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Abstract

Background: The effect of drug resistance transmission on disease progression in the newly infected patient is not
well understood. Major drug resistance mutations severely impair viral fitness in a drug free environment, and
therefore are expected to revert quickly. Compensatory mutations, often already polymorphic in wild-type viruses, do
not tend to revert after transmission. While compensatory mutations increase fitness during treatment, their presence
may also modulate viral fitness and virulence in absence of therapy and major resistance mutations. We previously
designed a modeling technique that quantifies genotypic footprints of in vivo treatment selective pressure, including
both drug resistance mutations and polymorphic compensatory mutations, through the quantitative description of a
fitness landscape from virus genetic sequences.

Results: Genotypic correlates of viral load and CD4 cell count were evaluated in subtype B sequences from recently
diagnosed treatment-naive patients enrolled in the SPREAD programme. The association of surveillance drug
resistance mutations, reported compensatory mutations and fitness estimated from drug selective pressure fitness
landscapes with baseline viral load and CD4 cell count was evaluated using regression techniques. Protease
genotypic variability estimated to increase fitness during treatment was associated with higher viral load and lower
CD4 cell counts also in treatment-naive patients, which could primarily be attributed to well-known compensatory
mutations at highly polymorphic positions. By contrast, treatment-related mutations in reverse transcriptase could not
explain viral load or CD4 cell count variability.
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Conclusions: These results suggest that polymorphic compensatory mutations in protease, reported to be selected
during treatment, may improve the replicative capacity of HIV-1 even in absence of drug selective pressure or major
resistance mutations. The presence of this polymorphic variation may either reflect a history of drug selective
pressure, i.e. transmission from a treated patient, or merely be a result of diversity in wild-type virus. Our findings
suggest that transmitted drug resistance has the potential to contribute to faster disease progression in the newly
infected host and to shape the HIV-1 epidemic at a population level.

Background
Following initial HIV-1 infection, the rate of clinical dis-
ease progression reflects the complex interplay of host-
and virus-related as well as socio-economic factors. This
highly variable rate can be assessed and predicted by
monitoring the evolution of prognostic markers such as
the number of viral particles in the plasma (viral load
or viremia) and CD4+ T-lymphocytes cell count (CD4
count). Constituting the only current strategy to delay
disease progression, the primary goal of antiretroviral
therapy (ART) is to maximally inhibit viral replication and
to aim for immunological reconstitution. However, accu-
mulation of drug resistance mutations during suboptimal
therapy severely affects the clinical benefit of ART, leading
to therapy failure [1].
HIV-1 evolutionary dynamics under selective pressure

of ART are largely governed by competitive fitness, to
which viral replication, phenotypic drug resistance and
intrinsic replicative capacity (RC) contribute. While an
increased ability of the virus to replicate in the presence of
drug results from decreased phenotypic drug susceptibil-
ity, major drug resistance mutations reduce the inherent
ability of HIV-1 to replicate in absence of drug (replica-
tive capacity). Hence, virus evolution is characterized by
repair strategies that include compensatory mutations in
the targeted gene [2]. Despite these compensatory effects,
drug-resistant viruses tend to replicate less efficiently than
wild-type viruses in absence of treatment, which is exem-
plified by the fact that archived wild-type viruses become
again predominant during treatment interruption [3].
The transmission of drug resistance (TDR) among

adults recently infected in North-America and Europe is a
consequence of the widespread use of antiviral agents and
related resistance accumulation in the ART-experienced
population. A large survey of 17 European countries
reported a TDR prevalence of 9.0% among newly diag-
nosed persons [4-6]. Transmitted resistant virus was
initially believed to become irrelevant over time, as it
would gradually disappear from the dominant quasis-
pecies: mutations reverting to wild-type or alternative
amino acids reflect the impaired fitness of TDR variants
in absence of drug pressure and wild-type virus. However,
persistence of TDR variants as dominant quasispecies,
within a new host and within transmission chains, has
been reported. Prevention of wild-type state reversion

may result from absence of competition in the founder
virus population [7], the existence of steep fitness val-
leys between resistance mutant and original wild-type [8],
restoration of fitness through selection of compensatory
mutations [9] or a combination of these factors. However,
the relationship between fitness cost and persistence may
be complex due to mutational interactions [10], and early
immune responses may as well influence the reversion of
TDR.
CD4 cell loss is a prognostic marker for development of

clinical symptoms and progression towards AIDS. HIV-
1 isolates vary widely in features that determine viral
fitness and virulence. For HIV-1, it might seem rea-
sonable to infer that increased viral fitness coincides
with elevated pathogenicity, since an inverse relation-
ship between the viral load and the rate of CD4 decline
is often observed. Under such assumption, presence of
transmitted drug resistance mutations that impair repli-
cation capacity could result in lower viral loads, thereby
sustaining CD4 cell counts and delaying disease progres-
sion [11]. However, due to their high fitness costs in a
drug free environment, major resistance mutations tend
to revert after transmission. Although currently unknown,
mutations selected during treatment for their compen-
satory fitness effects could be more persistent, since these
mutations can also occur as natural polymorphisms [12].
Consequently, these compensatory mutations may modu-
late replication capacity of the virus not only in presence
but also in absence of detrimental, major resistance muta-
tions [13,14], and if so, it remains unclear whether their
presence will result in higher viral fitness and virulence.
It has been observed that the viral genotype has a strong

and direct effect on HIV-1 viral load [15]: the viral load
of the transmitting partner is strongly predictive of the
viral load in the recipient partner [16] and polymorphic
variation associated with replicative capacity has been
reported [17]. To what extent genetic variation resulting
from transmitted drug resistance is influencing viral load
or CD4 count in the recipient is not fully understood.
Although transmission of drug resistance has been widely
documented, whether drug selective pressure could shape
the epidemic at a population level or alter the natural
history of infection has been poorly investigated. In this
study, we aimed to elucidate the potential of transmitted
drug resistance to influence the natural history of HIV-1
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infection at a population level. We investigated whether
polymorphic compensatory mutations, reported to be
enriched during therapy and therefore contributing to
fitness under drug selective pressure, were also associ-
ated with increased fitness and virulence in patients never
exposed to ART. For this purpose, we used a model that
correlated fitness of genetic variants with drug selective
pressure, and verified whether increased fitness under
such a model also correlated with increased fitness in
newly diagnosed treatment naive individuals, as measured
by viral load and CD4 cell count. The effect of known
TDR and compensatory mutations was also investigated
in support of our hypothesis.

Results
Descriptive characteristics of study population
The analysis was restricted to HIV-1 subtype B sequences
in order to minimize inter-subtype variability in the num-
ber and prevalence of polymorphic mutations and to
exclude possible confounding effects on disease progres-
sion [18]. The analyzed SPREAD dataset contained 1782
newly diagnosed individuals that were infected with a
HIV-1 subtype B virus (65%). A measurement of viral
load and CD4 count was available for 1599 patients.
Baseline characteristics of these patients are described
in Table 1. Genotypic evidence of TDR was detected in
9.4% ( 95%-CI: 8.1-11.0) of patients, including 51 patients
with PI (3.2%, 95%-CI: 2.4-4.2), 84 patients with NRTI
(5.3%, 95%-CI: 4.2-6.4) and 41 patients with NNRTI (2.6%,

95%-CI: 1.9-3.5) resistance. Studies have suggested that
patients with evidence of TDR may harbour virus with
impaired replication capacity potentially leading to a less
pathogenic virus. However, patients with or without indi-
cations of TDR had overall similar characteristics, and no
significant difference in viral load (p-value = 0.52) and
CD4 cell count (p-value = 0.14) could be detected.

Estimating the fitness of the subtype B sequences under
drug selective pressure
Since variation in viral load and CD4 cell count could
not be explained by the presence or absence of TDR,
we assessed to what extent variability in these baseline
parameters could be explained by mutations and poly-
morphisms that contribute to increased in vivo fitness
under drug selective pressure. To this aim, two fitness
models (FPI and FRTI ) assigned fitness values to genetic
variants. These models were estimated by relating the
increase in prevalence of mutations with selective advan-
tage during treatment (Additional file 1, [19]). Given
that epistatic interactions alter the fitness impact of a
mutation depending on the context of other mutations,
we considered not only individual mutations, but also
the increase in prevalence of mutation patterns. Conse-
quently, the relative contribution of a mutation to the
estimated fitness varied depending on to the presence of
other mutations with which it interacts. The highly com-
plex fitness function returned for each genotype a single
fitness value based on the different mutations present in

Table 1 Characteristics of HIV-1 subtype B patients included in the analyses for prediction of viral load and CD4 cell count

Characterististics Subtype B patients (N = 1599) TDR (N = 151) Wild-type (N = 1446)

log10 HIV-RNA copies/ml 4.85 (4.32 – 5.35) 4.83 (4.30 – 5.33) 4.86 (4.32 – 5.35)

CD4 cells/mm3 382 (212 – 583) 410 (249 – 582) 377 (209 – 583)

Age, years 35 (29 – 42) 34 (28 – 40) 35 (30 – 42)

Male sex , n (%) 1413 (89%) 137 (91%) 1276 (89%)

Duration of infection, n (%)

< 1 year 541 (34%) 57 (37%) 484 (33%)

Undefined 1056 (66%) 94 (63%) 962 (67%)

Source of HIV-1exposure, n (%)

Homo/bisexual contact 1016 (65%) 104 (69%) 912 (63%)

Heterosexual contact 123 (20%) 26 (17%) 290 (20%)

Intravenous drug use 316 (8%) 8 (5%) 115 (8%)

Other 142 (9%) 13 (9%) 129 (9%)

Area of origin, n (%)

Western Europe 1147 (72%) 105 (70%) 1042 (72%)

Eastern Europe & Central Asia 282 (18%) 27 (19%) 255 (18%)

Other 168 (10%) 19 (11%) 149 (10%)

Patient characteristics are shown for the subtype B study dataset (N = 1599), including patients with genotypic evidence of transmitted drug resistance (TDR) and
patients without genotypic evidence of transmitted drug resistance (wild-type). Data are expressed as median values accompanied by interquartile ranges, or as
number of patients accompanied by proportion of the subtype B dataset (%).
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the genotype. Using the fitness models (FPI and FRTI),
we computed for each sequence the estimated in vivo
fitness of respectively subtype B protease and reverse tran-
scriptase. Mutations used in these models outnumbered
the TDR mutation list [20], and included in addition to
major resistance mutations also polymorphic, compen-
satory mutations (see Additional file 2 for a complete
list of the fitness mutations and their prevalence in the
study population). Both types of mutations were assigned
higher weights in our fitness landscapes. Since it has
been reported that major resistance mutations decrease
replicative capacity in absence of selective pressure [1], we
hypothesized that treatment-related polymorphisms (so-
called compensatory mutations) may increase fitness also
in absence of drug selective pressure. In one approach to
evaluate the contribution of these compensatory muta-
tions, a second fitness estimate was calculated for those
sequences with major drug resistance mutations (11.4%)
by reverting the major resistance mutation to the wild-
type amino acid (FPI−m and FRTI−m), thereby excluding
the fitness contributions of major resistance mutations.
The different fitness estimates of the sequences are sum-
marized in Table 2, with the range of estimated fitness
being more dispersed for PR than for RT. Computed fit-
ness values were significantly higher in patients with TDR
compared to patients without TDR, except for the esti-
mated fitness of PR when the effect of major resistance
mutations was excluded (log10 FPI−m, p-value = 0.427).

Evaluating genotypic predictors of viral load and CD4 cell
count
The following genotypic predictors of viral load and CD4
were investigated: the presence of TDR, estimated fitness
under a drug selective pressure model (log10 FPI , log10
FRTI) and the number of known compensatory muta-
tions [21]. However, previous studies showed that levels
of viral replication (i.e. viral load) and immune deple-
tion (i.e. CD4 cell count decline) result from a com-
plex interplay of between host and virus characteristics
including time since infection, trends in TDR over calen-
dar year, socio-economic factors, access to medical care
and more. In our study, indications of acute infection at
the time of diagnosis were significantly associated with

higher viral loads (4.95 log10 copies/mL [IQR: 4.4-5.4
log10 copies/ml] versus 4.82 log10 copies/mL [IQR: 4.3-5.3
log10 copies/ml], p-value = 0.015) and higher CD4 counts
(509 cells/mL [IQR: 360-661 cells/mL] versus 314 cells/mL
[IQR: 134-503 cells/mL], p-value < 0.001). The presence
of TDR was however not significantly higher in individ-
uals recently infected than in individuals with unknown
duration of infection, neither overall TDR (10.7% vs 8.9%
respectively, p-value = 0.25), nor PI (4.2% versus 2.6%,
p-value = 0.11) or RTI (7.0% vs 6.9%, p-value = 0.96) sepa-
rately. The log fitness estimates and their range were also
not significantly different (data not shown).
To account for duration of infection and other poten-

tial confounders, square-root transformed CD4 counts
and log10 transformed viral load were modeled as a lin-
ear function of TDR or estimated in vivo fitness. Since
especially recent infection was anticipated to bias the
results, the simplest model (Model 1) included predic-
tors derived from the genotype (TDRPI , TDRRTI , log10 FPI ,
log10 FRTI ) and the duration of infection (recently infected
vs unknown duration of infection). In the fully adjusted
analyses (Model 2), risk group, age, country of origin and
gender were added as explanatory variables (Table 3). In
bothmodels, there was no significant association between
infection with TDR and viral load or CD4 count. How-
ever, higher estimated fitness under the PI but not under
the RTI drug selective pressure model (log10 FPI respec-
tively log10 FRTI ) was significantly correlated with higher
viral load and lower CD4 count. To verify whether a sin-
gle country introduced a bias, regression analyses were
repeated by iteratively excluding data from one country,
which did not change our results (data not shown). These
observed correlations indicate that in treatment-naive
patients, mutations in PR that give a selective advantage
under drug selective pressure and are not included in the
TDR list, are associated with better replicating virus in
vivo.
The analysis was subsequently extended by two addi-

tional approaches to further investigate the role of genetic
determinants and to exclude a trend of TDR over
calendar year as a confounding factor. In a first approach,
we reverted major resistance mutations present in the
viral sequences (log10 FPI−m, log10 FRTI−m) (Table 3).

Table 2 Estimated fitness according to the fitness landscapemodels

Factors Subtype B patients (N = 1599) TDR (N = 151) Wild-type (N = 1446) p-value

log10 FPI 0.38 (0.24 – 0.56) 0.44 (0.26 – 0.66) 0.38 (0.24 – 0.56) 0.001

log10 FPI−m 0.38 (0.24 – 0.55) 0.41 (0.25 – 0.57) 0.38 (0.24 – 0.56) 0.427

log10 FRTI 0.04 (-0.03 – 0.11) 0.14 (0.03 – 0.27) 0.03 (-0.03 – 0.10) < 0.001

log10 FRTI−m 0.04 (-0.03 – 0.11) 0.08 (0.01 – 0.17) 0.03 (-0.03 – 0.11) < 0.001

Log10 FPI is the estimated PR fitness and log10 FPI−m is the estimated PR fitness when the influence of major resistance mutations on fitness is excluded. Same
nomenclature applies to fitness estimates of RT. Data are expressed as median values with the interquartile range between brackets.
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Table 3 Regression analysis to predict viral load and CD4 count

Model 1 Model 2

Factors log VL (95% CI) p-value log VL (95% CI) p-value

TDRPI -0.073 (-0.287 – 0.140) 0.500 -0.080 (-0.290 – 0.129) 0.451

TDRRTI -0.009 (-0.157 – 0.138) 0.903 -0.003 (-0.147 – 0.142) 0.971

log10 FPI 0.271 (0.122 – 0.420) 0.000 0.251 (0.104 – 0.398) 0.001

log10 FRTI -0.090 (-0.324 – 0.144) 0.449 -0.133 (-0.363 – 0.097) 0.258

log10 FPI−m 0.314 (0.156 – 0.472) 0.000 0.294 (0.137 – 0.450) 0.000

log10 FRTI−m -0.117 (-0.459 – 0.223) 0.498 -0.180 (-0.516 – 0.155) 0.292

Factors sqrt CD4 (95% CI) p-value sqrt CD4 (95% CI) p-value

TDRPI -0.357 (-2.313 – 1.600) 0.721 -0.501 (-2.417 – 1.416) 0.609

TDRRTI 0.507 ( -0.844 – 1.859) 0.462 0.362 (-0.963 – 1.688) 0.592

log10 FPI -1.628 (-2.999 – 0.257) 0.020 -1.540 (-2.891 – -0.189) 0.025

log10 FRTI 1.465 (-0.683 – 3.613) 0.181 1.583 (-0.527 – 3.692) 0.141

log10 FPI−m -1.861 (-3.314 – -0.407) 0.012 -1.779 (-3.213 – -0.346) 0.015

log10 FRTI−m 1.400 (-1.733 – 4.532) 0.381 1.356 (-1.727 – 4.439) 0.389

Linear regression analyses of the association between genotypic predictors and clinical parameters. Viral load values were log transformed and CD4 counts were
square root transformed to approximate the normal distribution. For each of the genotypic predictors, two models including different sets of potential confounders
were investigated. Model 1 included genotypic predictors for PR and RT, and estimated duration of infection (recent vs unknown duration). Model 2 additionally
included age, gender, risk group and area of origin.

Second, patients with genotypic evidence of TDR were
excluded from the analysis (Table 4). In both approaches,
the estimated fitness under the PI selective pressuremodel
remained significantly associated with viral load and CD4
count, while the association of the fitness under the RTI
selective pressure model remained not significant. These
results suggest that the correlations found are mainly
attributable to polymorphic mutations in PR, that also
confer a selective advantage under treatment selective
pressure.

Determining the contribution of individualmutations at
polymorphic positions
The fitness models were designed to predict fitness under
drug selective pressure. In addition to well known muta-
tions conferring (high-level) phenotypic drug resistance to
protease inhibitors, mutations contributing to estimated

fitness under the PR model included also known minor or
accessory resistance mutations, either non-polymorphic
or natural polymorphisms, and several other polymorphic
positions (See Additional file 1: Fitness landscape). Uni-
variate analysis with correction for multiple testing did
not identify a single mutation that significantly affected
viral load or CD4 cell count (data not shown). This sug-
gested that combinatorial patterns of mutations in pro-
tease rather than single-mutation effects explained the
observed associations, arguing in favor of epistatic inter-
actions between mutations. Naturally occurring poly-
morphisms in protease (L10I/V, I13V, K20I/M/R, M36I,
D60E, I62V, L63P, A71T/V, V77I and I93L) have previ-
ously been associated with therapy experience, and were
also modeled by the fitness model FPI . We evaluated the
correlation of the presence of these polymorphisms with
viral load or CD4 count. Several of these compensatory

Table 4 Regression analysis to predict viral load and CD4 count in patientswithout evidence of TDR

Model 1 Model 2

Factors log VL (95% CI) p-value log VL (95% CI) p-value

log10 FPI 0.298 (0.122 – 0.421) 0.000 0.269 (0.105 – 0.433) 0.001

log10 FRTI -0.090 (-0.324 – 0.144) 0.449 -0.219 (-0.583 – 0.144) 0.237

Factors sqrt CD4 (95% CI) p-value sqrt CD4 (95% CI) p-value

log10 FPI -2.038 (-3.556 – -0.521) 0.009 -1.947 (-3.446 – -0.448) 0.011

log10 FRTI 1.220 (-2.145 – 4.585) 0.477 1.243 (-2.074 – 4.560) 0.462

Linear regression analyses of the association between genotypic predictors and clinical parameters. Patients that did show genotypic evidence of TDR were excluded
from the analysis. For each of the genotypic predictors, two models including different sets of potential confounders were performed. Model 1 included genotypic
predictors for PR and RT, and estimated duration of infection. Model 2 additionally included age, sex, risk group and area of origin.
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mutations were highly polymorphic in the subtype B study
population (Table 5). The distribution of these therapy-
associated polymorphismswas similar in recently infected
patients compared to patients with unknown duration of
infection (data not shown). Figure 1 shows that a higher
number of polymorphic mutations in protease was sig-
nificantly associated (p-value < 0.01) with a higher viral
load (1a), a lower CD4 count (1b), and a higher esti-
mated fitness (log10 FPI−m where major PI resistance
mutations had been reverted) (1c). No significant trend
was observed for RT polymorphic mutations, in agree-
ment with the lack of association of estimated fitness
under the RT drug selective pressure fitness model and
viral load or CD4 count (data not shown). These results
further support the hypothesis that polymorphic amino
acids significantly contributed to the observed associa-
tions between PR fitness estimated using a drug selective
pressure fitness model and viremia or CD4 cell count in
absence of treatment.

Discussion
A substantial number of newly diagnosed HIV-1 patients
is infected with a drug resistant virus, carrying the
footprints of drug selective pressure [4-6]. Reversion
of major resistance mutations in absence of therapy,
both in treatment-experienced patients and in patients
with transmitted drug resistance [3,5], illustrates that
these mutations contribute in vivo to a decrease in viral
fitness in absence of drug pressure. Considering that
TDR is largely defined by non-polymorphic treatment-
related mutations, mainly reflecting major drug resis-
tance mutations [20], TDR has initially been speculated
to result in lower set-point viral loads and higher CD4
cell counts, and consequently a slower disease progres-
sion [11]. While studies have reported that transmis-
sion of drug-resistant virus was associated with changes
in initial viral load and CD4 counts in both serocon-
verters and chronically HIV-infected patients [11,22],
other studies could not corroborate these findings [23,24].
Compensatory mutations often accompany major resis-
tance mutations, selected to restore impaired intrinsic

replication capacity [21]. We hypothesized that these
accessory mutations could also increase viral fitness in
absence of drug selective pressure or major drug resis-
tance mutations. If true, TDR could potentially contribute
to a higher viral load and a lower CD4 cell count in ther-
apy naive patients, which is the opposite as previously
speculated.
To investigate this hypothesis, we evaluated retrospec-

tively the association of viral genotype with baseline
viremia and CD4 cell count in a population of newly diag-
nosed treatment-naive HIV-1 patients from the SPREAD
study [4,5]. We quantified the genetic variability with
respect to its potential contribution to drug selective
pressure using the most recent WHO surveillance drug
resistance mutation list [20], a set of known compen-
satory mutations [21], and an vivo fitness landscape (FL)
of drug selective pressure. In this study, viral load and
CD4 cell count did not differ between patients with or
without TDR, in agreement with earlier reports [23,24].
Evidence of TDR primarily consisted of single mutations,
often 215 revertants [4,5], indicating that major resistance
mutations had already reverted in the majority of the
TDR patients, along with their deleterious effects on virus
replication in absence of drug. FLs modeled the fitness
contribution of a large number of mutations, including
polymorphic compensatory mutations. We observed sig-
nificantly higher viral loads and lower CD4 counts in
patients infected with a virus deemed fitter by the PI drug
selective pressure model, even after correcting for pos-
sible confounders. This association remained significant
after the exclusion of TDR patients from the analysis or
of fitness contributions of major drug resistance muta-
tions. These findings suggest that amino acids at poly-
morphic positions in PR, more frequently observed in
patients failing therapy, can increase in vivo fitness in
absence of therapy and major resistance mutations. The
correlation between the number of known polymorphic,
compensatory mutations in PR [21] and changes in viral
load and CD4 count supported the results of estimated
fitness. Regression analyses showed relatively small cor-
relation coefficients, indicating that observed variability

Table 5 Prevalence of polymorphic compensatorymutations in subtype B protease

Mut % n Mut % n

10I 10.02 160 60E 9.2 147

10V 2.76 44 62V 32.75 523

13V 17.09 273 63P 58.42 933

20I 0.13 2 71T 9.58 153

20M 0.69 11 71V 7.2 115

20R 3.44 55 77I 32.19 514

36I 17.72 283 93L 42.45 678

The prevalence of known polymorphic compensatory mutations [21] in the subtype B study population is shown as percentages (%) and absolute count (n).
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Figure 1 Association between the number of compensatory
mutations, estimated fitness and clinical parameters.
Compensatory mutations, polymorphic in subtype B protease and
modeled by the fitness model FPI , are likely candidates to explain the
observed association of viral fitness estimated under drug selective
pressure with clinical parameters. For patients with no indications of
acute infection and TDR (n = 962), the number of compensatory
mutations (13V, 36I, 60E, 62V, 63P, 71V, 71T, 77I or 93L) in the protease
sequence is calculated for each patient [21]. The following parameters
are grouped by mutation count: log10 viral RNA copies/ml (1a),
square-root transformed CD4 cell counts (1b) and increased
estimated fitness for protease log10 FPI−m (1c). The distribution of the
respective parameter is shown for each group using boxplots. The
horizontal line (bold) within the boxplot represents the median value,
with box boundaries indicating the interquartile range. Upper and
lower ends of striped lines denote themost extreme data point which
is no more than 1.5 times the IQR range from the box. An increased
mutation number significantly correlated with 1a) increased log10
viral RNA copies/ml (p-value < 0.01), 1b) decreased square-root
transformed CD4 cell counts (p-value < 0.01) and 1c) increased
estimated fitness for protease log10 FPI−m (p-value < 0.01). A fitted
line going through the median values (lowess smooth) is shown in
red. The number of patients for each group is shown above each bin.

in clinical parameters could only be partially explained,
and emphasizing on a larger role of other host- and virus-
related factors at play in absence of treatment. Viremia
showed a stronger relationship with estimated fitness,
compared to CD4 count, which would be consistent with
the notion that viremia is a more direct outcome of the
viral life cycle. Estimated fitness by the RTI drug selective
pressure model did not significantly correlate with viral
load and CD4 cell count. However, this fitness landscape
model and the analyzed sequences included only the part
of RT that is usually sequenced for drug resistance pur-
poses (position 1 to 230), and therefore the full potential of
treatment-related variability in RT remains to be further
explored. The fact that the PR gene region is less con-
served not only between different subtypes [25], but also
within a single subtype [26], may indicate that purifying
selection acts stronger on RT, suggesting it may be easier
to find fitness differences in PR compared to RT.
In vitro studies have observed a wide range of HIV-1

replication capacity of pol genotypes both from recently
and chronically infected treatment-naive patients, even
after excluding viruses with genotypic evidence of drug
resistance [17,27-30]. Patients infected with a virus show-
ing lower in vitro pol replication capacity had significantly
lower baseline HIV-1 RNA levels [27,28] and higher base-
line CD4 cell counts. This association was independent
of duration of infection and presence of drug resistance
[17,28], and showed to be predictive for disease pro-
gression [28,30]. Although in vitro replication capacity is
differently quantified than ourmodeled in vivo fitness, and
neither is a direct measurement of in vivo fitness, these
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reports further suggest that improved replication capacity
increases the virulence of HIV-1.
Importantly, although our study shows that compen-

satory mutations can increase in vivo fitness in absence
of deleterious resistance mutations, we do not claim that
this higher fitness was caused by transmitted drug resis-
tance, as many compensatory mutations constitute natu-
ral genotypic variation in subtype B [12]. However, given
that these mutations are frequently selected under drug
selective pressure, our results do indicate the potential
of transmitted drug resistance to impact on the natural
history of HIV-1 at a population level. While still highly
speculative, the observed correlation with CD4 count sug-
gests in addition a worse clinical outcome in these therapy
naive patients that harbor a fitter virus, whether or not the
responsible polymorphisms were naturally present [12] or
resulted from TDR. If ART selects in addition to antivi-
ral resistance for more efficient HIV-1 enzymes, and such
substitutions are being transmitted, then these alterations
should be detectable at the epidemic level. With the cur-
rent problem of transmitted drug resistance, we predict
that polymorphisms improving virus fitness in both pres-
ence and absence of drugsmay increase in prevalence over
time. Furthermore, we speculate that TDR may be chang-
ing the HIV-1 epidemic and potentially pushing the virus
to become more pathogenic. Additional investigation is
warranted to confirm this proposed potential of TDR.
Our study suggests an intricate connection between

HIV-1 natural diversity, protease plasticity, changes in
viral fitness and potentially disease progression. While
individual mutations, resistance related or polymorphic,
have been studied in terms of enzyme activity, replicative
capacity and drug susceptibility [13,14,31-33], systematic
analyses are needed to better understand their combined
effect through complex epistatic interactions as suggested
in this manuscript. Similar combinatorial complexity may
be anticipated for mutations in protease interacting with
cleavage sites in the gag polyprotein [34], and CTL epi-
topes involved in viral escape from host selective pressure
[35]. Empirical studies can further address difficulties in
the interpretation of relative estimated fitness, which was
originally conceived and validated in an environment of
treatment pressure, and in the translation to clinical impli-
cations.
A criticism of our findings could be that if compensatory

mutations increase in vivo fitness in absence of therapy,
viruses with fitter protease should already have been nat-
urally selected given that HIV-1 subtype B viruses have
been circulating for decades in the human population. In
this respect, it is important to discriminate within-host
from between-host selective pressure. The within-host
evolution in absence of drug selective pressure is dom-
inated by immune selective pressure exerting a strong
diversifying selection mainly on the immunodominant

envelope [36]. The prevalence of particular polymor-
phisms in the infected human population is however
dependent on the epidemic fitness of HIV, which is a very
complex parameter and governed by between-host effects
such as transmission efficiency and the number of new
infections per infected individual. These effects depend
not only on the level of the viral load, but also on the life
expectancy of the transmitter (length of the asymptomatic
phase) which may decrease with increasing viral load.
One could also argue that, since protease TDR is

decreasing over calendar year [37], we observed the same
trend in compensatory mutations such that those patients
withmore compensatorymutations were actually infected
for a longer time. This confounding factor was taken into
account by performing a separate analysis whereby TDR
patients were excluded from the analysis. In this addi-
tional analysis, we still detected a significant association
between presence of compensatorymutations in protease,
higher viral load and lower CD4 count.
A major limitation of this study is the cross-sectional

design, consecutive measurements of viral load and CD4
count are needed to better assess the impact of the
reported mutations on disease progression. Indeed, CD4
cell count decline and viral load rise are associated with
longer duration of infection and natural disease pro-
gression. Therefore, it can not be excluded that natural
disease progression is associated with a rise in preva-
lence of these reported mutations, and what we observe
is merely a consequence of this process. However, in
our cohort, neither TDR, estimated fitness values nor
the number of known compensatory mutations differed
between recently and chronically infected patients. Sec-
ond, the regression model was extended with a variable
indicating whether a patient was recently infected or not,
which did not change the results. We are also not aware
of any literature indicating that the here reported muta-
tions increase in prevalence during the natural course
of disease progression, while if they did, this would still
not invalidate our hypothesis that these mutations have
a negative impact on disease progression. In that case,
we could interpret the transmission of such mutations
as a head start of the virus in the course of disease
progression.
To end, with respect to an individual HIV-1 infected

patient, resistance-associated virological failure severely
limits ART options due to the persistence of acquired
drug resistance and the existence of within-class cross-
resistance. We now suggest that the consequences also
reach beyond a single patient as high rates of resistance
detected at therapy failure increase the probability of TDR
[38], transferring genotypic footprints of adaptive evolu-
tion under drug pressure to newly infected hosts [4]. If
our hypothesis is true, in the newly infected patient, this
may not only affect therapy response, but also change the
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natural course of disease progression. The impact of fitter
virus in drug naive patients on therapy effectiveness is cur-
rently unknown, though better replicating virus can lower
the genetic barrier to resistance by facilitating resistance
development and compromising the long term benefit of
antiretroviral treatment both at the individual and the
population level [39,40].

Conclusions
It has previously been shown that in absence of treatment
drug-resistant HIV-1 usually displays a lower replication
capacity than wild-type virus due to the deleterious
effect of major resistance mutations. These major resis-
tance mutations tend to revert quickly after transmis-
sion to a new host, while compensatory mutations that
restore enzymatic efficiency rather than confer antiviral
resistance do not experience this selective pressure for
reversion. Our results lead us to speculate that antiviral
treatment pressures the virus to optimize its enzymes and
is selecting for a more fit, and possibly also more vir-
ulent virus at population level. Increased availability of
antiretroviral treatment and transmission of treatment-
selected polymorphisms could have clinical implications
both at the individual and the population level. These find-
ings could provide additional complexity to the current
and ongoing controversy on whether HIV-1 virulence is
changing over time [41].

Methods
Ethics statement
Ethical requirements are fulfilled according to the pro-
cedure described in the EC contract. The procedure dif-
fers among the 32 countries in the network according to
national legislation (the national reference laboratory and
corresponding national coordinator for each country are
listed in Additional file 3). Briefly, for each participating
hospital or collection center, approval was obtained by the
institutional medical ethical review committee. Addition-
ally, a written informed consent was obtained for each
patient. In countries where a mandatory surveillance sys-
tem was already established, legally no informed consent
was needed. All surveillance data were made anonymous
and coded at national level.

Study population
The European SPREAD project is a surveillance pro-
gramme that prospectively collected representative
data of HIV-1 infected individuals, newly diagnosed
between September 2002 and December 2005 in 20
European countries (Austria, Belgium, Cyprus, Czech
Republic, Germany, Denmark, Spain, Finland, Greece,
Ireland, Italy, Luxembourg, the Netherlands, Norway,
Poland, Portugal, Sweden, Slovenia, Slovakia and Serbia)
and Israel. Previous reports of the SPREAD programme

focused on the analyses of transmitted drug resistance and
HIV-1 subtype distribution in Europe [5,6]. A standard-
ized sampling strategy was designed by the epidemiology
expert group of the SPREAD programme to ensure repre-
sentative sampling in all countries. Patients were eligible
if they had not been submitted to antiretroviral therapy by
the time of sampling and if they were at least 18 years old.
Furthermore, the first available sample obtained within 6
months of HIV-1 diagnosis was used, with a predefined
viral load inclusion threshold above 1000 HIV-1 RNA
copies/ml, since that was the threshold defined neces-
sary at the time for reliable genotype testing. The few
genotypes associated to a sample with a lower viral load
were therefore considered a source of bias and excluded
from all SPREAD studies. Epidemiological, clinical and
behavioral data were collected using a standardized ques-
tionnaire. Patients were defined as recently infected if
they had documented negative or indeterminate HIV-1
serological results up to 12 months prior to confirmation
of diagnosis. The remaining newly diagnosed patients
were classified as those with undefined duration of infec-
tion. In line with other clinical cohort studies, HIV-RNA
viral load levels and CD4 cell counts used in this study
were determined locally using assays validated for clinical
use. Genotypic analysis was decentralized by local labo-
ratories using either in-house methods or commercially
available genotypic resistance testing kits, and the raw
nucleotide sequence data were used in the current study.
All laboratories participated in a continuous blinded
quality control programme to verify the quality of the
data.

HIV-1 fitness landscape
HIV-1 adaptation to drug selective pressure can be mod-
eled by observing viral evolution in patients at treat-
ment failure. When the same mutation is independently
fixed in multiple patients under selective pressure of the
same treatment, it may be assumed that this convergent
evolution indicates an increased fitness of the mutant
virus under that treatment. Since a synergistic interaction
between two mutations is expected to lead to a differ-
ent observed prevalence of one mutation depending on
the presence of the other, observed associations in preva-
lence may indicate epistatic fitness interactions between
these mutations [42]. Hence, a fitness function of HIV-1
can be learned based on the difference in prevalence of
mutations in viral sequences from treatment-experienced
patients compared with untreated patients. Previously, we
developed an evolutionary framework to reconstruct such
an in vivo fitness landscape (FL), by quantitatively esti-
mating the influence of mutations and mutation patterns
on HIV-1 fitness during treatment, solely as a function
of the genotypic sequence. This estimated fitness under
treatment pressure reflects the combined effect of drug
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resistance and replication capacity. Briefly, a fitness func-
tion was constructed following a two-step process (see
[19] and Additional file 1 for a detailed description of the
methodology). First, conditional dependencies between
mutations were identified using a probabilistic model that
efficiently summarized observed correlations between
mutations. For eachmutational pattern that was modeled,
the fitness function specified a separate fitness contribu-
tion. Secondly, the selective advantage of each incorpo-
rated mutation interaction was quantified in an iterative
step, where the viral evolution under treatment was sim-
ulated using the fitness landscape. Differences between
predicted and observed prevalence of the included
mutation patterns were measured and minimized, and
fitness values were optimized until convergence was
reached.
We previously constructed FLs for specific protease

inhibitors (PI) [19], or for specific combinations of reverse
transcriptase inhibitors (RTI) [43] and have shown that
fitness models can significantly predict therapy response
in vivo [44]. For the current study, we constructed two
generic fitness functions, one modeling the selective pres-
sure on protease (PR) by any protease inhibitor (PI), and
one modeling the selective pressure on reverse transcrip-
tase (RT) by any reverse transcriptase inhibitor (RTI) (See
Additional file 1). To build the fitness functions, data
were pooled from Portugal, Belgium and the Stanford
Drug Resistance database only using data independent
from data within the SPREAD program. A total of 3751
sequences were from patients treated with one or more
PIs and 8328 sequences from PI naive patients. A total set
of 1736 sequences were from patients treated with one or
more RTIs and 3769 sequences from RTI naive patients.
The models not only included (major) drug resistance
mutations, but also any polymorphism with a prevalence
of >1% (PI) or >3% (RTI) in the respective treated popu-
lation. The PR fitness landscape FLPI included 104 muta-
tions and contained 898 different mutation interactions.
The RT landscape FLRTI included 112 mutations and
modeled 1172 possiblemutation patterns. (See Additional
file 1). The two fitness landscapes were scaled to a fitness
of 1 for HIV-1 subtype B reference strain HXB2. For any
given sequence, the fitness landscape computes a single
fitness value that represents the relative fitness compared
to HXB2.

Genotypic predictions
Viral subtype was assessed on the combined PRO-RT
sequence using the REGA HIV-1 subtyping tool V2 [45].
Evidence of transmitted drug resistance was defined as
the presence of at least one surveillance drug-resistance
mutation [20]: 23I, 24I, 30N, 32I, 46IL, 47AV, 48MV, 50VL,
53LY, 54AMLSTV, 73ACST, 76V, 82ACFLMST, 83D,
84ACV, 85V, 88DS or 90M in PR; and 41L, 65R, 67EGN,

69insD, 70ER, 74IV, 75AMST, 77L, 100I, 101EP, 103NS,
106AM, 115F, 116Y, 151M, 179F, 181CIV, 184IV, 188CHL,
190AES, 210W, 215CDEFISVY, 219ENRQ, 225H or 230L
in RT. Major drug resistance mutations were defined
according to the International AIDS Society USA (IAS-
USA) [19]. For PR, these were 30N, 32I, 33F, 43T, 46L, 47V,
48V, 50LV, 54LMV, 58E, 74SP, 76V, 82AFT, 84V, 88DS,
and 90M. For RT these were: 41L, 44D, 62V, 65R, 67N,
70R, 74IV, 75I, 77L, 100I, 103N, 106AM, 108I, 115F, 116Y,
118I, 151M, 181C, 188CHL, 190AS, 210W, 215FY, 219EQ
and 225H. Compensatory drug resistance mutations, all
polymorphic variants in wild-type virus, were defined
according to Shafer et al. [21]. For PR, these were 13V, 36I,
60E, 62V, 63P, 71V, 71T, 77I and 93L. For RT, polymorphic
accessory mutations were 98S, 101R, 101Q, 106I, 138A,
179I and 238R. For a given genotype in the study popula-
tion, fitness values under PI (FPI) and RTI (FRTI ) selective
pressure, were computed using themodels FLPI and FLRTI
respectively. Such a FL scores a higher fitness to both
major resistance mutations and compensatory mutations,
while in absence of drugs our hypothesis would assign a
negative impact of the major resistance mutation and a
positive impact of the compensatory mutation. Therefore,
the effect of major resistance mutations was excluded in
two ways, which allowed to capture the contribution of
the compensatory mutations. A first approach constituted
the exclusion of the subset of patients with indications
of TDR [20] from the analysis. In a second approach, an
additional fitness value (FPI−m or FRTI−m) was computed
for sequences that displayed major resistance mutations,
by reverting the major resistance mutation to the corre-
sponding wild-type amino acid.

Statistical analysis
TDR prevalence values were calculated with a 95%Wilson
score confidence interval based on the binomial distribu-
tion. A log10 transformation of viral load and a square
root transformation of CD4 count were applied in order to
obtain a normal distribution of variance. For continuous
variables, comparisons between means were conducted
by using a t-test or a Mann Whitney U test. For cate-
gorical variables, comparisons between proportions were
conducted by using the contingency-table χ2 test. Multi-
variate linear models were constructed to determine the
ability of the genotypic factors to predict CD4+ T cell
counts (square root transformed) and plasma HIV-1 RNA
levels (log10 transformed). Twomultivariable models were
fitted. A first model included, besides genotypic predic-
tors, a variable indicating evidence of acute infection in
order to take into account the bias of patients that had
not reached the set-point viral load [46,47]. In a second
model, we adjusted for a number of additional potential
confounders listed in Table 1. All analyses were performed
using the statistical software R (version 2.12.0).
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Additional files

Additional file 1: Modeling a fitness landscape of HIV-1 under drug
selective pressure. An overview of the estimation procedure including a
list of mutations included in the protease or reverse transcriptase fitness
function.

Additional file 2: Prevalence of fitness functionmutations in drug
naive patients. For each mutation that is modeled by the fitness
landscapes, the prevalence in the study population of subtype-B infected
recently diagnosed drug naive patients is shown as percentage and
absolute count.

Additional file 3: List of participating centers. List of participating
national reference laboratories in the network.
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