fission and fusion, mitophagy 

and mitochondrial biogenesis. Protein AD hallmarks, such as Ab [19], Tau [21] and APOE 

ε4 [243] are also known to play a role in mitochondria dysfunction. As different features 

are altered in mitochondria, several hypotheses have been put forward in order to 

explain the mitochondrial abnormalities seen in AD, including the AD mitochondrial 

cascade hypothesis [296,297], the calcium hypothesis of brain aging [180,182], the 

MAM hypothesis [130,199], and the amyloid cascade hypothesis [33,37]. However, it is 

difficult to demonstrate if these mitochondrial abnormalities are a trigger or just 

consequences of AD, and to draw a timeline among them. Moreover, it is known that 

these mitochondrial abnormalities are linked and ultimately lead to apoptosis and 

neuronal death. 

As addressed previously, several polymorphisms on TOMM40 have been associated 

with LOAD risk (chapter 1.2), namely TOMM40’523 whose effect on AD risk, AOO, risk 

of MCI conversion to AD and relationship with CSF AD biomarkers was described in 

chapter 3. TOMM40 gene encodes the channel subunit of the outer mitochondrial 

membrane protein complex TOM40, through which most of nuclear-encoded proteins 

enter mitochondria [67,68]. The majority of mitochondrial proteins are encoded by 

nuclear genes, synthetized in the cytosol [68,118] and then imported into mitochondria. 

It is known that preproteins use at least five major import pathways, four of which 

involve TOM40 for preprotein translocation across the outer membrane and all use the 

TOM complex [68]. As the import of mitochondrial proteins into mitochondria is 

essential for biogenesis and functioning of mitochondria, it is not surprising that TOM40 
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was shown to be essential for life in eukaryotic organisms. The importance of TOM40 

was demonstrated in different eukaryotic models, including S. cerevisae [137], N. crassa 

[138], human cell lines [139], C. elegans  [140] and mice [141]. TOM40 channel plays 

also a role in mitochondrial dysfunction, via Ab internalization and APP blockade of this 

mitochondrial import channel. It has been demonstrated that accumulation of APP 

inhibits the entry of nuclear encoded COX subunits IV and Vb, which was associated with 

decreased COX activity and increased levels of H2O2. [218] On the other hand, Aβ 

internalization via TOM40 leads to ABAD and Prep inhibition, causing mitochondrial 

dysfunction [223,224]. APOE ε4 (1-272) fragment, a product of APOE ε4 cleavage, was 

also associated with mitochondria and mitochondrial dysfunction [227,228], and it was 

proposed that its mitochondrial localization is also mediated by the TOM complex. [118].  

In the previous chapter, we demonstrated that APOE ε4-TOMM40‘ 523 L haplotype 

is a risk factor for MCI to AD conversion, and proposed that its effect may be due to the 

combination of both APOE and TOMM40 genes and respective protein products via 

mitochondrial dysfunction. However, in contrast with APOE, very few studies focused 

on the relation of TOMM40’ 523 and mitochondrial function and the results are 

contradictory [289,290]. Using  human fibroblasts obtained from cognitively healthy 

APOE ε3/ε4 carriers harbouring VL or S poly-T variants coupled to their APOE ε3 allele, 

Hedskog et al. studied the relation of TOMM40’523 polymorphism with expression 

levels of TOM40 protein and mRNA, TOM40 mRNA splicing,  mitochondrial function and 

morphology [289]. However, these authors did not find significant differences regarding  

VL or S poly-T variant . Zeitlow et al. used an overexpression model (HeLa cells) of 

TOM40 in order to model the VL effect on TOMM40 protein expression, according to 

Linnertz et al. [117], and studied how the increased levels of TOM40 protein affect 

mitochondrial function. Analyzing a variety of parameters, such as mitochondrial 

number, bioenergetics and cellular response to β-amyloid,  suggested that a high 

expression of TOM40 may play a protective role in mitochondrial function [290].  

Accordingly, the main aim of this study was to investigate the impact of  

TOMM40’523 polymorphism in mitochondrial function of AD patients. To address this, 

PBMCs from AD patients were used and the role of TOMM40’523 in mitochondrial 

function, morphology, dynamics and apoptosis was analyzed.  
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4.2 – Material and Methods 

 
4.2.1 – Materials 

 
Ethylenediaminetetraacetic acid (EDTA) tubes (VACUETTE)® were from Greiner Bio-

One. Histopaque®-1077 (10771), RPMI-1640 medium (R7388), tetramethylrhodamine 

methyl ester perchlorate (TMRM; T5428), carbonyl cyanide 3-chlorophenylhydrazone 

(CCCP; C2759), oligomycin (O4876), protease inhibitor cocktail (P2714), 

phenylmethanesulfonyl fluoride (PMSF; P7626), glycerol (G5516), bromophenol blue 

(B0126), TWEEN® 20 (P9416) , 3[(3-cholamidopropyl) dimethylammonio]-

propanesulfonic acid (CHAPS; C5070), epoxy resin (45359-1EA-F) and osmium (75632) 

were from Sigma-Aldrich. Inactivated fetal bovine serum (FBS) (10270-106) and 

penicillin-streptomycin (Pen/Strep; 15140-122) were from Gibco. Sodium fluoride (NaF; 

201154) was from Fluka. Dithiothreitol (DTT; AMRE-0281-5G) and sodium dodecyl 

sulfate (SDS; M107) were from Amresco. Tris Base (BP152) was from Fisher Scientific. 

30% Acrylamide/Bis gel (#1610156) was from Bio-Rad. Pierce™ bicinchoninic acid (BCA) 

Protein Assay Kit (23225) was from Thermo Scientific™. Bovine serum albumin (BSA 

;MB04602) was from Nzytech.  Enhanced chemifluorescence (ECF) substrate for 

Western Blotting (RPN5785) was from GE Healthcare. Colorimetric substrate for 

caspase-3 (235400)  and polyvinylidene fluoride (PVDF) membrane (IPVH00010) were 

from Merck Millipore. Sodium cacodylate (R1103) and uranyl acetate (P1260A) were 

from Agar Scientific . All other chemicals were from Sigma- Aldrich or Fisher. 
 

 Table 4.1 – Primary Antibodies. 
 

Primary 
Antibody 

Isotype Dilution Target MW 
(kDa) 

Supplier Reference 

Actin Mouse 1:10.000 
 

42  Sigma A5316 

Fis1 (TTC11) Rabbit 1:500 ~20 NovusBio NB100-5646 
Mfn2 (M03) 
clone 4H8 

Mouse 1:500 ~75 Abnova H00009227-
M03 

p- Drp1(Ser616) Rabbit 1:1.000 78 – 82 Cell Signalling 3455 
TOM40 (D-2) Mouse 1:500 40 Santa Cruz Sc-365467 
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Table 4.2 – Secondary antibodies. 
 

Secondary 
Antibody 

Host Dilution Supplier Reference 

Anti-mouse Sheep 1:10.000 (1:2.000 
for TOM40) 

GE Healthcare NIF1316 

Anti-rabbit Goat 1:20.000 GE Healthcare NIF1317 

 

4.2.2 – Study subjects  

 

AD patients (n=16) were recruited and diagnosed at the Dementia Clinic, Neurology 

Department of Coimbra University Hospital (CHUC), Coimbra, Portugal. These patients 

were genotyped for APOE and TOMM40’ 523 as described previously (see 3.2.2). In 

order to study the biological effect of TOMM40’ 523 polymorphism on mitochondria, 

patients homozygous for S, L and VL TOMM40’523 alleles were selected (hereafter, 

denominated as S, L and VL groups). S/S (n=5) and VL/VL (n=6) patients were both 

homozygous for APOE ε3 allele (ε3/ ε3) whereas L/L (n=5) patients were homozygous 

for APOE ε4 allele (ε4/ε4) (Table 4.3). Collection of peripheral blood from each patient 

was performed by an experienced nurse in the day of the medical appointment upon 

agreement to participate in the study (signed informed consent by the patient or the 

legal representative). These procedures have been approved by the Ethics Board of 

Faculty of Medicine, University of Coimbra and NOVA Medical School of Universidade 

NOVA de Lisboa. 

 

4.2.3 – Isolation of Peripheral Blood Mononuclear Cells  

 

For each participant, a total of 18 mL of blood was collected by vein puncture in two 

sterile 9 mL EDTA-coated tubes. After collection the tubes were gently mixed and stored 

at 4 °C to be processed in the next day. PBMCs were isolated by density gradient 

centrifugation. Briefly, the collected blood (~9 mL per tube) was carefully layered into 8 

mL of Histopaque in a 50 mL falcon tube without disturbing the Histopaque surface. The 

blood was always checked for possible erythrocyte’s lysis. Tubes were centrifuged at 

1048xg for 20 min at 18 °C in a swing out rotor centrifuge (Eppendorf 5810R) without 

brake. After centrifugation, the ring containing mononuclear cells was carefully 
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removed from the interface using a Pasteur pipette. The harvested fraction was diluted 

with phosphate saline buffer 1x (PBS 1x) containing 137 mM NaCl, 2.7 mM KCl, 8.1 mM 

Na2HPO4, 1.47 mM KH2PO4, pH 7.4 (total volume of 30 mL). Hereafter, cells were 

pelleted by centrifugation for 10 min at 377xg, 18 °C. The pellet was resuspended in lysis 

buffer to perform total protein extracts for Western blotting (WB) analysis and 

measurement of caspase-3 activity   or, alternatively, resuspended in RPMI 1640 

medium containing 10% (v/v) heat inactivated FBS, 100 U/mL penicillin and 100 mg/mL 

streptomycin and cultured in T25 culture flasks, at a density of 1 × 106 cells/mL, in a 

humidified incubator chamber with 95% air and 5% CO2 at 37 °C, for analysis of 

mitochondrial membrane potential (TMRM assay) and morphology [(transmission 

electron microscopy (TEM)]. 

 

 

 

 
Figure 4.1 – Schematics of Peripheral Blood Mononuclear Cells isolation. Adapted from Fuss et al. [298]. 

 

4.2.4 – Analysis of mitochondrial membrane potential  

 

To monitor changes in Δψm, the TMRM dye was used. TMRM is a lipophilic cationic 

compound with positive charge that accumulates in the highly negatively charged 

interior of mitochondria. Thereby, a decrease in TMRM cellular retention is associated 

with a decrease in Δψm. In this study TMRM was used in quenching mode [299], which 
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uses high dye concentrations such that it accumulates in mitochondria and form 

aggregates, quenching the fluorescence. Therefore, a subsequent mitochondrial 

depolarization will remove the quenching of the loaded probe and (transiently) increase 

the fluorescence signal.  In a 96-well plate, 0.5x106 cells/well were loaded in the dark 

with 300 nM TMRM in Krebs buffer (pH 7.4) composed of 140 mM NaCl, 5 mM KCl, 1 

mM CaCl2, 1 mM MgCl2, 10 mM glucose, 10 mM of 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), pH 7.4, for 30 min at 37 °C. Basal fluorescence 

was recorded for 2 min (readings every 30 seconds) at 37 °C (λex=540 nm and λem=590 

nm). Afterwards, 40 μM CCCP (protonophore) and 40 μg/ml oligomycin (inhibitor of ATP 

synthase and Na+/K+-ATPase), were added to each well to achieve maximal 

mitochondrial depolarization and prevent ATP synthase reversal, respectively, and 

fluorescence was recorded for another 3 min (lectures every 10 seconds) at 37 °C. 

TMRM retention ability was calculated by the difference between the total fluorescence 

(after depolarization) and the initial value of fluorescence (basal fluorescence). 

Measurements were performed using a Spectramax Gemini EM spectrofluorometer 

(Molecular Devices, Sunnyvale, CA, USA).  

 

4.2.5 – Preparation of total protein extracts  

For WB analysis and measurement of caspase-3 activity, total protein extracts were 

prepared from PBMCs (see 4.3.3). Briefly, pelleted cells were resuspended in 80 μL of 

iced lysis buffer [25 mM HEPES, 2 mM MgCl2, 1 mM EDTA and 1 mM EGTA 

(Ethyleneglycol- bis(β-aminoethyl)-N,N,Nʹ,Nʹ-tetraacetic Acid), pH 7.5, supplemented 

with 1% (v/v) protease inhibitor cocktail, 50 mM NaF, 2 mM sodium ortovanadate, 100 

μM PMSF and 2 mM DTT]. Cellular suspensions were frozen three times in liquid 

nitrogen and centrifuged for 10 min at 20800xg at 4 °C. The resulting supernatants were 

collected and stored at −20 °C. Protein concentration was determined using the PierceTM 

BCA Protein Assay Kit according to the manufacturer’s instructions. Measurements were 

performed using a Spectramax Plus 384 spectrofluorometer (Molecular Devices, 

Sunnyvale, CA, USA).  
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4.2.6 – Western blotting analysis 

 

Forty μg of total protein were denatured at 95 °C for 5 min in a 6x concentrated 

sample buffer [0.5 M Tris, 30% (w/v) glycerol, 10% (w/v) SDS, 0.6 M DTT, 0.012% 

bromophenol blue] and loaded into a 12% (w/v) polyacrylamide gel. After 

electrophoresis, the proteins were blotted onto a PVDF membrane and blocked in 5% 

(w/v) BSA  during 60 min, before being incubated with the appropriate primary antibody 

overnight at 4 °C and with the appropriate secondary antibody for 2 h at room 

temperature (RT) (Table 4.1 and 4.2). Then, membranes were washed five times during 

5 min in Tris-buffer (150 mM NaCl, 25 mM Tris-HCl, pH 7.6) supplemented with 0.1% 

(v/v) Tween 20 (TBS-T). Finally, membranes were incubated with ECF for a maximum of 

5 min at RT.  ECF detection was performed using a Molecular Imager Versa Doc MP 4000 

System (Bio-Rad) and, for each membrane, the analysis of band intensity was performed 

using the Image Lab software (Bio-Rad). Equal protein loading was controlled by 

membrane re-probing with an anti-actin (1:20,000) antibody and followed by incubation 

with an appropriated secondary antibody (Table 4.1 and 4.2). Stripping was performed 

to reprobe membranes with another antibody(ies). For ECF removal, membranes were 

washed overnight with TBS-T at 4 °C or for 30 min with 40% (v/v) Methanol at RT. To 

remove antibodies, membranes were washed, with continuous agitation, with water for 

5 min, NaOH (0.2 M) during 5 min and, finally, with water for 5 min. After stripping, 

membranes were blocked again with 5% (w/v) BSA for 60 min at RT. 

 

4.2.7 – Determination of caspase-3 activity 

 

To evaluate caspase-3 activity, cell extracts containing 25 μg protein were reacted for 

3 h at 37 °C with 100 μM acetyl-Asp-Glu-Val-Asp p-nitroaniline (Ac-DEVD-pNA), the 

colorimetric substrate for caspase-3, in reaction buffer: 25 mM HEPES, 0.1% (w/v) 

CHAPS, 10% (w/v) sucrose, 10 mM DTT, pH 7.4. The enzymatic cleavage of the 

chromophore p-nitroaniline (pNA) from the substrate was detected at 405 nm using a 

Spectramax Plus 384 spectrophotometer (Molecular Devices, Sunnvale, CA, USA).  
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4.2.8 – Transmission electron microscopy  

 

PBMCs in culture were collected and centrifuged at 775xg for 5 min. The supernatant 

was discarded and pelleted cells were fixed with 2.5% (v/v) glutaraldehyde in 0.1 M 

sodium cacodylate buffer (pH 7.2) for 2 h. After rinsing in the same buffer, post-fixation 

was performed using 1% (w/v) osmium tetroxide for 1 h. Cells were washed 

subsequently in buffer, buffer and distilled water, and finally in distilled water. To 

enhance contrast, 1% (v/v) aqueous uranyl acetate was added to cells for 1 h. Samples 

were washed in distilled water and dehydrated in a graded ethanol series (70–100%). 

Following embedding in 2% (w/v) molten agar, pellets were re-dehydrated in ethanol 

(30-100%), impregnated and included in Epoxy resin (Fluka Analytical). Ultrathin 

sections were mounted on copper grids and stained with 0.2% (w/v) lead citrate for 7 

min. Observations were carried out on a FEI-Tecnai G2 Spirit BioTwin (Spain). 

 

4.2.9 – Statistical analysis  

Statistical analysis was performed using the non-parametric Kruskal-Wallis test, 

followed by the Dunn’s multiple comparison. Values are expressed as mean ± SEM. P 

values of <0.05 were considered to be significant. Statistical analyses were performed 

using GraphPad Prism 5 (GraphPad Software, San Diego, CA, USA).  

 

4.3 – Results 

 

4.3.1 – Sample characteristics  
 

To study the impact of TOMM40’ 523 polymorphism on mitochondrial function, 

structure and apoptotic cell death, PBMCs derived from AD patients genotyped for APOE 

and TOMM40’ 523 were used. Three different study groups were established: S, L and 

VL groups, which consisted of PBMCs derived from patients homozygous for S, L and VL 

alleles, respectively (Table 4.3). No significant differences were found neither in gender 

distribution, age or MMSE scores between study groups (Table 4.4). 
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Table 4.3 – Demographic, genetic and clinical characteristics of patients. 

 
 
Table 4.4 – Comparison between TOMM40’523 groups. 
 

 
Data are  presented as mean ± SD, except when indicated otherwise. 
 

 
4.3.2 – TOMM40’ 523 genotypes and mitochondrial function 

 
In order to study the effect of TOMM40’ 523 polymorphism in mitochondrial 

function, we evaluated the effect of each polymorphism (S, L and VL) in mitochondrial 

potential using the TMRM assay. The L group showed a minor TMRM retention ability in 

comparison with the other groups, suggesting decreased mitochondrial membrane 

potential, whereas a similar retention of the fluorescent dye was observed between S 

and VL genotypes (Figure 4.1 A). A statistically significant difference was seen when 

comparing L and VL genotypes (p=0.016), but not for the S allele (Figure 4.1B). 
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Figure 4.2 – Analysis of mitochondrial membrane potential between different TOMM40’ 523 

genotypes. Differences in mitochondrial membrane potential between different TOMM40’ 523 

genotypes were assessed using the TMRM fluorescent probe (quenching mode) in PBMC samples of S, L 

and VL groups. (a)  Basal fluorescence of TMRM was measured for 2 min (readings every 30 seconds) and 

after stimulus (black arrow) for 3 min (readings every 10 seconds) and is represented as mean ± SEM of 3 

patients per group. (b) TMRM retention ability was calculated by the difference between the maximum 

fluorescence (after depolarization) and the initial value of fluorescence (basal fluorescence) for S , L, and 

VL  groups and represented as mean ± SEM of 3 patients per group. Statistical significance between groups 

was determined using the Kruskal-Wallis test, followed by the Dunn’s multiple comparison test: *P<0.05 

VL vs L.  

 
 

 
4.3.3 – TOMM40’ 523 genotypes and mitochondrial structure  

 

To study the effect of TOMM40’ 523 polymorphisms on mitochondrial structure, 

different strategies were used: (i) determination of TOM40 protein levels; (ii) analysis of 

the levels of proteins involved in mitochondrial dynamics (fission and fusion); (iii) study 

of mitochondrial morphology using TEM. Differences were observed between groups 

when TOM40 protein levels were measured. An increase was observed in TOM40 levels 

in L and VL groups, in comparison with the S group, reaching statistical significance when 

S and VL groups were compared (p=0,0427) (Figure 4.2).  
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Figure 4.3 – Levels of TOM40 protein between different TOMM40’ 523 genotypes. The levels of TOM40 

protein were evaluated by WB in total protein extracts derived from PBMCs obtained from S, L and VL 

groups. (a) The values of TOM40 protein were normalized to actin and presented as TOM40/actin ratio 

(mean ± SEM) of 4 AD patients per group. (b) gel showing the TOM40 and corresponding actin levels for 

S, L and VL group. Statistical significance between groups was determined using the Kruskal-Wallis test, 

followed by the Dunn’s multiple comparison test: *P<0,05 VL vs L.  
 

In order to evaluate mitochondrial dynamics, the levels of two fission related proteins 

(p-Drp1 (Ser616) and Fis 1) and one fusion protein (Mfn2) were evaluated (Figure 4.3). 

Regarding p-Drp1 (Ser616), similar levels were detected in the L and VL groups, while 

lower levels were observed in the S group, but without statistical significance. For Fis1, 

the L and VL groups showed higher levels in comparison with the S group. However, 

differences were not significant. Regarding Mfn2, all groups exhibited similar levels of 

this protein, which is involved in mitochondrial fusion.   
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Figure 4.4 –  Effect of TOMM40’ 523 genotypes in mitochondrial dynamics. Protein levels were evaluated 

by WB in total protein extracts derived from PBMCs isolated from S, L and VL groups: pDrp1 (a), Fis1 (b), 

and Mfn2 (c). Protein levels were normalized to actin and are presented as ratio of protein/actin (mean ± 

SEM) of 4 AD patients per group. (d) gel showing the p-Drp1 (Ser616), Fis1, Mfn2 and corresponding actin 

levels for S, L and VL group. Statistical significance between groups was determined using the Kruskal-

Wallis test, followed by the Dunn’s multiple comparison test.  
 

To study mitochondrial morphology, confocal microscopy analysis of TOM20 or Heat 

Shock Protein 60 kD (HSP60) mitochondrial proteins immunostaining was first 

performed in PBMCs isolated from the different groups. However, due to the size of the 

nucleus in PBMCs, almost all intracellular space is occupied with this organelle, which 

hinders the investigation of mitochondrial morphology using this technique. Therefore, 

TEM was used to address the role of the different genotypes on mitochondrial 

morphology, in comparison with a cognitively healthy control (Figure 4.4). Regarding 

control cells (PBMCs derived from cognitively healthy controls), uniform round 

mitochondria were mainly present (Figure 4.4 a). In the S group, a shape similar to 

control was observed, even though with some variability in mitochondria sizes (Figure 

4.4 b). On the contrary, in the L group, high variability in size and shape of mitochondria 
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were detected and most of them were swollen (Figure 4.4 c). Lastly, it was observed 

that a great variability in mitochondria shape, with round and elongated mitochondria, 

occurs in the VL group (Figure 4.4 d). Moreover, in this group some fission events could 

also be observed (data not shown), which is in line with results showing higher levels of 

fission proteins in this group (Figure 4.3). 

 

 
 

Figure 4.5 – TOMM40’ 523 genotypes and mitochondrial morphology. Differences in mitochondrial 

morphology were observed by TEM in PBMCs of cognitively healthy control (a), S group (b), L group (c) 

and  VL group (d). Black arrows point to mitochondria. 
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4.3.4  – TOMM40’523 genotypes and cell apoptosis  

 
Cell death provides a defense mechanism by which damaged and potentially 

dangerous cells can be eliminated. Programmed cell death is known as apoptosis and is 

controlled by caspases (see 1.3.1). Since mitochondria plays a central role in controlling 

apoptosis by the release of proapoptotic factors such as cytochrome c, the relation of 

TOMM40’ 523 and the activity of caspase 3 in lysates from S, L and VL group PBMC’s 

was studied. Caspase 3-like activity was assessed through the cleavage of a specific 

colorimetric substrate measured at 405 nm. Using this assay, a lower activity of caspase 

3 was observed in the VL group, when compared with the S and L groups. Moreover, the 

highest activity was found in the S group, despite not reaching statistical significance.  

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 4.6 – TOMM40’ 523 genotypes and caspase 3 activity. Values of absorbance corresponding to the 

generation of the chromophore pNA, an indication of caspase 3 activation, are represented in the scatter 

plot for S, L and VL groups. Statistical significance between groups was determined using the Kruskal-

Wallis test, followed by the Dunn’s multiple comparison test: n.s: non-significant  
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4.5 – Discussion 
 

 

In this study, we observed significant higher levels of the mitochondrial import 

protein TOM40 on the VL group, when comparing to the S group. Regarding Dym, 

similar results were obtained for the S and VL groups. On the other hand, mitochondrial 

membrane depolarization was detected in L group. APOE ε4, which is in LD with the L 

allele has been linked to reduced  expression of genes encoding for  mitochondrial 

respiratory enzymes, in particular electron transport chain genes from complexes I–V  

[247,248]. On the other hand, it has been demonstrated that apoE4 (1-272) is 

internalized into mitochondria, probably via TOM40, causing mitochondrial dysfunction 

[227,288], by reducing mitochondrial potential [227]  and by binding several 

mitochondrial proteins  [288]. Regarding the levels of proteins involved in mitochondrial 

dynamics (fission and fusion), higher levels of Fis1 and p-Drp1 (Ser616), which are 

fission-related proteins, were detected in the VL group compared to the S group. 

However, the differences were not statistically significant. On the other hand, the levels 

of the fusion protein Mfn2 were similar across all analyzed groups. Differences on 

mitochondria morphology were observed by TEM across different groups. The S group 

presented round mitochondria, similar to what was found in healthy control cells, 

despite some variability in mitochondria sizes.  The VL group exhibited round and 

elongated mitochondria, where fission events were observed. Regarding the L group, 

despite high variability in size and shape of mitochondria, as observed in the VL group, 

swollen mitochondria were also detected. These swollen mitochondria can be explained 

by the mitochondrial dysfunction associated to APOE ε4 described above. Finally, 

caspase 3 activity was lower in the VL group, when compared with that in the S and L 

groups. However, the differences did not reach statistical significance.  

The main objective of this study was to address any independent effect of 

TOMM40’523 polymorphism on mitochondrial features and thus on mitochondrial 

dysfunction seen in AD. However, as the L allele is in LD with ε4 APOE allele, the 

observed effect for this allele can be a combination of both genes in ε4-L haplotype 

(chapter 3). For this reason, in this discussion I will only focus on the differences 
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between S and VL allele, since these alleles are linked to the same APOE allele and thus 

the different effects can be attributed only to TOMM40’523. 

Regarding the levels of TOM40, we observed higher levels of TOM40 on VL group 

(VL/VL) when comparing to S group (S/S), whereas other authors found different results. 

Zeitlow et al. demonstrated a trend towards higher TOM40 protein levels in brain tissue 

from APOE ε3/ε4 AD patients who were S/L carriers, compared with VL/L carriers. 

However, the statistical significance depended on the protein used for normalization. In 

the same study, the author found that in the brain tissue from APOE ε3/ε3 subjects, 

expression of TOM40 did not differ significantly between S/S or VL/VL homozygotic 

carriers, independently of the protein used for normalization [290]. Furthermore, 

Hedskog et al. did not find differences in the levels of TOM40 protein between S/L and 

VL/L in fibroblasts from non-demented individuals [289]. The divergence in the results 

of the studies referred above is probably due to the fact that different tissues, genotypes 

and normalization methods were used, precluding any conclusion about the levels of 

TOM40 when comparing S and VL alleles. On the other hand, Linnertz et al. found that 

TOMM40 mRNA levels were dependent on the number of VL alleles in brain samples 

from cognitively normal individuals [117], which is in line with higher TOM40 levels 

found in VL group.  

Regarding mitochondrial function, a similar Dym was observed in our study when 

comparing S and VL group. Hedskog et al. also did not find differences in Dym when 

comparing fibroblasts from cognitively healthy donors with VL/L and S/L poly-T 

genotypes [289]. On the other hand, using cells overexpressing TOM40, Zeitlow et al. 

observed that Dym, basal cellular ATP levels and oxygen utilization rates were higher in 

these cells, when compared to controls cells [290]. As addressed above, the cells 

overexpressing TOM40 were intended to  model the VL allele according to the study of 

Linnertz et al [117]. Higher levels of pDrp1 and Fis 1 were also observed in this study in 

VL group, when compared to S group, despite not reaching statistical significance. 

Moreover, we observed more fission events by TEM in VL group, when compared to S 

group. It is known that levels of Drp1 phosphorylation at Ser616 are increased in AD 

[200] and that excessive fission can lead to mitochondrial dysfunction, including ROS 

overproduction, accumulation of mtDNA mutations and decreased calcium buffering 

[205,207,208]. However, despite VL group presenting higher levels of pDrp1 and Fis 1 



 98 

than S group, the difference did not reach statistical significance. On the other hand, 

despite the negative effect of fission on AD, we need more data, such as ROS and Ca2+ 

levels, to state that the higher levels of fission in VL group has a negative impact on 

mitochondria. It is known that  excessive Ca2+ levels lead to the mitochondrial 

permeability transition pore (mPTP) opening [71] and release of cytochrome c, which 

initiates the apoptosis cascade with caspase 3 activation [190].  In fact, when caspase 3 

activation was evaluated, we observed lower levels of caspase 3 in VL group, when 

compared to S group, despite not being statistically significant. 

Due to the high variability in the experiments described above, it was difficult to find 

significant statistical differences between TOMM40’523 groups in some of the 

parameters evaluated, precluding solid conclusions. Thus, the experiments here 

presented should be replicated with a higher number of samples per group in order to 

obtain more robust results. On the other hand, mitochondrial dysfunction involves a 

wide range of abnormal parameters (see 1.3), which should be further analyzed. 

Therefore, using the same model (PBMCs) we intend to extend these studies by 

evaluating the following parameters: (1) cellular quality control; (2) stress response and 

(3) mitochondria communication with endoplasmic reticulum (ER).  Since its known that 

Aβ has several negative effects on mitochondria (see 1.3.10) and that Aβ is imported to 

mitochondria via TOM40 channel [220], we  intend to evaluate mitochondria-specific 

accumulation of Aβ among the different TOMM40’ 523 groups using mitochondrial 

fractions. 

In future studies, we also intend to address the cellular and mitochondrial role of APOE-

TOMM40 haplotypes, by studying how TOMM40’ 523 alleles can affect ApoE 

internalization into mitochondria and subsequent mitochondria function. These studies 

should be replicated also in the MCI population in order to address if mitochondrial 

disfunction leads to MCI to AD conversion, as hypothesized in Chapter 3.  

Part of the limitations of this study are related with the nature of the study sample:  

human PBMCs obtained from blood of AD patients. One of the main limitations was 

related with the amount and availability of the sample. Since we were collecting samples 

of AD patients with specific TOMM40’ 523 genotypes, the availability of eligible patients 

was limited, as most of the patients genotyped in the first part of the work (Chapter 3) 

were no longer accompanied in the clinic. For this reason, the number of patients per 
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group was low. On the other hand, since we were performing a significant number of 

assays and the amount of blood collected per patient was limited, the number of 

patients in each assay was reduced, varying from two to four per group, influencing the 

intra-group variability in most of the assays and therefore the statistical power of the 

results. For this reason, we had to reduce the number of assays performed and the 

number of biological replicates. A critical example was the TEM experience where, due 

to the cost of the assay and lack of sample, only one patient per group was tested. 

Finally, another limitation was the lack of healthy controls in the majority of the assays 

performed, since it was technically impossible to obtain a healthy control for each 

TOMM40’ 523 genotype. Accordingly, we designed the experiments only with groups of 

AD patients relative to each genotype (S, L and VL) and intergroup  comparisons were 

made. Thus, in future experiments healthy controls should also be included.  

Despite all the limitations discussed above, this study correlated for the first time 

TOMM40’ 523 polymorphism with mitochondria alterations in PBMCs derived from AD 

patients. Our findings support that this genetic alteration may affect mitochondria and 

give important clues for future research on the impact of TOMM40’ 523 in mitochondrial 

phenotype. On the other hand, there is an unmet need to understand the biological 

mechanisms of TOMM40’523 polymorphisms. Therefore, this study provides a useful 

and practical in vitro model to study the effect of these polymorphisms, which can be 

obtained from AD patients with different degrees of cognitive impairment but also from 

cognitively normal subjects. PBMCs are easy to collect when compared with other types 

of specimens, such as fibroblasts or brain tissue and can be used to address the 

TOMM40’523 phenotype in large cohorts. 

In summary, we observed that VL group had significant higher levels of TOM40 than 

S group, similar mitochondrial membrane potential (Dym), higher fission and lower 

caspase activation, despite not being statistically significant.  The small sample size, as 

well as the technical limitations described above, precluded more robust conclusions 

and further experiments should be done.  
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         Chapter 5 

Conclusions and future perspectives 
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More than one century after the first description of AD by Alois Alzheimer we still do 

not have any therapy that stop or at least delay the progression of this disease for which 

ageing is the major risk factor. Part of the problem is that we do not fully understand 

the pathophysiology of this disease. Other issue is that we are starting  to treat the 

disease too late in the disease pathogenesis, when the pathophysiologic processes have 

been underway perhaps a decade or longer [300]. AD risk genes allow a  better 

understanding  of the pathophysiology of the disease [41] and can even help in early 

diagnosis of AD giving us the possibility to treat patients earlier. It has been proposed 

that intervening earlier in the disease trajectory, before irreparable neuronal injury has 

accrued, will be a more successful strategy [300] and that the overall frequency of the 

disease would be decreased by nearly 50% if the onset of the disease could be delayed 

by 5 year [30] 

TOMM40, namely its polymorphism, rs10524523, is a potential AD risk gene. Some 

studies associated this polymorphism with the risk and AOO of AD, although this aspect 

remains debatable. However, this gene encodes the channel subunit of the outer 

mitochondrial membrane protein complex TOM40, through which most of nuclear-

encoded proteins enter mitochondria [67,68] and  mitochondria dysfunction has been 

shown to be an early and well characterized event in AD [285] . Therefore, in this work 

we aimed to study the potential role of TOMM40’523 as a risk gene for AD and its 

involvement in AD pathophysiology through mitochondrial dysfunction, under the 

perspective “from clinics to mitochondria”. 

Regarding the potential of TOMM40’523 as a risk gene, we tried to replicate some of 

the previous associations of TOMM40’523 with AD risk, AD AOO and CSF core 

biomarkers of the disease. Accordingly, we also studied the role of TOMM40’523 on the 

MCI to AD risk and time of conversion, a poorly addressed feature under the scope of 

the disease. We found a poli-T pattern similar to that found in  other published studies 

using    European cohorts (which validated our methodology) [79,80] in contrast with 

what was observed in American Caucasian cohorts. This highlights  not only  the 

importance of studying  this gene in different cohorts around the world, as stated by 

Linnertz el al [74], but also the need of using the same genotyping methodology.   

However, we confronted some difficulties in this study. The principal difficulty was 

the ability to separate the effects of TOMM40’ 523 from those triggered by the APOE 
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gene, and thus find independent associations of TOMM40’ 523  polymorphism, since 

the two genes are adjacent and reside within a region of LD, a well described problem 

in literature  [78,79,81,82]. As it was not possible to disentangle if the effect would be 

due to APOE ε4 allele or to TOMM40' 523 L allele, we analysed instead the APOE ε4-

TOMM40’523 L (ε4-L) haplotype, by performing a haplotype analysis, and verified a 

significantly higher risk of MCI to AD conversion  in  ε4-L haplotype carriers and that 

patients carrying this haplotype had significantly lower mean times of conversion. 

Similar results were found for the ε4-L haplotype with the risk, and AOO of AD. Lastly, 

we observed that the ε4-L haplotype was significantly associated with a CSF biomarker 

profile compatible with AD, namely, significantly lower levels of Ab42 and higher levels 

of Tau and p-Tau in MCI population. It has been proposed that the effects observed for 

the ε4-L haplotype would be explained by the combination of both APOE and TOMM40 

genes.  

Using PBMCs as study model we further addressed the relation of TOMM40’ 523 and 

mitochondrial function. In this part of the study we observed that VL group had 

significant higher levels of TOM40 than S group, similar mitochondrial membrane 

potential (Dym), higher fission and lower caspase activation despite not statistically 

significant.  In contrast with our results,  according to Zeitlow et al. [301], increased 

levels of TOM40, as observed in VL group, are suggested  to be protective to 

mitochondria. However, we must point that this is a preliminary and proof concept 

study which due to the limitation of the sample hinders robust conclusions. So further 

studies to replicate these results in a larger cohort should be done. On the other hand 

this study opens doors to tackling the possible effect of TOMM40’ 523 on mitochondria 

dysfunction in AD , an aspect that to our knowledge, was only addressed in a few studies 

[289,290]. Beyond the mitochondrial aspects analyzed in this thesis other aspect of 

mitochondrial dysfunction can be studied such as ROS production and oxidative 

damage, calcium dyshomeostasis and alterations in mitochondrial homeostasis as 

reviewed in chapter 1.3. 

Interestingly, recent studies showed that TOM40 has other important cellular 

functions beyond channel subunit of the outer mitochondrial membrane. Besides the 

indirect impact that TOM40 can have in apoptosis through mitochondrial dysfunction, 

some studies point a direct role of TOM40 in the apoptosis process. Veresov et al. using 
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computational modelling  demonstrated that, under apoptotic conditions, TOM40 can 

form a complex with Bax, which leads to mitochondrial outer membrane 

permeabilization [302].  Furthermore, Frank et al. found an interaction of BIM with 

TOM40 [303]. A couple of recent papers also describe a relation of TOM40 with 

autophagy and the proteins involved in this process. Okatsu et al. demonstrated that 

TOM40 protein is required for PINK1 accumulation at OMM after mitochondria 

depolarization[304] and Neethling et al. showed that LRRK2 also interacts with TOM40 

under DMSO and CCCP conditions [305].  In a  more recent study it was shown  that 

TOM40/70 directs ATG2 to MAM to mediate phagophores extention [306]. Curiously, 

other study by Namba et al. also demonstrates an important role of TOM40 in MAM, 

through the  interaction with the protein BAP31 forming a ER-mitochondria bridging 

complex, which regulates mitochondrial function [307] These studies, showing that 

TOM40 protein  plays a direct role in apoptosis, autophagy and MAM, which are known 

to be altered in AD, reinforces its relevance in the pathogenesis of the disease . Taking 

this into account, besides mitochondrial dysfunction,  we hypothesize that 

TOMM40’523 can also impact apoptosis, autophagy and MAM through the processes 

above mentioned, this being an issue that we intend to further study in the context of  

TOMM40’523 polymorphism and AD pathophysiology, mechanisms in which our 

laboratory has experience as demonstrated in previous papers [184,185,308,309]  

Since TOM40 interacts with proteins involved in the pathophysiology of Parkinson’s 

disease, such as PINK1 and LRRK2,  it will also be interesting to study TOMM40’523 

polymorphism in Parkinson’s disease pathophysiology, although results already 

published did not demonstrated  an association between TOMM40’523 and PD risk 

[310,311] . 

In conclusion, the work performed in this  thesis  demonstrates the multifactorial 

characteristics and the complexity of Alzheimer’s disease pathophysiology and the 

relevance to identify disease risk factors allowing an early diagnosis and, consequently 

,an early therapeutical approach to this devastating neurodegenerative  disease.  
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