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Abstract

Zika virus (ZIKV) is a newly-identified infectious cause of congenital disease. Transplacental

transfer of maternal IgG to the fetus plays an important role in preventing many neonatal

infections. However, antibody transfer may also have negative consequences, such as

mediating enhancement of flavivirus infections in early life, or trafficking of virus immune

complexes to the fetal compartment. ZIKV infection produces placental pathology which

could lead to impaired IgG transfer efficiency as occurs in other maternal infections, such as

HIV-1 and malaria. In this study, we asked whether ZIKV infection during pregnancy impairs

transplacental transfer of IgG. We enrolled pregnant women with fever or rash in a prospec-

tive cohort in Vitoria, Brazil during the recent ZIKV epidemic. ZIKV and dengue virus

(DENV)-specific IgG, ZIKV and DENV neutralizing antibodies, and routine vaccine antigen-

specific IgG were measured in maternal samples collected around delivery and 20 paired

cord blood samples. We concluded that 8 of these mothers were infected with ZIKV during

pregnancy and 12 were ZIKV-uninfected. The magnitude of flavivirus-specific IgG, neutraliz-

ing antibody, and vaccine-elicited IgG were highly correlated between maternal plasma and

infant cord blood in both ZIKV-infected and -uninfected mother-infant pairs. Moreover, there

was no difference in the magnitude of plasma flavivirus-specific IgG levels between mothers

and infants regardless of ZIKV infection status. Our data suggests that maternal ZIKV infec-

tion during pregnancy does not impair the efficiency of placental transfer of flavivirus-spe-

cific, functional, and vaccine-elicited IgG. These findings have implications for the neonatal

outomes of maternal ZIKV infection and optimal administration of antibody-based ZIKV vac-

cines and therapeutics.
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http://orcid.org/0000-0003-1438-4554
https://doi.org/10.1371/journal.pntd.0007648
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007648&domain=pdf&date_stamp=2019-09-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007648&domain=pdf&date_stamp=2019-09-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007648&domain=pdf&date_stamp=2019-09-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007648&domain=pdf&date_stamp=2019-09-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007648&domain=pdf&date_stamp=2019-09-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007648&domain=pdf&date_stamp=2019-09-06
https://doi.org/10.1371/journal.pntd.0007648
https://doi.org/10.1371/journal.pntd.0007648
http://creativecommons.org/licenses/by/4.0/


Author summary

In 2015, a Zika virus (ZIKV) epidemic emerged in Latin America, where dengue virus

(DENV) already was endemic. The ZIKV epidemic revealed an array of birth defects and

neurodevelopmental abnormalities in newborns associated with maternal infection. ZIKV

may now be co-endemic in Latin America with DENV. Antibodies transferred from

mother to the fetus in pregnancy can protect newborns from infections in early life, before

they are eligible for vaccination. Conversely, flavivirus-specific IgG transfer could mediate

enhancement of DENV infections in early life, or transfer ZIKV immune complexes into

the fetal compartment. As a first step in evaluating these potential outcomes, it is impor-

tant to understand whether ZIKV infection in pregnancy and its associated placental

pathology impacts the magnitude or types of IgG subpopulations that are transferred

across the placenta. To test this, we assessed paired maternal and cord blood collected at

delivery from mothers who presented with rash and/or fever in pregnancy during the

ZIKV epidemic in Vitoria, Brazil. Of these, we classified 8 as ZIKV-infected based on

virus detection and/or neutralization serology, and 12 as ZIKV-uninfected. Comparing

ZIKV-infected and uninfected groups, we detected no difference in transfer efficiency of

IgG targeting ZIKV, DENV, or routine vaccine antigens. These findings indicate that the

magnitude of IgG transferred across the placenta was not deficient at the time of birth in

the setting of maternal ZIKV infection. Sustained transplacental IgG transfer with ZIKV

infection during pregnancy indicates that ZIKV exposure in utero should not impact

maternal antibody mediated protection during early life. However, concern remains over

potential risk of severe primary DENV infection in ZIKV-exposed infants in endemic

regions, or whether ZIKV could access the fetal compartment via antibody-mediated

transport. This passive antibody transfer in pregnancy is an important consideration for

flavivirus vaccine and therapeutic development efforts.

Introduction

The emergence of Zika virus (ZIKV) in the Americas in 2015 revealed that ZIKV could be con-

genitally transmitted and cause fetal neurological damage [1–3]. Neurodevelopmental defects

associated with congenital Zika syndrome (CZS) include microcephaly, arthrogryposis, motor

and cognitive impairment, as well as vision and hearing loss [4]. ZIKV is the first example of a

teratogenic vector-borne disease in humans. Initial estimates during the epidemic detected a

42% rate of fetal or neonatal abnormalities in symptomatic ZIKV-infected pregnant women

[1], whereas subsequent epidemiologic studies with larger populations estimated a 7–14% rate

of neurological defects in infants of pregnant women infected with ZIKV [5,6]. While the

recent global epidemic has largely waned, the lack of preventative options for protection

against ZIKV suggests ZIKV is likely to be a re-emerging and ongoing cause of congenital

infections.

Transplacental transfer of IgG during pregnancy provides passive immunity to the fetus

and is critical to protecting newborns against infections [7]. Maternal immunization during

pregnancy can boost levels of protective IgG transferred to the fetus, providing a valuable tool

for reducing neonatal morbidity. For example, tetanus immunization of pregnant women, or

women of child-bearing age, resulted in a 94% reduction in neonatal tetanus mortality rates

[8]. Moreover, maternal influenza vaccination and the magnitude of maternally derived anti-

bodies are associated with protection of infants from influenza illness [9–11]. These benefits

have led to the recommendation of providing diphtheria, tetanus, pertussis combined vaccines
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and influenza vaccines routinely during pregnancy [12,13]. Therefore, transplacental transfer

of IgG is an important feature of maternal vaccination and natural immunity that may be lev-

eraged for protection against neonatal pathogens.

Humoral immunity is thought to play an important role in protection against flavivirus

infections [14–16]. ZIKV neutralizing antibodies likely provide durable protection against re-

infection, therefore eliciting robust antibody responses is a key goal of ZIKV vaccine develop-

ment [17]. Given the severe consequences of ZIKV disease in neonates, an ideal ZIKV vaccine

would not only prevent infection in vaccine recipients but also protect fetuses from ZIKV con-

genital transmission. One way to protect fetuses could be transplacental transfer of ZIKV vac-

cine-elicited IgG. However, transplacental transfer of flavivirus-specific IgG also can lead to

enhanced DENV disease during infancy, and may mediate transcytosis of ZIKV immune com-

plexes [18–20]. Due to the key role of antibody transfer for newborn health, it is important to

delineate the quantity and function of IgG transferred from mother to infant during pregnancy

and to determine how transfer is altered by congenital pathogens.

The cross-reactive antibody responses between the antigenically similar DENV and ZIKV

may lead to risks in early life for DENV disease enhancement in infants through transplacental

transfer of flavivirus antibodies [19,21–24]. This risk is known to be mediated by antibodies

generated from a prior DENV infection that can enhance DENV viremia and disease and

ZIKV antibodies may have the potential to similarly enhance DENV infection [25–27]. Timing

of past flavivirus infection also influences this risk as cross-neutralization of DENV and ZIKV

is restricted to early convalescence, and antibody populations become more virus-specific over

time [28,29]. While DENV-specific IgG are efficiently transferred in healthy pregnancies, wan-

ing maternal flavivirus-specific IgG levels throughout the first year of life leads to age-associ-

ated increased risk for severe DENV infection [19,30,31].

A second concern regarding placental IgG transfer is the potential of viral transcytosis from

maternal to fetal compartment with immune complexes and subsequent enhanced fetal infection.

Viruses such as human cytomegalovirus (HCMV) may co-opt this IgG transfer mechanism and

traverse the placenta through the the neonatal Fc receptor (FcRn)[32,33]. Recent work suggests

that ZIKV infection of human placental explants can be enhanced by DENV antibodies [18,34].

However, available epidemiogical data suggest that recent DENV infection provides modest pro-

tection against ZIKV[35,36], highlighting the need to better understand the impact of cross-reac-

tive antibodies in flavivirus disease. Antibody-dependent transfer of ZIKV across the placenta,

antibody-mediated enhancement of DENV disease in infants, and antibody-mediated protection

of fetuses and newborns are all dependent on intact transplacental IgG transfer.

Maternal-fetal IgG transfer occurs at placental villus trees in contact with maternal blood

[33]. In healthy pregnancies, IgG is transferred efficiently such that IgG concentrations in

infant cord blood are often equivalent to or higher than the mother’s levels at delivery [7,37].

Many factors contribute to the efficient transplacental IgG transfer via FcRn, such as IgG sub-

class, antibody avidity, gestational stage, hypergammaglobulinemia [33,38,39], and maternal

conditions or placental pathology.

Therefore, the premise for studying transplacental IgG transfer in the context of ZIKV

infection in pregnancy is twofold. Firstly, maternal HIV-1 infection and placental damage due

to malaria infection are two clinical settings associated with impaired IgG transfer [40–44].

Maternal ZIKV infection also results in placental damage, possibly due to viral infection of

multiple placental cell types and inflammatory immunopathology [45–48]. Interestingly,

maternal infection with DENV, a closely related flavivirus, leads to increased risk of maternal

mortality, pregnancy complications, premature birth, and low infant birth weight, as well as

placental damage [49–53]. Yet, DENV infection in pregnancy does not impair transplacental

IgG transfer in normal birth weight infants [54]. ZIKV infection in pregnancy can result in
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prolonged viremia, suggesting a viral reservoir in an immune privileged site [55–58]. Secondly,

maternal malaria and HIV-1 infection have been established to differentially impact transfer of

IgG subpopulations specific to routine pediatric vaccines [40,59], which may be dependent on

distinct Fc characteristics of each IgG population [60]. This phenomenon impacts antibody

half-life in infant circulation and protection in early life. While prior studies show efficient

transfer of recently boosted flavivirus antibodies after the ZIKV epidemic [61], we further

examined whether pre-existing IgG subpopulations relevant to newborn health are efficiently

transferred following maternal ZIKV infection.

To investigate whether ZIKV infection during pregnancy impairs transplacental transfer of

IgG specific to flaviviruses and common vaccine antigens, we enrolled a prospective cohort of

26 pregnant women from Vitória, Brazil, who presented with fever and rash symptoms consis-

tent with ZIKV infection during the recent Brazilian ZIKV epidemic. Of these women, 20

paired maternal plasma and infant cord blood samples were available from delivery and used

to define the efficiency of transplacental IgG transfer. Evaluating the magnitude and subpopu-

lations of IgG transferred to newborns who are exposed to ZIKV in utero is critical to under-

standing the extent of vaccine protection or risk of severe flavivirus infections in early life, and

the development of antibody-based therapeutics.

Methods

Study population and design

This study enrolled 26 pregnant women living in Southeast Brazil, from which only 20 delivery

samples were collected. All enrollees presented with fever and/or rash during the ZIKV epi-

demic to investigate maternal and infant immunity to ZIKV infection during pregnancy. Two

groups of mother-infant pairs are included in this observational study: one group with mater-

nal ZIKV infection during pregnancy, and the other group without ZIKV infection during

pregnancy. Therefore, mothers with fever or rash during pregnancy but without ZIKV infec-

tion served as a comparator group for those with ZIKV infection and symptomology.

Participants in this study were enrolled from July 2016 to October 2017 in the city of Vitó-

ria, which is the capital of the State of Espı́rito Santo. There are 4 million inhabitants and

50,000 births per year in Espı́rito Santo with the majority living in the metropolitan region of

Vitória [62,63]. This region has had endemic DENV circulation for the past two decades [64]

so it was expected that many participants would have been exposed to DENV previously and

be seropositive for DENV. The first clinically suspected cases of ZIKV infection in Brazil were

described in May 2015, and six months later (November 2015) the first autochthonous ZIKV

case was confirmed in Espı́rito Santo [65–67]. In the months preceding our enrollment, there

was a ZIKV incidence of 3,100 cases per 100,000 inhabitants, and a DENV incidence of 901

cases per 100,000 inhabitants in Espı́rito Santo [64]. In this timeframe, 77 CZS cases were

reported to the State Health Department, including cases of microcephaly, defects of the cen-

tral nervous system suggestive of congenital infection, or stillbirths [64]. Since this region

reflected key features of flavivirus co-endemic settings and had ongoing ZIKV transmission, it

was considered representative of regions with a burden of ZIKV disease and appropriate for

study of maternal and infant ZIKV immunity.

Recruitment

The enrollment field site is based in the city of Vitória at the the Núcleo de Doenças Infecciosas

(NDI), at the Universidade Federal do Espı́rito Santo. During our study, suspected ZIKV infec-

tion was considered a reportable condition to the State Health Department for all patients seen

at public or private clinics within the state. Within a week of a case reported by a physician to
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the State Health Department, a staff member reported notifications of pregnant suspected

ZIKV cases within the State to NDI. Thus the recruitment strategy relied on passive surveil-

lance systems, and no active recruitment was conducted in the community. Upon referral,

staff at the NDI contacted pregnant suspected ZIKV cases within the Vitória metropolitan area

by phone regarding interest in participating in this study. If interested, pregnant suspected

ZIKV cases were invited to the NDI for written informed consent and first recorded visit in

our study at the time of enrollment.

Enrollment and follow-up

At the initial visit for study enrollment, three inclusion criteria were confirmed: 1) pregnant

women with rash or fever; 2) patient was a minimum of 18 years of age; 3) willingness to par-

ticipate in study through provision of written informed consent. No exclusion criteria were

defined. During the enrollment visit, a clinical history and physical evaluation were performed

by a licensed physician, and blood and urine were collected. The following demographic infor-

mation was collected at enrollement: age, municipality, date of birth, last menstrual date, recall

of prior DENV disease, family members or neighbors with symptoms of ZIKV infection, use

of insect repellant, prior vaccination for yellow fever virus, sexual activity in the 10 days before

symptoms of ZIKV infection, symptoms of ZIKV infection in sexual partners, partner’s use of

insect repellent, and use of drugs, tobacco, or alcohol during pregnancy. Any clinical records

and ultrasounds during the pregnancy before symptoms of ZIKV infection also were collected.

All participants were referred for additional prenatal clinical care consultations and ultra-

sounds. Transportation to the NDI research site for every visit, as well as all recommended

consultations with obstetrician-gynecologists and ultrasounds were funded by the study. For

each participant, gestational age at the time of symptoms and delivery was calculated based on

the last menstrual period date and confirmed by ultrasound (performed at 9–22 weeks).

After the enrollment visit, all participants were followed up weekly for up to four weeks,

and monthly visits thereafter until delivery. Though followup of the mothers and infants in

this study is ongoing, the present report only includes samples through delivery. At every visit,

a standardized questionnaire was administered in the form of a semi-structured interview by a

trained research staff member at NDI. Through this questionnaire we collected information

on the presence and duration of symptoms related to ZIKV infection.

At the time of delivery, maternal blood and urine, infant cord blood, and placenta were col-

lected. Newborn head circumference was measured by a nurse prior to hospital discharge, and

reported to study staff. Head circumferences were converted to z score for the corresponding

gestational age using the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project

standards. Microcephaly was defined per WHO and INTERGROWTH-21st guidelines as a z

score lower than -1.88, which is the 3rd percentile of newborns at each gestational age [68,69].

Sample collection

Blood samples were collected into heparin or EDTA tubes, stored at room temperature up to

six hours, and centrifuged at 1300 x G for 10 minutes to obtain plasma. Infant umbilical cord

blood was collected by clamping the cord, cutting it, and draining blood into sterile collection

tubes. Urine samples were collected mid-stream in a sterile screw-top container and stored at

-80˚C. Plasma samples were stored at -80˚C, then shipped to Duke University on dry ice.

Ethics statement

This prospective cohort study was approved by the Institutional Review Board of Hospital Cas-

siano Antonio Moraes, Brazilian National Research Ethics Committee (CEP/CONEP
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Registration number: 52841716.0.0000.5071), and Duke University Medical Center Institu-

tional Review Board (Pro00100218). Women meeting enrollment criteria who provided writ-

ten informed consent were included.

RT-PCR assay for detection of ZIKV

Viral RNA was extracted from 140μL of plasma and urine using QIAmp Viral RNA Mini Kit

(Qiagen). Previously described RT-PCR primers and probes specific for ZIKV were used:

ZIKV1086, ZIKV 1162c, and ZIKV1107-FAM [70]. For this one-step RT-PCR reaction, 5μL of

RNA was combined with 500nM primers, 250nM probe and nucleotides in a total volume of

20μL, including SuperScriptIII RT and Platinum Taq DNA polymerase Mix (Invitrogen). The

negative controls were serum from a 30-year old asymptomatic subject in Vitoria collected in

2016, and PCR grade water (no template control). The positive control was supernatant from

ZIKV-infected Vero cells. Samples and controls were tested in duplicate, and ZIKV positivity

was indicated by detection of amplification at<38 cycles in both duplicate wells on the

Applied Biosystems 7500 Fast platform.

ZIKV IgM antibody capture enzyme-linked immunosorbent assay

(MAC-ELISA)

The CDC MAC-ELISA was adapted and used to detect IgM specific for ZIKV in maternal and

cord blood plasma [71]. Briefly, 96-well high-binding ELISA plates were coated with 20 μg/ml

of mouse anti-human IgM (Sigma #I0759) overnight at 4˚C. Plates were blocked for 30 min-

utes at room temperature with 5% milk in 0.5% TBST, and then samples were added at a 1:40

dilution in quadruplicate for 1 hour at 37˚C. Antigen (ZIKV H/PF/2013 grown in C6/36 cells),

or C6/36 conditioned media as a negative control, was added at a 1:40 dilution overnight at

4˚C. Then, an HRP-conjugated pan-flavivirus antibody (6B6C-1) was added for 1 hour at

37˚C, followed by TMB substrate. Plates were incubated for 20 minutes, upon which 1N

H2SO4 was added to stop the reaction. A positive result required that the absorbance for a par-

ticular plasma was greater than 3-fold higher than the absorbance for that same plasma on C6/

36 conditioned media. Samples run on each plate also include a confirmed ZIKV IgM positive

and negative sample.

Cell culture and virus stocks

Vero-81 cells were grown in Dulbecco’s Modified Eagle Media (Gibco 11965092) supple-

mented with 5% heat-inactivated fetal bovine serum (Cellgro, Cat#35-016-CV) and L-alanyl-

L-glutamine (Thermofisher, GlutaMAX Cat#35050079). Viruses used for the focus reduction

neutralization test were DENV1 (WestPac74), DENV2 (S-16803), DENV3 (CH54389),

DENV4 (TVP-360), obtained from Dr. Aravinda de Silva, University of North Carolina at

Chapel Hill, and ZIKV (H/PF/2013), obtained from the United States Centers for Disease

Control and Prevention (Division of Vector-borne Diseases, Fort Collins, CO). For the detec-

tion of virion binding antibodies, the following viruses from BEI were used: ZIKV (PRVABC59),

DENV1 (Hawaii), DENV2 (New Guinea C), DENV3 (Philippines), and DENV4 (H241). Virus

stocks were grown in Vero-81 cells supplemented with 2% heat-inactivated fetal bovine serum

and 10mM HEPES (Corning, Cat#25-060-CI).

Placental sampling and examination

Placenta samples were available from 11 ZIKV-infected and 8 ZIKV-uninfected subjects out of

26 mothers total in the cohort. Fragments were collected from the whole placenta up to 24
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hours after delivery. Three sets of full thickness samples of placental parenchyma were

obtained in every case and histology performed as previously described [72]. For the histologi-

cal analysis, sections were fixed in 4% formaldehyde phosphate buffered solution, paraffin

embedded, and 5μm sections were stained with hematoxylin and eosin. Histological sections

were examined specifically for villous lesions by a pathologist. Villitis was diagnosed if inflam-

matory exudate was present in the trophoblast or in the villous stroma and was categorized by

Knox & Fox and Redline criteria [73,74]. Placentas were assessed as low-grade villitis if less

than 10 villi were involved per focus, and high-grade if more than 10 villi were involved per

focus [73].

Focus reduction neutralization test

We used previously described methods for FRNT-50 in a 96 well plate [29]. Briefly, serial

5-fold dilutions of heat-inactivated plasma were added to 50–80 focus forming units of either

DENV or ZIKV and incubated for 1 hour at 37˚C, then transferred to a confluent plate of

Vero-81 cells and incubated for 1 hour at 37˚C. Then an overlay of 1% methylcellulose was

added. Cells were fixed with 2% paraformaldehyde and stained with 1 μg/mL of E60 mouse

monoclonal antibody targeting the conserved flavivirus fusion loop [75], then detected with an

anti-mouse IgG horseradish peroxidase conjugate and True Blue substrate (KPL). FRNT-50

values were calculated with the sigmoidal dose-response (variable slope) curve in Prism 7

(GraphPad), constraining values between 0 and 100% relative infection. A valid FRNT-50

curve required an R2 >0.75, hill slope absolute value >0.5, and had to reach at least 50% rela-

tive infection within the range of the plasma dilutions in the assay.

Detection of virion binding IgG

To measure IgG binding responses against whole flavivirus virions, high-binding 96-well

ELISA plates (Greiner) were coated with 30 ng/well of 4G2 antibody (clone D1-4G2-4-15) in

carbonate buffer, pH 9.6 overnight at 4˚C. Plates were blocked in Tris-buffered saline contain-

ing 0.05% Tween-20 and 5% normal goat serum for 1 hour at 37˚C, followed by an incubation

with either ZIKV, DENV1, DENV2, DENV3 or DENV4 for 1 hour at 37˚C. Plasma was tested

at a 1:25 starting dilution in 8 serial 3-fold, 5-fold, or 10-fold dilutions, incubating for 1 hour at

37˚C. Horseradish peroxidase-conjugated goat anti-human IgG antibody (Jackson ImmunoR-

esearch Laboratories, Inc; 109-035-008) was used at a 1: 5,000 dilution, followed by the addi-

tion of SureBlue reserve TMB substrate followed by stop solution (KPL). Optical densities

(OD) were detected at 450 nm (Perkin Elmer, Victor). ED50 values were calculated with the

sigmoidal dose-response (variable slope) curve in Prism 7 (GraphPad), which uses a least

squares fit. An ED50 value was considered valid if the OD at plasma dilution 1:25 was two

(2SD) or three (3SD) standard deviations above the mean OD observed for 11 plasma samples

from healthy U.S. subjects (2SD OD cut-offs: DENV-1 = 0.406, DENV-2 = 0.648, DENV3 =

0.906, and DENV-4 = 0.885; 3SD OD cut-off: ZIKV = 0.596). Software generated ED50 values

from curves with an OD at 1:25 plasma dilution below this cut-off were considered non-bind-

ing and plotted at the limit of detection.

Determination of transplacental transfer of IgG against routine pediatric

vaccines

IgG binding to antigens from pediatric vaccines that are used routinely in Brazil was tested

using a customized binding antibody multiplex assay on the Luminex platform, as previously

described [76]. Pediatric vaccine antigens used for screening included: hepatitis B virus surface

antigen (antigenic combination: adw), rubella virus capsid (AbCam), Bordetella pertussis toxin
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and Corynebacterium diphtheriae toxin (Sigma-Aldrich), Haemophilus influenzae type B oligo-

saccharide-conjugated to human serum albumin (HbO-HA), and tetanus toxoid (Reagent

Proteins). Antibody binding was detected with mouse anti-human IgG-PE (Southern Bio-

Tech) and the fluorescent output was measured on a Bio-Plex 200 system (Bio-Rad Laborato-

ries). Antibody concentrations in μg or International Units per mL were interpolated from

corresponding sigmoidal curves of serially diluted WHO international reference sera (National

Institute of Biological Standards and Control, Potters Bar, UK; NIBSC code numbers: 07/164,

09/222, 06/140, TE-3, 10/262, RUBI-1-94). The efficiency of transplacental IgG transfer was

calculated for each mother-infant pair by dividing the concentration of infant pediatric vac-

cine-specific IgG by the concentration of maternal vaccine-elicited IgG.

Screening for neonatal TORCH pathogens

Data on Toxoplasma, rubella, and syphilis serological status was extracted from the mother’s

prenatal visit clinical records. All tests were performed by State Health Department or clinical

laboratories using commericially available kits approved by the Brazilian Health Regulatory

Agency (ANVISA), as per the manufacturer’s instructions. Chemiluminescent microparticle

immunoassay kits were utilized for detection of Toxoplasma IgM and IgG, as well as rubella

virus IgG. Syphilis serostatus was assessed using a Venereal Disease Research Laboratory test,

which is a nontreponemal test. Congenital HCMV infection was evaluated in our research lab-

oratory using quantitative PCR of infant cord blood. To pellet HCMV from plasma, 200 μL of

infant cord blood was transferred to a high g-force micro-centrifuge tube and spun in an S45A

fixed angle rotor at 30,000 rpm, 4˚C, for 3 hours in a Sorvall Discovery M120 Ultracentrifuge.

Then the supernatant was removed and the pellet re-suspended in 200 μL of 1x PBS. DNA was

extracted using the Roche High Pure Viral Nucleic Acid Kit according to the manufacturer’s

protocol. To quantify and detect HCMV DNA, extracted DNA from each sample was ampli-

fied in six replicates. For this reaction, 5 μL of DNA was added to 15 μL SYBR Select Master

Mix with (ThermoFisher Scientific), 5 μL of water, and 300 nM primers designed to amplify

the immediate-early 1 (IE1) gene of HCMV (Integrated DNA Technologies). IE1 Forward

Primer (20 bp): CAA GCG GCC TCT GAT AAC CA. IE1 Reverse Primer (24 bp): ACT AGG

AGA GCA GAC TCT CAG AGG. For the negative control, PCR grade water was used as a

substitute for extracted DNA in the reaction with in four replicate wells. A 10-fold, 7 series

dilution of plasmid with the amplification region was serially diluted starting at 1x108 copies/

mL to generate a standard curve for quantitation of HCMV DNA in each sample. The lowest

dilution on the standard that could be reliably amplified across replicates was considered as

the threshold for positivity (250 viral DNA copies/mL).

Definition of ZIKV infection

As ZIKV viremia is transient, RT-PCR does not reliably detect ZIKV infection beyond 10–14

days from exposure [77]. Therefore, we combined a RT-PCR diagnostic with serological

approaches based on delivery maternal plasma FRNT-50 titer (FRNT-50) against ZIKV and

DENV (types 1–4). “Primary ZIKV” infection (no prior DENV or ZIKV infection) was defined

as either i) a high ZIKV FRNT-50 (>300) and a low DENV1-4 FRNT-50 (<300), or ii) a low

ZIKV FRNT-50 titer that is still>25 and at least one DENV FRNT-50 >25, suggesting only a

weak transient cross-neutralizing response between ZIKV and DENV. A history of both ZIKV

and DENV (“DENV+ZIKV”) was defined as high ZIKV FRNT-50 (>300), and at least one

DENV FRNT-50>300. DENV immunity only (no ZIKV immunity) was classified as low

ZIKV FRNT-50 (<300), but DENV FRNT-50 >25 (Fig 1). Thus, we defined ZIKV infection as

“primary” or “secondary” ZIKV based on serological evidence of prior DENV exposure,
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whereas the ZIKV-uninfected group may include subjects naïve to both ZIKV and DENV or

those exposed to only DENV.

Since infection with one DENV serotype results in neutralizing activity against that same sero-

type [78], and a subsequent infection with a different serotype results in broad DENV cross-neu-

tralizing activity, we designed criteria to differentiate primary and secondary DENV infections

based on whether the second-highest DENV FRNT-50 was within four-fold of the highest DENV

FRNT-50. To further account for serological cross-reactivity from recently infected subjects in

assessing ZIKV infection status, we confirmed DENV-negative status by RT-PCR where acute

samples were available. Sera with FRNT-50 values below the limit of detection for all five viruses

were classified as ZIKV and DENV naïve. This definition was based on the assumption that a

dominant ZIKV neutralization response at delivery was attributable to the recent symptomatic

illness during pregnancy and not a prior ZIKV infection, given the recency of ZIKV introduction

to the region during the period of enrollment. RT-PCR results from a plasma sample collected

<7 days after symptom onset that were discordant with the serological assessment were repeated.

Statistical analysis and power

Statistical analysis was performed using SAS (version 9.4) and Prism software (GraphPad; ver-

sion 7). Serological responses are presented as a magnitude of flavivirus binding IgG (ED50),

neutralizing (FRNT-50), and vaccine antigen binding IgG (μg/mL or IU/mL). These measures

were assessed for each of the 26 maternal and 20 infant delivery samples, for each antigen

tested (S1 Fig). The percent IgG transferred from mother to infant describes the transplacental

transfer efficiency, and is calculated as the ratio of the magnitude of infant cord blood IgG

binding level (measured as ED50 or μg/ml) to the maternal IgG binding level multiplied by

100. Note that this percent transfer ratio is specific to each antigen tested. Data are presented

as dot plots of percent transfer for each mother infant pair in the ZIKV-infected group as com-

pared to the ZIKV-uninfected group. Scatter plots are used to display the relationship and dis-

tribution of the maternal IgG level as compared to the infant IgG level, by antigen.

Fig 1. Algorithm used to categorize flavivirus exposure history according to ZIKV and DENV focus-reduction

neutralization-50 titers (FRNT-50). Maternal and cord blood plasma were tested by FRNT50 against 5 viruses (ZIKV

and 4 DENV serotypes) and FRNT-50 titers used to infer flavivirus exposure history. All samples were anti-flavivirus IgM

negative, reducing the likelihood of cross-reactivity resulting from recent infections.

https://doi.org/10.1371/journal.pntd.0007648.g001
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With a sample size of 26 mothers and 20 infant samples, our study is powered to reject the

null hypothesis (no correlation between maternal and infant antibody responses), at an alpha

of 0.05 with a power of 0.89 for neutralizing titer correlations, and 0.99 for correlations of IgG

binding to flaviviruses or vaccine antigens. Therefore, this study is adequately powered to

detect associations between maternal and infant antibody measures. For Wilcoxon Rank tests

comparing IgG transfer efficiency between ZIKV-infected and uninfected mothers, this study

is powered to assess significant differences between ZIKV-infected and uninfected groups in

flavivirus IgG binding at an alpha of 0.05 (power = 0.93), but not for vaccine antigen IgG

(power = 0.15) and neutralizing IgG (power = 0.48). This is due to differences in the extent of

variability in measures by assay type.

Due to the small size of this cohort, a Gaussian distribution could not be inferred and there-

fore non-parametric statistical tests were applied. To compare IgG binding between ZIKV-

infected and -uninfected groups, the Wilcoxon Signed and Exact Wilcoxon Rank Sum tests

were applied. For correction of multiple comparisons, the Bonferroni correction was applied.

Data were not stratified beyond the ZIKV infection status exposure group. The Kendall Tau

test was used to evaluate correlations between maternal and infant responses with the alpha

level of significance set to 0.05.

Results

Cohort characteristics

Pregnant women aged 18 to 39 years were enrolled based on symptoms suggestive of ZIKV

infection, such as rash, arthralgia, and fever (Table 1). Nearly all enrolled participants (24/26)

were from the Vitoria metropolitan area. One subject (B1_0037) exhibited prolonged viremia,

which was detected by RT-PCR up to 42 days post symptoms. Mothers were tested for com-

mon congenital “TORCH” pathogens where samples were available (S1 Table). These data

indicate no recent Toxoplasma infections (no maternal IgM positive sera), high IgG seroposi-

tivity to rubella virus, and no evidence for maternal syphillis infection. Testing of infant cord

blood for HCMV DNA found one case of congential HCMV transmission in the ZIKV-unin-

fected group.

Table 1. Symptomatology of patient cohort at the time of enrollment based on ZIKV detection by RT-PCR.

ZIKV PCR+ (n = 9) ZIKV PCR- (n = 13) ZIKV PCR ND (n = 4) Total (n = 26)

9/26 13/26 4/26 26/26

Proportion of mothers symptomatic in each gestational trimester

First 3/9 3/13 2/4 8/26

Second 4/9 7/13 2/4 13/26

Third 2/9 3/13 0/4 5/26

Proportion with symptoms

Rash 8/9 13/13 3/4 24/26

Arthralgia 5/9 4/13 3/4 12/26

Fever 3/9 5/13 3/4 11/26

Conjunctivitis 4/9 4/13 3/4 11/26

Myalgia 5/9 4/13 1/4 10/26

Headache 4/9 7/13 3/4 14/26

Retro-orbital pain 2/9 4/13 2/4 8/26

Lymphadenopathy 1/9 1/13 0/4 2/26

ZIKV = Zika virus, RT-PCR = reverse-transcription polymerase chain reaction, ND = not done.

https://doi.org/10.1371/journal.pntd.0007648.t001
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Serologic profile of flavivirus neutralization

ZIKV testing by RT-PCR was performed in plasma and urine, collected between 2 and 15 days

post symptom onset in 22 out of 26 women (Table 2). According to plasma neutralization

titers, most women were DENV seropositive, regardless of ZIKV infection status. The remain-

ing four women were referred for enrollment only after the resolution of symptoms, at 36 to

217 days since symptoms, and thus their negative ZIKV RT-PCR result was inconclusive. All

women with acute samples available were negative for DENV by RT-PCR at enrollment, and

one (B1_0035) was positive for CHIKV by RT-PCR (S2 Table).

Because ZIKV viremia typically is detected only in the acute phase of infection (�14 days

after exposure), and the possibility of a false positive RT-PCR ZIKV test, we used serology to

classify maternal ZIKV exposure as well as prior DENV infection history. Since detection of

ZIKV-binding antibodies by ELISA does not distinguish ZIKV exposure from other flavivi-

ruses, and this region has high DENV seroprevalence, we determined the FRNT-50 of all

Table 2. ZIKV and DENV serotype specific humoral immune profile. Serologic classification of maternal flavivirus infection history was determined by focus reduction

neutralization titer 50% (FRNT-50) against ZIKV and DENV in plasma taken at delivery.

Sample ID Classification Days since symptoms FRNT50 ZIKV RT-PCR

ZIKV DENV1 DENV2 DENV3 DENV4

B1_0015 Naïve NA <25 <25 <25 <25 <25 -

B1_0019 Naïve 75 <25 <25 <25 <25 <25 -

B1_0021 Naïve 213 <25 <25 <25 <25 <25 -

B1_0039 Naïve 35 <25 <25 <25 <25 <25 ND

B1_0008 Primary ZIKV 184 3918 126 209 251 106 +

B1_0030 Primary ZIKV 77 1399 <25 <25 <25 <25 +

B1_0001 DENV+ZIKV 193 10858 898 597 1270 491 +

B1_0002 DENV+ZIKV 173 14959 1524 666 5571 502 +

B1_0004 DENV+ZIKV 164 2533 1348 1818 3047 537 +

B1_0005 DENV+ZIKV 217 5213 1379 4218 2270 359 +

B1_0007 DENV+ZIKV 208 5503 1371 2511 822 353 ND

B1_0014 DENV+ZIKV 210 3095 354 1625 930 388 -

B1_0031a DENV+ZIKV 94 1610 2723 2492 10521 1510 +

B1_0027 DENV+ZIKV 91 654 1079 1711 3730 513 -

B1_0037 DENV+ZIKV 117 11764 2141 8019 22873 4029 +

B1_0009b Primary DENV2 240 <25 205 1887 238 240 +

B1_0035 Primary DENV2 114 107 68 1201 106 68 -

B1_0011 Primary DENV3 39 <25 374 640 3172 362 -

B1_0006 Primary DENV3 211 <25 89 308 4735 82 ND

B1_0003 Secondary DENV 217 <25 797 122 304 72 -

B1_0016 Secondary DENV 172 <25 232 3222 2051 74 ND

B1_0023 Secondary DENV 92 <25 4417 1693 380 <25 -

B1_0024 Secondary DENV 146 <25 1395 1362 505 299 ND

B1_0026 Secondary DENV 46 <25 2848 1876 635 292 ND

B1_0033 Secondary DENV 91 220 3123 1996 843 197 -

B1_0034 Secondary DENV 111 <25 193 568 939 76 -

ZIKV RT-PCR performed on plasma collected at enrollment (median 146 days since symptoms).

ND = Not Done
a FRNT-50 based on maternal plasma 3 months after delivery
b Likely false positive ZIKV RT-PCR result

https://doi.org/10.1371/journal.pntd.0007648.t002
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maternal plasma samples collected at delivery, which ranged from 39 to 217 days following

onset of ZIKV symptoms. Although DENV and ZIKV antibodies cross-react in binding assays

(e.g. ELISA), we and others have shown that there is minimal cross-neutralizing activity in

convalescent sera [23,29]. By these definitions, 11 out of 26 women had serological evidence of

ZIKV infection, only 2 of which were DENV naïve, indicating a primary ZIKV infection

(Table 2). Two out of 26 women were naïve for both ZIKV and DENV, and the rest had sero-

logical evidence of DENV infection with no ZIKV infection. Though one mother classified as

ZIKV naïve (Primary DENV) by serology (B1_0009) had a positive RT-PCR result at initial

presentation, subsequent RT-PCR testing of stored plasma was negative, suggesting that the

initial result was a false positive. Of note, two patients (B1_0002 and B1_0037) were ZIKV IgM

positive at delivery.

Infant outcomes

At birth, all infants born to ZIKV negative mothers were assessed to be healthy. Of the 11

infants born to mothers with serological evidence of ZIKV infection, one infant (born to

B1_0001) presented with microcephaly at birth, with a head circumference below 3rd percen-

tile based on WHO International Standards, and neurologic abnormalities such as cortical-

subcortical calcifications, dysgenesis of the corpus callosum, pachygyria, and colpocephaly

upon transfontanellar ultrasound and CT scan [79]. Delivery cord blood sample was not avail-

able for this infant. Neurodevelopmental assessments of the infants from this cohort are

ongoing.

Placental histology

Lymphohistiocytic chronic villitis (inflammatory lesions in the placenta with an infiltrate of

lymphocytes and macrophages) [80], was observed in the placentas of 5 of 11 (45%) ZIKV-

infected mothers (Table 3 and Fig 2). The villitis was focal, involving less than 10 villi per

focus, consistent with mild, low grade chronic villitis [73,74]. One placenta (B1_0004) demon-

strated mild necrosis in the villitis focus and two placentas (B1_0004 and B1_0014) demon-

strated small focal avascular villi with stromal fibrosis, consistent with fetal artery thrombosis

in the absence of any other abnormality. We tested frozen placental samples by qRT-PCR but

did not detect ZIKV RNA. In contrast, no vilitis was observed in any of the 8 ZIKV-uninfected

subjects.

Magnitude and kinetics of IgG binding responses to ZIKV and DENV over

the course of pregnancy

ZIKV infection during pregnancy has been associated with prolonged viremia in humans and

non-human primates [55,81–83], and one patient in our study (B1_0037) exhibited prolonged

viremia, with plasma testing positive for ZIKV RNA up to 42 days post onset of symptoms (Fig

3). We compared ZIKV antibody binding dynamics between patient B1_0037 and two other

ZIKV-infected women from the cohort for whom multiple sequential serum and urine sam-

ples were available for analysis (B1_0014 and B1_0030). B1_0030 only tested positive for ZIKV

in urine by RT-PCR at the first 2 visits (within 18 days of symptoms), and B1_0014 tested

ZIKV-negative by RT-PCR but was classified as ZIKV-infected by serology. Of note, these

cases have different flavivirus exposure histories as B1_0014 had prior exposure to DENV, and

B1_0030 had a primary ZIKV infection. The magnitude of maternal plasma IgG binding to

ZIKV, DENV1, DENV2, and DENV4 was measured by virion capture ELISA and neutraliza-

tion was measured by FRNT-50 in plasma collected at every visit during gestation and delivery

(Fig 3). We found that all three subjects sustained high levels of flavivirus-binding IgG and
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neutralizing antibodies throughout pregnancy, with the peak antibody response detectable one

to three weeks post onset of symptoms.

Transplacental transfer of flavivirus-specific and cross-reactive IgG in

ZIKV-infected and uninfected women

To determine if ZIKV infection during pregnancy disrupts transplacental transfer of flavivi-

rus-specific IgG from mother to infant, we compared the magnitude of flavivirus-specific anti-

body binding responses in maternal plasma at delivery and infant cord blood plasma by virion

capture ELISA in 20 mother-infant pairs with delivery samples available. For those with ZIKV

Table 3. Placental pathology. In 5 of 11 ZIKV-infected cases, focal villitis was observed as defined by less than 10 villi

per focus.

Subject Placental Histology Findings

ZIKV infected

B1_0001 Villitis was not observed

B1_0002 Villitis was not observed

B1_0004 Villitis was observed in two foci, consistent with mild, low grade, chronic villitis of unknown etiology,

occurrence of stromal fibrosis and occurrence of necrosis

B1_0005 Villitis was not observed

B1_0007 Villitis was not observed

B1_0008 Villitis was not observed

B1_0031 Villitis was not observed

B1_0027 Villitis was observed in two foci, consistent with mild, low grade, chronic villitis of unknown etiology

B1_0030 Villitis was observed in one focus, consistent with mild, low grade, chronic villitis of unknown etiology

B1_0014 Villitis was observed in two foci, consistent with mild, low grade, chronic villitis of unknown etiology and

occurrence of stromal fibrosis

B1_0037 Villitis was observed in one focus, consistent with mild, low grade, chronic villitis of unknown etiology

ZIKV uninfected

B1_0003 Villitis was not observed

B1_0009 Villitis was not observed

B1_0033 Villitis was not observed

B1_0026 Villitis was not observed

B1_0023 Villitis was not observed

B1_0016 Villitis was not observed

B1_0034 Villitis was not observed

B1_0015 Villitis was not observed

https://doi.org/10.1371/journal.pntd.0007648.t003

Fig 2. Histology of the placenta from a ZIKV-infected pregnant mother. Placental tissue from subject B1_0004 was

stained with hematoxylin and eosin. Lymphocytes and macrophages are present in the chorionic villi (A-100X, B-

400X). The arrow indicates inflammatory cells within a villus.

https://doi.org/10.1371/journal.pntd.0007648.g002
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infection, IgG binding to ZIKV, DENV1, DENV2, DENV3, and DENV4 virions was not sig-

nificantly different between maternal plasma and paired infant cord blood from delivery (Wil-

coxon Signed Rank Test; Bonferroni adjusted P>0.05 for all viruses tested).

We calculated the efficiency of mother-to-fetus transfer of flavivirus-specific IgG as the

ratio of the magnitude of infant cord blood antibody binding response to the maternal

response, expressed as a transfer efficiency percentage (Fig 4 and S3 Table). For those with

paired maternal and infant samples available, we compared the flavivirus-specific IgG transfer

efficiencies in ZIKV-infected (n = 8) and uninfected (n = 12) women, and found no significant

difference in the transplacental transfer efficiency of flavivirus-specific IgG between the groups

(Exact Wilcoxon Rank Sum Test; Bonferroni adjusted P> 0.05 for all viruses tested), indicat-

ing that ZIKV infection during pregnancy did not disrupt transplacental transfer of flavivirus-

specific IgG.

As expected, in the virion capture ELISA we observed cross-reactive binding to ZIKV with

plasma from 8 women who were DENV seropositive but ZIKV-uninfected. These ZIKV-unin-

fected subjects also demonstrated transfer of ZIKV-binding (cross-reactive, non-neutralizing)

Fig 3. ZIKV binding and neutralizing IgG responses persist throughout pregnancy. A. Maternal plasma collected

serially from three women diagnosed with ZIKV during pregnancy was assessed for IgG binding responses to ZIKV

via virion capture ELISA. The estimated dilution at 50% of maximal binding (ED50) was calculated from serial

dilutions of maternal plasma. Black filled points indicate time points when ZIKV viremia was detected by RT-PCR. B.

ZIKV focus reduction neutralization titer throughout pregnancy.

https://doi.org/10.1371/journal.pntd.0007648.g003

Fig 4. Efficient transplacental transfer of flavivirus-specific IgG. Plasma antibody binding to ZIKV, DENV1,

DENV2, DENV3, and DENV4 was measured by virion capture ELISA using serial dilutions of maternal plasma and

infant cord blood collected at delivery. The dilution at 50% of maximal binding (ED50) was calculated and the infant

ED50 was assessed as a percentage of the maternal ED50 to yield percent transfer. Dotted line indicates 100% transfer

and the solid line indicates the median. No significant differences in percent transfer were found in comparing ZIKV-

infected and uninfected women for the all viruses tested by Exact Wilcoxon Rank Sum Test; Bonferroni adjusted

P> 0.05 for all viruses tested.

https://doi.org/10.1371/journal.pntd.0007648.g004
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IgG from mother to infant (Fig 4 and S3 Table). As expected, we did not detect ZIKV-specific

IgG in 2 ZIKV/DENV naïve subjects or in 2 DENV seropositive patients and therefore percent

IgG transfer could not be calculated for these subjects. Of the 8 DENV seropositive subjects

with ZIKV-reactive IgG transferred to cord blood, 5 were seropositive for multiple DENV

serotypes (B1_0016, B1_0024, B1_0026, B1_0033, and B1_0034), and 2 were seropositive for

only a single DENV serotype (B1_0009 and B1_0011), indicating that ZIKV cross-reactive IgG

can be transferred to the fetus in the case of primary or secondary DENV exposure history.

Moreover, percent IgG transfer was not significantly associated with magnitude of the type-

specific IgG in maternal plasma (S2 Fig).

Additionally, we assessed whether there was efficient transplacental transfer of flavivirus

neutralizing IgG in ZIKV-infected pregnant women. The DENV FRNT-50 of paired maternal

and cord blood plasma also were positively correlated, suggesting that functional maternal IgG

were transferred efficiently to the fetus (Fig 5).

Transplacental transfer of vaccine-elicited IgG in ZIKV-infected and

uninfected women

To assess whether ZIKV infection during pregnancy impacts placental transfer of IgG against

vaccine antigens, we measured the magnitude of IgG binding against a panel of standard vac-

cine antigens from hepatitis B virus, rubella virus, Haemophilus influenzae type B, Corynebac-
terium diphtheriae, Bordetella pertussis, and Clostridium tetani. We found no significant

differences in the magnitude of vaccine-specific IgG in maternal plasma and infant cord blood

from delivery, in both ZIKV-infected and uninfected pregnant women (Wilcoxon Signed

Rank Test, P> 0.05 for all vaccine antigens). Moreover, in ZIKV-infected and uninfected

cases, we observed strong positive correlations in the concentration of vaccine-specific IgG

between maternal plasma and infant cord blood for all vaccine antigens tested, indicating effi-

cient placental transfer of vaccine-specific IgG levels regardless of ZIKV infection status (Fig 6

and S3 Table). Based on the protective vaccine-specific IgG levels established by the WHO,

infants born to mothers who had protective levels of vaccine-specific IgG and ZIKV infection

during pregnancy, received similarly protective IgG levels as infants born to ZIKV-naïve

mothers [84].

Fig 5. Maternal ZIKV infection does not disrupt transplacental transfer of DENV neutralizing IgG. Kendall Tau correlation of focus neutralization

reduction titer-50 (FRNT-50) for maternal plasma and infant cord blood, separated by maternal ZIKV serostatus. Panels indicate correlation of maternal and

infant neutralizing titers by flavivirus: ZIKV (A), DENV1 (B), DENV2 (C), DENV3 (D) and DENV4 (E). All correlations are P<0.05, except DENV1 and

ZIKV in ZIKV-infected mothers where P<0.09 and P<0.45 respectively.

https://doi.org/10.1371/journal.pntd.0007648.g005
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Altogether our study demonstrates that efficient transfer of IgG from mother to fetus is main-

tained in this cohort irrespective of maternal ZIKV infection or placental pathology. Furthermore,

this efficient transplacental IgG transfer includes both vaccine-specific antibodies and flavivirus

antibodies relevant to maternal vaccination strategies and flavivirus disease in newborns.

Discussion

Transplacental transfer of IgG provides passive immunity to fetuses, which is critical to pro-

tecting newborns in their first months of life [7]. However, maternal conditions and infections

during pregnancy may disrupt IgG transfer via mechanisms including placental impairment

and inflammatory responses [85]. Moreover, viral antigenic complexity and natural history of

infection shapes the IgG populations elicited, which have different propensities to be trans-

ferred across the placenta by the FcRn [85,86]. Thus, we investigated the impact of maternal

infection with ZIKV on maternal-fetal IgG transfer in 20 mother-infant pairs from a prospec-

tive cohort in Vitoria, Brazil. We assessed transfer of key IgG populations, including ZIKV

and DENV binding and neutralizing IgG, as well as IgG specific to routine vaccine antigens.

For all flavivirus and vaccine antigens tested, we found that maternal and infant binding

IgG levels were highly correlated in both ZIKV-infected and -uninfected groups. Also, there

were no significant differences in the magnitude of flavivirus-binding IgG levels between

Fig 6. Strong correlation of maternal and infant vaccine-elicited IgG levels in ZIKV-infected mothers indicates efficient transplacental transfer

during maternal ZIKV infection. IgG response to vaccine antigens in infant cord blood plasma and maternal plasma collected at delivery were measured

by a binding antibody multiplex assay. Concentrations of vaccine-elicited IgG responses were calculated from reference sera standards as International

Units (IU)/mL or μg/mL. ZIKV-infected (n = 8) and uninfected (n = 12) subjects are indicated in red and black respectively, and dotted lines denote WHO

established protective IgG levels. Kendall Tau correlations were performed for each ZIKV infection group, with p<0.05 for all.

https://doi.org/10.1371/journal.pntd.0007648.g006
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mothers and infants among mothers with ZIKV infection during pregnancy. Moreover,

DENV neutralization and binding IgG levels were highly correlated between mothers and

infants regardless of maternal ZIKV infection in pregnancy. In the case of DENV1 and ZIKV

neutralizing IgG levels, though the positive correlation between mother and infant neutralizing

titer was weak (r = 0.23 and 0.52 respectively), the outliers of the linear trend were shifted such

that the magnitude of infant IgG neutralization is greater than that of the maternal neutralizing

titer, indicating efficient IgG transfer. This positive association of maternal and infant IgG lev-

els represents active transfer that is not solely dependent on the magnitude of the type-specific

IgG in maternal plasma. Also, the substantially overlapping ranges in antibody levels between

mothers and infants suggests no biologically relevant differences in transplacental transfer of

flavivirus binding and neutralizing IgG, or of vaccine specific IgG after ZIKV infection in preg-

nancy. Cumulatively, these data indicate no evidence of impairment in the transplacental IgG

transfer at the time of birth after maternal ZIKV infection during pregnancy, as compared to

mothers with fever and rash during pregnancy without ZIKV infection.

Our study corroborates recent findings demonstrating efficient transfer of ZIKV, DENV3

and DENV4 neutralizing antibodies in mother-infant pairs from the Northeast of Brazil in

2016 [61]. Specifically, Castanha et al. found that newborns with the outcome of micrcephaly,

some of whom were exposed to ZIKV in utero, had no evidence of impaired transfer of neu-

tralizing antibodies at birth as compared to controls without microcephaly [61]. Our work

complements the finding from that case-control study through a prospective cohort design, in

which we identified women with ZIKV infection during pregnancy and followed up until

delivery to quantify impact on transplacental IgG transfer. This prospective design adds a tem-

porality to the association between ZIKV infection and neutralizing IgG transfer oberserved

earlier [61]. Moreover, our study represents a geographically distinct site in Southeast Brazil,

with lower ZIKV prevalence. Altogether, this work strengthens the body of evidence indicating

no impairment in transplacental IgG transfer with ZIKV infection in pregnancy, with implica-

tions for maternal vaccination strategies and flavivirus disease in newborns.

As different viral antigen-specific IgG subpopulations may be differentially impaired in pla-

cental transfer due to maternal infections and conditions during pregnancy [87], we tested

IgG transfer of non-flavivirus antibodies that are specific to diverse vaccine antigens. IgG elic-

ited by routine pediatric and boosted maternal vaccines were also transferred efficiently

despite maternal ZIKV infection. In cases where the mother had a protective level of IgG

against vaccine-preventable infections, the infant received a similarly protective level.

Our study further aimed to complement existing evidence of placental pathology caused by

ZIKV infection, and determine whether this could have a role in the transplacental transfer of

humoral immunity. Previous observations of impaired transplacental IgG transfer in the set-

ting of maternal HIV and malaria infection generally have been noted in conjunction with

identifiable placental pathology [40,85]. Although we were unable to detect ZIKV RNA in pla-

centas from our study, another study identified ZIKV RNA in 54% of placentas from 44

ZIKV-infected women [48]. We found that 5 of 11 ZIKV-infected women in our cohort had

chronic placental villitis, higher than the 5–15% expected for term placentas [88]. Notably, this

pathology is similar to that described in placental infection with HCMV, rubella virus, or

Toxoplasma gondii [80]. In constrast, no vilitis was observed in the 8 placentas assessed from

ZIKV-uninfected mothers, suggesting that vilitis in the ZIKV-infected subjects may have been

specific to maternal ZIKV infection in pregnancy. Furthermore, to assess the impact of ZIKV

infection associated placental pathology on IgG transfer, subgroups of ZIKV-infected subjects

with noted placental pathology would have to be compared to a ZIKV-infected subgroup with-

out placental pathology. However, our limited sample size of 8 ZIKV-infected individuals with

paired infant samples precludes formal comparison
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We found that despite disruption of placental architecture in nearly half of our ZIKV-

infected pregnancies, transplacental transfer of flavivirus-binding and -neutralizing IgG was

sustained following maternal ZIKV infection. This finding is relevant to future studies of vac-

cine-elicited fetal protection against ZIKV, as animal studies demonstrate envelope binding

and neutralizing antibodies as correlates of protection against ZIKV infection [89,90]. Transfer

of flavivirus-neutralizing antibody is relevant because neutralization titers are known to corre-

late with vaccine protection against other flaviviruses, including Japanese encephalitis virus,

yellow fever virus, West Nile virus, and tick-borne encephalitis virus [91–94]. Moreover, in

ZIKV-infected women with serial plasma collection during pregnancy, ZIKV-specific IgG lev-

els were sustained throughout gestation after peak response within 3 weeks of symptoms.

These kinetics suggest that transfer of flavivirus-specific IgG to the fetus should readily occur

throughout the 2nd and 3rd trimesters of pregnancy following maternal ZIKV infection. While

it is possible that ZIKV infection during pregnancy could result in a transient disruption of

transplacental IgG transfer that is restored by the time of birth, our goal was to evaluate levels

of maternal IgG present at delivery as these transferred IgG have the potential to modulate

protection or disease risk in infants [7–10,18,34,95].

There are several implications of the findings in this study. Efficient transfer of ZIKV-neu-

tralizing IgG in ZIKV-infected mothers could be a mode of transferring protective humoral

immunity from mother to infant, despite infection during pregnancy. Notably, transfer of pro-

tective levels of vaccine-specific IgG to boost passive immunity in the newborn is a key objec-

tive of maternal immunization [96] and our findings suggest that ZIKV infection during

pregnancy does not impair this protective mechanism. With candidate maternal ZIKV vac-

cines or therapeutics, this may be one mode of conferring passive immunity to the fetus and,

potentially, reducing the burden of congenital and neonatal ZIKV infection.

Alternatively, transfer of cross-reactive non-neutralizing DENV-elicited antibodies may

pose a risk as antibodies from primary DENV infection can enhance secondary DENV infec-

tion, leading to more severe disease in infants as maternal antibody titers wane [20,25]. We

detected transplacental transfer of ZIKV-binding IgG in DENV-immune mothers without

ZIKV infection. Cross-reactive ZIKV-elicited antibodies may be able to mediate antibody-

dependent enhancement of subsequent DENV infection in early infancy [20,27,97–99]. Addi-

tionally, there is some concern that efficient IgG transfer may facilitate transcytosis of ZIK-

V-IgG complexes into the fetal compartment, a suggested mechanism of fetal infection for

HCMV [18,32]. Thus, transplacental transfer of ZIKV cross-reactive IgG should be considered

in the evaluation of candidate ZIKV vaccines, as sub-neutralizing levels of cross-reactive IgG

may increase the risk of severe flavivirus infections in fetuses or infants.

Limitations of this study include the small sample size of 26 mothers, including 20 mother-

infant pairs with delivery samples available. In assessing statistically significant associations

(alpha = 0.05) via Kendall-Tau correlations between mothers and infants, we had 89% to 99%

power across assays to detect a true direct correlation of maternal and infant IgG levels. There-

fore, our conclusions of intact placental IgG transfer are predominantly based on the high lev-

els of association of maternal and cord blood antibody responses.

As for significant differences in the magnitude of IgG responses between ZIKV-infected

and uninfected mother-infants pairs via the Wilcoxon Signed-Rank Test, this study has a 93%

power to detect differences in flavivirus binding responses between ZIKV-infected and unin-

fected groups (alpha = 0.05). However, the study is underpowered (power < 50%) to detect

significant differences in magnitude of neutralizing or vaccine-specific responses between

ZIKV-infected and -uninfected subjects due to higher levels of variability in these measures.

Consequently, significant differences are only reported and analyzed for the flavivirus-binding

IgG levels, but not for neutralization and vaccine-elicited IgG levels. Though, noting the
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substantially overlapping range of immune responses in the ZIKV-infected group as compared

to the ZIKV-uninfected group is biologically relevant to our understanding of transplacental

IgG transfer in the setting of maternal ZIKV infection and could inform future studies on neo-

natal flavivirus immunity.

Another limitation of our study is the challenge of determining whether subjects were truly

exposed to ZIKV during pregnancy, as symptoms could have resulted from other infections

and/or ZIKV infection could have occurred prior to pregnancy. Since viremia may have sub-

sided by the time of study enrollment, we developed an algorithm to define ZIKV infection

serologically, even in the context of cross-reactive antibodies from prior DENV infection. This

algorithm and ZIKV case definition were based on the rational assumption that ZIKV seropos-

itivity resulted from a recent infection (i.e. during pregnancy) due to the timing of our study

relative to the introduction of ZIKV into Brazil. This assumption will not apply in future stud-

ies, since the high force of infection during the 2015–2017 outbreak and the potential for sub-

sequent endemic transmission mean many women will already be ZIKV seropositive before

pregnancy. Moreover, this study reflects the findings in a symptomatic pregnancy cohort,

whereas the majority of ZIKV infections are asymptomatic[100–102].

In summary, this study demonstrates efficient transplacental transfer of IgG specific to

diverse flavivirus and routine vaccine antigens following ZIKV infection during pregnancy in

a unique prospective mother-infant cohort from the Latin American ZIKV outbreak. Trans-

placental transfer of ZIKV-specific IgG in pregnancy may contribute to protection of the fetus

from congenital Zika syndrome and the infant from ZIKV infection. However, efficiently

transferred IgG might mediate adverse effects in infants including increased risk of severe

DENV in infancy, as well as potentially mediating FcRn-dependent transfer of ZIKV immune

complexes into the fetal compartment. The relationship between efficient maternal IgG trans-

fer and reduced or enhanced congenital infection or disease remains to be further elucidated.

Delineating ZIKV-specific IgG levels and function that favor fetal and neonatal protection will

be key for guiding a strategic timeline for pediatric vaccine boosts, timing of vaccine adminis-

tration during pregnancy, and dosing of antibody therapies targeted for pregnancy. Longitudi-

nal investigations of neonatal immunity, in the context of transplacental transfer of flavivirus

antibodies will be a valuable area of investigation to define serological mediators of risk or pro-

tection for infants. Given the uncertain benefits or risks of efficient transfer of flavivirus IgG,

ZIKV and DENV vaccine strategies will need to carefully consider the timing and type of vac-

cination and boosting in order to maintain protective levels of antibodies in women of repro-

ductive age and infants.

Supporting information

S1 Fig. Study design flow chart indicating that 26 symptomatic pregnant women were eli-

gible and enrolled into prospective cohort, and only 20 mother-infant pairs were analyzed

due to paired sample availability. The 20 pairs were classified into two groups based on

ZIKV exposure status during pregnancy. Accordingly, 8 mothers were determined to be

infected with ZIKV during pregnancy and 12 were not. Laboratory tests were conducted on all

available mother and infant samples without further stratification.

(TIF)

S2 Fig. Lack of associations between magnitude of maternal flavivirus-specific IgG and

percent IgG transfer. A post-hoc Spearman correlation analysis was conducted to assess

whether higher magnitude of maternal flavivirus IgG due to recency of infection during preg-

nancy could be driving efficient transplacental IgG transfer. No strong positive associations

were noted, suggesting that magnitude of maternal IgG alone does not predict percent transfer
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for each antigen shown (Unadjusted p-values > 0.05 for ZIKV, DENV1, DENV2, DENV4 and

<0.038 for DENV3).

(TIF)

S1 Table. Clinical results of prenatal screening for TORCH infections. These data from

maternal serum samples from pregnany indicate no recent Toxoplasma infections and high

seropositivity to rubella virus as tested by chemiluminescent microparticle immunoassays,

Also, there was no evidence for syphillis, which was assessed by the VDRL test. Infant cord-

blood qPCR testing for CMV indicates one potential case of congential CMV transmission in

the ZIKV-uninfected group. Proportion of mothers or infants with postive test results are

reported as the numerator, whereas the denominator is the number of the total samples tested.

(DOCX)

S2 Table. Timeline of infection for each enrolled mother in this study.

(DOCX)

S3 Table. Transplacental transfer efficiency. Median and range shown for mothers and

infants by each flavivirus binding, vaccine antigen binding or flavivirus neutralizing response

measured. Subjects are grouped by maternal ZIKV infection status to facilitate comparison of

the magnitudes of antibody responses and calculated IgG percent transfer. Infant antibody

response as a portion of maternal response are indicated in the percent transfer column, where

median, range and number of mother-infant pairs per group are shown. Bonferroni adjusted

p-values shown from Wilcoxon Signed Rank Tests to assess significant differences in the

mother to infant percent transfer of antibodies in the ZIKV-infected versus uninfected groups.

No significant differences in the percent transfer of flavivirus binding antibody responses

between mother and infant were observed regardless of ZIKV serostatus. NP indicates that a

p-value is not shown since this study is not powered to detect significant differences between

mothers and infants for those antigens.

(DOCX)
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30. Hammond SN, Balmaseda A, Pérez L, Tellez Y, Saborı́o SI, Mercado JC, et al. Differences in dengue

severity in infants, children, and adults in a 3-year hospital-based study in Nicaragua. Am J Trop Med

Hyg. 2005; 73: 1063–70. PMID: 16354813

31. Simmons CP, Chau TNB, Thuy TT, Tuan NM, Hoang DM, Thien NT, et al. Maternal Antibody and Viral

Factors in the Pathogenesis of Dengue Virus in Infants. J Infect Dis. 2007; 196: 416–424. https://doi.

org/10.1086/519170 PMID: 17597456

32. Maidji E, McDonagh S, Genbacev O, Tabata T, Pereira L. Maternal antibodies enhance or prevent

cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol.

American Society for Investigative Pathology; 2006; 168: 1210–26. https://doi.org/10.2353/ajpath.

2006.050482 PMID: 16565496

IgG Transfer in Maternal ZIKV Infection

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007648 August 26, 2019 22 / 26

https://sbim.org.br/images/calendarios/calend-sbim-gestante.pdf
https://doi.org/10.1099/vir.0.031641-0
http://www.ncbi.nlm.nih.gov/pubmed/21900425
https://doi.org/10.1146/annurev-immunol-031210-101315
http://www.ncbi.nlm.nih.gov/pubmed/21219187
https://doi.org/10.1371/journal.ppat.1003458
https://doi.org/10.1371/journal.ppat.1003458
http://www.ncbi.nlm.nih.gov/pubmed/23818856
https://doi.org/10.1038/s41579-018-0039-7
http://www.ncbi.nlm.nih.gov/pubmed/29921914
https://doi.org/10.1016/j.chom.2018.10.008
http://www.ncbi.nlm.nih.gov/pubmed/30439342
https://doi.org/10.1093/infdis/jiw143
http://www.ncbi.nlm.nih.gov/pubmed/27056951
https://doi.org/10.3201/eid0812.020170
https://doi.org/10.3201/eid0812.020170
http://www.ncbi.nlm.nih.gov/pubmed/12498666
http://www.ncbi.nlm.nih.gov/pubmed/8731349
https://doi.org/10.1126/science.aaf8505
https://doi.org/10.1126/science.aaf8505
http://www.ncbi.nlm.nih.gov/pubmed/27417494
https://doi.org/10.1073/pnas.1607931113
http://www.ncbi.nlm.nih.gov/pubmed/27354515
https://doi.org/10.1128/JCM.01504-17
http://www.ncbi.nlm.nih.gov/pubmed/29263206
https://doi.org/10.1126/science.aan6836
https://doi.org/10.1126/science.aan6836
http://www.ncbi.nlm.nih.gov/pubmed/29097492
https://doi.org/10.3201/eid2304.161879
http://www.ncbi.nlm.nih.gov/pubmed/28322690
https://doi.org/10.1038/s41598-017-10901-1
http://www.ncbi.nlm.nih.gov/pubmed/28874759
https://doi.org/10.1093/infdis/jiy164
http://www.ncbi.nlm.nih.gov/pubmed/29618091
https://doi.org/10.3201/eid2305.161630
http://www.ncbi.nlm.nih.gov/pubmed/28418292
http://www.ncbi.nlm.nih.gov/pubmed/16354813
https://doi.org/10.1086/519170
https://doi.org/10.1086/519170
http://www.ncbi.nlm.nih.gov/pubmed/17597456
https://doi.org/10.2353/ajpath.2006.050482
https://doi.org/10.2353/ajpath.2006.050482
http://www.ncbi.nlm.nih.gov/pubmed/16565496
https://doi.org/10.1371/journal.pntd.0007648


33. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007; 7:

715–725. https://doi.org/10.1038/nri2155 PMID: 17703228
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