
João Pedro Leal Abalada de Matos Carvalho

Mestre em Engenharia Electrotécnica e de

Computadores

Improved terrain type classification using UAV

downwash dynamic texture effect

Dissertação para obtenção do Grau de Doutor em

Engenharia Electrotécnica e de Computadores

Orientador: José Manuel Matos Ribeiro da Fonseca,

Professor Associado com Agregação, FCT-UNL Uni-

versidade Nova de Lisboa

Co-orientador: André Teixeira Bento Damas Mora,

Professor Auxiliar, FCT-UNL Universidade Nova de

Lisboa

Júri

Presidente: Professor Doutor João Carlos Palma Goes

Arguentes: Professor Doutor Arnaldo Joaquim Castro Abrantes

Professor Doutor Luis Alberto da Silva Cruz

Vogais: Professor Doutor João Carlos Palma Goes

Professor Doutor Rui Alexandre Nunes Neves da Silva

Professor Doutor Pedro Manuel Cardoso Vieira

Professor Doutor André Teixeira Bento Damas Mora

Outubro, 2020

Improved terrain type classification using UAV downwash dynamic texture
e↵ect

Copyright © João Pedro Leal Abalada de Matos Carvalho, Faculdade de Ciências e Tecno-
logia, Universidade NOVA de Lisboa.
A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de
exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-
tigação, não comerciais, desde que seja dado crédito ao autor e editor.

To my beloved family...

Acknowledgements

I would like to thank Professor José Fonseca for the supervision and assistance provided.
I would also like to thank Professor André Mora for his support, commitment, advice and
supervision, motivation and encouragement throughout the development of this thesis.
Especially for all his help and patience when helping me sort out problems, even when
sometimes things appeared to be stuck.

I would also like to thank to all my close friends and colleagues for many interesting
discussions, their support and friendship.

Last, but not least, I thank my mother, father and sister for all their care, support and
stimulus to do more and well, not only during this thesis, but also throughout the entire
academic course. And to Beatriz, who was always present for the good and bad moments,
for all her love, support, and especially, for the encouragement and never having stopped
believing that I could make it through the end.

This thesis was supported by the IPSTERS project (DSAIPA/AI/0100/2018) and has
also received funding from the ECSEL Joint Undertaking (JU) under grant agreement No
783119.

This thesis was developed in the CA3 group (CA3 - Computational Intelligence Re-
search Group) of CTS, UNINOVA in cooperation with Beyond Vision from Lisbon.

vii

Abstract

The ability to autonomously navigate in an unknown, dynamic environment, while at
the same time classifying various terrain types, are significant challenges still faced by
the computer vision research community. Addressing these problems is of great interest
for the development of collaborative autonomous navigation robots. For example, an
Unmanned Aerial Vehicle (UAV) can be used to determine a path, while an Unmanned
Surface Vehicle (USV) follows that path to reach the target destination. For the UAV to be
able to determine if a path is valid or not, it must be able to identify the type of terrain it
is flying over. With the help of its rotor air flow (known as downwash e↵ect), it becomes
possible to extract advanced texture features, used for terrain type classification.

This dissertation presents a complete analysis on the extraction of static and dynamic
texture features, proposing various algorithms and analyzing their pros and cons. A
UAV equipped with a single RGB camera was used to capture images and a Multilayer
Neural Network was used for the automatic classification of water and non-water-type
terrains by means of the downwash e↵ect created by the UAV rotors. The terrain type
classification results are then merged into a georeferenced dynamic map, where it is
possible to distinguish between water and non-water areas in real time.

To improve the algorithms’ processing time, several sequential processes were con-
verted into parallel processes and executed in the UAV onboard GPU with the CUDA
framework achieving speedups up to 10x. A comparison between the processing time
of these two processing modes, sequential in the CPU and parallel in the GPU, is also
presented in this dissertation.

All the algorithms were developed using open-source libraries, and were analyzed
and validated both via simulation and real environments. To evaluate the robustness of
the proposed algorithms, the studied terrains were tested with and without the presence
of the downwash e↵ect. It was concluded that the classifier could be improved by per-
forming combinations between static and dynamic features, achieving an accuracy higher
than 99% in the classification of water and non-water terrain.

Keywords: Terrain Classification, Textures, Downwash, UAV, Feature Extraction,
GPU, Neural Network, Autonomous Navigation

ix

Resumo

Dotar equipamentos moveis da funcionalidade de navegação autónoma em ambientes
desconhecidos e dinâmicos, ao mesmo tempo que, classificam terrenos do tipo água e
não água, são desafios que se colocam atualmente a investigadores na área da visão com-
putacional. As soluções para estes problemas são de grande interesse para a navegação
autónoma e a colaboração entre robôs. Por exemplo, um veículo aéreo não tripulado (UAV)
pode ser usado para determinar o caminho que um veículo terrestre não tripulado (USV)
deve percorrer para alcançar o destino pretendido. Para o UAV conseguir determinar se o
caminho é válido ou não, tem de ser capaz de identificar qual o tipo de terreno que está
a sobrevoar. Com a ajuda do fluxo de ar gerado pelos motores (conhecido como efeito
downwash), é possível extrair características de textura avançadas, que serão usadas para
a classificação do tipo de terreno.

Esta dissertação apresenta uma análise completa sobre extração de texturas estáticas
e dinâmicas, propondo diversos algoritmos e analisando os seus prós e contras. Um UAV
equipado com uma única câmera RGB foi usado para capturar as imagens. Para classi-
ficar automaticamente terrenos do tipo água e não água foi usada uma rede neuronal
multicamada e recorreu-se ao efeito de downwash criado pelos motores do UAV. Os re-
sultados da classificação do tipo de terreno são depois colocados num mapa dinâmico
georreferenciado, onde é possível distinguir, em tempo real, terrenos do tipo água e não
água.

De forma a melhorar o tempo de processamento dos algoritmos desenvolvidos, vá-
rios processos sequenciais foram convertidos em processos paralelos e executados na
GPU a bordo do UAV, com a ajuda da framework CUDA, tornando o algoritmo até 10x
mais rápido. Também são apresentadas nesta dissertação comparações entre o tempo de
processamento destes dois modos de processamento, sequencial na CPU e paralelo na
GPU.

Todos os algoritmos foram desenvolvidos através de bibliotecas open-source, e foram
analisados e validados, tanto através de ambientes de simulação como em ambientes reais.
Para avaliar a robustez dos algoritmos propostos, os terrenos estudados foram testados
com e sem a presença do efeito downwash. Concluiu-se que o classificador pode ser me-
lhorado realizando combinações entre as características de textura estáticas e dinâmicas,
alcançando uma precisão superior a 99% na classificação de terrenos do tipo água e não

xi

água.

Palavras-chave: Classificação de Terrenos, Texturas, Downwash, UAV, Extracção de
Características, GPU, Redes Neuronais, Navegação Autónoma

xii

Contents

List of Figures xvii

List of Tables xxv

Listings xxvii

Acronyms xxix

1 Introduction 1
1.1 The need for an Unmanned Aerial Vehicle 1
1.2 Problem Statement and Motivation . 2
1.3 Research Question and Hypothesis . 3
1.4 Research Method . 5
1.5 Integration with other Research Activities 6
1.6 Dissertation Structure . 8

2 State of the Art 9
2.1 Texture . 10
2.2 Texel-Based Texture Descriptions . 12
2.3 Quantitative Texture Measurements . 14

2.3.1 Edge Density and Detection . 15
2.3.2 Gabor Filter . 26
2.3.3 Local Binary Patterns . 28
2.3.4 Gray-Level Co-Occurrence Matrix 34
2.3.5 Gray-Level Run Length Matrix . 39

2.4 Optical Flow . 40
2.5 Spectral Information . 44
2.6 Deep Learning . 45
2.7 Light Detection and Ranging . 50
2.8 Summary Related Work - Terrain Classification 51

3 Methodology 55
3.1 Experimental Setup . 56

3.1.1 Perception Sensors . 57

xiii

CONTENTS

3.1.2 Terrain Types . 59
3.1.3 System Specifications . 59

3.2 Static Feature Extraction for Terrain Classification 61
3.2.1 Gabor with Lowess Regression . 62
3.2.2 Particle Swarm Optimization . 70
3.2.3 Fourier and Empirical Mode Decomposition 79
3.2.4 Wiener-Khinchin . 89
3.2.5 GLCM . 97
3.2.6 GLRLM . 103

3.3 Dynamic Feature Extraction for Terrain Classification 110
3.3.1 Travel Distance . 110
3.3.2 Circular Motion . 114

3.4 GPU Acceleration . 123
3.5 Mapping . 128

4 Experimental Results 133
4.1 Gabor with Lowess Regression . 134
4.2 Particle Swarm Optimization . 136
4.3 Empirical Mode Decomposition . 140
4.4 Wiener-Khinchin . 143
4.5 GLCM . 147
4.6 GLRLM . 150
4.7 Travel Distance . 155
4.8 Circular Motion . 157
4.9 Combined Results . 160
4.10 GPU Acceleration . 164
4.11 Mapping . 167

5 Conclusions and Future Work 169
5.1 Conclusions . 169
5.2 Future Work . 172

Bibliography 175

A Dissemination 185

B Supporting Concepts 187
B.1 UAV Models . 187
B.2 Downwash E↵ect . 191
B.3 Computer Vision . 194
B.4 Robot Operating System . 195

B.4.1 ROS Packages . 196

xiv

CONTENTS

B.4.2 ROS Graph Layer . 196
B.4.3 Nodes vs. Nodelets . 197
B.4.4 Coordinate Frame Management . 198

B.5 Other Packages . 198

xv

List of Figures

1.1 Usage of Small commercial UAV in di↵erent application areas (FAA, 2018). . 1

1.2 Water terrains types (two of the testing environments): a) Parque da Paz-Water
terrain without downwash; b) Costa da Caparica- Sea terrain type. 2

1.3 Diagram of the proposed algorithm. 3

1.4 Downwash E↵ect: a) in water terrain; b) the concept. 4

1.5 Classical research method adapted from (Camarinha-Matos, 2000). 5

1.6 Aggregate Farming in the Cloud (AFarCloud) project. Tests in Valladolid,
Spain. 7

2.1 a) Cooperation between an Unmanned Aerial Vehicle (UAV) and Unmanned
Surface Vehicle (USV) to improve autonomous navigation. b) shows a route
followed by a USV alone. c) and d) show aUAV cooperating in order to improve
the route taken by the USV (Matos-Carvalho et al., 2018). 10

2.2 Natural Textures a) vs Artifical Textures b). 11

2.3 Di↵erent leaf types a) and b). 11

2.4 Patterns based on the natural world: From the spots on a gira↵e a) to the spots
on dried mud b). 13

2.5 The Voronoi tesselation of a set of sites texels. 14

2.6 The three finite di↵erences: forward, backward and central di↵erences. The
central di↵erence gives better results to approximate a derivative. 16

2.7 Example of an image to explain the edge detection method as distinct from
the magnitude and direction gradient to histogram calculation (Mallick, 2016). 17

2.8 Comparison of edge detectors: input image (a); Sobel result (b); and Prewitt
result (c) (Jose et al., 2014). 18

2.9 2-D Gaussian function with � = 1.4. 20

2.10 The 2-D Laplacian of Gaussian (LoG) function with � = 1.4 and k = 9. 21

2.11 Sobel gradient results from Figure 2.7- a) X-gradient result from Gx(equa-
tion 2.10); b) Y-gradient result fromGy(equation 2.10); c) Gradient Magnitude
from a) and b) (Mallick, 2016). 22

2.12 Original image divided into 8x8 squares (Mallick, 2016). 23

2.13 The magnitude and direction gradients represented using arrows in an 8 by 8
block. Adapted from (Mallick, 2016). 23

xvii

List of Figures

2.14 The nine-bin histogram of gradients. Adapted from (Mallick, 2016). 24
2.15 An example of a nine-bin gradient histogram when the angle of gradient di-

rection is greater than 160 degrees. Adapted from (Mallick, 2016). 25
2.16 The nine-bin histogram of gradients- Final result in an 8x8 matrix. Adapted

from (Mallick, 2016). 26
2.17 Histogram ofOrientedGradients (HOG) vs Histogram ofGradientMagnitudes

(HGM) in di↵erent rotations (Ghosh and Sharma, 2015). 26
2.18 HGM algorithm proposed in (Ghosh and Sharma, 2015): a) input raw image;

b) segmentation results by HGM. 27
2.19 Gabor algorithm used in (Ma et al., 2017): a) DJI Phantom 3 Advanced Un-

manned Aerial Vehicle (UAV); b) Aerial sample images with di↵erent terrain
types. 28

2.20 Comparison between the center pixels and its neighbors (Rosebrock, 2015). . 29
2.21 Center pixel value. Conversion of 8-bit binary neighbourhood into a decimal

value (Rosebrock, 2015). 29
2.22 Local binary patterns (LBP) result. Left image is the input image and the right

image is the new 2-D image (Rosebrock, 2015). 30
2.23 LBP histogram (Rosebrock, 2015). 31
2.24 LBP histogram (Rosebrock, 2015). 31
2.25 LBP algorithm used in (Khan et al., 2011): a) Outdoor robot; b) Sample images

of di↵erent terrain types. 32
2.26 Local Ternary Patterns: Left: 3x3 matrix by input image; Right: Local Ternary

Patterns (LTP) output values. 33
2.27 Local Adaptive Ternary Patterns: Left: 3x3 matrix by input image; Right: Local

Adaptive Ternary Patterns (LATP) output values. 34
2.28 Design of the GLCMmatrix from a 5⇥5 image with four gray levels. (a) GLCM

matrix with d = 1 and ✓ = 1; (b) The GLCM normalized matrix. 35
2.29 Some samples and corresponding class labels (Tong et al., 2018). 37
2.30 Combination with Gray-Level Co-Occurrence Matrix (GLCM) algorithm and

Euclidean Classifier (Caridade et al., 2008): a) Training areas for the five land
cover classes; b) Final classified images (four classes). 38

2.31 Design of the GLRLM matrix from a 4⇥4 image with four gray levels. (a)
TheGLRLM matrix being t = 0; (b) The GLRLM normalized matrix. 39

2.32 Representation of optic flow (Raudies, 2013). It is possible to observe the
resulting flows from the sequential frames. 41

2.33 Aperture problem example. 42
2.34 Optical flow using the Lucas-Kanade algorithm with the downwash e↵ect.

Courtesy of (Pombeiro et al., 2015) . 43
2.35 Optical flow using the Lucas-Kanade algorithm with the downwash e↵ect.

Courtesy of (Pombeiro et al., 2015) . 43
2.36 Stereo-vision-based reflection extraction (Yao et al., 2007). 45

xviii

List of Figures

2.37 Example of water being directly detected by detecting the sky (Rankin et al.,
2014). 46

2.38 Color normalization process (Ebadi and Norouzi, 2017): a) Raw data; b) RGB
normalization result. 46

2.39 Multispectral camera: RedEdge-M (Salvado, 2018). 47
2.40 The architecture of a standard Convolutional Neural Network model (Simple

Introduction to Convolutional Neural Networks.). 47
2.41 Convolutional layer destination feature value calculation example (Simple In-

troduction to Convolutional Neural Networks.). 48
2.42 Samples from the six classes of terrains and textures with a size of 100x100. (Shen

and Kelly, 2017). 49
2.43 Multi-terrain classification comparing Support vector machine (SVM) and

CNN classifiers (Shen and Kelly, 2017). 49
2.44 a) The Unmanned Surface Vehicle (USV) used for ground image acquisition;

b) The four terrain classes used in the ground dataset (Otte et al., 2015). . . . 50
2.45 Hokuyo UTM 30LX-EW Laser Scanner. Courtesy of (Koch et al., 2017) 50
2.46 Results with Light Detection and Ranging (LiDAR) in (Sofman et al., 2006):

a) Raw 3D data; b) Terrains under study (road, grass, trees and buildings); c)
Output result. 53

3.1 UAVs used in this dissertation: Parrot Bebop2 (a); Hexa Exterior Intelligent
Flying Unit (HEIFU) (b). 56

3.2 High-level communication layers. 57
3.3 Raw data - Fish-eye e↵ect. 58
3.4 Camera calibration using the (Ntouskos et al., 2007) method. 58
3.5 Camera calibration result. 59
3.6 Examples of terrain types: water (a)(b); vegetation (c)(d); and sand (e)(f). . . 60
3.7 Overall Architecture of the System. 61
3.8 Proposed diagram for the Gabor and Lowess method. 63
3.9 Example of static texture extraction: a) Raw image; b) c) Convolution with the

Gabor filter ✓-0 degrees (b) and ✓-90 degrees (c); d) Sum of images b) and c)
after thresholding. 65

3.10 Width projection of the example in Figure 3.9.d. 66
3.11 Width projection (green dots), Lowess regression fitting (red line), local min-

ima (blue dot) and maxima (orange dot). 70
3.12 Width projection showing the valley area (gray color) in relation to integral

(yellow). 71
3.13 Example of static texture feature extraction for two water-terrains. (a,d) Input

images; (b,e) Gabor filter; and (c,f) the width projection calculation. 72
3.14 Example of static texture feature extraction for two vegetation-terrains. (a,d)

Input images; (b,e) Gabor filter; and (c,f) the width projection calculation. . . 73

xix

List of Figures

3.15 Example of static texture feature extraction for two sand-terrains. (a,d) Input
images; (b,e) Gabor filter; and (c,f) the width projection calculation. 74

3.16 Example of static texture feature extraction for asphalt-terrain. (a) Input im-
age; (b) Gabor filter; and (c) the width projection calculation. 75

3.17 Proposed Particle Swarm Optimization (PSO) system model. 78
3.18 a) Input image (sand terrain A); b) PSO segmented data. 78
3.19 a) Input image (vegetation terrain); b) PSO segmented data. 79
3.20 a) Input image (sand terrain B); b) PSO segmented data. 79
3.21 a) Input image (water terrain A); b) PSO segmented data. 80
3.22 a) Input image (water terrain B); b) PSO segmented data. 80
3.23 a) Input image (asphalt terrain); b) PSO segmented data. 80
3.24 Input data-set- sequence representation. Adapted from (Rato, 2012). 82
3.25 Signal decomposition using EMD. Adapted from (Rato, 2012). 83
3.26 Signal S and its corresponding envelopes. 84
3.27 Empirical Mode Decomposition in Pool terrain type - First three IMFs and the

baseline. Each EMD analysis was performed with a resolution of 40 dBs. . . 85
3.28 Proposed EMD system model. 85
3.29 a) Input image (water terrain A); b) its first three IMFs. 87
3.30 a) Input image (water terrain B); b) its first three IMFs. 87
3.31 a) Input image (vegetation terrain); b) its first three IMFs. 87
3.32 a) Input image (sand terrain A); b) its first three IMFs. 88
3.33 a) Input image (sand terrain B); b) its first three IMFs. 88
3.34 a) Input image (asphalt terrain); b) its first three IMFs. 88
3.35 Wiener-Khinchin Filter (W-K Filter) concept explanation. a) UAV on water

terrain; b) UAV with 0º rotation. 89
3.36 W-K Filter concept explanation. a) UAV with 90º rotation degrees; b) UAV

with 180º rotation. 90
3.37 W-K Filter concept explanation. a) UAV with 270º rotation degrees; b) UAV

with 360º rotation. 90
3.38 Wiener-Khinchin Filter - Autocorrelation result from pool (water) terrain type. 91
3.39 Proposed W-K Filter system model. 92
3.40 a) Input image (water terrain A); b) its W-K Filter result. 93
3.41 a) Input image (water terrain B); b) its W-K Filter result. 93
3.42 a) Input image (vegetation terrain); b) its W-K Filter result. 94
3.43 a) Input image (sand terrain A); b) its W-K Filter result. 94
3.44 a) Input image (sand terrain B); b) its W-K Filter result. 94
3.45 a) Input image (asphalt terrain); b) its W-K Filter result. 97
3.46 GLCM - a) Result from pool (water) terrain type. b) is a zoom of a). 99
3.47 Hue Saturation Value (HSV) color model. 102
3.48 GLCM proposed system model. 103
3.49 a) Input image (water terrain A); b) its GLCM result. 104

xx

List of Figures

3.50 a) Input image (water terrain B); b) its GLCM result. 104

3.51 a) Input image (vegetation terrain); b) its GLCM result. 104

3.52 a) Input image (asphalt terrain); b) its GLCM result. 105

3.53 a) Input image (sand terrain); b) its GLCM result. 105

3.54 Gray-Level Run Length Matrix (GLRLM) - Result from pool (water) terrain
type. b) is a zoom of a). 107

3.55 GLCM proposed system model. 107

3.56 a) Input image (water terrain A); b) its GLRLM result. 108

3.57 a) Input image (water terrain B); b) its GLRLM result. 109

3.58 a) Input image (vegetation terrain); b) its GLRLM result. 109

3.59 a) Input image (asphalt terrain); b) its GLRLM result. 109

3.60 a) Input image (sand terrain); b) its GLRLM result. 110

3.61 Downash e↵ect: a) and b) Textural information with the downwash presented;
c) and d) Textural information without the downwash e↵ect. 111

3.62 Example of an Optical Flow concept using the Farneback algorithm: a) Current
frame; b) Optical flow result using the Farneback algorithm (flows in blue). . 112

3.63 Dynamic texture detection by Farneback algorithm and distance travelled/num-
ber of features calculation on water-type terrain. 113

3.64 Travel Distance (TD) proposed system model. 114

3.65 Examples of the TD algorithm applied to water-type terrain. (a,d) Input image;
(b,e) the optical flow; (c,f) the travel distance calculation. 115

3.66 Examples of the TD algorithm applied to vegetation-type terrain. (a,d) Input
image; (b,e) the optical flow; (c,f) the travel distance calculation. 116

3.67 Examples of the TD algorithm applied to sand-type terrain. (a,d) Input image;
(b,e) the optical flow; (c,f) the travel distance calculation. 117

3.68 Examples of the TD algorithm applied to asphalt-type terrain. (a,d) Input
image; (b,e) the optical flow; (c,f) the travel distance calculation. 118

3.69 Example of an Optical Flow concept using the Farneback algorithm in water-
type (pool) terrain. 119

3.70 Linear equations after flow texture extraction. 119

3.71 Flow density diagram: a) Original; b) Divided by 20. 121

3.72 Circular motion algorithm result. 122

3.73 TD proposed system model. 122

3.74 Circular motion algorithm applied to water-like-terrain (pool and lake): a)
and e) Optical Flow concept with the result of the Farneback algorithm; b) and
f) Flows interceptions; c) Flow density diagram; d) and h) Classification result. 124

3.75 Circular motion algorithm applied to non-water-type terrain (vegetation and
asphalt): a) and e) Optical Flow concept with the result of the Farneback
algorithm; b) and f) Flows interceptions; c) Flow density diagram; d) and h)
Classification result. 125

xxi

List of Figures

3.76 Circular motion algorithm applied to non-water-type terrain (sand): a) Optical
Flow concept with the result of the Farneback algorithm; b) Flows intercep-
tions; c) Flow density diagram; d) Classification result. 126

3.77 GLCM diagram computation using Compute Unified Device Architecture
(CUDA) framework with ✓ = 0� and d = 100. Adapted from (Hong et al.,
2018) . 127

3.78 Layered mapping of the classified terrain types. 128
3.79 Schematic of how to determine the real image plane dimension. 129
3.80 Coordinate systems of interfaces: Base_link, World and Map (black counter-

clockwise coordinate systems), OpenCV (blue clockwise coordinate systems). 129
3.81 ROS map result of the four distinct classified terrain types in layers (1st layer-

water; 2nd layer- vegetation; 3rd layer- asphalt; 4th layer- sand; 5th layer - RGB
camera images). Georeferenced map visualization using the RV iz tool. . . . 131

4.1 Data collection locations in Portugal. 133
4.2 Gabor Static texture feature with Lowess Regression: a) Area relationship with

respect to the integral of minima and maxima locals for four terrain types; b)
and d) are a zoom of a) and c), respectively. 135

4.3 Gabor and Lowess Regression algorithms in relation to the downwash e↵ect:
a) and c) without downwash e↵ect; b) and d) with downwash e↵ect. 136

4.4 PSO results for IMC1 with respect to Variance. a) five terrain types; b) water
vs non-water. 137

4.5 PSO results for IMC1 with respect to Variance. a) five terrain types; b) water
vs non-water. 138

4.6 PSO results for Variance with respect to Entropy. a) five terrain types; b) water
vs non-water. 138

4.7 PSO results for Di↵erence Entropy with respect to Variance. a) five terrain
types; b) water vs non-water. 138

4.8 PSO results for Variance with respect to Homogeneity. a) five terrain types; b)
water vs non-water. 139

4.9 PSO and GLCM algorithms: a) and c) without downwash e↵ect; b) and d) with
downwash e↵ect. 139

4.10 Comparison between: a) and c) PSO and GLCM combination and; b) and d)
only using the GLCM algorithm. 140

4.11 Intrinsic Mode Function – The zero crossings in relation to the total number
of local maxima. a) and b) IMF-A result; c) and d) Zoom of pool result; e) and
f) Zoom of lake result. 141

4.12 Intrinsic Mode Function – The zero crossings in relation to the total number
of local maxima. a) and b) IMF-B; c) and d) IMF-C. 142

4.13 Empirical Mode Decomposition (EMD) algorithm: a) and c) without down-
wash e↵ect; b) and d) with downwash e↵ect. 143

xxii

List of Figures

4.14 Wiener Khinchin results with three features – a) The zero crossings in relation
to the total number of local maxima; b) The area in relation to the total number
of local maximum; c) The area in relation to the zero crossings. 144

4.15 Wiener Khinchin results – Area in relation to the total number of localmaxima.
a) 5 terrain types; b) water vs non-water; c) and d) Zoom of pool result; e) and
f) Zoom of lake result. 145

4.16 W-K Filter algorithm: a) and c) without downwash e↵ect; b) and d) with down-
wash e↵ect. 146

4.17 Entropy with respect to IMC1: a) five terrain-type classes and b) water vs
non-water. 148

4.18 Contrast with respect to Entropy: a) five terrain-type classes and b) water vs
non-water. 148

4.19 Correlation with respect to Entropy: a) five terrain-type classes and b) water
vs non-water. 148

4.20 Entropy with respect to Di↵erence Average: a) five terrain-type classes and b)
water vs non-water. 149

4.21 Entropy with respect to Sum Average: a) five terrain-type classes and b) water
vs non-water. 149

4.22 Entropy with respect to Sum Variance: a) five terrain-type classes and b) water
vs non-water. 149

4.23 Homogeneity with respect to Entropy: a) five terrain-type classes and b) water
vs non-water. 150

4.24 GLCM algorithm: a) and c) without downwash e↵ect; b) and d) with downwash
e↵ect. 151

4.25 GLRLM result: Auto-Correlation with respect to the Correlation. a) GLRLM
columns equal to the highest pixel number length; b) GLRLM columns equal
to GLRLM rows (255); c) GLRLM columns equal to image width. 152

4.26 Correlation with respect to Auto-Correlation: a) five terrain-type classes and
b) water vs non-water. 153

4.27 Correlation with respect to Contrast: a) five terrain-type classes and b) water
vs non-water. 154

4.28 Correlation with respect to Di↵erence Entropy: a) five terrain-type classes and
b) water vs non-water. 154

4.29 Correlation with respect to Homogeneity: a) five terrain-type classes and b)
water vs non-water. 154

4.30 GLRLM algorithm: a) and c) without downwash e↵ect; b) and d) with down-
wash e↵ect. 155

4.31 Dynamic Texture - Relationship in number of features with respect to mean
pixel value: a) five terrain-type classes and b) water vs non-water. 156

4.32 Downwash E↵ect: a) and c) Using TD algorithm without downwash e↵ect; b)
and d) Using TD algorithm with downwash e↵ect. 158

xxiii

List of Figures

4.33 Circular Motion Algorithm output: Blue - flows point out from the center
of the downwash; Green - flows point towards the center of the downwash;
Gray - indicates that the flow size is below a certain given threshold value: a)
without downwash e↵ect; b) with downwash e↵ect. 159

4.34 Downwash E↵ect: a) Using the CircularMotion (CM) algorithmwithout down-
wash e↵ect; b) Using the CM algorithm with downwash e↵ect. 160

4.35 Examples of terrain types: water (a); vegetation (b). 165
4.36 Central Processing Unit (CPU) vs Graphics Processing Unit (GPU): Processing

time in relation to resolution (a); Frames Per Second (FPS) in relation to the
resolution (b). 166

4.37 Mission test in Parque da Paz, Portugal. 167
4.38 Georeferenced dynamic map result in Parque da Paz, Portugal. 168

5.1 Water Terrain: Sea-type terrain. 170

A.1 Best Paper Award in (Matos-Carvalho et al., 2018). 185

B.1 Several examples of UAV models: (a) General Atomics RQ-1A Predator. (b)
Amazon Prime Air, (Spary, 2015). (c) DJI S800, carrying a camera for film-
ing a nature documentary under the Helicam Project (photo by Alexander
Glinz), (Sklar, 2015). (d) Agricultural research conducted with a drone and
hyperspectral camera in April 2016 in Belgium, (Cargyrak, 2016). (e) MQ-8B
Fire Scout Helicopter UAV (Single-rotor) (Fleming, 2014). (f) Photograph of
Hybrid-VTOL UAV prototype. Image credit: NASA (NASA, 2018). 188

B.2 Fixed-Wing UAV. 189
B.3 Single-Rotor Helicopter UAV. 189
B.4 Multi-Rotor UAV: HEIFU. 190
B.5 Fixed-Wing Hybrid VTOLUAV. 190
B.6 UAV downwash flow fields at di↵erent hovering heights: a) 2m; b) 3m; c) 5m;

and the relative boundless height (d) (ZHENG et al., 2018). 193
B.7 Downwash E↵ect: Using Bebop2 to classify water terrain in Lisbon, Portugal. 193
B.8 Example of a generic computer vision algorithm. 195
B.9 ROS Graph Concepts (ITSB, 2015). 196
B.10 a) Nodes vs. b) Nodelets. 197

xxiv

List of Tables

2.1 The computation of texture features from moments. 15
2.2 Optical Flow (OF) methods comparison. 42
2.3 Terrain Classification Method - Accuracy Comparison. 52

3.1 Example data-set. 66
3.2 Local Subset of Data. 67
3.3 Calculation of 26 textural features. 100
3.4 CPU vs GPU Comparison (Singh, 2019). 127

4.1 Experimental Results. 157
4.2 Experimental Results from Figure 4.33 a) without downwash e↵ect. 159
4.3 Experimental Results from Figure 4.33 b) with downwash e↵ect. 160
4.4 Linear Discriminant Analysis (LDA) of the seven proposed algorithms in this

dissertation with and without downwash e↵ect (DW means the presence of
downwash e↵ect and PI means Performance Improvement). 162

4.5 LDA combination between GLCM, GLRLM, TD and CM algorithms proposed
and developed in this dissertation using the downwash e↵ect. 163

4.6 Processing time for di↵erent resolutions and GLCM distance parameter. . . . 166

A.1 Publications in International Journals. 186
A.2 Publications in International Conferences Proceedings. 186

B.1 Comparison of UAV Categories. 192
B.2 Installed Packages. 199

xxv

Listings

3.1 Gabor filter implementation. 63
3.2 Gabor Binarization. 64
3.3 Width Projection from Figure 3.9 d). 65
3.4 Local Minima and Maxima calculation. 69
3.5 Local maximums calculation. 95
3.6 Zero crossing calculation. 95
3.7 Area calculation. 96
3.8 GLCM mask design. 98
3.9 GLCM transpose mask design. 98
3.10 GLCM transpose mask design. 98
3.11 GLRLM mask design. 106
3.12 Farneback Algorithm. 111
3.13 Flow matrix visualization. 112
3.14 Linear Equations Calculations. 120
3.15 Density Calculation. 120
3.16 Downwash Center. 121

xxvii

Acronyms

AFarCloud Aggregate Farming in the Cloud.

AI Artifical Intelligence.

ALU Arithmetic Logic Unit.

BEV Beyond Vision.

CM Circular Motion.

CNNs Convolutional Neural Networks.

CPU Central Processing Unit.

CU Control Unit.

CUDA Compute Unified Device Architecture.

DC Density Calculation.

DCM Dynamic Cortex Memory networks.

DL Deep Learning.

EMD Empirical Mode Decomposition.

FO Flows Orientation.

FOV Field Of View.

FPS Frames Per Second.

GLCM Gray-Level Co-Occurrence Matrix.

GLRLM Gray-Level Run Length Matrix.

GPU Graphics Processing Unit.

HEIFU Hexa Exterior Intelligent Flying Unit.

xxix

ACRONYMS

HGM Histogram of Gradient Magnitudes.

HOG Histogram of Oriented Gradients.

HSV Hue Saturation Value.

IMF Intrinsic Mode Functions.

IPSTERS IPSentinel Terrestrial Enhanced Recognition System.

LATP Local Adaptive Ternary Patterns.

LBP Local binary patterns.

LDA Linear Discriminant Analysis.

LiDAR Light Detection and Ranging.

LoG Laplacian of Gaussian.

LTP Local Ternary Patterns.

M5G Mobilizadores 5G.

ML Machine Learning.

MLP Multilayer Perceptron.

NN Neural Network.

NOF Number of Features.

OF Optical Flow.

PCA Principal Components Analysis.

PDMFC Projeto Desenvolvimento Manutenção Formação e Consultadoria.

PSO Particle Swarm Optimization.

ReLU Rectified Linear Unit.

RNN Recurrent Neural Networks.

ROS Robot Operating System.

SVM Support vector machine.

TC Terrain Classification.

xxx

ACRONYMS

TD Travel Distance.

UAS Unmanned Aircraft System.

UAV Unmanned Aerial Vehicle.

URDF Unified Robot Description File.

USV Unmanned Surface Vehicle.

VPU Visual Processing Unit.

W-K Filter Wiener-Khinchin Filter.

xxxi

C
h
a
p
t
e
r

1
Introduction

1.1 The need for an Unmanned Aerial Vehicle

A Unmanned Aerial Vehicle (UAV) is simply defined as an aircraft without a human
pilot aboard, whereas the concept of Unmanned Aircraft System (UAS), with which it is
often confused, relates to the use of a ground control station (e.g. for performing heavy
processing) and is able to communicate with the vehicle.

Nowadays, civil applications for UAVs are broadening (Figure 1.1) and, justified by
the improvement of inherent technology (e.g. batteries and sensors), and a fall in the
price of that technology, substantial resources are now being invested in research and
development for UAVs’ novel applications and technologies.

Figure 1.1: Usage of Small commercial UAV in di↵erent application areas (FAA, 2018).

As Figure 1.1 suggests, the Federal Aviation Administration (FAA) predicts that by

1

CHAPTER 1. INTRODUCTION

2021 there will be more than 6 million registered drones on their database, from which
21% are meant for construction, industrial and utility inspection, as explained in more
detail in (Glaser, 2018).

1.2 Problem Statement and Motivation

For any robotic system to be autonomous, it needs to perceive the surrounding environ-
ment and distinguish terrains types and traversable from obstructed areas. As the title of
this thesis suggests, a Terrain Classification (TC) will be implemented, or, in other words,
di↵erent sensing modalities will be fused to make the UAV autonomous.

This is an important task given that in large unknown areas, the time, and the physical
and monetary requirements necessary for a human to monitor all of the terrains, are
considerable. Yet, UAVs can perform these same functions in a shorter time and are less
prone to errors.

To achieve autonomy in a collaborative environment, an UAV can be useful to char-
acterize the environment by identifying di↵erent types of terrains (water and non-water-
types terrain) and allow other autonomous robots to avoid water (Unmanned Ground
Vehicle (UGV)) or non-water terrains (USV). The environments where it can be flying
over can be di�cult to characterize and identify, being this terrain classification a chal-
lenging task. As an example, Figure 1.2 show two water-type terrains, being the lake
easier to detected than open sea, that has more complex features (waves, foam, etc.).

a b

Figure 1.2: Water terrains types (two of the testing environments): a) Parque da Paz-
Water terrain without downwash; b) Costa da Caparica- Sea terrain type.

The terrain classification algorithms have to be fast, given the real-time nature of
the tasks and the consequences arising from late decisions. For this reason, and with
regard to the sensors being used, a passive (RGB camera) sensor is proposed to acquire
2D information from the environment where the UAV is flying over. Also, to process
information in real-time on the UAV’s on-board computer during navigation, a GPU co-
processing is proposed to speed up calculations. The resulting data will be sent to a

2

1.3. RESEARCH QUESTION AND HYPOTHESIS

ground station to be visualized and shared among other robots. Figure 1.3 displays the
process diagram.

Figure 1.3: Diagram of the proposed algorithm.

1.3 Research Question and Hypothesis

The ability to classify types of terrain is important for unmanned aerial vehicles (UAVs).
There is a range of di↵erent areas where UAVs can benefit from this capability such as
emergency landing, aerial mapping, decision making and cooperation between robots
for autonomous navigation. This dissertation will only focus on identification of water
versus non-water terrain types.

Previous works on terrain-type classification from RGB images taken onboard UAVs
analyzed and classified terrain types from static images and, the few who extracted dy-
namic feature frame sequences of images do not robustly classify the types of terrains.
Also, in water-type terrains, when there is no motion, i.e, no color variation, they are
wrongly classified by algorithms designed to evaluate only static textures, as presented in
Chapter 2. This happens in water-type terrains because it is not possible to observe any
texture under these conditions. Lowering the UAV altitude to induce the downwash ef-
fect adds motion in the environment, and circular textures can be observed in water-type
terrains.

Regarding terrain-type classification, only one article was found using the UAV down-
wash e↵ect (Pombeiro et al., 2015) that appears at low altitudes (maximum 2 meters) to
improve the classification results. The downwash e↵ect is induced by the UAV rotors
as seen in Figure 1.4. When the UAV approaches the terrain (especially in water), sev-
eral types of object movements induced by the air flow are observed, such as linear and
circular movements.

Having these challenges in mind, the proposed research question is as follows:

3

CHAPTER 1. INTRODUCTION

a b

Figure 1.4: Downwash E↵ect: a) in water terrain; b) the concept.

Research Question

How can a UAV take advantage of the downwash e↵ect and extract static and
dynamic features to classify the type of the underlying terrain and improve
robots cooperation?

To better analyse and interpret the main research question, five research sub questions
are proposed:

1. How does the UAV downwash e↵ect improve the classification of the type of terrain?

2. What is the e↵ect of the downwash on di↵erent type of terrains?

3. Is it possible to induce dynamic textures with the downwash e↵ect that are charac-
teristic of some terrains (water terrain for example)?

4. With the downwash e↵ect is it possible to classify water versus non-water terrain?

5. Can GPU computing improve algorithm-execution time?

In view of the aforesaid research question, the following hypothesis is proposed:

Hypothesis

If di↵erent types of terrain behave di↵erently when exposed to the downwash
e↵ect of UAV rotors, then it should be possible to obtain unique information
to identify them.

4

1.4. RESEARCH METHOD

Guided by the research questions, a step-by-step process was designed dissertation.
The first step is to analyse the di↵erent static and dynamic features that are observed in
di↵erent terrain types in the presence of the downwash e↵ect. Next, it is important to
ascertain if it is possible to take some advantage of the textures to classify terrain type.
Then, it is necessary to translate some CPU developed algorithms into GPU in order to
improve the classification execution time. Lastly, it is important that the pros and cons
of di↵erent feature selection methods for terrain classification are investigated and the
most suitable method be adapted to the problem at hand.

1.4 Research Method

The proposed work has the goal of performing research in terrain-type classification to
aid autonomous navigation and cooperation between robots. To achieve such a result, this
dissertation followed the classical research method that consists of seven main phases, as
can be seen in Figure 1.5.

Figure 1.5: Classical research method adapted from (Camarinha-Matos, 2000).

Following this method, the research work was planned and scheduled according to
the seven main phases:

1. Research Question / Problem: Working context identification and motivation in
order to formulate the research question;

2. Background / Observation: State of the art analysis in research and practice. In
these two topics, some main subjects are addressed, namely: related background in
natural and artificial texture, texture extraction and selection methods;

3. Formulate Hypothesis: Formulate a hypothesis by conducting a preliminary analy-
sis of some of the main problems, and the current state of the art;

5

CHAPTER 1. INTRODUCTION

4. Design Experiment: The hypothesis of this dissertation, will define di↵erent testing
scenarios. Some may be tested in the lab using simulation or o✏ine acquired data,
but others certainly need live field experiments;

5. Test Hypothesis / Collect Data: At di↵erent levels, the implementation of all inter-
mediate steps has to be tested and validates, and this it must be acertained whether
the inclusion of those steps enhance the expected/hypothesized results. This in-
cludes ascertaining, via exhaustive and broad tests, whether all of the established
variables (texture in this case) can classify a terrain (for example water, rock and
vegetation), in order to validate the hypothesis and answer the research question;

6. Interpret / Analyse Results: After obtaining the results they must be analyzed. In
order to decide if the results are good/acceptable, they need to be compared to the
those from the real environment (If the program detects water, for example, this
will be compared to the real environment and a person will check if there is actually
water);

7. Publish findings: Whenever su�cient results with worthwhile contributory value
to thei field of application are found, publication should follow the significance
of new discoveries, to decide whether to submit the work to a conference or as a
journal article.

Although the described phases might give the impression of a sequence, there are
some iterations among them. As an example, after implementing, testing and interpreting
some results, there was the need to make some reformulation in the hypothesis and
corresponding model design to achieve results that were more accurate.

1.5 Integration with other Research Activities

This thesis was developed at CA3 - Computational Intelligence Group of CTS/UNINOVA
and at PDM group Company. Consequently, it is important to mention some P2020 and
H2020 projects that have already provided support for this work, such as Mobilizadores
5G (M5G), AFarCloud, PEST and IPSentinel Terrestrial Enhanced Recognition System
(IPSTERS):

• Mobilizadores 5G: European Regional Development Fund (ERDF), through the
Regional Operational Programme of Lisbon (POR LISBOA 2020) and the Competi-
tiveness and Internationalization Operational Programme (COMPETE 2020) of the
Portugal 2020 framework [Project 5G No. 024539 (POCI-01-0247-FEDER-024539)]
- The implementation of the M5G project will allow the design and integrated val-
idation of a new set of products, which will be able to form part of and provide
services within future 5G networks. In the context of the M5G project, the UAV is
know as a Patrol Drone and its function is to navigate to an event trigger (such as an

6

1.5. INTEGRATION WITH OTHER RESEARCH ACTIVITIES

explosion), requiring special capabilities to navigate in an unknown, unstructured
and Beyond Line of Sight (BLOS) environment. The contribution of this dissertation
to this project is in emergency landing, that is, when the UAV needs to land it is
imperative that it land on a non-water type terrain;

• AFarCloud: The thesis is also related to the European Union’s Horizon 2020 re-
search and innovation programme (AFarCloud project) in particular the AFarCloud,
that include as country partners: Austria, Belgium, Czech Republic, Finland, Ger-
many, Greece, Italy, Latvia, Norway, Poland, Portugal, Spain and Sweden. The
AFarCloud project will promote novel precision farming solutions by providing
Cyber Physical Systems (CPS), as well as a monitoring and sensing framework able
to utilize new autonomous robotics platforms and incorporating the legacy systems
already deployed in the farms. One of the important tasks in this project is terrain-
type classification to identify vegetation, sand and water terrains. Figure 1.6 shows
a mission test in Valladolid, Spain;

Figure 1.6: AFarCloud project. Tests in Valladolid, Spain.

• PEST: This work was also supported by the Portuguese Fundação para a Ciência e a
Tecnologia (Science and Technology Foundation), within the framework of the PEST
UID/EEA/00066/2019 project. Its purpose is to develop software for validating
methodologies, reference architectures, components and suitable integration, as
well as verification approaches for automated systems in di↵erent domains. These
combine high security and privacy protection while preserving functional-safety
and operational performance;

7

CHAPTER 1. INTRODUCTION

• IPSTERS: The aim of this project is to produce level-3 products for land applica-
tions using Sentinel-1 and Sentinel-2 datasets with Artifical Intelligence (AI) and
dedicated hardware to accelerate data processing.

1.6 Dissertation Structure

The following chapters of this document present a study of static and dynamic textures
extraction to classify di↵erent terrain types, in particular distinguishing water from non-
water terrain to improve autonomous navigation between robots - starting from the state-
of-the-art review through to the proposed approach and statement of the final conclusions.
The chapters are structured as shown in the following summary:

• Chapter 1: Introduction presents the research question, its hypothesis, the gap
regarding terrain classification and introduces an implementation approach. The
motivations are outlined;

• Chapter 2: State of the Art shows the history behind the technology. Several inter-
esting considerations are explored, in order to establish the background of existing
terrain classification approaches. The search for new ideas and potential income;

• Chapter 3: Methodology shows the terrains under study in this dissertation, the
chosen UAVs and how the RGB camera is calibrated; This chapter also analyses
and build algorithms to classify terrains using textural features extracted from the
downwash e↵ect captured by an RGB camera;

• Chapter 4: Experimental Results presents all the results acquired from the algo-
rithms in study and provides a deep analyses and comparison between the solutions
presented;

• Chapter 5: Conclusion and Future Work summarizes the study and its achieve-
ments. Further comments, criticisms and improvements are taken into considera-
tion, so the project can evolve and progress;

• Apendix A: Dissemination shows the published journal and conference papers
that validate the algorithms proposed in this dissertation;

• Apendix B: Supporting Concepts introduces the di↵erent UAVs’ types; The con-
cept of downwash e↵ect; the Robot Operating System (ROS) framework - How the
UAV will comunicate with the ground station.

8

C
h
a
p
t
e
r

2
State of the Art

Nowadays, due to UAVs’ greater availability and capabilities, there is a research trend
to explore innovative applications of UAVs useful to society. UAVs are having a major
impact on search and rescue missions, in logistics, in precision agriculture, among other
applications. Key issues are the provision of safe and reliable operation and o↵er a clear
perception of the surrounding area.

The challenge of determining what is around a robot and distinguishing traversable
passages from obstructions is a topic of research in itself, given its importance for achiev-
ing autonomous behaviour. The aim of this chapter is to present and review the literature
related to this dissertation’s topics of interest, namely terrain classification.

Figure 2.1 expresses the motivation behind this dissertation: cooperation between
robots (in this case a UAV with a USV). The task of this UAV is to cooperate with
the USV so that it reaches its intended destination. Since the LiDAR of the USV has
a range between 250 and 300 meters, when the intended destination is further than
this range the LiDAR cannot detect obstacles and thus it is impossible to ascertain the
best path to reach the destination. Thus, instead of the USV walking along unknown
paths and consuming resources, the UAV is launched with the purpose of detecting
terrain types and mapping them, and then that information is delivered to the USV
in order to supplement the trajectory planning of the USV to the required destination.
As such, terrain classification is a crucial functionality for a wide range of autonomous
vehicles (Matos-Carvalho et al., 2018):

• Ground vehicles to avoid water bodies;

• Aerial vehicles to determine suitable landing areas;

• Surface vehicles to detect safe passageways.

9

CHAPTER 2. STATE OF THE ART

a b

c d

Figure 2.1: a) Cooperation between an Unmanned Aerial Vehicle (UAV) and Unmanned
Surface Vehicle (USV) to improve autonomous navigation. b) shows a route followed by
a USV alone. c) and d) show a UAV cooperating in order to improve the route taken by
the USV (Matos-Carvalho et al., 2018).

Thus, to extract the terrain features to be used to classify the terrain types, the fol-
lowing sections will present several methods to be used in this context using 2D image
processing.

2.1 Texture

"Texture is one of the important characteristics used in identifying objects or regions of
interest in an image, whether the image be a photomicrograph, an aerial photograph, or
a satellite image" – Robert M. Haralick (Haralick et al., 1973).

Texture is the appearance of a surface, i.e. the "skin" of a shape, which allows one
to identify it and distinguish it in other ways. When we touch or look at an object or
surface it is possible to feel whether the texture/skin is smooth or soft - a small di↵erence
between high and low features per area; rough or wavy - a large di↵erence between high
and low features per area. The texture is therefore a visual or tactile sensation.

As for the visual aspect it is possible to group the textures as follows:

• Natural Textures! Those that result from the natural intervention of the environ-
ment or that characterize the external appearance of the forms and things that exist
in nature, i.e. rocks, vegetation and wood (Figure 2.2 a));

10

2.1. TEXTURE

• Artificial Textures! Those that result from human intervention through the use
of manipulated materials and instruments(Figure 2.2 b)).

a

b

Figure 2.2: Natural Textures a) vs Artifical Textures b).

As shown in Figure 2.2 a) and b), textures are created in natural or man-made settings
by a vast variety of objects, and can be seen in images. However, even in natural settings,
objects of the same type (as observed in Figure 2.2 a)) exhibit di↵erences from one another.
Thus, textures cannot be described solely by the object type but instead require more
detailed evaluation.

a b

Figure 2.3: Di↵erent leaf types a) and b).

As seen in Figure 2.3, the same object classification (in this case two types of leaf)
shows di↵erent sizes, shapes and arrangements. Whereas the first is small in size with an

11

CHAPTER 2. STATE OF THE ART

enormous amount of leaves, the second, despite having larger leaves, contains a smaller
amount of leaves. Consequently, it is necessary to find a method that can identify any
leaf type, regardless of its texture, color and size. However, it is very hard to explain
the spatial arrangements of the leaves because of irregular arrangement. However, by
analysing each figure (Figure 2.3 a) and b)), it is possible to identify the way in which
the leaves are arranged. This is simply one of the problems of identifying and describing
what texture is. Thus, there are two main approaches to identifying and describing what
a texture is:

• Structured Approach: Texture is a set of primitive texels with a regular or repeated
pattern (relationship). An example of the structured approach is the Voronoi tessel-
lation. Using this method, it is possible to obtain the characterization of the spatial
relationships. Section 2.2 will present this topic in detail and how these spatial
relationships can be described;

• Statistical Approach: This approach sees an image texture as a quantitative mea-
surement of the spatial distribution of intensities in a certain region. This approach
is, in general, easier to use in computer vision as will be shown below.

To summarize, and in order to understand the various texture characteristics, this
chapter will describe how texture can be represented, computed, and how it can be used
in image analysis (computationally).

2.2 Texel-Based Texture Descriptions

As mentioned in section 2.1, texture can be a set of primitive texels with spatial relation-
ships, as shown in Figures 2.4 a) and b), and a structured approach can describe these
spatial relationships. One well-known method that follows this approach was devel-
oped by Tuceryan and Jain (Tüceryan and Jain, 1990). They used the Voronoi tesselation
properties to extract the textural information from a given image. This method was also
proposed to provide an understanding of the relationship between the local spatial distri-
butions of sites and the Voronoi polygon forms (Voronoi, 1908). These sites are extracted
by a given image and represent the texture extraction by using, for example, the local
maximum intensity or another simple/complex threshold method.

The first Voronoi tesselation proposed in computer vision, was developed byAhuja (Ahuja,
1982). Let ⇣ be three or more sites in an Euclidean plane, which to simplify, are not
collinear. Consider also a random pair of points P and Q that belong to the ⇣ plane. For
any pair of points P and Q, it is possible to create the perpendicular bisector of the line
joining these points (in this case, P and Q are called Voronoi neighbors because they share
the same bisector line). The points of these lines are the equidistant points between P
and Q that divide the plane into two half planes: the points that are closer to P- HQ in the

12

2.2. TEXEL-BASED TEXTURE DESCRIPTIONS

a b

Figure 2.4: Patterns based on the natural world: From the spots on a gira↵e a) to the spots
on dried mud b).

Euclidean plane; and the points that are close to Q- HP (in relation to the bisector line
between P and Q).

V (P) =
\

Q2⇣,Q,P
HQ (2.1)

Equation 2.1 denominated by polygonal region (Voronoi, 1908), is the calculation of
all points that are closer to P. The calculation of all polygonal region in ⇣ is called the
Voronoi diagram of ⇣ (Shamos and Hoey, 1975) and can be measured using Euclidean or
Manhattan distances:

Euclidean distance = d
h
Point A ,Point B)

i
=

q
(x1 � x2)2 + (y1 � y2)2 (2.2)

or

Manhattan distance = d
h
Point A ,Point B

i
= |x1 � x2|+ |y1 � y2| (2.3)

where

Point A = (x1, y1) and Point B = (x2, y2) (2.4)

Finally, Voronoi diagrams with incomplete polygonal regions are called Voronoi tessel-
lation of the Euclidean plane. Voronoi tessellation can be seen in Figure 2.5.

13

CHAPTER 2. STATE OF THE ART

Figure 2.5: The Voronoi tesselation of a set of sites texels.

After the extraction of all polygons and the creation of Voronoi tessellation as shown
in Figure 2.5, it is possible to merge the polygons into clusters with similar shape feature
values in order to identify the borders separating such uniform regions. The following
equation is used for this purpose (Hu, 1962).

mpq =
X

x

X

y

(x � x0)p (y � y0)q I(x,y) (2.5)

Equation 2.5 represents the moments of the Voronoi polygon area and can provide
information about two important matters:

• Polygon shapes in the entire image;

• Spatial distribution in the textured image.

Detailed information about the use of Equation 2.5 in polygon regions is explained
in (B.WilsonJr. and S.Farrior, 1976). The lower of p and q values (order moments) will pro-
vide more accuration information in geometric interpretations. For example, momentum
m00 is responsible for providing information about the polygon area because it will be the
sum of all information about the Voronoi tessellation. The information aboutm10/m00 and
m01/m00 is related to the displacement between the site (polygon centroid) in relation to
(x,y) points in the x and y directions. The m11, m02 and m20 give information about the
major axis orientation. With this information, it is possible to obtain some good features
to build clusters over the image as shown in Table 2.1. Where f1 provides information
about the polygon area; f2 details the distance between point (x,y) and the centroid co-
ordinates; f3 provides the polygon direction; f4 is related to the polygon elongation; f5
provides information about the polygon orientation.

2.3 Quantitative Texture Measurements

As explained in section 2.2, the Voronoi tessellation algorithm has good accuracy when
applied in environments with artificial textures, due to their well defined spatial distribu-
tions, as shown in Figure 2.2 b). However, in real environments, i.e. with natural textures,

14

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

Table 2.1: The computation of texture features from moments.

Feature Computation

f1 m00

f2
p
x̄2 + ȳ2

f3 tan�1(ȳ/x̄)

f4
" h

(m20�m02)2+4m2
11

i 1
2

h
(m20�m02)2+4m2

11

i 1
2
+m20+m02

1
2

f5 tan�1(2m11/(m20 �m02))

it is more di�cult to use the Voronoi tessellation method to extract and evaluate textures.
Thus, it is necessary to use a statistical approach, as mentioned in section 2.1 with the
goal of evaluating quantitatively the textures that are under study. This approach is less
intuitive, but in terms of computational e�ciency it is faster and with good precision in
the extraction and classification of textures.

In the following sections several algorithms of quantitative texture extraction will be
examined and explained.

2.3.1 Edge Density and Detection

There are several ways to analyse textures, as previously mentioned. One of the well-
known methods, which is simple to implement, is known as Edge detection. With the
ability to check the busyness of a particular region using a given image, it is possible to
assist in texture identification analysis. For this, it is necessary to know what gradient
and direction means:

• Gradient: Created by the original image, gradient is the directional change in the
image’s intensity value;

• Direction: Is where the gradient is pointing, i.e. in which direction the edge is to be
found (for instance- if the angle is zero it means that the change of intensity values
will flow from the left (low values) to the right (high values))).

The following equation (equation 2.6) demonstrates how to calculate the image gradi-
ent, know as gradient magnitude, Mag(p):

5 f =

2
66664
gx
gy

3
77775 =

2
666664

@f
@x
@f
@y

3
777775 (2.6)

15

CHAPTER 2. STATE OF THE ART

Where @f
@x and @f

@y are the gradient x and y directions, respectively.
However, to simplify the calculations, the image derivative can be replaced by finite

di↵erences. To produce better results, the central di↵erence is used instead of forward
and backward di↵erences, as shown in Figure 2.6.

Figure 2.6: The three finite di↵erences: forward, backward and central di↵erences. The
central di↵erence gives better results to approximate a derivative.

Thus, to perform the central di↵erence, a convolution between the mask and the
image, T, is used:

Gx =
@f
@x

=
h
�1 0 +1

i
⇤T and Gy =

@f
@y

=

2
6666666664

�1
0
+1

3
7777777775
⇤T (2.7)

Note that equation 2.7 uses an odd mask (e.g. 3x3 matrix) to avoid pixel shifting and
non-symmetric filter response.

The next step is to calculate the two outputs from each pixel P of the entire image T:

Gradient magnitude =Mag(P) =
q
G2
x +G2

y (2.8)

and,

Gradient direction =Dir(P) = tan�1

Gy

Gx

!
(2.9)

With this information (equations 2.8 and 2.9), it is possible to use histograms in order
to suppress the image noise. Taking Figure 2.7 as an example, a mask to detect edges will
be used in the next step. The measurement of edgeness is usually computed by simple
edge masks such as the Sobel, Prewitt, Roberts, Di↵erentiation, Canny and Laplacian:

• Sobel: Being a filter that is mainly applied in contour detection algorithms, the
Sobel filter calculates the gradient of the image intensity at each pixel and its direc-
tion.

16

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

Figure 2.7: Example of an image to explain the edge detection method as distinct from
the magnitude and direction gradient to histogram calculation (Mallick, 2016).

With this, and as mentioned before, it is possible to estimate the presence of a high
transition and the orientation of this transition. As those high variations correspond
to well-defined boundaries between objects, it is possible to detect contours. Instead
of using the kernel in equation 2.7, Sobel uses the following:

Gx =

2
6666666664

�1 0 +1
�2 0 +2
�1 0 +1

3
7777777775
⇤T and Gy =

2
6666666664

�1 �2 �1
0 0 0
+1 +2 +1

3
7777777775
⇤T (2.10)

• Prewitt: This filter, although similar to the Sobel filter as mentioned above, manages
to suppress the high frequency noise due to the mask shown in equation 2.11.

Gx =

2
6666666664

�1 0 +1
�1 0 +1
�1 0 +1

3
7777777775
⇤T and Gy =

2
6666666664

�1 �1 �1
0 0 0
+1 +1 +1

3
7777777775
⇤T (2.11)

Thus, the edge results are not as pronounced in Figure 2.8, which shows the di↵er-
ence between the Sobel and Prewitt filters (Jose et al., 2014).

• Roberts: According to this filter, the edge detector should produce the corners
captured and shown with good definition. The edge intensity values should be near
what a human can perceive and the background should only contribute without
noise values. Knowing this, the masks that Roberts proposed to find the edges are
describe in equation 2.12:

Gx =

2
66664
+1 0
0 �1

3
77775 ⇤T and Gy =

2
66664
0 +1
�1 0

3
77775 ⇤T (2.12)

Bymaking a convolution between thesemasks and the original image T, it is possible
to calculate the gradient magnitude and direction as shown in equations 2.8 and 2.9,
respectively.

17

CHAPTER 2. STATE OF THE ART

a b

c

Figure 2.8: Comparison of edge detectors: input image (a); Sobel result (b); and Prewitt
result (c) (Jose et al., 2014).

It should be noted that the Roberts filter, although it is simple mathematically and
thus computationally, has a huge disadvantage when it comes to noise. If there is
noise in the background, the Roberts filter will not be able to suppress it and will
produce false edges.

• Di↵erentiation: Being a two-dimensional filter also, the di↵erentiation filter closely
resembles Roberts. However, instead of being the sum of the di↵erences between
the diagonals, it is the di↵erence in both the horizontal and vertical relative to the
point where the calculation is being carried out:

Gx =

2
66664
+1 �1
0 0

3
77775 ⇤T and Gy =

2
66664
+1 0
�1 0

3
77775 ⇤T (2.13)

With the x and y convolution masks (equations 2.13, 2.8 and 2.9) the magnitude
of the gradient and its direction can be calculated. However, for the magnitude,
instead of using the square root as described in equation 2.8, the absolute value is
used to calculate the gradient magnitude, as show in equation 2.14.

18

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

Gradient magnitude alternative =Mag(P) = |G2
x +G2

y | (2.14)

The biggest advantage of using the absolute value, is to decrease the processing
time. However, it becomes a disadvantage if the goal is to get more reliable results.

• Canny: Developed in (Canny, 1986), this algorithm is based on the Sobel filter
previously presented but improved in order to respect three conditions:

1. The edges have to be detected with good accuracy. In addition, this algorithm
should be able to detect as many edges as possible;

2. The edges detected by Canny algorithm should be located as close as possible
to the real edges, i.e., it is necessary to minimize this distance;

3. The noise, in the object under study and in the background, should be mini-
mized in order to not create false edges.

With these ideas inmind, and asmentioned before, to suppress the noise, a Gaussian
filter is used in a Canny algorithm as shown in equation 2.15:

Gaussian Filteri,j =
1

2⇡�2 exp

� (i � (k +1))2 + (j � (k +1))2

2�2

!
(2.15)

Where k is the Gaussian kernel size, i and j are the Gaussian kernel row and column,
respectively. Rows and columns also need to be in interval between 1 and (2k +
1) (Canny, 1986).

Usually, the Gaussian kernel size is a 5x5 filter due to two fundamental reasons:
The larger the kernel size, the more noise will be suppressed (because the image
will be smoother). However, the larger the size of this kernel, the fewer edges are
detected by the Canny algorithm for the reason already mentioned: smoothness.
Due to these two factors, it is necessary to find a middle ground.

An example of a 5x5 filter with � = 1.4 is shown in Figure 2.9 and in equation 2.16.

Gaussian Filter =

2
666666666666666666664

+2 +4 +5 +4 +2
+4 +9 +12 +9 +4
+5 +12 +15 +12 +5
+4 +9 +12 +9 +4
+2 +4 +5 +4 +2

3
777777777777777777775

· 1
159

(2.16)

Equation 2.16 will now convolute with the image T . Next, in order to calculate
the gradient magnitude and its direction, the Sobel filter (equation 2.10) is used as
mentioned before.

19

CHAPTER 2. STATE OF THE ART

Figure 2.9: 2-D Gaussian function with � = 1.4.

After performing the equation in 2.10 it is necessary to remove the pixels that are
not considered edges. This is done by non-maximum suppression: at each center
pixel of a 3x3 mask (for example) a gradient magnitude comparison will be made
with its neighbors, i.e., if the gradient direction of the center pixel is pointing in a
north-south direction (0 or 270 degrees), the gradient magnitude comparison will
be made with the east-west (90 and 180 degrees) direction pixels. If the center pixel
has a higher gradient magnitude than the magnitude gradient at pixels in the east-
west directions of a 3x3 mask, the value will be preserved. However, if the opposite
is ascertained, the center pixel must be eliminated, i.e. its gradient magnitude value
is set to zero.

After the non-maximum suppression is computed, the pixels with values other than
zero (in a gradient magnitude matrix) are the candidates to be the edges of a given
image. However, it is necessary to be sure which candidates are the real ones (edges).
Thus, a hysteresis (two empirical thresholds) is used for this purpose. If the current
gradient pixel is higher than the upper threshold, it means that the pixel is an edge
(set white value). If the current gradient pixel is lower than the lower threshold, it
means that the pixel is not an edge (set black pixel). However, if the current gradient
pixel is between these thresholds, will be set as an edge if one of its neighbours is
an edge.

• Laplacian: While the kernels described above (Sobel, Prewitt, Roberts, Di↵erenti-
ation and Canny) are an approximation of the first derivative, the Laplacian is a
filter to obtain the second derivative as shown in equation 2.17.

L(x,y) =
@2f
@x2

+
@2f
@y2

(2.17)

Where f is the pixel intensity value in x and y coordinates.

20

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

To simplify the calculations, the second derivative is approximated by a convo-
lution between a mask and the input image, as shown in the following equation
(equation 2.18).

G =

2
6666666664

0 �1 0
�1 +4 �1
0 �1 0

3
7777777775
⇤T or G =

2
6666666664

�1 �1 �1
�1 +8 �1
�1 �1 �1

3
7777777775
⇤T (2.18)

Where G is the gradient magnitude. As shown in equation 2.18, there are two com-
mon Laplacian masks to detect edges. However the output can give false edges
because of its noise sensitivity. To suppress the high frequency noise, a combina-
tion is made between the Gaussian filter (low-pass filter) and the Laplacian. This
combination is known as LoG, and can be represented by an equation that makes
the convolution between image T and LoG, as shown in 2.19.

LoGi,j = �
1
⇡�4

h
1� (i � (k +1))2 + (j � (k +1))2

2�2

i
exp

� (i � (k +1))2 + (j � (k +1))2

2�2

!

(2.19)

Where k is the LoG kernel size, i and j are the LoG kernel row and column,
respectively. Rows and columns also need to be in interval between 1 and (2k +1),
as mentioned before.

The following Figure 2.10 and equation 2.20 represent the result of Equation 2.19
and its kernel, respectively. The kernel size is equal to 9 and its sigma equal to 1.4.
Thus, with the kernel shown in equation 2.20 it is possible to suppress the high
frequency noise and avoid false edges.

Figure 2.10: The 2-D LoG function with � = 1.4 and k = 9.

21

CHAPTER 2. STATE OF THE ART

LoG Filter =

2
664

0 +1 +1 +2 +2 +2 +1 +1 0
+1 +2 +4 +5 +5 +5 +2 +2 +1
+1 +4 +5 +3 0 +3 +5 +4 +1
+2 +5 +3 �12 �24 �12 +3 +5 +2
+2 +5 0 �24 �40 �24 0 +5 +2
+2 +5 +3 �12 �24 �12 +3 +5 +2
+1 +4 +5 +3 0 +3 +5 +4 +1
+1 +2 +4 +5 +5 +5 +2 +2 +1
0 +1 +1 +2 +2 +2 +1 +1 0

3
775

(2.20)

2.3.1.1 Histogram of Oriented Gradients (HOG)

Now that the di↵erence between some of these edge detection filters (Sobel, Prewitt,
Roberts, Di↵erentiation, Canny and Laplacian) as been explained, it is important to un-
derstand how to use these filters to extract features in order to classify the terrains. A
well-known algorithm is called HOG and will be explained in this section (to exemplify
the edge detection filters, Figure 2.11 shows the Sobel calculation for detecting the image
edges).

Figure 2.11: Sobel gradient results from Figure 2.7- a) X-gradient result from Gx(equa-
tion 2.10); b) Y-gradient result from Gy(equation 2.10); c) Gradient Magnitude from a)
and b) (Mallick, 2016).

Once the gradient magnitude as shown in Figure 2.11 c) has been calculated, gradient
direction also needs to be used as mentioned above in Equation 2.9. As described at the
beginning of this section (Section 2.3.1), a histogram of bins is used in order to suppress
the noise. Thus, to reach this goal, the image was divided into squares with a dimension
of 8 by 8, as shown in Figure 2.12, in order to produce a gradient of magnitude and
direction mean and therefore exclude possible outliers.

Figure 2.13 shows detailed information in a block of 8 by 8 wherein each coordinate of
the matrix’s magnitude and direction gradients is calculated. In the center of Figure 2.13,
the gradient magnitude and direction with arrows is shown:

22

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

Figure 2.12: Original image divided into 8x8 squares (Mallick, 2016).

Figure 2.13: The magnitude and direction gradients represented using arrows in an 8 by
8 block. Adapted from (Mallick, 2016).

23

CHAPTER 2. STATE OF THE ART

• The larger the arrow length, the greater the magnitude gradient of the pixel will be
(Equation 2.8);

• The arrow direction is represented by the result of the gradient direction as shown
in Equation 2.9.

The right side of Figure 2.13 provides detail information about the magnitude and the
direction gradient of each pixel (in an 8 by 8 matrix). Regarding the gradient direction
results, a di↵erence should be noted: the angles only vary between 0 and 180 degrees (in
a clockwise direction) and do not follow the standard values from 0 to 360 degrees. This
di↵erence is called “unsigned” gradients, because the symmetric of each gradient is given
by the same direction gradient value. The reason for using this model and not following
the standard ones has to do with the fact that, empirically, the results obtained are better
using the values between 0 and 180 degrees than values between 0 and 360 degrees.

After calculating the values of the gradient magnitude and direction, as observed in
Figure 2.13, the final step is to build the nine-bin histogram of gradients to omit the
outlier values and intensify the most common values. A bin is selected based on the
direction (gradient direction), and the veto (value that goes to the bin histogram).

Figure 2.14: The nine-bin histogram of gradients. Adapted from (Mallick, 2016).

As shown in Figure 2.14, and giving the example of the first value in the gradient
direction (the first blue circle: 80) it is noted that its gradient magnitude value is two
(blue circle in the gradient magnitude table). Thus this value (two) will be add to the fifth
bin.

As regards the red circle (value 10) in the gradient direction, its corresponding gra-
dient magnitude is four. Since 10 (red circle in the gradient direction) is at an equal

24

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

distance between the first bin and the second bin, its corresponding gradient magnitude
value will also be divided by an equal value (in this case two for each bin).

It is also possible that the value of the gradient direction is higher than 160 degrees.
In that case it is necessary to take into account the first bin and the last bin. Figure 2.15
is used as an example.

Figure 2.15: An example of a nine-bin gradient histogram when the angle of gradient
direction is greater than 160 degrees. Adapted from (Mallick, 2016).

As observed in Figure 2.15, it is not easy or direct to know the value that will go to
the first and last bin. Thus, Equation 2.21 returns the result values from the relationship
between the limiting angles (in this case 160 and 180 degrees) and the value of the
gradient direction under study (in this case 165 degrees).

Abin =

1�

���Bbin �GradientDirectionvalue

���
|Abin �Bbin|

!
·GradientManitudevalue (2.21)

Where Abin and Bbin are the gradient magnitude limit angles (in this case, when Abin

is 180, the Bbin limit is 160 and vice-versa).
When all pixels from this 8x8 matrix are calculated, it is possible to build the final

nine-bin gradient histogram as shown in Figure 2.16.
As can be seen in Figure 2.16, the histogram has a greater weight at 0 and 180 degrees.

This means that the gradient direction is pointing either up or down (north or south,
respectively).

Some works studied in this dissertation (Ghosh and Sharma, 2015; Li et al., 2016)
demonstrated the high e�ciency of the HOG for classifying di↵erent types of terrain.
However, the author in (Ghosh and Sharma, 2015) developed an improved HOG known
as Histogram of Gradient Magnitudes (HGM) . The big di↵erence between HGM and
HOG is that HGM is invariant of rotation, as can be seen in Figure 2.17.

25

CHAPTER 2. STATE OF THE ART

Figure 2.16: The nine-bin histogram of gradients- Final result in an 8x8 matrix. Adapted
from (Mallick, 2016).

Figure 2.17: HOG vs HGM in di↵erent rotations (Ghosh and Sharma, 2015).

In this way, the algorithm proposed in (Ghosh and Sharma, 2015) becomes more
robust to image rotations, either from satellites or UAVs. Also, the HGM was able to
classify, based on di↵erent datasets, seven distinct classes: water, buildings, trees, sky,
people, cars and dogs. Figure 2.18 shows the results.

In (Li et al., 2016) a histogram of oriented gradients based gist (HOG-gist) was pro-
posed for building recognition. This approach computes the normalized histograms of
multi-orientation gradients for the same image with four di↵erent scales.

2.3.2 Gabor Filter

This section presents another method for extracting terrain’s static textures- the Gabor
method. This is able to choose multiple texture directions. The Gabor filter is also
the impulse response formed by a multiplication of a sinusoidal signal with a Gaussian
envelope function and can be computed using the following complex Equation 2.22:

26

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

a b

Figure 2.18: HGM algorithm proposed in (Ghosh and Sharma, 2015): a) input raw image;
b) segmentation results by HGM.

G(x,y,�,✓, ,� ,�) = e

� x02+�2 y02

2�2

!

e

i

2⇡ x0

� +

!!

(2.22)

Its real and imaginary components can be obtained by equations 2.23 and 2.24, re-
spectively:

G(x,y,�,✓, ,� ,�) = e

� x02+�2 y02

2�2

!

cos

2⇡

x0

�
+

!
(2.23)

G(x,y,�,✓, ,� ,�) = e

� x02+�2 y02

2�2

!

sin

2⇡

x0

�
+

!
(2.24)

where:

x0 = x cos(✓) + y sin(✓) (2.25)

y0 = �x sin(✓) + y cos(✓) (2.26)

These equations (2.22, 2.23 and 2.24) require as input parameters:

• x and y: Filter coordinates, where x represents the columns and y the rows;

• Lambda (�): Represents the sinusoid’s wavelength;

• Theta (✓): Defines the Gaussian envelope orientation;

• Psi (): Symbolizes the phase o↵set;

• Sigma (�): Describes the Gaussian envelope size;

27

CHAPTER 2. STATE OF THE ART

• Gamma (�): Reflects the shape of the ellipse in the gabor filter space.

To simplify and increase the system speed, normally only the real component of the
Gabor function (equation 2.23) is used. After obtaining the multiplication of a Gaussian
with a sinusoidal function, i.e. the kernel of the filter, it will be convolved with the
original image (equation 2.27). The result of the Gabor filter applied over a water surface
is presented in Figure 3.9.

f [x,y] ⇤ g[x,y] =
n1X

�n1

n2X

�n2
f [n1,n2] · g[x �n1, y �n2] (2.27)

Some of the works studied in this dissertation relating to terrain classification (Acharya
et al., 2016; Hofmann et al., 1998; Ma et al., 2017) proved the usefulness of the Gabor
filter to extract texture characteristics. In (Ma et al., 2017) the combination of the Gabor
filter and a sparse-representation-based classification using a DJI Phantom 3 Advanced
UAV (Figure 2.19) was studied. The author of (Ma et al., 2017) was able to classify four
di↵erent terrain types: grass, soil, water and trees.

a b

Figure 2.19: Gabor algorithm used in (Ma et al., 2017): a) DJI Phantom 3 Advanced UAV;
b) Aerial sample images with di↵erent terrain types.

Gabor filtering has also been used in the biomedical field (Acharya et al., 2016), in
unsupervised texture segmentation in a deterministic annealing framework (Hofmann
et al., 1998), showing its great potential.

2.3.3 Local Binary Patterns

Another visual descriptor to extract the image textures is the Local Binary Patterns (LBP)
method. LBPs are very simple to design and compute, however they are very powerful
texture descriptors. Contrary to many descriptors that evaluate the image textures as a
whole (as explained in Sections 3.2.5 and 3.2.6), LBPs compute and evaluate the texture
locally (Ojala et al., 2002), i.e., in each pixel neighborhood.

28

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

The following steps explain how an LBP filter is formed and how it can be used in
terrain classification (within the scope of this dissertation):

1. Gray scale conversion: The first step is to convert an RGB image into a gray image
in order to eliminate some high frequencies in these three channels (red, green and
blue);

2. Build a mask: Before calculating the texture value of each pixel, it is important to
choose the size, r, of the mask to be used. In this section, a 3x3 window is used in
relation to the center pixel;

3. Thresholds: The center pixel is then compared with its neighbors. The ones with
a value higher than the center pixel’s value are returned as zero, while those that
have a smaller-or-equal value relative to the center pixel are returned as one. These
results are shown in Figure 2.20;

Figure 2.20: Comparison between the center pixels and its neighbors (Rosebrock, 2015).

4. Binary Code: After calculating the outputs for the neighbors, the next step is to
calculate the center pixel value. It is possible to start from any neighbor and work
clockwise or counter-clockwise. However, it is imperative to be consistent through-
out the whole image. In this example, the start point is at the top-center and it is
rotating counter-clockwise. Figure 2.21 describes the 8-bit binary code converted
into a decimal value. The value obtained (in this case 23) will be the new value of
the center pixel;

Figure 2.21: Center pixel value. Conversion of 8-bit binary neighbourhood into a decimal
value (Rosebrock, 2015).

29

CHAPTER 2. STATE OF THE ART

5. New 2-D array: The new values are saved in a new 2-D array that will represent the
LBP of a given input image as shown in Figure 2.22;

Figure 2.22: LBP result. Left image is the input image and the right image is the new
2-D image (Rosebrock, 2015).

6. Histogram: Being a powerful tool, and as explained in section 2.2, the histogram is
very useful for image processing and in this case it is not an exception. In this disser-
tation, where the goal is terrain classification, it is necessary to classify the terrain
type. Thus, the histogram is able to give us concrete values that can di↵erentiate
between di↵erent terrains.

A histogram of all the values returned by LBP located in the new 2-D array is then
performed. Since the 3x3 mask has 28 = 256 di↵erent values, the limits of this
histogram are between 0 and 28 �1 = 255. Figure 2.23 shows an example of a LBP
histogram. Looking at Figure 2.23 it is important to realize that the values on the
ordinate axes are a normalization so that the posterior empirical thresholds are
general and independent of the images’ sizes.

Now that the LBP filter implementation has been explained, it is important to under-
stand what are the main advantages and disadvantages of this algorithm. With regard
to its advantages, as mentioned before, LBPs are easy-to-compute and fast algorithms.
These are good advantages because rapid processing is required to be able to classify
terrains in an emergency landing. However, having a mask with a 3x3 dimension is a
disadvantage due to the fact that it picks up a lot of noise. Thus, in (Ojala et al., 2002) a
way of avoiding this problem was proposed.

As can be seen in Figure 2.24, two parameters were added in order to be able to build
a dynamic mask:

• Numbers of symmetrical p points in order to avoid square masks;

30

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

Figure 2.23: LBP histogram (Rosebrock, 2015).

Figure 2.24: LBP histogram (Rosebrock, 2015).

• The radius of the circle r so that it is possible to build masks at di↵erent scales.

Some works studied in this dissertation (Khan et al., 2011; Mboga et al., 2017; Ojala
et al., 2002; Tong et al., 2018) showed the good e�ciency of the LBPs for the classification
of di↵erent terrain types. In (Khan et al., 2011) a USV was used (Figure 2.25 a)) to classify
five di↵erent terrain types as shown in Figure 2.25 b). The author used an outdoor robot
to extract the terrain textures, and using the LBP algorithm combined with a classifier, it
was possible to classify these five di↵erent terrain types.

Besides the terrain classification topic, LBPs have also been used in medical image
analysis (Nanni et al., 2010), face recognition problems (Ahonen et al., 2007; Huang et al.,
2011), whereas in (Satpathy et al., 2014) they were used in object recognition tasks.

2.3.3.1 Local Ternary Patterns

Being developed from the LBP, Local Ternary Patterns (LTP) use a threshold k around the
center pixel value c (Tan and Triggs, 2010). Instead of creating a binary code using just the
center pixel c as reference (as explained in Section 2.3.3), the binary code is constructed
from a comparison between the neighbors and the center pixel with a relation of k and c,
as follows:

31

CHAPTER 2. STATE OF THE ART

a b

Figure 2.25: LBP algorithm used in (Khan et al., 2011): a) Outdoor robot; b) Sample
images of di↵erent terrain types.

T =

8>>>>><>>>>>:

1 T � (c + k)

0 T < (c + k) and T > (c � k)
�1 T (c � k)

(2.28)

where T represents the neighbors of the center pixel, c is the center pixel and k is
the threshold value. One can observe in Equation 2.28 that it is possible to return three
possible values: T will be one if neighbors pixels are greater than or equal to (c+k); T will
be zero if neighbors pixels are between (c�k) and (c+k); Finally, T will be -1 if neighbors
pixels are smaller than or equal to (c � k).

It should be noted that LTP will create two di↵erent matrix types. The first will be a
matrix that only contains positive values. The second matrix will only obtain the negative
values generated by Equation 2.28.

In the same way as in Section 2.3.3, the last step of using this algorithm is the use
of the LBP code binary to return an output to be included in a histogram. Thus, two
separate histograms are used in order to return values that di↵erentiate terrain types (in
this case because it is within the scope of this thesis).

32

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

Figure 2.26: Local Ternary Patterns: Left: 3x3 matrix by input image; Right: LTP output
values.

Figure 2.26 shows an example of an input 3x3 matrix image and its respective LTP
results. In this example a threshold of k = 5 was used. As explained above, two binary
patterns are built by the positive and negative values. Thus, the LTP’s result is (-1)1(-
1)01(-1)10 (following clock wise direction with k = 5) and the positive and negative code
binaries are:

• Positive code binary: 01001010;

• Negative code binary: 10100100.

From the literature review (Khan et al., 2011; Tan and Triggs, 2010), it was shown
that LTPs are capable of extracting better characteristics than LBPs due to the binary code
that is created by the relationship between the central pixel and its neighbors (Khan et al.,
2011) as can be seen in Table 2.3.

2.3.3.2 Local Adaptive Ternary Patterns

Based on LTP, Local Adaptive Ternary Patterns (LATP) is an improvement aiming to be
less sensitive to changes in luminance and therefore to noise (Akhloufi and Bendada,
2010). Being the same as the LTP, LATPs also compare other parameters with their
neighborhood, T . However, for LATPs to be less sensitive to noise and light intensity,
the 3x3 mask pixels cannot be compared only by a threshold, k, as in LTP. The following
equation (Equation 2.29) shows the other important parameters:

T =

8>>>>><>>>>>:

1 T � (µ+ k�)

0 T < (µ+ k�) and T > (µ� k�)
�1 T (µ� k�)

(2.29)

Where µ is the local region mean, � is the local region standard deviation and k is the
given threshold. It is therefore important to point out that when compared to the average
and with the standard deviation, the values are compared all around zero, which makes
the algorithm generic to any terrain under study (thesis dissertation).

In the same way as for LTP, in this algorithm two matrices are also generated because,
as shown in Equation 2.29, positive and negative values are generated.

33

CHAPTER 2. STATE OF THE ART

Figure 2.27: Local Adaptive Ternary Patterns: Left: 3x3 matrix by input image;
Right: LATP output values.

Figure 2.27 shows an example of an input 3x3 matrix image and its respective LATP
results. In this example a threshold k was equal to one, with the mean µ equal to 51.33
and the standard deviation � equal to 25.74. As explained in Section 2.3.3.1, two binary
patterns are built by the positive and negative values. From this LATP example (rotating
clockwise, as was the case in Section 2.3.3.1) with k = 1 the output code is 01(-1)00(-1)10
and the positive and negative code binaries are:

• Positive code binary: 0100010;

• Negative code binary: 00100100.

The works studied in this dissertation (Akhloufi and Bendada, 2010; Khan et al., 2011)
show that LATPs are capable of taking better characteristics than LBPs due to the binary
code that is created by the relationship between the central pixel and its neighbors (Khan
et al., 2011) as can be seen in Table 2.3.

2.3.4 Gray-Level Co-Occurrence Matrix

Sections 2.3.3 presented algorithms that extract and evaluate the local texture information.
In Sections 3.2.5 and 3.2.6 the evaluation is all-embracing: the Gray-Level Co-Occurrence
Matrix known as GLCM. This algorithm is nothing less than a statistical texture features
extraction that represents textures based on the relationship and distribution between
pixels of a given static image. The algorithms that evaluate the texture of a frame can be
classified as first, second or higher statistical texture orders. The di↵erence between the
di↵erent orders is that, in the first order it only calculates properties for individual pixels,
such as mean and variance from the original image, neglecting the spatial relationship
between pixels. However, the second and higher texture orders calculate properties of an
image using a spatial relationship between two or more pixels, such as GLCM (Haralick
et al., 1973).

To build the GLCM mask, it is critical to understand these three parameters:

1. The distance, d, between i and j pixels;

2. The angular orientation ✓ chosen;

3. Symmetrical matrix decision.

34

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

After understanding the parameters described above, it is possible to create the GLCM
matrix. The first step is to create the GLCM N⇥N matrix. Consider as an example
this dissertation, where the matrix dimension is 256⇥256, because the input images are
defined between 0 and 255 levels (256 di↵erent gray levels). Figure 2.28 is an example of
a 5⇥5 GLCM matrix. To explain this in a more simplified and intuitive way, Figure 2.28
will be related to a GLCM matrix with a 5⇥5 dimension with four gray levels.

a

b

Figure 2.28: Design of the GLCM matrix from a 5⇥5 image with four gray levels. (a)
GLCM matrix with d = 1 and ✓ = 1; (b) The GLCM normalized matrix.

As can be seen in Figure 2.28 a), the GLCM matrix was designed to have the distance
d between pixels equal to 1, with an angular orientation ✓ equal to 0. The GLCM matrix
can be normalized as shown in Figure 2.28 b), by dividing each element by the sum of all
image pixels. The co-occurrencematrix can have up to eight di↵erent angular orientations
(0, 45, 135, 180, 225, 270 and 315 degrees).

Now that the GLCM matrix is defined, the next step is to determine if its transpose
is added to the matrix in order to become a GLCM symmetrical matrix (in this example
d = 100, ✓ = 0 and a symmetric matrix were chosen):

35

CHAPTER 2. STATE OF THE ART

M =M +MT (2.30)

With a GLCM matrix defined, the next step is to understand the texture features
proposed by Haralick (Haralick et al., 1973).Shown below are the most commonly used
texture features in texture classification:

Contrast =
N�1X

i=0

N�1X

j=0

|i � j |2 · p(i, j) (2.31)

Correlation =
N�1X

i=0

N�1X

j=0

(i �µx)(j �µy) · p(i, j)
�x ·�y

(2.32)

Energy =
N�1X

i=0

N�1X

j=0

p(i, j)2 (2.33)

Homogeneity =
N�1X

i=0

N�1X

j=0

p(i, j)
1 + |i � j | (2.34)

Entropy = �
N�1X

i=0

N�1X

j=0

p(i, j) · log10(p(i, j)) (2.35)

Variance =
N�1X

i=0

N�1X

j=0

(i �µ)2 · p(i, j) (2.36)

where:
p(i, j) = (i, j)th coordinates in a GLCM normalized matrix as shown in Figure 2.28 b),

and:

µ =
N�1X

i=0

N�1X

j=0

p(i, j) (2.37)

µx =
N�1X

i=0

N�1X

j=0

i · p(i, j) (2.38)

µy =
N�1X

j=0

N�1X

i=0

j · p(i, j) (2.39)

�2
x =

N�1X

i=0

(
N�1X

j=0

p(i, j)�µx)2 (2.40)

�2
y =

N�1X

j=0

(
N�1X

i=0

p(i, j)�µy)2 (2.41)

Equations (2.31), (2.32), (2.33), (2.34), (2.35) and (2.36), that were used in this disser-
tation, have di↵erent meanings:

36

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

• Contrast: Used to return the intensity contrast between a pixel and its neighbor
throughout the entire image;

• Correlation: This method is important to tell how a pixel is correlated with its
neighbor throughout the entire image;

• Energy:Also known as angular secondmoment, the goal is to evaluate how uniform
an image is;

• Homogeneity: Known as Inverse Di↵erence Moment, this equations returns 1 when
the GLCM is uniform (diagonal matrix);

• Entropy: This feature measures the randomness of intensity distribution. The
greater the information’s heterogeneity in an image, the greater the entropy’s value
is. However, the greater the homogeneity, the more the entropy tens towards zero;

• Variance: Represents the degree of dispersion of the values around the mean.

Some of the works studied in this dissertation relating to terrain classification, (Cari-
dade et al., 2008; Fraczek et al., 2018; Mboga et al., 2017; Tong et al., 2018) made great
use of the GLCM algorithm to extract characteristics from Table 3.3 in Section 3.2.5. Ac-
cording to (Tong et al., 2018) the use of features from the GLCM matrix was studied, in
combination with an SVM classifier.

Figure 2.29: Some samples and corresponding class labels (Tong et al., 2018).

Thus, from the satellite images (Figure 2.29) it is possible to segment five class types:
built-up, farmland, forest/vegetation, meadow and water. One of the big issues with this
type of algorithm in satellite images is the choice of distance "d". The value of d must
be large enough to include the texture pattern, but also small enough to retain the local

37

CHAPTER 2. STATE OF THE ART

character of spatial dependence. Therefore, small changes in this value greatly influence
the results due to the low resolution of satellite images.

In (Caridade et al., 2008), the GLCM algorithm was also applied to satellite images,
as can be seen in Figure 2.30 a).

a b

Figure 2.30: Combination with GLCM algorithm and Euclidean Classifier (Caridade et al.,
2008): a) Training areas for the five land cover classes; b) Final classified images (four
classes).

The author in (Caridade et al., 2008) studied in depth the results of changing the
distance d and the angular orientation ✓. To segment the outputs into four possible
classes, the author tested three di↵erent classifiers:

1. Euclidean Classifier;

2. Mahalanobis Classifier;

3. Bayes Classifier.

This is the best system for combining the GLCM algorithm with an Euclidean Classi-
fier.

In addition to the use of the GLCM algorithm for terrain classification, GLCM is also
used in other areas, such as the biomedical field, where this algorithm has been used
to distinguish between benign and malignant breast lesions (Garra et al., 1993). Other
biomedical applications can be found in (Nailon, 2010).

38

2.3. QUANTITATIVE TEXTURE MEASUREMENTS

2.3.5 Gray-Level Run Length Matrix

This section presents the second global texture evaluation algorithm, the Gray-Level Run
Length Matrix (GLRLM). It was introduced in (Galloway, 1975) to define various textural
features. Like the GLCM, the GLRLM also evaluates the distribution of gray levels in an
image or in multiple images. As explained in Section 2.3.4, whereas the GLCM evaluates
the gray levels within neighboring pixels (taking into account the distance d and the
angle ✓), the GLRLM evaluates run lengths. A run length is defined as the length of a
consecutive sequence of pixels with the same gray level intensity along direction t.

a

b

Figure 2.31: Design of the GLRLM matrix from a 4⇥4 image with four gray levels. (a)
TheGLRLM matrix being t = 0; (b) The GLRLM normalized matrix.

As was done in Section 3.2.5, instead an 5⇥5 matrix, a 4⇥4 matrix was created to make
the explanation easier to understand. As shown in Figure 2.31, in each line the length
(columns) of each gray level intensity will be calculated. The GLRLM may also have up
to eight di↵erent angular orientations, t, (0, 45, 135, 180, 225, 270 and 315 degrees).

After the GLRLM matrix is created, the same features mentioned in section 3.2.5 can
be used and calculated on GLRLM matrix.

39

CHAPTER 2. STATE OF THE ART

After explaining the operation of this algorithm, it is necessary to show its applicabil-
ity. Although no applications have been found in the field of terrain classification, there
are examples in the biomedical field showing the benefit of using the GLRLM (Castel-
lano et al., 2005). The authors of (Vamvakas et al., 2018) used the GLRLM to di↵erentiate
glioblastomamultiforme from solitary metastasis. In other application fields, the GLRLM
has been used to classify di↵erent varieties of maize seeds (Wang et al., 2015) and for the
automated recognition of drill core textures (Pérez-Barnuevo, 2017).

2.4 Optical Flow

While the previous sections (Section 2.2 and Section 2.3) have explained static features
for terrain classification, it is also important to study the dynamic behavior of the terrains
under study in this dissertation. Thus, it is necessary to understand the concept of Optical
Flow (OF).

OF is defined as the change of light in an image, e.g., on the retina or in a cameras
sensor, due to the motion of the scene relative to the eyeball or the camera. In a bioin-
spired context, the changes of light captured by the eye’s retina lead to an impression of
movement of the object/scene projected onto the retina. In a more technical context of
computer vision, changes in a computer vision environment are represented by a series
of image frames.

Figure 2.32 shows three frames with an object in motion, separated by a spatial and
a temporal sampling of the incoming light captured by the camera. The computed OF
captures the changes in these frames through a vector field. From frame 1 to frame 2,
the OF 1-2 is computed, capturing the movement of each pixel in that time di↵erence.
In general, OF algorithms from a pixel in the first image look for a nearby pixel in the
second image with the same brightness.

OF methods try to calculate the motion at every pixel position between two image
frames which are taken at times t and t +�t. These methods are called di↵erential since
they are based on local Taylor series approximations of the image signal.

The following brightness constancy constraint can be given as follows (equation 2.42):

I(x,y, t) = I(x +�x, y +�y, t +�t) (2.42)

where �x, �y and �t are the motion between the two image frames, (x,y,t) is the pixel
location and I(x,y,t) is the pixel value.

Assuming the movement is small, the image constraint at I(x,y,t) with Taylor series
can be developed to get:

I(x +�x, y +�y, t +�t) = I(x,y, t) +
@I
@x

�x +
@I
@y

�y +
@I
@t

�t (2.43)

Equation 2.43 provides the following results:

40

2.4. OPTICAL FLOW

Figure 2.32: Representation of optic flow (Raudies, 2013). It is possible to observe the
resulting flows from the sequential frames.

@I
@x

�x +
@I
@y

�y +
@I
@t

�t = 0 (2.44)

@I
@x

Vx +
@I
@y

Vy +
@I
@t

= 0 (2.45)

where Vx and Vx are the x and y components of the velocity or OF of I(x,y, t) and
@I
@x ,

@I
@y and @I

@t are the derivatives of the image at (x,y,t) in the corresponding directions.
Using equation 2.45 and replacing the image derivatives by Ix, Iy and It , results in the
equation 2.46:

IxVx + IyVy = �It (2.46)

This is an equation with two unknowns (Vx,Vy), and cannot be solved. This is known
as the OF algorithm aperture problem (Raudies, 2013) and this issue can be seen in
Figure 2.33.

This means that the image’s OF cannot be determined. Another set of equations is
needed to find the OF, with additional constraints. All OF methods introduce these
additional conditions for estimating the actual flow. Some algorithms have been further

41

CHAPTER 2. STATE OF THE ART

a b

Figure 2.33: Aperture problem example.

developed, expanding the optical flow capabilities. Some of these techniques are classified
as global methods (Horn-Schunck), local methods (Lucas-Kanade and Farneback) and
region-based matching (Barron et al., 1994). Table 2.2 summarizes the advantages and
disadvantages for each of these techniques.

Table 2.2: OF methods comparison.

Advantages Drawbacks

Global methods Smooth Flow;
Global information;
Accurate time derivatives.

Slow iterative method;
Unsharp boundaries.

Local methods Easy and fast calculation;
Accurate time derivatives;
Best combination between
accuracy and speed.

Error on boundaries.

Region-based
matching

Easy to calculate. Inaccurate time derivatives.

Some of the works researched that use the optical flow concept to classify terrains (Cam-
pos et al., 2015; Lookingbill et al., 2007; Pombeiro et al., 2015), until now, without
counting the articles published by the author of this dissertation, only one recent pub-
lication (Pombeiro et al., 2015) used this concept for terrain classification. The work
in (Pombeiro et al., 2015), uses the optical flow concept to extract the dynamic part of an
image using the Lucas-Kanade method (Lucas and Kanade, 1981), from an onboard RGB
camera as can be seen in Figures 2.34 a) and b).

This work presents a method to determine if the terrain under study is water-type or
not using a histogram of orientations by means of the radial dispersion of the trackers as

42

2.4. OPTICAL FLOW

a b

Figure 2.34: Optical flow using the Lucas-Kanade algorithm with the downwash e↵ect.
Courtesy of (Pombeiro et al., 2015)

shown in Figure 2.35.

Figure 2.35: Optical flow using the Lucas-Kanade algorithm with the downwash e↵ect.
Courtesy of (Pombeiro et al., 2015)

As can be seen from Figure 2.35, the authors state that the downwash e↵ect caused by
UAV on water-type terrains gives rise to a circular motion in which the flows detected by
the OF start from the center and point outwards from it.

However, the algorithm proposed by the authors in (Pombeiro et al., 2015) has two
crucial points:

1. Robustness of the algorithm: Since in water-type terrains movement is circular, it
is natural that there is a dispersion at all angles of the captured image. However, if
the center of the downwash is not in the center of the image, this dispersion may
not occur at all angles in water-type terrain. In this way the author may erroneously
conclude that he is not on water-type terrain when apparently he is. Consequently,
the drone would land and damage its hardware;

43

CHAPTER 2. STATE OF THE ART

2. Processing time: In this dissertation, it is necessary to be concerned with devel-
oping robust algorithms and at the same time be fast enough to be able to take
actions after classifying terrains, such as emergency landings. However, with re-
gard to (Pombeiro et al., 2015), the extremely long algorithm’s processing time is
an issue, since it needs at least four seconds to classify whether the terrain under
study is water-type or not. That means that the UAV needs to stand still for at least
four seconds to classify which type of terrain it is flying over.

2.5 Spectral Information

As one of the most used features in the image processing field, this section will cover
algorithms for classifying terrain using the terrain spectral information.

Water-terrain types have non-obvious geometric features, are sensitive to the sur-
rounding environment such as illumination, reflection and appearance of clouds in the
middle of a terrain classification, and thus it is di�cult to obtain a classification using
common image segmentation methods. As researched and studied in (Ebadi and Norouzi,
2017; Gracia et al., 2020; Matthies et al., 2005; Mora et al., 2017; Rankin and Matthies,
2010; Rankin et al., 2014; Salvado, 2018; Yao et al., 2007) in daytime, water regions have
a higher brightness and weaker texture than their surroundings when viewed through
RGB cameras (Ebadi and Norouzi, 2017; Matthies et al., 2005; Rankin and Matthies,
2010; Rankin et al., 2014; Yao et al., 2007) and lower brightness in NIR and RedEdge
bands (Salvado, 2018).

In (Yao et al., 2007), an algorithm was proposed using a stereo-vision-based method
to obtain the disparities from the stereo images, allowing the 3D points recovery to be
acquired, including the elevation and distance information (Figure 2.36). In the height im-
ages, the reflection regions often present negative height, and in the distance images there
will be sudden changes in the disparity value between the reflection and the surrounding
regions. These are significant clues to eliminate water-reflection regions.

According to the autors of (Rankin and Matthies, 2010) and (Rankin et al., 2014), the
horizon line is a useful cue for water detection for two primary reasons. First, knowing
where the horizon line stands in a certain image limits the search for water bodies to the
area below that line, decreasing the computational costs of such detection, and increasing
the possibilities of success. Also, knowing the horizon line delimitates the search area for
sky detection. The color of the sky is a strong cue for water bodies in wide-open areas,
and knowing the location of the sky in color imagery is a critical component of water
detection based on sky-reflection methods.

The method proposed in (Rankin et al., 2014) divides the detector into three di↵erent
steps leading towards the final decision. First there is an estimate of where the horizon is,
secondly the method tries to search above the horizon line and detect the sky, and thirdly,
through the detected sky pixels it tries to determine if the ground pixels they are reflecting
on have a similar color and terrain features. Figure 2.37 shows the output result of this

44

2.6. DEEP LEARNING

a b

Figure 2.36: Stereo-vision-based reflection extraction (Yao et al., 2007).

algorithm. This technique can lead to miscalculation if the weather conditions/light
conditions are not optimal for such a task, or if the water environments can be confused
with the nearby land, for example in a swamp environment.

Other algorithms use color information to classify terrains, such as the one presented
in (Ebadi and Norouzi, 2017), which is able to distinguish four di↵erent terrain types
within an image. During this process, each channel’s pixel is divided by the square root
of its own three channels intensity, as can be seen in Figure 2.38.

The final result will emphasize the color that most represents the terrain type (eg, blue
for water). Next, a Neural Network (NN) will classify the terrain under study. However,
even if the RGB channels are normalized, the system is still unstable both as a result of
climate changes and during the course of the day.

In addition to the visible band (RGB), there are also bands with lower frequencies that
are used in terrain classification. The cameras that use these bands are called multispec-
tral cameras, as shown in Figure 2.39.

From the images obtained by the camera presented in Figure 2.39, the author, after
aligning the lenses from the red band, used five multispectral indices (NDVI, ENDVI
RDVI, MSAVI and SR) to classify four di↵erent terrain types: water, vegetation, sand and
rocks (Salvado, 2018). However, despite the good accuracy of the system proposed by the
author, detecting various types of terrain, when the height is higher than 60m, it can lose
resolution when classified. Another disadvantage is that shadows can be confused with
water-type terrains, due to the fact that water has low values in the NIR and Red-Edge
bands.

2.6 Deep Learning

The term Deep Learning (DL) was introduced to the Machine Learning (ML) community
in (Dechter, 1986; Schmidhuber, 2015) and to artificial NN in the context of "Boolean

45

CHAPTER 2. STATE OF THE ART

a b

c

Figure 2.37: Example of water being directly detected by detecting the sky (Rankin et al.,
2014).

a b

Figure 2.38: Color normalization process (Ebadi and Norouzi, 2017): a) Raw data; b) RGB
normalization result.

46

2.6. DEEP LEARNING

Figure 2.39: Multispectral camera: RedEdge-M (Salvado, 2018).

threshold neurons" (Chen et al., 2001; Gomez and Schmidhuber, 2005). Thus, DL is part
of a broader family of ML methods, based on artificial neural networks (LeCun et al.,
2015; Schmidhuber, 2015).

The work on DL (and in particular Convolutional Neural Networks (CNNs)) has re-
cently been used in the field of computer vision. These networks are biologically inspired
and trained with powerful algorithms.

As shown in Figure 2.40, the architecture of a typical CNNmodel is structured as a se-
ries of layers. Each layer performs multiple transformations using a bank of convolutional
kernels (filters) (Lecun et al., 2010).

Figure 2.40: The architecture of a standard Convolutional Neural Network model (Simple
Introduction to Convolutional Neural Networks.).

Convolutional layers convolve kernels with a small span over the entire input image
area (Horn et al., 2017). Figure 2.41 shows an example of a convolution between a given
input image with a kernel.

In addition to the convolusion presented in Figure 2.41, it is important to explain that
to reduce the computational complexity, pooling steps are applied in order to decrease the
size of the layers, as can be seen in Figure 2.40. It is also possible to observe in Figure 2.40,
in each convolution, a step known as Rectified Linear Unit (ReLU) (one of the most used
activation functions) as shown in equation 2.47.

47

CHAPTER 2. STATE OF THE ART

Figure 2.41: Convolutional layer destination feature value calculation example (Simple
Introduction to Convolutional Neural Networks.).

f (z) =max(0, z) (2.47)

This function works as a linear function for values greater than 1 and works as a
non-linear function for negative values.

Some of the works studied in this dissertation regarding terrain classification, (Otte et
al., 2015; Shen andKelly, 2017; Özuysal, 2018) demonstrated excellent feature-representation
capability. In (Shen and Kelly, 2017) the author, with a monocular vision camera, devel-
oped a CNN to classify six di↵erent terrains types as shown in Figure 2.42. From Fig-
ure 2.42, the author applied the CNNs developed, and the output is shown in Figure 2.43
with an overall accuracy of 86.25%. The author also compares the current work with an
SVM and proved that for that specific case, CNNs give better results than SVM classifiers.

Another work studied is presented in (Otte et al., 2015). With a VGA camera mounted
on a USV moving in an outdoor environment (Figure 2.44 a)), the author studied four
di↵erent terrain types: asphalt; cobblestones; grass/vegetation and gravel. These terrain
types can be observed in Figure 2.44 a).

Instead of using a CNN, the author in (Otte et al., 2015) chose to study three di↵er-
ent types of Recurrent Neural Networks (RNN). Unlike CNNs, RNNs are able to store
information and use it in the next data inputs in order to make predictions. Thus, of the
three RNN architectures studied, the author concluded that RNN and Dynamic Cortex
Memory networks (DCM) had better results, at 83.49% and 83.40% respectively.

48

2.6. DEEP LEARNING

Figure 2.42: Samples from the six classes of terrains and textures with a size of
100x100. (Shen and Kelly, 2017).

Figure 2.43: Multi-terrain classification comparing SVM and CNN classifiers (Shen and
Kelly, 2017).

49

CHAPTER 2. STATE OF THE ART

a b

Figure 2.44: a) The USV used for ground image acquisition; b) The four terrain classes
used in the ground dataset (Otte et al., 2015).

In other fields of application, CNNs were used for the recognition of malignant lym-
phomas based on gender, diet and age (Andrearczyk, 2017).

2.7 Light Detection and Ranging

Although in this dissertation RGB cameras are used to capture 2D images and classify
them as water or non-water terrain type, it is also necessary to present an important
sensor for 3D classification: Light Detection and Ranging (LiDAR).

LiDAR, or Light Detection and Ranging (or, laser range finder) is one of the most
popular remote sensing technologies being used nowadays since it allows one to collect
information with high precision and more rapidly compared to other technologies of the
same type (González et al., 2008) such as RADAR, which has been used on aerial vehicles
with the purpose of measuring distance to the ground (altitude), (Ramasamy et al., 2016).
Figure 2.45 is an example of a LiDAR.

Figure 2.45: Hokuyo UTM 30LX-EW Laser Scanner. Courtesy of (Koch et al., 2017)

50

2.8. SUMMARY RELATED WORK - TERRAIN CLASSIFICATION

LiDAR’s functioning principle is the following: light pulses are transmitted by the
sensor and are scattered/reflected back, when they strike the surface of an obstacle. Then,
based on the transmitted pulses’ time of travel, the distance to the object is calculated:

d =
�t · c
2

(2.48)

Where �t is the elapsed time and c the speed of light.
Additionally, it is possible for LiDAR technology to be used in both indoor and outdoor

environments and under di�cult weather conditions such as fog, or during the night,
with accurate depth precision. Nevertheless it works better during daylight and clear sky
conditions. A solution such as RADAR would be preferable in this respect.

To sum up, LiDAR is well suited for short/medium distance obstacle detection on un-
manned vehicles (Halterman and Bruch, 2010), by enabling the creation of a 3D structure
dataset without causing any damage to crops (R. Rosell et al., 2009). However the biggest
drawback is its price. These types of sensor are extremely expensive and this was one of
reason why in this dissertation RGB cameras were used instead of LiDAR.

Algorithms that use laser scanners proved to be suitable for accurately distinguishing
between water and non-water terrains (Gruszczyfiski et al., 2017; Sofman et al., 2006;
Wallace et al., 2016; Yan et al., 2015).

According to (Sofman et al., 2006), from the LiDAR, the author could take the 3D
information (Figure 2.46 a)) and train with a small set of labeled data to classify and help
the ground vehicles in autonomous navigation (Figures 2.46 b) and c)).

However, and to meet the goal of this dissertation, the author might not be able to
detect shallow water terrain from LiDAR because the shallow water terrains increase
the decision error due to laser reflection, which leads to a misclassification as non-water
terrain.

2.8 Summary Related Work - Terrain Classification

Table 2.3 shows an overview of all the TC algorithms studied in the course of this disser-
tation. The green colors indicate the best performances for specific proposed algorithms.

Although prior research work has proposed many good solutions for terrain classifica-
tion, there is still a gap regarding the study of dynamic terrain. The previously mentioned
algorithms su↵er from a high sensitivity to changes in the environment, mainly due to
changes in brightness, color and texture. The use of the downwash e↵ect will improve
these limitations, as will be explained in Chapter 3.

51

CHAPTER 2. STATE OF THE ART

Table 2.3: Terrain Classification Method - Accuracy Comparison.

Ref. and Method Water (%) Vegetation (%) Sand (%) Asphalt Rock (%) Overall (%)

(Tong et al., 2018) - GLCM 57.18 51.94 - - - -

(Tong et al., 2018) - LBP 80.62 71.21 - - - -

(Caridade et al., 2008) - GLCM 86.80 89.90 - - - 81.90

(Mboga et al., 2017) - GLCM - - - - - 86.60

(Mboga et al., 2017) - LBP - - - - - 90.48

(Woods et al., 2013) - Depth Texture Features - 93.00 93.40 88.90 90.60 92.30

(Sofman et al., 2006) - LiDAR - 66.73 82.79 - - 75.55

(Salvado, 2018) - Multispectral Camera 89.13 82.93 84.54 89.59 - 80.00

(Wang et al., 2019) - Hyperspectral Camera - 79.84 - 79.05 - 81.17

(Bai et al., 2019) - Vibration - 82.14 78.57 85.71 78.57 -

(Ebadi and Norouzi, 2017) - Normalized Color - 76.00 - 68.00 61.00 67.00

(Ghosh and Sharma, 2015) - HOG - - - - - 86.54

(Zhao et al., 2016) - Voronoi - - - - - 82.30

(Khan et al., 2011) - LBP - - - - - 96.90

(Khan et al., 2011) - LTP - - - - - 98.10

(Khan et al., 2011) - LATP - - - - - 97.20

(Ma et al., 2017) - Gabor - - - - - 96.11

(Pombeiro et al., 2015) - Optical Flow 87.00 - - - - 87.00

(Shen and Kelly, 2017) - CNNs - - - - - 86.25

(Otte et al., 2015) - RNN - - - - - 83.49

52

2.8. SUMMARY RELATED WORK - TERRAIN CLASSIFICATION

a

b c

Figure 2.46: Results with LiDAR in (Sofman et al., 2006): a) Raw 3D data; b) Terrains
under study (road, grass, trees and buildings); c) Output result.

53

C
h
a
p
t
e
r

3
Methodology

The purpose of this chapter is to depict all of the details related to the solutions found
throughout this dissertation. These solutions aim to classify water terrain type in two
ways: Static Feature Extraction; Dynamic Feature Extraction.

Some of specificities of the aforementioned solutions are related to the UAV localiza-
tion (by fusing several of its sensors); to how to fuse the terrain classification information
with mapping; and how to use the latter to provide, for example, the type of terrain where
the UAV is flying over or an emergency landing request from the high-level module.

Thus, this chapter will be divided into five main sections:

• Section 3.1 introduces the experimental setup in use, detailing the environment
where the proposed algorithms are studied;

• Section 3.2 explains the Static Feature Extraction algorithms for Terrain Classifica-
tion;

• Section 3.3 presents the Dynamic Feature Extraction algorithms for Terrain Classi-
fication;

• Section 3.4 describes the importance of using GPU capabilities to improve the pro-
posed algorithms processing time. In this dissertation, only GLCM was used with
GPU resources;

• Section 3.5 explains how the RGB images obtained by a camera are placed on a
georeferenced dynamic map.

The overall system goal is to improve autonomous navigation and cooperation be-
tween robots.

55

CHAPTER 3. METHODOLOGY

3.1 Experimental Setup

This section will detail the material used in this dissertation namely the UAV, RGB cam-
eras and their calibration, and the types of terrain under study in this thesis. Two aerial
vehicle were used in the experiments:

• Parrot Bebop2 (Figure 3.1 a)), is a quad-rotor solution that endows the system with
graceful degradation, as it is able to land with one motor o↵, although without yaw
control in that condition.

• HEIFU is a custom made solution, aimed at the agricultural sector, developed
through a collaboration between BeyondVision (BEV) and Projeto Desenvolvimento
Manutenção Formação e Consultadoria (PDMFC). The HEIFU is equipped with an
onboard computer running Ubuntu and ROS. This is an open platform that allows
the integration of di↵erent inputs and is used to run multiple tasks, such as im-
age processing, data relaying, remote control of a drone (and more). HEIFU can
be used with di↵erent communication systems, such as a mobile network or Wi-Fi
connection. HEIFU is a Hexacopter, as can be seen in Figure 3.1 b), with a diagonal
wheelbase of 1.4m. The drone weight is around 6.2kg, including battery, and the
hovering time is about 38min with a battery of 16Ah.

a b

Figure 3.1: UAVs used in this dissertation: Parrot Bebop2 (a); HEIFU (b).

Some of the Bebop2 and HEIFU specifications are:

• Ardupilot (Pixhawk) hardware is used to control low level operation. This hardware
contains the IMU and GPS to provide the UAV’s position and orientation. Also, the
Pixhawk connects to the Jetson nano embedded system via a MAVlink protocol and
the UAV’s battery. Lastly, to control the UAV’s motors it is connected to a UHF
receiver;

56

3.1. EXPERIMENTAL SETUP

• An Jetson nano is used to control the high level operation. It receives data from the
distance sensor (depth cameras), the RGB camera, and communicates with external
devices via a Wifi link;

• An RGB camera with a gimbal stabilizer is installed capturing onboard images at a
resolution of 640x480 pixels;

• The camera and lens specifications are known, allowing the field of view (FOV) and
the pixel size in meters to be computed.

For a better understanding of the communication between various system layers,
Figure 3.2 represents the communication layers.

Figure 3.2: High-level communication layers.

3.1.1 Perception Sensors

The first step of this thesis, before starting algorithm development, was to identify the
sensors that were available to acquire information about the surrounding environment.
There are sensors, in this case RGB cameras, that have been used for the purpose of
terrain classification. However, it was necessary to calibrate the RGB cameras so that the
algorithms proposed in this dissertation work for any type of camera.

An RGB camera can be used to obtain various data from a given environment, such as
length, distance, size and other elements. For this, it is necessary to know the ccamera’s
calibration parameters (Dias, 2015).

As seen in Figure 3.3, the camera used has a distortion known as fish-eye. Such distor-
tion is caused by the wide Field Of View (FOV) (allows a greater opening), however the

57

CHAPTER 3. METHODOLOGY

Figure 3.3: Raw data - Fish-eye e↵ect.

size of the objects are not coherent. Therefore, the camera was submitted to a calibration
process1 using a tool available in ROS.

The calibration uses a table that adheres to the method proposed in (Ntouskos et al.,
2007), where a planar chessboard pattern with known dimensions is presented. The
planar chessboard is presented at di↵erent angles and positions for computing the rela-
tionship between the distances between each point as can be seen in Figure 3.4.

Figure 3.4: Camera calibration using the (Ntouskos et al., 2007) method.

After calibration, a file is generated containing the camera parameters, which can
be used to remove distortion and compute the images to obtain scene data. The image

1http://wiki.ros.org/camera_calibration

58

http://wiki.ros.org/camera_calibration

3.1. EXPERIMENTAL SETUP

without the fish-eye distortion through the collected parameters can be seen in Figure 3.5.

Figure 3.5: Camera calibration result.

3.1.2 Terrain Types

As mentioned in Section 1.3 the dynamism of di↵erent terrains when exposed to wind
provokes singular texture patterns that can be used in their identification. In this thesis,
for terrain classification, the importance of static and dynamic image features is studied,
such as colour and texture and the OF when exhibited by the downwash e↵ect. Although
several terrain types were studied, the obtained dataset is mainly divided in two di↵erent
groups: Water (pool and lake) and Non-Water (vegetation, sand and asphalt).

As seen in Figure 3.6, in this dissertation four di↵erent terrain types (water, vegetation,
asphalt and sand) were studied together with the study of downwash e↵ect impact caused
by UAVs in order to classify water or non-water terrain types. The data of the water-type
terrain were taken in pools, lakes, and seas in order to have more reliable results in a
greater variety of data.

3.1.3 System Specifications

A proposal for the system’s architecture is depicted in Figure 3.7. As mentioned before, a
Jetson nano was used with several algorithms for terrain classification.

The Jetson computational speed is a↵ected by using some terrain classification al-
gorithms such as the travel distance (Section 3.3.1) and circular motion (Section 3.3.2)
algorithms. Thus, a ground station was used to visualize the data and run these heavy
algorithms. This task is facilitated by the fact that ROS already contains tools that allow
multiple machines to communicate remotely.

59

CHAPTER 3. METHODOLOGY

a b

c d

e f

Figure 3.6: Examples of terrain types: water (a)(b); vegetation (c)(d); and sand (e)(f).

60

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

Figure 3.7: Overall Architecture of the System.

The “on-board” computer that was used in this thesis has the following software and
hardware specifications:

• Ubuntu 18.04 LTS (64-bit version);

• Intel Core i7-8510U CPU (@ 2.00 GHz × 4);

• 16Gb of RAM;

• GeForce GTX 1060.

Finally, both the on-board computer and the ground station have ROS installed, which
are explained in Appendix B. This allowed the system to be built in a modular way,
which, according to Lacaze et al. in (Lacaze et al., 2002), has advantages such as less
computational e↵ort, easier representation and the option to run di↵erent modules at
di↵erent speeds, according to the requirements.

3.2 Static Feature Extraction for Terrain Classification

The ability to precisely classify di↵erent types of terrain is useful for Unmanned Aerial
Vehicles (UAVs). As mentioned before, there are multiple situations in which terrain
classification is fundamental for achieving UAV mission success, such as emergency land-
ing, aerial mapping, decision making and cooperation between robots in autonomous
navigation.

The main goal of this section is to propose a computer vision algorithm that using
RGB images captured by a camera onboard a UAV, is capable of classifying a terrain by
analysing static image features (colour and texture) and the rotor-downwash e↵ect on the
underlying surface. There are several issues that must be addressed in order to achieve
this goal, namely:

• Which algorithms are more accurate for classifying water terrain types using the
downwash e↵ect?

61

CHAPTER 3. METHODOLOGY

• What are the texture and motion patterns of each terrain (water movement for
example)?

• Which static and dynamic image features can be extracted to classify the terrain?

To address these challenges, new texture feature extraction algorithms will be pro-
posed in the following sub-sections, aiming at the best possible performance.

3.2.1 Gabor with Lowess Regression

As mentioned in Section 1.3, the downwash e↵ect caused by UAV propellers, shown in
Figure 1.4, might have a major impact on terrain classification, because each terrain, when
subject to this e↵ect, presents di↵erent behaviors. Take the example of water-type terrains,
where no color variation exist, i.e, no motion is presented, these are wrongly classified
by algorithms designed to evaluate static textures. This happens because in water it is
not possible to observe any texture under these conditions. Using the downwash e↵ect,
motion is added to the environment, and, for example in water type terrains, circular
textures can be observed.

The first algorithm presented in this section will be a conjunction between:

1. Gabor Filter;

2. Width Projection;

3. Lowess Regression.

To better understand these steps, Figure 3.8 presents the diagram for the proposed
method.

Five main processes have been identified in the model, namely:

• Rectified Image: For the proposed classifier to be generic enough to work for all
RGB cameras (depending on the resolution), it is necessary first to calibrate the
image and mitigate its distortion. Section 3.1.1 explains how to calibrate these
images;

• Texture Filter: Extracts the terrain’s static textural information using Gabor filters;

• Threshold: A thresholding is applied to the static texture image (gabor filter) to
highlight terrain roughness;

• Projections: In conjunction with Lowess Regression, width projection was applied
to the thresholded image, extracting unique features that help di↵erentiate the
di↵erent types of terrains;

62

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

Start

Raw Image

Rectified image

Gabor Filter

Threshold

Projections

Frames > n

Classification

Output (Terrain)

Stop

no

yes

Figure 3.8: Proposed diagram for the Gabor and Lowess method.

Listing 3.1: Gabor filter implementation.
1 Image Gabor(img, kernelSize, sigma, theta, lambda, gamma, psi){
2 // Create the Kernel
3 kernel = getGaborKernel(kernelSize, sigma, theta, lambda, gamma, psi);
4

5 // Convolution calculation
6 gaborImage = filter2D(img, kernel);
7

8 return gaborImage;
9 }

• Classification: To increase certainty and automate the classification of the type
of terrain, a machine learning technique was used, namely a feed-forward neural
network (NN). The architecture of the designed neural network, was composed of
two layers, a hidden layer with 10 neurons and an output layer with two neurons
(water, non-water). A sigmoidal function was used as an activation function and
the final classification was derived from the output neuron with highest activation
value. In this section, 70% of the total data were for training, 15% for testing and
15% for validation.

Starting with the Gabor filter, as explained in Section 2.3.2, this filter is capable of
extracting a texture in any direction (by changing the filter orientation). Thus, Listing 3.1
shows how this filter was implemented.

63

CHAPTER 3. METHODOLOGY

The following were used as input parameters:

• Kernel Size: 4;

• Lambda (�): 5;

• Theta (✓): 0 and 90 degrees;

• Psi (): 0;

• Sigma (�): 70;

• Gamma (�): 0.

Thus, as can be seen in Figure 3.9, it is possible to obtain, for example, the texture
of a water-type terrain when it is a↵ected by the downwash e↵ect of the UAV using the
Gabor filter at two di↵erent angles (with ✓ equals to 0 and 90 degrees). Next, in order to
emphasize the water-terrain texture, a binarization (Listing 3.2) with a given threshold
was used (Figure 3.9 d)), with threshold_value = 25.

Listing 3.2: Gabor Binarization.
1 // Gabor 0 and 90 degree Binarization
2 imgGabor0Binarized = Binarization(imgGaborTheta0, thresholdVale, 255, 1);
3 imgGabor90Binarized = Binarization(imgGaborTheta90, thresholdVale, 255, 1);
4

5 // Both matrices are added (Gabor with 0 and 90 degree) into a new Matrix - -
imageGaborTheta0And90

6 imageGaborTheta0And90 = addMatrix(imgGabor0Binarized , imgGabor90Binarized);

At this stage, the second point of this algorithm was performed: width projection.
From Figure 3.9 d), the number of white pixels is counted the columns of each image to
create an output vector from this projection, as can be seen, in Listing 3.3.

From the observed vertical projection of water-type terrain (Figure 3.10) it can be
seen that it produces an ondulatory e↵ect with a local minimum in the center of the down-
wash. This e↵ect in water-type terrains is due to the lower roughness in the center of the
downwash. However, due to the water movement, around the center greater roughness
is observed (white pixels in the binarized image in Figure 3.9.d). The next step was to
translate this observed feature into a computational model.

A non-parametric regression was used in order to calculate a curve that most closely
approximates vertical projection points (green dots) in Figure 3.10. Lowess’s theory
calculates the closest line to a given set of points, through weights assigned to each point
in a neighboring window. The number of points that this window can contain is defined
by the user. An example is provided with the data-set presented in Table 3.1:

To calculate the new Y of each point of estimation, and starting with the first X value
(0.5578196), where the window size equals seven the next steps are the following:

64

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a b

c d

Figure 3.9: Example of static texture extraction: a) Raw image; b) c) Convolution with
the Gabor filter ✓-0 degrees (b) and ✓-90 degrees (c); d) Sum of images b) and c) after
thresholding.

Listing 3.3: Width Projection from Figure 3.9 d).
1 // Define the variables
2 colums = image.cols;
3 rows = image.rows;
4 histArray(colums);
5 pixelPtr = image.data;
6

7 // Loop to count how many white pixels (value 255) are in each image column
8 for (x = 0; x < colums; ++x) {
9 for (y = 0; y < rows; ++y) {

10 pixelValue = pixelPtr(y,x);
11 f(pixelValue == 255)
12 histArray[x]++;
13 }

65

CHAPTER 3. METHODOLOGY

Figure 3.10: Width projection of the example in Figure 3.9.d.

Table 3.1: Example data-set.

X Y X Y X Y

1 0.5578196 18.63654 8 6.5411662 233.55387 15 13.2728619 152.61107

2 2.0217271 103.49646 9 6.7216176 234.55054 16 14.2767453 160.78742

3 2.5773252 150.35391 10 7.2600583 223.89225 17 15.3731026 168.55567

4 3.4140288 190.51031 11 8.1335874 227.68339 18 15.6476637 152.42658

5 4.3014084 208.70115 12 9.1224379 223.91982 19 18.5605355 221.70702

6 4.7448394 213.71135 13 11.9296663 168.01999 20 18.5866354 222.69040

7 5.1073781 228.49353 14 12.3797674 164.95750 21 18.7572812 243.18828

66

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

1. Calculate the distance on the X-axis between the point under study and its six closest
neighbors (in this example the windows size is equal to seven as mentioned above):

Table 3.2: Local Subset of Data.

Point
under Study X Y

X-axis
Distance

X-axis Scaled
Distance Weight

0.5578196

0.5578196 18.63654 0.000000 0.0000000 1.0000000

2.0217271 103.49646 1.463907 0.3217691 0.90334913

2.5773252 150.35391 2.019506 0.4438904 0.75988974

3.4140288 190.51031 2.856209 0.6277992 0.42621714

4.3014084 208.70115 3.743589 0.8228466 0.08686171

4.7448394 213.71135 4.187020 0.9203134 0.01072308

5.1073781 228.49353 4.549558 1.0000000 0.0000000

2. Calculate the normalized distance using the X-axis distance column (Table 3.2),
where each previously calculated distance is now divided by the greater distance
(in this case the greater distance is 4.549558). Equation 3.1 translates this step into
a mathematical formula. The scaled distance results are presented in the Scaled
Distance column in Table 3.2.

NormDistance(i) =
X � axis Distance

max(X � axis Distance)
, where i = 1...W indows size (3.1)

3. Calculate the weight of each point. The weight function w is defined using equa-
tion 3.2 and the results are presented in the Weight column in Table 3.2.

w(d) =

8>>><>>>:

(1� |d |3)3 f or |d | < 1

0 f or |d | � 1
(3.2)

It should be noted in Table 3.2 that the further the neighboring points are from the
estimation point, the value of the weights will decrease so as to have less influence
on the new estimated Y value.

4. In order to calculate the regression function, it is necessary to calculate the linear
equation slope and intercept, by a weighted least squares fit of the data subset and
previous weights, as shown in equation 3.3.

67

CHAPTER 3. METHODOLOGY

S(m,b) =
nX

i=1

wi ((m · xi + b)� yi)2 (3.3)

Where m is the slope, b is the intercept, w is the weight of each x and y value.

Since equation 3.3 represents the residual of each point (the di↵erence between
m · x + b and y), the goal of this function is to make the sum of the squares of these
residuals as small as possible to find the minimum slope and intercept values. Thus,
the minimum of each value is determined by calculating the partial derivatives of
S(m,b) with respect to m and b and equate the function to zero:

@S
@m

= 0

@S
@b

= 0

(3.4)

From equation 3.4, the result of the equations system given by these two partial
derivatives, for this example is:

@S
@m

=m0 = 59.03309

@S
@b

= b0 = �12.33679

(3.5)

5. The last step is the calculation of new estimated Y value (regression function value).
With the results given by equation 3.5, the new estimated Y value of the point under
study is represent by the following equation (equation 3.6):

Regression Function V alue =m0 · x + b0 (3.6)

These processes must be calculated for every point of Table 3.1. The result of using
this locally regression can be observed in Figure 3.11, i.e. the red line. After the im-
plementation of the red line, as show in Figure 3.11, local maxima and minima were
calculated on this same line. The red line is represented by a lineV ector array.

The local minima and maxima are calculated as described in Listing 3.4.
Using the vector values obtained in Listing 3.4: maxLocal; maxLocalIndex; minLocal;

and minLocalIndex, Figure 3.11 shows the output of these values.
The obtained local minima and maxima are used to obtain two features:

1. Valley area between the local minimum and its respective two local maxima, repre-
sented by the gray color in Figure 3.12;

68

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

Listing 3.4: Local Minima and Maxima calculation.
1 void MaxMinHistogram(std::vector<int>& histArray){
2 // Define the variables
3 colums = lineVector.cols;
4 tmpMax= lineVector[histrogramStep];
5 tmpMin= lineVector[histrogramStep];
6

7 // Check if the first point is a local minimum or local maximum
8 if(histArray[0] > lineVector[histrogramStep]{
9 maxLocal.add(lineVector[0]);

10 maxLocalIndex.add(0);
11 }
12 else{
13 minLocal.add(lineVector[0]);
14 minLocalIndex.add(0);
15 }
16

17 // Save all Minima and Maxima locals into maxLocal and minLocal vectors, -
respectively

18 for (i = histogramStep; i<colums-histogramStep; i=i+histogramStep) {
19

20 if(tmpMax > lineVector[i+histogramStep] && tmpMax > lineVector[i- -
histogramStep]){

21 maxLocal.add(tmpMax);
22 maxLocalIndex.add(i);
23 tmpMax = lineVector[i+histogramStep];
24 }
25 else
26 tmpMax = lineVector[i+histogramStep];
27

28 if(tmpMin < lineVector[i+histogramStep] && tmpMin < lineVector[i- -
histogramStep]){

29 minLocal.add(tmpMin);
30 minLocalIndex.add(i);
31 tmpMin = lineVector[i+histogramStep];
32 }
33 else
34 tmpMin = lineVector[i+histogramStep];
35 }
36 }

69

CHAPTER 3. METHODOLOGY

Figure 3.11: Width projection (green dots), Lowess regression fitting (red line), local
minima (blue dot) and maxima (orange dot).

2. Integral between the local minimum and its two respective local maxima, repre-
sented by the yellow color in Figure 3.12.

The first has the advantage of being relative to minima and maxima values, while the
integral gives an absolute value and will vary for the center and for increased roughness.
Both of these data are sent to a neural network in order to classify the terrain type under
study.

Now that the system has been explained, four di↵erent types of terrain (water, vege-
tation, sand and asphalt) are analysed in this section. Figures 3.13, 3.14, 3.15 and 3.16
describe di↵erent texture outputs from di↵erent types of terrain. It is possible to conclude
that by implementing the Gabor filter, vegetation and asphalt terrains were found to have
a higher texture than sand and water-type terrains. On the other hand, water-type terrain,
also presents a singular characteristic due to the downwash e↵ect provoked by the UAV,
which can be decisive for di↵erentiating it from other types of terrain.

3.2.2 Particle Swarm Optimization

One of the main shortcomings of the existing clustering methods is the need for users to
specify threshold parameters, cluster amount, etc beforehand. Therefore, to avoid this
issue, the second algorithm proposed in this dissertation, known as Particle Swarm Opti-
mization (PSO), is a clustering algorithm that does not require parameters configuration,
i.e. it eliminated human involvement.

70

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

Figure 3.12: Width projection showing the valley area (gray color) in relation to integral
(yellow).

The clustering method based on PSO mentioned earlier uses swarm particle group
motion (pixel-by-pixel passage through the determined region in the image). Within the
swarm, a search for the best solution, namely pixels with a maximum average intensity
value, is conducted. Also, k-means that a clustering method (Oyelade et al., 2010) is
included, which is intended to group pixels into a predetermined number of clusters by
calculating the minimum value of the distance function. However, in comparison with
the original k-means method, the need to specify the cluster size in advance by the user,
is eliminated and, apart from the distance function minimization, an operation of color
function minimization is added.

The initial normalization is needed in order to make an image insensitive to light
changes and thus, simplify the classification process. Normalization works, according to
equation 3.7:

(r 0 , g 0 , b0) =

0
BBBB@

r
p
r2 + g2 + b2

,
g

p
r2 + g2 + b2

,
b

p
r2 + g2 + b2

1
CCCCA , (3.7)

where:

• r, g, b are the initial values of a pixel’s RGB vector;

• r’, g’, b’ are the normalized values of a pixel’s RGB vector.

The developed clustering algorithm consists of the following stages:

71

CHAPTER 3. METHODOLOGY

a b

c

d e

f

Figure 3.13: Example of static texture feature extraction for two water-terrains. (a,d)
Input images; (b,e) Gabor filter; and (c,f) the width projection calculation.

72

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a b

c

d e

f

Figure 3.14: Example of static texture feature extraction for two vegetation-terrains. (a,d)
Input images; (b,e) Gabor filter; and (c,f) the width projection calculation.

73

CHAPTER 3. METHODOLOGY

a b

c

d e

f

Figure 3.15: Example of static texture feature extraction for two sand-terrains. (a,d) Input
images; (b,e) Gabor filter; and (c,f) the width projection calculation.

74

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a b

c

Figure 3.16: Example of static texture feature extraction for asphalt-terrain. (a) Input
image; (b) Gabor filter; and (c) the width projection calculation.

1. Rounding the pixels horizontally and vertically to the nearest values of W and H,
respectively, which are multiple of 10, in the normalized image. This procedure is
intended to normalize raw images;

2. Sequential selection of 10 by 10 regions (initial clusters) in the image;

3. Automated initial allocation of centroids cj , j 2 [1,W ·H/100]. The pixel’s average
intensity calculation is represented in (3.8):

Iav =
r 0 + g 0 + b0

3
, (3.8)

where r’, g’, b’ are the normalized values of a pixel’s RGB vector.

4. Comparison of the rounded average intensity values for centroids from neighboring
regions. The comparison proceeds vertically and horizontally relatively to each clus-
ter. If the rounded average intensity values are equal to each other, two neighboring
clusters are combined into one. In the new cluster the centroid is the pixel with a
maximum average intensity value. This step needs to be repeated until there are M
clusters cj , j 2 [1,M] with the pairwise distinct rounded average intensity values of
the centroids;

75

CHAPTER 3. METHODOLOGY

5. For each pixel xi , i 2 [1,W ·H] two parameters are calculated: distance function d
and color function f. They are shown in equation 3.9) and equation 3.10, respec-
tively:

d(xi , cj) =
q
(xiw � cjw)2 + (xih � cjh)2, (3.9)

where:

• xiw and xih are coordinates of the given pixel per width and height of the image;

• cjw and cjh are coordinates of the centroid per image width and height.

f (xi , cj) =
q
(r 0xi � r 0cj)2 + (g 0xi � g 0cj)2 + (b0xi � b0cj)2, (3.10)

where:

• r 0xi , g
0
xi , b

0
xi are the normalized values of the RGB vector of the pixel xi ;

• cj is centroid of the cluster Cj ;

• r 0cj , g
0
cj , b

0
cj are the normalized values of the RGB vector of the centroid cj .

6. For each pixel xi it is necessary to find a centroid ca, a 2 [1,M] whose distance
function value will be minimum and a centroid cb, b 2 [1,M] whose color function
value will be minimum. After that, the following di↵erences are calculated, as it is
expressed in equation 3.11 and equation 3.12:

ddif f = |d(xi , ca)� d(xi , cb)| (3.11)

fdif f = |f (xi , ca)� f (xi , cb)| (3.12)

7. The equation with lowest value is chosen as a priority function. Where ddif f equals
fdif f , the distance function obtains priority, because pixels that are closer to each
other are more likely belong to the same object than ones that have similar colors.
The allocation of pixels to clusters is achieved according to the priority function,
i.e. pixel xi will be assigned to a cluster if the priority function value between this
pixel and this cluster’s centroid is minimum. Thus, the objective function of the
clustering method can be expressed as in equation 3.13:

8>>><>>>:

PM
k=1

PN
i=1 d(xi , ck)!min

PM
k=1

PN
i=1 f (xi , ck)!min

(3.13)

76

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

8. Noise elimination. Due to its high e↵ectiveness, the denoising non-local means
method (Salmon, 2010) was chosen. This method is based on equation 3.14:

u(p) =
1

C(p)

Z

⌦
v(q)f (p,q)dq, (3.14)

where u(p) is the filtered intensity value of a pixel color component at point p, v(q)
is an unfiltered intensity value of a pixel color component at point q, f(p,q) is a
weighting function and C(p) is a normalizing factor. Gaussian function is used as
the weighting function, and it is represented in equation 3.15:

f (p,q) = e
�|B(q)�B(P)|2

h2 , (3.15)

where:

• h is the filter parameter (for RGB images h equals 3);

• B(p) is a local average intensity value of pixel color components around point
p;

• B(q) is a local average intensity value of pixel color components around point
q.

Normalizing factor C(p) is calculated, as in equation 3.16:

C(p) =
Z

⌦
f (p,q)dq (3.16)

In order to explain how the PSO was applied in this dissertation, the model of the
proposed system, for terrain classification is presented in Figure 3.17.

From the proposed system model in 3.17, it is possible to visualize five main layers,
namely:

• Raw Image: The images obtained by the RGB camera have a resolution of 640x480
pixels. After obtaining these images, the RGB information is then sent to the next
layer;

• Rectified Image: In order for all RGB cameras to work with the same proposed
algorithm, it is necessary to calibrate the cameras. Section 3.1.1 explained how to
calibrate these RGB cameras;

• SwarmOptimization: This layer is responsible for segmenting the image according
to the terrain types captured by the RGB camera;

• Gray-Level Co-Occurrence Matrix: This layer is responsible for transforming a
segmented image into a GLCM matrix and calculating the features described in
Section 3.2.5. Section 3.2.5 will cover in more detail how this layer was developed
throughout this dissertation;

77

CHAPTER 3. METHODOLOGY

Start

Raw Image

Rectified image

Particle Swarm Optimization

Gray-Level Co-Occurrence Matrix

Classification

Output (Terrain)

Stop

Figure 3.17: Proposed PSO system model.

• Classification: The outputs generated by the GLCM features feed a neural network
(NN) which classifies the terrain. In this section, Multilayer Perceptron (MLP) archi-
tecture was used. The neural network inputs are the output values from the GLCM
phase.

Given the system model explanation, in this section, four di↵erent terrain types
(water, vegetation, asphalt and sand) were analysed. The following six Figures (Fig-
ures 3.18, 3.19, 3.20, 3.21, 3.22 and 3.23) show the results of the PSO of each terrain
under study in this section. It is possible to conclude that by implementing the PSO
algorithm, given the image segmentation, it filters the high frequencies caused by the
downwash e↵ect. In this way, water-type terrain, more specifically lakes, becomes more
similar to sand-type terrain and therefore, the classification becomes less accurate when
di↵erentiating between water-type and non-water-type terrain.

a b

Figure 3.18: a) Input image (sand terrain A); b) PSO segmented data.

78

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a b

Figure 3.19: a) Input image (vegetation terrain); b) PSO segmented data.

a b

Figure 3.20: a) Input image (sand terrain B); b) PSO segmented data.

3.2.3 Fourier and Empirical Mode Decomposition

Although there are many ways to perform signal decompositions, two major groups can
be defined:

1. Decompositions by prefixed base functions, such as Fourier decomposition;

2. Decompositions by data characteristics, such as LinearDiscriminant Analysis (LDA),
Principal Components Analysis (Principal Components Analysis (PCA)), Empirical
Mode Decomposition (EMD).

A salient example of decomposition in the first group is Fourier analysis, where the
base functions are complex exponentials. A recent example of decomposition in the
second group is empirical mode decomposition, or EMD (Rato, 2012).

Starting with Fourier decomposition: this is well known for the paradigmatic case of
signal decomposition by prefixed base functions (Oppenheim et al., 1999). For a discrete

79

CHAPTER 3. METHODOLOGY

a b

Figure 3.21: a) Input image (water terrain A); b) PSO segmented data.

a b

Figure 3.22: a) Input image (water terrain B); b) PSO segmented data.

a b

Figure 3.23: a) Input image (asphalt terrain); b) PSO segmented data.

80

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

signal F with N samples, Fourier decomposition produces a C sequence of N complex
coe�cients, C = {c[k]}, 0 k < N , which correspond to N sinusoidal signals, Sk , 0 k < N ,
each with N samples, Sk = {sk[n]}, 0 n < N . The sum of these N sinusoids reconstructs
the original signal.

Where F = {f [n]}, 0 n < N , a discrete signal with N samples. Then the coe�cients
c[k] will be given by equation 3.17.

c[k] =
1
N
·
N�1X

n=0

f [n] · e�j2⇡ k
N n (3.17)

Fourier decomposition can be seen as the projection of the X signals into complex
exponentials, in each base function. Instead of complex exponentials, it is possible to
work with sinusoids. Thus, defining c[N] = c[0], the following equations (3.18 and 3.19)
are defined as base functions, which are all orthogonal to each other (Oppenheim et al.,
1999):

a[k] =
c[k] + c[N � k]

2
, where 0 k < N (3.18)

b[k] = j · c[k] + c[N � k]
2

, where 0 k < N (3.19)

The values sk[n] are obtained by equation 3.20:

sk[n] = a[k] · cos

2⇡

k
N
n

!
+ b[k]sin

2⇡

k
N

!
(3.20)

The signal F can be reconstructed by the sum of the N sinusoids Sk (equation 3.21).

F =
N�1X

k=0

Sk (3.21)

The following example will hel better understand this signal-decomposition method.
Considering N = 16 and F the input signal with the following data: [1,3,-1,4,5,-1,-8,-
3,1,5,8,2,-4,-7,-1,2], where F[0] = 1, F[1] = 3, ..., F[15] = 2. Figure 3.24 represents this
data sequence.

The Fourier decomposition sequence can be applied in coe�cients c[k], a[k] and b[k],
obtaining the following N sinusoids Sk

Although Fourier decomposition works for sinusoidal signals, it depends on the de-
fined orthogonal base functions which are fixed amplitude and fixed frequency sinusoidal
functions, as mentioned above. Thus, for this dissertation, the EMD was chosen in order
to work with all signal types excluding dependency on exclusively sinusoidal signals
and predefined functions (Huang et al., 1998). This decomposition gives rise to various
empirical zero-mean oscillating modes, 'i(t), conventionally known as Intrinsic Mode
Functions (IMF). In addition to a set of IMFs, EMD also produces a residual signal, known
as baseline, where the average and baseline information is shown.

81

CHAPTER 3. METHODOLOGY

0 2 4 6 8 10 12 14 16
-10

-8

-6

-4

-2

0

2

4

6

8

10
Signal X

Figure 3.24: Input data-set- sequence representation. Adapted from (Rato, 2012).

EMDwas developed for the signals decomposition that oscillate around a baseline but
has non-stationary characteristics. This is the case with many signals, such as biological,
climatic, econometric, among others. Unusually, EMD has no analytical definition, only
algorithmic, and only for discrete time finite signals.

IMFs are determined using an iterative algorithm called "sifting" (Huang et al., 1998),
and do not use pre-fixed base functions. This algorithm provides a collection of IMFs, �
0 < i < L, and one baseline, �L.

Given the same data-set that was used in Figure 3.24, the input data was decomposed
by EMD. The results can be observed in Figure 3.25.

It is important to note in Figure 3.25 that the first diagram represents the original
sequence and the last diagram represents the sequence reconstructed by the sum of all
IMFs and the baseline.

Before explaining how EMD was used in this dissertation, it is necessary to present
the general description of EMD and how it works:

• General Description: EMD - decomposition in empirical modes - is performed
by an intrinsically discrete algorithm with local characteristics, and no analytical
counterpart is developed. EMD decomposes a signal into its constituent IMFs. The
algorithm works by successive refinements, “sifting” the signal, until reducing it to
an IMF. It removes this IMF from the original and resumes considering the residue
from the previous operation as a new original signal. It ends when the residue
is irreducible. It is an algorithm considered “simple” and “natural”, with local
characteristics (Huang et al., 1998);

• The Algorithm: The EMD decomposition algorithm is intrinsically computational

82

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

0 2 4 6 8 10 12 14 16
-10

0

10

O
rig

in
al

 d
at

a EMD of Signal X

0 2 4 6 8 10 12 14 16
-10

0

10
IM

F-
A

0 2 4 6 8 10 12 14 16
-10

0

10

IM
F-

B

0 2 4 6 8 10 12 14 16
-10

0

10

IM
F-

Ba
se

lin
e

0 2 4 6 8 10 12 14 16
-10

0

10

Su
m

 IM
Fs

Figure 3.25: Signal decomposition using EMD. Adapted from (Rato, 2012).

and no analytical counterpart is developed. The description of the algorithm is as
follows:

1. Let S be a discrete time signal and let i = 1 be the iteration variable;

2. The following step is to sift S to obtain an IMF �i . Before start this step, let S̃
be an auxiliary copy of S:

a) Determine all the maxima and minima of S̃ ;

b) Determine the corresponding envelopes: M̂=
n
m̂[n]

o
corresponds to the

upper envelope and M̌=
n
m̌[n]

o
corresponds to the center envelope;

To be easier to observe, Figure 3.26 shows the corresponding envelopes of
the signal S , where the upper envelope is defined by the red line and the
lower envelope is defined by the green line;

c) Define M= M̂+M̌
2 as the mean between the upper envelope and center enve-

lope as shown in Figure 3.26 (purple line);

d) To continue the iteration, M will have to fulfill the following condition:

– The energy of M must be above a certain threshold. To calculate the
energy, the max energy ratio concept was applied (Wang et al., 2010).
Energy ratio is the ratio of the energy of the signal at the beginning of
sifting, S, and the average envelope energy, M. Equation 3.22 translates
this concept into a mathematical formula:

ER
�= 10log10

kSk2
kMk2

!
(3.22)

83

CHAPTER 3. METHODOLOGY

Figure 3.26: Signal S and its corresponding envelopes.

e) If M does not satisfy the condition, i.e., if it the energy is below the set
threshold value, part 1) ends. Hence, �i= S̃ and proceed to step 3);

f) If M satisfies the condition, i.e., if energy is higher than the set threshold,
then it will jump again to step 2);

g) The process is reinitialized by subtracting M from S̃ to get a new S̃ , i.e. S̃
 S̃ - M and it is necessary to jump to 2 a) to restart the algorithm;

3. Set the new signal S to be S S��i . Also the iteration variable is incremented,
i.e., i i +1;

4. For the new signal S, it is necessary to verify that both conditions have been
validated to continue the iteration:

– Energy must be higher than the set threshold;

– Display of more than three extremes (local, minimum and maximum).

5. If signal S meets both iteration conditions, it is resumed from stage 2). If S
does not meet at least one of the conditions to continue the iteration, consider
S the baseline, �L, and finish the iteration.

To conclude, this describes the EMD algorithm that allows one to obtain a collection
of IMFs �i , where 0 < i < L, and enables its residual baseline �L to be obtained. However,
the number of IMFs that are obtained, when using the EMD algorithm, is not fixed
because di↵erent signals can have di↵erent energy and also di↵erent local maximum
and minimum numbers. Thus, in order to solve this issue, only the first 3 IMFs and the
baseline are used to classify the terrains. Figure 3.27 shows an example of a water terrain
analysed using the EMD algorithm.

In order to explain how the EMD was applied in this dissertation, the model of the
proposed system, for terrain classification, is presented in Figure 3.28.

It is possible to visualize six main processes in the architecture, namely:

• Rectified Image: It is necessary to calibrate the camera before any process, to make
the proposed algorithms universal. Only then, is it possible to work with all RGB

84

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

IM
F-
A

Empirical Mode Decomposition - Pool terrain

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20

IM
F-
B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20

IM
F-
C

0 200 400 600 800 1000 1200 1400 1600 1800 2000
50

100

150

IM
F-
Ba
se
lin
e

Figure 3.27: Empirical Mode Decomposition in Pool terrain type - First three IMFs and
the baseline. Each EMD analysis was performed with a resolution of 40 dBs.

Start Raw Image Rectified image

RGB to Gray

2D to 1D From the Red Square

EMD Filter

Three First IMFs

Frames > n

Classification Output (Terrain) Stop

yes

no

Figure 3.28: Proposed EMD system model.

85

CHAPTER 3. METHODOLOGY

cameras regardless of their resolution. Section 3.1.1 explained how to calibrate
these RGB cameras;

• RGB to Gray: Regarding the gray scale conversion, the system merges the three
channels (red, green and blue) using the CCIR 601 standard (Matos-Carvalho et al.,
2019) as shown in equation 3.23:

Grayscale = 0.299Red +0.587Green+0.114Blue (3.23)

• 2D to 1D From the Red Square: In order to increase the computational speed, the
proposed algorithm is not used on the entire image but only on a part of it. In this
dissertation, the use of a 477x477 square is proposed (red square as can be seen in
Figure 3.28), where each value represents the pixel that constitutes the edges of the
square. Next, the 2D representation was converted into 1D and a vector was created
where all values were stored (blue line);

• EMD Filter: This phase will apply the EMD algorithm, which has been explained
in this section, to the 1D values. As also mentioned, only the first 3 IMFs and the
baseline are used to be sent as the NN’s input information;

• Frames > n: "n” is the total number of frames required to increase the algorithm’s
accuracy. This threshold value was chosen empirically by the author.

• Classification: The outputs generated by the EMD phases are turned into inputs for
a Neural Network (NN) (Specht, 1991) tasked with classifying the terrain the UAV
is flying over. Machine learning techniques have already been proven to be e�cient
for terrain classification (Giusti et al., 2016; Heung et al., 2016; Mora et al., 2017).
In this section, an NN was used, namely a Multilayer Perceptron (MLP) architecture.
The Neural Network inputs are the output values from EMD algorithms.

Now that the system has been explained, in this section five di↵erent terrain types
(lake, pool, vegetation, dirt and sand) were analysed. The behavior changes accord-
ing to the type of terrain: in lake and pool, as it is a water-like terrain, a circular
movement is observed; in vegetation, the movement occurs linearly from the inside to
the outside; in sand, the movement is almost static. The following six Figures (Fig-
ures 3.29, 3.30, 3.31, 3.32, 3.33 and 3.34) show the results of the first three IMFs and the
baseline of each terrain under study in this section. It is possible to visualize and conclude
that, using the EMD algorithm, the more texture there is in an image, the greater the fre-
quency of each IMF that is obtained, allowing one to di↵erentiate between water-type
terrain and non-water type terrain. Section 4.3 will detail more about this study.

In the same way as for Section 3.2.1, this section also proposes two heuristics char-
acteristics in order to send these two features to the NN and classify the terrain under
study. The following heuristics characteristics take into consideration the three IMFs of
each terrain:

86

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

IM
F-
A

Empirical Mode Decomposition - Pool terrain

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20

IM
F-
B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20

IM
F-
C

0 200 400 600 800 1000 1200 1400 1600 1800 2000
50

100

150

IM
F-
Ba
se
lin
e

b

Figure 3.29: a) Input image (water terrain A); b) its first three IMFs.

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

IM
F-
A

Empirical Mode Decomposition - Lake terrain

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20

IM
F-
B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

IM
F-
C

0 200 400 600 800 1000 1200 1400 1600 1800 2000
100

150

200

IM
F-
Ba
se
lin
e

b

Figure 3.30: a) Input image (water terrain B); b) its first three IMFs.

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-100

0

100

IM
F-
A

Empirical Mode Decomposition - Vegetation terrain

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-100

0

100

IM
F-
B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

IM
F-
C

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

IM
F-
Ba
se
lin
e

b

Figure 3.31: a) Input image (vegetation terrain); b) its first three IMFs.

87

CHAPTER 3. METHODOLOGY

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

IM
F-
A

Empirical Mode Decomposition - Dirt terrain

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

IM
F-
B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

IM
F-
C

0 200 400 600 800 1000 1200 1400 1600 1800 2000
100

150

200

IM
F-
Ba
se
lin
e

b

Figure 3.32: a) Input image (sand terrain A); b) its first three IMFs.

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20

IM
F-
A

Empirical Mode Decomposition - Sand terrain

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20

IM
F-
B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20

IM
F-
C

0 200 400 600 800 1000 1200 1400 1600 1800 2000
100

150

200

IM
F-
Ba
se
lin
e

b

Figure 3.33: a) Input image (sand terrain B); b) its first three IMFs.

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

IM
F-
A

Empirical Mode Decomposition - Asphalt terrain

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-100

0

100

IM
F-
B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

IM
F-
C

0 200 400 600 800 1000 1200 1400 1600 1800 2000
100

150

200

IM
F-
Ba
se
lin
e

b

Figure 3.34: a) Input image (asphalt terrain); b) its first three IMFs.

88

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

1. Number of local maximums given by an IMF;

2. Number of times the IMF has crossed zero along the vector.

3.2.4 Wiener-Khinchin

It is known that the UAV rotation and its camera in relation to the terrain is an extremely
important factor in the terrain classification. Using the downwash e↵ect, it is necessary
to study an algorithm that is not influenced by these factor presented above. Hence,
this section presents the fourth algorithm developed in this dissertation: The W-K Filter,
where the core of the algorithm occurs in the frequency domain (the algorithms presented
in 3.2.1 and 3.2.3 are developed in the spatial domain).

As explained above, the W-K Filter, with the downwash e↵ect, is used in order to
classify any terrain regardless of UAV/Camera rotation. In order to make this concept
easier to understand, an example is provided in Figures 3.35, 3.36 and 3.37, where two
factors are observed:

1. UAV rotation;

2. Circumference (represented as purple) caused by the downwash e↵ect.

a b

Figure 3.35: W-K Filter concept explanation. a) UAV on water terrain; b) UAV with 0º
rotation.

As can be seen from Figures 3.35, 3.36 and 3.37, it can be concluded that the purple
circumference caused by the downwash e↵ect is almost the same regardless of the UAV
position and rotation, i.e., the objective of using the W-K Filter is then to have a rotation
invariant algorithm. Mathematically speaking, this concept can also be explained by the
autocorrelation of the signal produced by the circumference as shown in the following
steps.

1. Average Values: After obtaining the purple circumference values, in order to be
able to compare with di↵erent terrain types, it is necessary and important that all

89

CHAPTER 3. METHODOLOGY

a b

Figure 3.36: W-K Filter concept explanation. a) UAV with 90º rotation degrees; b) UAV
with 180º rotation.

a b

Figure 3.37: W-K Filter concept explanation. a) UAV with 270º rotation degrees; b) UAV
with 360º rotation.

terrains under study have the same average value. For this reason, the average value
is removed from the original signal.

2. Normalization: To complement the idea of being able to compare di↵erent types of
terrain, it is necessary to normalize the input data in order to be able to use general
thresholds.

As the Wiener-Khinchin theorem uses the concept of energy in the frequency do-
main, it becomes intuitive to normalize the input data according to energy, as shown
in equation 3.24:

X =
X
||X || =

Xp
X ·XT

(3.24)

3. Frequency Domain: After normalizing the circumference values, they were trans-
formed to the frequency domain:

90

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

F(k) =
N�1X

j=0

f (j) · e
�i 2⇡ k j

N (3.25)

Where F(k) is the DFT coe�cients of f(j) and the N is the resolution (the resolution
must be equal or greater than the signal length).

4. Autocorrelation Process: With the values in the frequency domain, the signal
crossed with itself is then performed, i.e., the core of Wiener-Khinchin theorem
is presented in equation 3.26:

F 0(k) = F(k)2 (3.26)

5. Spatial Domain: As the last step, an inverse transform is performed to obtain the
output in the spatial domain (equation 3.27):

f (j) =
1
N

N�1X

k=0

F 0(k) · e
i 2⇡ k j

N (3.27)

Figure 3.38 shows an example of applying theWiener-Khinchin filter to a water terrain
type.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Signal Length

-0.1

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 a
da

pt
iv

e
si

gn
al

Wiener-Khinchin Filter - Pool Terrain

Figure 3.38: Wiener-Khinchin Filter - Autocorrelation result from pool (water) terrain
type.

In order to explain how the W-K Filter was applied, the model of the proposed system,
for terrain classification, is presented in Figure 3.39.

Based on the system model proposed in 3.39, it is possible to visualize six main
processes that have been identified in the architecture, namely:

91

CHAPTER 3. METHODOLOGY

Start Raw Image Rectified image

RGB to Gray

2D to 1D From the Red Square

W-K FilterFrames > n

Classification Output (Terrain) Stop

yes

no

Figure 3.39: Proposed W-K Filter system model.

• Rectified Image: As mentioned in Section 3.2.3, to work with all RGB cameras with
the same proposed algorithm, it is necessary to calibrate the cameras. Section ??
explained how to calibrate these RGB cameras;

• RGB to Gray: In the same way as in Section 3.2.3, a gray scale conversion was used
in order to increase the system speed. Equation 3.23 was used to convert the RGB
scale into a gray scale image;

• 2D to 1D from the Red Circumference: For the terrain classification to be indepen-
dent of UAV rotation, in this dissertation the use of a circumference is proposed (a
red circumference as can be seen in Figure 3.39), where each value represents the
pixel that constitutes the edges of the circumference (in this thesis a 477x477 pixel
circumference was used). Next, the 2D representation was converted into 1D and a
vector created where all values were stored (blue line);

• W-K Filter: Receiving the output from the previous block, this phase will use the
1D values to apply the W-K Filter to calculate the autocorrelation;

• Frames > n: "n” is the total number of frames required to increase the algorithm’s
accuracy. This threshold value was chosen empirically by the author.

• Classification: The outputs generated by the W-K Filter phases are turned into
inputs for a Neural Network (NN). The NN output classifies the terrain over which
the UAV is flying. In this section, a Multilayer Perceptron (MLP) architecture was
used. The Neural Network inputs are the output values from the W-K Filter phase.

To validate the proposed algorithm, four di↵erent terrain types (lake, pool, vegetation
and sand) were analysed. The following five Figures (Figures 3.40, 3.41, 3.42, 3.43, 3.44

92

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

and 3.45) show the W-K Filter results for each terrain under study. It is possible to
conclude that by implementing the W-K Filter algorithm, the more texture there is in an
image, the greater the frequency of each output, as shown in Figure 3.42 and Figure 3.45.
However, water-type terrain, more specifically in lakes, becomes more similar to sand-
type terrain (low frequencies) and therefore, the classification becomes less accurate when
attempting to di↵erentiate between water-type and sand-type terrain.

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Signal Length

-0.1

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 a
da

pt
iv

e
si

gn
al

Wiener-Khinchin Filter - Pool Terrain

b

Figure 3.40: a) Input image (water terrain A); b) its W-K Filter result.

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Signal Length

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
or

m
al

iz
ed

 a
da

pt
iv

e
si

gn
al

Wiener-Khinchin Filter - Lake Terrain

b

Figure 3.41: a) Input image (water terrain B); b) its W-K Filter result.

Three features were extracted from the W-K Filter results, which are then inputs of
the NN terrain classifier.

The selected features were:

1. Number of local maximums given by the W-K Filter output. Listing 3.5 shows how
this features is calculated.

2. Number of times theW-K Filter result has crossed zero along the vector. This feature
can be observed in Listing 3.6.

3. W-K Filter area. This feature can be observed in Listing 3.7.

93

CHAPTER 3. METHODOLOGY

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Signal Length

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

 a
da

pt
iv

e
si

gn
al

Wiener-Khinchin Filter - Vegetation Terrain

b

Figure 3.42: a) Input image (vegetation terrain); b) its W-K Filter result.

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Signal Length

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 a
da

pt
iv

e
si

gn
al

Wiener-Khinchin Filter - Dirt Terrain

b

Figure 3.43: a) Input image (sand terrain A); b) its W-K Filter result.

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Signal Length

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

N
or

m
al

iz
ed

 a
da

pt
iv

e
si

gn
al

Wiener-Khinchin Filter - Sand Terrain

b

Figure 3.44: a) Input image (sand terrain B); b) its W-K Filter result.

94

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

Listing 3.5: Local maximums calculation.
1 maxLocal(Vector wiener){
2 // Define the variables
3 totalMax = 0;
4 currentMax = wiener[1];
5 wienerSize = wiener.size();
6

7 // Local maxima calculation
8 for (j = 2; j < wienerSize; ++j) {
9 if(currentMax > wiener[j-2] && currentMax > wiener[j])

10 totalMax++;
11 currentMax = wiener[j];
12 }
13

14 // Return, in percentage, the signal's local maxima
15 totalMax = (totalMax/wienerSize)*100;
16 return totalMax;
17 }

Listing 3.6: Zero crossing calculation.
1 crossZero(Vector wiener){
2 // Define the variables
3 totalZeros = 0;
4 last = wiener[0];
5 wienerSize = wiener.size();
6

7 // Zero crossing calculation
8 for (j = 1; j < wienerSize; ++j) {
9 auto current = wiener[j];

10 if(current > 0 && last > 0 || current < 0 && last < 0) {
11 last = current;
12 continue;
13 }
14 totalZeros++;
15 last = current;
16 }
17

18 // Return, in percentage, the signal's zero crossings
19 totalZeros = (totalZeros/(wienerSize -1))*100;
20 return totalZeros;
21 }

95

CHAPTER 3. METHODOLOGY

Listing 3.7: Area calculation.
1 area(Vector wiener){
2 // Define the variables
3 xLeft = 0;
4 xRight=0;
5 wienerSize = wiener.size();
6 index=0;
7 maxArea=0;
8 interestArea=0;
9 finalArea=0;

10

11 // Calculate xLeft
12 for (; index < wienerSize; ++index) {
13 if(wiener[index] < 0) {
14 xLeft = index;
15 break;
16 }
17 }
18

19 // Calculate xRight
20 for (index = wienerSize -1; index >=0; --index) {
21 if(wiener[index] < 0) {
22 xRight = index;
23 break;
24 }
25 }
26

27 // Calculate max area
28 for (index=0; index < wienerSize; ++index) {
29 maxArea += (1 - wiener[index]);
30 }
31

32 // Calculate the interest Area
33 for (index=xLeft; index < xRight; ++index) {
34 interestArea += wiener[index];
35 }
36

37 // Return, in percentage, the area
38 finalArea = (interestArea/maxArea)*100;
39 return finalArea;
40 }

96

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Signal Length

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 a
da

pt
iv

e
si

gn
al

Wiener-Khinchin Filter - Asphalt Terrain

b

Figure 3.45: a) Input image (asphalt terrain); b) its W-K Filter result.

3.2.5 GLCM

As explained in Section 3.2, previous research works describe di↵erent terrain classifi-
cation approaches mainly using static features from RGB images taken onboard UAVs.
The next two sections (Section 3.2.5 and 3.2.6) present two features to be extracted from
the UAV’s downwash e↵ect: the Gray-Level Co-Occurrence Matrix (GLCM) and the Gray-
Level Run Length Matrix (GLRLM).

With regard to this section, two main steps are considered:

1. GLCM mask design;

2. The calculation of 27 features.

As a first step, it is necessary to create the GLCM N × N matrix. In this dissertation,
the matrix dimensions are 256 × 256 as mentioned in Section 2.3.4, since the input images
are 8Bit ranging between 0 and 255 levels (256 gray levels). Three variables were defined:
d = 100 (o↵set), ✓ = 0 (orientation) and a symmetrical matrix; the purpose is to obtain a
trade-o↵ between noise and system speed. These values were obtained by trial and error.

Listing 3.8 shows how the initial GLCM matrix was created. In that listing it is
possible to observe the value in each GLCM matrix position, which is obtained by the
sum of the image pixels, given a certain distance d = 100 and rotation ✓ = 0. The second
stage, to transpose matrix MT , was developed as in Listing 3.9.

The last step to create the current algorithm, the symmetrical matrix, was developed,
as shown in equation 2.30. Thus, Listing 3.10 was designed in order to present the
final GLCM matrix.

Figure 3.46 illustrates an example of water terrain results using the GLCM algorithm.
With a GLCM matrix calculated, 26 textural features and one intensity colour were ex-
tracted to classify the terrain. This takes into account the following base equations:

97

CHAPTER 3. METHODOLOGY

Listing 3.8: GLCM mask design.
1 glcm(img, glcmOffset, xi, yi, xf, yf){
2 // Define the variables
3 sizeGlcmMask = 256;
4 glcmArray [sizeGlcmMask][sizeGlcmMask];
5 rows = yf;
6 cols = xf;
7 pixelPtrRead = imageGray.data;
8

9 // GLCM matrix - first step design
10 for (y = yi; y < rows; ++y) {
11 for (x = xi; x < cols-glcmOffset; ++x) {
12 i = pixelPtrRead(y,x);
13 j = pixelPtrRead(y,x+glcmOffset);
14 glcmArray[i][j] = glcmArray[i][j] +1;
15 }
16 }
17 }

Listing 3.9: GLCM transpose mask design.
1 glcmTranspose(glcmArray [256][256]){
2 // Define the variables
3 sizeGlcmMask = 256;
4 glcmTranspose [sizeGlcmMask][sizeGlcmMask];
5

6 // GLCM transpose matrix design
7 for (y = 0; y < sizeGlcmMask; ++y) {
8 for (x = 0; x < sizeGlcmMask; ++x) {
9 glcmTranspose[x][y] = glcmArray[y][x];

10 }
11 }
12 }

Listing 3.10: GLCM transpose mask design.
1 glcmAddedTranspose(glcmArray [256][256], glcmTranspose [256][256]){
2 // Added transpose mask into GLCM matrix
3 for (y = 0; y < sizeGlcmMask; ++y) {
4 for (x = 0; x < sizeGlcmMask; ++x) {
5 glcmArray[y][x] += glcmTranspose[y][x];
6 }
7 }
8 }

98

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

GLCM Matrix with d=10 and theta=0 - Pool terrain

50 100 150 200 250
Number of gray levels pairs

50

100

150

200

250

G
ra

y
Le

ve
l

a b

Figure 3.46: GLCM - a) Result from pool (water) terrain type. b) is a zoom of a).

pi�j,k =
N�1X

i=0

N�1X

j=0

p(i, j) if k = |i � j | k = 0, ...,N � 1 (3.28)

pi�j,k =
N�1X

i=0

N�1X

j=0

p(i, j) if k = i + j k = 2, ...,2N (3.29)

px(i) =
NX

j=1

p(i, j) (3.30)

py(j) =
NX

i=1

p(i, j) (3.31)

HX = �
NX

i=1

px(i) · log2(px(i)) (3.32)

HY = �
NX

j=1

py(j) · log2(py(j)) (3.33)

HXY = �
NX

i=1

NX

j=1

p(i, j) · log2(p(i, j)) (3.34)

HXY1 = �
NX

i=1

NX

j=1

p(i, j) · log2(px(i) · py(j)) (3.35)

HXY2 = �
NX

i=1

NX

j=1

px(i) · py(j) · log2(px(i) · py(j)) (3.36)

where:
p(i, j) = (i, j)th entry is a GLCM normalized matrix and N is the maximum gray inten-

sity level (in this dissertation it is 255). Thus, Table 3.3 describes the total texture and
color features used in this section to classify the terrain under study.

99

CHAPTER 3. METHODOLOGY

Table 3.3: Calculation of 26 textural features.

Feature Computation

Auto-correlation PN�1
i=0

PN�1
j=0 ij p(i, j)

Cluster Prominence PN�1
i=0

PN�1
j=0 ((i �µ) + (j �µ))4 p(i, j)

Cluster Shade PN�1
i=0

PN�1
j=0 ((i �µ) + (j �µ))3 p(i, j)

Cluster Tendency PN�1
i=0

PN�1
j=0 ((i �µ) + (j �µ))2 p(i, j)

Contrast PN�1
i=0

PN�1
j=0 |i � j |2 · p(i, j)

Correlation PN�1
i=0

PN�1
j=0

(i�µx)(j�µy)·p(i,j)
�x ·�y

Di↵erence Average PN�1
k=0 k · pi�j,k

Di↵erence Entropy �PN�1
k=0 pi�j,k · log2(pi�j,k)

Di↵erence Variance PN�1
k=0 (k �Dif f erenceAverage)2 · pi�j,k

Energy PN�1
i=0

PN�1
j=0 p(i, j)2

Entropy �PN�1
i=0

PN�1
j=0 p(i, j) · log2(p(i, j))

Homogeneity PN�1
i=0

PN�1
j=0

p(i,j)
1+|i�j |

Homogeneity Moment PN�1
i=0

PN�1
j=0

p(i,j)
1+|i�j |2

Feature Computation

Homogeneity Moment Normalized PN�1
i=0

PN�1
j=0

p(i,j)

1+ |i�j |
2

N2

Homogeneity Normalized PN�1
i=0

PN�1
j=0

p(i,j)

1+ |i�j |N

Inverse Variance PN�1
i=0

PN�1
j=0

p(i,j)
1+|i�j |2 , i , j

Informational Measure of Correlation 1 HXY�HXY1
max(HX,HY)

Informational Measure of Correlation 2
p
1� e�2·(HXY2�HXY)

Joint Average PN�1
i=0

PN�1
j=0 i p(i, j)

Joint Maximum max(p(i, j))

Kurtosis
1
N ·

PN�1
i=0 (xi�µx)4⇣

1
N ·

PN�1
i=0 (xi�µx)2

⌘2

Skewness
PN�1

i=0 (xi�µx)3
N ·�3x

Sum Average P2N
k=2 k · pi+j,k

Sum Entropy �P2N
k=2 pi+j,k · log2(pi+j,k)

Sum Variance P2N
k=2 (k � SumAverage)2 · pi+j,k

Variance PN�1
i=0

PN�1
j=0 (i �µ)2 · p(i, j)

where:

• Auto-correlation: Measurement of the coarseness of texture and the magnitude of
fineness;

• Joint Average: Is the gray level weighted sum of joint probabilities;

• Cluster Prominence: Measures the GLCM and GLRLM asymmetry. Higher values
indicate more asymmetry whereas center values indicate the peak of the distribution
centred around the mean;

• Cluster Shade: Measures skewness of the GLCM and GLRLM matrixes. Higher
values indicate asymmetry;

• Cluster Tendency:Measures the heterogeneity that places higher weights on neigh-
boring intensity level pairs further from the mean;

• Contrast:Used to return the intensity level between a pixel and its neighbor through-
out the entire image;

• Correlation: Important method to define how a pixel is correlated with its neighbor
throughout the entire image;

100

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

• Di↵erence Average: Measures the mean of the gray level di↵erence distribution of
the current frame;

• Di↵erence Entropy:Measures the disorder related to the to the current frame’s gray
level di↵erence distribution;

• Entropy: This feature measures the randomness of intensity distribution. The
greater the information’s heterogeneity in an image, the higher the entropy value is.
However, when homogeneity increases, the entropy tends to 0;

• Homogeneity: Known as Inverse Di↵erence Moment, this equation returns 1 when
the GLCM is uniform (diagonal matrix);

• Homogeneity Moment: This measures the local homogeneity of an image. The re-
sult is a low homogeneity moment value for heterogeneous images, and a relatively
higher value for homogeneous images;

• HomogeneityMoment Normalized: This has the same purpose as the homogeneity
moment however its neighboring intensity values are normalized by higher intensity
value with the power of two;

• Homogeneity Normalized: This has the same goal as the homogeneity moment but
the neighboring intensity values are normalized by the highest intensity value;

• SumAverage: This measures the mean of the intensity level sum distribution of the
current frame;

• Sum Entropy: This measures the disorder related to the intensity value sum distri-
bution of the current frame;

• Sum Variance: This measures the dispersion of the intensity number sum distribu-
tion of the current frame;

• Variance: Represents the measurement of the values’ dispersion around the mean.

For the system to have more information, not only the textural information but also
the terrain color being studied, this section uses HSV method.

Figure 3.47 shows one way to represent this color model. The Hue component has a
certain color defined by an angle (therefore, values between 0 and 3602). The Saturation
and Value components usually correspond to the range [0, 255] or [0, 1]. The smaller the
saturation value is, the grayer the image becomes. Regarding the Value, the higher its
value, the brighter the image will be.

Thus, for RGB to HSV conversion images the following equations (3.37, 3.38 and 3.39)
were used:

2Values in degrees. The range can also be represented in radians [0, 2⇡] or values between [0, 1] if the
RGB channels are divided by 255 (max byte value)

101

CHAPTER 3. METHODOLOGY

Figure 3.47: HSV color model.

Hue =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

0 if Max =Min

60 · G �B
Max �Min

if Max = R & G � B

60 · G �B
Max �Min

+360 if Max = R & G < B

60 · B�R
Max �Min

+120 if Max = G

60 · R�G
Max �Min

+120 if Max = B

(3.37)

Saturarion =
Max �Min

Max
(3.38)

Value =Max (3.39)

Where R, G and B correspond to the red, green and blue (respectively) pixel com-
ponents, Min is the three channels’ minimum value (Min(R,G,B)) and Max is the three
channels’ maximum value (Max(R,G,B)).

To detail how the GLCM matrix was applied in this dissertation, Figure 3.48 presents
the proposed system model for terrain classification. It is possible to observe four main
processes identified in the architecture, namely:

• Rectified Image: As mentioned in Section 3.2.3, the camera needs to be calibrated
before any process to make the proposed algorithms universal. Section 3.1.1 de-
scribes how to calibrate these RGB cameras;

• GLCM: In order to extract the terrain’s static textures, GLCM was used to calculate
features capable of providing information to classify terrain types;

• Frames > n: "n" is the total number of frames required to increase the algorithm’s
accuracy. This threshold value was also chosen empirically by the author.

102

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

Start

Raw Image

Rectified image

GLCM

Frames > n

Classification

Output (Terrain)

Stop

no

yes

Figure 3.48: GLCM proposed system model.

• Classification: The outputs generated by the GLCMphase are turned into inputs for
a Neural Network (NN). In this section, a Multilayer Perceptron (MLP) architecture
was used. The design of the NN is the same as in previous sections: the Neural
Network model consists of the hidden layer with 10 neurons, and the third layer
corresponds to the system output and has two possible outputs: water (1) or non-
water (0).

To test the GLCM and its respective features, four di↵erent terrain types (water, vege-
tation, asphalt and sand) were analysed. The dataset used in this section is the same as in
Sections 3.2.3 and 3.2.4. The following five Figures (Figures 3.49, 3.50, 3.51, 3.52, 3.53)
show GLCM results from each terrain studied in this section. It is possible to conclude
that by implementing the GLCM algorithm, vegetation, asphalt and sand terrains were
found to have a higher color variation than water-type terrains, which can be decisive to
di↵erentiate between water and non-water terrain types. These results will be studied in
detail in Section 4.5.

3.2.6 GLRLM

After explaining the operation and presenting the GLCM results in Section 3.2.5 for TC
and shape dependency problems, the following section introduces both the second statis-
tical texture order and the sixth algorithm used in this dissertation, in order to classify
the terrains under study: The Gray-Level Run Length Matrix (GLRLM).

103

CHAPTER 3. METHODOLOGY

a

GLCM Matrix with d=10 and theta=0 - Pool terrain

50 100 150 200 250
Number of gray levels pairs

50

100

150

200

250

G
ra

y
Le

ve
l

b

Figure 3.49: a) Input image (water terrain A); b) its GLCM result.

a

GLCM Matrix with d=10 and theta=0 - Lake terrain

50 100 150 200 250
Number of gray levels pairs

50

100

150

200

250

G
ra

y
Le

ve
l

b

Figure 3.50: a) Input image (water terrain B); b) its GLCM result.

a

GLCM Matrix with d=10 and theta=0 - Vegetation terrain

50 100 150 200 250
Number of gray levels pairs

50

100

150

200

250

G
ra

y
Le

ve
l

b

Figure 3.51: a) Input image (vegetation terrain); b) its GLCM result.

104

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a

GLCM Matrix with d=10 and theta=0 - Asphalt terrain

50 100 150 200 250
Number of gray levels pairs

50

100

150

200

250

G
ra

y
Le

ve
l

b

Figure 3.52: a) Input image (asphalt terrain); b) its GLCM result.

a

GLCM Matrix with d=10 and theta=0 - Asphalt terrain

50 100 150 200 250
Number of gray levels pairs

50

100

150

200

250

G
ra

y
Le

ve
l

b

Figure 3.53: a) Input image (sand terrain); b) its GLCM result.

The GLRLM is a matrix which attempts to quantify runs of the same grey level in an
image. This algorithm is set up slightly di↵erently from the GLCM; instead of having
grey levels along the table’s abscissa, the GLRLM has run lengths for the terrain image
under study.

Regarding to this section, and as described in Section 2.3.5, two main steps are con-
sidered:

1. GLRLM mask design;

2. Calculation of 27 features.

As a first step, it is necessary to create the GLRLM NxN matrix. In this dissertation,
and as mentioned in Section 2.3.5, the input images are 8Bit ranging between 0 and 255
levels (256 gray levels).

Furthermore, a ✓ = 0 was chosen in the present dissertation (this value was obtained
by trial and error).

105

CHAPTER 3. METHODOLOGY

Listing 3.11: GLRLM mask design.
1 void glrlm(img, xi, yi, xf, yf){
2 // Define the variables
3 int sizeGlrlmMask = 256;
4 glrlmArray [sizeGlrlmMask][sizeGlrlmMask];
5 rows = yf;
6 cols = xf;
7 pixelPtrRead = imageGray.data;
8

9 // GLRLM matrix
10 for (y = yi; y < rows; ++y) {
11 // Get the first pixel column with Y row.
12 auto value = pixelPtrRead(y,0)[0];
13 auto pixelLength =1;
14

15 for (x = xi+1; x < cols; ++x) {
16 // Check if it is the last column pixel to save the length -

result
17 if((x+1) == cols){
18 glrlm[value][pixelLength]++;
19 break;
20 }
21 // Increase the run length if the next pixel is the same that -

the current one
22 if (value == pixelPtrRead(y,x)[0]) {
23 pixelLength++;
24 // If not, save the length result and get the next pixel value
25 } else {
26 glrlm[value][pixelLength]++;
27 value = pixelPtrRead(y,x)[0];
28 pixelLength = 1;
29 }
30 }
31 }
32 }

Listing 3.11 indicates how the GLRLMmatrix has been created. Note that the number
of columns in the GLRLM matrix is subjective since it di↵ers from case to case. This dis-
sertation intends to have the maximum run length, so the image’s width was considered
equal to the number of GLRLM matrix columns.

Figure 3.54 shows an example of water terrain results using the GLRLM algorithm.
In this case, it is possible to observe a greater length in the pixel of intensity equal to 150
(average value of the three channels) in relation to the other pixel values. This is due to
the fact that the water-type terrains are practically homogeneous.

With a GLRLM matrix defined, the same features in Section 3.2.5 were also used in
this section: 26 textural features (Table 3.3) and one intensity colour (equation 3.37) were
extracted to classify the terrain.

Thus, in order to explain how the GLRLM matrix was applied in this dissertation, the
proposed system model, for terrain classification, is illustrated in Figure 3.55.

106

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

GLRLM Matrix with theta=0 - Pool terrain

50 100 150 200 250
Run Length

0

50

100

150

200

250

G
ra

y
Le

ve
l

a

GLRLM Matrix with theta=0 - Pool terrain

5 10 15 20 25 30 35 40 45 50
Run Length

0

50

100

150

200

250

G
ra

y
Le

ve
l

b

Figure 3.54: GLRLM - Result from pool (water) terrain type. b) is a zoom of a).

Start

Raw Image

Rectified image

GLRLM

Frames > n

Classification

Output (Terrain)

Stop

no

yes

Figure 3.55: GLCM proposed system model.

107

CHAPTER 3. METHODOLOGY

From the system model proposed in 3.55, it is possible to observe four main processes
in the architecture, namely:

• Rectified Image: As mentioned in Section 3.2.3, it is necessary to calibrate the
camera before any process to make the proposed algorithms universal. Section 3.1.1
described how to calibrate these RGB cameras;

• GLRLM: In order to extract the terrain’s static textures, as with GLCM, GLRLMwas
also used to calculate features capable of providing information to classify terrain
types;

• Frames > n: "n" is the total number of frames required to increase the algorithm’s
accuracy. This threshold value was also chosen empirically by the author.

• Classification: The outputs generated by the GLRLM phase are turned into inputs
for a Neural Network (NN). In this section, a Multilayer Perceptron (MLP) architec-
ture was used. The design of the NN is the same as in Section 3.2.5.

The system model having been explained, in this section, four di↵erent terrain types
(water, vegetation, asphalt and sand) were analysed. The dataset used in this section is the
same as in Section 3.2.5. The following five Figures (Figures 3.56, 3.57, 3.58, 3.59, 3.60)
show the GLRLM results for each terrain under study in this section. It is possible to
conclude that by implementing the GLRLM algorithm, vegetation and sand terrains were
found to have higher variation values than water-type terrains. However, asphalt ter-
rain type has similar variation values to water-type terrain. Therefore an NN is used to
help with this issue. The GLRLM algorithm and its results will be studied in depth in
Section 4.6.

a b

Figure 3.56: a) Input image (water terrain A); b) its GLRLM result.

108

3.2. STATIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a b

Figure 3.57: a) Input image (water terrain B); b) its GLRLM result.

a b

Figure 3.58: a) Input image (vegetation terrain); b) its GLRLM result.

a b

Figure 3.59: a) Input image (asphalt terrain); b) its GLRLM result.

109

CHAPTER 3. METHODOLOGY

a b

Figure 3.60: a) Input image (sand terrain); b) its GLRLM result.

3.3 Dynamic Feature Extraction for Terrain Classification

The ability to detect static textures for terrain classification is important. However, the
ability to distinguish terrains (water and non-water terrains) using motion analysis in-
creases the accuracy of the system. Therefore, several features of di↵erent terrains will
be studied to support the terrain classification.

In this section, the downwash e↵ect from the UAV propellers was studied to extract
dynamic textures from water terrain (circular movements), which can be used to di↵er-
entiate it from any other type of terrain being studied (vegetation, asphalt and sand).

Di↵erent types of terrain create di↵erent behaviors when a↵ected by the UAV’s down-
wash e↵ect. Whereas in water (in this dissertation lake and pool terrains, ocean and sea
being excluded) it makes a circular pattern, vegetation terrain produces a linear move-
ment and asphalt/sand are almost static. This movement can be detected using a well
known concept called Optical Flow (OF), as mentioned in Section 2.4.

The current section will study the dynamic part (motion analysis) of the terrain, fo-
cusing on water-type terrain, comparing it with other non-water terrain types. The OF
concept, more specifically in the algorithm developed by Farneback (Farnebäck, 2003),
will be the basis of this dynamic texture study. The dynamic study is then divided into
two sub-sections (two algorithms are proposed):

1. Travel Distance;

2. Circular Motion.

3.3.1 Travel Distance

Water-type terrain only exhibits dynamic texture when exposed to the downwash e↵ect.
Figures 3.61 a), b), c) and d) show the textural information with and without the down-
wash e↵ect, respectively. However, in spite of having a dynamic texture, the optical flow
is never stronger than the dynamic observed for sand, asphalt and vegetation terrain

110

3.3. DYNAMIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

types. As mentioned in Section 2.4, the OF method can calculate the distance travelled by
block matching features in a given frame sequence, n, captured by the UAV’s downward-
looking camera. These images are captured at a 30 frame per second rate. In this section,
the Farneback algorithm (Farnebäck, 2003) was used to detect the movement of these
features and return a flow matrix, as shown in Listing 3.12. Then the TD will be used to
characterize the dynamic texture.

a b

c d

Figure 3.61: Downash e↵ect: a) and b) Textural information with the downwash pre-
sented; c) and d) Textural information without the downwash e↵ect.

Listing 3.12: Farneback Algorithm.
1 opticalFlowFarneback(prevImage, nextImage){
2 // Farneback algorithm calculation
3 flow=calcOpticalFlowFarneback(prevImageGray, nextImageGray, flowUmat);
4

5 // Return the sequence frames' flows
6 return flow;
7 }

After obtaining the flow matrix, a set a vectors is used (trackers) in these n frames to
show the flows, as shown in Listing 3.13. As can be observed in Listing 3.13, the trackers
are initialized over the resulting frame, previously resized to a 640 × 480 image, with a

111

CHAPTER 3. METHODOLOGY

15 pixel width and height distance. The resulting matrix and flows can be observed in
Figure 3.62 b), forming a uniform grid covering the whole image.

Listing 3.13: Flow matrix visualization.
1 visualizeFarnebackMatrix(resultImage){
2 // Define the variables
3 featuresStepHist = 15;
4 width = prevImage.cols;
5 height = prevImage.rows;
6 Matrix selectedFlows;
7

8 // Only the selected flows are sent into a new matrix
9 for (y=0; y < height; y += featuresStepHist) {

10 for (x = 0; x < width; x += featuresStepHist) {
11 Point flowatxy = resultImage(y, x);
12 selectedFlows=line((x, y), (x+ flowatxy.x, y+ flowatxy.y), -

blueColor);
13 selectedFlows=circle((x, y), blackColor);
14 }
15 }
16 }

a b

Figure 3.62: Example of an Optical Flow concept using the Farneback algorithm: a)
Current frame; b) Optical flow result using the Farneback algorithm (flows in blue).

After having computed the OF, the next step is to calculate the distance travelled
(trajectory) by each feature in a sequence of frames (equation 3.40).

T raveldistance =
nX

i=2

q
Ax(i) +By(i) (3.40)

where:

Ax(i) =
h
x1 � xi�1 +Fdx

i2
(3.41)

112

3.3. DYNAMIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

By(i) =
h
y1 � yi�1 +Fdy

i2
(3.42)

and xi and yi are the positions in x and y in the most recent frame (n), x1 and y1 are
the initial positions (n = 1) and Fdx and Fdy are the flow displacements between frames n
and n� 1. The normalized x and y coordinates were used for the calculations.

To eliminate features that did not move or were almost static in a sequence of frames,
a thresholding was imposed:

8>>><>>>:

Red f or T rajectory � Threshold

Nothing f or T rajectory Threshold
(3.43)

From equation 3.43 and knowing the maximum number of features (the number
of features in rows and columns in the image is predefined), the percentage of Number
of Features (NOF) that appear in the image (equation 3.44) is calculated. An example
showing the TD algorithm and its result is illustrated in Figure 3.63.

NOF =
f iltered f eatures
T otal f eatures

· 100% (3.44)

Figure 3.63: Dynamic texture detection by Farneback algorithm and distance trav-
elled/number of features calculation on water-type terrain.

In order to explain how the TD algorithm was applied in this dissertation, the pro-
posed system model, for terrain classification is presented in Figure 3.64. It is possible to
observe four main processes in the architecture, namely:

• Rectified Image: Before starting to analyze each frame from the RGB cameras, it is
necessary to perform the pre-processing step. This step is necessary because all RGB

113

CHAPTER 3. METHODOLOGY

Start

Raw Image

Rectified image

Travel Distance

Frames > n

Classification

Output (Terrain)

Stop

no

yes

Figure 3.64: TD proposed system model.

cameras need to be compatible with all developed algorithms in this dissertation.
Section 3.1.1 describes how to calibrate these RGB cameras;

• Travel Distance: To measure the trajectory of each tracker, this phase uses the TD
algorithm and outputs the NOF calculation;

• Frames > n: As mentioned before, "n" is the total number of frames required to
increase the algorithm’s accuracy. In this section, this threshold is equal to three;

• Classification: The outputs generated by the TD phase are turned into inputs for a
Neural Network (NN). In this section, a Multilayer Perceptron (MLP) architecture
was used. The design of the NN is the same as in Section 3.2.6.

The system having been explained, three di↵erent terrain types (water, vegetation and
sand) were analysed in this section. Figures 3.65, 3.66, 3.67 and 3.68 present di↵erent tex-
ture outputs from di↵erent terrain types. It is possible to conclude that by implementing
the TD algorithm, asphalt and vegetation-like terrains were found to have a higher NOF
than sand and water-type terrains. On the other hand, water-type terrain, also presents
lower NOF than sand-type terrain which can be decisive for di↵erentiating it from other
terrain types.

3.3.2 Circular Motion

It has already been shown throughout the dissertation that the downwash e↵ect causes a
circular e↵ect on water-type terrains, a behavior that di↵ers from other types of terrain

114

3.3. DYNAMIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a b

c

d e

f

Figure 3.65: Examples of the TD algorithm applied to water-type terrain. (a,d) Input
image; (b,e) the optical flow; (c,f) the travel distance calculation.

115

CHAPTER 3. METHODOLOGY

a b

c

d e

f

Figure 3.66: Examples of the TD algorithm applied to vegetation-type terrain. (a,d) Input
image; (b,e) the optical flow; (c,f) the travel distance calculation.

116

3.3. DYNAMIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a b

c

d e

f

Figure 3.67: Examples of the TD algorithm applied to sand-type terrain. (a,d) Input
image; (b,e) the optical flow; (c,f) the travel distance calculation.

117

CHAPTER 3. METHODOLOGY

a b

c

Figure 3.68: Examples of the TD algorithm applied to asphalt-type terrain. (a,d) Input
image; (b,e) the optical flow; (c,f) the travel distance calculation.

(vegetation, sand and asphalt). Therefore, this section also analyses the motion of terrains
under study (to obtain the circular e↵ect on water-type terrains), where water-type terrain
is distinguished from non-water terrain. Thus, the second dynamic algorithm proposed
in this dissertation is know as CM.

This algorithm’s main steps are the following:

1. Optical Flow - Farneback algorithm;

2. Density Calculation (DC);

3. Flows Orientation (FO).

In this section, the Farneback algorithm (Farnebäck, 2003) was also used to detect
textural movement. One of the advantages of using the Farneback algorithm is that it
provides the flow displacement, Fd , given by the di↵erence in the features between two
frames, while the Lukas Kanade Algorithm needs to have the trackers initialized over
the first frame. The flow displacement Fd between features in frame n and n � 1 can be
obtained from Equation 3.45:

Fd = Sn � Sn�1 (3.45)

118

3.3. DYNAMIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

where Sn and Sn�1 are the sample pixels between two consecutive sequences of frames.
Using the same Listing 3.12 in Section 3.3.1, it is possible to obtain the flow matrix

as illustrated in Figure 3.69, where the red arrows are the flows between two consecutive
sequences of frames, n = 1 (these red arrows are oriented from the center of the downwash
to the outside because the terrain under study is water-type terrain).

Figure 3.69: Example of an Optical Flow concept using the Farneback algorithm in water-
type (pool) terrain.

Then, with the obtained flows, and to determine the density of the obtained flows, the
first step is to obtain the linear equation of all flows, as described in Listing 3.14, and
display all lines on an image as shown in Figure 3.70.

Figure 3.70: Linear equations after flow texture extraction.

After obtaining the linear equations from Listing 3.14, it is now possible to move to
the DC step. The goal of this step is to divide each point in each linear equation by a
compact value (in this case, the compact value is equal to 20 and it was obtained by a set

119

CHAPTER 3. METHODOLOGY

Listing 3.14: Linear Equations Calculations.
1 calcLinearEquation(img, xi, yi, xf, yf, blue, green, red){
2 // Define the variables
3 Vector equationVector;
4

5 // Linear equation color
6 Color linearEquationColor = Color(blue, green, red);
7

8 // Slope calculation
9 m = (yf-yi)/(xf-xi);

10

11 // Intercept calculation
12 b = yf - m*xf;
13

14 // Draw the linear equation line
15 img=line((0,b), (width, m*width+b), linearEquationColor);
16

17 // Save slope and intercept into equationVector and return it
18 equationVector.add(m,b);
19

20 return equationVector;
21 }

Listing 3.15: Density Calculation.
1 calcDensity(img, Vector equationVector, compactValue){
2 // Define the variables
3 width = img.cols;
4 height = img.rows;
5 desityVector [height][width];
6

7 // Density Calculation by Compact Value
8 for (index=0; index < width; ++index) {
9 value=round((equationVector.m*index+equationVector.b)/compactValue);

10 if(value > 0 && value < height -1)
11 desityVector[value][index]++;
12 }
13 }

of iterations). Since the slope and intercept values of each linear equation are needed to
calculate the density, Listing 3.15 takes Listing 3.14 output as its input argument.

In Figure 3.71 it is possible to observe the influence of dividing the flow density by 20
or when it is not divided.

After computing the flow density diagram, the next step is to find the location of its
maximum value (e.g. the highest pixel value), which corresponds to the downwash center

120

3.3. DYNAMIC FEATURE EXTRACTION FOR TERRAIN CLASSIFICATION

a b

Figure 3.71: Flow density diagram: a) Original; b) Divided by 20.

(Listing 3.16).

Listing 3.16: Downwash Center.
1 calcDownwashCenter(img, desityVector [480][640], compactValue){
2 // Define the variables
3 width = img.cols;
4 height = img.rows;
5 maxValue=0;
6 centerX=0;
7 centerY=0;
8

9 // Downwash Center Calculation
10 for (y = 0; y < height; ++y) {
11 for (x = 0; x < width; ++x) {
12 if(desityVector[y][x] > maxValue){
13 maxValue = desityVector[y][x];
14 centerX = x;
15 centerY = y*compactValue < height-1 ? y*compactValue : -

height-1;
16 }
17 }
18 }
19 }

Knowing the downwash center and considering Figure 3.69, it will be analysed if the
flows (arrows in red) are pointing into or out of the downwash center. In this water-terrain
type example, all the flows originated from the Farneback algorithm are expected to point
out from the center of the downwash (the circular movement goes from the center of the
downwash outwards). Thus, there are 3 possible outputs, when creating a result image:

• Blue Blocks: If the flow is pointing out of the downwash center;

• Green Block: If the flow is pointing into the downwash center;

121

CHAPTER 3. METHODOLOGY

• Gray Block: If the size of the flow is below a certain given treshold value.

In this section, the images were divided into blocks, to evaluate the flows in groups.
Thus, in a 640 by 480 image, each block has a width of 80 (eight blocks) pixels and a
height of 96 pixels (five blocks). The result of this example is shown in Figure 3.72.

Figure 3.72: Circular motion algorithm result.

Lastly, the output information in Figure 3.72 is sent to the NN to classify the terrain
under study.

Thus, in order to explain how the CM algorithm was applied in this dissertation, the
proposed system model, for terrain classification, is presented in Figure 3.73. Four main
processes were identified in the architecture, namely:

Start

Raw Image

Rectified image

Circular Motion

Frames > n

Classification

Output (Terrain)

Stop

no

yes

Figure 3.73: TD proposed system model.

122

3.4. GPU ACCELERATION

• Rectified Image: As mentioned in other sections, it is necessary to make the algo-
rithm developed work on any type of RGB camera. Thus, it is necessary to ensure
that there is a camera-calibration process. Section 3.1.1 describes in detail about
how this calibration occurs;

• Circular Motion: In order to measure the circular e↵ect of water-type terrains, this
phase uses the concept of optical flow to measure the center of the downwash e↵ect,
as well as the flows of each tracker in relation to the center;

• Frames > n: As mentioned before, "n" is the total number of frames required to
increase the algorithm’s accuracy. In this section, this threshold is equal to three;

• Classification: The outputs generated by the CM phase are turned into inputs for
a Neural Network (NN). In this section, an MLP architecture was used. The design
of the NN is the same as in Section 3.2.6: The Neural Network model consists of
the hidden layer containing 10 neurons, and the third layer corresponds to the
system output and has the number of possible terrain outputs being studied in this
dissertation. Each neuron uses a sigmoidal function to calculate its output. They
are connected as a Fully Connected Feed Forward Neural Network. During the
training stage, 70% of the total data was used for training, 15% for testing and 15%
for validation;

Now that the system has been explained, four di↵erent terrain types (water, vege-
tation, sand and asphalt) were analysed in this section. The following three Figures
(Figures 3.74, 3.75 and 3.76) illustrate the CM results of each terrain under study in this
section. It is possible to conclude that by implementing the CM algorithm, vegetation
and asphalt terrains were found to have more gray colored blocks due to the motion of
the missing features. Sand terrain has more green than gray colored blocks, due to the
sand grains that move more easily than vegetation and asphalt-type terrain. On the other
hand, water-type terrain presents more blue colored blocks, which can be decisive for
di↵erentiating it from other types of terrain.

3.4 GPU Acceleration

In image processing there are two main problems that are commonly highlighted (Liu
et al., 2006):

1. The accuracy in decision making;

2. The processing time.

It is important to understand each one’s trade-o↵s and what is most crucial to the
problem being examined. Fast response time has become a requirement in the real-time

123

CHAPTER 3. METHODOLOGY

a b

c d

e f

g h

Figure 3.74: Circular motion algorithm applied to water-like-terrain (pool and lake): a)
and e) Optical Flow concept with the result of the Farneback algorithm; b) and f) Flows
interceptions; c) Flow density diagram; d) and h) Classification result.

124

3.4. GPU ACCELERATION

a b

c d

e f

g h

Figure 3.75: Circular motion algorithm applied to non-water-type terrain (vegetation and
asphalt): a) and e) Optical Flow concept with the result of the Farneback algorithm; b)
and f) Flows interceptions; c) Flow density diagram; d) and h) Classification result.

125

CHAPTER 3. METHODOLOGY

a b

c d

Figure 3.76: Circular motion algorithm applied to non-water-type terrain (sand): a) Op-
tical Flow concept with the result of the Farneback algorithm; b) Flows interceptions; c)
Flow density diagram; d) Classification result.

system world, as systems have become larger and more complex over time, with most use
being in human and robot interaction and imaging hardware (Jung et al., 1995). In this
case study, greater reliability of the algorithms is desired, compromising the execution
speed and time response.

In this dissertation, there are two objectives: not only to produce a system capable
of classifying and di↵erentiating water-type and non-water-type terrains, but also a fast
system for image processing. Thus, the algorithms have been optimized for acceleration
on the GPU as well.

GPU, also known as a Visual Processing Unit (VPU), is the name given to a type of
microprocessor specialized in processing graphics; its parallel processing architecture
makes it more capable of this type of work than a normal CPU. The CPU is responsible
for the main operating system and GPU is a coprocessing unit. The CPU consists of an
Arithmetic Logic Unit (ALU) used to temporarily store the data and perform calculations,
and a Control Unit (CU) which performs instruction sequencing. Table 3.4 shows the
main di↵erences between the CPU and the GPU (Singh, 2019).

From Table 3.4 it is necessary to ascertain if the best approach for extracting features
from an image is to use the capabilities of a GPU. Section 4.10 will focus on the creation

126

3.4. GPU ACCELERATION

Table 3.4: CPU vs GPU Comparison (Singh, 2019).

CPU GPU

CPU stands for Central Processing Unit GPU stands for Graphics Processing Unit

CPU consumes or needs more memory than GPU GPU consumes or requires less memory than CPU

CPU contain fewer powerful cores GPU contain more weak cores

CPU is suitable for serial instruction processing GPU is suitable for parallel instruction processing

CPU emphasis on low latency GPU emphasis on high throughput

of a GLCM matrix using the GPU CUDA framework, and displaying the di↵erences in
processing time between a CPU and a GPU.

Figure 3.77: GLCM diagram computation using CUDA framework with ✓ = 0� and d =
100. Adapted from (Hong et al., 2018)

In the diagram in Figure 3.77, it is possible to identify two main steps: the first
GLCMmatrix phase creation and development; plut the addition of the GLCM transposed
matrix. Considering this, along with programming using the CUDA framework, a two-
dimensional kernel was created in which each block has 16 threads and the grid size
contains Width/16 blocks in X and Height/16 blocks in Y. The algorithm has a total of
Width ⇤Height threads running in parallel (in this dissertation, where Width = 640 and

127

CHAPTER 3. METHODOLOGY

Height = 480, the result is a parallel of 307 200 threads to process the image under study).
However, the advantage of working in parallel mode raises other concerns that prove that
programming using only the CPU is not necessary: "Multiple CUDA threads’ reading and
writing of the same position" (Hong et al., 2018). Section 4.10 will study in detail the best
approach to design the GLCM matrix, the di↵erences between CPU and GPU using the
GLCM matrix, showing the results obtained and their conclusions.

3.5 Mapping

It is possible for an aerial vehicle to be autonomous when its route planning and decision
making abilities are accurate enough to enable safe and self-controlled navigation. Fur-
thermore, aerial mapping of the classified terrains using UAVs can be very useful, and can
be implemented for many di↵erent type os application, such as autonomous navigation,
precision agriculture, emergency landings and rescue missions.

The fusion between both of the techniques applied for terrain classification - static
textures and dynamic textures; through MLP results in several images where each pixel
represents one of two possible outputs:

• Water (pool and lake);

• Non-Water (vegetation, asphalt and sand).

x (Easting)

z (Up)

y (Northing)

Non-Water

Water

Figure 3.78: Layered mapping of the classified terrain types.

This system’s mapping procedure is similar to the Aerial Semantic Mapping algo-
rithm described for a precision agriculture experiment (Salvado, 2018). The framework’s
pipeline uses a dynamic ROS grid map composed of two layers (one for each type of ter-
rain, Figure 3.78). These layers are converted into the OccupancyGrid ROS message type
which saves a georeferenced map with all the collected and classified images. The layered
grid map cells have a value of 0 (white) when the pixel presents the corresponding layer’s
terrain type, otherwise the cell value is 1 (black).

Georeferencing data requires information about GPS coordinates (latitude, longitude
and altitude), high-precision positioning, IMU attitude (yaw), the camera lense’s FOV, the
image’s resolution and aspect ratio (Figure 3.79).

128

3.5. MAPPING

Image Plane

Camera
Altitude

FOV

1/2 FOV

1/2 Image Wi d t h

Image Wi d t h

Im
age H

e i g
h t

Figure 3.79: Schematic of how to determine the real image plane dimension.

Imagewidth = 2⇥ tan(FOV /2)⇥UAValtitude

Imageheight = Imagewidth ⇥
1

AspectRatio

(3.46)

Equation 3.46 computes the real dimensions of the captured area, where FOV is
measured in degrees (o) and the AspectRatio is the image’s height:width proportion factor.

The Parrot Bebop2 (Base_link) uses a counter-clockwise IMU sensor, which is in line
with ROS REP:103 conventions (Tully Foote, 2014) followed by the World and Map

frames. On the other hand, OpenCV uses a clockwise system, which means that when
the x-axis points to the right, then the y-axis is pointing down, Figure 3.80.

 θ

y

x

World
(UTM system)

Map
(E_o ; N_o)

(0 ; 0)

y

x

(UTM_E ; UTM_N)

N_T

E_T
Base_link

y x

x (Easting)

y (Northing)

OpenCV

x (Northing)

y (Easting)

Clockwise system:

 θ

x (Easting)

y (Northing)

 θ

Counter-clockwise system:

Figure 3.80: Coordinate systems of interfaces: Base_link, World and Map (black counter-
clockwise coordinate systems), OpenCV (blue clockwise coordinate systems).

The precision implied by computer vision systems and ROS image mapping also
requires caution when it comes to implementing the proper rotation and translation

129

CHAPTER 3. METHODOLOGY

transformations. As illustrated in the schematic of Figure 3.80, the standard 90o counter-
clockwise rotation is considered, to deal with the world!map transformation in equa-
tion 3.47.

StandardRotation :

M(✓) =

2
66664
cos(✓) �sen(✓)
sen(✓) cos(✓)

3
77775

90oRotated :

M(✓) =

2
66664
cos(✓) �sen(✓)
sen(✓) cos(✓)

3
77775 ·

2
66664
0 �1
1 0

3
77775

=

2
66664
�sen(✓) �cos(✓)
cos(✓) �sen(✓)

3
77775

(3.47)

The following equation determines pixels rotation motion according to a rotation
matrix M by ✓ (equation 3.48).

2
66664
px0

py0

3
77775 =M(✓) ·

2
66664
px

py

3
77775 (3.48)

Then, according to Figure 3.80, the first captured image center is positioned at (Eo,No).
The subsequent images will be mapped in line with a pivot rotation, as explained in the
following steps, where P(px,py) is the position of each image pixel:

1. P(px,py) point translation to the map origin (Eo,No);

2. P(px,py) point rotation around the map origin (Eo,No);

3. P(px,py) point back translation to the Base_link origin (UTM_E,UTM_N);

P(px;py) =

2
6666666664

px

py

1

3
7777777775

T (ET ;NT) =

2
6666666664

1 0 ET

0 1 NT

0 0 1

3
7777777775

M(✓) =

2
6666666664

�sen(✓) �cos(✓) 0
cos(✓) �sen(✓) 0

0 0 1

3
7777777775

P 0(px0;py0) = T (ET ;NT) ·M(✓) ·T (�ET ;�NT) ·P(px;py)

(3.49)

130

3.5. MAPPING

Equation 3.49, as explained in (Salvado, 2018), describes the pivot rotation applied to
mapping procedures, where:

• P 0(px0;py0) is the new P(px;py) point pivot rotation result;

• M(✓) is the counter-clockwise 90o rotation matrix (Equation 3.47);

• T (ET ;NT) is the Map-to-Base_link translation matrix, where ET and NT are, respec-
tively, the easting and northing translation in Figure 3.80;

• ✓ is the counter-clockwise Base_link IMU rotation angle (rad).

Based on the previous pivot rotation formula, it was possible to successfully compute
a dynamic mapping algorithm (Equation 3.50) that accurately builds an aerial view over
the UAV’s flown area.

2
66664
px0

py0

3
77775 =

2
66664
�(px �ET) · sen(✓)� (py �NT) · cos(✓) +ET

(px �ET) · cos(✓)� (py �NT) · sen(✓) +NT

3
77775 (3.50)

Figure 3.81: ROS map result of the four distinct classified terrain types in layers (1st layer-
water; 2nd layer- vegetation; 3rd layer- asphalt; 4th layer- sand; 5th layer - RGB camera
images). Georeferenced map visualization using the RV iz tool.

The classified terrain information obtained during this experiment was all georefer-
enced and accurately mapped using the ROS grid map layers, as illustrated in Figure 3.81,
and can be visualized using the RV iz tool (3D visualization tool for ROS).

131

C
h
a
p
t
e
r

4
Experimental Results

In order to validate the proposed static and dynamic texture features for terrain classifi-
cation, in this section, four di↵erent terrain types (water, vegetation, asphalt and sand)
were analyzed. As mentioned in Section 3.1.2, these terrain types were studied at four
locations in Portugal as shown in Figure 4.1.

Figure 4.1: Data collection locations in Portugal.

The sample images were acquired in di↵erent conditions at these locations: at an
altitude of one to two meters and from 8am to 6pm. Regarding environmental conditions,

133

CHAPTER 4. EXPERIMENTAL RESULTS

the author collected data during both clear and cloudy skies. To avoid overfitting and in
order to make the proposed algorithms more robust, older data (with and without the
downwash e↵ect) from other locations (e.g. agriculture field at Spain) and from other
UAVs were also used. Furthermore, to improve generalization, a technique called "Early
Topping" was used, with two di↵erent data sets: the training set, to update the weights
and biases, and the validation set, to stop training when the network begins to overfit the
data.

For validation, a "k-fold" technique was used, where the data was divided into k
randomly chosen subsets of roughly equal size (k=5 was selected for this dissertation).

The complete data set collected is composed of 11121 images, distributed as follows:
2332 water, 2373 vegetation, 834 asphalt and 5582 sand images.

Thus, in the current section each of the proposed texture features (static or dynamic),
will be evaluated and validated individually and all possible combinations between all
features will also be taken into account, to identify which will have the best behavior for
terrain classification.

4.1 Gabor with Lowess Regression

As mentioned in Section 3.2.1, regarding Gabor and Lowess Regression combination, two
important features were calculated:

1. Area measured between the local minimum and its respective two local maxima;

2. Integral between the local minimum and its two respective local maxima.

These two features were used as input to an NN, designed the same way as for the
other algorithms proposed in this dissertation. Thus, it becomes possible to correctly
compare the accuracy of each algorithm. The Neural Network model consists of the
hidden layer containing 10 neurons, and the third layer corresponds to the system output
with the number of possible terrain outputs under study in this dissertation. Each neuron
uses a sigmoidal function to calculate its output. They are connected as a Fully Connected
Feed Forward Neural Network. During the training stage, 70% of the total data was used
for training, 15% for testing and 15% for validation;

After the initial summary, Figures 4.2 a), b), c) and d) show the results obtained by
the Gabor and Lowess regression. For an easier understanding of Figures 4.2 a) and b),
Figures 4.2 c) and d) have been added so that it is possible to clearly identify water-type
and non-water terrains where Figures 4.2 b) and d) correspond to Figures 4.2 a) and c),
respectively, zoomed in.

Despite the greater overlap in non-water type terrains (in this case vegetation, sand
and asphalt), it is possible to see a separation between water and non-water type terrains.

134

4.1. GABOR WITH LOWESS REGRESSION

0 1 2 3 4 5 6
Area (%)

0

5

10

15

20

25

30

35

40

45

50

In
te

gr
al

 (%
)

Gabor feature with Lowess Regression

Pool
Lake
Vegetation
Asphalt
Sand

a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Area (%)

0

1

2

3

4

5

6

In
te

gr
al

 (%
)

Gabor feature with Lowess Regression

Pool
Lake
Vegetation
Asphalt
Sand

b

0 1 2 3 4 5 6
Area (%)

0

5

10

15

20

25

30

35

40

45

50

In
te

gr
al

 (%
)

Gabor feature with Lowess Regression

Water
Non-Water

c

0 0.1 0.2 0.3 0.4 0.5 0.6
Area (%)

0

1

2

3

4

5

6

7

In
te

gr
al

 (%
)

Gabor feature with Lowess Regression

Water
Non-Water

d

Figure 4.2: Gabor Static texture feature with Lowess Regression: a) Area relationship
with respect to the integral of minima and maxima locals for four terrain types; b) and d)
are a zoom of a) and c), respectively.

Regarding the integral percentage values present in the water-type terrain, low values
are presented due to the fact that the only textures shown in the image under study come
from the downwash e↵ect.

In addition to the terrain classification between water and non-water type terrains, it
is important to know the influence that the downwash e↵ect has on these same terrains.
New data was taken in the same locations without the downwash e↵ect. Then, the same
algorithm was applied, producing the results that can be seen in Figures 4.3 a), b), c) and
d).

Figures 4.3 a) and b) illustrate that, without the downwash e↵ect caused by the UAV,
water-type terrains behave in a more random way, in which their shape depends only on
the luminosity and natural wind (not provoked by the UAV). Thus, it was also concluded
that the e↵ect of the downwash caused by the UAV, makes the behavior of water-type
terrains more constant and, as can be seen in Figures 4.3 b) and d); it makes the results
more compact and easier to correctly classify the terrain under study.

135

CHAPTER 4. EXPERIMENTAL RESULTS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Area (%)

0

1

2

3

4

5

6

7

In
te

gr
al

 (%
)

Gabor feature with Lowess Regression

Pool
Lake
Vegetation
Asphalt
Sand

a

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Area (%)

0

1

2

3

4

5

6

7

In
te

gr
al

 (%
)

Gabor feature with Lowess Regression

Pool
Lake
Vegetation
Asphalt
Sand

b

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Area (%)

0

1

2

3

4

5

6

7

In
te

gr
al

 (%
)

Gabor feature with Lowess Regression

Water
Non-Water

c

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Area (%)

0

1

2

3

4

5

6

7

In
te

gr
al

 (%
)

Gabor feature with Lowess Regression

Water
Non-Water

d

Figure 4.3: Gabor and Lowess Regression algorithms in relation to the downwash e↵ect:
a) and c) without downwash e↵ect; b) and d) with downwash e↵ect.

4.2 Particle Swarm Optimization

To test the combination of PSO and GLCM, the 27 features studied in Section 3.2.5 were
calculated and computed, and applied to each dataset image(see Table 3.3). The results of
the whole set of frames under study were analysed and 12 of 27 combinations of features
were selected by the author. The selected combination of features were: 1- Variance
with IMC1; 2- Correlation with Joint Average; 3- Variance with Di↵erence Entropy; 4-
Homogeneity with Variance; 5- Entropy with Variance; 6- Variance with IMC2; 7- Sum
Average with Di↵erence Entropy; 8- Sum Average with IMC1; 9- Sum Average with IMC2;
10- Auto-Correlation with IMC1; 11- Auto-Correlation with IMC2 and 12- Joint Average
with IMC2.

As can be seen in the selected feature enumeration, it is possible to conclude that the
impact of the features was:

136

4.2. PARTICLE SWARM OPTIMIZATION

• Variance: 41.67% of impact;

• IMC2: 33.33% of impact;

• IMC1: 25.00% of impact;

• Sum Average: 25.00% of impact;

• Joint Average: 16.67% of impact;

• Di↵erence Entropy: 16.67% of im-
pact;

• Auto-Correlation: 16.67% of impact;

• Correlation: 8.33% of impact;

• Entropy: 8.33% of impact;

• Homogeneity: 8.33% of impact;

Since the Variance feature was used in more than 41% of cases, Figure 4.4, Figure 4.5,
Figure 4.6, Figure 4.7 and Figure 4.8 show the results of comparing Variance to IMC1,
IMC2, Entropy, Di↵erence Entropy, Correlation and Homogeneity, for the whole dataset.

0.5 1 1.5 2 2.5 3
Variance 104

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

iM
C
1

GLCM:Variance-iMC1

Pool
Lake
Vegetation
Sand
Asphalt

a

0.5 1 1.5 2 2.5 3
Variance 104

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

iM
C
1

GLCM:Variance-iMC1

Water
Non-Water

b

Figure 4.4: PSO results for IMC1 with respect to Variance. a) five terrain types; b) water
vs non-water.

In Figure a), water terrain type is represented by black (pool) and blue (lake), green
represents the vegetation-type terrain, sand-type terrain is represented by pink and there-
fore, red represents the asphalt-type terrain, while in Figure b) the water-type terrain is
represented by blue (pool and lake) and black represents the non-water type terrain. It is
possible to conclude that the combination of PSO and GLCM cannot easily di↵erentiate
water-type terrains from non-water type terrains.

Even using the downwash e↵ect caused by the UAV, a higher variation in the output
results is observed, as shown in Figure 4.9. This problem arises from the fact that the
PSO removes the high frequencies in the images, which to an extent causes the removal
of the downwash e↵ect.

Figures 4.10 shows the comparison between using the PSO and GLCM combination
and using the GLCM algorithm only. It can be concluded that using GLCM only, instead
of the combination with PSO, makes the system much more stable. For this reason, the
author concluded that it is not feasible to proceed with the PSO algorithm.

137

CHAPTER 4. EXPERIMENTAL RESULTS

0.5 1 1.5 2 2.5 3
Variance 104

0.85

0.9

0.95

1

iM
C
2

GLCM:Variance-iMC2

Pool
Lake
Vegetation
Sand
Asphalt

a

0.5 1 1.5 2 2.5 3
Variance 104

0.85

0.9

0.95

1

iM
C
2

GLCM:Variance-iMC2

Water
Non-Water

b

Figure 4.5: PSO results for IMC1 with respect to Variance. a) five terrain types; b) water
vs non-water.

0 2 4 6 8 10 12 14
Entropy

0.5

1

1.5

2

2.5

3

Va
ria
nc
e

104 GLCM:Entropy-Variance

Pool
Lake
Vegetation
Sand
Asphalt

a

0 2 4 6 8 10 12 14
Entropy

0.5

1

1.5

2

2.5

3

Va
ria
nc
e

104 GLCM:Entropy-Variance

Water
Non-Water

b

Figure 4.6: PSO results for Variance with respect to Entropy. a) five terrain types; b)
water vs non-water.

0.5 1 1.5 2 2.5 3
Variance 104

0

1

2

3

4

5

6

7

di
ffE
nt
ro
py

GLCM:Variance-diffEntropy

Pool
Lake
Vegetation
Sand
Asphalt

a

0.5 1 1.5 2 2.5 3
Variance 104

0

1

2

3

4

5

6

7

di
ffE
nt
ro
py

GLCM:Variance-diffEntropy

Water
Non-Water

b

Figure 4.7: PSO results for Di↵erence Entropy with respect to Variance. a) five terrain
types; b) water vs non-water.

138

4.2. PARTICLE SWARM OPTIMIZATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Homogeneity

0.5

1

1.5

2

2.5

3

Va
ria
nc
e

104 GLCM:Homogeneity-Variance

Pool
Lake
Vegetation
Sand
Asphalt

a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Homogeneity

0.5

1

1.5

2

2.5

3

Va
ria
nc
e

104 GLCM:Homogeneity-Variance

Water
Non-Water

b

Figure 4.8: PSO results for Variance with respect to Homogeneity. a) five terrain types;
b) water vs non-water.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
Variance 104

0.85

0.9

0.95

1

iM
C
2

GLCM:Variance-iMC2

Pool
Lake
Vegetation
Sand
Asphalt

a

0.5 1 1.5 2 2.5 3
Variance 104

0.85

0.9

0.95

1

iM
C
2

GLCM:Variance-iMC2

Pool
Lake
Vegetation
Sand
Asphalt

b

0.5 1 1.5 2 2.5 3
Variance 104

0.85

0.9

0.95

1

iM
C
2

GLCM:Variance-iMC2

Water
Non-Water

c

0.5 1 1.5 2 2.5 3
Variance 104

0.85

0.9

0.95

1

iM
C
2

GLCM:Variance-iMC2

Water
Non-Water

d

Figure 4.9: PSO and GLCM algorithms: a) and c) without downwash e↵ect; b) and d) with
downwash e↵ect.

139

CHAPTER 4. EXPERIMENTAL RESULTS

0.5 1 1.5 2 2.5 3
Variance 104

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

iM
C
1

GLCM:Variance-iMC1

Pool
Lake
Vegetation
Sand
Asphalt

a

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Variance 104

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

iM
C
1

GLCM:Variance-iMC1

Pool
Lake
Vegetation
Sand
Asphalt

b

0.5 1 1.5 2 2.5 3
Variance 104

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

iM
C
1

GLCM:Variance-iMC1

Water
Non-Water

c

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Variance 104

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

iM
C
1

GLCM:Variance-iMC1

Water
Non-Water

d

Figure 4.10: Comparison between: a) and c) PSO and GLCM combination and; b) and d)
only using the GLCM algorithm.

4.3 Empirical Mode Decomposition

After obtaining the IMFs from the EmpiricalMode Decomposition, which is applied in the
spatial domain, two features are extracted and used by an NN to classify the terrain under
study as water or non-water type terrain. The following features take into consideration
each terrain’s IMF:

1. Number of local maxima given by IMF output;

2. Number of times the IMF result has crossed zero along the vector.

Figure 4.11 and Figure 4.12 show the results of the first three IMFs (IMF-A, IMF-B and
IMF-C) with the dataset of this dissertation (regarding these two features). Two important
aspects can be concluded:

1. It is possible to separate water-type terrain from non-water-type terrain with good
precision via IMF-A where, in Figure 4.11 a) and b), it goes up to 47% and 24%

140

4.3. EMPIRICAL MODE DECOMPOSITION

17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

34

36

38

40

42

44

46

48

50

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF A

Pool
Lake
Vegetation
Sand
Asphalt

a

17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

34

36

38

40

42

44

46

48

50

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF A

Water
Non-Water

b

23.8 24 24.2 24.4 24.6 24.8 25 25.2
Local Maxima (%)

46.5

47

47.5

48

48.5

49

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF A

Pool
Lake
Vegetation
Sand
Asphalt

c

23.8 24 24.2 24.4 24.6 24.8 25
Local Maxima (%)

46.5

47

47.5

48

48.5

49

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF A

Water
Non-Water

d

20.2 20.4 20.6 20.8 21 21.2 21.4 21.6 21.8 22
Local Maxima (%)

39

39.5

40

40.5

41

41.5

42

42.5

43

43.5

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF A

Pool
Lake
Vegetation
Sand
Asphalt

e

20.4 20.6 20.8 21 21.2 21.4 21.6 21.8 22
Local Maxima (%)

39.5

40

40.5

41

41.5

42

42.5

43

43.5

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF A

Water
Non-Water

f

Figure 4.11: Intrinsic Mode Function – The zero crossings in relation to the total number
of local maxima. a) and b) IMF-A result; c) and d) Zoom of pool result; e) and f) Zoom of
lake result.

141

CHAPTER 4. EXPERIMENTAL RESULTS

5.5 6 6.5 7 7.5 8 8.5 9 9.5
Local Maxima (%)

11

12

13

14

15

16

17

18
C

ro
ss

es
 a

t Z
er

o
(%

)
IMF B

Pool
Lake
Vegetation
Sand
Asphalt

a

5.5 6 6.5 7 7.5 8 8.5 9 9.5
Local Maxima (%)

11

12

13

14

15

16

17

18

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF B

Water
Non-Water

b

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
Local Maxima (%)

11

12

13

14

15

16

17

18

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF C

Pool
Lake
Vegetation
Sand
Asphalt

c

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
Local Maxima (%)

11

12

13

14

15

16

17

18

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF C

Water
Non-Water

d

Figure 4.12: Intrinsic Mode Function – The zero crossings in relation to the total number
of local maxima. a) and b) IMF-B; c) and d) IMF-C.

at crossing at zero and local maximum, respectively; in general the pool (water)
terrain type is represented. Between 40% - 46% and 21% - 24% at crossing at zero
and local maximum respectively, represents the non-water terrain type. It is also
observed, in Figure 4.11 a) and b), that lake (water) terrain type presents crossing
at zero values from 38% to 42% and local maximum values from 20% to 21.4%;

2. It is important to mention that as the IMF’s iteration increases, the detection of
the di↵erent clusters becomes less clear, and therefore, the error of classifying the
terrain type increases. For this reason, in this dissertation, only IMF-A was used to
extract terrain features to send to the NN.

As in the case of the two previous sections (Section 4.1 and Section 4.2), in addition
to the terrain classification into water-type terrain and non-water type terrain, it is impor-
tant to know the influence that the downwash e↵ect has on these same terrains. New data
was taken in the same locations without the downwash e↵ect. Then, the EMD algorithm
was applied and the results can be seen in Figures 4.13 a), b), c) and d).

Figures 4.13 a) and c) illustrate how, without the downwash e↵ect caused by the
UAV, water-type terrain (pool and lake) have local maximum and zero crossings values

142

4.4. WIENER-KHINCHIN

19 20 21 22 23 24 25 26
Local Maxima (%)

35

40

45

50

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF A

Pool
Lake
Vegetation
Sand
Asphalt

a

17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

34

36

38

40

42

44

46

48

50

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF A

Pool
Lake
Vegetation
Sand
Asphalt

b

19 20 21 22 23 24 25 26
Local Maxima (%)

35

40

45

50

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF A

Water
Non-Water

c

17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

34

36

38

40

42

44

46

48

50

C
ro

ss
es

 a
t Z

er
o

(%
)

IMF A

Water
Non-Water

d

Figure 4.13: EMD algorithm: a) and c) without downwash e↵ect; b) and d) with downwash
e↵ect.

close to non-water type terrain, which will cause overlap between these two types of
terrains. Consequently, it will be very di�cult to di↵erentiate between water and non-
water terrains. However, it is also possible to conclude through Figures 4.13 b) and d)
that with the downwash e↵ect, this overlap, between di↵erent types of terrain, decreases
and therefore their classification is improved.

4.4 Wiener-Khinchin

The Wiener-Kinchin algorithm, as mentioned in Section 3.2.4, works in the frequency
domain. As in Section 4.3, this section also proposes three features in order to send these
three features to the NN and classify the terrain under study as water or non-water type.
The following features take into consideration each terrain’s W-K Filter:

1. Number of local maxima given by W-K Filter output;

2. Number of times the W-K Filter result has crossed zero along the vector;

143

CHAPTER 4. EXPERIMENTAL RESULTS

3. Area ratio of the external area to the internal area.

The following figures (Figures 4.14 a) b) and c)) show the possible combinations
between these three features, with the dataset of this dissertation, in order to identify
which will be used in the terrain classification.

16 17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

0

2

4

6

8

10

12

14

16

18

C
ro

ss
es

 a
t Z

er
o

(%
)

Wiener-Khinchin Theorem

Pool
Lake
Vegetation
Sand
Asphalt

a

16 17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Pool
Lake
Vegetation
Sand
Asphalt

b

0 2 4 6 8 10 12 14 16 18
Crosses at Zero (%)

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Pool
Lake
Vegetation
Sand
Asphalt

c

Figure 4.14: Wiener Khinchin results with three features – a) The zero crossings in relation
to the total number of local maxima; b) The area in relation to the total number of local
maximum; c) The area in relation to the zero crossings.

From Figures 4.14 it is possible to visually conclude that the area in relation to the
total number of local maxima can more accurately classify water-type and non-water-type
terrains (mathematical values that validate this conclusion, defined in Section 4.9). Thus,
with regard to terrain classification of the three features, only the number of local maxima
and the area will be used as input for the MLP. Thus, Figure 4.15 shows more detailed
information regarding these two features.

As can be seen in Figures 4.15, with the W-K Filter, it is possible to identify and
separate the water terrains (pool and lake) from non-water terrains where:

• Pool (water): Up to 24.5% at local maximum and area between 0.035% and 0.04%,
the pool terrain type is represented.

144

4.4. WIENER-KHINCHIN

16 17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Pool
Lake
Vegetation
Sand
Asphalt

a

16 17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Water
Non-Water

b

23 23.5 24 24.5 25 25.5 26
Local Maxima (%)

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Pool
Lake
Vegetation
Sand
Asphalt

c

23 23.5 24 24.5 25 25.5 26 26.5
Local Maxima (%)

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Water
Non-Water

d

19 19.5 20 20.5 21 21.5 22 22.5 23
Local Maxima (%)

0.044

0.046

0.048

0.05

0.052

0.054

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Pool
Lake
Vegetation
Sand
Asphalt

e

19 19.5 20 20.5 21 21.5 22 22.5
Local Maxima (%)

0.042

0.044

0.046

0.048

0.05

0.052

0.054

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Water
Non-Water

f

Figure 4.15: Wiener Khinchin results – Area in relation to the total number of local
maxima. a) 5 terrain types; b) water vs non-water; c) and d) Zoom of pool result; e) and f)
Zoom of lake result.

145

CHAPTER 4. EXPERIMENTAL RESULTS

• Lake (water): Between 19% and 22.5% at local maximum and area between 0.045%
and 0.075% represents the lake type terrain.

Just as in the three previous sections (Section 4.1, Section 4.2 and Section 4.3), in ad-
dition to the terrain classification between water-type terrain and non-water type terrain,
the influence of the downwash e↵ect by UAV rotors was also studied. New data were
taken in the same locations without the e↵ect of downwash. Then, the same algorithm in
this section was applied and the results can be seen in Figure 4.16.

16 17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Pool
Lake
Vegetation
Sand
Asphalt

a

16 17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Pool
Lake
Vegetation
Sand
Asphalt

b

16 17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Water
Non-Water

c

16 17 18 19 20 21 22 23 24 25 26
Local Maxima (%)

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Ar
ea

 (%
)

Wiener-Khinchin Theorem

Water
Non-Water

d

Figure 4.16: W-K Filter algorithm: a) and c) without downwash e↵ect; b) and d) with
downwash e↵ect.

Figures 4.16 a) and c) illustrate that, without the downwash e↵ect caused by the UAV,
water-type terrain (pool and lake) will have local maximum and area values close to non-
water type terrain, which will cause overlap between these two terrain types. It is also
possible to conclude from Figures 4.16 b) and d) that, using the downwash e↵ect, the
overlap between water and non-water terrain types decreases due to the fact that the
area values undergo a major change when a↵ected by the downwash e↵ect. Therefore,
the probability of classifying the terrain increases. Section 4.9 will show the percentage

146

4.5. GLCM

of improvement using the downwash e↵ect provoked by UAV rotors in water-type and
non-water-type terrain classification.

Once again, it is important to note that the purpose of this dissertation is only to
classify water-type terrain and non-water type terrain (while studying the influence of
the downwash e↵ect in terrain classification). The overlap between vegetation, sand and
asphalt terrains does not present any problem for this thesis (as long as the overlap is not
with water-type terrains - in this case, pool and lake terrains).

4.5 GLCM

This section will study the GLCM algorithm behaviour using the validation dataset. The
27 features presented in Table 3.3 were applied after each terrain GLCM matrix. The
results of the whole set of frames were analysed and 12 of the 27 features were selected
by the author. The selected combination of features were:

1- Entropy with IMC1; 2- Sum Average with Cluster Tendency; 3- Cluster Tendency
with Auto-Correlation; 4- Entropy with Di↵erence Average; 5- Entropy with SumAverage;
6- Homogeneity with Cluster Shade; 7- Homogeneity with Entropy; 8- Di↵erence Average
with Cluster Shade; 9- Di↵erence Entropy with Cluster Shade; 10- Contrast with Entropy;
11- Correlation with Entropy and 12- Entropy with Sum Variance.

As the enumeration of combination of the features by the author shows, it is possible
to calculate the impact of these features:

• Entropy: 58.33% of impact;

• Cluster Shade: 25% of impact;

• Di↵erence Average: 16.67% of im-
pact;

• Cluster Tendency: 16.67% of impact;

• Homogeneity: 16.67% of impact;

• Sum Average: 16.67% of impact;

• IMC1: 8.33% of impact;

• Auto-Correlation: 8.33% of impact;

• Contrast: 8.33% of impact;

• Correlation: 8.33% of impact;

• Di↵erence Entropy: 8.33% of impact;

• Sum Variance: 8.33% of impact.

Since the Entropy feature has been used in more than 55% of cases, the Figures that
depend on it will be shown. The following Figures (Figure 4.17, Figure 4.18, Figure 4.19,
Figure 4.20, Figure 4.21, Figure 4.22 and Figure 4.23) show the results of the whole
set of frames regarding Entropy with IMC1, Contrast, Correlation, Di↵erence Average,
Sum Average, Sum Variance and Homogeneity. In these figures: water-type terrain is
represented by black (pool) and blue (lake), green represents vegetation-type terrain,
sand-type terrain is represented by pink and red represents the asphalt-type terrain.

It is possible to conclude from the Figures that the GLCM algorithm can di↵erentiate
water-type terrain from non-water-type terrain (this is the focus of this dissertation).

147

CHAPTER 4. EXPERIMENTAL RESULTS

6 7 8 9 10 11 12 13 14 15
Entropy

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

iM
C
1

GLCM:Entropy-iMC1

Pool
Lake
Vegetation
Sand
Asphalt

a

6 7 8 9 10 11 12 13 14 15
Entropy

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

iM
C
1

GLCM:Entropy-iMC1

Water
Non-Water

b

Figure 4.17: Entropy with respect to IMC1: a) five terrain-type classes and b) water vs
non-water.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Contrast

7

8

9

10

11

12

13

14

15

En
tro
py

GLCM:Contrast-Entropy

Pool
Lake
Vegetation
Sand
Asphalt

a

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Contrast

7

8

9

10

11

12

13

14

15

En
tro
py

GLCM:Contrast-Entropy

Water
Non-Water

b

Figure 4.18: Contrast with respect to Entropy: a) five terrain-type classes and b) water vs
non-water.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Correlation

7

8

9

10

11

12

13

14

15

En
tro
py

GLCM:Correlation-Entropy

Pool
Lake
Vegetation
Sand
Asphalt

a

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Correlation

7

8

9

10

11

12

13

14

15

En
tro
py

GLCM:Correlation-Entropy

Water
Non-Water

b

Figure 4.19: Correlation with respect to Entropy: a) five terrain-type classes and b) water
vs non-water.

148

4.5. GLCM

7 8 9 10 11 12 13 14 15
Entropy

0

10

20

30

40

50

60

di
ffA
ve
ra
ge

GLCM:Entropy-diffAverage

Pool
Lake
Vegetation
Sand
Asphalt

a

7 8 9 10 11 12 13 14 15
Entropy

0

10

20

30

40

50

60

di
ffA
ve
ra
ge

GLCM:Entropy-diffAverage

Water
Non-Water

b

Figure 4.20: Entropy with respect to Di↵erence Average: a) five terrain-type classes and
b) water vs non-water.

7 8 9 10 11 12 13 14 15
Entropy

200

220

240

260

280

300

320

su
m
Av
er
ag
e

GLCM:Entropy-sumAverage

Pool
Lake
Vegetation
Sand
Asphalt

a

7 8 9 10 11 12 13 14 15
Entropy

200

220

240

260

280

300

320

su
m
Av
er
ag
e

GLCM:Entropy-sumAverage

Water
Non-Water

b

Figure 4.21: Entropy with respect to Sum Average: a) five terrain-type classes and b)
water vs non-water.

7 8 9 10 11 12 13 14 15
Entropy

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

su
m
Va
ria
nc
e

GLCM:Entropy-sumVariance

Pool
Lake
Vegetation
Sand
Asphalt

a

7 8 9 10 11 12 13 14 15
Entropy

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

su
m
Va
ria
nc
e

GLCM:Entropy-sumVariance

Water
Non-Water

b

Figure 4.22: Entropy with respect to Sum Variance: a) five terrain-type classes and b)
water vs non-water.

149

CHAPTER 4. EXPERIMENTAL RESULTS

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Homogeneity

7

8

9

10

11

12

13

14

15

En
tro
py

GLCM:Homogeneity-Entropy

Pool
Lake
Vegetation
Sand
Asphalt

a

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Homogeneity

7

8

9

10

11

12

13

14

15

En
tro
py

GLCM:Homogeneity-Entropy

Water
Non-Water

b

Figure 4.23: Homogeneity with respect to Entropy: a) five terrain-type classes and b)
water vs non-water.

However, the instability is higher in non-water-type terrains, due to the greater dispersion
of the points in each Figure. In order to merge the data, while increasing certainty and
automating the classification of terrain type, a machine-learning technique was used,
named Feed-Forward Neural Network with MLP architecture.

As the focus of this dissertation is also to study the impact of the downwash e↵ect in
water-type terrain (pool, lake) and non-water type terrain (vegetation, asphalt and sand),
data was taken in the same locations with and without the e↵ect of downwash. Then, the
GLCM algorithm was applied and the results are represented in Figure 4.24.

Figures 4.24 a) and c) show it is possible to observe that, without the downwash e↵ect
caused by the UAV, water-type terrain (pool and lake) will have entropy and IMC1 values
close to non-water type terrain, which could cause overlap between these two terrain
types. It is also possible to conclude from Figures 4.24 b) and d) that, using the downwash
e↵ect, the probability of overlap between water and non-water-type terrains decreases
due to the fact that the entropy and IMC1 values of water-type terrain are more distant
from the values of non-water-type terrain. Another advantage of using the downwash
e↵ect (as shown in Figures 4.24 b) and d)), is that water-type terrain clusters are more
compact. Section 4.9 will present the percentage of improvement using the downwash
e↵ect provoked by UAV rotors in water-type and non-water-type terrain classification.

4.6 GLRLM

In GLCM the size of the GLCMmatrix is already known (256x256 due to the pixel values:
28�1). On the other hand, the GLRLMmatrix number of columns is not constant, despite
the number of lines (28�1). For this reason, tests were carried out to choose the best value
for the columns:

• Minimumpossible columns: The highest pixel number lengthwas calculated along

150

4.6. GLRLM

6 7 8 9 10 11 12 13 14 15
Entropy

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

iM
C
1

GLCM:Entropy-iMC1

Pool
Lake
Vegetation
Sand
Asphalt

a

6 7 8 9 10 11 12 13 14 15
Entropy

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

iM
C
1

GLCM:Entropy-iMC1

Pool
Lake
Vegetation
Sand
Asphalt

b

6 7 8 9 10 11 12 13 14 15
Entropy

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

iM
C
1

GLCM:Entropy-iMC1

Water
Non-Water

c

6 7 8 9 10 11 12 13 14 15
Entropy

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

iM
C
1

GLCM:Entropy-iMC1

Water
Non-Water

d

Figure 4.24: GLCM algorithm: a) and c) without downwash e↵ect; b) and d) with down-
wash e↵ect.

the image under study and was limited to that value;

• Equals to rows number: Since the number of pixels varies between 0 and 255, the
number of columns was limited to 256 (all values over 255 are neglected);

• Frame size: As the run length can exceed the size of 255, the number of columns
equal to the image size under study was also tested (in this case, the columns num-
ber was equal to 640).

Figure 4.25 shows the di↵erences between the three possible choices for the number
of columns in the GLRLM matrix.

As illustrated in Figure 4.25, it is possible to conclude that using the highest pixel
number length as columns’ number in the GLRLM matrix is not an option to follow be-
cause, with this number of columns, it cannot distinguish water from non-water terrains.
Between the option of the frame window size being equal to 255, Figures 4.25 b) and c)
allowed the author to establish that the GLRLM matrix must have a number of columns
equal to the size of the input image (in this case 640), since the goal of this dissertation

151

CHAPTER 4. EXPERIMENTAL RESULTS

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Correlation

100

150

200

250

300

350

au
to
C
or
re
la
tio
n

GLRLM:Correlation-autoCorrelation

a

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Correlation

100

150

200

250

300

350

au
to
C
or
re
la
tio
n

GLRLM:Correlation-autoCorrelation

b

-0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

100

150

200

250

300

350

au
to
C
or
re
la
tio
n

GLRLM:Correlation-autoCorrelation

c

Figure 4.25: GLRLM result: Auto-Correlation with respect to the Correlation. a) GLRLM
columns equal to the highest pixel number length; b) GLRLM columns equal to GLRLM
rows (255); c) GLRLM columns equal to image width.

is to be able to classify water and non-water-type terrain (water-type terrain is better
distinguished from non-water type).

After having the GLRLM matrix’s column size defined, it is, it is possible to test the
matrix on the terrain under study. The complete data set is composed of 11.121 images
where 2.332 are of water, 2.373 are of vegetation, 834 are of asphalt and 5.582 are sand.
Then, as carried out previously in Section 4.5, the 27 features presented in Table 3.3 were
also used for the calculations in this dataset. The whole set of studied frames’ results were
analysed and consequently 11 of the 27 combination features were selected by the author.
The selected combination features are: 1- Correlation with Contrast; 2- Variance with Sum
Variance; 3- Variance with Di↵erence Variance; 4- Sum Average with Sum Variance; 5-
Correlation with Homogeneity; 6- Sum Average with Di↵erence Variance; 7- Correlation
with Auto-Correlation; 8- Sum Variance with Di↵erence Average; 9- Correlation with
Di↵erence Entropy; 10- Di↵erence Variance with Joint Average.

152

4.6. GLRLM

As can be seen in the authors’ enumeration of "good" features, it is possible to conclude
the impact of features, where:

• Correlation: 40% of impact;

• Sum Variance: 30% of impact;

• Di↵erence Variance: 30% of impact;

• Variance: 20% of impact;

• Sum Average 20% of impact;

• Joint Average 10% of impact;

• Contrast: 10% of impact;

• Di↵erence Entropy: 10% of impact;

• Auto-Correlation: 10% of impact;

• Homogeneity: 10% of impact;

• Di↵erence Average 10% of impact.

Since the Sum Variance feature has been used in more than 50% of cases, the Figures
that depend on it will be shown. The Figures (Figure 4.26, Figure 4.27, Figure 4.28 and
Figure 4.29) illustrate the results of the whole set of frames concerning the Sum Variance
with Sum Average and Di↵erence Average. Water-type terrain is represented by black
(pool) and blue (lake), green represents the vegetation-type terrain, sand-type terrain is
pink and red represents the asphalt-type terrain, while in Figure b), the water-type terrain
is represented by blue (pool and lake) and black represents the non-water-type terrain.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

100

150

200

250

300

350

400

450

500

550

au
to
C
or
re
la
tio
n

GLRLM:Correlation-autoCorrelation

Pool
Lake
Vegetation
Sand
Asphalt

a

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

100

150

200

250

300

350

400

450

500

550

au
to
C
or
re
la
tio
n

GLRLM:Correlation-autoCorrelation

Water
Non-Water

b

Figure 4.26: Correlation with respect to Auto-Correlation: a) five terrain-type classes and
b) water vs non-water.

It is possible to visualize a good identification of each cluster in Figure 4.26, Fig-
ure 4.27, Figure 4.28 and Figure 4.29: water (pool and lake) and non-water (vegetation,
asphalt and sand) terrain types. Since one of the goals of this dissertation is to identify
water-type terrains (distinguish water-type from non-water terrain), it is concluded that
the GLRLM algorithm has good results due to the fact that water-type terrain (pool and
lake) does not disperse much in the calculated values.

As already mentioned, another goal of this dissertation is to study the impact of the
downwash e↵ect on water-type terrain (pool, lake) and non-water type terrain (vegetation,

153

CHAPTER 4. EXPERIMENTAL RESULTS

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

2

3

4

5

6

7

8

C
on
tra
st

104 GLRLM:Correlation-Contrast

Pool
Lake
Vegetation
Sand
Asphalt

a

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

2

3

4

5

6

7

8

C
on
tra
st

104 GLRLM:Correlation-Contrast

Water
Non-Water

b

Figure 4.27: Correlation with respect to Contrast: a) five terrain-type classes and b) water
vs non-water.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

4.5

5

5.5

6

6.5

7

7.5

di
ffE
nt
ro
py

GLRLM:Correlation-diffEntropy

Pool
Lake
Vegetation
Sand
Asphalt

a

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

4.5

5

5.5

6

6.5

7

7.5

di
ffE
nt
ro
py

GLRLM:Correlation-diffEntropy

Water
Non-Water

b

Figure 4.28: Correlation with respect to Di↵erence Entropy: a) five terrain-type classes
and b) water vs non-water.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

0.005

0.01

0.015

0.02

0.025

0.03

0.035

H
om

og
en
ei
ty

GLRLM:Correlation-Homogeneity

Pool
Lake
Vegetation
Sand
Asphalt

a

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

0.005

0.01

0.015

0.02

0.025

0.03

0.035

H
om

og
en
ei
ty

GLRLM:Correlation-Homogeneity

Water
Non-Water

b

Figure 4.29: Correlation with respect to Homogeneity: a) five terrain-type classes and b)
water vs non-water.

154

4.7. TRAVEL DISTANCE

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

0

50

100

150

200

250

300

350

400

450

500

550

au
to
C
or
re
la
tio
n

GLRLM:Correlation-autoCorrelation

Pool
Lake
Vegetation
Sand
Asphalt

a

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

100

150

200

250

300

350

400

450

500

550

au
to
C
or
re
la
tio
n

GLRLM:Correlation-autoCorrelation

Pool
Lake
Vegetation
Sand
Asphalt

b

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

0

50

100

150

200

250

300

350

400

450

500

550

au
to
C
or
re
la
tio
n

GLRLM:Correlation-autoCorrelation

Water
Non-Water

c

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Correlation

100

150

200

250

300

350

400

450

500

550

au
to
C
or
re
la
tio
n

GLRLM:Correlation-autoCorrelation

Water
Non-Water

d

Figure 4.30: GLRLM algorithm: a) and c) without downwash e↵ect; b) and d) with down-
wash e↵ect.

asphalt and sand). Thus, data was taken in the same locations with and without the e↵ect
of downwash. Then, the GLRLM algorithm was applied and the results can be seen in
Figure 4.30.

In Figures 4.30 a) and c) it can be observed that, without the downwash e↵ect caused
by the UAV, in water-type terrain (pool and lake) the values are more dispersed which
causes a certain instability to the obtained results. Regarding the downwash e↵ect pro-
voked by UAV rotors in the water-type terrain, the results become more stable and there-
fore there is greater compression in the outputs generated in water-type terrain, as shown
in Figures 4.30 b) and d). Section 4.9 will present the percentage of improvement using
the downwash e↵ect in the water-type and non-water-type terrain classification.

4.7 Travel Distance

As mentioned and explained in Section 3.3.1, water-type terrain only exhibits dynamic
texture when exposed to the downwash e↵ect. Thus, in this case, when visualizing the

155

CHAPTER 4. EXPERIMENTAL RESULTS

e↵ect of downwash on the terrains under study (water-type terrains and non-water-type
terrains), the travel distance algorithm is calculated in each flow obtained by a sequence
of frames. If the travel distance result is higher than a threshold defined by the author
of this thesis, then the counting variable increases. At the end, the variable is divided by
the size of the image in order to obtain a percentage in which it is sent to an NN, where
the terrain under study will be classified (the NN will classify the terrain under study as
water or non-water-type terrain).

After explaining this algorithm very briefly, the quality of algorithms presented in
Section 3.3.1, will be studied in more detail in this section and Section 4.9. Figure 4.31
shows the TD results with the dataset of this dissertation.

0 10 20 30 40 50 60 70 80 90 100
Number of Features (%)

90

100

110

120

130

140

150

160

M
ea

n
Pi

xe
l V

al
ue

Travel Distance Algorithm

Pool
Lake
Vegetation
Asphalt
Sand

a

0 10 20 30 40 50 60 70 80 90 100
Number of Features (%)

90

100

110

120

130

140

150

160

M
ea

n
Pi

xe
l V

al
ue

Travel Distance Algorithm

Water
Non-Water

b

Figure 4.31: Dynamic Texture - Relationship in number of features with respect to mean
pixel value: a) five terrain-type classes and b) water vs non-water.

Figure 4.31 illustrates that, with the TD algorithm it is possible to identify and sepa-
rate the water terrains (pool and lake) from non-water terrains (vegetation, asphalt and
sand) where:

• Pool (water): Up to 25% at number of features and mean pixel value between 105%
and 112%, in general, the pool-type terrain is represented.

• Lake (water): Between 0% and 23% at number of features and mean pixel value
between 138% and 145% represents the lake-type terrain.

Finally, these features were extracted from the raw terrain frames and shown to the
neural network classifier, which outputted the automated terrain classification. The
extracted features and the classification result is shown in Table 4.1.

As expected, the proposed features and classification method obtained good results
by correctly classifying all seven examples, reinforcing the idea the dynamic texture (i.e.
travel distance) can be used to automatically classify between water-type terrain (pool
and lake) and non-water-type terrain (vegetation, asphalt and sand) using RGB images.

156

4.8. CIRCULAR MOTION

Table 4.1: Experimental Results.

Figure Type of Terrain Number of Features (%) Mean Pixel Value Classification

3.65 a) water 5.10 142 water

3.65 d) water 30.00 106 water

3.66 a) vegetation 98.32 126 vegetation

3.66 d) vegetation 98.69 123 vegetation

3.67 a) sand 63.74 134 sand

3.67 d) sand 59.30 130 sand

3.68 d) asphalt 91.00 138 asphalt

Besides terrain classification, it is also important to study the impact of the downwash
e↵ect on water-type terrain and non-water type terrain. Thus, data were taken in the
same locations with and without the e↵ect of downwash. Then, the TD algorithm was
applied and the results can be seen in Figure 4.32. Two important conclusions can be
drawn:

• Terrain Classification: Regarding terrain classification between water-type terrain
(pool and lake) and non-water-type terrain (vegetation, asphalt and sand), it is
observed that without the downwash e↵ect, a greater approximation between these
two types of terrains will occur (it is noticed mainly in the lake approaching the
sand values on the y-mean pixel value axis). This is due to the fact that, without
the downwash e↵ect produced by UAVs, there will no longer be pixels with high
intensity values (close to 255). Section 4.9 will discuss the accuracy of this algorithm
in greater detail;

• Downwash E↵ect: Being one of the most important topics in this dissertation, it
is important to know the impact of the downwash e↵ect on water and non-water
terrains. Figure 4.32 shows that, with the downwash e↵ect, a greater dispersion
between the values of a number of features occurs. This clearly shows a greater
instability in the values.

4.8 Circular Motion

The CM algorithm presents a single feature between the image flows and the center of the
intersection. This single feature will count the number of blue, green and gray blocks on

157

CHAPTER 4. EXPERIMENTAL RESULTS

0 10 20 30 40 50 60 70 80 90 100
Number of Features (%)

100

110

120

130

140

150

160

M
ea

n
Pi

xe
l V

al
ue

Travel Distance Algorithm

Pool
Lake
Vegetation
Asphalt
Sand

a

0 10 20 30 40 50 60 70 80 90 100
Number of Features (%)

90

100

110

120

130

140

150

160

M
ea

n
Pi

xe
l V

al
ue

Travel Distance Algorithm

Pool
Lake
Vegetation
Asphalt
Sand

b

0 10 20 30 40 50 60 70 80 90 100
Number of Features (%)

100

110

120

130

140

150

160

M
ea

n
Pi

xe
l V

al
ue

Travel Distance Algorithm

Water
Non-Water

c

0 10 20 30 40 50 60 70 80 90 100
Number of Features (%)

90

100

110

120

130

140

150

160

M
ea

n
Pi

xe
l V

al
ue

Travel Distance Algorithm

Water
Non-Water

d

Figure 4.32: Downwash E↵ect: a) and c) Using TD algorithm without downwash e↵ect;
b) and d) Using TD algorithm with downwash e↵ect.

the image result and the system will send this information to the NN as input to classify
the terrain under study.

Very briefly, the output generated that will represent the chosen color (blue, green
or gray) will be originated from the group of pixels with higher intensity. In water-type
terrains, this group of pixels is generated from the e↵ect of the downwash caused by the
UAV propellers. Thus, the downwash e↵ect will create a circumference (in water-type
terrains) in which the flow tends to point outside the downwash center and therefore will
give rise to the blue color.

As mentioned in Section 3.3.2, the images were divided into blocks to ensure a less
sensitive analysis of the flows. Thus, in a 640 by 480 image, each block has a width of 80
pixels (eight blocks) and a height of 96 pixels (five blocks) with a total of 40 blocks.

Since this algorithm only returns one type of output (1D information), Tables 4.2 and
4.3 and Figure 4.33 show the experimental results for each of the images (each type of
terrain) presented in Section 3.3.2. It should be noted that two images were taken from
Section 3.3.2, in which the former was taken without the downwash e↵ect and the latter

158

4.8. CIRCULAR MOTION

considered this e↵ect.

Blocks number in each Terrain under studied

Lake Pool Vegetation Asphalt Sand
Terrain Type

0

5

10

15

20

25

30

35

40

Bl
oc

ks
 n

um
be

r

a

Blocks number in each Terrain under studied

Lake Pool Vegetation Asphalt Sand
Terrain Type

0

5

10

15

20

25

30

35

40

Bl
oc

ks
 n

um
be

r

b

Figure 4.33: Circular Motion Algorithm output: Blue - flows point out from the center of
the downwash; Green - flows point towards the center of the downwash; Gray - indicates
that the flow size is below a certain given threshold value: a) without downwash e↵ect; b)
with downwash e↵ect.

Table 4.2: Experimental Results from Figure 4.33 a) without downwash e↵ect.

Figure Type of Terrain Blue Block Green Blocks Gray Blocks Classification

3.74 a) water 0 0 40 water (lake)

3.74 e) water 1 3 36 water (pool)

3.75 a) vegetation 0 1 39 non-water (vegetation)

3.75 e) asphalt 0 0 40 non-water (asphalt)

3.76 a) sand 0 24 16 non-water (sand)

As Tables 4.3 and Figure 4.33 b) demonstrate, water-type terrains present, on average,
blue blocks corresponding to the circumference of the downwash e↵ect and, at the same
time, gray blocks more noticeable in the center of the downwash e↵ect.

As in the two previous sections on static and dynamic features (Sections 4.1, 4.2, 4.3
4.4, 4.5, 4.6 and 4.7), in addition to the terrain classification between water-type terrain
and non-water-type terrains, it is important to know the influence that the downwash
e↵ect has on these same terrains. Thus, new data was taken in the same locations without
the downwash e↵ect. Then, the CM algorithm was applied and the results presented in
Figure 4.34.

Figure 4.34 concludes that, without the downwash e↵ect, water-type terrains do not

159

CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.3: Experimental Results from Figure 4.33 b) with downwash e↵ect.

Figure Type of Terrain Blue Block Green Blocks Gray Blocks Classification

3.74 a) water 34 0 6 water (lake)

3.74 e) water 27 0 13 water (pool)

3.75 a) vegetation 2 2 36 non-water (vegetation)

3.75 e) asphalt 0 0 40 non-water (asphalt)

3.76 a) sand 5 20 15 non-water (sand)

Blocks number in each Terrain under studied

Lake Pool Vegetation Asphalt Sand
Terrain Type

0

10

20

30

40

50

60

70

80

90

100

Bl
oc

ks
 n

um
be

r (
%

)

a

Blocks number in each Terrain under studied

Lake Pool Vegetation Asphalt Sand
Terrain Type

0

10

20

30

40

50

60

70

80

90

100

Bl
oc

ks
 n

um
be

r (
%

)

b

Figure 4.34: Downwash E↵ect: a) Using the CM algorithm without downwash e↵ect; b)
Using the CM algorithm with downwash e↵ect.

present any type of texture due to the fact that, in general, the terrain is always homo-
geneous (for example, neglecting any external wind e↵ect) either in a lake or in a pool
terrain. The probability that the algorithm di↵erentiates water and non-water types is
lower (in this case, pool and lake would be relatively equal to the asphalt). However, with
the downwash e↵ect it is possible to create dynamic texture in water-type terrains and
therefore the probability of correctly classifying the terrain under study increases.

4.9 Combined Results

After explaining the experimental results in Chapter 4, it is in this section that the im-
pact of the downwash e↵ect on water-type and non-water-type terrains will be described
mathematically. In addition to showing this impact, the results obtained with the work
presented in Section 2.8 Table 2.3 will also be validated.

160

4.9. COMBINED RESULTS

To evaluate the robustness of the algorithms proposed in this dissertation, a classifier
of discriminant analysis was needed: Linear Discriminant Analysis (LDA).

Linear discrimination is a classic classifier of discriminant analysis (Hastie et al., 2009)
that seeks to separate classes using linear decision surfaces. This classifier has also, as its
main advantages, a low computational demand and the possibility of classifying multiple
classes.

The classification of a sample in a class is given by:

2
6666666666666666666664

A1 A2 A3 · · · An

B1 B2 B3

C1 C2 C3
...

. . .

N1 Nn

3
7777777777777777777775

=

2
6666666666666666666664

AµI1 AµI2 AµI3 · · · AµIn
BµI1 BµI2 BµI3
CµI1 CµI2 CµI3
...

. . .

NµI1 NµIn

3
7777777777777777777775

÷

2
6666666666666666666664

Apc1 Apc2 Apc3 · · · Apcn
Bpc1 Bpc2 Bpc3
Cpc1 Cpc2 Cpc3
...

. . .

Npc1 Npcn

3
7777777777777777777775

(4.1)
Where Nµn represents the group mean matrix and Npcn is the accumulate pooled

covariance information matrix. Next, the result of this division will be multiplied by an
identity matrix that has one more column (Nn +1) and the first element is equal to zero,
in order to have the result matrix first column equal to zero too.

2
6666666666666666666664

0 A1 A2 A3 · · · An

0 B1 B2 B3

0 C1 C2 C3
...

...
. . .

0 N1 Nn

3
7777777777777777777775

=

2
6666666666666666666664

A1 A2 A3 · · · An

B1 B2 B3

C1 C2 C3
...

. . .

N1 Nn

3
7777777777777777777775

·

2
6666666666666666666664

0 1 0 0 · · · 0
0 0 1 0
0 0 0 1
...

. . .

0 1

3
7777777777777777777775

(4.2)

After that, with the equation 4.2 result, it is possible to add it to an NnxNn matrix
where the constants di↵erent from zero are in the first column. According to equation
4.3, these constants are placed in the first column of the equation 4.2 result matrix.

2
6666666666666666666664

Ac A1 A2 A3 · · · An

Bc B1 B2 B3

Cc C1 C2 C3
...

...
. . .

Nc N1 Nn

3
7777777777777777777775

=

2
6666666666666666666664

0 A1 A2 A3 · · · An

0 B1 B2 B3

0 C1 C2 C3
...

...
. . .

0 N1 Nn

3
7777777777777777777775

+

2
6666666666666666666664

Ac 0 0 0 · · · 0
Bc 0 0 0
Cc 0 0 0
...

. . .

Nc 0

3
7777777777777777777775

(4.3)

where the constants of equation 4.3 are the result of a multiplication between the
matrix resulting from equation 4.1 and the transposed group mean matrix. This mul-
tiplication will be also multiplied by a constant -0.5 and added to the logarithm of the
probability of each class in the training sample.

Along with the developed LDA algorithm, it is possible to evaluate the robustness of
the algorithms proposed in this dissertation. Table 4.4 shows the results of each algorithm

161

CHAPTER 4. EXPERIMENTAL RESULTS

to classify water-type and non-water-type terrains and it also shows the impact of using
the downwash e↵ect.

Table 4.4: LDA of the seven proposed algorithms in this dissertation with and without
downwash e↵ect (DWmeans the presence of downwash e↵ect and PI means Performance
Improvement).

Classification (%)

Water (%) Non-Water (%) Normal Average (%) Weighted Average (%)

Feature no DW DW PI no DW DW PI no DW DW PI no DW DW PI

Gabor 72.22 84.44 12.22 89.79 90.96 1.17 81.01 87.70 6.69 84.42 88.97 4.55

EMD 32.36 49.88 17.52 95.44 99.76 4.32 63.90 74.83 10.93 76.15 84.52 8.37

W-K Filter 16.97 48.95 31.98 95.46 97.00 1.54 56.22 72.98 16.76 71.47 82.31 10.84

GLCM 65.00 97.90 32.9 98.00 99.56 1.56 81.50 98.73 17.23 87.91 99.05 11.14

GLRLM 98.56 98.89 0.33 98.20 99.00 0.8 98.38 98.95 0.57 98.31 98.97 0.66

TD 70.81 98.33 27.52 90.51 90.78 0.27 80.66 94.56 13.9 84.49 93.09 8.6

CM 22.12 99.30 77.18 97.90 99.10 1.2 60.01 99.20 39.19 74.73 99.16 24.43

Where DW means the presence of downwash e↵ect and PI means Performance Im-
provement. Since the number of images for each terrain type is not balanced, two types
of calculations were made: Normal Average - calculates the probability of correctly clas-
sifying without considering the images number portion of each type of terrain; Weighted
Average - calculates the probability of correctly classifying considering the images num-
ber portion of each type of terrain;

As displayed in Table 4.4, it is possible to reach two important conclusions:

1. Downwash E↵ect: From Table 4.4 in the "Water" column, it is possible to see that
the downwash e↵ect caused by UAVs has a greater impact on dynamic (TD and CM)
than static (Gabor, EMD, W-K Filter, GLCM and GLRLM) texture algorithms, with
the greatest impact occurring in CM algorithm with an improvement of 77.18% for
classifying water-type terrain. It is possible to conclude that, in general, the e↵ect
of downwash helps to classify water-type and non-water-type terrains, proving the
veracity of the hypothesis proposed in Section 1.3;

2. Terrain Classification: It is also possible to conclude from Table 4.4 that from the
seven proposed algorithms, the one that present the best results, both in the clas-
sification of water and non-water types, is the CM algorithm with an accuracy of
99.16% Weighted Average. It reinforces the idea that the dynamic texture algo-
rithms are more reliable than the static ones due to the fact that the static ones do
not have the movement perception that help in distinguishing terrains.

162

4.9. COMBINED RESULTS

In addition to assessing the individual robustness of each algorithm combinations
were also made between these algorithms in order to know which would be the best
combinations to help in the classification of water and non-water terrain types. The LDA
was once again applied in the several possible combinations. The four algorithms with the
highest success rate in the classification were chosen. Table 4.5 shows the combination
between these algorithms and their respective accuracy results.

Table 4.5: LDA combination between GLCM, GLRLM, TD and CM algorithms proposed
and developed in this dissertation using the downwash e↵ect.

Features Classification (%)

LDA GLCM GLRLM TD CM Water (%) Non-Water (%) Average (%) Weighted Average (%)

1 X X 98.15 91.42 94.79 93.48

2 X X 99.06 98.71 98.89 98.82

3 X X 91.27 99.59 95.43 97.05

4 X X 99.13 94.85 96.99 96.16

5 X X 96.32 98.00 97.16 97.49

6 X X 90.98 91.58 91.28 91.40

7 X X X 92.78 94.22 93.50 93.78

8 X X X 95.47 99.16 97.32 98.03

9 X X X 99.58 97.92 98.75 98.43

10 X X X X 99.65 99.57 99.61 99.59

From Table 4.5, it is possible to conclude that using only the static features (GLCM
and GLRLM) or only the dynamic ones (TD and CM), are not good combinations for
classifying the terrain types being studied:

• It appears that if one only uses the static features, the system has the worst accuracy
in classifying non-water-type terrains (in this case vegetation, asphalt and sand)
with 91.42% accuracy;

• It is also concluded, from Table 4.5, that if one only uses dynamic features, the
system is less likely to correctly classify water-type terrains, obtaining a 90.98% of
accuracy.

It is necessary to have a mixture of these two features in order to improve the classifi-
cation of the terrain type over which the UAV is flying. In this case, the best solution is to

163

CHAPTER 4. EXPERIMENTAL RESULTS

combine these four features, obtaining a percentage of 99.65% 99.57% in the classification
of water-type and non-water-type terrain, respectively.

After showing the study of each algorithms developed in this dissertation with the
presence or non-presence of the downwash e↵ect caused by the UAV, as well as the
study of the best combination for the classification of water and non-water types, the
next step will be to compare the results obtained in this section with the results of other
similar works presented in Table 2.3 of Section 2.8. Once again, each work compares the
respective success rates for each terrain type as well providing an overall system average
(in the column on the right). The average does not always consider the four terrain types
under study, but each work’s terrain types instead, since in some of the related works the
proposed algorithms do not test all four terrain types.

Comparing Table 4.5 in this section to Table 2.3 of Section 2.8, it is possible to conclude
that the system proposed in this dissertation o↵ers the best accuracy for classifying water
and non-water terrain types.

One of the main advantages of this work, when compared to (Sofman et al., 2006), (Sal-
vado, 2018) and (Wang et al., 2019), is the ability to obtain a better classification with the
aid of the downwash e↵ect, when the UAV is only one to two meters above the ground.
In (Sofman et al., 2006), (Salvado, 2018) and (Wang et al., 2019), images are taken by
satellites or at a distance of more than 60 meters above the ground, which increases the
error in classifying the terrain types being studied.

One of the strengths of the current work is the use of the terrain’s dynamic texture
for terrain classification. It clearly shows improved system accuracy, since each terrain
behaves di↵erently when a↵ected by the UAV’s downwash e↵ect. According to the works
cited in Table 2.8, only (Pombeiro et al., 2015) used the dynamic texture feature, observ-
ing that the proposed system’s accuracy is greater than most articles presented in Table
2.3. Compared to (Pombeiro et al., 2015), this dissertation proposes di↵erent static and
dynamic texture features, in order to classify water and non-water terrain types with
increased accuracy.

4.10 GPU Acceleration

Since processing time is an important factor in terrain classification, the author of this
dissertation also studied the GPU capabilities in the GLCMmatrix design using the CUDA
framework.

As explained in Section 3.2.5, to build the GLCM matrix, the pixel values are used
as coordinates of the matrix itself. Therefore, if one or more threads try to write in the
same coordinates of the GLCM matrix, an undefined result will occur. To solve this,
atomic operations are needed to serialize operations and ensure that the latest value is
read. Hence, whenever there is more than one thread writing at the same position in the
GLCM matrix, priority will be given to the first thread and so on. This solution has an
advantage and a disadvantage:

164

4.10. GPU ACCELERATION

• Advantage: The atomic operation ensures that there are no undefined values and
the final result is correct;

• Disadvantage: The disadvantage centers on the fact that the parallelism gets lost in
these situations of having to write in the same memory. In this way the processing
time is reduced.

a b

Figure 4.35: Examples of terrain types: water (a); vegetation (b).

To verify this e↵ect in detail (several threads writing in the same memory at the same
time), the CUDA algorithm ran on two images, as shown in Figures 4.35 a) and b), and
the GLCM matrix processing time in both figures was registered. With the same image
dimensions (Width = 640 andHeight = 480), and the same number of blocks and threads
in each block, the following couple statements were concluded: the processing using
CUDA programming in Figure 4.35 a) is 0.230 ms, while in Figure 4.35 b) it is 0.195 ms;
therefore, as in Figure 4.35 b), the processing time is 1.18 times faster than in Figure 4.35
a). These results are due to the fact that in water-type terrains, the pixel values are close to
each other (much more homogeneous image), than vegetation-type terrains where there
is a greater diversity of pixel colors. There is a greater probability that the threads will
write in the same memory position when studying water-type terrains and consequently
su↵er from poorer processing-time performance.

The di↵erence in processing time when programmed in CPU and GPU concerning
the GLCM matrix was also studied in detail. Figure 4.35 a) was used as a case study and
the di↵erence was analyzed for di↵erent resolutions, maintaining the same number of
threads in each block and a ratio of grid blocks ofWidth/threads in X and Height/thread

in Y. Table 4.6 and Figure 4.36 show the results obtained.
From Table 4.6 and Figures 4.36 a) and b) it is possible to conclude that using the

capacities of the GPU always results in a better processing time regardless the image size
and the distance parameter for the developed GLCM matrix.

As illustrated in Figures 4.36 a) and b), it is possible to make some important obser-
vations. Regarding resolution, as it increases, the processing time will also increase when

165

CHAPTER 4. EXPERIMENTAL RESULTS

64
0x

48
0

10
24

x1
02

4

40
96

x4
09

6

81
92

x8
19

2

16
38

4x
16

38
4

Resolution

0

200

400

600

800

1000

1200

Pr
oc

es
si

ng
 ti

m
e

(m
s)

GLCM Matrix: CPU vs GPU

CPU and d=1
CPU and d=100
GPU and d=1
GPU and d=100

a

64
0x

48
0

10
24

x1
02

4

40
96

x4
09

6

81
92

x8
19

2

16
38

4x
16

38
4

Resolution

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FP
S

(K
H

z)

GLCM Matrix: CPU vs GPU

CPU and d=1
CPU and d=100
GPU and d=1
GPU and d=100

b

Figure 4.36: CPU vs GPU: Processing time in relation to resolution (a); FPS in relation to
the resolution (b).

Table 4.6: Processing time for di↵erent resolutions and GLCM distance parameter.

Width Height Distance CPU (ms) GPU (ms) Speed up

640 480
1 2.491 0.240 10.379

100 1.944 0.230 8.452

1024 1024
1 5.408 0.488 11.082

100 5.067 0.418 12.122

4096 4096
1 69.617 8.194 8.496

100 67.392 7.965 8.461

8192 8192
1 271.039 40.576 6.680

100 269.634 36.995 7.288

16384 16384
1 1092.070 190.093 5.745

100 1078.060 145.195 7.425

166

4.11. MAPPING

programming using the CPU and GPU, mainly in the 16384x16384 resolution where the
processing time using CPU is approximately 1 second, and 0.190 seconds with GPU (with
the distance parameter equal to 1). It is also possible to observe that as the resolution
of the image increases, the processing time increases exponentially both in the CPU and
GPU. It is also known that generally the higher the resolution of the image, the greater
the accuracy of the terrain classification (it is possible to obtain much more data in the
same image). It is necessary to have a trade-o↵ between the system accuracy and the
algorithm processing time.

4.11 Mapping

After the classification of terrain types (water and non-water), it is necessary to georef-
erence the results obtained by the NN. As already mentioned in Section 3.5, using the
ROS framework it is possible to build a dynamic map where all the information obtained
by the neural network is allocated to the map. Therefore, in order to validate the dy-
namic mapping algorithm, a flight test was carried out in Parque da Paz, Portugal. In this
test, the UAV performed a mission where it would fly over water-type terrain (lake) and
non-water-type terrain (vegetation) as shown in Figure 4.37.

Figure 4.37: Mission test in Parque da Paz, Portugal.

As the UAV flies over di↵erent types of terrain, it sends the images via wi-fi (using the
ROS framework) to the machine responsible for running the algorithms for the terrain
classification. When the result of each classification is generated, a dynamic map is
created as follows:

1. Black: represents the water-type terrain;

167

CHAPTER 4. EXPERIMENTAL RESULTS

2. White: represents the non-water-type terrain;

3. Gray: represents the unknown-type terrain.

Figure 4.38 shows the georeferenced dynamic map result. It is possible to conclude
that the dynamic mapping algorithm was able to georeference the outputs generated
from each image from the UAV. It should be noted that there are di↵erent sizes in the
output generated due to the di↵erent altitudes at which the UAV flew during the mission.
It should also be noted that there are certain gaps in each output generated due to the
lower UAV GPS resolution.

Figure 4.38: Georeferenced dynamic map result in Parque da Paz, Portugal.

168

C
h
a
p
t
e
r

5
Conclusions and Future Work

This chapter summarizes the main contributions obtained through the dissertation re-
sults and proposes some guidelines for future research on the theme, highlighting in
Section 5.2 the points where the developed application can be improved.

5.1 Conclusions

Themain goal of the work presented in this dissertation was to study and develop textural
features that would allow the classification of water and non-water terrain types using
the downwash e↵ect caused by the UAV’s rotors.

In an initial phase, an intensive literature review was carried out, focused on features
extraction that could be used to classify the terrain under study, such as color, texture,
dynamism, frequency and spatial domains and deep learning. Chapter 2 provided an
overview of the existing terrain classification methods. The pros and cons of design’s
were also discussed in detail.

Concerning the downwash e↵ect, the main goal was to study and analyse how it could
be used to classify water terrains and di↵erentiate this terrain from other non-water
terrains. Thus, static and dynamic texture features were developed in order to extract
water characteristics and their natural behaviors, such as the circular e↵ect caused by the
UAV when it is flying over this terrain type, namely:

• 1st Static Algorithm: Gabor with Lowess Regression;

• 2nd Static Algorithm: PSO;

• 3rd Static Algorithm: EMD;

• 4th Static Algorithm: W-K Filter;

169

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

• 1st Dynamic Algorithm: TD algorithm;

• 2nd Dynamic Algorithm: CM algorithm.

Throughout each section, a detailed presentation of each algorithm was provided,
and, in the experimental results chapter, a comparative analysis of the algorithms’ per-
formance when terrain exposed or not to the downwash e↵ect, was carried out. The tests
were conducted on simulated and real environments. The obtained results suggest that
the proposed system is able to identify water and non-water terrain types.

However, it is important to mention that the proposed system has limitations. There
are several factors that may influence the terrain type classification, namely:

• Image acquisition time: the image dataset used for testing the proposed algorithms
did not contain di↵erent times of the day, what can originate di↵erent lightning
condition that influence the classification results;

• UAV flying altitude: the UAV altitude estimator (sensors) may be prone to errors
and if the UAV is above the necessary altitude to generate the downwash e↵ect, the
terrain type classification system may fail;

• UAV motors: depending on the UAV motor types, the downwash e↵ect may be
almost non-existent; for this reason, it should be guaranteed that the UAV setup is
adequate;

• Sea-Type terrains: In sea-type terrain, as illustrated in Figure 5.1, it is possible to
observe that the UAV propellers do not have enough strength to cause the circular
e↵ect that is expected to be created in water-type terrains. This happens when the
existing waves and wind have more impact than the UAV air flow.

Figure 5.1: Water Terrain: Sea-type terrain.

170

5.1. CONCLUSIONS

Apart from the environmental and material factors, the algorithms proposed in this
dissertation may find some limitations, such as:

• Gabor with Lowess Regression: this algorithm is very sensitive to the downwash
e↵ect. If this e↵ect is not strong, the Gabor filter will not be able to extract many
features and, therefore, the Lowess Regression may not work correctly, resulting in
wrong classifications;

• W-K Filter: this algorithm is rotation invariant, as it does not change with the
UAV rotation; however, it is still sensitive to the UAV angular movement that may
(wrongly) influence the terrain type classification. To minimize this problem it was
decided to use a gimbal;

• GLCM and GLRLM: despite being second level statistical algorithms, they are sen-
sitive to the image intensity; if the images are acquired in a low-light environment,
the GLCM and GLRLM may (wrongly) classify the studied terrain;

• TD and CM: these are algorithms that extract dynamically features from the terrain,
so it is essential to capture only the studied terrains movement while neglecting the
UAV movement. If the former UAV movement is considered, the features’ dynamic
extraction algorithms will not work correctly. At this critical moment, the next
couple approaches were followed: gimbal usage for image stabilization; and having
the UAV in hold mode on, during at least 0.5 seconds, for each waypoint from the
UAV mission, in order to not have interference between the terrains’ movement
with its own.

Knowing each algorithm limitations, it is also important to know which algorithms
are more robust when used with the downwash e↵ect. The second level statistical algo-
rithms, GLCM and GLRLM, were the ones that extracting static texture features and in
the presence of the downwash e↵ect presented better results. However, dynamic texture
features shown more robustness in discriminating both water and non-water terrains.

The behavior of the combination of these algorithms was also considered and studied.
It was concluded that using only static features or only dynamic ones, are not the best
combinations for classifying the terrain type. Using only the static texture features, the
system has the worst accuracy in classifying non-water-type terrain (in this case vegeta-
tion, asphalt and sand) with 91.42% accuracy; on the other hand, using only dynamic
texture features, the system is less likely to correctly classify water-type terrains, obtain-
ing a 90.98% of accuracy. Thus, it was concluded that a mixture of static and dynamic
texture features was necessary to improve the terrain-type classification. In this disser-
tation, the best combination was obtained by merging the GLCM; GLRLM; TD and CM
algorithms, resulting in a accuracy of 99.65% and 99.57% in the classification of water
and non-water type terrain, respectively.

171

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

In order for the UAV to take advantage of the onboard processing it is necessary to
have a system with good accuracy to classify the terrain types, and at the same time it
must be capable of running in real time. To speed up the image processing GLCM algo-
rithm was redesigned to be parallelized and consequently be able to run in the onboard
GPU. The CUDA framework was used to make the sequential image process into parallel
processing mode. Using this CUDA framework, the GLCM algorithm was studied in
greater depth, achieving speedups up to 10x. It was also validated that using the GLCM
algorithm the processing time with GPU resources varies with the image homogeneity.
This means that in a more homogeneous image, the processing time will increase due
to the attempt to write in the same memory position from several threads at the same
time. In a more heterogeneous image, there are no longer so many pixels with the same
value and therefore it will not be written in the same memory position by several threads,
which speeds up the image processing.

The last described topic in this dissertation is georeferenced mapping. This topic
was able to dynamically georeference the terrain classified by the system (determine if
it is water or non-water-type terrain) and send it to an end user who needs it. As such,
autonomous cooperation between robots is promoted, providing the main motivation
behind this dissertation. However, it is important to emphasize that building an accu-
rate georeferenced dynamic map depends on the GPS sensors, IMU for altitude and on
the intrinsic and extrinsic camera characteristics. These parameters must be carefully
calibrated so that the map matches the actual environment.

5.2 Future Work

Despite the good results obtained so far, there are several areas in which improvements
are foreseen. The author of this dissertation plans to further investigate the following
topics in the near future:

• Perform a more in-depth study on changing the environment colors, and improving
the robustness of the algorithm. Color variation could influence the results with
false positives/negatives. Although the dynamic texture does not su↵er much from
these changes, due to the similarity in the way the terrain moves, this could highly
a↵ect the static texture;

• Since the algorithm was designed for a UAV flying at an altitude of between one and
two meters, it is likely that at this altitude the UAV may collide with objects in the
environment. The author of this thesis has developed an algorithm (Carvalho et al.,
2020) to avoid obstacles, from images taken from a depth camera. However, cur-
rently it is only working with static objects. An improved version of this algorithm
could be used to support the autonomous navigation of the proposed system;

172

5.2. FUTURE WORK

• It is also important to make a more in-depth study into di↵erent camera resolutions
in order to improve the robustness of the proposed system. However, the system
speed may be a↵ected by higher resolutions, as explained in Section 4.10.

173

Bibliography

Aaron (2016). ROS Answers: What is a nodelet? url: http://wiki.ros.org/ros_comm
(visited on 03/12/2019).

Acharya, U. R., P. Chowriappa, H. Fujita, S. Bhat, S. Dua, J. E. W. Koh, L. Eugene, P.
Kongmebhol, and N. Kh (June 2016). “Thyroid Lesion Classification in 242 Patient
Population Using Gabor Transform Features from High Resolution Ultrasound Im-
ages”. In: Knowledge-Based Systems 107. doi: 10.1016/j.knosys.2016.06.010.

Ahonen, T., A. Hadid, and M. Pietikäinen (Jan. 2007). “Face Description with Local
Binary Patterns: Application to Face Recognition”. In: IEEE transactions on pattern
analysis and machine intelligence 28, pp. 2037–41. doi: 10.1109/TPAMI.2006.244.

Ahuja, N. (1982). “Dot Pattern Processing Using Voronoi Neighborhoods”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-4.3, pp. 336–343. issn:
0162-8828. doi: 10.1109/TPAMI.1982.4767255.

Akhloufi, M. A. and A. Bendada (2010). “Locally adaptive texture features for multispec-
tral face recognition”. In: 2010 IEEE International Conference on Systems, Man and
Cybernetics, pp. 3308–3314. doi: 10.1109/ICSMC.2010.5642391.

Andrearczyk, V. (2017). “Deep learning for texture and dynamic texture analysis”. In:
AUVSI (2015). The Benefits of Unmanned Aircraft Systems. url: https://epic.org/

events/UAS-Uses-Saving-Time-Saving-Money-Saving-Lives.pdf (visited on
03/12/2019).

Bai, C., J. Guo, L. Guo, and J. Song (2019). “Deep Multi-Layer Perception Based Ter-
rain Classification for Planetary Exploration Rovers”. In: Sensors 19.14, p. 3102.
issn: 1424-8220. doi: 10.3390/s19143102. url: http://dx.doi.org/10.3390/
s19143102.

Barron, J., D. Fleet, and S. Beauchemin (Feb. 1994). “Performance Of Optical Flow
Techniques”. In: International Journal of Computer Vision 12, pp. 43–77. doi: 10.

1007/BF01420984.
B.WilsonJr., H. and D. S.Farrior (Oct. 1976). “Computation of geometrical and inertial

properties for general areas and volumes of revolution”. In: Science Direct Volume 8,
pp. 257–263.

Camarinha-Matos, L. (2000). “The handouts of the Scientific ResearchMethodologies and
Technologies course of the PhD program in Electrical and Computer Engineering”.

175

http://wiki.ros.org/ros_comm
https://doi.org/10.1016/j.knosys.2016.06.010
https://doi.org/10.1109/TPAMI.2006.244
https://doi.org/10.1109/TPAMI.1982.4767255
https://doi.org/10.1109/ICSMC.2010.5642391
https://epic.org/events/UAS-Uses-Saving-Time-Saving-Money-Saving-Lives.pdf
https://epic.org/events/UAS-Uses-Saving-Time-Saving-Money-Saving-Lives.pdf
https://doi.org/10.3390/s19143102
http://dx.doi.org/10.3390/s19143102
http://dx.doi.org/10.3390/s19143102
https://doi.org/10.1007/BF01420984
https://doi.org/10.1007/BF01420984

BIBLIOGRAPHY

Campos, I. S. G., E. R. Nascimento, and L. Chaimowicz (2015). “Terrain Classification
from UAV Flights Using Monocular Vision”. In: 2015 12th Latin American Robotics
Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), pp. 271–276.

Canny, J. (1986). “A Computational Approach to Edge Detection”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8.6, pp. 679–698. issn: 0162-8828.
doi: 10.1109/TPAMI.1986.4767851.

Cargyrak (2016). Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). url: https:
/ / upload . wikimedia . org / wikipedia / commons / 1 / 10 / Onyxstar _ HYDRA - 12 _

UAV_with_embedded_hyperspectral_camera_for_agricultural_research.jpg

(visited on 03/12/2019).
Caridade, C., A. Marçal, and T. Mendonça (Jan. 2008). “The use of texture for image

classification of black & white air photographs”. In: International Journal of Remote
Sensing - INT J REMOTE SENS 29, pp. 593–607. doi: 10.1080/01431160701281015.

Carvalho, J., D. F. Pedro, L. Campos, J. Fonseca, and A. Mora (Jan. 2020). “Terrain
Classification Using W-K Filter and 3D Navigation with Static Collision Avoidance”.
In: pp. 1122–1137. isbn: 978-3-030-29512-7. doi: 10.1007/978-3-030-29513-
4_81.

Castellano, G., L Bonilha, L. Min, and F. Cendes (Jan. 2005). “Texture analysis of medical
images”. In: Clinical radiology 59, pp. 1061–9. doi: 10.1016/j.crad.2004.07.008.

Chapman, A. (2016). Types of Drones: Multi-Rotor vs Fixed-Wing vs Single Rotor vs Hybrid
VTOL. url: https://www.auav.com.au/articles/drone- types/ (visited on
03/12/2019).

Chen, K., V. Kvasnicka, P. Kanen, and S. Haykin (June 2001). “Multi-Valued and Universal
Binary Neurons: Theory, Learning, and Applications [Book Review]”. In: Neural
Networks, IEEE Transactions on 12, pp. 647–647. doi: 10.1109/TNN.2001.925572.

Dechter, R. (1986). “Learning While Searching in Constraint-Satisfaction-Problems”. In:
AAAI.

Dias, L. (2015). Study and analysis of di↵erent camera calibration methods. url: http://
repositorio.roca.utfpr.edu.br/jspui/handle/1/6454 (visited on 03/12/2020).

Ebadi, F. and M. Norouzi (2017). “Road Terrain detection and Classification algorithm
based on the Color Feature extraction”. In: 2017 Artificial Intelligence and Robotics
(IRANOPEN), pp. 139–146. doi: 10.1109/RIOS.2017.7956457.

FAA (2018). O�ce of the Secretary of Transportation, Federal Aviation Administration, De-
partment of Transportation. Unmanned Aircraft Systems. url: https://www.faa.

gov/data_research/aviation/aerospace_forecasts/media/FY2018-38_FAA_

Aerospace_Forecast.pdf (visited on 03/12/2019).
Farnebäck, G. (2003). “Two-Frame Motion Estimation Based on Polynomial Expansion”.

In: Image Analysis. Ed. by J. Bigun and T. Gustavsson. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 363–370. isbn: 978-3-540-45103-7.

176

https://doi.org/10.1109/TPAMI.1986.4767851
https://upload.wikimedia.org/wikipedia/commons/1/10/Onyxstar_HYDRA-12_UAV_with_embedded_hyperspectral_camera_for_agricultural_research.jpg
https://upload.wikimedia.org/wikipedia/commons/1/10/Onyxstar_HYDRA-12_UAV_with_embedded_hyperspectral_camera_for_agricultural_research.jpg
https://upload.wikimedia.org/wikipedia/commons/1/10/Onyxstar_HYDRA-12_UAV_with_embedded_hyperspectral_camera_for_agricultural_research.jpg
https://doi.org/10.1080/01431160701281015
https://doi.org/10.1007/978-3-030-29513-4_81
https://doi.org/10.1007/978-3-030-29513-4_81
https://doi.org/10.1016/j.crad.2004.07.008
https://www.auav.com.au/articles/drone-types/
https://doi.org/10.1109/TNN.2001.925572
http://repositorio.roca.utfpr.edu.br/jspui/handle/1/6454
http://repositorio.roca.utfpr.edu.br/jspui/handle/1/6454
https://doi.org/10.1109/RIOS.2017.7956457
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2018-38_FAA_Aerospace_Forecast.pdf
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2018-38_FAA_Aerospace_Forecast.pdf
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2018-38_FAA_Aerospace_Forecast.pdf

BIBLIOGRAPHY

Fleming, J. (2014). MQ-8B Fire Scout. url: https://web.archive.org/web/20140420235117/
http://www.northropgrumman.com/Capabilities/FireScout/Documents/pageDocuments/

MQ-8B_Fire_Scout_Data_Sheet.pdf (visited on 03/12/2019).
Fraczek, P., A. Mora, and T. Kryjak (2018). “Embedded Vision System for Automated

Drone Landing Site Detection”. In: Computer Vision andGraphics. Ed. by L. J. Chmielewski,
R. Kozera, A. Orłowski, K. Wojciechowski, A. M. Bruckstein, and N. Petkov. Cham:
Springer International Publishing, pp. 397–409. isbn: 978-3-030-00692-1.

Galloway, M. M. (1975). “Texture analysis using gray level run lengths”. In: Computer
Graphics and Image Processing 4.2, pp. 172 –179. issn: 0146-664X. doi: https://doi.
org/10.1016/S0146-664X(75)80008-6. url: http://www.sciencedirect.com/
science/article/pii/S0146664X75800086.

Garra, B., B. Krasner, S. Horii, S. Ascher, S. Mun, and R. Zeman (Nov. 1993). “Improving
the Distinction between Benign and Malignant Breast Lesions: The Value of Sono-
graphic Texture Analysis”. In: Ultrasonic imaging 15, pp. 267–85. doi: 10.1006/uimg.
1993.1017.

Ghosh, H. and M. Sharma (Sept. 2015). “Histogram of gradient magnitudes: A rotation
invariant texture-descriptor”. In: doi: 10.1109/ICIP.2015.7351681.

Giusti, A., J. Guzzi, D. C. CireÊan, F. He, J. P. Rodríguez, F. Fontana, M. Faessler, C.
Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza, and L.M. Gambardella (2016). “A
Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots”.
In: IEEE Robotics and Automation Letters 1.2, pp. 661–667. doi: 10.1109/LRA.2015.
2509024.

Glaser, A. (2018). The Air Tra�c Control System of Our Low-Altitude Future. url: https:
//slate.com/technology/2018/01/how-air-traffic-control-could-work-

when-we-have-drones-and-flying-cars.html (visited on 03/12/2019).
Gomez, F. and J. Schmidhuber (Jan. 2005). “Co-evolving recurrent neurons learn deep

memory POMDPs”. In: pp. 491–498. doi: 10.1145/1068009.1068092.
González, D., J. Becker, E. Torres, J. Albistur, M. Escudero, R. Fuentes, H. Hinostroza, and

F. Donoso (Jan. 2008). “Using LiDAR technology in forestry harvest planning”. In:
Gracia, C., R. S. Tavares, A. Mora, J. Fonseca, H. Oliveira, and L. O. Oliveira (2020).

“FPGA-based Satellite Image Classification for Water Bodies Detection”. In: IEEE
International Young Engineers Forum on Electrical and Computer Engineering YEF-ECE,
pp. –.

Gruszczyfiski, W., W. Matwij, and P. ∂wi‘kała (Apr. 2017). “Comparison of low-altitude
UAV photogrammetry with terrestrial laser scanning as data-source methods for ter-
rain covered in low vegetation”. In: ISPRS Journal of Photogrammetry and Remote
Sensing 126, pp. 168–179. doi: 10.1016/j.isprsjprs.2017.02.015.

Halterman, R. and M. Bruch (Apr. 2010). “Velodyne HDL-64E LIDAR for Unmanned
Surface Vehicle Obstacle Detection”. In: Proceedings of SPIE - The International Society
for Optical Engineering, p. 9. doi: 10.1117/12.850611.

177

https://web.archive.org/web/20140420235117/http://www.northropgrumman.com/Capabilities/FireScout/Documents/pageDocuments/MQ-8B_Fire_Scout_Data_Sheet.pdf
https://web.archive.org/web/20140420235117/http://www.northropgrumman.com/Capabilities/FireScout/Documents/pageDocuments/MQ-8B_Fire_Scout_Data_Sheet.pdf
https://web.archive.org/web/20140420235117/http://www.northropgrumman.com/Capabilities/FireScout/Documents/pageDocuments/MQ-8B_Fire_Scout_Data_Sheet.pdf
https://doi.org/https://doi.org/10.1016/S0146-664X(75)80008-6
https://doi.org/https://doi.org/10.1016/S0146-664X(75)80008-6
http://www.sciencedirect.com/science/article/pii/S0146664X75800086
http://www.sciencedirect.com/science/article/pii/S0146664X75800086
https://doi.org/10.1006/uimg.1993.1017
https://doi.org/10.1006/uimg.1993.1017
https://doi.org/10.1109/ICIP.2015.7351681
https://doi.org/10.1109/LRA.2015.2509024
https://doi.org/10.1109/LRA.2015.2509024
https://slate.com/technology/2018/01/how-air-traffic-control-could-work-when-we-have-drones-and-flying-cars.html
https://slate.com/technology/2018/01/how-air-traffic-control-could-work-when-we-have-drones-and-flying-cars.html
https://slate.com/technology/2018/01/how-air-traffic-control-could-work-when-we-have-drones-and-flying-cars.html
https://doi.org/10.1145/1068009.1068092
https://doi.org/10.1016/j.isprsjprs.2017.02.015
https://doi.org/10.1117/12.850611

BIBLIOGRAPHY

Haralick, R. M., K. Shanmugam, and I. Dinstein (1973). “Textural Features for Image Clas-
sification”. In: IEEE Transactions on Systems, Man, and Cybernetics SMC-3.6, pp. 610–
621. issn: 0018-9472. doi: 10.1109/TSMC.1973.4309314.

Haralick, R., K Shanmugam, and I. Dinstein (Jan. 1973). “Textural Features for Image
Classification”. In: IEEE Trans Syst Man Cybern SMC-3, pp. 610–621.

Hastie, T., R. Tibshirani, J. Friedman, and J. Franklin (Nov. 2009). “The Elements of
Statistical Learning: Data Mining, Inference, and Prediction”. In: Math. Intell. 27,
pp. 83–85. doi: 10.1007/BF02985802.

Heung, B., H. C. D. Ho, J. Zhang, A. Knudby, C. Bulmer, andM. Schmidt (Mar. 2016). “An
overview and comparison of machine-learning techniques for classification purposes
in digital soil mapping”. In: Geoderma 265, pp. 62–77. doi: 10.1016/j.geoderma.
2015.11.014.

Hofmann, T., J. Puzicha, and J. Buhmann (Sept. 1998). “Unsupervised texture segmen-
tation in a deterministic annealing framework”. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 20, pp. 803 –818. doi: 10.1109/34.709593.

Hong, H., L. Zheng, and S. Pan (2018). “Computation of Gray Level Co-Occurrence
Matrix Based on CUDA and Optimization for Medical Computer Vision Application”.
In: IEEE Access 6, pp. 67762–67770.

Horn, Z., L. Auret, J. McCoy, C. Aldrich, and B. Herbst (Dec. 2017). “Performance of
Convolutional Neural Networks for Feature Extraction in Froth Flotation Sensing”.
In: IFAC-PapersOnLine 50, pp. 13–18. doi: 10.1016/j.ifacol.2017.12.003.

Hu, M.-K. (1962). “Visual pattern recognition by moment invariants”. In: IRE Transac-
tions on Information Theory 8.2, pp. 179–187. issn: 0096-1000. doi: 10.1109/TIT.
1962.1057692.

Huang, d., C. Shan, M. Ardabilian, and L. Chen (Nov. 2011). “Local Binary Patterns and
Its Application to Facial Image Analysis: A Survey”. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part C 41, pp. 765–781. doi: 10.1109/TSMCC.2011.2118750.

Huang, N., Z Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C.-C. Tung, and H.
Liu (Mar. 1998). “The empirical mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis”. In: Proceedings of the Royal Society
of London. Series A: Mathematical, Physical and Engineering Sciences 454, pp. 903–995.
doi: 10.1098/rspa.1998.0193.

ITSB (2015). ros_comm. url: http://wiki.ros.org/ros_comm (visited on 03/12/2019).
Jose, A., D. Merlin, N. Joseph, E. George, and A. Vadukoot (July 2014). “Performance

study of edge detection operators”. In: pp. 7–11. doi: 10.1109/EmbeddedSys.2014.
6953040.

Joseph, L. (2015). Mastering ROS for Robotics Programming. Ed. by P. Publishing. Packt
Publishing. isbn: 9781783551798. url: https://www.packtpub.com/hardware-
and-creative/mastering-ros-robotics-programming.

Jung, B.-G., Y.-J. Cha, H.-H. Kim, S.-I. Jun, and J.-H. Cho (1995). “Dynamic Code inding
for Scalable Operatin in Distributed Real-Time Systems”. In:

178

https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1007/BF02985802
https://doi.org/10.1016/j.geoderma.2015.11.014
https://doi.org/10.1016/j.geoderma.2015.11.014
https://doi.org/10.1109/34.709593
https://doi.org/10.1016/j.ifacol.2017.12.003
https://doi.org/10.1109/TIT.1962.1057692
https://doi.org/10.1109/TIT.1962.1057692
https://doi.org/10.1109/TSMCC.2011.2118750
https://doi.org/10.1098/rspa.1998.0193
http://wiki.ros.org/ros_comm
https://doi.org/10.1109/EmbeddedSys.2014.6953040
https://doi.org/10.1109/EmbeddedSys.2014.6953040
https://www.packtpub.com/hardware-and-creative/mastering-ros-robotics-programming
https://www.packtpub.com/hardware-and-creative/mastering-ros-robotics-programming

BIBLIOGRAPHY

Khan, Y. N., P. Komma, and A. Zell (Nov. 2011). “High Resolution Visual Terrain Classifi-
cation for Outdoor Robots”. In: pp. 1014–1021. doi: 10.1109/ICCVW.2011.6130362.

Koch, R., S. May, and A. Nuchter (Mar. 2017). “DETECTION AND PURGING OF SPEC-
ULAR REFLECTIVE AND TRANSPARENT OBJECT INFLUENCES IN 3D RANGE
MEASUREMENTS”. In:

Lacaze, A., K. Murphy, and M. DelGiorno (Jan. 2002). “Autonomous Mobility for the
Demo III Experimental Unmanned Vehicles”. In:

LeCun, Y., Y. Bengio, and G. Hinton (May 2015). “Deep learning”. In: pp. 436–444. doi:
10.1038/nature14539.

Lecun, Y., K. Kavukcuoglu, and C. Farabet (May 2010). “Convolutional Networks and
Applications in Vision”. In: pp. 253–256. doi: 10.1109/ISCAS.2010.5537907.

Li, B., K. Cheng, and Z. Yu (Oct. 2016). “Histogram of Oriented Gradient Based Gist
Feature for Building Recognition”. In: Computational Intelligence and Neuroscience
2016, pp. 1–9. doi: 10.1155/2016/6749325.

Liu, H., T. Hong, M. Herman, and R. Chellappa (Jan. 2006). “Accuracy vs. e�ciency
trade-o↵s in optical flow algorithms”. In: pp. 174–183. doi: 10.1007/3-540-61123-
1_137.

Lookingbill, A., J. Rogers, D. Lieb, J. Curry, and S. Thrun (Jan. 2007). “Reverse Optical
Flow for Self-Supervised Adaptive Autonomous Robot Navigation”. In: International
Journal of Computer Vision 74, pp. 287–302. doi: 10.1007/s11263-006-0024-x.

Lucas, B. and T. Kanade (Apr. 1981). “An Iterative Image Registration Technique with an
Application to Stereo Vision (IJCAI)”. In: vol. 81.

Ma, X., S. Hao, and Y. Cheng (2017). “Terrain classification of aerial image based on
low-rank recovery and sparse representation”. In: 2017 20th International Conference
on Information Fusion (Fusion), pp. 1–6. doi: 10.23919/ICIF.2017.8009627.

Mallick, S. (2016). Histogram of Oriented Gradient Opencv. url: https://www.learnopencv.
com/histogram-of-oriented-gradients (visited on 06/12/2019).

Matos-Carvalho, J. P., F. Moutinho, A. B. Salvado, T. Carrasqueira, R. Campos-Rebelo,
D. Pedro, L. M. Campos, J. M. Fonseca, and A. Mora (2019). “Static and Dynamic
Algorithms for Terrain Classification in UAV Aerial Imagery”. In: Remote Sensing
11.21, p. 2501. issn: 2072-4292. doi: 10.3390/rs11212501. url: http://dx.doi.
org/10.3390/rs11212501.

Matos-Carvalho, J. P., J. M. Fonseca, and A. D. Mora (2018). “UAV downwash dynamic
texture features for terrain classification on autonomous navigation”. In: Proceedings
of the 2018 Federated Conference on Computer Science and Information Systems. Ed. by
M. Ganzha, L. Maciaszek, and M. Paprzycki. Vol. 15. Annals of Computer Science
and Information Systems. IEEE, pp. 1079–1083. doi: 10.15439/2018F185. url:
http://dx.doi.org/10.15439/2018F185.

Matthies, L., P Belluta, and M. McHenry (Sept. 2005). “Detecting water hazards for
autonomous o↵-road navigation”. In: pp. 231–242. doi: 10.1117/12.496942.

179

https://doi.org/10.1109/ICCVW.2011.6130362
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1155/2016/6749325
https://doi.org/10.1007/3-540-61123-1_137
https://doi.org/10.1007/3-540-61123-1_137
https://doi.org/10.1007/s11263-006-0024-x
https://doi.org/10.23919/ICIF.2017.8009627
https://www.learnopencv.com/histogram-of-oriented-gradients
https://www.learnopencv.com/histogram-of-oriented-gradients
https://doi.org/10.3390/rs11212501
http://dx.doi.org/10.3390/rs11212501
http://dx.doi.org/10.3390/rs11212501
https://doi.org/10.15439/2018F185
http://dx.doi.org/10.15439/2018F185
https://doi.org/10.1117/12.496942

BIBLIOGRAPHY

Mboga, N., C. Persello, J. R. Bergado, and A. Stein (2017). “Detection of informal set-
tlements from VHR satellite images using convolutional neural networks”. In: 2017
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5169–5172.
doi: 10.1109/IGARSS.2017.8128166.

Moore, T. and D. Stouch (Jan. 2016). “A Generalized Extended Kalman Filter Implemen-
tation for the Robot Operating System”. In: 302, pp. 335–348. doi: 10.1007/978-3-
319-08338-4_25.

Mora, A., T. Santos, S. Łukasik, J. Silva, A. Falcão, J. Fonseca, and R. Ribeiro (Nov. 2017).
“Land Cover Classification fromMultispectral Data Using Computational Intelligence
Tools: A Comparative Study”. In: Information 8, p. 147. doi: 10.3390/info8040147.

Nailon, W. (Mar. 2010). “Texture Analysis Methods for Medical Image Characterisation”.
In: isbn: 978-953-307-071-1. doi: 10.5772/8912.

Nanni, L., A. Lumini, and S. Brahnam (Mar. 2010). “Local binary pattern variants as
texture descriptors for medical image analysis”. In: Artificial intelligence in medicine
49, pp. 117–25. doi: 10.1016/j.artmed.2010.02.006.

NASA (2018). VTOL UAVWith the Cruise E�ciency of a Conventional FixedWing UAV. url:
https://technology.nasa.gov/patent/LAR-TOPS-241 (visited on 03/12/2019).

Ntouskos, V., I. Kalisperakis, and G. Karras (Jan. 2007). “Automatic calibration of digital
cameras using planar chess-board patterns”. In: Optical 3-D Measurement Techniques
VIII 1.

Ojala, T., M. Pietikainen, and T. Maenpaa (2002). “Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 24.7, pp. 971–987. issn: 0162-8828. doi:
10.1109/TPAMI.2002.1017623.

Oppenheim, A. V., R. W. Schafer, and J. R. Buck (1999). “Discrete-time signal processing
(2nd ed.)” In:

Otte, S., S. Laible, R. Hanten, and A. Zell (Jan. 2015). “Robust Visual Terrain Classifica-
tion with Recurrent Neural Networks”. In: doi: 10.15496/publikation-11656.

Oyelade, J., O. Oladipupo, and I. Obagbuwa (Feb. 2010). “Application of k Means Clus-
tering algorithm for prediction of Students Academic Performance”. In: International
Journal of Computer Science and Information Security 7.

P. Valavanis, K. (Jan. 2007). Advances in Unmanned Aerial Vehicles: State of the Art and the
Road to Autonomy. isbn: 978-1-4020-6113-4. doi: 10.1007/978-1-4020-6114-1.

Pombeiro, R., R. Mendonça, P. Rodrigues, F. Marques, A. Lourenço, E. Pinto, P. Santana,
and J. Barata (2015). “Water detection from downwash-induced optical flow for a
multirotor UAV”. In: OCEANS 2015-MTS/IEEE Washington. IEEE, pp. 1–6.

Pérez-Barnuevo, L. (Dec. 2017). “Automated recognition of drill core textures: A geomet-
allurgical tool for mineral processing prediction”. In: Minerals Engineering 118. doi:
10.1016/j.mineng.2017.12.015.

R. Rosell, J., J. Llorens Calveras, R. Sanz, J. Arnó, M. Ribes-Dasi, J. Masip, A. Escolà, F.
Camp, F. Solanelles, F. Gràcia, E. Gil, L. Val, S. Planas de Martí, and J. Palacín (Sept.

180

https://doi.org/10.1109/IGARSS.2017.8128166
https://doi.org/10.1007/978-3-319-08338-4_25
https://doi.org/10.1007/978-3-319-08338-4_25
https://doi.org/10.3390/info8040147
https://doi.org/10.5772/8912
https://doi.org/10.1016/j.artmed.2010.02.006
https://technology.nasa.gov/patent/LAR-TOPS-241
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.15496/publikation-11656
https://doi.org/10.1007/978-1-4020-6114-1
https://doi.org/10.1016/j.mineng.2017.12.015

BIBLIOGRAPHY

2009). “Obtaining the three-dimensional structure of tree orchards from remote 2D
terrestrial LIDAR scanning”. In: Agricultural and Forest Meteorology 149, pp. 1505–
1515. doi: 10.1016/j.agrformet.2009.04.008.

Ramasamy, S., R. Sabatini, A. Gardi, and J. Liu (Aug. 2016). “LIDAR obstacle warning
and avoidance system for unmanned aerial vehicle sense-and-avoid”. In: Aerospace
Science and Technology 55, pp. 344–358. doi: 10.1016/j.ast.2016.05.020.

Rankin, A. and L. Matthies (Nov. 2010). “Daytime water detection based on color
variation”. In: pp. 215 –221. doi: 10.1109/IROS.2010.5650402.

Rankin, A. L., L. H. Matthies, and P. Bellutta (2014). “Daytime water detection based on
sky reflections”. In: 2011 IEEE International Conference on Robotics and Automation,
pp. 5329–5336.

Rato, R. E.C. T. (2012). “Formalização da tolerância à ausência de dados no processa-
mento de sinais discretos”. PhD thesis. Faculdade de Ciências e Tecnologia Nova de
Lisboa. url: http://hdl.handle.net/10362/7971.

Raudies, F. (2013). Optic flow. url: http://www.scholarpedia.org/article/Optic_
flow (visited on 03/12/2020).

Rosebrock, A. (2015). What are Local Binary Patterns? url: https://www.pyimagesearch.
com/2015/12/07/local- binary- patterns- with- python- opencv (visited on
06/12/2019).

Salmon, J. (2010). “On Two Parameters for Denoising With Non-Local Means”. In: IEEE
Signal Processing Letters 17.3, pp. 269–272. issn: 1558-2361. doi: 10.1109/LSP.
2009.2038954.

Salvado, A. B.d. T. (2018). “Aerial Semantic Mapping for Precision Agriculture using
Multispectral Imagery”. MA thesis. Faculdade de Ciências e Tecnologia Universidade
Nova de Lisboa. url: http://hdl.handle.net/10362/59924.

Satpathy, A., X. Jiang, and H.-L. Eng (May 2014). “LBP-Based Edge-Texture Features for
Object Recognition”. In: Image Processing, IEEE Transactions on 23, pp. 1953–1964.
doi: 10.1109/TIP.2014.2310123.

Schmidhuber, J. (2015). “Deep learning in neural networks: An overview”. In: Neural
Networks 61, pp. 85 –117. issn: 0893-6080. doi: https://doi.org/10.1016/j.
neunet.2014.09.003. url: http://www.sciencedirect.com/science/article/
pii/S0893608014002135.

Shamos, M. I. and D. Hoey (1975). “Closest-point problems”. In: 16th Annual Symposium
on Foundations of Computer Science (sfcs 1975), pp. 151–162.

Shen, K. and M. Kelly (2017). “Terrain Classification for O↵-Road Driving CS-229 Final
Report”. In:

Simple Introduction to Convolutional Neural Networks. https://towardsdatascience.
com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac.
Accessed: 12-06-2019.

Singh,M. K. (2019). Di↵erence between CPU andGPU. url: https://www.geeksforgeeks.
org/difference-between-cpu-and-gpu/ (visited on 11/12/2019).

181

https://doi.org/10.1016/j.agrformet.2009.04.008
https://doi.org/10.1016/j.ast.2016.05.020
https://doi.org/10.1109/IROS.2010.5650402
http://hdl.handle.net/10362/7971
http://www.scholarpedia.org/article/Optic_flow
http://www.scholarpedia.org/article/Optic_flow
https://www.pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv
https://www.pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv
https://doi.org/10.1109/LSP.2009.2038954
https://doi.org/10.1109/LSP.2009.2038954
http://hdl.handle.net/10362/59924
https://doi.org/10.1109/TIP.2014.2310123
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.sciencedirect.com/science/article/pii/S0893608014002135
https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
https://www.geeksforgeeks.org/difference-between-cpu-and-gpu/
https://www.geeksforgeeks.org/difference-between-cpu-and-gpu/

BIBLIOGRAPHY

Sklar, D. L. (2015). San Diego to Take Community Feedback on Future Drone Use. url:
https://timesofsandiego.com/politics/2018/11/15/san-diego-to-take-

community-feedback-on-future-drone-use/ (visited on 03/12/2019).
Sofman, B., J Bagnell, A. Stentz, and N. Vandapel (Jan. 2006). “Terrain Classification

from Aerial Data to Support Ground Vehicle Navigation”. In:
Spary, S. (2015). Millennials’ demand for instant gratification is shaping the future of retail.

url: https://www.campaignlive.co.uk/article/millennials-demand-instant-
gratification-shaping-future-retail/1331511 (visited on 03/12/2019).

Specht, D. (Feb. 1991). “A general regression neural network”. In: IEEE transactions on
neural networks / a publication of the IEEE Neural Networks Council 2, pp. 568–76. doi:
10.1109/72.97934.

Tan, X. and B. Triggs (2010). “Enhanced Local Texture Feature Sets for Face Recognition
Under Di�cult Lighting Conditions”. In: IEEE Transactions on Image Processing 19.6,
pp. 1635–1650. issn: 1057-7149. doi: 10.1109/TIP.2010.2042645.

Tong, X.-Y., Q. Lu, G.-S. Xia, and L. Zhang (2018). “Large-Scale Land Cover Classification
in Gaofen-2 Satellite Imagery”. In: IGARSS 2018 - 2018 IEEE International Geoscience
and Remote Sensing Symposium, pp. 3599–3602.

Tüceryan, M. and A. K. Jain (Feb. 1990). “Texture Segmentation Using Voronoi Polygons”.
In: IEEE Trans. Pattern Anal. Mach. Intell. 12.2, pp. 211–216. issn: 0162-8828. doi:
10.1109/34.44407. url: http://dx.doi.org/10.1109/34.44407.

Tully Foote, M. P. (2014). REP 103 – Standard Units of Measure and Coordinate Conventions
(ROS.org). (n.d.). url: https://www.ros.org/reps/rep-0103.html (visited on
03/12/2020).

TullyFoote (2019). tf2. url: http://wiki.ros.org/tf2 (visited on 03/12/2019).
Valdes, R. (2015). How the Predator UAV Works. url: https://science.howstuffworks.

com/predator (visited on 01/19/2018).
Vamvakas, A., I. Tsougos, N. Arikidis, E. Kapsalaki, K. Fountas, I. Fezoulidis, and L.

Costaridou (May 2018). “Exploiting morphology and texture of 3D tumor models in
DTI for di↵erentiating glioblastoma multiforme from solitary metastasis”. In: Biomed-
ical Signal Processing and Control 43, pp. 159–173. doi: 10.1016/j.bspc.2018.02.
014.

Vooon (2018). mavros. url: http://wiki.ros.org/mavros (visited on 03/12/2019).
Voronoi, G. (1908). “Nouvelles applications des paramètres continus à la théorie des

formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres prim-
itifs.” In: Journal für die reine und angewandte Mathematik 134, pp. 198–287. url:
http://eudml.org/doc/149291.

Wallace, L., A. Lucieer, Z. Malenovský, D. Turner, and P. Vopÿnka (2016). “Assessment
of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser
Scanning and Structure fromMotion (SfM) Point Clouds”. In: Forests 7.12, p. 62. issn:
1999-4907. doi: 10.3390/f7030062. url: http://dx.doi.org/10.3390/f7030062.

182

https://timesofsandiego.com/politics/2018/11/15/san-diego-to-take-community-feedback-on-future-drone-use/
https://timesofsandiego.com/politics/2018/11/15/san-diego-to-take-community-feedback-on-future-drone-use/
https://www.campaignlive.co.uk/article/millennials-demand-instant-gratification-shaping-future-retail/1331511
https://www.campaignlive.co.uk/article/millennials-demand-instant-gratification-shaping-future-retail/1331511
https://doi.org/10.1109/72.97934
https://doi.org/10.1109/TIP.2010.2042645
https://doi.org/10.1109/34.44407
http://dx.doi.org/10.1109/34.44407
https://www.ros.org/reps/rep-0103.html
http://wiki.ros.org/tf2
https://science.howstuffworks.com/predator
https://science.howstuffworks.com/predator
https://doi.org/10.1016/j.bspc.2018.02.014
https://doi.org/10.1016/j.bspc.2018.02.014
http://wiki.ros.org/mavros
http://eudml.org/doc/149291
https://doi.org/10.3390/f7030062
http://dx.doi.org/10.3390/f7030062

BIBLIOGRAPHY

Wang, G., X.-Y. Chen, F.-L. Qiao, Z. Wi, and N. E. Huang (2010). “On Intrinsic Mode
Function”. In: Advances in Adaptive Data Analysis. issn: 1793-5369. doi: 10.1142/
s1793536910000549.

Wang, L., J. Peng, and W. Sun (2019). “Spatial–Spectral Squeeze-and-Excitation Residual
Network for Hyperspectral Image Classification”. In: Remote Sensing 11.7, p. 884.
issn: 2072-4292. doi: 10.3390/rs11070884. url: http://dx.doi.org/10.3390/
rs11070884.

Wang, L., D.-W. Sun, H. Pu, and Z. Zhu (May 2015). “Application of Hyperspectral
Imaging to Discriminate the Variety of Maize Seeds”. In: Food Analytical Methods 9.
doi: 10.1007/s12161-015-0160-4.

Woods, M., J. Guivant, and J. Katupitiya (Dec. 2013). “Terrain Classification using Depth
Texture Features”. In:

Yan, W. Y., A. Shaker, and N. El-Ashmawy (Mar. 2015). “Urban land cover classification
using airborne LiDAR data: a review”. In: Remote Sensing of Environment 158, pp. 295–
310. doi: 10.1016/j.rse.2014.11.001.

Yao, T., Z. Xiang, J. Liu, and D. Xu (Sept. 2007). “Multi-Feature Fusion Based Outdoor
Water Hazards Detection”. In: pp. 652 –656. isbn: 978-1-4244-0828-3. doi: 10.

1109/ICMA.2007.4303620.
Zhao, Q., Y. Wang, and Y. Li (2016). “Voronoi tessellation-based regionalised segmen-

tation for colour texture image”. In: IET Computer Vision 10.7, pp. 613–622. issn:
1751-9640. doi: 10.1049/iet-cvi.2015.0299.

ZHENG, Y., S. Yang, X. Liu, J. WANG, T. Norton, J. CHEN, and Y. TAN (May 2018). “The
computational fluid dynamic modeling of downwash flow field for a six-rotor UAV”.
In: Frontiers of Agricultural Science and Engineering 5, pp. 159–167. doi: 10.15302/J-
FASE-2018216.

Özuysal, M. (2018). “Ground texture classification with deep learning”. In: 2018 26th
Signal Processing and Communications Applications Conference (SIU), pp. 1–4.

183

https://doi.org/10.1142/s1793536910000549
https://doi.org/10.1142/s1793536910000549
https://doi.org/10.3390/rs11070884
http://dx.doi.org/10.3390/rs11070884
http://dx.doi.org/10.3390/rs11070884
https://doi.org/10.1007/s12161-015-0160-4
https://doi.org/10.1016/j.rse.2014.11.001
https://doi.org/10.1109/ICMA.2007.4303620
https://doi.org/10.1109/ICMA.2007.4303620
https://doi.org/10.1049/iet-cvi.2015.0299
https://doi.org/10.15302/J-FASE-2018216
https://doi.org/10.15302/J-FASE-2018216

A
p
p
e
n
d
i
x

A
Dissemination

Some of the concepts covered in this dissertation have been published in two Interna-
tional Journals and six International Conference Proceedings as shown in Table A.1 and
Table A.2 respectively. In the case of one of the conference papers (first row in Table A.2)
the author of this dissertation won the Best Paper Award, as shown in Figure A.1.

Figure A.1: Best Paper Award in (Matos-Carvalho et al., 2018).

185

APPENDIX A. DISSEMINATION

Table A.1: Publications in International Journals.

Citation

1
J.P. Matos-Carvalho, José Manuel Fonseca, and André Damas Mora (2019). Terrain
Classification Using Static and Dynamic Texture Features by UAV Downwash E↵ect,
Journal of Automation, Mobile Robotics and Intelligent Systems, 13(1), 84–93.

2
J.P. Matos-Carvalho, F. Moutinho, A.B. Salvado, T. Carrasqueira, R. Campos-Rebelo,
D. Pedro, L.M. Campos, J.M. Fonseca, and A. Mora. Static and Dynamic Algorithms for
Terrain Classification in UAV Aerial Imagery. Remote Sensing. 2019, 11, 2501.

Table A.2: Publications in International Conferences Proceedings.

Citation

1
J. P. Matos-Carvalho, J. M. Fonseca, and A. Mora, "UAV Downwash Dynamic Texture
Features for Terrain Classification on Autonomous Navigation," 2018 Federated
Conference on Computer Science and Information Systems (FedCSIS), Poznan, 2018,
pp. 1079-1083.

2
J. P. Matos-Carvalho, A. Mora, R. Rato, R. Mendonça, and J. M. Fonseca, 2019. UAV
Downwash-Based Terrain Classification Using Wiener-Khinchin and EMD Filters.
In Technological Innovation for Industry and Service Systems (pp. 83–90). Springer
International Publishing.

3
J. P. Matos-Carvalho, D. Pedro, L.M. Campos, J.M. Fonseca, and A. Mora. 2020. Terrain
Classification Using W-K Filter and 3D Navigation with Static Collision Avoidance.
In Intelligent Systems and Applications (pp. 1122–1137). Springer International
Publishing.

4
I. Kim, J. P. Matos-Carvalho, I. Viksnin, L. M. Campos, J. M. Fonseca, A. Mora,
and S. Chuprov 2019. Use of Particle Swarm Optimization in Terrain Classification
based on UAV Downwash. In 2019 IEEE Congress on Evolutionary Computation
(CEC) (pp. 604-610).

5
A. B. Salvado, R. Mendonça, A. Lourenço, F. Marques, J. P. Matos-Carvalho,
L. Miguel Campos, and J. Barata 2019. Semantic Navigation Mapping from Aerial
Multispectral Imagery. In 2019 IEEE 28th International Symposium on Industrial
Electronics (ISIE) (pp. 1192-1197).

6
P. Prates, R. Mendonça, A. Lourenço, F. Marques, J. P. Matos-Carvalho and, J. Barata,
2018. Vision-based UAV detection and tracking using motion signatures. In
undefined (pp. 482-487).

186

A
p
p
e
n
d
i
x

B
Supporting Concepts

This chapter introduces some key aspects which serve as a basis for this dissertation.
These key aspects are the di↵erences between di↵erent UAV models (Section B.1), as well
as the one chosen for this thesis; the concept of downwash in Section B.2, what it is and
how is it produced by an aerial vehicle; computer vision is introduced in Section B.3,
where its sub-domains are briefly described; the framework used in this dissertation
(Section B.4); the sensors that will be used (Section 3.1.1); and a brief description of
the system specifications and architecture (Section 3.1.3). This chapter introduces some
important concepts which will help the reader to better understand the content of this
dissertation.

B.1 UAVModels

What started as a platform for leisure is today becoming a serious industry. Vehicles,
known as UAVs are not only growing in number, but also in the variety of potential
applications. Some of the possible applications enumerated in (P. Valavanis, 2007), are:
pollution and forest-fire monitoring; delivery of retail products; border patrol; aerial map-
ping and surveillance; tra�c monitoring; precision agriculture; and search and rescue
operations).

Several UAV models are shown in Figure B.1. In Figure B.1 a), a military drone from
General Atomics was developed to be used in dangerous war zones for reconnaissance
and combat, controlled far from these areas (Valdes, 2015). A solution from Amazon is
intended to deliver packages, with shorter delivery times (Figure B.1 b)). Next, Figure B.1
c) shows a drone carrying a camera with the objective of filming a nature documentary
(notice that, from Figure 1.1, photography is the main type of use for drones registered

187

APPENDIX B. SUPPORTING CONCEPTS

with the FAA). Furthermore, Figure B.1 d) presents an agriculture-related solution. Fi-
nally, Figures B.1 e) and B.1 f), also present military solutions, with the former being a
single-rotor helicopter used by the US Armed Forces (for surveillance, reconnaissance,
fire support, among other uses) and the latter, a fixed-wing hybrid VTOL with 10 engines
(named GL-10, a prototype from NASA) in hover mode. These solutions di↵er, not only
in terms of their applications, but also in the type of UAV in use. These types will be
discussed below.

a b

c d

e f

Figure B.1: Several examples of UAV models: (a) General Atomics RQ-1A Predator. (b)
Amazon Prime Air, (Spary, 2015). (c) DJI S800, carrying a camera for filming a nature
documentary under the Helicam Project (photo by Alexander Glinz), (Sklar, 2015). (d)
Agricultural research conducted with a drone and hyperspectral camera in April 2016 in
Belgium, (Cargyrak, 2016). (e) MQ-8B Fire Scout Helicopter UAV (Single-rotor) (Fleming,
2014). (f) Photograph of Hybrid-VTOL UAV prototype. Image credit: NASA (NASA,
2018).

Now, It has been noted that the use of UAVs can range rom military applications to
recreation, with clear advantages that include: not exposing the aircraft operator; entering
environments that might be dangerous to humans; performing strenuous or repetitive
tasks, tele-operated or autonomously (AUVSI, 2015). According to (Chapman, 2016),
UAVs can be divided into four main categories:

188

B.1. UAV MODELS

• Fixed-Wing (Figure B.2): Cannot lift vertically and cannot hold their position in
the air because of their "wing". As with normal airplanes, this type of UAV is much
more energy-e�cient than multi-roto UAVs.

Figure B.2: Fixed-Wing UAV.

Being able to use a gasoline engine in these types of UVA will increase their auton-
omy to more than 16 hours and will allow them to cover much longer distances.
The downsides are that they cannot hover, so it is not possible to process aerial
mappings, and because of their size the launching phase is a lot trickier since they
need a runaway or a catapult launcher to get them into the air. The landing phase is
also more complicated, as they will require a runway, a parachute or a net to recover
them safely. Another downside is their higher cost of manufacture and a steeper
learning curve when it comes to piloting;

• Single-Rotor Helicopter (Figure B.3): Looks very similar in design and structure
to actual helicopters since it has one main rotor plus a smaller one on the tail of the
drone to control direction. The benefits are that they are much more e�cient than
multi-rotor helicopter UAVs and can also be powered by a gasoline engine for even
longer endurance.

Figure B.3: Single-Rotor Helicopter UAV.

The higher e�ciency is due to a rule of aerodynamics that states the larger the
rotor blade and the slower it spins, the more e�cient it is. In terms of complexity,
operational and manufacturing costs, the single-rotor is superior when compared
with the other alternatives. However, the big drawback is the danger posed by their

189

APPENDIX B. SUPPORTING CONCEPTS

large spinning blades: the long sharp blade of a single-rotor can be fatal and also
cause major property losses if due caution is not exercised;

• Multi-Rotor (Figure B.4): These are the most common type of UAVs, and also the
cheapest, which are used by not only professionals but also amateurs, mainly for
aerial photography and aerial video surveillance. This is due to the fact that they
enable the greatest control over position and framing.

Figure B.4: Multi-Rotor UAV: HEIFU.

The big drawback of this type of UAV is their major limitations when it comes to
endurance and speed. Not only this, but they also require a lot of energy just to
fight gravity and stabilize themselves, so they drain their batteries relatively quickly
during a flight (20 to 30 mins). They can be further classified based on the number
of rotors present on the drone: are Tricopter (3 rotors), Quadcopters (4 rotors),
Hexacopters (6 rotors) and Octocopters (8 rotors).

• Fixed-Wing Hybrid Vertical Take-O↵ and Landing (VTOL) (Figure B.5): These
UAVs combine the benefits of fixed-wing models (longer flying time) with that of
rotor based models (hovering).

Figure B.5: Fixed-Wing Hybrid VTOLUAV.

Vertical lift is used to lift the drone up into the air from the ground. Gyros and

190

B.2. DOWNWASH EFFECT

accelerometers work in automated mode (autopilot concept) to keep the drone sta-
bilized in the air. Remote based (or even programmed) manual control is used to
guide the drone on the desired course.

Without further ado, Table B.1 presents a summarized comparison of the four UAV
types. From the table, it is possible to infer that the multi-rotor solution can be a suitable
choice for detecting water, given that this solution can easily approach any terrain type
in order to retrieve detailed measurements, and it is considered to be low cost. The
quadcopter shown in Figure B.7 is the solution used in this thesis, possessing all of
the manoeuvrability enunciated previously. Moreover, it carries a gimbal with an RGB
camera, which will help with the terrain classification tasks.

B.2 Downwash E↵ect

The concept of flying consists in using rotors to project air down beneath the aircraft,
making it fly against the force of gravity. This is applicable to large aircraft, helicopters
and multi-rotor unmanned aerial vehicles. The blades spin around, forcing the air over
their curved upper surface and projecting it downwards towards the ground, producing
and upward force called lift.

The downwash e↵ect is a phenomenon produced, at low altitudes, by the aircraft ro-
tors, due to the gradient in air pressure between the upper and lower rotor blade surfaces.
When flying, the air flows in the direction in which it is forced by the blades, as seen
in Figure B.6. When the aircraft gets closer to the surface, the air forced beneath the
aircraft cannot continue its movement because of the ground, and is diverted, traveling
in di↵erent directions. This e↵ect is exploited by both small and large airplanes, and
increases the lift generated by wings when the aircraft is closer to the ground, as seen in
Figure B.7.

Normally, some of the high-pressure air beneath the wing wraps around the low-
pressure upper surface of the wing. This destroys some of the lift the wing generates,
and is an accepted ine�ciency of wing design. However, when an airplane is benefiting
from ground e↵ect, the ground interferes with this process, improving the e�ciency of
the wing. An airplane can fly with ground e↵ect in situations where it could not fly in
normal air.

For helicopters such e↵ect is also a very important for hovering. The downwash
e↵ect varies greatly depending on the surface beneath the aircraft. Concrete, water and
vegetation (tall or short) behave very di↵erently. In water environments, this reaction
translates into the movement of the water outwardly in all directions from the position
of the aircraft, creating a radial pattern on the water’s surface (Figure B.7).

191

APPENDIX B. SUPPORTING CONCEPTS

Table B.1: Comparison of UAV Categories.

Advantages Drawbacks Example(s)

Fixed-Wing Covers wide areas, for
long periods of time;
Its wings allow it to con-
trol and maintain al-
titude; the only func-
tion of the motors is
to move the vehicle for-
ward (more e�cient).

Low manoeuvrability;
considerably expensive;
taking-o↵/landing is
di�cult and may re-
quire mechanisms such
as catapult, runway or
hand launching.

Figure B.1 a).

Single-Rotor
Helicopter

Can take o↵ and
land vertically; can
carry a high payload (e.g.
precise LiDAR sensors);
has high autonomy
(time of flight).

Can be significantly ex-
pensive; and, if used
in agriculture environ-
ments, its blades can
easily damage crops.

Figure B.1 e).

Multi-Rotor Cheapest solution (com-
pared to the other
three types); high ma-
noeuvrability and po-
sitioning control.

Does not allow high
speeds (compared to
the previous solutions);
and has poor
autonomy given the
great e↵ort required
by the motors to
hover. This makes this
solution unsuitable for
large scale coverage [19].

Figures B.1 b),
B.1 c), B.1 d) and
B.7.

Fixed-Wing
Hybrid

Combines the previous
approaches: incorporates
both hover and
forward flight modes.

Rather recent solution;
higher price due to the
extra technology require-
ments.

Figure B.1 f);
currently be-
ing researched
by Amazon (to
deliver retail
products).

192

B.2. DOWNWASH EFFECT

a b

c d

Figure B.6: UAV downwash flow fields at di↵erent hovering heights: a) 2m; b) 3m; c) 5m;
and the relative boundless height (d) (ZHENG et al., 2018).

Figure B.7: Downwash E↵ect: Using Bebop2 to classify water terrain in Lisbon, Portugal.

193

APPENDIX B. SUPPORTING CONCEPTS

B.3 Computer Vision

Acquiring, processing, analysing and understanding images is the main purpose of the
computer vision field. In general it gathers 2D or 3D high-dimensional data from the real
world, producing symbolic or numerical information in order to generate decisions. It
embraces models constructed with the aid of physics, statistics and geometry. Computer
vision exceeds human vision as it takes advantages of the high processing capacity of
computer systems. Human vision has limited memory, limited to the visible spectrum,
and has a propensity to generate illusion. Computer vision englobes many sub-domains
such as:

• 3-D Reconstruction: This technique can make use of stereo vision, which is the
process of understanding depth from camera images by comparing two or more
views of the same scene. The output generated is a 3-D point cloud where each
point corresponds to a pixel in one of the images. This technique is frequently used
for modelling objects and scene reconstruction;

• Event Detection: Consists of detecting predictable events using a set of images, e.g.
for visual surveillance or people counting;

• Object Recognition: The main focus is to determine a specific object by means of a
given image or images that have been previously learned. This technique can either
use 2-D or 3-D images;

• Motion Estimation: This is a topic of computer vision that studies movements in
image sequences. This technique can be used in such tasks as egomotion, which
involves determining the camera rotation and translation from an image sequence
(e.g. using the optical flow algorithm).

Some systems are intended to solve a specific issue as a stand-alone application, oth-
ers have a much broader design, containing more sub-systems for controlling external
devices, information databases, man-machine interfaces, etc. However the core general
functions for a computer vision system tend to follow a similar path, as can be seen in
Figure B.8. Where:

• Image Acquisition: Digital image produced by an image sensor. It can be static
or a sequence of images (dynamic). The information gathered can be the pixel
values in one or more spectral bands or other types of information, such as depth
or electromagnetic waves;

• Pre-processing: This phase assures that the analysed images satisfy the require-
ments of the method, such as resolution and color grading. Other examples of
pre-processing consists of noise reduction, contrast enhancement and re-sampling;

194

B.4. ROBOT OPERATING SYSTEM

Start

Acquire image

Pre Processing

Feature Extraction

Detection

High-Level Processing

Decision

Stop

Figure B.8: Example of a generic computer vision algorithm.

• Feature extraction: A crucial step in computer vision is the extraction of features
from the image data. Features can be lines, edges, ridges or interesting features
such as corners or points;

• Detection: This is where the specific points of interest are relevant enough to be
selected for further processing;

• High-level processing: Consisting of a set image regions (or a full image). This is
where this data will be processed using the methods of the application in order to
generate a decision;

• Decision: The final decision for the application.

B.4 Robot Operating System

The Robot Operating System (ROS) is a “robot application development platform that
provides various features such as message passing, distributed computing, code reusing,
(...)” (Joseph, 2015), incorporating software and hardware applied to robotics applications.
The ROS also provides support for a wide range of programming languages; the possi-
bility of visualizing data (e.g. the content of topics, nodes, packages, coordinate systems
graphs and sensor data); and the possibility to write and execute code in a modular way,
increasing robustness and also contributing to the standardization of this framework.

Some related concepts will be introduced, as they will be required to understand some
of the algorithms that will be discussed in this dissertation.

195

APPENDIX B. SUPPORTING CONCEPTS

B.4.1 ROS Packages

The basic concept that the reader needs to be familiarized with is the ROS package. This
is where nodes’ source and header files, executable scripts, launch files, among other
items are stored and organized.

B.4.2 ROS Graph Layer

One of the packages installed from source is ros_comm1 contains the ROS middleware/-
communication packages, known as the ROS “Graph” Layer. This package is directly
associated with implementations and tools for the concepts shown in Figure B.9. These
concepts can be found in any book, and in the ROS wide online documentation, although
some of these will be briefly introduced here given their relevance to the content of this
dissertation.

Figure B.9: ROS Graph Concepts (ITSB, 2015).

The ROS Master2 is what makes it possible for di↵erent nodes to find and communi-
cate with each other. A distributed approach will be adopted in this thesis. The process
will be initialized on one machine, and nodes will be able to communicate with it from a
remote machine (Joseph, 2015).

Given that ROS is a distributed computing framework, it allows network connections
and information exchange to perform di↵erent tasks. Messages allow a publish/subscribe
pattern of Topics3 (the message named bus - its identifier), whereas services4 provide a
request/response behavior. Therefore, while ROS topics are unidirectional, with ROS
services, one node is the server, from which a client may request a service and, after com-
pletion of a procedure, send a reply (Joseph, 2015). This is done with nodes5, explained
in Section B.4.3.1, which can be seen as the system’s processes, and it may run on di↵erent
machines.

1http://wiki.ros.org/ros_comm
2http://wiki.ros.org/roscore
3http://wiki.ros.org/Topics
4http://wiki.ros.org/Services
5http://wiki.ros.org/Nodes

196

http://wiki.ros.org/ros_comm
http://wiki.ros.org/roscore
http://wiki.ros.org/Topics
http://wiki.ros.org/Services
http://wiki.ros.org/Nodes

B.4. ROBOT OPERATING SYSTEM

Finally, bags6 will be used extensively in this thesis, as they allow the information
being transmitted via di↵erent topics to be saved. The parameter server allows di↵erent
parameters to be accessible from a node. These can be loaded from a launch file or from
inside a node and can be declared in a YAML file.

B.4.3 Nodes vs. Nodelets

Two important concepts are the aforementioned ROS Nodes (Joseph, 2015), and Nodelets,
which are where all of the computation will take place. Figure B.10 summarizes the
di↵erence between these two methods.

a

b

Figure B.10: a) Nodes vs. b) Nodelets.

B.4.3.1 Nodes

The nodes are presented in Figure B.10 a). The way in which they function has already
been explained. Each node can directly communicate with another via standard TCP/IP
sockets and the master functions in the same way as a Domain Name System (DNS)
server. Each node can therefore subscribe to a topic which leads to the establishment of
a connection with the publisher. This communication between nodes is one of the most
important aspects in ROS.

6http://wiki.ros.org/rosbag

197

http://wiki.ros.org/rosbag

APPENDIX B. SUPPORTING CONCEPTS

The problem with this approach is that, in the case of the TCP/IP protocol, when
large amounts of data are being transferred (such as Point Clouds or a large Octomap)
then, the whole process of packing, sending and unpacking the message takes a lot of
time (Aaron, 2016), which becomes unbearable if tasks such as textures extraction and
obstacle detection are included.

B.4.3.2 Nodelets

As an alternative, nodelets7, shown in Figure B.10 b), provide zero copy communication
between processes (which are called nodelets), since the communication process sends
boost shared pointers. Nevertheless, two drawbacks exist, which are that nodelets are
usually more unstable than nodes; and given that a pointer is used to avoid copying data,
data can only be shared between processes on the same machine, which may be a problem
if expensive processing requirements are required (Aaron, 2016).

B.4.4 Coordinate Frame Management

The question “How does the ROS framework manage the relationships between coor-
dinate frames?” remains unanswered. This is important given that a robot has to be
described by coordinate frames that may change over time and has to be localized in
reference to world frame(s).

There are three packages related to this topic that are worth mentioning: tf28; joint-
StatePublisher9; and robotStatePublisher10. The first maintains the relationships
between frames organized in a tree-like structure and allows to access transforms between
any two coordinate frames at any time (TullyFoote, 2019). The robot description can be
written on a specific Unified Robot Description File (URDF) file type, where each joint
can be classified, for example, as revolute (meaning that it can rotate around an axis).
The jointStatePublisher finds all of the non-fixed joints from a robot description and
publishes a message with those joints defined, and robotStatePublisher uses the robot
description from the URDF file and calculates the forward kinematics, publishing the
results via tf. A graphic interface can be used to change the joint states.

B.5 Other Packages

Other packages that are being used in this project are mentioned in Table B.2, along
with a brief description. Although, it is important to mention that a large number of
packages have not been mentioned, mostly because they are very commonly used in ROS,
the ones presented in the table are considered to be important for this project and had to
be installed following installation of the ROS.

7http://wiki.ros.org/nodelet
8http://wiki.ros.org/tf2
9http://wiki.ros.org/joint_state_publisher

10http://wiki.ros.org/robot_state_publisher

198

http://wiki.ros.org/nodelet
http://wiki.ros.org/tf2
http://wiki.ros.org/joint_state_publisher
http://wiki.ros.org/robot_state_publisher

B.5. OTHER PACKAGES

Table B.2: Installed Packages.

Package Name Description

nmea_navsat_driver;
nmea_msgs

Provides an ROS interface for Global Position-
ing System (GPS) devices that output compatible
NMEA sentences and publish a topic of
sensor_msgs/NavSatFix with the global coordi-
nates of the device. It will also be used when collecting
data for tests (Vooon, 2018).

mavros Provides a communication driver for various autopilots
with MAVLink communication
protocol (Moore and Stouch, 2016). It will be used to connect
with the ArduPilot board.

robot_localization Will be used to estimate the global frame
based on the IMU and GPS. It converts the
sensor_msgs/NavSatFix to IMU and uses an
EKF to compute the global frame estimation.

199

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	The need for an Unmanned Aerial Vehicle
	Problem Statement and Motivation
	Research Question and Hypothesis
	Research Method
	Integration with other Research Activities
	Dissertation Structure

	State of the Art
	Texture
	Texel-Based Texture Descriptions
	Quantitative Texture Measurements
	Edge Density and Detection
	Gabor Filter
	Local Binary Patterns
	Gray-Level Co-Occurrence Matrix
	Gray-Level Run Length Matrix

	Optical Flow
	Spectral Information
	Deep Learning
	Light Detection and Ranging
	Summary Related Work - Terrain Classification

	Methodology
	Experimental Setup
	Perception Sensors
	Terrain Types
	System Specifications

	Static Feature Extraction for Terrain Classification
	Gabor with Lowess Regression
	Particle Swarm Optimization
	Fourier and Empirical Mode Decomposition
	Wiener-Khinchin
	GLCM
	GLRLM

	Dynamic Feature Extraction for Terrain Classification
	Travel Distance
	Circular Motion

	GPU Acceleration
	Mapping

	Experimental Results
	Gabor with Lowess Regression
	Particle Swarm Optimization
	Empirical Mode Decomposition
	Wiener-Khinchin
	GLCM
	GLRLM
	Travel Distance
	Circular Motion
	Combined Results
	GPU Acceleration
	Mapping

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Dissemination
	Supporting Concepts
	UAV Models
	Downwash Effect
	Computer Vision
	Robot Operating System
	ROS Packages
	ROS Graph Layer
	Nodes vs. Nodelets
	Coordinate Frame Management

	Other Packages

