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Abstract
Hepatitis delta virus (HDV) is the etiologic agent of the 
most severe form of virus hepatitis in humans. Sharing 
some structural and functional properties with plant 
viroids, the HDV RNA contains a single open reading 
frame coding for the only virus protein, the Delta 
antigen. A number of unique features, including ribozyme 
activity, RNA editing, rolling-circle RNA replication, and 
redirection for a RNA template of host DNA-dependent 
RNA polymerase Ⅱ, make this small pathogen an 
excellent model to study virus-cell interactions and 
RNA biology. Treatment options for chronic hepatitis 
Delta are scarce and ineffective. The disease burden is 
perhaps largely underestimated making the search for 
new, specific drugs, targets, and treatment strategies 
an important public health challenge. In this review we 
address the main features of virus structure, replication, 
and interaction with the host. Virus pathogenicity and 
current treatment options are discussed in the light of 
recent developments. 
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Core tip: Hepatitis delta virus (HDV) is the etiologic 
agent of probably the most severe form of virus 
hepatitis. HDV replication and spread depends on the 
presence of hepatitis B virus which provides the enve-
lope proteins coded exclusively by its own genome. 
About 20 million people are currently chronically infected 
with HDV and no specific therapy is still available. Here, 
we review the current knowledge on HDV biology, 
epidemiology, pathogenesis, and treatment. Future 
trends and perspectives are discussed in the light of 
recent developments on HDV biology and its interaction 
with the host.
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INTRODUCTION
Over 35 years have passed since Rizzetto et al[1] 
reported the discovery of what has been called Delta 
antigen in a patient with diagnosis of severe hepatitis 
B infection. Subsequent research on the nature of this 
antigen led to the identification, in 1980, of a new 
hepatotropic virus, hepatitis delta virus (HDV)[2,3]. This 
new infectious agent was later found to be a sub-viral 
agent dependent on the presence, in infected cells, of 
hepatitis B virus (HBV) to accomplish the replication 
cycle[3,4]. In nature, both viruses, HBV and HDV, share 
the same envelope proteins coded exclusively by the 
HBV genome[5,6]. 

Today, the World Health Organization estimates that 
about 400 million people are chronically infected with 
HBV worldwide[7,8], of which approximately 20 million are 
co-infected with HDV[9,10]. The Amazon basin and some 
central African and east European countries are among 
the regions with higher prevalence. However, there 
is still a considerable lack of information concerning a 
significant number of countries mostly situated in Africa, 
Asia, and Latin America (Figure 1). The geographic 
distribution of the so far identified eight HDV clades 
is also far from being uniform. Clade 1 may be found 
worldwide, in contrast with clade 3 which seems to be 
confined to the Amazon region (Figure 1). The most 
frequent outcome of the acute co-infection with HDV is 
virus clearance and patient’s recovery. However, in up 
to 5% of the infected individuals a chronic form of HDV 
infection will develop[11]. In the case of super-infection, 
when a chronic HBV carrier gets super-infected with 
HDV, the outcome is distinct. About 70%-90% of super-
infected individuals will become chronic carriers for both 
viruses, HBV and HDV[12].

As compared to the individuals that are chronic 
carriers of HBV alone, HDV additionally increases the risk 
of hepatocellular carcinoma (HCC) and mortality threefold 
and twofold, respectively, in HDV/HBV carriers[13,14]. 
Currently, in clinical practice, there are no drugs used 
that directly and specifically target HDV. None of the 
currently approved anti-HBV drugs efficiently blocks HDV 
infection[7,9,14-17]. 

All of the above, given additional HDV-inflicted liver 
pathogenesis, and inability to efficiently circumvent HDV 
infection by anti-HBV drugs, makes HDV a very serious 
pathogen, and it does call for additional attention to HDV 
and development of specific anti-HDV interventions. 

HDV is mostly endemic in low income countries in 
which the budget for new, potentially expensive drugs is, 
of course, not the first priority. Accordingly, development 
of new treatment options based on specific drugs has 
not only proved to be difficult (the virus apparently does 
not code for any specific enzymatic activity that could be 

targeted) but may also represent an uninteresting option 
for pharmaceutical companies, speaking from a strictly 
financial point of view.

Nevertheless, this small human pathogen bears a 
set of features that make it a formidable model to study 
fundamental aspects of host-pathogen interactions and 
RNA biology including mechanisms of transcription, 
replication, and genome evolution[18,19]. The small size 
and structure of the genome bearing only one open 
reading frame (ORF), which is edited by host enzymes, 
its ribozyme activity and still largely undeciphered 
mechanism of RNA-directed RNA replication, are 
prominent examples of the uniqueness of this human 
pathogen[19].

In this review, we will address the specific features 
of HDV structure and replication, its interaction with host 
cells and HBV. Future perspectives of research based on 
recent important developments will be discussed. 

The virus and its replication
The virus: HDV is an enveloped spherical subviral agent 
about 36 nm in diameter[19]. The virus particle contains a 
ribonucleoprotein (RNP) core consisting of one copy of the 
RNA genome and approximately 200 copies of the only 
virus encoded protein, the Delta antigen (HDAg)[20]. The 
HDV envelope contains hepatitis B virus surface antigens 
(HBsAg), provided solely by HBV. In accordance, the two 
viruses share virtually indistinguishable envelopes[6].

The virus genome is a circular single-stranded RNA 
molecule of around 1.7 kb and negative polarity[21,22]. A 
significant degree of internal base-pairing (about 70% 
of all nucleotides) is an important feature, with potential 
not yet unveiled functional implications, observed in this 
molecule[23,24]. This structure is similar to that described 
for plant viroids, albeit the latters have a smaller size 
and do not code for any protein (Table 1). On the 
contrary, the HDV genome displays one ORF which 
codes for the only viral protein, the Delta antigen[25-27]. 
This protein can be found in virions under two distinct 
forms: Small (S-HDAg, 195 aa) and large (L-HDAg; 
213 or 214 aa, depending on the genotype). L-HDAg 
is synthesized mainly later in the replication cycle[28,29] 
as a consequence of an editing mechanism that takes 
place in the so-called anti-genome, an exact copy of the 
genome that arises as a replicative intermediate during 
RNA replication. The editing reaction is catalyzed by 
cellular adenosine deaminase 1 which converts an amber 
stop codon into a tryptophan codon (UGG) allowing a 
57 nucleotide and consequently 19 aa extension of the 
ORF[30,31].

Both L-HDAg and S-HDAg share the same functional 
domains with the exception of the L-HDAg-specific 
C-terminal extension, which bears an isoprenylation 
signal present in cysteine residue 211[32]. Farnesylation of 
this residue is reported to be crucial albeit not sufficient 
for interaction with HBsAg and subsequent virion 
packaging and release from the cells[33,34]. The common 
functional motifs are a nuclear localization signal (NLS; 
aa 66-75), a coiled-coil domain (aa 12-60), and a 
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bipartite arginine-rich RNA binding domain (aa 97-107 
and 136-146; ARM1 and ARM2, respectively)[35-37]. 
More recently, however, it was shown that mutation 
in the core arginines of both ARM1 and ARM2 did not 
impair the RNA-binding ability of a C-terminal HDAg-160 
truncated form of HDAg[38]. The authors suggested that 
HDAg establishes numerous contacts with HDV RNA to 
assemble ribonucleoprotein complexes. 

Delta antigens: Several properties have been assigned 
to S-HDAg but none related to any known enzymatic 
activity. Among the reported putative and observed 
functions are the promotion of nuclear import of HDV 
RNPs[39], regulation of HDV RNA editing[40], facilitation 
of ribozyme cleavage (chaperone)[41,42], and facilitation 
of accumulation of processed RNA transcripts[43,44]. Both 
Delta antigens are post-translationally modified by 
host enzymes. Several post-translational modifications 
(PTM) have been described in HDAg and these include 
phosphorylation, methylation, acetylation, and sumoy-
lation[45-48]. Phosphorylation occurs at multiple sites 
and can be mediated by different host kinases, dsRNA-
activated protein kinase R, protein kinase C, and 
ERK1/2[49-51]. All these modifications may have distinct 
functional significance but it seems consensual that they 
are all involved in promoting virus RNA replication[52].

Methylation of Arg 13 on S-HDAg by arginine 
methyltransferase Ⅰ was reported and proposed to be 
important to enhance both genomic RNA and mRNA 

synthesis[46]. Additionally, cellular p300 acetyltransferase 
was found to acetylate Lys72 on the NLS of S-HDAg[53]. 
Although speculative, this modification may have impact 
on the efficiency of nuclear import. 

Finally, sumoylation was the most recent PTM to 
be reported on S-HDAg. It occurs at multiple lysine 
residues and is catalyzed by host small ubiquitin-
related modifier isoform 1. Sumoylation was proposed 
to be important to promote genomic RNA and mRNA 
synthesis[48].

Undoubtedly, these observations represent only a 
tiny part of the whole picture drawn by HDAgs inside 
the cell. In fact, Delta antigens can also be found as 
peptides of different smaller sizes in the nucleus of HDV 
replicating cells[54]. Do these additional smaller forms 
correspond to distinct functional features? The answer 
is still far from being clear as no evidence supporting 
this point of view have been reported. In addition, it 
has been shown that S-HDAg can form multimers in 
HDV replicating cells[20,55,56]. These multimers may play 
an important role in virus replication by facilitating the 
accumulation of virus RNAs. Moreover, it is known that 
HDAgs are basic proteins with an estimated overall + 12 
charge[57]. Thus, it is not surprising that, at least in vitro, 
the protein can bind nonspecifically to several types 
of nucleic acids including dsDNA and several distinct 
RNAs[58]. 

Furthermore, S-HDAg may also be involved in 
sequestering and manipulating host cell components 
to facilitate HDV replication. In this context, it is not 
surprising that the search for S-HDAg interacting 
proteins unveiled a considerable number of potential 
partners. First Cao et al[59] used an immunoprecipitation 
followed by mass spectrometry approach being able to 
identify more than 100 host proteins in the assay. Later, 
Gowans et al[60] performed a yeast two-hybrid screen 
using a human liver cDNA library and identified 30 host 
candidate proteins capable of specifically interacting 
with S-HDAg. Making use of RNA silencing strategies 
some of these candidate interactions were found to be 
of potential functional significance. However, the above 
mentioned strong positive charge of HDAgs compels one 
to be careful when analyzing the specificity and role of 
these interactions in the HDV replication cycle. 
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Table 1  Similarities and differences between hepatitis delta virus and plant viroids

HDV (1700 nt) Pospiviroidae (200-400 nt) Avsunviroidae (200-400 nt)

Circular ssRNA Circular ssRNA Circular ssRNA 
Extensive intramolecular base pairing Extensive intramolecular base pairing Extensive intramolecular base pairing 
A DNA-directed RNA polymerase makes both 
plus and minus strands

A DNA-directed RNA polymerase makes both 
plus and minus strands 

A DNA-directed RNA polymerase makes both plus 
and minus strands

Encodes for protein No proteins encoded No proteins encoded
Virion maturation depends on a helper virus Replication does not depend on the presence of a 

helper virus 
Replication does not depend on the presence of a 

helper virus 
Symmetric rolling circle RNA replication Asymmetric rolling circle RNA replication Symmetric rolling circle RNA replication
Replicates in the nucleus Replicates in the nucleus Replicates in chloroplasts
Ribozyme activity No ribozyme activity Ribozyme activity

HDV: Hepatitis delta virus.

1, 2

1

1

1 1

1, 2

1, 3

4, 5, 6,
7, 8

1, 2

1, 2, 4

1, 2, 4

High
Intermediate
Low
Very low
Non available

Figure 1  Prevalence and geographical distribution of eight hepatitis delta 
virus clades in the world.
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contrast, other groups, using different types of trans-
cription inhibitors, actinomycin D, 5,6-dichloro-1-β-D-
ribofuranosylbenzimidazole, α-amanitin, provided data 
suggesting the involvement of solely RNA pol Ⅱ[77].
Furthermore, the presence of virus RNA in the nucleo-
lus could not be observed in the absence of Delta 
antigen suggesting that this presence lacks functional 
relevance[62,63]. In recent years, the use of immunopre-
cipitation and proteomic approaches, among others, 
led to the identification of several pol Ⅰ, pol Ⅱ, and 
pol Ⅲ subunits as binding partners for HDV RNA[59]. 
These results need to be interpreted with care since 
the observed binding to HDV RNA could be a result of 
indirect interaction through other non-identified partners. 
However, independently of the host polymerase(s) 
involved in replication of virus RNAs a striking question 
is still hanging in the air: How does the virus redirect a 
host DNA-dependent RNA polymerase to use an RNA 
template? Here, the eventual participation of the S-HDAg, 
which as mentioned before displays a net positive charge 
and intrinsic disorder, may play a crucial role allowing 
the virus to overcome obstacles posed by the host 
environment for its replication. 

The search for promoter sequences in virus RNA has 
also been followed by a few groups with inconclusive 
results. Yet, there is evidence from in vivo models 
supporting that mRNA synthesis initiates at nt 1630[78,79]. 
It may additionally be possible that multiple binding 
sequences for host RNA polymerases are present both 
in the virus genome and antigenome. This “nonspecific” 
binding could be a consequence of the RNA secondary 
structure bearing an extensive base-pairing with a 
number of predicted internal loops. Additionally, S-HDAg 
could also play an important role since it can bind 
nonspecifically to several nucleic acids, from dsDNA to 
ssRNA. It could be possible that S-HDAg plays a role 
as mediator between the virus RNA and a host RNA 
polymerase promoting its binding to several sequences 
in the genome and antigenome. Alternatively, S-HDAg 
could simply act as a chaperone, stabilizing RNA mole-
cules and making them available for transcription. 
Assembly of HDV virions takes place in the cytoplasm. 
In this cellular compartment HBV-derived HBsAgs 
interact with HDV RNPs that are exported from the 
nucleus[80,81]. This interaction was shown to be mediated 
by L-HDAgs[82,83]. Tavanez et al[81] used heterokaryon 
assays to show that HDV RNPs shuttle between the 
nucleus and the cytoplasm. The authors claimed that 
nuclear import is mediated by an NLS located in Delta 
antigens (aa 66-75) and provided evidence that export 
to the cytoplasm is mediated by a cis-acting sequence in 
virus RNA[35]. However, Lee et al[84] (2001) have shown 
a year before that aa 198-210 in L-HDAg were able to 
promote the export of a reporter protein. More recently, 
Freitas and Cunha used a well-established CAT reporter 
system to investigate a possible presence of nuclear 
export elements (NEEs) in HDV RNAs[85]. The authors 
showed that NEEs may be present in both genomic and 
antigenomic molecules and that nuclear export is, at 

S-HDAg is predicted to be an intrinsically disordered 
protein, a property already assigned to several other 
virus and cellular proteins[61]. This feature may be 
responsible for the lack of success in all, to our know-
ledge at least in three different laboratories, attempts 
to crystalize and solve the 3D structure of the Delta 
antigen. These properties of the Delta antigen make the 
study of HDV biology much more complex than perhaps 
initially believed. However, as we shall discuss below, 
they are not the only most important ones.

HDV replication: HDV replication takes place in the 
nucleus of infected cells[60,62,63]. The study of the HDV 
replication has long been difficult due to the lack of an 
appropriate cell culture system capable of supporting all 
steps of the virus life cycle, from attachment to release 
from the cells. Primary human hepatocytes have been 
long the only cells known to support the complete life 
cycle of HDV[64]. These are expensive and not easy 
to cultivate. Thus, other approaches needed to be 
developed and a number of alternatives arose with time. 
Among them are the Hepa RG cell line and the stably 
transfected HEK-293 cells expressing S-HDAg under the 
control of a tetracycline inducible promoter[65,66]. Although 
not representing ideal models, they became important 
tools for HDV research. The recent identification of the 
sodium-taurocholate co-transporting polypeptide (NTCP, 
encoded by SLC10A1) as the bona fide receptor for HBV 
and HDV culminated a long run that included a number 
of tested hypothesis and putative isolations[67,68]. It 
represented an important breakthrough since it allowed 
engineering cell lines overexpressing it and consequently 
also supporting the initial steps of virus attachment 
and entry. So far, these human NTCP-expressing cell 
lines include human HepG2 and Huh7 as well as mouse 
Hepa1-6, AML-12, and primary mouse hepatocytes[69].

After the uncoating of virus particles, HDV RNPs are 
transported to the nucleus, where RNA replication takes 
place[70]. The existing data indicates replication of the 
virus genome involves a double rolling-circle mechanism 
with formation of multimeric anti-genomic and genomic 
molecules[71]. These RNA multimers are cleaved at 
precise monomeric intervals by a rybozime activity 
present in both genomic and antigenomic molecules[72,73]. 
The presence of ribozymes in HDV RNAs is a feature 
shared with the viroid family of Avsunviroidae[74] (Table 
1). 

Although it is well established that the presence 
of S-HDAg stimulates virus RNA accumulation, the 
precise role of this virus antigen in the mechanism of 
HDV RNA replication remains elusive. Controversy on 
which host polymerase or polymerases are involved 
in synthesis of genomes and antigenomes lasted, 
for a long time. Some groups claimed that both RNA 
pol Ⅰ and pol Ⅱ are involved in genome and antigenome 
synthesis, respectively[75]. Mainly, these evidences were 
obtained in in vitro assays using different inhibitory 
concentrations of α-amanitin and on reports showing 
the presence of virus RNA in the nucleolus[75,76]. By 
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least in part, sensitive to leptomycin B, an inhibitor of the 
host CRM1-mediated export pathway. Whether a NES 
present in L-HDAg or a NEE in virus RNA are responsible 
for promoting HDV RNP export may be considered 
still controversial. Consequently, further research is 
mandatory to unequivocally answer this question.

Clinical manifestations and therapy: It is widely and 
for a longtime known that HDV infection is associated 
with a broad range of clinical manifestations, from 
asymptomatic to fulminant hepatitis. In the latter 
cases, mortality often reaches 80% of the affected 
individuals[86,87].

Concomitant infection of HBV and HDV usually 
displays more severe symptoms when compared with 
a single HBV infection. Nevertheless, the most frequent 
outcome is virus clearance, a situation reported in about 
95% of the cases[88]. In contrast, HDV super-infection of 
chronic HBV patients results in progression to chronicity 
in up to 80% of patients. Moreover, about 60%-70% of 
these patients will develop cirrhosis[89]. These patients 
usually progress more rapidly to cirrhosis, show in-
creased liver decompensation, and eventually death 
when compared with those chronically infected with HBV 
alone[90,91]. 

The factors influencing the distinct clinical course 
in coinfected and superinfected patients are still poorly 
understood. In both cases the organism produces a 
strong anti-HDAg antibody response which is, unfor-
tunately, unable to modulate the course of infection[92-94]. 
The majority of superinfected patients progresses to 
chronic disease independent of the presence of high titers 
of anti-HDV antibodies. Despite the limited number of 
studies there are evidences supporting a role of cytotoxic 
T cells in HDV infection including the destruction of 
infected hepatocytes[95]. In any case, immunology of HDV 
infection is perhaps one of the most poorly understood 
aspects of the disease.

From the histologic point of view there are no 
detectable differences between anomalies observed 
in the liver of HDV-infected patients and patients with 
other acute or chronic virus liver disease[96,97]. These 
anomalies mostly consist of hepatocellular necrosis 
and inflammation and may represent, at least in part, 
a consequence of the immune response of the host. 
Proteomic and systems biology approaches have more 
recently been used to investigate changes in protein 
expression patterns and metabolic pathways altered 
during HDV replication. Although the model systems 
used can hardly be considered ideal, the obtained results 
provided consistent evidence that HDV replication results 
in significant alterations in pyruvate and glycolysis 
metabolism[98-100]. Of note, these studies have shown 
that cancer was the most likely disease associated with 
HDV replication and provided evidence that the G2/M 
cell cycle checkpoint is altered as a consequence of the 
presence of the virus[100]. Definitely, these observations, 
of which a significant number of arise from proteomic 

experiments and analysis, need to be interpreted and 
handled with care. In any case, it seems uncontroversial 
that further research on liver biopsies of infected patients 
may possibly help confirming these findings.

There is no efficient therapy for chronic HBV/HDV 
infection. Pegylated interferon-α (PEG-IFN-α) is perhaps 
the most popular therapy and the one that has shown 
some antiviral activity against HDV[15,101]. However, the 
efficacy is limited - a temporary reduction in virus titers is 
usually observed in 15%-40% patients - and the need for 
prolonged administration often results in severe adverse 
effects[101,102]. These effects include fatigue, weight loss, 
and psychiatric disturbances. Ribavirine, lamivudine 
and other nucleotide analogues have also been tested 
but have shown a very limited, if any, efficacy[103-106]. 
The Hep-Net International hepatitis D intervention trial 
included 77 patients from Germany, Greece, and Turkey. 
In this study a PEG-IFN-α2a therapy was compared 
with adefovir and a combination of PEG-IFN-α2a and 
adefovir[107]. Adefovir showed a very limited efficacy and 
the combination therapy based on PEG-IFN-α2a and 
adefovir was only superior in reducing HBsAg levels but 
not in HDV RNA[17]. In any case, HDV RNA relapses were 
often observed in a long-term follow-up (median time 4.5 
years). The nucleoside analog entecavir, which showed 
antiviral efficacy in the woodchuck model of hepatitis 
B, was assayed in thirteen chronic hepatitis D patients 
for one year also proving to be ineffective[17]. It thus 
seems evident that current anti-HBV drugs are unable to 
efficiently circumvent HDV infection.

Today, it is usually recommended to treat chronic 
hepatitis D with PEG-IFN-α for at least one year if the 
patient tolerates the eventual adverse effects. However, in 
patients with advanced liver disease, liver transplantation 
may represent the only available option[108]. It is thus 
clear that current therapeutic options are unsatisfactory 
and there is an urgent need for more effective and 
specific anti-HDV drugs that will directly target HDV. 
Prenylation inhibitors may become an interesting and 
effective option and have been shown to be safe when 
used to treat neoplasias[109,110]. As discussed before, 
prenylation of L-HDAg is essential for interaction with 
HBsAg and virion assembly, and thus may be regarded 
as a potential target for therapeutic intervention.

Most recently, and as a consequence of the iden-
tification of NCTP as the host cell HDV receptor, inhi-
bitors of viral entry have been tested and proposed 
as potential anti-viral drugs. Namely, Myrcludex B, a 
synthetic N-acylated preS1 lipopeptide and cyclosporine 
A were shown to inhibit virus entry by interfering with 
the receptor functions of NCTP, however, currently there 
is no data available regarding the performance of this 
drug in actual HDV-infected individuals[111,112]. 

However, it is clear that a higher investment in 
research of fundamental aspects of HDV biology as well 
as of anti-HDV specific compounds is crucial in order to 
improve the quality of life and life expectancy of chronic 
HBV/HDV carriers.
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Recent trends in HDV research
In the past few years a number of interesting develop-
ments have occurred in the field of HDV research and its 
interaction with HBV. 

Using super-infection with WHV-enveloped HDV 
of the woodchucks that were chronic carriers of WHV 
and already developed HCCs, it was found that HDV 
was able to infect fractions of the cells of WHV-induced 
HCCs. These results suggest that at least a certain 
percentage of HCC cells in vivo express functional WHV 
receptors and support the attachment, entry, trafficking, 
and complete replication cycle of HDV[113]. The data also 
opens new avenues of research that will further address 
the mechanisms of the relationship between established 
HCCs and ongoing virus infection. 

A second study compared several types of HDV 
that differed only by the envelope proteins of HBV that 
coated the virions[114]. Twenty five different types of HBV 
envelope proteins that belonged to twenty five different 
HBV variants of nine genotypes A-I were analyzed. It 
was found that all nine HBV genotypes tested were 
able to support the production of infectious HDV virions 
that contained HDV genome of genotype I. Significant 
differences in infectivity were found for the envelope 
proteins of different HBV variants. The data generated 
strongly suggest that HBV envelope proteins facilitate 
not only attachment and entry, but also at least one 
additional immediate post-entry step of the HDV life 
cycle. In addition, testing of infectivity suggested that 
it cannot be concluded that the envelope proteins of 
HBV produced during chronic stage of HBV infection 
are mainly responsible for assembly of the virions with 
diminished infectivity. The study also suggested that 
correctly regulated disassembly of HDV RNP from the 
HBV envelope proteins after entry is critical for the 
overall infectivity of HDV particles[114].

Finally, a third recent study demonstrated that 
infectious HDV virions can be assembled by the envelope 
proteins derived from the naturally integrated HBV DNA 
in the absence of ongoing HBV replication[115]. These 
findings suggest that HDV can possibly persist in vivo in 
the absence of HBV replication (or when HBV replication 
is suppressed by a drug), when functional HBV envelope 
proteins are supplied from integrated HBV DNA. Such 
a mechanism of HDV persistence was not explored 
previously. The results obtained explain, at least in 
part, inability of anti-HBV drugs to efficiently block HDV 
infection in vivo. Additionally, they also suggest that HDV 
can be actually a more independent and more significant 
pathogen than it is currently assumed[116].

Origin of the virus
As discussed earlier, HDV bears a number of chara-
cteristics similar to those found in plant viroids (Table 1).

These similarities may allow speculation on a 
possible HDV origin from the plant world. According to 
this hypothesis, HDV could have evolved to encode the 
Delta antigen thus providing an explanation for its larger 
genome when compared with viroids[117]. However, a 

deeper analysis of this homology was evaluated as non-
significant and this hypothesis seems to be, at least for 
the time being, ruled out.

One of the key features of HDV genomic and anti-
genomic RNA molecules is their ribozyme activity. 
Ribozymes are considered to be characteristic of viroids. 
However, the two HDV ribozymes are not only struc-
turally different from those of Avsunviroidae but also 
display similarities to several HDV-like ribozymes found 
in eukaryotes[74,116]. This finding rather supports the 
hypothesis of a human transcriptome origin of HDV. 

We can thus conclude that the plant or animal origins 
of HDV are still questionable and highly speculative. But 
this is one of the many fascinating questions that still 
remain to be unveiled for this awkward and awesome 
virus.

CONCLUSION
Almost 40 years after its discovery, HDV remains a 
challenge for clinicians and researchers. It is discon-
certing simplicity, with a small RNA genome and a single 
protein, the Delta antigen, make it an excellent model 
not only for virologists but also for those interested 
in RNA and cell biology. The virus bears a number of 
unique features including a RNA-directed RNA replication 
mechanism of the genome catalyzed by host RNA poly-
merase Ⅱ. Enzymatic activities were not identified in 
Delta antigens thus making difficult the identification 
of potential targets for specific and effective therapies. 
Development of such therapies is crucial to reduce the 
number of chronic patients progressing to cirrhosis and 
hepatocellular carcinoma. The burden of disease caused 
by HDV is most probably underestimated since there is 
a considerable lack of epidemiologic data from several 
countries where HBV is highly prevalent.

In conclusion, despite considerable progress made in 
HDV research a significant number of questions remain 
to be answered concerning fundamental aspects of its 
biology, pathogenesis, and interaction with the host. The 
next few years will hopefully bring to light new answers 
but also new exciting questions, helping understand 
this fascinating pathogen, and contributing to reducing 
morbidity and mortality among infected individuals. 
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