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Abstract
Introduction  Phenolic acids are important phenolic compounds widespread in foods, contributing to nutritional and organo-
leptic properties.
Factors affceting individual variability  The bioavailability of these compounds depends on their free or conjugated presence 
in food matrices, which is also affected by food processing. Phenolic acids undergo metabolism by the host and residing 
intestinal microbiota, which causes conjugations and structural modifications of the compounds. Human responses, metabo-
lite profiles and health responses of phenolics, show considerable individual variation, which is affected by absorption, 
metabolism and genetic variations of subjects.
Opinion  A better understanding of the gut-host interplay and microbiome biochemistry is becoming highly relevant in 
understanding the impact of diet and its constituents. It is common to study metabolism and health benefits separately, with 
some exceptions; however, it should be preferred that health responders and non-responders are studied in combination 
with explanatory metabolite profiles and gene variants. This approach could turn interindividual variation from a problem 
in human research to an asset for research on personalized nutrition.
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Abbreviations
ARE	� Antioxidant-response element
BMI	� Body mass index
FMD	� Flow-mediated dilation
GIP	� Glucose-dependent insulinotropic polypeptide
GLP-1	� Glucagon-like peptide-1
HBA	� Hydroxybenzoic acids
HCA	� Hydroxycinnamic acids
LAB	� Lactic acid bacteria
PAD	� Phenolic acid decarboxylase

Sources, intake and bioavailability 
of phenolic acids

Phenolic acids are a class of secondary metabolites, part of a 
large group of phenolic compounds, widely distributed in the 
plant kingdom. They are considered important constituents 
of food, contributing to taste, colour and nutritional proper-
ties. Based on their chemical structure, phenolic acids can 
be classified into benzoic acid and cinnamic acid derivatives 
(Fig. 1). Hydroxycinnamic acids (HCAs) are synthetized in 
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plants from phenylalanine via cinnamic acid or directly from 
tyrosine by tyrosine ammonia-lyase, producing the simplest 
hydroxycinnamic acid, p-coumaric acid, which can be fur-
ther synthetized into caffeic, ferulic and sinapic acids [1, 2].

Sources and intake of hydroxybenzoic acids (HBAs)

The main hydroxybenzoic acids (HBAs) are gallic acid 
(3,4,5-trihydroxybenzoic acid), protocatechuic acid 
(3,4-dihydroxybenzoic acid), and p-hydroxybenzoic acid 
(4-hydroxybenzoic acid) [3]. Particularly high contents 
of p-hydroxybenzoic acid-O-glucoside have been found 
in spices and herbs belonging to the Apiaceae family: 
anise 730–1080 mg/kg fresh weight (FW), caraway up to 
42 mg/kg FW, fennel up to 106 mg/kg FW, and coriander 
up to 30 mg/kg FW [4]. In addition, star anise (in the 
Schisandraceae family) contains p-hydroxybenzoic acid-
O-glucoside 730–840 mg/kg FW. The concentration of 
hydroxybenzoic acids in fruits and vegetables is generally 
low and they are mostly present in conjugated forms [3, 5]. 
For example, gooseberries, blackberries, and raspberries 
contain p-hydroxybenzoic acid-O-glucoside 9–14 mg/kg 
FW, 4–18 mg/kg FW, and 32–56 mg/kg FW, respectively, 
whereas protocatechuic acid-4-O-glucoside contents var-
ies from trace amount to 6 mg/kg FW in the same berries, 
and gallic acid-4-O-glucoside up to 3 mg/kg FW. Blueber-
ries have a different HBA profile, as they contain mainly 
p-coumaroylquinic acid (1860–2080 mg/kg FW) and only 

4–5 mg/kg, 3–6 mg/kg, and 2–9 mg/kg FW of p-hydroxy-
benzoic acid-O-glucoside, protocatechuic acid-4-O-glu-
coside, and gallic acid-4-O-glucoside, respectively [4]. 
Marionberries and boysenberries have been reported to 
contain gallic acid 30 mg/kg and 90 mg/kg FW, respec-
tively [6]. In addition, chestnuts contain high amounts of 
gallic acid (3460–9070 mg/kg FW) [7]. Onion peel con-
tains HBAs, mainly protocatechuic acid-4-O-glucoside 
in a concentration of 91 mg/kg FW [4]. Hydroxybenzoic 
acids can also be complexed to large structures: gallic acid 
can form oligomers known as gallotannins, while ellagic 
acid, the dilactone of hexahydroxydiphenic acid, is a con-
stituent of hydrolysable ellagitannins, abundant in, e.g., 
Rubus berries (2630–3300 mg/kg FW), pomegranate juice 
(1500–1900 mg/l), and walnuts (16,040 mg/kg FW) [8].

Sources and intake of hydroxycinnamic acids (HCAs)

HCAs are widely distributed in plants [2], occurring in 
nature generally as esters (formed by conjugation with 
quinic, shikimic, and tartaric acids, flavonoids, or car-
bohydrates), or as amides (formed by conjugation with 
amino acids or amines) [2, 9, 10]. High concentrations of 
HCAs can be found in many food products, such as cof-
fee, tea, wine, cocoa, fruits, vegetables, and cereals. Their 
exact level varies among plant food varieties [11]. Free and 
simple HCA esters are abundant in fruits and vegetables, 
while bound HCA derivatives are more common in grains. 

Fig. 1   Structures of benzoic acid (1), common hydroxybenzoic acids (2–5) and common hydroxycinnamic acids (6–10)
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HCA-derived amides are mostly found in coffee and cocoa 
[2]. Caffeic acid and coumaric acid are abundant in fruits, 
such as apples, pears and berries, representing between 75 
and 100% of the total HCA content of most fruits [9]. Some 
of the richest sources of caffeic acid include wild blueberry 
(1470 mg/kg FW), coffee (870 mg/kg FW), carrot (260 mg/
kg FW), plum (234 mg/kg FW), and aubergine (210 mg/kg 
FW) [2, 12]. Caftaric acid (2-caffeoyltartaric acid), a caffeic 
acid derivative, is an important phenolic compound in wine 
(6–73 mg/l in white wine, 46–141 mg/l in red wine) [2, 13, 
14]. Among the most abundant free HCA derivatives are 
chlorogenic acids, formed by the conjugation of quinic acid 
with certain HCAs, most commonly caffeic, p-coumaric, or 
ferulic acid [10, 15, 16]. The main subgroups of chlorogenic 
acids are caffeoylquinic, dicaffeoylquinic, feruloylquinic 
and p-coumaroylquinic acids [10]. Chlorogenic acids are 
found in many types of fruits and in high concentrations in 
coffee (depending on climatic and processing conditions, 
degree of roasting, grinding and barista procedures) [2, 9, 
17, 18]. Green coffee beans contain the largest amounts of 
chlorogenic acids, and some of these are transformed into 
their corresponding chlorogenic acid lactones during the 
roasting process; the chlorogenic acid content of roasted 
coffee beans varies according to the degree of roasting in 
the range of 2350–80,000 mg/kg DW [10] and in espresso 
coffee 890–8130 mg/l [18]. Chlorogenic acids are also found 
in vegetables, yerba mate, and tea [2, 19]. Ferulic acid is by 
far the most abundant and common HCA in cereal grains, 
which are the main dietary source of the compound (intake 
ranging from 91.5 to 320 mg from wheat bran, rye bran, or 
whole-grain rye bread in the reported interventions (Table 1; 
[20–22]), and in whole maize grain [23]. Flavonoid conju-
gates of ferulic acid and other HCAs have been found in 
Brassica vegetables (calculated range 200–3600 mg/kg DW) 
[24–26]. Ferulic acid in its free form exists in tomatoes and 
beer [9]. Several ferulic acid derivatives, esterified to cell 
wall polymers in cereal bran, as well as ferulic acid dimers, 
trimers and tetramers, have been described [27]. The most 
important sources of sinapic acid are Brassica vegetables, 
and several conjugated forms of sinapic acid with flavonoids 
have been described in these vegetables [24–26]. Whole 
grain cereals are also important sources of sinapic acid [2], 
which is shown as higher intake of sinapic acid from whole-
grain cereals (17–37.3 mg; Table 1) than from white wheat 
bread (2.2 mg; Table 1) [21, 22]. Coumaric acid (especially 
p-coumaric acid) is also an abundant HCA in most fruits and 
cereals. It is abundant in strawberries (1110 mg/kg DW), 
other berries (14–950 mg/kg DW), peanuts (1030 mg/kg 
FW), rye bran (140 mg/kg FW), and red wine (50 mg/kg 
FW) [2].

Bioavailability of phenolic acids

Phenolic acids in cereals are present both in free form and 
bound by ester bonds to arabinoxylan chains or by ether 
bonds to lignin. Most of the dietary fibre-bound phenolic 
acids in cereals are esterified to the cell walls. Ferulic acid 
can dimerize into dehydrodimers that cross-link arabinox-
ylan chains and/or lignins and thereby affect the physical 
properties of cell walls and consequently the solubility and 
degradability of arabinoxylans in the colon [28]. The main 
ferulic acid dehydrodimers identified in barley and oats are 
8-O-4-diferulic acid, 5,5′-diferulic acid and 8,5-diferulic 
acid (benzofuran form). The intake of dimers was observed 
by Kern et al. [29], but only a minor part of ferulic and 
sinapic acids were detected from the urinary excretion 
(Table 1). The content of dehydrodimers and ferulic acid 
seems to correlate with the content of insoluble dietary 
fibre and was found to be 3599 ± 69 and 3658 ± 170 mg/kg 
in oats and barley, respectively, with much lower contents 
detected in soluble dietary fibre fractions of the two cereals 
(38 ± 5 and 69 ± 10 mg/kg), respectively [28]. The dehy-
drodimers are abundant also in the insoluble dietary fibre 
of maize (12 596 ± 184 mg/kg− 1), wheat (2375 ± 36 mg/
kg), spelt (2601 ± 59 mg/kg), rice (4042 ± 59 mg/kg), wild 
rice (2840 ± 130 mg/kg), rye (3647 ± 132 mg/kg) and mil-
let (5693 ± 231 mg/kg), while the content in the soluble 
dietary fibre is only 59 ± 3 mg/kg in maize, 184 ± 14 mg/kg 
in wheat, 233 ± 43 mg/kg in spelt, 83 ± 3 mg/kg in rye, and 
46 ± 9 mg/kg in millet, lacking completely in rice and wild 
rice [28]. Bunzel et al. [28] showed also different profiles 
in the diferulate species in these crops, indicating varying 
percentages of 8-5′ isomers in total dehydrodiferulates 37% 
(in maize soluble fraction) to 54% (in rye insoluble fraction), 
8-8′-dehydrodiferulates from 16% in barley insoluble dietary 
fibre to 46% in spelt soluble fraction, 5-5′-dehydrodiferulates 
varying from 7% in spelt soluble dietary fibre to 25% in 
maize insoluble dietary fibre fraction [28]. Although ferulic 
acid dehydrodimers are common, dehydrodisinapic acids 
and sinapate–ferulate crossed dehydrodimers are less com-
mon but have also been identified in cereal dietary fibre [30].

The biological activities of phenolic acids depend on 
their bioavailability in vivo. Most phenolic acids in cereals 
(> 99%) are present in their bound form, and thus they are 
poorly bioavailable [31]. In berries, the content of bound 
phenolic acids varies between > 90% in raspberry and cow-
berry, 70% in strawberry, 60–70% in bilberry, lingonberry, 
and cloudberry, and 10–30% in rowanberry and blueberry. 
Among fruits, the highest contents of phenolic acids are 
found in dark plum, cherry, citrus fruits, red grape, and 
some apple varieties. However, the contents in these fruits 
(< 300 mg/kg FW) were clearly lower than in the berries 
with the highest phenolic acid content (590–1030 mg/kg 
FW). The contents of phenolic acids in beverages varies 
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Table 1   Mean concentrations and standard deviations of phenolic acid metabolites found in plasma and urine, after the consumption of foods 
rich in phenolic acids

Food source Compounds 
(mg)

Total consumed 
(mg)

Metabolites Max conc. in 
plasma (nM)

Total in 24-h 
urine (mg)

Number of 
subject and 
gender

References

White wheat 
bread fortified 
with bio-
processed rye 
bran

Ferulic acid
Sinapic acid
p-Coumaric acid

160.6
37.3
5.6

Ferulic acid
Sinapic acid
p-Coumaric acid

– 1.66 ± 0.51
0.23 ± 0.09
0.02 ± 0.01

6 males
9 females

[21]

White wheat 
bread fortified 
with native rye 
bran

Ferulic acid
Sinapic acid
p-Coumaric acid

122.7
30.2
5.2

Ferulic acid
Sinapic acid
p-Coumaric acid

– 0.45 ± 0.15
0.12 ± 0.06
0.02 ± 0.01

6 males
9 females

[21]

White wheat 
bread

Ferulic acid
Sinapic acid
p-Coumaric acid

8.4
2.2
0.3

Ferulic acid
Sinapic acid
p-Coumaric acid

– 0.27 ± 0.10
0.06 ± 0.03
0.01 ± 0.01

6 males
9 females

[21]

Rye bread Ferulic acid
Sinapic acid
p-Coumaric acid

91.5
21.1
3.6

Ferulic acid
Sinapic acid
p-Coumaric acid

– 0.33 ± 0.14
0.07 ± 0.06
0.01 ± 0.01

6 males
9 females

[21]

Whole wheat 
bread contain-
ing native bran

Ferulic acid
Sinapic acid
p-Coumaric acid
Vanillic acid

320
17
5.4
4.9

Ferulic acid
Sinapic acid
p-Coumaric acid
Vanillic acid

880 (150)*
n/d
n/d
110 (30)*

9.9 (1.9)*
1.1 (0.8)*
0.1 (0.07)*
5.0 (1.3)*

8 males [22]

Whole wheat 
bread contain-
ing bio-
processed bran

Ferulic acid
Sinapic acid
p-Coumaric acid
Vanillic acid

220
17
5.4
4.9

Ferulic acid
Sinapic acid
p-Coumaric acid
Vanillic acid

2700 (630)*
n/d
n/d
250 (180)*

21.4 (8.9)*
2.7 (0.7)*
0.09 (0.05)*
8.2 (5.7)*

8 males [22]

Rye bran bread Ferulic acid 10.2 Ferulic acid – 4.82 ± 3.46 18 females [55]
Wholegrain 

wheat bread
Ferulic acid 87 Ferulic acid-4′-O-

sulfate
Dihydroferulic 

acid-4′-O-sulfate
Dihydroferulic 

acid-O-glucuro-
nide

84.3 ± 16.6
9.2 ± 1.4
n/d

P
P
P

8 males
7 females

[87]

Commercial 
wheat bread 
enriched in 
aleurone frac-
tion

Ferulic acid 43 Ferulic acid-4′-O-
sulfate

Dihydroferulic 
acid-4′-O-sulfate

Dihydroferulic 
acid-O-glucuro-
nide

55.5 ± 9.4
9.5 ± 3.5
n/d

P
P
P

8 males
7 females

[87]

Commercial 
wheat bread 
enriched in 
aleurone frac-
tion

Ferulic acid 87 Ferulic acid-4′-O-
sulfate

Dihydroferulic 
acid-4′-O-sulfate

Dihydroferulic 
acid-O-glucuro-
nide

76.6 ± 9.1
11.9 ± 1.9
n/d

P
P
P

8 males
7 females

[87]
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Table 1   (continued)

Food source Compounds 
(mg)

Total consumed 
(mg)

Metabolites Max conc. in 
plasma (nM)

Total in 24-h 
urine (mg)

Number of 
subject and 
gender

References

Commercial 
breakfast 
cereal (85% 
wheat bran)

Vanillin
t-p-Coumaric 

acid
trans-Sinapic 

acid
t-Ferulic acid
cis-Ferulic acid
8-5-diFA (open 

form)
5-5-diFA
8-O-4-diFA
8-5-Benzofuran-

diFA

2.72 ± 0.40
5.44 ± 0.45
19.60 ± 1.73
259.10 ± 15.63
9.22 ± 4.96
4.94 ± 0.18
6.43 ± 0.24
14.46 ± 1.92
2.85 ± 0.75

Ferulic acid
Sinapic acid

150 to 210
~ 10 to 40

8.10 ± 3.34
0.54 ± 0.13

3 males
3 females

[29]

Cranberry juice Cinnamic acid
p-Coumaric acid
Caffeic acid
Ferulic acid
Chlorogenic acid
Benzoic acid
2-Hydroxyben-

zoic acids
3,4-Dihydroxy-

benzoic acid
Gallic acid
Vanillic acid

1.0
6.9
1.2
0.0
5.2
7.8
0.1
1.1
0.1
1.0

Selected metabo-
lites

Cinnamic acid
p-Coumaric acid
Caffeic acid
Ferulic acid
Chlorogenic acid
Ferulic acid-4′-O-

sulfate
Ferulic acid-4′-O-

glucuronide
Dihydroferulic acid
Benzoic acid
2,3-Dihydroxyben-

zoic acids
Protocatechuic acid
Syringic acid
Vanillic acid
Vanillic acid-4-O-

sulfate
Isovanillic acid
4-Methylgallic 

acid-3-O-sulfate
Hippuric acid
α-Hydroxyhippuric 

acid
2-(4-Hydroxyphe-

noxy)propionic 
acid

Homovanillic acid
3,4-Dihydroxyphe-

nyl acetic acid
3-Hydroxyphenyl 

acetic acid
4-Hydroxyphenyl 

acetic acid

123 ± 34
6 ± 1
1 ± 1
57 ± 12
5 ± 2
2268 ± 794
165 ± 29
304 ± 122
2169 ± 608
12,024 ± 4055
109 ± 45
8 ± 6
410 ± 115
1054 ± 274
220 ± 44
275 ± 82
42,926 ± 12 282
2943 ± 587
n.d.
511 ± 165
476 ± 138
615 ± 360
1849 ± 724

nmol
n/d
36 ± 9
75 ± 22
n/d
52 ± 25
1055 ± 259
109 ± 20
524 ± 368
4141 ± 427
8432 ± 2176
944 ± 162
249 ± 31
423 ± 136
288 ± 87
1238 ± 229
297 ± 74
69,717 ± 13,686
74,538 ± 20,636
453 ± 152
6640 ± 1472
1597 ± 297
4384 ± 922
10,152 ± 3161

10 males [63]

Coffee Caffeoylquinic 
acid

Feruloylquinic 
acid

Dicaffeoylquinic 
acid

256
37
42

Dihydroferulic acid
Dihydrocaffeic acid
Caffeic acid
Ferulic acid
Isoferulic acid

P (major)
P (major)
P (minor)
P (minor)
P (minor)

– 4 males
5 females

[62]
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Table 1   (continued)

Food source Compounds 
(mg)

Total consumed 
(mg)

Metabolites Max conc. in 
plasma (nM)

Total in 24-h 
urine (mg)

Number of 
subject and 
gender

References

Instant coffee Caffeoylquinic 
acids

Feruloylquinic 
acids

Caffeoylquinic 
acid lactones

Dicaffeoylquinic 
acids

p-Cou-
maroylquinic 
acids

95.31 ± 1.74
24.68 ± 1.95
19.17 ± 1.65
6.51 ± 0.62
2.30 ± 0.03

3-O-Caffeoylquinic 
acid lactone-O-
sulfate

3-O-Feruloylquinic 
acid

Caffeic acid-3-O-
sulfate

Ferulic acid-4-O-
sulfate

Dihydroferulic acid
Dihydroferulic 

acid-4-O-sulfate
Dihydrocaffeic 

acid-3-O-sul-
fate…

And others

27 ± 3
16 ± 2
92 ± 11
76 ± 9
385 ± 86
145 ± 53
325 ± 99

1.1 ± 0.1
1.2 ± 0.1
6.4 ± 0.8
11.1 ± 1.6
9.7 ± 2.0
12.4 ± 3.4
37.1 ± 8.2

8 males
3 females

[61]

Yerba mate infu-
sion

Caffeoylglucose 
isomers

Caffeoylquinic 
acids

Coumaroylquinic 
acids

Feruloylquinic 
acids

Caffeoylquinic 
lactones

Dicaffeoylquinic 
acids

Caffeoylferu-
loylquinic 
acids

Flavonols

3.5 ± 0.2
44.5 ± 0.8
0.5 ± 0.1
3.2 ± 0.1
2.7 ± 0.2
22.4 ± 0.5
0.5 ± 0.1
3.3 ± 0.3

Coumaroylquinic 
acid

Caffeic acid 3-sul-
fate

Ferulic acid 4-glu-
curonide

Ferulic acid 4-sul-
fate

Others
Microbial metabo-

lites

Traces
37 ± 36
11 ± 4
19 ± 9
n/d

0.179 ± 0.033
1.261 ± 0.330
1.098 ± 0.278
2.234 ± 0.701

7 males
5 females

[19]



1281European Journal of Nutrition (2020) 59:1275–1293	

1 3

widely, ranging from 0 mg/kg in pear cider, 160 mg/kg FW 
in apple juice, 300–360 mg/kg FW in green and black tea to 
970 mg/kg FW in coffee and 1520 mg/l in yerba mate [19, 
32]. Most of the phenolic acids in beverages are liberated 
after hydrolysis, indicating that nearly all phenolic acids are 
conjugated or bound in the original ingredients.

Impact of food matrix and processing 
on the bioavailability of phenolic acids

The bioavailability and thus the phenolic acid concentrations 
in the body fluids measured in intervention trials are affected 
by the food matrix and its processing. A good example is 
the processing of cereal matrix, which contains higher con-
centrations of bound phenolic acids (1300–1400 mg/kg FW 
in whole wheat and rye flour, > 4000 mg/kg FW in wheat 
and rye bran) compared to their free forms (< 20 mg/kg 
FW) [11]. Many preliminary processing techniques remove 

phenolic acids or increase the amount of free phenolic acids 
in cereal food products. Dehulling reduced the total content 
of phenolic acids considerably in oat groats, pearled barley, 
and rye flour [33, 34], whereas milling and air-classification 
increased the content of bound phenolic acids from the levels 
present in the whole flour [35, 36]. Phenolic acids embed-
ded in the bran matrix can be released during bioprocessing 
using enzymes alone, such as ferulic acid esterase, xylanases 
or cellulases [37–40] or by combining enzymes with sour-
dough fermentation [31, 41–43]. Germination is a traditional 
means of bioprocessing alone or in combination with dough 
fermentation with yeast, which enhance the release of free 
phenolic acids in dough [44, 45].

Bread-making includes several fundamental operations, 
namely mixing, fermentation and baking, which are indis-
pensable for producing an attractive bread. Fermentation of 
the dough contributes to an increase in phenolic acids and 
the mechanism proposed is via the structural breakdown of 

Table 1   (continued)

Food source Compounds 
(mg)

Total consumed 
(mg)

Metabolites Max conc. in 
plasma (nM)

Total in 24-h 
urine (mg)

Number of 
subject and 
gender

References

Polyphenol rich 
diet

Response after 
8 week inter-
vention

N = 34

Polyphenols
Flavones
Flavonols
Flavanols
Flavanones
Anthocyanidins
Isoflavones
Phenolic acids

mg
2868
7.6
223
1194
102
111
0.02
1245

Phenolic acid 
microbial metabo-
lites in 24-h-urine

3-(3′,4′-Dihydroxy-
phenyl)propionic 
acid

3-(3′-Hydroxyphe-
nyl)propionic acid

3-(4′-Hydroxyphe-
nyl)propionic acid

2-(3′,4′-Dihydroxy-
phenyl)acetic acid

2-(3′-Hydroxyphe-
nyl)acetic acid

3,4-Dihydroxyben-
zoic acid

3,5-Dihydroxyben-
zoic acid

3,4-Dimethoxyben-
zoic acid

3-Hydroxybenzoic 
acid

4-Hydroxybenzoic 
acid

Benzoic acid
4-Methylcatechol
Gallic acid
Ferulic acid
Sinapic acid
Caffeic acid
4-Coumaric acid
Vanillic acid
Hippuric acid

– nmol/mg creati-
nine

0.14 ± 0.16
0.12 ± 0.12
0.002 ± 0.000
0.10 ± 0.07
0.33 ± 0.25
0.03 ± 0.01
0.02 ± 0.01
0.01 ± 0.01
0.01 ± 0.01
0.06 ± 0.04
0.06 ± 0.13
0.07 ± 0.07
0.004 ± 0.000
0.13 ± 0.08
0.10 ± 0.09
0.06 ± 0.04
0.003 ± 0.000
0.11 ± 0.07
23 ± 20

16 males
19 females

[85]

Conc concentration, n/d not detected, P present, asterisk values are medians, IQR interquartile range (middle 50%), double asterisks largest 
standard deviation from the individual components in the sum



1282	 European Journal of Nutrition (2020) 59:1275–1293

1 3

the cell wall matrix by degrading enzymes present in both 
grains and microbes such as xylanases and esterases [46]. 
Dough mixing causes an overall decrease in bound ferulic 
acid, sinapic acid, and caffeic acid in various grains, increas-
ing the amount of free ferulic acid significantly up to fivefold 
from the initial level [20, 47, 48]. Yu and Beta [49] found 
an increase (103–109%) in the contents of free ferulic acid 
and p-hydroxybenzoic acids in bread crust after baking in 
the oven, suggesting that some free phenolic acids are ther-
mally labile. However, in the crumb, the levels of bound 
phenolic acids increased instead [49]. Other thermal pro-
cesses include extrusion and infrared heating, which may 
have a varying effect on the content of free phenolic acids. 
For example, extrusion with high temperature and pressure 
increased the content of free phenolic acids in pearled bar-
ley by 72%, whereas milder conditions by infrared heating 
and flaking of the same material did not have any effect 
[33]. In vitro models have been used to study the impact of 
bioprocessing on the release of phytochemicals including 
phenolic acids [50–52].

There are only few in vivo studies and on the degree of 
processing, including animal studies [53, 54] and human 
interventions [21, 22, 55], all of which showed a variation 
in the urinary excretion of HCAs or their metabolites. Bio-
processing showed a significant role on the bioavailability 
of ferulic acid only, while p-coumaric acid contents did not 
change neither in whole grain rye nor in whole-grain wheat 
[21, 22, 56, 57]. Table 1 gives examples of selected food 
items, their phenolic acid consumption levels, and bioavaila-
bility as HCAs after deconjugation before analysis (Table 1; 
[21, 22, 55]).

In conclusion, to assess the dietary intake of phenolic 
acids and their conjugates, accurate and wide-scale analy-
sis is crucial to determine the diversity and the contents of 
compounds in food stuffs. For non-traditional wheat species, 
such as einkorn, emmer, spelt, and pigmented cultivars, a 
significant gap remains concerning the release properties 
of their matrix; these crops might deserve a more substan-
tial role in human nutrition, potentially affecting health 
responses.

Metabolism of phenolic acids

When phenolic acids are consumed, they undergo substantial 
metabolism by tissues, organs and colonic microbiota. In 
this section, the metabolic routes and interplay between the 
host and residing microbiota are discussed.

Free phenolic acids can be released from food and 
beverage matrices in the stomach, the muscles of which 
reduce food particle size and further enhance the release of 
phenolic compounds and their absorption [58–60]. Table 1 
shows the impact of food matrix in the bioavailability: the 

absorption of phenolic acids from beverages (cranberry 
juice, coffee, and yerba mate [61–63]) occurs at a higher 
extent than from solid food matrices (whole grain cere-
als) (Table 1). Since a high proportion of HCAs is con-
jugated or bound to dietary fibre matrix, the majority of 
these compounds reach the colon, and their bioavailability 
requires the activity of degradation enzymes in intesti-
nal tissues and microbiota [64–68]. Hydrolysis by intes-
tinal or microbial esterases is probably the major route 
for release of free HCAs from their conjugation in vivo. 
After deconjugation, the released phenolic acids can be 
absorbed across the gastrointestinal barrier and enter the 
peripheral blood circulation [65].

Metabolism by the host

Absorbed dietary phenolic acids can be perceived by the 
body as xenobiotic substances and thus they undergo 
metabolism to facilitate their removal. Xenobiotic metabo-
lism is a multi-organ process, starting in the upper intesti-
nal epithelia and largely continuing in the lower intestine 
and liver, as well as in peripheral tissues, such as kidneys 
and adipose tissue. Hepatic enzymes transform molecules 
by adding or removing hydroxyl groups (phase I) and con-
jugating them to other molecules (phase II) to increase 
their water solubility, thus enhancing their excretion in 
urine. HCAs undergo glucuronidation and/or sulfation, 
or are oxidized into benzoic acid derivatives, which are 
finally glycinated into hippuric acid derivatives [1, 69–71]. 
Table 1 shows maximal concentrations in plasma (nM) and 
total 24-h urinary excretion as mg or as nmol of hepatic 
metabolites of HCAs, which in some studies are deconju-
gated before analysis [21, 22, 29, 55] and expressed as free 
phenolic acids, and in others as sulfate and glucuronide 
conjugates of ferulic acid.

Xenobiotic metabolism is also subjected to individual 
responses. The enzymes of detoxification, responsible for 
phase I and II metabolism and phase III transport [72], 
may be expressed differently upon nutritional stimuli or 
genetic polymorphisms, causing interindividual variation 
[73]. One of the major enzyme systems that handles the 
capacity of an organism to metabolize xenobiotics, are the 
cytochrome P450 monooxygenases [74]. The expression 
of CYP2D6 (debrisoquine hydroxylase) and CYP2C19 
(mephenytoin hydroxylase) genes may vary up to 1000-
fold between individuals and thus lead to individuals con-
sidered as poor or extensive metabolizers [73]. Genetic 
polymorphisms have been described for most drug metab-
olizing enzymes, such as genes involved in acetylation and 
oxidation. Slow acetylator phenotypes occur in habitants 
of Europe and North America (40–70%), while in Asia 
Pacific, only 10–30% of the residents are slow acetylators. 
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The cytosolic N-acetyltransferase in the liver, responsible 
for the transfer of acetate from acetyl-CoA to the sub-
strate, is encoded by the NAT1 and NAT2 genes. The slow 
acetylator phenotype is related to a reduction of 10–20% 
of NAT2 protein in the liver, due to the existence of NAT2 
alleles with decreased functionality [73].

Metabolism by gut microbiota

The role of gut microbiota in the biotransformation of phy-
tochemicals, phenolic acids among them, is widely acknowl-
edged, causing the formation of food-derived metabolites in 
the circulation and excreted in the urine. Table 1 shows some 
examples of the analysed microbial metabolite profiles from 
human interventions. However, in vivo results show large 
interindividual variation, and when the metabolite profile 
contains many different metabolites with high interindi-
vidual variation, any differences between the study groups 
become more difficult to detect.

Since the biotransformation capacity of the gut micro-
biota is extensive, in vitro studies have attempted to iden-
tify colonic metabolites of phenolic acids. Braune et al. 
[75] studied the in vitro anaerobic degradation of isolated 
ferulic acid dimers, 8-O-4-diferulic acid (C–O–C-bond) and 
5-5-diferulic acid (C–C-bond), using human faecal suspen-
sion as an inoculum. They showed that the biotransforma-
tion of C–O–C-dimers started with the release of ferulic 
acid (which was converted to hydroxylated phenylpropi-
onic acids) and 3-(4-hydroxy-3-methoxyphenyl)pyruvic 
acid (which was a precursor to hydroxylated phenylacetic 
and phenyllactic acids) [75]. The further formation of 
3-(3-hydroxyphenyl)propionic acid and its subsequent dehy-
droxylation to 3-phenylpropionic acid has been shown for 
ferulic acid and caffeic acid derivatives [57, 76]. In addition, 
C–C-bonded 5-5-diferulate had conversions in the attached 
units without degradation of the C–C-bond. Among these 
conversions were series of demethylations and double bond 
reductions, which resulted in different combinations of 
two moieties of caffeic acid, dihydrocaffeic acid (3-(3ʹ,4ʹ-
dihydroxyphenyl)propionic acid), ferulic acid or dihydrofer-
ulic acid (3-(3ʹ-methoxy-4ʹ-hydroxyphenyl)propionic acid) 
attached with the C–C bond [75].

The formation of vanillic acid has been suggested to occur 
in the colon from the main microbial metabolite of ferulic 
acid, dihydroferulic acid, by β-oxidation [50, 63]. Ferulic 
acid can also be degraded to caffeic acid and by reduction to 
p-coumaric acid and cinnamic acid. The β- or α-oxidation of 
the aliphatic side chain leads to the accumulation of benzoic 
acid derivatives that is perhaps the most common intermedi-
ate of anaerobic degradation [77–79]. Figure 3 shows also 
examples of the microbial metabolites, phenylpropionic or 
phenylacetic acids with different patterns of substitution. It 
is worthy of a note that benzoic acid derivatives, including 

hydroxybenzoic acids and their glycinated hepatic metabo-
lites, hippuric acids, are a substantial part in the circulating 
and excreted metabolite profile, not only of phenolics acids, 
but also main dietary flavonoids [12].

It is difficult to distinguish the actions of liver from those 
of the colon without studying the metabolism using in vitro 
colon and hepatic models, since in vivo studies show their 
concerted action and the impact of enterohepatic circulation. 
Human primary hepatocytes are capable of converting phe-
nylpropionic acid to ferulic acid, indicating the presence of 
post-colonic hepatic metabolites and returning the structural 
transformation back to original precursor structures [80]. 
Enterohepatic circulation has shown to contribute to the low 
diurnal variation of the colonic metabolite concentrations 
in the blood [81, 82], and also contributing to their long 
residence time. Pharmacokinetic studies have shown that 
microbial phenolic acid metabolites have a 24–48 h resi-
dence time in the bloodstream after a single dose of their 
parent compounds [83, 84]. Phenolic acids are excreted in 
urine mainly in their free form [83], but it is possible that 
liver has a role in formation of the post-colonic metabolites 
[80]. Phenolic acid and phenolic acid microbial metabolite 
levels in urine are on low or high micromolar level [85], 
whereas in plasma they range from low to high-nanomolar 
concentrations [12, 84, 86]. In peripheral tissues, the con-
centrations can be anticipated to be even lower.

Figure 3 shows benzoic acid derivatives and HCAs after 
reduction of the double bond in the side chain and conver-
sion to dihydroferulic acid derivative [63, 87] and also 
dihydrocaffeic acid [61, 62], which can be expressed also 
as phenylpropionic acid derivatives, indicating microbial 
metabolism. It is noteworthy that HCA metabolites are 
shared with those of flavonoids and can together have a big-
ger impact on in human body as a pool of metabolites [80, 
85]. As the metabolites described above and their hepatic 
conjugates are found in plasma and urine, they circulate 
through the body and may exhibit both local and systemic 
effects.

In conclusion, interindividual variation is affected by sev-
eral sites of metabolism, tissues and the intestinal micro-
biota, causing a diverse metabolite profile. The overall 
metabolite pool, which circulates in the body, mediates the 
health benefits of a diet, which may be difficult to attribute 
to a single food item, study group, or compound class due 
to high individual variation and interlinked metabolic path-
ways. The ecology of gut microbiota and variation of the 
functional genes of the microbes may have a role in inter-
individual variability in the circulating metabolites and in 
their health benefits.
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Health benefits related to intake of phenolic 
acids

The potential preventive effect of HCAs on several chronic 
diseases has been widely reviewed in the recent years. HCA 
derivatives, in particular chlorogenic acids, have been shown 
to exert health benefits in the management of obesity, car-
diovascular diseases, type 2 diabetes mellitus, and metabolic 
syndrome [2, 88–92], while some antioxidant and neuropro-
tective effects have also been reported [93–95]. Neverthe-
less, current evidence is still inconsistent and insufficient to 
support robust health claims, mostly because the co-occur-
rence of other plant bioactives (e.g., caffeine and hydroxyhy-
droquinone in coffee, fibre in wholegrain products, and fla-
vonoids in berries and fruits) in the main dietary sources of 
HCAs hinders the elucidation of the putative health benefits 
exerted by these compounds. Moreover, the interindividual 
variability in the physiological response to consumption of 
HCAs is almost unknown for most of the biomarkers of car-
diometabolic health [96].

HCAs have shown a series of biological activities related 
to the prevention of cardiovascular diseases, diabetes, and 
metabolic syndrome in cell and animal studies [2, 89–92, 
97–99], but evidence in humans is rather limited. HCAs may 
enhance cardiovascular health by exerting blood pressure-
lowering effects and by acutely improving the endothelial 
function [89, 100, 101]. Some studies suggest that chloro-
genic acids may cause significant reductions in systolic and 
diastolic blood pressure [100, 102, 103], but other studies 
have instead reported a lack of significant blood pressure 
reduction [104–106]. The differences could be attributed to 
the antihypertensive effects of chlorogenic acids only occur-
ring in subjects with mild hypertension and not in normo-
tensives [88, 107]. Moreover, the decrease in blood pres-
sure upon consumption of caffeoylquinic acids from coffee 
could be inhibited by the presence of hydroxyhydroquinone 
in brewed coffee. Hydroxyhydroquinone is generated during 
the roasting of coffee beans, and it is a compound to which 
prohypertensive effects have been attributed [104]. In addi-
tion, dose–response effects of HCAs on blood pressure are 
not clear [88]. These controversies and lack of robust evi-
dence make the development of health claims or guidelines 
on the effects of HCA-rich diet on reduced blood pressure 
extremely difficult.

The acute effects of HCAs on endothelial function are also 
contradictory. While some human studies indicated a lack of 
effect of 400 mg of chlorogenic acid (5-caffeoylquinic acid) 
or coffee containing different amounts of HCAs on flow-
mediated dilation (FMD) [106, 108], a recent intervention 
trial by Ward et al. [105] in healthy men and women reported 
significant effects of chlorogenic acid, at doses of 450 and 
900 mg, on mean post-ischaemic FMD response. To further 

complicate the picture, in a similar study conducted only in 
healthy men, Mills et al. [101] observed improvements in 
vascular function after pure chlorogenic acid intake, but only 
at 450 mg and not at 900 mg intake level. Interestingly, these 
authors also investigated the impact of coffee intake, match-
ing for caffeine, but differing in the content in chlorogenic 
acids (89 and 310 mg), on FMD response. A bi-phasic FMD 
response was observed regardless of the intake level, closely 
in concomitance with the appearance of HCA metabolites in 
plasma [101]. One of these metabolites peaking in plasma 
in parallel to the vascular function improvement was ferulic 
acid 4ʹ-O-sulfate [101], which has recently demonstrated to 
elicit a concentration-dependent vasorelaxing effect ex vivo 
[109]. Therefore, further studies are needed to establish a 
dose–response relationship and to determine the molecular 
species and their adequate plasma levels to demonstrate the 
FMD response.

Regarding body weight, Thom observed that the con-
sumption of chlorogenic acid-enriched instant coffee in 
overweight subjects for 12 weeks significantly reduced 
body mass and body fat when compared with the use of 
normal instant coffee [110]. Slight changes in weight were 
also observed in mildly hypertensive adults when testing 
coffees deprived of hydroxyhydroquinone and containing 
different amounts of chlorogenic acids for 4 weeks [107]. 
On the contrary, chlorogenic acid-rich coffee consumed 
daily for 4 weeks did not lead to a significant body weight 
reduction in pre-obese [111] and healthy subjects [112]. 
An effect of chlorogenic acid consumption on body mass 
index (BMI) was observed by Watanabe et al. [102] in 
patients with mild hypertension.

Other biomarkers related to cardiometabolic health 
have been less investigated. A study reported that the 
lipid profile of healthy adults did not change after a daily 
consumption of 400 ml of coffee containing a medium 
(420 mg) or high (780 mg) content of HCAs for 8 weeks 
[106]. Another trial, which controlled the caffeine intake, 
indicated that the consumption of coffees containing dif-
ferent amounts of chlorogenic acids attenuated the effects 
of short-term fructose-induced liver insulin resistance in 
healthy men [113]. Ochiai et al. [104] showed that coffee 
chlorogenic acids might decrease urinary isoprostane lev-
els, suggesting a reduced oxidative stress in mild hyper-
tensive Japanese adults with vascular failure and not tak-
ing any antihypertensive drugs. The same effect, lowered 
isoprostane levels, was found in subjects suffering from 
metabolic syndrome symptoms and using polyphenol-
rich diet for 8 weeks, showing increased urinary levels of 
microbial phenolic acid metabolites, which are shared by 
the HCAs [85, 114]. Therefore, it may be difficult to draw 
conclusions on the role of a single compound group, such 
as HCAs in systemic disorders such as lipid metabolism, 
glucose metabolism, insulin resistance, and inflammation 
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based on the limited insights achieved so far in controlled 
human studies in chronic conditions. However, currently, 
a systematic review and meta-analysis of randomized con-
trolled trials is being carried out to shed light on the inter-
individual variability in response to the impact of HCAs 
on cardiometabolic biomarkers [115]. This work will pos-
sibly help to better understand the protective features of 
HCAs in different population subgroups, but further ad 
hoc designed clinical trials are required, in our opinion, 
to tackle the health benefits of HCAs.

Acute studies dealing with postprandial responses seem 
to indicate that chlorogenic acid intake may attenuate early 
glucose absorption and insulin response [116, 117] and 
that this effect does not seem to be mediated by incretin 
hormones (glucagon-like peptide-1, GLP-1, and glucose-
dependent insulinotropic polypeptide, GIP) in overweight 
men [118]. In another study, daily consumption of 329 mg 
of coffee chlorogenic acids increased postprandial fat utiliza-
tion in healthy humans [112], mainly when hydroxyhydro-
quinone was not present in the brew [119].

The chemopreventive properties of HCAs have been eval-
uated mainly in animal and cell models [91]. In humans, 
the main insights in the chemopreventive activity of HCAs 
come from observational studies indicating, for instance, 
an inverse association of wholegrain phenolics with the 
incidence of colorectal cancer [120], however, results from 
these studies are affected by several confounding factors, the 
first being the practical impossibility to fully adjust for fibre 
intake. Moreover, it has been suggested that chlorogenic 
acids in coffee may play a role in protecting DNA integ-
rity [121] and in the induction of chemopreventive phase II 
enzymes via the Nrf2/antioxidant-response element (ARE) 
detoxifying pathway [122]. This latter effect could vary sig-
nificantly among individuals, due to the existence of genetic 
polymorphisms in the Nrf2 gene [122].

The biological properties of HCAs in the framework of 
brain function have been scarcely investigated [93, 95]. To 
date, only a few studies have been conducted in humans to 
address the cognitive and mood effects associated to their 
intake. In an acute study in healthy elderly subjects, Cropley 
et al. [123] reported that coffee chlorogenic acids may modu-
late brain function by improving some mood and behav-
ioural processes. In another study, using a decaffeinated 
green coffee blend and pure 5-caffeoylquinic acid, Camfield 
et al. [124] assessed several cognitive and mood outcomes 
and concluded that the improvements observed in mood, but 
not in cognitive function, could be partially attributable to 
coffee chlorogenic acids. Further work is required to tackle 
the effects of HCAs consumption on human brain function.

Interindividual variability in health 
responses

The interindividual variability in health responses to phe-
nolic acid-rich foods has been scarcely studied, although 
some insights have been gained. A polyphenol-rich diet was 
shown to significantly reduce the markers of dyslipidaemia 
(triglycerides and VLDL) and oxidative stress (8-isopros-
tane urinary excretion) in 86 overweight or obese individuals 
despite of a large variability in the responses [114]. How-
ever, the variability was not associated with a specific factor, 
nor was the diet assessed for the intake of particular classes 
of polyphenols, including phenolic acids and flavonoids. 
Artichoke leaf extract, containing mainly HCAs (chloro-
genic acid, cynarin, and caffeic acid), sesquiterpene lactones, 
and flavonoids (e.g., luteolin), decreased LDL-C levels only 
in men with a certain genotype of Taq IB in the CETP gene 
(cholesteryl ester transfer protein) [125]. The effect is likely 
attributable to the (poly)phenols present in artichoke, but 
the contribution of phenolic acids remains unclear, since 
both chlorogenic acid and luteolin can inhibit LDL oxidation 
in vitro [126]. In another RCT study by Gavrieli et al., coffee 
delayed the postprandial glucose response more in females 
and overweight or obese participants compared to men and 
participants with normal weight, respectively [127]. A ran-
domized crossover study, where coffee containing green 
and roasted beans was consumed by 52 volunteers, found 
decreased levels of lipid markers (LDL-C, VLDL-C, and tri-
glycerides) only in the hypercholesterolemic group (n = 27), 
but not in the normocholesterolemic one (n = 25) [128]. The 
same research group also found a decrease in some markers 
of metabolic syndrome (blood glucose, insulin resistance, 
and triglycerides) after consumption of green/roasted coffee 
blend only in hypercholesterolemic subjects [129]. However, 
decaffeinated coffee was not used as a control in any of these 
studies to determine the effect of other phytochemicals in 
coffee, which includes high amounts of phenolic acids but 
also caffeine, trigonelline and diterpenes [130]. When the 
effect of both regular and decaffeinated espresso was studied 
on the elastic properties of the aorta and wave reflections, 
a stronger response was observed among non-habitual cof-
fee drinkers compared to habitual drinkers after the intake 
of both types of coffee [131]. No difference was seen after 
receiving caffeine alone, suggesting that the phenolic acids 
in coffee may be responsible for the interindividual variabil-
ity in the responses, although the effects of other phytochem-
icals cannot be excluded. Further evidence of the role of cof-
fee phenolic acids was obtained by Jokura et al., who gave 
coffee polyphenol extract, consisting mostly of chlorogenic 
acids, to 19 male volunteers [132]. A significantly increased 
level of GLP-1, involved in anti-diabetic and beneficial car-
diovascular effects, was observed only in individuals with 
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a lower insulinogenic index. However, only the levels of 
chlorogenic acids were measured from the extract, and thus 
the contribution of other phytochemicals (except caffeine) 
to the effect cannot be ruled out.

In conclusion, although HCAs have been linked with 
promising effects associated to human health promotion 
and disease prevention, the current evidence of their role is 
far from being robust and conclusive, and more research is 
needed. The variability in the individual health responses to 
phenolic acids seems to be related to the metabolic status, 
gender, dietary habits, and genetic polymorphisms, but the 
contribution of other dietary bioactives cannot be dismissed. 
Further studies should be designed, taking into account the 
potential confounding effects of other plant phytochemicals 
and their metabolites present in concomitance with HCAs, 
and the heterogeneity in the responsiveness to HCA con-
sumption should be more carefully investigated.

Which factors are relevant 
in the interindividual variation?

The scenario is complex when attempting to characterise 
the large interindividual variability in the metabolism and 
response of food phytochemicals, such as HCAs, HBAs  and 
polyphenols sharing partially the same microbial metabo-
lites. Various factors are relevant: controlling the diet of the 
intervention (contents of the phytochemicals in beverages 
or food matrices, effects of processing on their release), gut 
microbial ecology and genetics, and enzymatic plasticity of 
the host (phase I and II metabolic enzymes, and phase III 
transporters) and those of the microbiome. Furthermore, 
beyond the bioactive phytochemical component at study, 
dietary habits, lifestyle, geographical and other environ-
mental factors influence the biological effect on health and 
disease state (Fig. 2).

It is clear that free-living people do not eat only single 
foods, and they seldom obey a controlled diet for a long 
period of time. However, phenolic acids may contribute to 
the dietary intake of polyphenols to a substantial degree. As 
shown in Table 1, the phenolic acid content of polyphenol-
rich diet represent almost half of the total polyphenol intake. 
The metabolic routes of HCAs have been recently eluci-
dated to some extent, and the effect of food processing on 
the HCAs may cause variation [51, 63–66]. Still, we need 
to acknowledge that processing, affecting indirectly the bio-
availability of phenolic acids, has a limited impact on the 
interindividual variability, if we consider the whole dietary 
consumption.

Human interventions, sometimes including a low number 
of subjects (Table 1), have observed biomarkers of phenolic 
acid intake or correlations between the intake and health 

benefits. The subtle differences are discussed with regard 
to other confounding factors or components. The observed 
correlations do not represent causality, and thus a better 
understanding of the gut–host interplay and microbiome 
biochemistry is becoming highly relevant. The reversible 
interaction between the diet, the host and the microbiome, 
and their consequent synergistic effects on health is a chal-
lenge to tackle. Because of this three-way interplay, it is 
important to understand which microbial species correlate 
with the phenolic metabolites produced at individual level. 
Microbiological studies, and especially those dealing with 
ecological communities of microbiomes, including genome-
scale models, studying the functional genome of the micro-
biome, could explain partly interindividual variation of the 
microbial metabolites [133].

Do we understand the microbial metabolism to a full 
degree? Microbial transformations of ferulic acid have been 
described in various environments beyond the human gut 
microbiota, with concurrent intermediates to those found in 
faecal matter [134]: oxidation or reduction of the side chains, 

Fig. 2   Factors influencing the interindividual variability related to 
consumption of phenolic acid-rich foods and recommendations for 
future research. The factors with major impact according to current 
knowledge are underlined
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Fig. 3   Major pathways of the microbial anaerobic degradation of ferulic acid, caffeic acid and p-coumaric acid. The pathways are connected to 
hydroxybenzoic acids and amino acids



1288	 European Journal of Nutrition (2020) 59:1275–1293

1 3

leading to coniferaldehyde and vanillyl alcohol or dihydro-
ferulic acid; cleavage of the side chain, forming vanillin and 
eventually vanillic acid via the oxidation of the aldehyde 
group; and finally, the formation of guaiacol and proto-
catechuic acid as common intermediates (Fig. 3). Benzoic 
acid (and benzoyl-CoA, which is readily formed by benzo-
ate CoA ligase) is a kernel intermediate from the anaerobic 
degradation of aromatic compounds [78, 135]. Therefore, 
benzoic acid can also be a general degradation product from 
aromatic compounds, such as vanillin, p-cresol, phenol, ani-
line, aromatic amino acids such as phenylalanine, and poly-
phenol flavonoids. Benzoic acid, the simplest of all aromatic 
acids, can be further de-aromatized (partially or completely), 
forming cyclohexane carboxylic acid and cyclohexanone. 
Hydroxylated forms of cyclohexane carboxylic acid have 
also been detected from anaerobic degradation of aromatic 
compounds. The anaerobic metabolism culminates in ring 
opening and aliphatic compounds such as caproic acid, adi-
pic acid, pimelic acid, and their hydroxylated forms can be 
formed [77, 136, 137]. Ultimately, short-chain fatty acids 
(valeric acid, butyric acid, propionic acid, and acetic acid, 
and their respective CoA conjugates) accumulate [79]. 
Nevertheless, despite this key information, the impact of 
anaerobic microbial metabolism of phenolic acids on inter-
individual variability is limited and poorly known.

The microbial and endogenous metabolism of phenolic 
acids has proven to be complex and interlinked, and future 
studies may reveal additional intermediary or end metab-
olites, which may have synergistic effects on host. The 
increased number of bioinformatic tools, including map-
ping and prediction of biochemical pathways with databases, 
such as the PhenolExplorer [138], the Atlas of Biochem-
istry [139], and the biocatalysis/biodegradation database 
with curated information on environmental degradation of 
pure compounds [79], could help in the identification of the 
various still unknown substances. Those compounds may be 
difficult to connect with phytochemicals because their origin 
may be challenging to be distinguished from dietary fibre 
carbohydrates, proteins, and amino acid degradation, which 
exceed 100–1000-fold the contribution of any non-nutrient 
phytochemicals in the diet. Therefore, it is worthwhile to 
focus on the major metabolites that can be identified from 
hepatic or colonic conversions using in vitro models, and 
those that can be detected from the body fluids, e.g., plasma 
and urine. It is worth of a note that the gut microbial metabo-
lism also reduces the chemical complexity of the metabo-
lites, as larger structures, such as polyphenols, are degraded 
into smaller, simpler structures of microbial phenolic acids, 
which are the same as those formed from HCAs and benzoic 
acid derivatives of the diet, as indicated in Table 1. Nev-
ertheless, the large number of metabolites emerging from 
even one single component enhances the impact of inter-
individual variation, since the minor metabolites cannot be 

distinguished as significantly differing components from the 
control groups.

In vivo and in vitro research should go hand in hand 
to understand the efficacy of bioactive compounds, and 
mechanisms involved, to assess health benefits and define 
recommendations. The pool of circulating metabolites 
could be related to shorter (hepatic metabolites) or longer 
(microbial metabolites) residence times and a synergy of 
these metabolites may cause the effect on health. Regard-
ing not only interindividual variability but also intra indi-
vidual variability, more research is warranted on gene vari-
ants showing how variability in enzymes of liver and the 
functionality of colonic microbial community affect the 
levels of phenolic acid metabolites. The variability in the 
genes and enzymatic activities of the complex system of 
xenobiotic metabolism is also a large contributor to how 
an individual handles phenolic acids and the metabolic 
fate of the compounds. Here, research on drugs proves to 
be crucial to characterise enzymes and identify genetic 
polymorphisms, affecting the ability of the host to convert 
the circulating metabolites also from the diet. Therefore, 
scientific communities of drug and food research could 
collaborate to learn more from each other and poten-
tial synergistic effects of the diet and drugs on the host 
metabolism.

Conventionally, human interventions studying health 
benefits and those studying the metabolite profiles after 
consumption of phenolic acid-rich foods have been per-
formed separately. Furthermore, the studies are objected to 
a limited number of food items, and with limited number 
of subjects, which results in subtle differences between 
study groups. Only seldom do studies combine the two 
approaches and approach the whole recommendable diet 
[85, 114]. It is also a fact that results from intervention 
studies are only presented as averages and standard devia-
tions or means and interquartile ranges (IQR; ranges of 
middle 50%), which exhibit the large variations, but make 
the results difficult to interpret.

Even a “perfect” study design cannot eliminate or com-
pletely tackle individual variation. Would it be possible 
and acceptable to change the approach to handle the data? 
The responders and non-responders of the observed health 
effect could be separated, and the affecting factors could 
be studied analysing the biomarkers of intake (including 
the host-derived and microbial metabolites) and expres-
sion of genes. On the other hand, genetic polymorphism 
could be the starting point of a study, followed by inves-
tigating the metabolism and health responses in a syn-
ergistic manner. Thus, health responses could be cross-
referenced with metabolite profiles, gene variants, diet, 
exercise, or other lifestyle factors. This has been used in 
medical research in case–control studies. Could we adopt 
new approaches of designing experiments or handling the 
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data to help overcome the interindividual variation? Could 
artificial intelligence and collection of big data help in 
identifying critical factors? There is a need for a thorough 
discussion on how the limiting factor, interindividual vari-
ability, could be turned into an asset in an ethical way to 
better understand and utilize personalized nutrition and 
the impact of the complete recommended diet on health.
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