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Abstract 

A combination of assessment, operational forecast, and future perspective was 

thoroughly explored to provide an overview of the existing air quality problems in 

Macao. The levels of air pollution in Macao often exceed those recommended by the 

World Health Organization (WHO). In order for the population to take precautionary 

measures and avoid further health risks during high pollution episodes, it is important 

to develop a reliable air quality forecast. Statistical models based on linear multiple 

regression (MLR) and classification and regression trees (CART) analysis were 

successfully developed for Macao, to predict the next day concentrations of NO2, 

PM10, PM2.5, and O3. 

Meteorological variables were selected from an extensive list of possible variables, 

including geopotential height, relative humidity, atmospheric stability, and air 

temperature at different vertical levels. Air quality variables translate the resilience of 

the recent past concentrations of each pollutant and usually are maximum and/or the 

average of latest 24-hour levels. The models were applied in forecasting the next day 

average daily concentrations for NO2 and PM and maximum hourly O3 levels for five 

air quality monitoring stations. The results are expected to support an operational air 
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quality forecast for Macao. 

The work involved two phases. On a first phase, the models utilized meteorological 

and air quality variables based on five years of historical data, from 2013 to 2017. Data 

from 2013 to 2016 were used to develop the statistical models and data from 2017 was 

used for validation purposes. All the developed models were statistically significantly 

valid with a 95% confidence level with high coefficients of determination (from 0.78 

to 0.93) for all pollutants. On a second phase, these models were used with 2019 

validation data, while a new set of models based on a more extended historical data 

series, from 2013 to 2018, were also validated with 2019 data. There were no significant 

differences in the coefficients of determination (R2) and minor improvements in root 

mean square errors (RMSE), mean absolute errors (MAE) and biases (BIAS) between 

the 2013 to 2016 and the 2013 to 2018 data models. In addition, for one air quality 

monitoring station (Taipa Ambient), the 2013 to 2018 model was applied for two days 

ahead (D2) forecast and the coefficient of determination (R2) was considerably less 

accurate to the one day ahead (D1) forecast, but still able to provide a reliable air quality 

forecast for Macao. 

To understand if the prediction model was robust to extreme variations in 
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pollutants concentration, a test was performed under the circumstances of a high 

pollution episode for PM2.5 and O3 during 2019, and a low pollution episode during 

2020. Regarding the high pollution episode, the period of the Chinese National 

Holiday of 2019 was selected, in which high concentration levels were identified for 

PM2.5 and O3, with peaks of daily concentration for PM2.5 levels exceeding 55 μg/m3 

and the maximum hourly concentration for O3 levels exceeding 400 μg/m3. For the 

low pollution episode, the 2020 period of implementation of the preventive measures 

for COVID-19 pandemic was selected, with a low record of daily concentration for 

PM2.5 levels at 2 μg/m3 and maximum hourly concentration for O3 levels at 50 μg/m3. 

The 2013 to 2018 model successfully predicted the high pollution episode with 

high coefficients of determination (0.92 for PM2.5 and 0.82 for O3). Likewise, the low 

pollution episode was also correctly predicted with high coefficients of determination 

(0.86 and 0.84 for PM2.5 and O3, respectively). Overall, the results demonstrate that 

the statistical forecast model is robust and able to correctly reproduce extreme air 

pollution events of both high and low concentration levels. 

 Machine learning methods maybe adopted to provide significant improvements 

in combination of multiple linear regression (MLR) and classification and regression 
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tree (CART) to further improve the accuracy of the statistical forecast. The developed 

air pollution forecasting model may be combined with other measures to mitigate the 

impact of air pollution in Macao. These may include the establishment of low 

emission zones (LEZ), as enforced in some European cities, license plate restrictions 

and lottery policy, as used in some Asian, tax exemptions on electric vehicles (EVs) 

and exclusive corridors for public transportations. 

 

Keywords: Air pollution; Particulate Matter; Ozone; Macao; Statistical air quality 

forecast; Pollution episodes; Chinese national holiday; COVID-19.
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Resumo 

A complementaridade de uma avaliação, do desenvolvimento de uma previsão 

operacional, em conjunto com uma reflexão sobre perspetivas futuras, permitiu 

desenvolver uma visão integrada dos problemas de qualidade do ar de Macau. Os 

níveis de poluição do ar em Macau muitas vezes excedem os níveis recomendados 

pela Organização Mundial de Saúde (OMS). Para que a população tome precauções e 

evite maiores riscos à saúde em caso de elevada exposição a poluentes, é importante 

desenvolver uma previsão confiável da qualidade do ar. Modelos estatísticos baseados 

em regressão linear múltipla (MLR) e análise de árvores de classificação e regressão 

(CART) foram desenvolvidos com sucesso para Macau para prever as concentrações 

de NO2, PM10 , PM2.5 e O3 no dia seguinte. 

Um conjunto de variáveis meteorológicas foram selecionadas a partir de uma 

extensa lista de variáveis possíveis, incluindo altura de geopotencial, humidade 

relativa, estabilidade atmosférica e temperatura do ar em diferentes níveis verticais. As 

variáveis de qualidade do ar traduzem a resiliência das concentrações passadas recentes 

de cada poluente e geralmente são considerados os valores máximos e/ou a média 

dos níveis das últimas 24 horas. Os modelos foram aplicados na previsão das 
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concentrações médias diárias de NO2 e PM no dia seguinte e dos níveis máximos 

horários de O3 para cinco estações de monitorização da qualidade do ar. Espera-se que 

os resultados venham a ser utilizados numa previsão operacional da qualidade do ar 

para Macau. 

O trabalho envolveu duas fases. Todos os modelos desenvolvidos foram 

estatisticamente significativamente válidos com um nível de confiança de 95% com 

altos coeficientes de determinação (de 0.78 a 0.93) para todos os poluentes. Os modelos 

utilizaram variáveis meteorológicas e de qualidade do ar baseadas em cinco anos de 

dados históricos, de 2013 a 2019.  

Numa primeira fase, os modelos utilizaram variáveis meteorológicas e de qualidade 

do ar com base em cinco anos de dados históricos, de 2013 a 2017. Os dados de 2013 

a 2016 foram usados para desenvolver os modelos estatísticos e os dados de 2017 foram 

usados para fins de validação. Todos os modelos desenvolvidos foram estatisticamente 

significativos e válidos para um nível de confiança de 95% com elevados coeficientes 

de determinação (de 0,78 a 0,93) para todos os poluentes. Numa segunda fase esses 

modelos foram usados com dados de validação de 2019, enquanto um novo conjunto 

de modelos baseado numa série de dados históricos mais extensa, de 2013 a 2018, foi 
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também validado com dados de 2019. Não houve diferenças significativas nos 

coeficientes de determinação (R2) e obtiveram-se pequenas melhorias na raiz dos erros 

quadráticos médios (RMSE), erros médios absolutos (MAE) e vieses (BIAS) entre o 

modelo com dados de 2013 a 2016 e o modelo com dados de 2013 a 2018. 

Adicionalmente, para uma estação de monitorização de qualidade do ar (Taipa 

Ambient), o modelo 2013-2018 foi aplicado para uma previsão com dois dias de 

antecedência (D2) e o coeficiente de determinação (R2) obtido foi consideravelmente 

menos preciso do que a previsão do dia seguinte (D1), mas ainda assim capaz de prever 

a qualidade do ar para Macau. 

Para avaliar se o modelo de previsão era robusto em situações extremas de 

concentração de poluentes foi realizado um teste para um episódio de elevada 

poluição de PM2.5 e O3 durante 2019 e para um episódio de poluição reduzida durante 

2020. Em relação ao episódio de elevada poluição, foi selecionado o período do 

Feriado Nacional Chinês de 2019, no qual foram identificados elevados níveis de 

concentração de PM2.5 e O3, com picos de concentração diária para níveis 

de PM2.5 superiores a 55 μg/m3 e concentrações máximas horárias de O3 superiores a 

400 μg/m3. O episódio de reduzida poluição para PM2.5 e O3 foi identificado durante o 
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período pandémico de COVID-19 de 2020, com um registo de baixas concentrações 

diárias de PM2.5 de 2 μg/m3 e concentração máxima horária de O3 a 50 μg/m3 .  

O modelo de 2013 a 2018 previu com sucesso o episódio de alta poluição com 

elevados coeficientes de determinação (de 0.92 para PM2.5 e 0.82 para O3). De igual 

modo, o modelo de 2013 a 2018 previu com sucesso o episódio de poluição reduzida 

com um elevado coeficiente de determinação (0.86 e 0.84 para PM2.5 e O3 , 

respetivamente). No geral, os resultados demonstram que o modelo de previsão 

estatística é robusto e capaz de reproduzir corretamente eventos extremos de poluição 

do ar em níveis altos e baixos de concentração. 

              Refira-se ainda que podem ser adotados métodos de aprendizagem 

automática para fornecer melhorias significativas na combinação de regressão linear 

múltipla (MLR) e árvore de classificação e regressão (CART) para aperfeiçoar ainda 

mais a precisão da previsão estatística. O modelo desenvolvido poderá ser combinado 

com outras medidas para mitigar o impacto da poluição atmosférica em Macau. Estas 

poderão incluir a implementação de uma Zona de Emissões Reduzidas (ZER), tal 

como estabelecido em algumas cidades europeias, a restrição de circulação 

dependente da matrícula do veículo ou uma política de sorteio de matrículas, como 
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tem lugar em algumas cidades asiáticas, a isenção de impostos sobre veículos 

elétricos (VE), bem como a marcação de corredores exclusivos para transportes 

públicos. 

  

Palavras-chave: Poluição do ar; Matéria particulada; Ozono; Macau; Previsão 

estatística de qualidade do ar; Episódios de poluição; Feriado nacional chinês; 

COVID-19. 

 



 xii 

Publications arising from this thesis 

Journal Articles 

Lei, M. T., Monjardino, J., Mendes, L., Gonçalves, D., & Ferreira, F. (2020).  

Statistical Forecast of Pollution Episodes in Macao during National Holiday and 

COVID-19. International Journal of Environmental Research and Public 

Health, 17(14), 5124. https://doi.org/10.3390/ijerph17145124 

Lei, M. T., Monjardino, J., Mendes, L., Gonçalves, D., & Ferreira, F. (2019). Macao  

air quality forecast using statistical methods. Air Quality, Atmosphere and 

Health, 12(9), 1049–1057. https://doi.org/10.1007/s11869-019-00721-9 

Lei, M. T., Monjardino, J., Mendes, L., & Ferreira, F. (2019). Macao air quality  

forecast using statistical methods. International Journal of Environmental 

Impacts: Management, Mitigation and Recovery, 2(3), 249–258. 

https://doi.org/10.2495/ei-v2-n3-249-258 

 

 

 

 



 xiii 

Conference Articles 

Lei, M. T., Monjardino, J., Mendes, L., & Ferreira, F. (2019). Macao air quality  

forecast using statistical methods. International Journal of Environmental 

Impacts: Management, Mitigation and Recovery. 27th International Conference 

on Modelling, Monitoring and Management of Air Pollution in Aveiro, Portugal. 

Conference Abstracts 

Lei, M. T., Monjardino, J., Mendes, L., Gonçalves, D., & Ferreira, F. (2020). 

Statistical Forecast Applied to Two Macao Air Monitoring Stations. IOP 

Conference Series: Earth and Environmental Science, 489. 

https://doi.org/10.1088/1755-1315/489/1/012018 

Lei, M. T., Monjardino, J., Mendes, L., Gonçalves, D., & Ferreira, F. (2020). The Use  

of Statistical Methods to Forecast Air Quality in Taipa Island of Macao. 

Submitted to Air Pollution Modeling and its Application vol. XXVII, published 

by Springer. 

 

 

 



 xiv 

Conference Attended 

 Oral Presentations 

Lei, M. T., Monjardino, J., Mendes, L., Gonçalves, D., & Ferreira, F. (2019).  

Statistical Forecast Applied to Two Macao Air Monitoring Stations, ASAAQ15,  

15th International Conference on Atmospheric Sciences and Applications to Air  

Quality, 28 – 30 October 2019, Kuala Lumpur, Malaysia 

Lei, M. T., Monjardino, J., Mendes, L., Gonçalves, D., & Ferreira, F. (2019). Macao  

air quality forecast using statiscal methods. Air Pollution 2019, 27th 

International Conference on Modelling, Monitoring, and Management of Air 

Pollution, 26 – 28 June 2019, Aveiro, Portugal 

Poster Presentations 

Lei, M. T., Monjardino, J., Mendes, L., Gonçalves, D., & Ferreira, F. (2019). The Use  

of Statistical Methods to Forecast Air Quality in Taipa Island of Macao. ITM 

2019 – 37th International Technical Meeting on Air Pollution Modelling and its 

Application, 23 – 27 September 2019, Hamburg, Germany 



 xv 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ........................................................................................ I 

ABSTRACT ............................................................................................................... III 

RESUMO .................................................................................................................. VII 

PUBLICATIONS ARISING FROM THIS THESIS ............................................ XII 

TABLE OF CONTENTS ......................................................................................... XV 

LIST OF FIGURES ............................................................................................... XIX 

LIST OF TABLES ............................................................................................... XXVI 

GLOSSARY OF ACRONYMS AND ABBREVIATIONS ............................ XXVIII 

CHAPTER 1: INTRODUCTION ............................................................................... 1 

1.1. BACKGROUND ................................................................................................. 2 

1.2. RESEARCH QUESTIONS AND OBJECTIVES ........................................................ 4 

1.3. STRUCTURE OF THE THESIS ............................................................................. 6 

 



 xvi 

CHAPTER 2: LITERATURE REVIEW .................................................................... 9 

2.1 AIR QUALITY IN DENSELY POPULATED AREAS ............................................. 10 

2.2 HEALTH IMPACT OF AIR POLLUTION ............................................................. 11 

2.3 SOURCE OF AIR POLLUTANTS ....................................................................... 18 

2.4 AIR QUALITY GUIDELINES ............................................................................ 23 

2.5 FORECASTING MODELS ................................................................................. 28 

2.5.1 Deterministic Methods ............................................................................. 30 

2.5.2 Statistical Methods ................................................................................... 33 

2.5.3 Machine Learning Techniques ................................................................. 34 

CHAPTER 3: BACKGROUND AND METHODOLOGY ..................................... 37 

3.1 CASE STUDY OF MACAO ............................................................................... 38 

3.2 AIR QUALITY IN MACAO ............................................................................... 40 

3.3 METEOROLOGICAL CHARACTERISTICS OF MACAO ....................................... 56 

3.3.1 Key Meteorological Variables .................................................................. 58 

3.3.2 Meteorological Seasonal Variation in Macao ......................................... 66 

3.4 DEVELOPMENT OF AIR QUALITY FORECAST USING STATISTICAL METHODS . 72 

 



 xvii 

CHAPTER 4: RESULT AND DISCUSSION ........................................................... 85 

4.1 AIR QUALITY FORECAST USING 2013 TO 2016 DATA (VALIDATED WITH 2017 

DATA) ...................................................................................................................... 86 

4.2 AIR QUALITY FORECAST USING 2013 TO 2018 DATA (VALIDATED WITH 2019 

DATA) ...................................................................................................................... 97 

4.3 AIR QUALITY FORECAST USING 2013 TO 2018 DATA, FOR TWO DAYS AHEAD 

(D2) .................................................................................................................... 104 

4.4 AIR QUALITY FORECAST DURING A HIGH POLLUTION EPISODE .................. 106 

4.5 AIR QUALITY FORECAST DURING A LOW POLLUTION EPISODE .................. 112 

CHAPTER 5: FUTURE MEASURES THAT COULD BE IMPLEMENTED TO 

IMPROVE AIR QUALITY IN MACAO ............................................................... 123 

5.1 LOW EMISSION ZONE (LEZ) ....................................................................... 125 

5.2 LICENSE PLATE RESTRICTION POLICY ......................................................... 130 

5.3 INCENTIVES ON ELECTRIC VEHICLES (EV) ................................................. 133 

CHAPTER 6: CONCLUSIONS AND FUTURE DEVELOPMENT ................... 137 

6.1 AIR QUALITY FORECAST USING STATISTICAL METHODS ............................ 138 

6.2 AIR QUALITY FORECAST UNDER HIGH AND LOW POLLUTION EPISODES .... 140 



 xviii 

6.3 ANSWERS TO RESEARCH QUESTIONS .......................................................... 141 

6.4 MAIN CONSTRAINTS AND SUGGESTIONS TO FUTURE WORKS ..................... 144 

CHAPTER 7: REFERENCES ................................................................................. 147 

 



 xix 

List of Figures 

 

Figure 2.1. The path of air pollutants from emission to exposure (EEA, 2016). ........ 11 

Figure 2.2. Regions affected by air pollution (WHO, 2020). ..................................... 12 

Figure 2.3. Health effects pyramids to exposure of air pollutants (EEA, 2014). ........ 13 

Figure 2.4. Cause of death from air pollution (WHO, 2020). ..................................... 14 

Figure 2.5. Diagrammatic representation of inhaled particulate matter of variable 

sizes and PM-linked respiratory, cardiovascular, and neurological diseases (Zaheer et 

al., 2018). ..................................................................................................................... 16 

Figure 2.6. Health impacts of air pollution (EEA, 2020). ........................................... 17 

Figure 2.7. Source of air pollution (WHO, 2020). ...................................................... 19 

Figure 2.8. Size comparison of PM particles (EPA, 2020). ........................................ 21 

Figure 2.9. Schematic representation of the photochemical formation of ozone in the 

presence of VOCs and NOx. (WHO Europe, 2008). .................................................... 22 

Figure 2.10. Comparison of air quality standards for PM10. ....................................... 26 

Figure 2.11. Comparison of air quality standards for PM2.5. ...................................... 26 

Figure 2.12. Comparison of air quality standards for nitrogen dioxide (NO2). .......... 27 



 xx 

Figure 2.13. Comparison of air quality standards for 8-hour average ozone (O3). ..... 27 

Figure 2.14. Air quality forecasting model using deterministic methods (Guttikunda 

et al., 2011). .................................................................................................................. 32 

Figure 2.15. Different grids in deterministic models (Guttikunda et al., 2011). ......... 33 

Figure 2.16. Steps of model development for an air quality forecast using statistical 

methods. ....................................................................................................................... 34 

Figure 3.1. Guangdong-Hong Kong-Macao regional air quality monitoring 

information system (SMG, 2020). ............................................................................... 41 

Figure 3.2. Settings of a Macao ambient station (SMG, 2020). ................................. 42 

Figure 3.3. Settings of a Macao roadside station (SMG, 2020). ................................. 42 

Figure 3.4. Map of Macao air quality monitoring stations network. Adapted from 

SMG (2019). ................................................................................................................ 44 

Figure 3.5. Daily air quality index in Macao (SMG, 2020). ....................................... 45 

Figure 3.6. Yearly average levels of PM10 in the Macao air quality monitoring 

stations (2013 to 2019). ................................................................................................ 47 

Figure 3.7. Yearly average levels of PM2.5 in the Macao air quality monitoring 

stations (2013 to 2019). ................................................................................................ 47 



 xxi 

Figure 3.8. Yearly average levels of NO2 in the Macao air quality monitoring stations 

(2013 to 2019). ............................................................................................................. 48 

Figure 3.9. Yearly average levels of O3 in the Macao air quality monitoring stations 

(2013 to 2019). ............................................................................................................. 49 

Figure 3.10. Monthly average levels of PM10 in the Macao air quality monitoring 

stations (2013 to 2019). ................................................................................................ 50 

Figure 3.11. Monthly average levels of PM2.5 in the Macao air quality monitoring 

stations (2013 to 2019). ................................................................................................ 50 

Figure 3.12. Monthly average levels of NO2 in the Macao air quality monitoring 

stations (2013 to 2019). ................................................................................................ 51 

Figure 3.13. Monthly average levels of O3 in the Macao air quality monitoring 

stations (2013 to 2019). ................................................................................................ 52 

Figure 3.14. Hourly average levels of PM10 in the Macao air quality monitoring 

stations (2013 to 2019). ................................................................................................ 53 

Figure 3.15. Hourly average levels of PM2.5 in the Macao air quality monitoring 

stations (2013 to 2019). ................................................................................................ 54 

Figure 3.16. Hourly average levels of NO2 in the Macao air quality monitoring 



 xxii 

stations (2013 to 2019). ................................................................................................ 55 

Figure 3.17. Hourly average levels of O3 in the Macao air quality monitoring stations 

(2013 to 2019). ............................................................................................................. 56 

Figure 3.18. Wind rose of Macao from 2013 to 2019 (hourly counts). ...................... 58 

Figure 3.19. Wind speed (m/s) of Macao from 2013 to 2019. .................................... 59 

Figure 3.20. Pollution rose of PM10 (µg/m³) from 2013 to 2019. ............................... 60 

Figure 3.21. Pollution rose of PM2.5 (µg/m³) from 2013 to 2019. ............................... 60 

Figure 3.22. Pollution rose of NO2 (µg/m³) from 2013 to 2019. ................................ 61 

Figure 3.23. Pollution rose of O3 (µg/m³) from 2013 to 2019. ................................... 62 

Figure 3.24. Yearly average temperature in Macao from 2013 to 2019. .................... 62 

Figure 3.25. Yearly total precipitation in Macao from 2013 to 2019. ......................... 63 

Figure 3.26. Monthly average temperature in Macao from 2013 to 2019. ................. 64 

Figure 3.27. Monthly average wind speed in Macao from 2013 to 2019. .................. 64 

Figure 3.28. Monthly total precipitation in Macao from 2013 to 2019. ..................... 65 

Figure 3.29. Hourly average temperature in Macao from 2013 to 2019. ................... 66 

Figure 3.30. Wind rose of Macao in winter season from 2013 to 2019 (hourly counts).

...................................................................................................................................... 67 



 xxiii 

Figure 3.31. Pollution rose of PM2.5 (µg/m³) in winter season from 2013 to 2019. .... 68 

Figure 3.32. Pollution rose of O3 (µg/m³) in winter season from 2013 to 2019. ........ 68 

Figure 3.33. Typical winter meteorological surface chart of Macao (HKO, 2020). ... 69 

Figure 3.34. Wind rose of Macao in summer season from 2013 to 2019 (hourly 

counts). ......................................................................................................................... 70 

Figure 3.35. Pollution rose of PM2.5 (µg/m³) in summer season from 2013 to 2019. . 70 

Figure 3.36. Pollution rose of O3 (µg/m³) in summer season from 2013 to 2019. ..... 71 

Figure 3.37. Typical summer meteorological surface chart in Macao (HKO, 2020). . 71 

Figure 3.38. Flowchart for model development of air quality forecast by statistical 

methods. ....................................................................................................................... 82 

Figure 4.1. CART tree obtained for O3 MAX prediction at Taipa Ambient station. ...... 87 

Figure 4.2. Observed and predicted PM10 concentrations for Coloane Ambient in 

2017.............................................................................................................................. 94 

Figure 4.3. Observed and predicted O3 MAX concentrations for Coloane Ambient in 

2017.............................................................................................................................. 94 

Figure 4.4. PM2.5 concentrations for Taipa Ambient highlighting a pollution episode 

immediately before, and during, the Chinese National Holiday of 2018 and 2019 



 xxiv 

(September to November). ......................................................................................... 107 

Figure 4.5. O3 MAX concentrations for Taipa Ambient highlighting a pollution episode 

immediately before, and during, the Chinese National Holiday of 2018 and 2019 

(September to November). ......................................................................................... 108 

Figure 4.6. Observed and predicted PM2.5 concentrations for Taipa Ambient during 

Chinese National Holiday (from September to November 2019). ............................ 111 

Figure 4.7. Observed and predicted O3 MAX concentrations for Taipa Ambient during 

Chinese National Holiday (from September to November 2019). ............................ 112 

Figure 4.8. Comparison of PM2.5 concentrations for Taipa Ambient during the 

previous year of 2019 and COVID-19 pandemic in 2020 (January to March). ........ 115 

Figure 4.9. Comparison of O3 MAX concentrations for Taipa Ambient during the 

previous year of 2019 and COVID-19 pandemic in 2020 (January to March). ........ 116 

Figure 4.10. Monthly mean PM2.5 concentrations for Taipa Ambient during the 

previous year of 2019 and COVID-19 pandemic in 2020 (January to March). ........ 117 

Figure 4.11. Monthly mean O3 MAX concentrations for Taipa Ambient during the 

previous year of 2019 and COVID-19 pandemic in 2020 (January to March). ........ 118 

Figure 4.12. Observed and predicted PM2.5 concentrations for Taipa Ambient during 



 xxv 

preventive measures of COVID-19 pandemic (from January to March 2020). ........ 119 

Figure 4.13. Observed and predicted O3 MAX concentrations for Taipa Ambient during 

preventive measures of COVID-19 pandemic (from January to March 2020). ........ 120 

Figure 5.1. Low emission zone of Lisbon, Portugal (Santos, Gómez-Losada, & Pires, 

2019). ......................................................................................................................... 127 

Figure 5.2. Total proposed EV charging stations in public parking lots of Macao. .. 135 

 



 xxvi 

List of Tables 

 

Table 2-1. Description of air pollutants. Adapted from (EEA, 2020). ........................ 18 

Table 2-2. Air quality standards set at different countries and/or by different 

institutions. Adapted from (MEE, 2012; SMG, 2019; WHO Europe, 2006). .............. 25 

Table 3-1. Air quality index (AQI) of Macao (SMG, 2019). ...................................... 45 

Table 3-2. Variables considered as predictors in the multiple linear regression (MLR) 

and classification and regression tree (CART) models in all of the air quality forecast 

models. ......................................................................................................................... 76 

Table 4-1. Variables and model equations for each pollutant per air quality monitoring 

station for 2013-2016 model. ....................................................................................... 87 

Table 4-2. Model performance indicators for the 2013 to 2016 model validation with 

2017 data. ..................................................................................................................... 92 

Table 4-3. CART model performance indicators for 2013 to 2016 model. ................. 96 

Table 4-4. Model performance indicators for the 2013 to 2016 model and the 2013 to 

2018 model, validation with 2019 data. ....................................................................... 98 

 



 xxvii 

Table 4-5. Variables and model equations for each pollutant per air quality monitoring 

station in the 2013 to 2018 model. ............................................................................. 100 

Table 4-6. Model performance indicators for the 2013 to 2018 model validation with 

2019 data, for two days ahead (D2) and one day ahead (D1). ................................... 105 

 



 xxviii 

Glossary of acronyms and abbreviations 

 The following acronyms and abbreviations are used throughout the thesis: 

ANN – Artificial neural network 

AQG – Air Quality Guideline 

AQI – Air Quality Index 

AWS – Automatic Weather Stations  

CART – Classification and regression tree 

COVID-19 – Coronavirus disease 

CTM – Chemical Transport Model 

DSEC – Macao Statistics and Census Service 

DSPA – Macao Environmental Protection Bureau 

ECMWF – European Centre for Medium-Range Weather Forecast 

EV – Electric vehicle 

HKO – Hong Kong Observatory 

HZMB – Hong Kong-Zhuhai-Macao Bridge 

IT-1 – Interim-target 1 

LUR – Land Use Regression 



 xxix 

LEZ – Low Emission Zone 

MAE – Mean absolute error 

MEE – China Ministry of Ecology and Environment  

ML – Machine learning 

MLR – Multiple linear regression 

NAQPMS – Nested Air Quality Prediction Modeling System  

OSPM – Operational Street Pollution Model 

PRD – Pearl River Delta 

R2 – Coefficient of Determination 

RMSE – Root mean square error 

SMG – Macao Meteorological and Geophysical Bureau 

VOC – Volatile organic compound 

WHO – World Health Organization 

WRF-ARW model – Advanced Research Weather Research and Forecasting model 

WRF model – Weather Research and Forecast model 

UNESCO – United Nations Educational, Scientific and Cultural Organizations 

 



 xxx 

  



 1 

Chapter 1: Introduction 
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1.1. Background 

Air pollution is becoming epidemic in urban settings of many world regions. With 

growing urbanization and consumption, it is predicted that this problem will become 

aggravated during the coming decades, particularly in certain growing urban areas in 

developing countries. Similarly to weather forecast, being able to anticipate air 

pollution levels is extremely valuable as proper mitigation and safety measures can 

be preventively put in place. However, the variables influencing air pollution levels 

are multiple and regionally specific, increasing the difficulty of developing accurate 

models, and further investigation is needed. 

Air pollution is also a serious local problem in Macao, affecting the health and 

quality of life of local citizens. The region of Macao has a serious air quality 

problem, which is extremely worrisome for the local authorities. Nevertheless, the 

Macao Meteorological and Geophysical Bureau (SMG) did not have the tools to 

forecast air quality, in particular because the implementation of a numerical model 

implies access to an updated and sufficiently detailed emission inventory, not 

available in Macao.  

Besides understanding the air quality levels and trends and their relationship with 
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the meteorological conditions, the development of a forecast model for local air 

quality in Macao would be a helpful management instrument. Therefore, while 

several types of air quality models are available, under complex situations such as 

the one in Macao, a statistical forecast model can be an important tool to better 

understand the air pollution in Macao, providing at the same time a reliable and 

needed forecast. The results of such a forecast model can be used to issue warnings 

and advise the population to restrict from outdoor activities when the air quality is 

expected to be poor.  

Macao is located in Southern China, in the Pearl River Delta (PRD) region. The 

levels of nitrogen dioxide (NO2), particulate matter (PM), particulate matter with an 

average aerodynamic diameter below 10 µm and 2.5 µm (PM10 and PM2.5, respectively), 

and ozone (O3) in Macao are high, and often exceed the established limit values 

recommended by WHO’s air quality guidelines (AQG). Since 2010, the worst air 

quality index classes in Macao have been due to PM10 and PM2.5 (SMG, 2019). Macao 

was listed as the number one most densely populated region in the world (Sheng & 

Tang, 2013), with a population density of about 20,000 inhabitants/km2. A significant 

proportion of Macao urban population is being exposed to air pollutants concentrations 
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above the limit or target values. In this context, it is relevant to develop a reliable 

methodology to forecast the concentration of air pollutants, which can provide an alert 

for health hazards in advance, in a way that the population can take precautionary 

actions to avoid exposure.  

1.2. Research Questions and Objectives 

The main objective of this thesis is to identify the key parameters that influence 

air quality in Macao and to develop a statistical air quality forecast model for the daily 

or maximum hourly concentration (in the case of ozone) of air pollutants for the next 

day in Macao and converted into an AQI Index to provide warnings to the public. The 

sources of air pollution will be studied to better understand the air quality trend in 

Macao. We will explore the relationships between the meteorological parameters and 

the pollutants in Macao to develop a statistical model to forecast the air quality of 

within the next couple of days, based on meteorological parameters and the pollutants 

concentrations.. There are no available forecast modeling tools to predict the air 

quality for the region, which is necessary for Macao to keep up with the international 

information preventive practices, included the ones at neighboring regions. In this 

context, the research questions are the following: 
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1. What is the trend of the different air pollutant concentrations measured in the 

Macao air quality monitoring stations and the reason for those variations in the 

recent years? 

2. Is it possible to develop a statistical model to accurately forecast the next day 

concentrations of air pollutant in the Macao region? 

a. What are the key meteorological and air quality variables that are 

necessary to develop the statistical model? 

b. Do additional years of meteorological and air quality historical data affect 

the performance of the statistical forecast? 

c. How does the statistical forecast perform under extreme situations, such as 

during extremely high or low pollution episodes? 

To answer these research questions, the following tasks were performed: 

- Collecting the meteorological and air quality historical data from the past 

years; 

- Analyzing the collected data and identifying the variations for levels of 

concentration amongst different years; 

- Using the collected data to develop a statistical model to forecast the next day 
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concentration of air pollutants; 

- Testing the developed statistical model against the observed data, including 

during high and low pollution episodes.  

1.3. Structure of the Thesis 

This thesis is divided into five chapters as follows: 

- Chapter 1 – Introduction 

o To introduce the background, research questions, and the objectives of 

the thesis. 

- Chapter 2 – Literature Review 

o To review the past literature and related work on the topic of air quality  

- Chapter 3 – Background and Methodology. 

o To show the background information of Macao and the methodology 

used to develop the air quality forecast. 

- Chapter 4 – Results and Discussion 

o To show the results and discussion of the air quality forecast using 

different years of historical data and performance under pollution 

episodes. 
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- Chapter 5 – Future measures that could be implemented to improve air quality 

in Macao 

o To explore the potential measures that could be implemented to 

improve air quality in Macao, such as low emission zone (LEZ) and 

license plate restriction policy. 

- Chapter 6 – Conclusion 

o To conclude the research findings of this thesis, answer to the research 

questions and discuss the limitations and suggestions for future works.  

 

The work developed in this dissertation resulted in three journal articles, one 

conference article, two conference abstracts, and two oral presentations and one 

poster presentation in international conferences, summarized in “Publications arising 

from this thesis”.  
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Chapter 2: Literature Review 
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2.1 Air Quality in Densely Populated Areas 

According to the European Environment Agency (EEA), road transportation has 

contributed to about 23% of the total emissions of carbon dioxide (CO2), more than 

30% of nitrogen oxides (NOx), and around 12% of primary PM2.5 emissions in the 

European Union (EEA, 2016). In addition, as reported by the Hong Kong 

Environmental Protection Department (HKEPD), road transport was a major emission 

source of NOx, VOC, and CO, accounting for 20%, 19% and 53% of the total 

emissions in 2017, respectively in Hong Kong (HKEPD, 2020). 

 Figure 2.1 shows the path of air pollutants from emissions to exposures, which 

can be from man-made and natural sources, depending on the different pollutants, and 

lead to different impacts to the people and the environment. 
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Figure 2.1. The path of air pollutants from emission to exposure (EEA, 2016). 

2.2 Health Impact of Air Pollution 

Seven million people die every year from the effects of air pollution. More than 

90% of such deaths are in developing countries (WHO, 2019). Across southern Asia, 

levels of fine particulate matter (PM2.5) and surface ozone (O3) exceed the World 

Health Organization (WHO) limits for much of the year (Kumar et al., 2018). 

As shown in Figure 2.2, air pollution has killed on an annual basis over 2 million 

people in both South-East Asian and Western Pacific Region, over 1 million people in 

African region, about 500,000 people in both Eastern Mediterranean and European 

region, and more than 300,000 people in the American region (WHO, 2020).  



 12 

 

Figure 2.2. Regions affected by air pollution (WHO, 2020). 

Total suspended particles (TSP) are primary contributors to premature death 

worldwide, with over four million premature deaths being recorded due to exposure to 

high levels of ambient PM2.5 (Brauer et al., 2016; GBD 2015 Risk Factors 

Collaborators, 2016; Wendt et al., 2019). PM2.5 can penetrate deep into the lungs when 

being inhaled, which leads to both acute and chronic health issues (Pope & Dockery, 

2006; Wendt et al., 2019). NO2 and TSP are responsible for 412,000 and 71,000 

premature death per year, respectively, in the European Union (EEA, 2019; RCP, 

2016). 
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Figure 2.3 shows the health effects pyramid to exposure of air pollutants, in 

regard to the seriousness of effects and number of people affected.  

 

Figure 2.3. Health effects pyramids to exposure of air pollutants (EEA, 2014). 

Moreover, previous studies show a strong correlation between short-term 

exposure to NO2 and both the number of hospital outpatients with eye and adnexa 

diseases (EADs) (Song et al., 2019) and the number of hospital admission due to 

cardiovascular diseases (CVD) (Jevtić et al., 2014).  

The exposure to air pollutants such as NO2, PM, and O3 increase the chance of 

hospital admissions for cardiovascular and respiratory disease and mortality in the 

world (Liu & Peng, 2018; WHO, 2018).  

Exposure to PM10 and PM2.5 can affect the cardiovascular system. Numerous 
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studies showed that exposure to PM10 and PM2.5 has increased hospital admissions and 

emergency room visits and leading even to death from heart or lung diseases (US EPA, 

2003). The exposure to PM10 and PM2.5 increases the chance of hospital admissions for 

cardiovascular and respiratory disease and mortality in the world (WHO, 2003).  

 Figure 2.4 shows the cause of deaths from air pollution, which demonstrated 21% 

due to pneumonia, 20% from stroke, 34% from ischemic heart disease, 19% from 

chronic obstructive pulmonary disease (COPD) and 7% from lung cancer (WHO, 2020). 

 

Figure 2.4. Cause of death from air pollution (WHO, 2020). 
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Surface ozone is associated with numerous harmful effects on respiratory health, 

at levels commonly found in urban areas throughout the world, contributing to 

morbidity and hospital admissions related to respiratory disease, even at low ambient 

levels (Entwistle et al., 2019). The high concentration of O3 may lead to chest pain, 

coughing, throat irritation, and airway inflammation, and also reduce the function of 

the lung (US EPA, 2009).  

Regarding particulate matter, for human health, small particles (PM2.5) are 

particularly dangerous as they can penetrate deeply into the lungs and be transported 

directly into the bloodstream (Wiśniewska et al., 2019). Furthermore, mixtures of 

NO2-PM2.5-O3 exist in ambient environments, being the combinations of these 

pollutants more harmful to human health (a mixture with relatively low levels of some 

pollutants combined with relatively high levels of other pollutants, was found to be 

equally or more harmful than a mixture with high levels of all pollutants) (Liu & 

Peng, 2018). In Macao, traffic-related pollution is high, primarily due to high vehicle 

emissions and urban canyon topology (He et al., 2000).  

Figure 2.5 shows the health effects of inhaling particulate matter (PM), which 

may cause different diseases to the brain, lungs and heart of a human body.   
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Figure 2.5. Diagrammatic representation of inhaled particulate matter of variable 

sizes and PM-linked respiratory, cardiovascular, and neurological diseases (Zaheer et 

al., 2018). 

 Figure 2.6 shows the health impacts of air pollution on humans, in particular of 

children and elderly being the most vulnerable groups. For instance, particulate matter 

(PM) can cause impact on the central nervous system, respiratory system and the 

reproductive system, while both PM and O3 can cause cardiovascular diseases and 

irritation of eyes, noses and throat. In addition, NO2 can cause impacts on liver, spleen, 

and blood (EEA, 2020). Table 2-1 showed the description of air pollutants including 

particulate matter (PM), nitrogen dioxide (NO2), ozone (O3) and sulphur dioxide (SO2). 
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Figure 2.6. Health impacts of air pollution (EEA, 2020). 
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Table 2-1. Description of air pollutants. Adapted from (EEA, 2020). 

Pollutants Description 

Particulate Matter (PM) PM are particles that are suspended in the air. Sea salt, black 

carbon, dust and condensed particles from certain chemicals can 

be classed as a PM pollutant. 

Nitrogen Dioxide (NO2) NO2 is formed mainly by combustion process such as those 

occurring in car engines and power plants. 

Ozone (O3) Ground level O3 is formed by chemical reactions (triggered by 

sunlight) involving pollutants emitted into the air, including those 

by transport, natural gas extraction, landfills, and household 

chemicals. 

Sulphur Dioxide (SO2) SO2 is emitted when sulphur containing fuels are burned for 

heating, power generation, and transport. Volcanoes also emit SO2 

into the atmosphere. 

2.3 Source of Air Pollutants 

Air pollution is normally associated with emission sources at alternating spatial 

scales from local, to regional and transboundary (Tong et al., 2018a), under certain 
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synoptic conditions. Estimates show that, for nitrogen oxides (NOx), mobile sources 

account for the majority of emissions (50%). For PM the industrial sector is the main 

emitter, followed by mobile sources (Zheng et al., 2009).  

 Figure 2.7 shows the source of air pollution, which includes industry and energy 

supply, transport, waste management, dust, agricultural practices, and household energy 

(WHO, 2020). 

 

Figure 2.7. Source of air pollution (WHO, 2020). 
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The sources of PM10 and PM2.5 emissions include construction sites, unpaved roads, 

fires, power plants, industries and vehicles. Small particles less than 10 micrometers in 

diameter (PM10) poses the greatest problems, specifically due to the fine particles below 

2.5 micrometers (PM2.5) that can get deep into the respiratory system, and some may 

even get into the bloodstream.  

Coarse particles, also known as PM10, are derived from suspension of dust, soil, sea 

salts, pollen, mold, and other crustal materials. Fine particles, also known as PM2.5, are 

derived from emissions from combustion process, including vehicles powered by petrol 

and diesel, wood burning, coal burning, and other industrial processes. Ultrafine 

particles are derived from combustion related sources such as vehicle exhausts and 

atmospheric photochemical reactions (Pope & Dockery, 2006). 

Figure 2.8 shows the size comparison of PM10, PM2.5, human hair, and fine beach 

sand.  
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Figure 2.8. Size comparison of PM particles (EPA, 2020). 

The sources of nitrogen dioxide (NO2) include the burning of fuel, emission from 

cars, trucks, and buses, and also power plants. The high concentration of NO2 may lead 

to different health impacts, which include the worsening of respiratory diseases such as 

asthma and also respiratory symptoms such as coughing, wheezing, and difficulty in 

breathing (US EPA, 2011).  

Nitrogen oxides (NOx) are primarily emitted from transportation and combustion 

processes, while the emission of volatile organic compounds (VOCs) is primarily 

from road traffic and the use of products containing organic solvents (Li et al., 2020; 

Y. Wang et al., 2020).  
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Ozone (O3) is formed from a chemical reaction between nitrogen oxides (NOx) and 

VOCs. When NOx and VOCs are emitted by cars, power plants, refineries, or chemical 

plants, and these pollutants react with sunlight, it may cause the formation of O3. The 

levels of O3 concentration usually reach its highest levels under hot and sunny 

conditions, favorable for O3 formation.  

Figure 2.9 shows the schematic representation of the photochemical formation of 

O3in the presence of VOCs and NOx. 

 

Figure 2.9. Schematic representation of the photochemical formation of ozone in the 

presence of VOCs and NOx. (WHO Europe, 2008). 

O3 is the most important index substance for photochemical smog, one of the 

major air pollutants (Ghazali et al., 2010). The formation of ground-level O3 heavily 

depends on the concentration levels of VOCs and NOx and meteorological factors 
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such as wind speed, insolation, and temperature. Nevertheless, the greater NOx 

emission reductions have contributed to a widespread shift in the O3 production 

regime from NOx-saturated (high-NOx) to NOx-sensitive (low-NOx) in some urban 

areas, while O3 production in rural areas is even more sensitive to NOx. 

A study for Terengganu State, Malaysia, showed that high levels of O3 occurring 

under dry and warm conditions during the southwest monsoon, were higher in 

industrial areas, and were positively correlated with the maximum daily temperature 

(Abdullah et al., 2017). 

2.4 Air Quality Guidelines 

The World Health Organisation (WHO) has last updated their Air Quality 

Guidelines (AQG) in 2005. As shown in Table 2-2, WHO sets the threshold value of 

24-hour mean concentration for PM10 and PM2.5 at 50 µg/m³ and 25 µg/m³, respectively, 

1-hour mean concentration of NO2 at 200 µg/m³, and 8-hour mean concentration of O3 

at 100 µg/m³ (WHO Europe, 2006). The Chinese National Ambient Air Quality 

Standards (NAAQS), GB 3095-2012, was first published in February 2012 as a 

replacement for GB 3095-1996, which became effective in January 2016. As shown in 

Table 2-2, there are two classes in the NAAQS, which set the standard value of 24-hour 
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mean concentration for PM10 Classes 1 at 50 µg/m³ and Classes 2 at 150 µg/m³, PM2.5 

Classes 1 at 35 µg/m³ and Classes 2 at 75 µg/m³, 1-hour mean concentration for NO2 

Classes 1 and Classes 2 at 200 µg/m³, and 8-hour mean concentration for O3 Classes 1 

at 100 µg/m³ and Classes 2 at 160 µg/m³ (MEE, 2012). 

Compliance with the thresholds set by the WHO for PM2.5 could improve life 

expectancy in China by 0.14 years (Qi et al., 2020) and ambient air pollution has 

caused at least 3.7 million deaths in 2012, with more than 25% of deaths in Southeast 

Asia (Ai et al., 2016; Chen et al., 2018). 

Table 2-2 shows the air quality standards for the levels of PM10, PM2.5, NO2, O3 

concentration set at different countries and institutions. Figures 2.10 to 2.13 show the 

comparison of different air quality standards amongst WHO, European Union (EU), 

US, China, Macao, and Hong Kong for PM10, PM2.5, NO2, and O3. 
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Table 2-2. Air quality standards set at different countries and/or by different 

institutions. Adapted from (MEE, 2012; SMG, 2019; WHO Europe, 2006). 

Source PM10 (µg/m³) PM2.5 (µg/m³) NO2 (µg/m³) O3 (µg/m³) 

 1 year 24 hours 1 year 24 hours 1 year 1 hour 8 hours 

WHO 20 50 10 25 40 200 100 

European Union 40 50 25  40 200 120 

United States 50 150 15 65 100  157 

China (Classes 1) 40 50 15 35 40 200 100 

China (Classes 2) 70 150 35 75 40 200 160 

Macao 70 150 35 75 40 200 160 

Hong Kong 50 100 35 75 40 200 160 

WHO Interim 

Target-1 

70 150 35 75   160 

WHO Interim 

Target-2 

50 100 25 50    

WHO Interim 

Target-3 

30 75 15 37.5    
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Figure 2.10. Comparison of air quality standards for PM10. 

 

 

Figure 2.11. Comparison of air quality standards for PM2.5. 
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Figure 2.12. Comparison of air quality standards for nitrogen dioxide (NO2). 

 

 

Figure 2.13. Comparison of air quality standards for 8-hour average ozone (O3). 
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agro-forestry activities, make greener and more compact cities with energy-efficient 

buildings, provide universal access to clean, affordable fuels and technologies for 

cooking, heating and lighting, and build safe and affordable public transport systems 

and pedestrian and cycle-friendly networks (WHO, 2020). 

2.5 Forecasting Models 

Several methodologies have been developed and applied to forecast air quality 

across the world, including deterministic, statistical, and machine learning methods 

(Lin et al., 2019; Ma et al., 2019; Masih, 2019; Pagowski et al., 2006). Deterministic 

methods, also known as numeric, can be applied to regions where a complete and 

fully detailed emission inventory is available. In contrast, those regions without a 

complete and reliable emission inventory can only use statistical methods, also known 

as stochastic, for forecasting air quality. Statistical methods primarily rely on 

historical data of air quality and meteorological data as the basis to develop the air 

quality forecast. The statistical approach learns from historical data and predicts the 

future behavior of the air pollutants. 

Meteorological conditions significantly affect the levels of air pollution in the 

urban atmosphere, due to their important role in the transport and dilution of 
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pollutants, and as such there is a close relationship between the concentration of air 

pollutants and meteorological variables (Zhang & Ding, 2017). One approach to 

statistical forecasting is to train multiple linear regression models (MLR) based on 

existing measurements to predict concentrations of air pollutants in the future, 

according to the corresponding meteorological variables. 

The development of air quality forecast models is essential for cities with high 

population density, including Macao, one of the most densely populated cities in the 

world, because by predicting pollution episodes authorities can provide warning to the 

local community in advance to avoid the exposure to poor air quality, which may lead 

to severe health consequences.  

To be useful, these models should be robust to deal with extreme variations in 

pollution levels, in particular during high-pollution peak days. Factors leading to 

extreme variation in pollution levels are diverse and include both human activities and 

meteorological factors. 

Some studies showed that statistical models are more accurate and efficient 

compared to deterministic models, particularly in regions with complexed terrain 

(Kocijan et al., 2018; Lopes et al., 2016; Zhang et al., 2012). Moreover, prediction of 
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NO2, PM10, PM2.5, and O3 MAX concentrations based on multiple linear regression 

(MLR) and classification and regression tree (CART) models have been successfully 

implemented in Bangkok, Changsha City, Beijing, Bilbao, and Pakistan (Ahmad et 

al., 2019; Chen & Wang, 2019; Sahanavin et al., 2018; Samadianfard et al., 2013; 

Zhao et al., 2018). 

2.5.1 Deterministic Methods 

Deterministic models utilize all of the major meteorological, physical, and 

chemical processes that lead to the formation and accumulation of air pollutants. The 

equations must be determined for the mass of various species and transformation 

relationship among chemical species and physical states (Zhang et al., 2012). 

Deterministic models perform the air quality forecast by constructing a simulation 

model of the dispersion and transport process of atmospheric chemistry. In addition, 

deterministic methods are computationally expensive and the forecasting results may 

be inaccurate due to the use of default parameters and the lack of real-time 

observations for air quality and meteorological variables. Some of the limitations for 

deterministic methods include the high computing costs needed to develop the model 

and the detailed knowledge required to input the different parameters into the model 
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(Catalano & Galatioto, 2017; Kukkonen et al., 2003; Ma et al., 2019; Suleiman et al., 

2019).  

Studies showed that deterministic models struggle to capture the relationship 

between the concentration of atmospheric pollutants and their source of emission. In 

addition, the deterministic methods may not capture the nonlinearity between air 

pollutants and the sources of their emission and dispersion, in particular of regions with 

complex terrain, which could lead to inaccurate results (Chen et al., 2017; Liu et al., 

2017; Masih, 2019; Ritter et al., 2013; Shimadera et al., 2016). Some of the 

deterministic models that are most commonly used to predict air quality include 

Chemical Transport Models (CTMs), Weather Research and Forecast (WRF) Models, 

Operational Street Pollution Models (OSPM), and Nested Air Quality Prediction 

Modeling System (NAQPMS) (Ma et al., 2019; Saide et al., 2011; Stern et al., 2008; 

Wang et al., 2001).  

Figure 2.14 shows the air quality forecast using different deterministic models, 

such as Weather Research Forecast (WRF), Chemical Transport Models (CTM), and 

CHIMERE (Guttikunda et al., 2011).  
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Figure 2.14. Air quality forecasting model using deterministic methods (Guttikunda 

et al., 2011). 

As an example, air quality forecast using deterministic methods such as the 

Advanced Research Weather Research and Forecasting (WRF-ARW) model and the 

HYSPLIT model were used to predict air quality in the Pearl River Delta (PRD) region, 

which included Macao, Hong Kong, and Guangdong Province (Lopes et al., 2016, 

2018).  

 Figure 2.15 shows the configuration of the four modeling domains in a 

deterministic model. 
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Figure 2.15. Different grids in deterministic models (Guttikunda et al., 2011). 

2.5.2 Statistical Methods 

Statistical models such as multiple linear regression (MLR) and classification and 

regression tree (CART) are developed based on historical measurements of 

meteorological and air quality variables. Statistical models are more accurate and 

efficient compared to deterministic models (Kocijan et al., 2018; Zhang et al., 2012).  

Figure 2.16 shows the steps of model development for an air quality forecast using 

statistical methods in an operational forecast.  
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Figure 2.16. Steps of model development for an air quality forecast using statistical 

methods. 

2.5.3 Machine Learning Techniques 

According to recent studies, machine learning (ML) has been adopted by 

researchers to forecast air quality as a complement to the deterministic methods and 

particularly to statistical methods. ML is a branch of computer science which makes 

computers capable of performing a task without being explicitly programmed, while 

artificial neural network (ANN) attempts to simulate the structures and networks within 

the human brain to make decisions (Kang et al., 2018) and has been one of the most 

popular methods for air quality forecasting (Ma et al., 2019). In order to tackle the 
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limitations of traditional models, ML based on statistical algorithms seemed to be 

promising, because it does not consider physical and chemical processes in 

deterministic model, or strictly rely on historical data to make pollution predictions in 

statistical model (Lee et al., 2017; Masih, 2019; Nhung et al., 2017; Zafra et al., 2017). 

Researchers believe that using ML to generate local emissions based on real-time 

observations is a promising approach and has been applied and improved the relevant 

air quality forecast when integrated with a data assimilation system (Lin et al., 2019). 

Nevertheless, the shortcomings of ML include its incapacity to capture the time series 

patterns or learn from the long-term dependencies of air pollutant concentrations.  

A combination of machine learning (ML) and statistical methods were used to 

successfully forecast air quality in Bogotá, Columbia. The integrated model reduced 

the variance of the forecast and diminished the probability of over fitting (Martínez et 

al., 2018). The integration of ML and ANN was used to successfully forecast the levels 

of PM2.5 concentration in Beijing (Tao et al., 2019), the levels of SO2 concentration in 

Mumbai (Bhalgat et al., 2019), the levels of PM10 concentration in Northern Spain 

(García Nieto et al., 2018), the concentration of PM10 and PM2.5 in Tehran (Delavar et 

al., 2019; Zhang & Ding, 2017), the levels of O3 concentrations in Hong Kong (Wang 
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et al., 2003; Zhang & Ding, 2017), and the levels of PM2.5 concentrations in Pakistan 

(Ahmad et al., 2019).  

In addition, recent studies using this methodology have been conducted to access 

meteorological influence on air quality (Tong, et al., 2018; Xie et al., 2019), and related 

to air quality forecast (Lee et al., 2017; Deng et al., 2018).   
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Chapter 3: Background and Methodology 
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3.1 Case Study of Macao 

Macao is located in Southern China and is one of the cities within the Greater Bay 

Area. The historical center of Macao has been awarded “World Cultural Heritage” 

status by the United Nations Educational, Scientific and Cultural Organizations 

(UNESCO) in 2005. Nevertheless, the land area of Macao is extremely limited due to 

rapid development and population growth in combination with lack of land resources 

and thus the United Nations World Prospects Report had listed Macao as the number 1 

most densely populated region in the world (Sheng & Tang, 2013). Macao has a land 

area of 30.8 square kilometers with a population of 653,100, which is equivalent to a 

population density of 21,100 habitants per square kilometer (DSEC, 2018). 

Macao is a special administrative region of China. The lack of land and natural 

resources makes it impossible for Macao to develop any heavy industries or construct 

any large scale factories within the region. As a result, the Macao government focused 

on the light industry, in particular of hotel and gaming as the primary industry. Macao 

had a long history of gambling, which started about 140 years ago. The Macao 

government’s decision to open up the gambling industry in 2002 revolutionized the 

development of casinos and gaming industry, making Macao as the only region in China 
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that allows legal gambling (Feng et al., 2012). 

The geographical setting of Macao consists of the main peninsula, which is 

connected to the mainland China and two outlying islands known as Taipa and Coloane. 

The main peninsula and outlying islands are interconnected with roads and bridges. 

Due to the limited land area, the government of Macao utilized reclamation as a primary 

solution to keep up with the supply and demand of land. Due to land reclamation, the 

area of Macao has doubled its size since its designation as a city back in 1586 (Chaplain, 

2002). The total area of Macao has raised from 11.6 square kilometers in the early 1900s 

to over 30.8 square kilometers in 2018, which showed that Macao has tripled its size in 

the last century (DSEC, 2018). The casinos and hotels are primarily constructed on the 

reclaimed land near the island of Taipa (Feng et al., 2012). The Cotai Strip is a 

reclaimed area that stretches between Taipa and Coloane, measuring approximately 6 

square kilometers, and being primarily used for the constructions of casino and hotel 

(Chaplain, 2002). The newly opened hotel and casino has created an enormous amount 

of job opportunities, which attracted many of the foreign workers to work in Macao. 

Thus, the population size of Macao has continued to increase in the past decade. The 

population size of Macao is over 653,100 people. 
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Due to the high population density, the health impact of air pollution in Macao is 

significant. The levels of PM10, PM2.5, NO2, and O3 concentration in Macao and its 

neighboring cities in the Greater Bay Area are extremely high and often exceeding the 

established limit values recommended by World Health Organization (WHO) Air 

Quality Guidelines (AQG). 

3.2 Air Quality in Macao 

The air quality of Macao is under the influence of the nearby regions, in particular 

of cities from the Guangdong Province, due to their geographical proximity. Despite 

Macao and Hong Kong being amongst the lowest emission cities in China, nearby cities 

such as Zhuhai and Zhongshan are experiencing an increase of emissions due to 

industrialization, coal power plant and energy production within or in their vicinities 

(Tsai et al., 2006; Zhou et al., 2018). 

The Guangdong-Hong Kong-Macao Regional Air Quality Monitoring 

Information System provides a platform to access the pollutant concentrations of 

PM10, PM2.5, NO2, and O3 in the cities of Greater Bay Area in Southern China. Figure 

3.1 shows the past 1-hour average (μg/m3) of pollutant concentrations of the 

monitoring stations in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA).  
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Figure 3.1. Guangdong-Hong Kong-Macao regional air quality monitoring 

information system (SMG, 2020). 

There are two types of air quality monitoring stations, ambient and roadside 

stations, in which the ambient stations monitor the background and set the baseline 

levels of pollutant concentrations for a region, while the roadside stations monitor the 

roadside emission at a location close to the traffic. Figure 3.2 shows the settings of a 

typical ambient air quality monitoring station. Figure 3.3 shows the settings of a 

typical roadside air quality monitoring station. The air quality monitoring can be 

achieved by air quality monitoring stations (AQMS) setup by the local environmental 

authorities for their respective jurisdiction. 
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Figure 3.2. Settings of a Macao ambient station (SMG, 2020). 

 

Figure 3.3. Settings of a Macao roadside station (SMG, 2020). 

The air quality monitoring network of Macao measures particulate matters (PM10 

and PM2.5), nitrogen dioxide (NO2), ozone (O3) and sulfur dioxide (SO2), in both 

ambient background and roadside locations. There are a total of six air quality 
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monitoring stations evenly spread throughout Macao, which include one high-intensity 

residential area and one roadside station in Macao, one high-intensity residential area 

and one ambient station in Taipa, one ambient station in Coloane, and one roadside 

station is Ka-Ho (SMG, 2017). Due to the small physical size of the region, the density 

of monitoring stations in Macao is considered to be high.  

The SMG adopted the WHO interim target-1 (IT-1) for the threshold of pollutants, 

which has a less strict standard on the pollutants compared to the WHO Air Quality 

Guideline. Taipa Ambient is an ambient station in Macao which is also the background 

representative station. It is located at Taipa Grande, the headquarter of SMG. Figure 3.4 

represents the spatial locations of air quality monitoring stations, within the 32.8 km2 

of Macao region. 
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Figure 3.4. Map of Macao air quality monitoring stations network. Adapted from 

SMG (2019). 

Currently, the Macao Meteorological and Geophysical Bureau (SMG) uses the 

past air quality data (the calculation period of the index is from 12:00 p.m. from the 

previous day to 12:00 p.m. of the current day) to provide an air quality index (AQI). 

Figure 3.5 shows an example of the daily air quality index in Macao, from the Macao 

Meteorological and Geophysical Bureau (SMG). 
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Figure 3.5. Daily air quality index in Macao (SMG, 2020). 

Table 3-1 translates the AQI in terms of the influence on health and advises the 

public based on the air quality accordingly. 

Table 3-1. Air quality index (AQI) of Macao (SMG, 2019). 

 

 

 

 

 

The higher levels of PM10 and PM2.5 concentration usually occur during the winter 

season, from December to February, due to the northern wind bringing the air pollutants 

to the region, lowering mixing height, fewer amount of rainfall, and lower frequency 

http://www.smg.gov.mo/smg/airQuality/e_daily_iqa_definition.htm 
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of rainfall. In contrast, the levels of PM10 and PM2.5 concentration is usually measured 

lower during the summer season, from June to August, due to the southern winds from 

the China sea, higher mixing height, greater amount of rainfall, and higher frequency 

of rainfall, which allows for a better air pollution dispersion and deposition conditions 

(Lopes et al., 2016, 2018). In addition, Macao has a typical tropical oceanic climate 

which is hot and humid, with an annual average temperature of 22.3 ºC and an annual 

average wind speed of 3.5 m/s, with northwestern wind dominant in winter and 

southeastern wind dominant in summer (He et al., 2000). 

Figure 3.6 and 3.7 present for the Macao air quality monitoring stations the annual 

average levels of PM10 and PM2.5 concentrations, respectively, from 2013 to 2019. The 

figures show a decreasing trend in the yearly average concentration of PM10 and PM2.5 

in all stations.  
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Figure 3.6. Yearly average levels of PM10 in the Macao air quality monitoring 

stations (2013 to 2019). 

 

Figure 3.7. Yearly average levels of PM2.5 in the Macao air quality monitoring 

stations (2013 to 2019). 
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Figure 3.8 presents the average annual levels of NO2 concentrations in the Macao 

air quality monitoring stations from 2013 to 2019. The figure shows that there is a 

decrease in the average yearly concentration of NO2 in all stations from 2013 to 2019 

with the exception of Macao Residential. This may be due to the increase traffic in the 

surrounding area of the Border Gate between Macao and China and the recently 

inaugurated Hong Kong-Zhuhai-Macao Bridge (HZMB), connecting Macao, Hong 

Kong and China. 

 

Figure 3.8. Yearly average levels of NO2 in the Macao air quality monitoring stations 

(2013 to 2019). 

Figure 3.9 presents the average annual levels of O3 concentrations in the Macao 

air quality monitoring stations from 2013 to 2019. An increase of the levels of O3 

concentration in all stations from 2013 to 2019 can be verified, with the exception of 
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Taipa Residential. 

 

Figure 3.9. Yearly average levels of O3 in the Macao air quality monitoring stations 

(2013 to 2019). 

Figure 3.10 and 3.11 present for the Macao air quality monitoring stations the 

average monthly levels of PM10 and PM2.5 concentrations, respectively, from 2013 to 

2019. The figures show that the months from June to August recorded the lowest 

concentration of PM10 and PM2.5 in all stations. In contrast, the months from December 

to February recorded the highest concentration of these particles in all stations.  
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Figure 3.10. Monthly average levels of PM10 in the Macao air quality monitoring 

stations (2013 to 2019). 

 

Figure 3.11. Monthly average levels of PM2.5 in the Macao air quality monitoring 

stations (2013 to 2019). 
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Macao air quality monitoring stations from 2013 to 2019. The monthly average levels 

of NO2 concentration were lowest during June and July and highest during December 

and January for all stations.  

 

Figure 3.12. Monthly average levels of NO2 in the Macao air quality monitoring 

stations (2013 to 2019). 

 Figure 3.13 presents the monthly average levels of O3 concentration in the Macao 

air quality monitoring stations from 2013 to 2019. The levels of O3 concentration were 

lowest between June and July, and highest in October in all stations. 
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Figure 3.13. Monthly average levels of O3 in the Macao air quality monitoring 

stations (2013 to 2019). 

 Figure 3.14 and 3.15 presents for the Macao air quality monitoring stations the 

hourly average levels of PM10 and PM2.5 concentrations, respectively, from 2013 to 

2019. Figure 3.14 shows that the hourly levels of PM10 reached its highest concentration 

from 10:00h to 12:00h and 15:00h to 18:00h in all stations. Figure 3.15 shows that the 

hourly average levels of PM2.5 concentration reached its highest concentration from 

8:00h to 11:00h and 18:00h to 20:00h in all stations.  
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Figure 3.14. Hourly average levels of PM10 in the Macao air quality monitoring 

stations (2013 to 2019). 
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Figure 3.15. Hourly average levels of PM2.5 in the Macao air quality monitoring 

stations (2013 to 2019). 

Figure 3.16 presents the hourly average levels of NO2 concentrations in the Macao 

air quality monitoring stations from 2013 to 2019. The figure shows that the hourly 

average levels of NO2 concentration reached its highest concentration from 8:00h to 

11:00h and 16:00h to 19:00h in all stations.  
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Figure 3.16. Hourly average levels of NO2 in the Macao air quality monitoring 

stations (2013 to 2019). 

Figure 3.17 presents the hourly average levels of O3 concentrations in the Macao 

air quality monitoring station from 2013 to 2019. It shows that the hourly average levels 

of O3 concentration increased rapidly after 12:00h and continued to reach its peak 

concentration at 16:00h. The temperature increase throughout the day creates more 

favorable condition for O3 formation as ground-level O3 is formed when nitrogen oxides 

(NOx) and volatile organic compounds (VOC), collectively called 'ozone precursors', 

react under photochemical processes. 
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Figure 3.17. Hourly average levels of O3 in the Macao air quality monitoring stations 

(2013 to 2019). 
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on three sides, with a subtropical oceanic monsoon climate that is characterized by high 

temperatures, high rates of evaporation, high levels of atmospheric moisture and 

abundant rainfall (SMG, 2014). In winter, Macao is influenced by the north monsoon, 

the climate is cold and dry with the predominant wind from the north quadrant. In 

summer, the northeast monsoon is replaced by the strong southwest monsoon with 

heavy rains. Spring and autumn are transition periods. 

Recent studies (Tong et al., 2018) showed a rise of surface temperature and a drop 

of surface absolute humidity and wind speed at GBA due to the decline of vegetation 

and irrigated cropland. The landscape of GBA is characterized by a large flatland 

surrounded by the Nanling Mountains which can prevent air pollution from the central 

part of China reaching the GBA. Nevertheless, the northeast monsoon present during 

the winter may transport pollutants from northern and eastern China, along the coastline 

to the region of GBA (Tong, et al., 2018). PM levels are usually measured higher during 

the winter season, from December to February, due to the northern wind, bringing the 

air pollutants to the region, lowering mixing height, and fewer amount and lower 

frequency of rainfall. During summer season, from June to August, PM levels are 

usually measured lower due to the southern winds from the China sea, higher mixing 
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height, higher frequency and amount of rainfall, which allow for more favorable air 

pollution dispersion and deposition conditions (Lopes et al., 2016). 

3.3.1 Key Meteorological Variables 

Figure 3.18 presents the wind rose of Macao from 2013 to 2019. It shows that 

the primary wind direction of Macao is from north (N) and north-northeast (NNE). 

This shows that the air pollutants such as PM10 and PM2.5 maybe transported by the 

wind from nearby regions, in particular of Guangdong Province, into the region of 

Macao.  

 

Figure 3.18. Wind rose of Macao from 2013 to 2019 (hourly counts). 
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average wind speed of 4 m/s. Being predominant from the northern quadrant, the high 

levels of wind speed may transport air pollutants such as PM10 and PM2.5 from nearby 

Guangdong Province into the Macao region.  

 

Figure 3.19. Wind speed (m/s) of Macao from 2013 to 2019. 

Figure 3.20 presents the pollution rose of PM10 from 2013 to 2019. The figure 
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Figure 3.20. Pollution rose of PM10 (µg/m³) from 2013 to 2019. 

Figure 3.21 presents the pollution rose of PM2.5 from 2013 to 2019. It shows the 

highest level of PM2.5 concentration to be coming from northwest (NW) and north-

northwest (NNW), with an average concentration of 41 µg/m³ and 40 µg/m³, 

respectively.  

 

Figure 3.21. Pollution rose of PM2.5 (µg/m³) from 2013 to 2019. 
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Figure 3.22 presents the pollution rose of NO2 from 2013 to 2019. It shows the 

highest level of NO2 concentration to be coming from north-northeast (NNE) and 

north-northwest (NNW), with an average concentration of 44 µg/m³ and 49 µg/m³, 

respectively.  

 

Figure 3.22. Pollution rose of NO2 (µg/m³) from 2013 to 2019. 

Figure 3.23 presents the pollution rose of O3 from 2013 to 2019. It shows the 
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Figure 3.23. Pollution rose of O3 (µg/m³) from 2013 to 2019. 

Figure 3.24 presents the yearly average temperature of Macao from 2013 to 2019. 

The yearly average temperature of Macao has increased by over 1 ℃ in 2019, in 

comparison to the yearly average temperature of 2013. 

 

Figure 3.24. Yearly average temperature in Macao from 2013 to 2019. 
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Figure 3.25 presents the yearly total precipitation of Macao from 2013 to 2019. 

The yearly total precipitation of Macao has decreased by over 300 mm in 2019, in 

comparison to the yearly total precipitation of 2013.  

 

Figure 3.25. Yearly total precipitation in Macao from 2013 to 2019. 
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Figure 3.26. Monthly average temperature in Macao from 2013 to 2019. 

Figure 3.27 presents the monthly average wind speed in Macao from 2013 to 

2019. The wind speed was lowest during June to August and highest during October 

to December.  

 

Figure 3.27. Monthly average wind speed in Macao from 2013 to 2019. 
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Figure 3.28 presents the monthly total precipitation in Macao from 2013 to 2019. 

The monthly total precipitation in Macao was highest from May to August and lowest 

from November to February. The low precipitation levels between November and 

February may favor high concentrations of particulate matter (PM10 and PM2.5) and 

NO2 in Macao.  

 

Figure 3.28. Monthly total precipitation in Macao from 2013 to 2019. 
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Figure 3.29. Hourly average temperature in Macao from 2013 to 2019. 
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concentrations reached its peak when the wind direction is coming from northwest 

(NW) and north-northwest (NNW). Figure 3.32 shows the pollution rose of O3 during 

the winter season from 2013 to 2019. The levels of O3 concentration reached its peak 

when the wind direction is coming from the east (E) and east-southeast (ESE). Figure 

3.33 shows the winter meteorological charts in Macao, which shows the winds are 

coming primarily from the north (N) during the winter season.  

 

Figure 3.30. Wind rose of Macao in winter season from 2013 to 2019 (hourly counts). 
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Figure 3.31. Pollution rose of PM2.5 (µg/m³) in winter season from 2013 to 2019. 

 

Figure 3.32. Pollution rose of O3 (µg/m³) in winter season from 2013 to 2019. 
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Figure 3.33. Typical winter meteorological surface chart of Macao (HKO, 2020). 

Figure 3.34 shows the wind rose of Macao during the summer season (from June 

to August) from 2013 to 2019. The wind direction during the summer season is 

predominantly from the south (S) and south-southeast (SSE). Figure 3.35 shows the 

pollution rose of PM2.5 during the summer season from 2013 to 2019. The levels of 

PM2.5 concentrations reached its peak when the wind direction was coming from north 

(N) and west-northwest (WNW). Figure 3.36 shows the pollution rose of O3 during 

the summer season from 2013 to 2019. The levels of O3 concentration reached its 

peak when the wind direction was coming from the northwest (NW) and north-

northeast (NNE). Figure 3.37 shows the summer meteorological charts in Macao, 
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with winds coming primarily from the south (S).  

 

Figure 3.34. Wind rose of Macao in summer season from 2013 to 2019 (hourly 

counts). 

 

Figure 3.35. Pollution rose of PM2.5 (µg/m³) in summer season from 2013 to 2019. 
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Figure 3.36. Pollution rose of O3 (µg/m³) in summer season from 2013 to 2019. 

 

Figure 3.37. Typical summer meteorological surface chart in Macao (HKO, 2020). 
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3.4 Development of Air Quality Forecast Using Statistical Methods 

It is important to develop a reliable prediction methodology for the concentration 

of PM10, PM2.5, NO2 and O3, which can provide alert for health hazards in advance. 

Macao has been focusing on its economic development in the past decades and 

seriously overlooked the air pollution problem. There are no available forecast 

modeling tools to predict the air quality for Macao, which is necessary for the region 

to keep up with the international standards and the neighboring regions. An emission 

inventory for the roadside was developed with a high spatial-temporal resolution in 

Macao. However, due to the limited spatial and temporal scope of this inventory and 

its operational availability, it would be impossible to develop a deterministic model to 

predict air quality concentrations. Therefore, it is necessary to create a statistical air 

quality forecast model for the daily concentration of air pollutants in Macao, based on 

the historical air quality and meteorological data. For this, the sources of air pollution 

need to be identified to better understand the air quality trend in Macao. It is equally 

very important to explore the relationships between the air quality and meteorological 

parameters in Macao to develop a statistical forecast model for the next day levels of 

PM10, PM2.5, NO2, and O3 concentration.  
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The statistical methods selected for this work were both multiple linear regression 

analysis (MLR) and classification and regression tree (CART). Those can be a useful 

and straightforward tool in air quality studies (Cassmassi, 1997; Clapp & Jenkin, 2001; 

Choi et al., 2013; Martinez et al., 2018). One of the advantages of the CART analysis 

is its effectiveness in explaining the variations in pollutant levels solely by a 

combination of meteorological conditions as regression trees can identify specific 

meteorological conditions that lead to low or elevated pollutant concentrations (Choi et 

al., 2013). The basic concept of the CART approach is to establish a hierarchy of binary 

decisions, each of which splits distribution/variation of a target variable into two 

mutually exclusive branches (groups) based on the explanatory variable/value showing 

the largest reduction in variations in target variable after the split (Choi et al., 2013).  

Following precedent experiences (Cassmassi, 1997; US EPA, 2003; Durão et al., 

2016; Oduro et al., 2016) the statistical models were initially created using MLR 

analysis. As an approach to obtain improved results, mainly regarding a better 

prediction of high pollutant levels, the CART analysis was chosen. Statistical models, 

based on MLR and CART, were applied to forecast the daily average concentration of 

NO2, PM10, PM2.5, and the maximum average hourly concentration of O3 levels for the 
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next day, for each station of the air quality monitoring network in Macao.  

The air quality and meteorological variables that were considered to build all of the 

air quality statistical models were obtained from Macao Meteorological and 

Geophysical Bureau (SMG). The air quality data was gathered from the air quality 

monitoring network, namely for: Macao Roadside, Macao Residential, Taipa Ambient, 

Taipa Residential, and Coloane Ambient stations, which have a suitable historic dataset 

of surface air quality measurements for the levels of NO2, PM10, PM2.5, and O3 

concentrations. These background stations (residential and ambient) can capture the 

regional contribution of PM10 and PM2.5. There is a higher population and traffic density 

in the vicinity of the Macao Roadside and Macao Residential stations, which are located 

in the main peninsula, in comparison to Taipa Ambient, Taipa Residential, and Coloane 

Ambient stations, which are located on the outlying islands. 

Meteorological data was obtained from surface observations at SMG’s Taipa 

Grande Meteorological Station and consisted of hourly records from automatic 

weather stations, such as temperature, relative humidity, precipitation, average wind 

speed, and dew point temperature. Since the SMG does not release weather balloons 

to collect data, information for the upper air layers is not available in Macao. 
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Therefore, it is essential to identify the closest neighbor of Macao and obtain the 

upper air sounding data from this nearby station. Hong Kong Kings Park (station 

number 45004) was identified as the ideal station to provide data such as geopotential 

heights, thickness, stability, temperature, relative humidity, and dew point temperature 

at various altitudes. 

The air quality variables considered included the levels of NO2, PM10, PM2.5, and 

O3 MAX concentration from 00:00 to 23:00 of the previous day, two days and three 

days ago, and from 16:00 of the previous day to 15:00 of today. The meteorological 

variables being considered included the upper-air observations from King’s Park 

location, Hong Kong Observatory, surface observations and other variables from the 

monitoring network of Macao Meteorological and Geophysical Bureau (SMG), as 

previously mentioned. 

Other variables were added to the analysis, as the flag for week/weekend day and 

the daily sunlight period duration. Table 3-2 presents all the variables considered as 

predictors in the MLR and CART forecast models. 
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Table 3-2. Variables considered as predictors in the multiple linear regression (MLR) 

and classification and regression tree (CART) models in all of the air quality forecast 

models. 

Variable Type Variable Name 

Variable Description (Units)/ 

Observations 

Air quality 

variables 

NO2, PM10, PM2.5 

Average hourly concentration values 

(µg/m3) 

O3 MAX 

Maximum hourly concentration values 

(µg/m3) 

16D#, 23D# 

23D#: 24-h concentration averaging period 

between 00h and 23h  

16D#: 24-h concentration averaging period 

between 16h of D1 and 15h of D0 

e.g.: PM10_16D1, O3_MAX_23D1. 

D0, D1, D2, D3 

D0: Forecast Day; D1: Previous Day 

(Forecast Day-1); D2: Forecast Day-2; and 

D3: Forecast Day-3. 
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Meteorological 

variables 

Upper-air obs.* 

H1000, H850, 

H700, H500 

Geopotential Height 

at 1000 hPa, 850 

hPa, 700 hPa, and 

500 hPa 

(m)/Indicator of 

synoptic-scale 

weather pattern. 

TAR925, TAR850, 

TAR700 

Air Temperature at 

925 hPa, 850 hPa, 

and 700 hPa 

(°C)/Measure of 

strength and height 

of the subsidence 

inversion. 

HR925, HR850, 

HR700 

Relative Humidity 

at 925 hPa, 850 hPa, 

and 700 hPa (%). 
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TD925, TD850, 

TD700 

Dew Point 

Temperature at 925 

hPa, 850 hPa, and 

700 hPa (°C). 

THI850, THI700, 

THI500 

Thickness at 850 

hPa, 700 hPa, and 

500 hPa (m)/Related 

to the mean 

temperature in the 

layer. 

STB925, STB850, 

STB700 

Stability at 925 hPa, 

850 hPa, and 700 

hPa (°C)/Indicator 

of atmospheric 

stability. 
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Surface 

observations 

T_AIR_MX, 

T_AIR_MD, 

T_AIR_MN 

Maximum, Average, and Minimum Air 

Temperature (°C) 

HRMX, HRMD, 

HRMN 

Maximum, Average, and Minimum 

Relative Humidity (%) 

TD_MD 

Average dew point temperature (ground 

level) (°C) 

RRTT 

Precipitation (mm)/Associated with 

atmospheric washout 

VMED 

Average wind speed (m/s)/Related to 

dispersion 

Other variables 

DD 

Duration of the day: number of hours of 

sun per day (h) 

FF 

Week-day indicator (flag): weekday = 0, 

weekend = 1 

* Meteorological variables: Daily sounding at 12H (GMT+8) at King’s Park 

Meteorological Station—Hong Kong Observatory. 
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The next step was to assess data efficiency levels, for each parameter, through the 

years, in order to reject lower annual efficiencies. The statistical models for Ká-Hó 

Roadside station were not feasible, due to the lack of sufficient air quality data. A 

complimentary analysis was conducted to observe air pollution trends, monthly, weekly 

and hourly patterns, and pollution roses. A preliminary exploratory data analysis, 

looking at basic statistics, like average, mode, histogram, distribution type, correlation 

between different variables, and principal component analysis, was performed to 

identify variables with similar behaviors. This strategy enabled to decide on the 

following steps to obtain the best model outcome.  

A significance level of 0.05 was used in the linear MR analysis. Some variables 

initially selected were rejected from the forecast models due to collinearity. The final 

objective was to obtain prediction models with the lowest possible number of variables 

but with the maximum explained variance as translated by the R2. The higher the 

number of variables used by the model, the higher the risk of compromising the 

operational forecast, due to lack of information/missing data in case one or more 

variables are not accessible. 

The statistical model was built using IBM SPSS Statistics version 26 with MLR 
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(stepwise) and CART methods (Lei et al., 2019; Neto et al., 2009). SPSS is a 

statistical software that is applied to solve research problems through hypothesis 

testing and predictive analysis. 

Model performance indicators were determined recurring to the following 

parameters: coefficient of determination (R2) (1), root mean square error (RMSE) (2), 

mean absolute error (MAE) (3), and systematic error (BIAS) (4). 

𝑅#	=	
[∫ (()*(̅	
,
)-. )*(0)*	01	)]3

[∫ (()	4		
,
)-. (̅)3]	[∫ (0)*	01	)3]

,
)-.

               (1) 

RMSE =5	6
7
	∑ (𝑓: − 𝑜:)#7

:=6                (2) 

MAE =	6
7
	∑ |𝑓: − 𝑜:|7

:=6                (3) 

Bias = 6
7
	∑ (𝑓: − 𝑜:)7

:=6                 (4) 

Where 𝑓	is forecast, 𝑓̅ is forecast average,	𝑜 is observation, and �̅�	is observation 

average, for each i case to the n number of cases. 

Figure 3.38 shows the flowchart for model development of air quality forecast by 

statistical methods in Macao.  
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Figure 3.38. Flowchart for model development of air quality forecast by 

statistical methods. 

In this study, meteorological and air quality variables for 2013 to 2016, 2015 to 

2018, and 2013 to 2018 were used to build three separate forecasting models. The 

2013 to 2016 model was constructed for the initial evaluation for the application of 

the statistical model to forecast air quality in Macao, while the 2015 to 2018 models 

and the 2013 to 2018 models are a follow-up, to determine if any improvement could 

be made with two additional years of data. The comparison of extended data ranging 

from 5 to 6 years are considered to be adequate lengths to test if there is any 

significant difference between the time series (Cassmassi, 1997). Simultaneously, it 

would not be ideal to trace back too far within the time series, because regional 

emissions are constantly changing, and therefore the level of pollutants concentration 

may also be changing. The dataset from 2017 was used to validate the 2013 to 2016 

model, while the dataset from 2019 was used to validate the 2013 to 2016 model and 
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2013 to 2018 model. This study is a region-specific and empirical approach for 

Macao.  

In order to test the performance of the selected and validated models, they were 

applied to forecast pollution levels during an extremely high pollution episode, and a 

low pollution period. The high and low pollution selected episodes were, respectively: 

(i) the period of Chinese National Holiday, a week before the Chinese National 

Holiday from September 23rd to 30th, 2019, and the week during the Chinese 

National Holiday from October 1st to 7th, and (ii) the preventive measures period of 

COVID-19, from February 5th to 20th, 2020. 

In a study for Beijing, China, the reduction of traffic flow and vehicle emissions 

in downtown areas during the Chinese National Holiday, reduced air pollution, while, 

in contrast, fireworks during the Chinese New Year Holiday had the opposite effect 

(Zheng et al., 2017). When highway tolls were being waived for passenger vehicles 

during the Chinese National Holiday across the entire nation of China, air pollution 

increased by 20% and visibility decreased by 1 km, causing economic losses due to 

negative health impacts estimated at RMB 0.95 billion (Fu & Gu, 2017). 

Nevertheless, the Chinese National Holiday is known to be a golden week of 
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tourism, in which the Chinese tourist flock to different tourist destinations around the 

world to celebrate the national holiday. Due to the vibrant casinos and entertainment 

industry and close proximity to mainland China, Macao is also one of the favorite 

destinations for Chinese tourists, so the influx of tourist during the period of Chinese 

National Holiday may lead to an increase of emissions in Macao. 

Likewise, the recent COVID-19 crisis has had an extreme impact in air pollution 

levels. The first case of COVID-19 was reported back in December 2019. Preventive 

measures were implemented soon after that, abruptly reducing industrial activities and 

transportation. Nevertheless, the levels of air pollutants, in particular of PM2.5, 

remained severe in northern China throughout the end of January 2020 due to adverse 

meteorological conditions that have overwhelmed the benefits of emission reduction 

in transportation and industrial sectors (Wang et al., 2020). 

Previous work showed that there is an increase in the level of O3 concentrations 

and a decrease in the level of NO2, PM10, and PM2.5 concentration during the period 

of COVID-19 pandemic lockdown in several cities of China, due to the significant 

reduction of transportation and industrial activities (Bao & Zhang, 2020; Li et al., 

2020; Shi & Brasseur, 2020; Wang et al., 2020). 
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Chapter 4: Result and Discussion 
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4.1 Air Quality Forecast Using 2013 to 2016 Data (Validated with 2017 Data) 

The statistical models based on MLR and CART analysis were developed to 

forecast NO2, PM10, PM2.5, and O3 concentrations. The final objective is to be able to 

perform a daily forecast, for the next day, in an operational mode, by running the 

prediction models after 16H (due to the daily schedules of which the air quality data is 

made available). CART analysis was tested mainly in order to better predict the high 

concentration levels. For NO2 and PM, CART analysis did not improve the quality of 

the overall predictions. Therefore, prediction models were based only on one MR model. 

In the case of O3 forecast, for three stations (Taipa Ambient, Taipa Residential, and 

Coloane Ambient), CART analysis allowed to identify split nodes, for which O3 

prediction equations were determined afterwards by using MR for each node. Figure 

4.1 represents an example of the CART trees obtained, in this case for O3 MAX prediction 

at Taipa Ambient station. 
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Figure 4.1. CART tree obtained for O3 MAX prediction at Taipa Ambient station. 

The output meteorological and air quality variables and equations obtained with 

MR (or CART and MR, in the O3 MAX case), are listed in Table 4-1.  

Table 4-1. Variables and model equations for each pollutant per air quality monitoring 

station for 2013-2016 model. 

Station Pollutant Model equations 

Macao 

Roadside 

NO2 NO2 = 0.900 x NO2_16D1 + 0.012 x H850 – 0.168 x HRMN 

PM10 

PM10 = 0.900 x PM10_16D1 + 0.019 x H850 – 0.270 x 

HRMD 

PM2.5 PM2.5 = 0.934 x PM25_16D1 + 0.009 x H850 – 0.128 x 
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Station Pollutant Model equations 

HRMD 

Macao 

Residential 

NO2 NO2 = 0.919 x NO2_16D1 + 0.007 x H850 – 0.098 x HRMN 

PM10 

PM10 = 0.884 x PM10_16D1 + 0.019 x H850 – 0.274 x 

HRMD 

PM2.5 

PM2.5 = 0.915 x PM25_16D1 + 0.005 x H850 – 0.242 x 

TD_MD 

O3 MAX 

O3 MAX = 1.123 x O3_max_16D1 – 0.314 x O3_max_23D1 – 

0.055 x HR925 + 0.440 x T_AIR_MX 

Taipa 

Ambient 

NO2 NO2 = 0.915 x NO2_16D1 + 0.004 x H850 + 0.758 x STB925 

PM10 

PM10 = 0.891 x PM10_16D1 + 0.018 x H850 – 0.261 x 

HRMD 

PM2.5 

PM2.5 = 0.918 x PM25_16D1 + 0.009 x H850 – 0.128 x 

HRMD 

O3 MAX 

If [O3 MAX_16D1] ≤ 103.08 

O3 MAX = 1.111 x O3_max_16D1 – 0.207 x O3_max_23D1 – 

0.721 x STB850 
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Station Pollutant Model equations 

If [O3 MAX_16D1] = ]103.08; 162.73] 

O3 MAX = 1.237 x O3_max_16D1 – 0.433 x O3_max_23D1 – 

1.690 x STB850 

If [O3 MAX_16D1] > 162.73 

O3 MAX = 0.930 x O3_max_16D1 – 0.473 x O3_max_23D1 – 

8.608 x STB850 

Taipa 

Residential 

NO2 NO2 = 0.848 x NO2_16D1 + 0.008 x H850 – 0.315 x TDMD 

PM10 

PM10 = 0.894 x PM10_16D1 + 0.017 x H850 – 0.237 x 

HRMD 

PM2.5 

PM2.5 = 0.937 x PM25_16D1 – 0.651 x TDMD + 0.746 x 

TAR925 

O3 MAX 

If [O3 MAX_16D1] ≤ 129.05 

O3 MAX = 1.043 x O3_max_16D1 – 0.240 x O3_max_23D1 + 

0.016 x H850 – 0.163 x HRMN 

If [O3 MAX_16D1] = ]129.05; 205.47] 

O3 MAX = 0.997 x O3_max_16D1 – 0.387 x O3_max_23D1 + 
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Station Pollutant Model equations 

0.055 x H850 – 0.677 x HRMN 

If [O3 MAX_16D1] > 205.47 

O3 MAX = 1.170 x O3_max_16D1– 0.482 x O3_max_23D1 + 

0.124 x H850 – 2.632 x HRMN 

Coloane 

Ambient 

NO2 

NO2 = 0.930 x NO2_16D1 – 0.617 x TDMD + 0.739 x 

TAR925 

PM10 

PM10 = 0.875 x PM10_16D1 + 0.023 x H850 – 0.331 x 

HRMD 

PM2.5 

PM2.5 = 0.903 x PM25_16D1 + 0.008 x H850 – 0.121 x 

HRMN 

O3 MAX 

If [O3 MAX_16D1] ≤ 113.96 

O3 MAX = 1.014 x O3_max_16D1 – 0.197 x O3_max_23D1 + 

0.834 x T_AIR_MX – 0.129 x HRMN 

If [O3 MAX_16D1] = ]113.96; 181.61] 

O3 MAX = 1.054 x O3_max_16D1 – 0.394 x O3_max_23D1 + 

2.676 x T_AIR_MX – 0.597 x HRMN 
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Station Pollutant Model equations 

If [O3 MAX_16D1] > 181.61 

O3 MAX = 0.666 x O3_max_16D1 – 0.448 x O3_max_23D1 + 

7.298 x T_AIR_MX – 1.561 x HRMN 

The models were validated with collected data from 2017. The results show a good 

agreement between modelled and observed concentrations, being statistically 

significant at the 95% confidence level. The selected models provide a good 

relationship between meteorological and air quality variables, when performing an air 

quality forecast under different situations. Table 4-2 contains the obtained model 

performance indicators, such as, R2, RMSE, MAE, and Bias.  
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Table 4-2. Model performance indicators for the 2013 to 2016 model validation with 

2017 data. 

Station Pollutant 

Model performance indicator 

Model built using 

only MR or CART 

and MR 

R2 RMSE MAE BIAS MR CART 

Macao 

Roadside 

PM10 0.91 9.2 6.6 1.5 ü  

PM2.5 0.90 5.9 4.0 1.5 ü  

NO2 0.89 7.9 5.8 0.9 ü  

Macao 

Residential 

PM10 0.91 8.3 5.8 1.2 ü  

PM2.5 0.86 5.9 3.6 0.9 ü  

NO2 0.87 7.8 5.6 -0.2 ü  

O3 MAX 0.81  23.2  14.0  0.0 ü  

Taipa Ambient 

PM10 0.92 6.8 4.5 1.1 ü  

PM2.5 0.89 5.0 3.2 1.1 ü  

NO2 0.90 6.1 4.4 0.4 ü  

O3 MAX 0.82 25.7 15.0 1.3 ü ü 



 93 

Taipa 

Residential 

PM10 0.92 6.4 4.1 1.5 ü  

PM2.5 0.89 4.9 3.3 -0.3 ü  

NO2 0.84 6.7 4.6 -0.5 ü  

O3 MAX 0.87 21.1 12.2 3.7 ü ü 

Coloane 

Ambient 

PM10 0.93 7.7 5.7 1.9 ü  

PM25 0.90 5.4 3.6 0.9 ü  

NO2 0.85 6.4 4.1 0.0 ü  

O3 MAX 0.78 27.4 16.9 -1.5 ü ü 

The models, as assessed by R2 values, performed better for PM (between 0.86 and 

0.93 and, in all cases, greater for PM10 than for PM2.5), followed by NO2 (between 0.84 

and 0.90), being the lowest explained variance achieved for O3 (between 0.78 and 0.87). 

Models did not show a defined trend on the forecasts by type of station, presenting 

undistinctive R2 for roadside, residential and ambient stations. The monitored and 

forecasted concentrations, in 2017, for the models with the highest and lowest R2 are 

depicted in Figure 4.2 and 4.3, being respectively, the one for PM10 Coloane Ambient 

and O3 MAX Coloane Ambient, in 2017. The poorest results obtained in Coloane 

Ambient is related with the fewest cases available to build the model (N=546). 
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Figure 4.2. Observed and predicted PM10 concentrations for Coloane Ambient in 

2017. 

 

Figure 4.3. Observed and predicted O3 MAX concentrations for Coloane Ambient in 

2017. 

Regarding the RMSE, all models presented the same trend observed for R2, being 

the RMSE lower for PM (between 4.9 µg/m3 and 9.2 µg/m3), followed by NO2 (between 

6.1 µg/m3 and 7.9 µg/m3), and the highest for O3 (between 21.1 µg/m3 and 27.4 µg/m3). 

In the case of O3, the high RMSE obtained values were due to abrupt variations, on 

consecutive days, influencing the predicted values, since statistical models are sensitive 
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to this kind of fluctuations.  

Regarding CART analysis for O3 prediction, three equation nodes were used. The 

number of cases considered in each node (N), the coefficient of determination (R2), the 

correlation coefficient (r), and the standard error of the estimate are presented in Table 

4-3. The obtained standard error of the estimate, which is a measure of the prediction’s 

accuracy, was higher for higher concentrations prediction categories. The highest 

obtained standard error of the estimate for Node 1 was of 17.2 µg/m3 in Coloane 

Ambient station, for Node 2 was of 28.8 µg/m3 and for Node 3 was of 43.6 µg/m3, both 

in Taipa Residential station. This reflects the difficulty of the model in predicting the 

highest O3 concentration ranges. Traffic-related pollutants, such as PM and NO2, are 

dependent on meteorological conditions as well as emission rates. Because O3 is 

produced in the atmosphere through photochemical processes, the major 

meteorological factors affecting ozone concentrations are different from those for 

traffic-related primary pollutants (Choi et al., 2013). 
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Table 4-3. CART model performance indicators for 2013 to 2016 model. 

Station Nodes split N 

Model performance indicator 

R2 r 

Standard error 

of the estimate 

Taipa 

Ambient 

[O3 MAX_16D1] ≤ 103.08 873 0.93 0.97 16.57 

[O3 MAX_16D1] = ]103.08; 162.73] 347 0.97 0.98 22.70 

[O3 MAX_16D1] > 162.73 200 0.96 0.98 38.59 

Taipa 

Residential 

[O3 MAX_16D1] ≤ 129.05 930 0.95 0.98 15.96 

[O3 MAX_16D1] = ]129.05; 205.47] 242 0.97 0.98 28.84 

[O3 MAX_16D1] > 205.47 99 0.96 0.98 43.62 

Coloane 

Ambient 

[O3 MAX_16D1] ≤ 113.96 389 0.94 0.97 17.25 

[O3 MAX_16D1] = ]113.96; 181.61] 106 0.97 0.99 24.32 

[O3 MAX_16D1] > 181.61 52 0.96 0.98 40.73 

In all the cases, the variable that represents the last 24-hour pollutant concentrations 

(16D1) is the most prevalent, being selected at all the forecast equations (Table 4-2). 

The geopotential height at 850 hPa (H_850), indicator of synoptic-scale weather pattern, 

is also frequently present in the forecast of NO2 and PM. Specifically, in the case of 
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PM10, relevant variables are H_850 and the medium relative humidity (HRMD), while 

for PM2.5, for both residential stations, average dew point temperature (TD_MD) and 

air temperature at 925 hPa (TAR_925, a measure of the strength and height of the 

subsidence inversion) figure in the final equations. Atmospheric stability at 925 hPa 

and at 850hPa (STB_925 and STB_850, respectively) figure in final equations in the 

case of NO2 and O3 MAX at Taipa Ambient. This temperature differences between layers 

provide information about atmospheric stability. 

The used statistical methods depend on the past series of data. If the historical data 

is insufficient, forecasted data will be less reliable. In particular, if emission sources 

change considerably or if meteorological variables also change due to factors related 

to new weather patterns eventually motivated by climate change, the data series of the 

past will not represent the updated situation, and models need to be recalculated with 

more recent data. 

4.2 Air Quality Forecast Using 2013 to 2018 Data (Validated with 2019 Data) 

Table 4-4 shows there is no significant difference in the coefficient of 

determination (R2) and only minor improvements in the RMSE, MAE, and BIAS 

between the 2013 to 2016 model and the 2013 to 2018 model in predicting next-day 
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concentrations levels in 2019, with high R2 between predicted and observed daily 

average concentrations (between 0.78 and 0.89 for all pollutants). 

Regarding model performance indicators obtained per pollutant and station, the 

majority of models show a good agreement and similar R2 range values (from 0.81 to 

0.89), except for O3 MAX (from 0.78 to 0.86), which is more difficult to predict. MLR 

was used for all pollutants, while CART analysis was used in almost all the O3 MAX 

models (Table 4-2). This CART analysis complement was an approach to obtain 

improved results, mainly regarding a better prediction of high pollutant levels. 

 

Table 4-4. Model performance indicators for the 2013 to 2016 model and the 2013 to 

2018 model, validation with 2019 data. 

Station Pollutant 

Model Performance Indicator 

(the 2013 to 2016 Model) 

Model Performance Indicator 

(the 2013 to 2018 Model) 

R2 RMSE MAE BIAS R2 RMSE MAE BIAS 

Macao 

Roadside 

PM10 0.88 8.6 5.8 1.8 0.88 8.4 5.6 1.5 

PM2.5 0.86 5.4 3.7 1.5 0.87 5.2 3.3 0.2 

NO2 0.89 8.0 5.9 0.4 0.89 7.9 5.8 −0.1 
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Macao 

Residential 

PM10 0.89 8.8 5.9 −0.3 0.89 8.8 5.9 −0.1 

PM2.5 0.87 5.2 3.3 0.7 0.87 5.2 3.3 0.8 

NO2 0.86 7.7 5.5 −0.4 0.86 7.7 5.5 0.0 

O3 MAX 0.85 23.2 14.0 0.0 0.85 23.2 14.0 0.0 

Taipa 

Ambient 

PM10 0.88 7.9 5.4 1.7 0.88 7.8 5.1 0.8 

PM2.5 0.86 5.1 3.6 1.6 0.86 4.8 3.1 0.2 

NO2 0.87 6.1 4.2 0.9 0.87 6.1 4.2 1.0 

O3 MAX 0.86 24.4 14.8 −2.1 0.86 23.7 14.7 −1.6 

Taipa 

Residential 

PM10 0.87 8.0 5.2 0.1 0.88 7.9 5.1 0.2 

PM2.5 0.88 5.7 3.5 −0.1 0.88 5.6 3.5 −0.1 

NO2 0.87 5.6 4.2 0.8 0.87 5.6 4.1 0.6 

O3 MAX 0.78 20.9 12.7 1.3 0.78 20.9 12.7 1.3 

Coloane 

Ambient 

PM10 0.88 8.7 6.2 2.4 0.89 8.3 5.7 1.2 

PM25 0.86 5.4 3.7 1.3 0.86 5.3 3.6 1.0 

NO2 0.81 7.8 5.5 −0.2 0.81 7.8 5.5 −0.1 

O3 MAX 0.79 24.7 15.9 −3.6 0.79 24.3 15.3 –3.0 
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Table 4-5 presents the final model equations obtained for each pollutant, per air 

quality monitoring station, in the 2013 to 2018 model. Additionally, the final 

equations used to predict the levels of NO2, PM10, PM2.5, and O3 MAX concentrations 

are presented in Table 4-5. 

Table 4-5. Variables and model equations for each pollutant per air quality monitoring 

station in the 2013 to 2018 model. 

Station Pollutant Model Equations 

Macao Roadside NO2 NO2 = 0.897 × NO2_16D1 + 0.011 × H850 

− 0.151 × HRMN 

PM10 PM10 = 0.913 × PM10_16D1 + 0.015 × 

H850 − 0.208 × HRMD 

PM2.5 PM2.5 = 0.943 × PM25_16D1 + 0.006 × 

H850 − 0.091 × HRMD 

Macao Residential NO2 NO2 = 0.913 × NO2_16D1 + 0.007 × H850 

− 0.087 × HRMN 

PM10 PM10 = 0.896 × PM10_16D1 + 0.016 × 

H850 − 0.224 × HRMD 
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PM2.5 PM2.5 = 0.926 × PM25_16D1 + 0.004 × 

H850 − 0.176 × TD_MD 

O3 MAX O3 MAX = 1.089 × O3_MAX_16D1 − 0.344 × 

O3_MAX_23D1 − 1.303 × TD_MD + 1.437 × 

T_AIR_MX 

Taipa Ambient NO2 NO2 = 0.914 × NO2_16D1 + 0.004 × H850 

+ 0.734 × STB925 

PM10 PM10 = 0.905 × PM10_16D1 + 0.014 × 

H850 − 0.205 × HRMD 

PM2.5 PM2.5 = 0.928 × PM25_16D1 + 0.006 × 

H850 − 0.093 × HRMD 

O3 MAX If [O3 MAX_16D1] ≤ 105.50 

O3 MAX = 1.034 × O3_max_16D1 − 0.214 × 

O3_max_23D1 + 0.019 × H850 − 0.236 × 

HRMN 

If [O3 MAX_16D1] = ]105.50; 181.87] 

O3 MAX = 0.994 × O3_max_16D1 − 0.433 × 
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O3_max_23D1 + 0.051 × H850 − 0.529 × 

HRMN 

If [O3 MAX_16D1] > 181.87 

O3 MAX = 1.006 × O3_max_16D1 − 0.472 × 

O3_max_23D1 + 0.12 × H850 − 2.025 × 

HRMN 

Taipa Residential NO2 NO2 = 0.859 × NO2_16D1 + 0.007 × H850 

− 0.271 × TD_MD 

PM10 PM10 = 0.902 × PM10_16D1 + 0.015 × 

H850 − 0.204 × HRMD 

PM2.5 PM2.5 = 0.938 × PM25_16D1 − 0.607 × 

TD_MD + 0.703 × TAR925 

O3 MAX If [O3 MAX_16D1] ≤ 129.12 

O3 MAX = 1.028 × O3_max_16D1 − 0.238 × 

O3_max_23D1 + 0.019 × H850 − 0.216 × 

HRMN 

If [O3 MAX_16D1] = ]129.12; 207.10] 
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O3 MAX = 0.958 × O3_max_16D1 − 0.381 × 

O3_max_23D1 + 0.061 × H850 − 0.751 × 

HRMN 

If [O3 MAX_16D1] > 207.10 

O3 MAX = 1.12 × O3_max_16D1 − 0.5 × 

O3_max_23D1 + 0.14 × H850 − 2.818 × 

HRMN 

Coloane Ambient NO2 NO2 = 0.931 × NO2_16D1 − 0.503 × 

TD_MD + 0.628 × TAR925 

PM10 PM10 = 0.904 × PM10_16D1 + 0.015 × 

H850 − 0.214 × HRMD 

PM2.5 PM2.5 = 0.927 × PM25_16D1 + 0.005 × 

H850 − 0.069 × HRMN 

O3 MAX If [O3 MAX_16D1] ≤ 116.20 

O3 MAX = 1.021 × O3_max_16D1 − 0.233 × 

O3_max_23D1 + 1.650 × T_AIR_MX − 

1.392 × TD_MD 
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If [O3 MAX_16D1] = ]116.20; 186.92] 

O3 MAX = 0.831 × O3_max_16D1 − 0.397 × 

O3_max_23D1 + 4.929 × T_AIR_MX − 

3.384 × TD_MD 

If [O3 MAX_16D1] > 186.92 

O3 MAX = 0.921 × O3_max_16D1 − 0.482 × 

O3_max_23D1 + 8.868 × T_AIR_MX − 

8.582 × TD_MD 

4.3 Air Quality Forecast Using 2013 to 2018 Data, for Two days ahead (D2) 

The air quality forecast for two days ahead (D2) is setup by using the forecasted 

data of one day ahead (D1) as the 16D1 and 23D1 for the air quality variables, and the 

forecasted meteorological variables for two days ahead (D2) obtained from ECMWF 

weather forecast model. The equations used in the two days ahead (D2) forecast 

model is identical to the one day ahead (D1) forecast model, as shown in Table 4-5 for 

Taipa Ambient.  

The model performance indicators obtained for the 2013 to 2018 model, 

validated with 2019 data, for two days ahead (D2) and one day ahead (D1) are listed 



 105 

in Table 4-6. The forecast for two days ahead (D2) is considerably less accurate 

compare to one day ahead (D1), with a decrease in the coefficient of determination 

(R2) and an increase in root mean square error (RMSE), mean absolute error (MAE), 

and biases (BIAS) for all pollutants. Nevertheless, the result shows that PM10 is more 

resilient, while the levels of PM2.5, NO2, and O3 have a greater variation possibly 

related to weather change. 

Table 4-6. Model performance indicators for the 2013 to 2018 model validation with 

2019 data, for two days ahead (D2) and one day ahead (D1). 

 

 

Station Pollutant 

Model Performance 

Indicator (D2) 

Model Performance 

Indicator (D1) 

R2 RMSE MAE BIAS R2 RMSE MAE BIAS 

Taipa 

Ambient 

PM10 0.51 16.2 11.6 1.6 0.88 7.8 5.1 0.8 

PM2.5 0.37 10.8 7.7 0.3 0.86 4.8 3.1 0.2 

NO2 0.39 13.9 10.0 1.6 0.87 6.1 4.2 1.0 

O3MAX 0.43 49.6 34.2 -13.2 0.86 23.7 14.7 -1.6 
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4.4 Air Quality Forecast During a High Pollution Episode 

The air quality of Macao, a territory with only 32.8 km2, is heavily influenced by 

external factors, in particular by human activities that occur in the much larger and 

neighboring Guangdong province. Our study shows the extent to which an increase in 

mobility associated with Chinese National Holiday impacts air quality in Macao. 

Taipa Ambient is the most representative background location for Macao, and 

was chosen to assess the background levels of PM2.5 and O3 during the extreme 

pollution episode. The influx of tourists coming to Macao, in light of the Chinese 

National Holiday, contributed to a high pollution episode that occurred during late 

September and early October 2019, with peak daily levels of PM2.5 concentration 

exceeding 55 μg/m3 and maximum hourly levels of O3 MAX concentration exceeding 

400 μg/m3, largely exceeding the threshold level recommended by the WHO. The 

levels of PM2.5 and O3 MAX concentrations for Taipa Ambient during the Chinese 

National Holiday in 2019 (from September to November) are presented in Figures 4.4 

and 4.5. They show the comparison of daily average PM2.5 and O3 MAX concentration 

during 2018 and 2019, from a month before in September and a month after in 

November of the Chinese National Holiday. The pollution episode of 2019 occurred 
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just before and going well into the period of Chinese National Holiday (1 to 7 

October). 

 

Figure 4.4. PM2.5 concentrations for Taipa Ambient highlighting a pollution episode 

immediately before, and during, the Chinese National Holiday of 2018 and 2019 

(September to November). 
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Figure 4.5. O3 MAX concentrations for Taipa Ambient highlighting a pollution episode 

immediately before, and during, the Chinese National Holiday of 2018 and 2019 

(September to November). 

As shown in Figures 4.4 and 4.5, the levels of PM2.5 and O3 MAX concentration 

peaked immediately before, and during, the Chinese National Holiday in late 

September and early October 2019. The monthly mean concentration of PM2.5 (from 

September to November) during the Chinese National Holiday in 2019 was 19 μg/m3, 

24 μg/m3, and 28 μg/m3, respectively. In addition, the monthly mean concentration of 

O3 MAX (from September to November) during the Chinese National Holiday in 2019 
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was 181 μg/m3, 163 μg/m3, and 172 μg/m3, respectively. 

The levels of O3 MAX concentrations reached its peak during the late September 

and early October due to meteorological factors including predominant winds from 

the north and east, from the Guangdong Province and Hong Kong, respectively. 

Temperatures were high in conjunction with low wind speed. The average daily 

temperature during the ozone peak episode that took place the two-weeks before the 

Chinese National Holiday (October 1st) was 28 °C, while the maximum daily average 

was 31 °C. Average wind speed was 2.5 m/s. 

Due to the shutdown of nearby industrial sectors during the period of Chinese 

National Holiday, there were lower emissions of nitrogen oxides associated with the 

decreased load from the coal power plants in the northern region, usually supporting 

the operation of the factories. Therefore, this caused a decrease NOx, the precursor of 

O3. However, the increase in emissions of VOCs and NOx by vehicles, with chemical 

reactions in the presence of sunlight, may have caused the peak levels of ozone 

concentrations under these high temperature favorable conditions. 

Regarding the model behavior in predicting PM2.5 and O3 MAX during the high 

pollution episode (Chinese National Holiday), observed and predicted PM2.5 and 
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O3MAX concentrations are presented in Figures 4.6 and 4.7. The levels of PM2.5 and O3 

MAX concentration peaked during late September and early October 2019. The PM2.5 

predicted levels followed the primary trend of the measured concentration peak 

represented in Figure 4.6. The model for O3 MAX also followed the primary trend, but 

it was more difficult to represent the concentration peak. The forecast model for PM2.5 

has a higher R2 in comparison to the model of O3 MAX, because the maximum hourly 

concentration of O3 MAX is more challenging to predict in comparison to the 24 h 

average of PM2.5, as there is influence from the regional precursor sources, and the 

complex chemistry with solar radiation for O3 formation also led to a higher degree of 

variability. 
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Figure 4.6. Observed and predicted PM2.5 concentrations for Taipa Ambient during 

Chinese National Holiday (from September to November 2019). 
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Figure 4.7. Observed and predicted O3 MAX concentrations for Taipa Ambient during 

Chinese National Holiday (from September to November 2019). 

4.5 Air Quality Forecast During a Low Pollution Episode 

The levels of PM2.5 concentrations significantly reduced after the first confirmed 

case of COVID-19 pandemic in Macao on January 22nd, 2020, which caused panic 
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and anxiety in the local population, and continued by the announcement of casino 

closures by the Macao government as part of the preventive measures for COVID-19 

from February 5th to 20th, 2020. Also, the COVID-19 pandemic has led to the Macao 

government’s decision to temporarily suspend the operation of the casinos and 

entertainment industry and highly restrict cross border movements, as a preventive 

measure to reduce population mobility to and from Macao. As a result, it has caused a 

low pollution episode during late January and early February 2020, with daily levels 

of PM2.5 concentration reaching a record low at 2 μg/m3 and maximum hourly O3 MAX 

concentration at 50 μg/m3. The reduction of population mobility, and consequently, of 

traffic emissions in Macao and its nearby Guangdong Province, lead to this lowest 

PM2.5 concentration levels recorded. 

As shown in Figure 4.8, the levels of PM2.5 concentrations remained low during 

the initial outbreak of COVID-19 pandemic in Macao (from January to February 

2020), slowly recovering to pre-COVID-19 values in March 2020. As shown in 

Figure 4.9, the levels of O3 MAX concentration remained high during the initial 

outbreak of COVID-19 pandemic in Macao (from January to February 2020) and the 

high levels continued into March 2020. The higher levels of O3 MAX concentration 
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were associated with lower NOX emissions, which led to a weakened O3 titration by 

NO during the COVID-19 pandemic lockdown in the nearby Guangdong Province (Li 

et al., 2020). 

Despite industrial emission being a major contributor to the PM2.5 pollution in 

China prior to COVID-19 pandemic lockdown period, the residential emission 

contributed to 39% of total PM2.5 emissions in China, so the emissions of PM2.5 

during the lockdown period may have originated from residential areas (Wang et al., 

2020). 

The comparison of PM2.5 and O3 MAX concentrations for Taipa Ambient during 

the previous year of 2019 and COVID-19 pandemic in 2020 (January to March) is 

presented in Figures 4.8 and 4.9. 
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Figure 4.8. Comparison of PM2.5 concentrations for Taipa Ambient during the 

previous year of 2019 and COVID-19 pandemic in 2020 (January to March). 
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Figure 4.9. Comparison of O3 MAX concentrations for Taipa Ambient during the 

previous year of 2019 and COVID-19 pandemic in 2020 (January to March). 

As shown in Figure 4.10, the difference between monthly mean concentration 

(from January to March) of PM2.5 concentration in 2019 and 2020 was 16 μg/m3, 2 

μg/m3, and 1 μg/m3, respectively. As shown in Figure 4.9, the difference between 

monthly mean concentration (from January to March) of O3 MAX concentration in 2019 

and 2020 was 12 μg/m3, 21 μg/m3, and 9 μg/m3, respectively. 

The monthly mean concentration of PM2.5 and O3 MAX concentration for Taipa 

Ambient during the previous year of 2019 and COVID-19 pandemic in 2020 (January 

to March) is presented in Figure 4.10 and 4.11. Overall, the preventive measures of 
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COVID-19 pandemic may not have caused a significant difference in the levels of 

PM2.5 and O3 concentration in Macao, as the levels from February to March 2020 

were similar to that of the previous year, 2019. 

In addition, as some of the preventive measures, in particular, the 15 days 

mandatory casino closure have been lifted, the fear and tension of the local residents 

has eased, which has promoted population mobility. Although the levels of PM2.5 

concentrations in Macao improved significantly during late January and early 

February 2020, the levels of PM2.5 concentrations gradually returned to normal in 

March 2020 after some of the preventive measures began to be lifted in Macao and its 

nearby Guangdong Province. 

 

Figure 4.10. Monthly mean PM2.5 concentrations for Taipa Ambient during the 

previous year of 2019 and COVID-19 pandemic in 2020 (January to March). 
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Figure 4.11. Monthly mean O3 MAX concentrations for Taipa Ambient during the 

previous year of 2019 and COVID-19 pandemic in 2020 (January to March). 

Due to the different nature of PM2.5 and O3 MAX, the forecast model performed 

better in the prediction of PM2.5 in comparison to O3 MAX. This can be demonstrated in 

the higher R2 values in the PM2.5 forecast model. The observed and predicted PM2.5 

and O3 MAX concentrations, during the low pollution episode (implementation of 

COVID-19 preventive measures), are presented in Figure 4.12 and 4.13. 
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Figure 4.12. Observed and predicted PM2.5 concentrations for Taipa Ambient during 

preventive measures of COVID-19 pandemic (from January to March 2020). 
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Figure 4.13. Observed and predicted O3 MAX concentrations for Taipa Ambient during 

preventive measures of COVID-19 pandemic (from January to March 2020). 

The 2013 to 2018 model successfully predicted both the high and low pollution 

episodes, for PM2.5 and O3 MAX, obtaining a significant R2 of 0.88 and 0.83, 

respectively, for the high pollution period (from September to November 2019), and 
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an R2 of 0.82 and 0.75, respectively, for the low pollution period (from January to 

March 2020). The R2 obtained for the entire year of 2019 was 0.86 for both PM2.5 and 

O3 MAX. The statistical forecast model has been shown to be capable to predict, with a 

high coefficient of determination, the next 24 h. 
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Chapter 5: Future measures that could be implemented to improve air quality 

in Macao 
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In order to improve the air quality in Macao, a group of measures implemented 

in European and Asian megacities were explored.  

The Low Emission Zones (LEZ) have been widely implemented in European 

capitals such as Lisbon (Portugal), London (United Kingdom), and Berlin (Germany) 

for many years, while the license plate restriction policy and license plate lottery 

policy has been widely implemented in Asian capitals such as Beijing (China) and 

Delhi (India) in the recent years. Both of these measures have been successful to 

improve the air quality in their respective city center.  

The Macao government has adopted several measures to improve air quality 

such as tax exemptions of EV and exclusive corridor for public transportation (bus 

only). Nevertheless, the Macao government may also consider adopting LEZ and 

license plate restriction and lottery policies as the next step to further improve the air 

quality in Macao. 

Nevertheless, the comparison of the measures to improve air quality amongst 

European cities, Asian cities, and Macao is valuable, as these precedent cases may 

serve as an example for the Macao government to follow.  
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5.1 Low Emission Zone (LEZ) 

In order to achieve the strict emission threshold set by the World Health 

Organization (WHO), local, regional, and national governments across the world have 

taken different measures in their city center to reduce the anthropogenic emission of 

particulate matter (PM10 and PM2.5) and nitrogen oxides (NOx), one of the major 

pollutants from vehicle emissions. In order to discover the best measures to improve 

air quality in Macao, it would be important to learn from the difference measures 

across the world, in particular of megacities in Europe and Asia. In European cities, 

the majority has adopted a Low Emission Zone (LEZ) as a measure to improve air 

quality, which has been successful in reducing vehicle emissions in city centers. A 

Low Emission Zone (LEZ) is a defined area where access by the most polluting 

vehicles is restricted, which means that the older vehicles with higher emission cannot 

enter this area. 

A study showed that the levels of PM10 and NO2 concentrations in Lisbon have 

been exceeding the thresholds set by European Union and national legislation in 2001 

(Ferreira et al., 2015). The Lisbon Regional Agency developed a first Air Quality 

Action Plan in 2006, publishing the respective Enforcement Plan in 2009, and the 
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LEZ implementation took place by the municipality of Lisbon in 2011, as a measure 

to reduce air pollution related to road traffic. Figure 5.1 shows the LEZ of Lisbon and 

the locations of the monitoring sites. The current LEZ phase 3 consist of Euro 3 

emission standards in the city center (Zone 1) and Euro 2 emission standards in the 

rest of the LEZ area (Zone 2). A comparison between before the LEZ measures (2011) 

and after the LEZ measures (2013) showed that there was a 23% decrease of annual 

mean PM10 concentration and 12% decrease of annual mean NO2 concentration after 

the implementation of the LEZ. Nevertheless, the reduction attained in the levels of 

NO2 concentration was not as effective as in comparison to other European cities such 

as Berlin and London (Ferreira et al., 2015). 
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Figure 5.1. Low emission zone of Lisbon, Portugal (Santos, Gómez-Losada, & Pires, 

2019). 

The levels of PM10 concentration reduced by 14% and the levels of NO2 

concentration reduced by 21% after the implementation of LEZ in Lisbon, Portugal. 

The reduction of PM10 was lower due to the influence of regional background 

sources, while the reduction of NO2 concentration was higher due to the influence of 

local traffic (Monjardino et al., 2018). The analysis from 2009 to 2016 showed that 

the annual average level of PM10 concentration has reduced by 29% and 23% in Zone 

1 and 2 respectively, and the annual average level of NO2 concentration has reduced 
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12% and 22% in Zone 1 and 2 respectively, after the implementation of LEZ to 

improve air quality in Lisbon (Santos et al., 2019).  

Another study utilized the measurement of black carbon in LEZ to evaluate the 

effectiveness of LEZ in Milan, as black carbon is emitted primarily in traffic sources 

(Invernizzi et al. 2011). There were three zones being considered in this study, with 

fixed monitoring stations, including an outer zone with no traffic restriction, an 

intermediate zone which required vehicles with Euro 4 emission standards to pay a 

traffic congestion charge (Ecopass), and a pedestrian zone without cars in the city 

center. The results showed that there was a sharp decline in black carbon levels from 

the outer zone to the pedestrian zone, while the PM concentration showed no 

significant differences amongst the different zone. In addition, the ratio of black 

carbon to PM10 showed a decrease of 47% and 62% in the Ecopass and pedestrian 

zones, respectively, in comparison to the outer zone. Therefore, these studies 

concluded that black carbon was an appropriate indicator to evaluate the improvement 

in air quality in LEZ (Holman et al., 2015; Invernizzi et al., 2011).  

The implementation of LEZ has reduced the emission of PM10 and diesel soot in 

German cities and there are currently 48 LEZ in operation across Germany (Cyrys et 
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al. 2014). The levels of PM10 concentrations has reduced by 10% after the 

implementation of LEZ in Cologne, Berlin, and Munich, while the levels of diesel 

soot concentrations have reduced by 52% in 2010 and by 63% in 2012 in comparison 

to the reference year of 2007 in Berlin and the levels of PM2.5 concentration has been 

reduced in Munich after the implementation of LEZ (Cyrys et al., 2014). The study of 

the concentration of air pollutants such as PM10, PM2.5, NO, NO2, and NOx from 2002 

to 2012 showed that the implementation of LEZ was positive on the improvement of 

air quality in Germany (Gehrsitz, 2017; Jiang et al., 2017; Malina & Scheffler, 2015).  

In addition, studies showed elemental carbon (EC) to be a more appropriate 

indicator than PM10 and PM2.5 to evaluate the impact of traffic measures, such as LEZ, 

on air quality and human health in Amsterdam, Netherlands. The LEZ in Amsterdam 

restricted heavy-duty vehicles with Euro 0 to 2 emission standard and vehicles that 

are older than eight years with Euro 3 emission standard is successful at reducing air 

pollution in this area (Keuken et al., 2012). A study of five Dutch cities before (2008) 

and after (2010) the implementation of LEZ showed that the concentration of air 

pollutants such as PM10, PM2.5, NO2, NOx and soot have been reduced after the 

implementation of the LEZ (Boogaard et al., 2012).  
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A study conducted in the city of Munich collected PM2.5 samples before (2006 

and 2007) and after (2009 and 2010) the implementation of a LEZ to analyze for 

elemental carbon (EC) and particle organic compounds (POC), which showed that 

there was a significant lower EC and POC concentration after LEZ implementation, 

with average EC concentration reduced from 1.1 to 0.5 μg/m3 (Qadir et al., 2013). 

Also, the ultrafine particles at two London sites and a Birmingham site in late 2007 

showed a reduction between 30% to 59% after the introduction of sulphur-free diesel 

fuel and the implementation of LEZ in London for heavy-duty vehicles (Jones et al., 

2012). 

5.2 License Plate Restriction Policy 

In Asian cities, the majority has adopted a license restriction and a vehicle 

license lottery policy, which has been successful to reduce vehicle emission and 

promote the use of green and public transportation in city center. There are two types 

of license plate restrictions in China, which are either based on One-Day-Per-Week 

(ODPW) or Odd-And-Even (OAE) license plate restriction (Liu et al., 2018). 

Nevertheless, there is still a serious air pollution problem in Beijing, in particular 

related with high concentrations of PM10, PM2.5, SO2, NO2, CO, and O3. Therefore, 



 131 

the Chinese government has implemented the license plate restriction policy as a 

measure to improve the air quality in major cities such as Beijing, Hangzhou, 

Lanzhou, Langfang, and Tianjin (Chen et al., 2018; Huang et al., 2017; Jia et al., 

2017; Liu et al., 2018; Pu et al., 2015; Sun et al., 2014; Xie et al., 2017; Xu et al., 

2015).  

The Chinese Capitol of Beijing has also adopted a vehicle license lottery policy 

to reduce the growth of cars in 2011 and this policy has reduced the total number of 

cars by 14% (Liu et al., 2018; Yang et al., 2020; Yang et al., 2014). The government’s 

policy and attitude towards license plate lottery policy for electric vehicles played an 

important role in the adoption of electric vehicles in Beijing (Zhuge et al., 2020). The 

license plate restriction policy was first introduced during the Beijing Olympic Games 

in 2008 to reduce air pollution and traffic congestion and this measure has continued 

to be implemented in the current days (Lu, 2016).  

The license plate restriction policy is based on the last digit of the vehicle license 

plate, and the Chinese people tend to prefer even numbers due to traditional 

superstition, which restricted the circulation of cars on the road during a specific day 

of the week (Liu et al., 2017). On certain days of the week, there are 7.5% fewer cars 
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being banned from driving on dates when number 4 is specified on the license plate 

restriction, because number 4 is associated with bad fortune and death in Chinese 

traditions (Gu et al., 2017; Yang et al., 2018).  

The Chinese megacity of Shanghai has a different approach to limit the growth 

of car ownership, achieved by implementing a monthly car license auction policy 

(Chen & Zhao, 2013; Zhang et al., 2020). In addition, the implementation of license 

plate restriction showed that the total vehicle kilometer traveled and total emissions 

have been reduced by 9.6% and 6.9%, respectively, which demonstrates the 

effectiveness of emission reduction in Hangzhou, a close-by city from Shanghai (Pu 

et al., 2015). The comparison of before and after the implementation of license plate 

restriction showed that the levels of CO, NO2, and PM2.5 concentration have 

significantly decreased by 15% to 23%, while the levels of O3 concentration remained 

unaffected in Lanzhou (Zhao et al., 2017).  

In addition, the Indian government successfully implemented a similar Odd-

Even license plate restriction to reduce traffic emission in the capital of Delhi, one of 

the most polluted cities in the world (Jayakumar, 2017; Tiwari et al., 2018).  
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5.3 Incentives on Electric Vehicles (EV) 

Despite the limited area of Macao, with only 32.8 km2, there are a total of 233,417 

privately owned vehicles, in particular of 109,579 cars and 123,838 motorcycles. The 

statistics of the vehicles were obtained from Macao Statistics and Census Service 

(DSEC), and the number of charging stations for EV in public parking lots were 

obtained from the Office for the Development of the Energy Sector (GDSE).  

The Macao government has developed a Five-year Development Plan (2016-

2020) and Environmental Protection Planning of Macao (2010-2020), as a measure to 

improve the roadside air quality and protect the health of the population. In order to 

achieve the goals defined in the plan, the Macao government has imposed a strict 

emission standard on the imported new vehicles and vehicles fuels, and promotion of 

environmentally friendly vehicles through tax incentives. These measures included 

the regulation of exhaust emissions from registered and imported new vehicles, 

regulation of the vehicle fuel standards, promotion for the use of environmentally 

friendly vehicles, and a subsidy scheme to eliminate motorcycles with two-stroke 

engine.  

According to the second paragraph of Article 6 of the Motor Vehicle Tax 
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Regulation of Macao, motor vehicles that only use an alternative energy source, apart 

from traditional fossil fuel, such as electricity are exempt of the vehicle tax, a measure 

that has been implemented since February 2012. In addition, the Environmental 

Protection Bureau (DSPA) has been promoting the adoption of electric vehicles (EV) 

as an alternative to traditional fossil fuel vehicles, with efforts to increase the number 

EV recharging stations and EV-only parking spot throughout Macao.  

 In order to increase the convenience of recharging for EV owners, the Macao 

government has introduced a Five-year Development Plan (2016-2020) for installing 

EV charging stations in public parking lots. As a result, there is currently a total of 

170 electric cars and 2 electric motorcycles charging stations evenly distributed 

throughout the public parking lots in Macao, and the number of EV charging stations 

is expected to reach 200 by the end of 2020. Figure 5.2 shows the total proposed EV 

charging station in the public parking lots of Macao. 
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Figure 5.2. Total proposed EV charging stations in public parking lots of Macao. 

The Traffic Bureau (DSAT) has implemented an exclusive corridor for public 

transportation, in particular for bus only, in certain stretches of the busiest road in 

Macao, from 7:30h to 9:00h and 16:30h to 19:00h, during every day of the week. The 

exclusive corridor is monitored by autonomous camera system and violators of 

exclusive corridor policy are subjected to a fine of MOP $600 (an equivalent of USD 

$75). This exclusive corridor for public transportation has been implemented since 

June 2016. The tax exemption on EV, increase of EV charging stations, and the 

exclusive corridors for public transportation are the most important measures adopted 

by the Macao government as an attempt to lower vehicle emissions and promote the 

use of green and public transportation in the city center. 
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Chapter 6: Conclusions and Future Development 
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6.1 Air Quality Forecast Using Statistical Methods 

For the Macao air quality forecast using statistical methods, a model was initially 

constructed using air quality and meteorological data from 2013 to 2016 data with 

multiple linear regression (MLR) and classification and regression tree (CART) 

analysis and validated with 2017 data. The 2013 to 2016 model was successful in the 

prediction of the 2017 data.  

The development of statistical models to forecast the daily average concentration 

of NO2, PM10, PM2.5, and the maximum hourly average concentration of O3 for the next 

day, in Macao region, was successfully accomplished for five locations, recurring to 

MLR analysis. In the case of O3 predictions, CART analysis showed better results, 

specially improving high concentration levels predictions, assuring a more accurate 

prediction of critical pollution episodes. The pollutants for which best results were 

obtained were PM10, followed by PM2.5, and NO2. The most challenging pollutant to 

forecast was the maximum hourly concentration of O3, scoring the lowest R2 (0.78), 

due to its secondary nature as a pollutant, involved in several atmospheric reactions that 

depend on the concentrations of other compounds, and also key meteorological 

conditions, such as sunlight and temperature. 
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The variables that explained most of the variability, for all pollutants, were the 

concentration levels measured in the previous 24-hours to the operational forecast. For 

PM and NO2 the indicator of synoptic-scale weather pattern (geopotential height at 850 

hPa parameter), was also a relevant variable. This work shows that in areas such as 

Macao, where data may not be easily obtained with a high level of confidence (such as 

spatially resolved emissions and traffic related data), this kind of statistical approach is 

an adequate alternative to reliably forecast air quality with a clearer understanding of 

the main factors affecting it.  

New models were developed with two additional years of data, in particular of 2017 

and 2018. The 2013 to 2018 models were successful in the prediction of the 2019 data. 

The additional data improved the air quality forecast for Macao. Despite the R2 being 

identical between the 2013 to 2016 and the 2013 to 2018 model, validation of 2019 data 

had a lower root mean square error (RMSE), mean absolute error (MAE), and biases 

for the 2013 to 2018 model, which makes it the best forecast model, with the highest 

accuracy and stability in the prediction of the next day levels of pollutant concentrations 

in Macao. It is concluded that the additional two years of data helped to improve the 

accuracy and stability of the forecast. 
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A forecast for two days ahead (D2) was also developed for one air quality 

monitoring station (Taipa Ambient) with a considerable decrease in the coefficient of 

determination (R2), and a substantial increase in root mean square (RMSE), mean 

absolute error (MAE) and biases. Nevertheless, the result shows that PM10 is more 

resilient, while the levels of PM2.5, NO2, and O3 have a greater variation related to the 

weather change. 

6.2 Air Quality Forecast Under High and Low Pollution Episodes 

The 2013 to 2018 models were able to successfully predict the high pollution 

episode during the Chinese National Holiday in late September and early October 

2019 and the low pollution episode during the preventive measures period of COVID-

19 pandemic in late January and early February 2020. This shows that the air quality 

forecast models can be reliably applied to predict next-day pollutants concentrations 

across different magnitude levels of air pollution, being a useful tool for mitigation of 

air pollution impacts. 

In addition, this shows that an improvement of global air quality in the territory 

is possible, but it is tightly linked to the implementation of air pollution control 

measures in the industry and mobility sectors in Macao, in particular, in Guangdong 
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Province. As previously studied, the air pollution problem associated with PM2.5 and 

O3 MAX is a regional problem that is not only limited to Macao, but also in the nearby 

regions of Hong Kong and Guangdong Province. 

6.3 Answers to Research Questions 

This section presents more detailed conclusions, summarizing the answers to the 

research questions identified in the beginning of the research work. 

1. What is the trend of the different air pollutant concentrations measured in 

the Macao air quality monitoring stations and the reason for those variations 

in the recent years? 

There is a decreasing trend in the levels of NO2, PM10 and PM2.5 concentration, 

which may be due to the implementation of stricter emission standard for newly 

imported and existing vehicles, and the promotion for the use of electric vehicles 

in Macao. Also, the air pollution preventive measures in the nearby Guangdong 

province may also be contributing to this trend. In contrast, there is an increasing 

trend in the levels of O3 concentrations, which may be due to the complex nature 

of the O3 precursors and the chemistry behind its formation and consumption.   
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2. Is it possible to develop a statistical model to accurately forecast the next day 

concentrations of air pollutant in the Macao region? 

Yes, it is possible to develop an air quality forecast using statistical methods to 

accurately predict the next day concentrations for NO2, PM10, PM2.5 and O3 MAX in 

the region of Macao, as shown in the result of this thesis.   

a. What are the key meteorological and air quality variables that are 

necessary to develop the statistical model? 

The key meteorological and air quality variables was listed in the Table 3-2, 

Variables considered as predictors in the multiple linear regression (MLR) 

and classification and regression tree (CART) models in all of the air quality 

forecast models. The key meteorological variables included the geopotential 

height at 850 hPa (H850), average relative humidity (HRMD), and minimum 

relative air humidity (HRMN). The key air quality variables included the 

average levels of pollutant concentrations from 16:00 of yesterday to 15:00 

of today (16D1), and the average levels of pollutant concentrations from 

00:00 to 23:00 of yesterday (23D1).  
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b. How does additional years of meteorological and air quality historical 

data may affect the performance of the statistical forecast? 

The additional years of meteorological and air quality historical data has 

slightly improved the accuracy of the air quality forecast as shown in Table 

4-4, Model performance indicators for the 2013 to 2016 model validation 

with 2019 data, and Table 4-5 Model performance indicators for the 2013 to 

2018 model validation with 2019 data.   

c. How does the statistical forecast perform under the critical situations, 

such as a high pollution episode during Chinese National Holiday and a 

low pollution episode during COVID-19 pandemic? 

The air quality forecast using statistical methods performed well under high 

pollution episodes (R2 = 0.88 and 0.83) for PM2.5 and O3 MAX respectively, as 

shown in Figure 4.10, Observed and predicted PM2.5 concentrations for Taipa 

Ambient during Chinese National Holiday (from September to November 

2019), and Figure 4.11, Observed and predicted O3 MAX concentrations for 

Taipa Ambient during Chinese National Holiday (from September to 

November 2019). 
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In addition, the air quality forecast performed well under low pollution 

episodes (R2 = 0.82 and 0.75) for PM2.5 and O3 MAX respectively, as shown in 

Figure 4.12, Observed and predicted PM2.5 concentrations for Taipa Ambient 

during preventive measures of COVID-19 pandemic (from January to March 

2020), and Figure 4.13, Observed and predicted O3 MAX concentrations for 

Taipa Ambient during preventive measures of COVID-19 pandemic (from 

January to March 2020).  

6.4 Main Constraints and Suggestions to Future Works 

Despite all the time and effort put in this work, there were several limitations and 

constraints identified, which include the following:  

- The Macao Meteorological and Geophysical Bureau (SMG) does not release a 

weather balloon to collect the upper sounding data, so the closest station of 

Hong Kong King’ Park (Station number 45004) was identified to collect the 

upper air observation, which is one of the key meteorological variables for the 

development of the air quality forecast model.  

- The Ka-Ho air quality monitoring station has only become operational in the 

recent years and so there was not sufficient data available to perform the air 
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quality forecast for this station, which requires at least five years of historical 

data. However, the surrounding area of this air quality monitoring station is 

known to have a serious air pollution problem, so an air quality forecast is 

essential and necessary for the health and well-being of the nearby residents.  

- The use of machine learning techniques may help to improve the air quality 

forecast for the next day levels of pollutant concentration as suggested by 

some of the literature. However, since it would require the necessary 

knowledge and testing of different specific algorithms and because the 

developed models were quite successful, the need to develop and implement 

such an approach was not considered as necessary in the case of the air quality 

forecast for Macao. 
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