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Abstract: Neglected tropical diseases such as Chagas disease and leishmaniasis affect millions of
people around the world. Both diseases affect various parts of the globe and drugs traditionally used
in therapy against these diseases have limitations, especially with regard to low efficacy and high
toxicity. In this context, the class of bisphosphonate-based compounds has made significant advances
regarding the chemical synthesis process as well as the pharmacological properties attributed to
these compounds. Among this spectrum of pharmacological activity, bisphosphonate compounds
with antiparasitic activity stand out, especially in the treatment of Chagas disease and leishmaniasis
caused by Trypanosoma cruzi and Leishmania spp., respectively. Some bisphosphonate compounds can
inhibit the mevalonate pathway, an essential metabolic pathway, by interfering with the synthesis of
ergosterol, a sterol responsible for the growth and viability of these parasites. Therefore, this review
aims to present the information about the importance of these compounds as antiparasitic agents and
as potential new drugs to treat Chagas disease and leishmaniasis.

Keywords: bisphosphonate; farnesyl pyrosphosphate synthase; leishmaniasis; chagas disease;
neglected tropical diseases

1. Introduction

Neglected tropical diseases (NTDs) are responsible for serious public health problems in much of
the world, particularly in developing countries located in Latin America, Africa, and Asia, and can
also affect non-endemic developed regions, such as North America and Europe, owing to population
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migration and climate change. According to the World Health Organization (WHO), more than
one billion people are affected by one or more NTDs in 149 countries [1]. Among such diseases are
Chagas disease and leishmaniasis, which are caused by protozoa of the order Kinetoplastida and family
Trypanosomatidae [2]. Currently, the therapeutic regimens used to control the foremost NTDs have
several limitations, especially concerning pharmacological efficacy, toxicity, high costs, and complicated
clinical administration. Furthermore, as these are diseases mostly related to poverty in developing
countries, investment in measures to control these diseases are still insufficient [2,3]. Drugs currently
used to treat Chagas disease and leishmaniasis caused by Trypanosoma cruzi and Leishmania spp.,
respectively, have among their disadvantages the long-term parenteral administration, development
of resistance, and the requirement of complex therapeutic schemes [4,5]. Additionally, the high cost
and low pharmacological efficacy justify the search for new antiparasitic drugs [6].

In recent years, several strategies have been reported aiming at the development of new drugs
with antiparasitic activity, mainly in the context of infections caused by trypanosomatids, such as
Leishmania spp [7-10] and T. cruzi [11-13]. In this scenario, compounds based on bisphosphonates have
been gaining prominence owing to their reported antiparasitic activity [7-13]. Moreover, some of these
compounds are already approved for use in humans for the treatment of some bone diseases [14,15].
Bisphosphonates are known to act on the classical mevalonate (MVA) pathway, which is responsible
for the synthesis of essential isoprenoids in eukaryotes, archaea, and some bacterial species [16,17].
Specifically, they inhibit the farnesyl pyrophosphate synthase (FPPS), the branch point and [18]
rate-limiting enzyme of the MVA pathway [19-21].

FPPS has been shown to be essential for the survival of trypanosomatid parasites—Leishmania major
promastigotes as well as amastigotes and T. brucei [8,22]. Furthermore, FPPS can be potently inhibited by
bisphosphonates in human pathogens—Toxoplasma gondii, Plasmodium falciparum, T. cruzi, T. brucei, L. major,
and L. donovani [23-33]. Taken together, these findings validate FPPS as a target for drug development using
bisphosphonates in the treatment of leishmaniasis as well as trypanosomiasis. Thus, the objective of this
work is to present the pharmacological applications of bisphosphonates as potential antiparasitic drugs with
an emphasis on the therapeutic control of Chagas disease and leishmaniasis.

2. History of the Use of Bisphosphonates

The synthesis of organic compounds containing phosphorous was first reported in 1820 by Jean
Louis Lassaigne. At that time, alkylphosphonates were synthesized by the condensation of alcohols and
phosphoric acids [34]. Later, several compounds were produced using phosphorus as the central atom,
called organophosphors, such as triphosphate nucleosides and perfluoroalkylated phosphines [35].
One of the organophosphorus classes is bisphosphonates, which were initially synthesized in 1865 in
Germany and have been studied extensively since the 1960s [36].

The knowledge about its use came to light owing to studies on inorganic pyrophosphate,
a precursor to bisphosphonates, wherein it was observed that plasma and urine contained compounds
that inhibited the precipitation of calcium phosphate and that part of this inhibitory activity was the
result of inorganic pyrophosphate [15,37]. This discovery became interesting for pharmacological
applications in the treatment of clinical disorders caused by the bone resorption mechanism, such as
Paget’s disease, osteoporosis, hypercalcemia, and fibrous dysplasia. However, pyrophosphate is
metabolically unstable because it is rapidly hydrolyzed in the gastrointestinal tract. Thus, more stable
compounds were sought, such as bisphosphonates [34,35].

Bisphosphonates were initially used by the chemical industry, mainly as corrosion inhibitors or as
complexing agents in the textile, fertilizer, and oil industries, in addition to preventing flaking thanks
to their ability to inhibit calcium carbonate precipitation [38]. Only in the last three decades have
bisphosphonates been developed as drugs for use in various diseases of bone, dental, and calcium
metabolism [39]. In this context, etidronate was the first bisphosphonate to be used pharmacologically
in patients with ossifying myositis, a heterotopic ossification characterized by the occurrence of bone
formation in soft tissues, usually muscle tissue [38,39].
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3. Chemical and Biological Characteristics of Bisphosphonate-Based Compounds

Chemically, bisphosphonates are classified as a class of metabolically stable pyrophosphate
analogue compounds in which the oxygen atom between the two phosphorus atoms in the
pyrophosphate is replaced by a carbon atom (P-C-P bond), making these compounds resistant
to chemical and enzymatic hydrolysis [8,40]. These compounds have the general structural formula
presented in Figure 1. Additionally, bisphosphonates have two substituents in their structure, R1 and
R2, linked to the geminal carbon, which allows the versatility of synthesis of this class of compounds
with different pharmacological applications [41].

It is observed that, when R1 is a hydroxyl, this group, together with the phosphate groups,
facilitates the association with calcium, which ensures strong interaction with bone structures. On the
other hand, the R2 group is responsible for determining the bone anti-resorptive power and, depending
on the class, their mechanism of action varies. Additionally, groups R1 and R2 can be extensively
modified by the chemical synthesis process, enabling new derivatives for this class of molecules,
consequently potentiating a diversity of biological activity [40—43].
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Figure 1. Basic chemical structure of bisphosphonates. The phosphate-carbon-phosphate (P-C-P)
bond is the base skeleton of the structure with two covalent side chains (R1 and R2) attached to the
germinal carbon. The group R1 allows higher affinity to hydroxyapatite and the group R2 increases the
potency of the anti-resorptive capacity and mimic structures that give it different mechanisms of action,
whether as adenosine triphosphate (ATP) analogues or isoprenoid pyrophosphate [41].

Bisphosphonate-based compounds have essential and relevant pharmacological applications.
Similar to pyrophosphate, bisphosphonates exhibit a high affinity for bone hydroxyapatite and
effectively prevent calcification [44]. The Food and Drug Administration (FDA) currently approves
some of these compounds for the treatment of bone resorption, Paget’s disease, osteoporosis, multiple
myeloma, hypercalcemia associated with bone metastasis, and fibrous dysplasia [14,15,45]. On the other
hand, in addition to their capacity as inhibitors of bone resorption, bisphosphonates are antimicrobial
agents [46], anticancer agents [47], selective inhibitors of acid sphingomyelinase, and stimulators of
v8-T lymphocytes [48].

The antiparasitic activity of some bisphosphonates has been shown to be owing to their selective
inhibitory capacity in the biosynthesis of isoprenoids [15], including in the context of infections
caused by protozoa of medical importance, such as Toxoplasma gondii [12,25], Plasmodium falciparum,
Trypanosoma cruzi [11-13], Trypanosoma brucei [49,50], and Leishmania spp. [7-9,25], the etiologic agents
of toxoplasmosis, malaria, Chagas disease, African sleeping sickness, and leishmaniasis, respectively.

As bisphosphonates are a diversified class of chemical compounds, several methods of chemical
synthesis have already been described, methods ranging from thermal dehydration at a high
temperature to Michael’s reaction [51,52]. The most used method to obtain bisphosphonates
is the synthesis from carboxylic acids and their derivatives [53,54]. This method consists of
a reaction between a carboxylic acid and a mixture of phosphorus trichloride or phosphorous
acid, followed by hydrolysis under acidic conditions to produce hydroxy-bisphosphonates or
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their sodium salts (Figure 2). Other methods of synthesis have been described, such as
phosphonalkylation [55,56], from bisphosphonate fractions [57,58], by a cross-coupling reaction [59],
from aminomethylene-phosphonic acids [60,61], by radical reaction [62,63], from halo substrates [64],
and from functional nitrogen substrates [65].
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Figure 2. Classical route for the synthesis of hydroxy-bisphosphonates. The method requires the
addition of (1) phosphorus trichloride or (2) phosphorous acid to that of carboxylic acid, followed by
(3) hydrolysis to generate the bisphosphonate.

Bisphosphonates are classified according to the presence or absence of nitrogen in their R2 side
chain, as shown in Figure 3 [66]. Depending on the side chain inserted into the central carbon atom,
the pharmacological characteristics of these compounds vary such as absorption, distribution, retention,
elimination, renal excretion, and inhibition of cellular activity and mechanisms of action. Non-nitrogenated
bisphosphonates, analogous to pyrophosphates, lead the cell to apoptosis owing to its toxicity when
metabolized as adenosine triphosphate (ATP). However, nitrogenated bisphosphonates, similar to isoprenic
pyrophosphate, are not metabolized and act by inhibiting the enzyme farnesyl pyrophosphate synthase
(EPPS), thereby reducing prenylation of guanosine triphosphate (GTP)-binding proteins (such as Rho,
Rab, Rac, and Cdc42) that are essential for osteoclast activity and survival [52,67,68].

Applications of bisphosphonates range from insecticides and herbicides [35,69] to drugs for
the treatment of diseases such as osteoporosis, Paget’s disease, and parasitic diseases [27,70-72].
This comprehensive action is the result of the structural diversity of these compounds. The molecular
variations of bisphosphonates over the decades allowed classifying them according to the
synthesized structure. The first-generation bisphosphonates derivatives do not have nitrogen in
their structures [73-77]. The second-generation compounds are of nitrogen-containing compounds
with an alkyl chain of up to five carbon atoms [78,79]. Finally, third-generation compounds are
compounds that have a branched N chain, or ring formation [80-82].

Compounds based on bisphosphonates belonging to the second and third generation are the main
compounds with inhibitory activity on farnesyl pyrophosphate synthase (FPPS), an essential enzyme
in the mevalonate pathway, responsible for the production of isoprenoids, such as cholesterol and
ergosterol [83]. The mevalonate pathway plays a crucial biological role in eukaryotes. This metabolic
pathway is responsible for the production of cholesterol/ergosterol, maintenance of cell membrane
and organelles, biosynthesis of steroids, and other processes involving cellular signaling. Disorders in
this metabolic pathway can cause toxicity, alteration of cellular structure and function, as well as loss
of homeostasis [84].
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Figure 3. Chemical structures of pyrophosphonate, bisphosphonate, and bisphosphonates used clinically [41,

85]. First generation (A); second generation (B); and third generation of bisphosphonates compounds (C).

Experimental evidence has shown that second- and third-generation nitrogenous bisphosphonates
are generally more potent than conventional bisphosphonates in inhibiting bone resorption [14,82].
However, the main disadvantage of administering these compounds is related to toxicity, as it can
induce the development of severe osteonecrosis and gastric inflammation in humans [70,86]. Even with
toxicity, these nitrogen-containing compounds are still recommended in clinical practice, particularly
in terminal cancer patients with hypercalcemia or bone metastasis, as these compounds act as calcium
chelators. Furthermore, the use of these compounds is also justified in the process of bone resorption,

preventing fractures and osteolytic progression, and consequently reducing bone pain [70].

Conventional bisphosphonates participate in metabolic reactions, mainly in ATP biosynthesis. On the
other hand, nitrogenous bisphosphonates can act on the mevalonate pathway through the inhibition of
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the FPPS enzyme [14]. The FPPS enzyme catalyzes two-step reactions. In the first step, isopentenyl
pyrophosphate (IPP) and its dimethylalyl pyrophosphate isomer (DMAPP) undergo condensation to form
geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP), important isoprenoid intermediates [8,14].
Isopropenoids are essential molecules of the cellular machinery of eukaryotic and prokaryotic organisms,
as an example, the trypanosomatids parasites and bacteria, respectively. These molecules are involved
in several biological processes, such as cell differentiation and growth and antioxidant activity [40,87].
These intermediate precursors are essential for the formation of most isoprenoids, including ergosterol,
a sterol whose inhibition results in changes in the integrity of the lipid bilayer of cells, leading to their
death [8,88]. These reactions are represented schematically in Figure 4.
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Figure 4. Schematic representation of the mevalonate pathway and the action of nitrogen-containing
bisphosphonates. These compounds inhibit the enzyme farnesyl pyrophosphate synthase (FPPS),
preventing the synthesis of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP)
necessary for protein prenylation and subsequent ergosterol formation in eukaryotic cells.
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4. Bisphosphonate Compounds as Potential New Anti-Trypanosoma cruzi Drugs

American trypanosomiasis, also known as Chagas disease, was first described in 1909 by physician
Carlos Chagas, after identifying and characterizing the etiologic agent, the hemoflagellate protozoan
Trypanosoma cruzi [89]. Chagas disease is considered by the WHO to be an NTD that spreads beyond
endemic countries through population migration. Among the countries affected are the United States,
Canada, European countries, and some Pacific countries [90]. The main mechanisms of transmission
of Chagas disease are vector, blood transfusion, organ transplantation, and congenital transmission,
all of which contribute to the spread of the disease [90-93]. It is estimated that around 7 million
people worldwide are infected with Chagas disease, with 6 million cases present in 21 countries in
Latin America [94]. Furthermore, it is estimated that approximately 70 million people are at risk of
contracting this disease, which is responsible for around 14,000 deaths per year [95]. Worldwide,
1% to 10% of children infected with T. cruzi are born with congenital Chagas disease [96] and the
Pan American Health Organization (PAHO) estimates that 25% of new infections are congenitally
transmitted [97,98]. Even in the USA, a non endemic country, the maternal-to infant transmission rate
is estimated to be 1-5% [99]. T. cruzi infected infants may present with low birth weight, prematurity,
hepatosplenomegaly, meningoencephalitis, and anemia [100-102].

Chagas disease can be considered as one of the most important NTDs in the world together
with malaria and schistosomiasis. This disease presents a short period of acute phase—of eight to
twelve weeks—and a prolonged chronic phase—of twenty to thirty years. In the chronic phase of
the disease, the parasites may compromise the normal function of the cardiac apparatus, progressing
to dilated cardiomyopathy that display cardiac arrhythmias, conduction abnormalities, and heart
failure [103]. Other manifestations of this stage include digestive alterations, causing megacolon and
megaesophagus, and consequently causing difficulties of swallowing, asphyxia, aspiration pneumonia,
chronic constipation, and abdominal pain [94,96].

For more than 50 years, treatment for Chagas disease has been based on the use of two drugs,
Benznidazole and Nifurtimox. Benznidazole is a nitroimidazole derivative, and its mechanism of
action is supposed to be through reductive stress that involves covalent bonds to macromolecules vital
to the parasite. Nifurtimox, in turn, is a nitrofuran that produces oxidative metabolites, such as oxygen
peroxide, as the parasite does not have efficient mechanisms for detoxifying the produced substrates.
In Brazil, Benznidazole is used as the drug of choice for the treatment of Chagas disease, despite its
low effectiveness during the chronic phase of infection [92,104].

These drugs have pharmacological activity essentially in the acute phase of infection caused by
T. cruzi, resulting in pharmacological efficacy of around 80% of treated patients. However, in the
chronic phase of the infection, the effectiveness can vary from 7% to 10% for Nifurtimox and from 2% to
40% for Benznidazole [92]. In addition to the low pharmacological efficacy of these drugs in the chronic
phase of infection, these compounds still have high toxicity, causing adverse reactions, such as anorexia,
weight loss, neurological disorders (irritability, insomnia, disorientation, mood changes, paresthesia,
and peripheral neuropathy), digestive manifestations such as nausea and vomiting, and sometimes
fever and rash, leading to the patient often abandoning treatment [91,105].

Currently, Nifurtimox and Benznidazole are the two drugs used in the acute phase of the
disease [106-108]. No effective treatment is available for the chronic phase of the disease. As the PAHO
established in their 2018 recommendations, there is an urgent need to develop new drugs able to cure
the trypanosome infection as well as drugs to reverse heart damage [98]. In this context, some enzymes
involved in the synthesis of sterols in T. cruzi have been shown as potential targets for the development
of anti-T. cruzi drugs. One of these enzymes is farnesyl pyrophosphate synthase (FPPS), which seems
to be an adequate pharmacological target for the inhibitory action of bisphosphonates [32].

In T. cruzi, the use of bisphosphonates with antiparasitic activity seems to be feasible, as the R2
grouping of these molecules has the ability to interact and inhibit farnesyl pyrophosphate synthase
(FPPS), causing a reduction in levels of FPPS and geranylgeranyl pyrophosphate (GGPP) [109].
The inhibitory action of these compounds on FPPS may play an important role in the functionality
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of these molecules by reducing the production of several sterols and poly-isoprenoids, such as
farnesylated proteins [110,111], Heme-A [112], Dolichol-PP [113], ubiquinones [114], and the synthesis
of ergosterol [115]. These molecules are of fundamental importance for the survival of the parasite,
as they trigger relevant functions in the structure of membranes.

In this context, studies performed by Martin et al. [49] were the first to demonstrate
that nitrogen-containing bisphosphonates inhibit the in vitro proliferation of T. cruzi, with ICs
(the concentration required to reduce the parasitemia by half) in the micromolar range. In addition,
these compounds showed a broad range of antiparasitic activity in other trypanosomatids (T. brucei and
L. donovani) as well as apicomplexan parasites (T. gondii and P. falciparum). In particular, zoledronate
appeared to be the most effective, with an ICsg of 35 uM against T. cruzi amastigote replication.
These studies also suggested that the observed effects of bisphosphonates were the result of the
inhibition of sterol biosynthesis, at the level of FPPS enzyme [27].

Bouzahzah and collaborators [116] evaluated the antiparasitic activity of the risedronate compound
in mice infected with T. cruzi. This study indicated that, when the compound was administered
subcutaneously, there was a significant reduction in animal mortality. However, the myocardial
phenomenon and the dilation of the animals’ right ventricle remained unchanged in the animals,
when compared with the control group. According to Garzoni and collaborators [13], risedronate is
capable of inducing antiparasitic activity by reducing the growth of T. cruzi epimastigotes in vitro.
This antiparasitic phenomenon was characterized by the ability of this compound to deplete the
parasite’s endogenous sterols. Thus, risedronate treated parasites showed a variety of changes such
as ultrastructural changes including mitochondrial edema, disorganization of organelles such as
reservosome and kinetoplast, along with the appearance of autophagic vesicles and progressive
vacuolization of the cytoplasm. Additionally, risedronate also displayed antiparasitic activity in the
amastigote form of T. cruzi, an intracellular form responsible for the chronic phase of Chagas disease.

Another interesting study by Montalvetti and collaborators reported that nitrogen-containing
bisphosphonates—risedronate, alendronate, and pamidronate (IC59 ~7 nm-1 pM)—were more potent
than non-nitrogen containing bisphosphonate and etidronate (ICsy ~58 uM) in inhibiting T. cruzi FPPS
(TcFPPS) [22]. Similar results have also been reported for the human enzyme [117]. Pamidronate not
only blocked the intracellular growth of T. cruzi amastigotes in vitro, but also substantially suppressed
the proliferation of the parasite in vivo when tested in a murine model of acute Chagas disease [118].
It has been postulated that the antiparasitic activity of nitrogen-containing bisphosphonates could
be owing to their preferential accumulation in the calcium and pyrophosphate-rich acidic organelles
of the parasite named as acidocalcisomes [118]. A similar explanation has been suggested for the
antiresorptive activity of these compounds that is based on their ability to bind avidly with calcium
hydroxypatite in the bone mineral [29,119].

On the other hand, bisphosphonates derived from fatty acids, in which no nitrogen atom is present
in R2 side chain, were also shown to be potent inhibitors of amastigote forms of T. cruzi as well as
the target enzyme TcFPPS with ICsj values at the low micromolar level [120]. To further elaborate
on non-nitrogenous bisphosphonates, there are at least three categories of these bisphosphonates
derived from fatty acids that have been purposely designed as anti-parasitics [22,27,121]: 1-amino-1,1;
1-hydroxyl-1,1; and 1-alkyl-1,1 bisphosphonates (Figure 3A).

The inhibitory activity of 1-amino-1,1 bisphosphonates increases with length of the carbon
chain [27]. For example, the compound with 7 = 4 inhibits TcFPPS with nanomolar affinity and is more
potent than the 1-hydroxyl-1,1 bisphosphonate (1 = 4) against TcFPPS [22]. However, 1-hydroxy class of
bisphosphonates (n = 4 and 5) are potent inhibitors of TcFPPS compared with 1-alkyl bisphosphonates
(n =4 and 5). On the other hand, the fatty acid fluorine derivatives of bisphosphonates have relatively
lower activity against T. cruzi amastigotes, but are potent inhibitors of T. gondii tachyzoites, with ICs
in the low nanomolar range [122].

The differential biological activities of different bisphosphonate pharmacophores across
trypanosomatids are further displayed in the 2-alkyl(amino)-ethyl-1,1 bisphosphonate series (Figure 3A).
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The 2-alkyl(amino)-ethyl derivatives (n = 5 and 6) have higher biological activity than their counterparts
2-alkylaminoethyl-1-hydroxy-1,1 bisphosphonates against T. cruzi amastigotes [22,50,121,123].
Furthermore, the 2-alkyl(amino)ethyl derivatives with n > 3 are more potent (ICsg in the nanomolar
range) than the parent pharmacophores, 1-hydroxy, 1-alkyl, and 1-amino bisphosphonates, as growth
inhibitors of trypanosomatids. Surprisingly, the 2-alkylaminoethyl-1-fluoro-1,1 bisphosphonates
synthesized by Galaka et al. by replacing hydrogen with fluorine atom at C-1 position rendered these
compounds inactive for T. cruzi amastigotes as well as T. gondii tachyzoites [40].

However, it is important to note that most clinically approved drugs for bone-related disorders are
nitrogen containing owing to their superior ability in suppressing osteoclast survival. These constitute
the second and third generation of bisphosphonates with nitrogen containing R2 side chain. Thus,
some novel strategies have been reported to increase the potency of these nitrogen containing
bisphosphonates for repurposing as antiparasitic drugs. In one such study, bioactive ligand risedronate
was coordinated with different first row transition metal ions—Cu, Co, Mn, and Ni—in an effort to
generate a synergistic and additive effect of the ligand metal complex. These complexes in particular
‘Mn risedronate complex” demonstrated stronger inhibition (IC5y ~14 uM) with low cytotoxicity in
mammalian Vero cells compared with the free risedronate ligand (ICsy ~55 pM) against proliferation
of T. cruzi amastigotes [124]. Similarly, bisphosphonate ibandronate was also complexed with these
transition metals and evaluated for anti-proliferative effects on TcFPPS. In addition to exhibiting
improved inhibition of T. cruzi amastigotes, these metal complexes also showed a poor inhibition for
human FPPS (IC5p ~>10 uM) than free ibandronate (IC5y ~0.96 uM) [121].

In another study by Yang and colleagues, bisphosphonates for treatment of trypanosomiasis
were selected on the basis of the enzymatic activity inhibition as well as cell growth inhibition with
low human cell toxicity as assessed in HEK293 cells. In this study, the zoledronate derivatives
containing imidazolium side chain with n = 0-8, with and without 1-hydoxyl (1-OH) in the
bisphosphonate backbone, were as potent as bisphosphonates with pyridinium side chain against
TbFPPS (Figure 3B) [83]. Thus, the antiparasitic activity of bisphosphonate compounds against T. cruzi
parasites in vitro as well as in vivo justifies the need for further research that can contribute to the
development of these compounds as potential new drugs for the treatment of Chagas disease.

5. Bisphosphonate Compounds as Potential New Anti-Leishmania spp. Drugs

Leishmaniasis is a group of parasitic diseases caused by trypanosomatids belonging to the genus
Leishmania [125]. These trypanosomatids affect humans; several species of wild and domestic mammals;
as well as invertebrates belonging to the order Diptera, family Psychodidae, genus Lutzomya in
the New World, and genus Phlebotomus in the Old World [126]. The Leishmania specie is classified
into two subgenera—Leishmania Viannia and Leishmania Leishmania—according to their clinical and
epidemiological characteristics [127].

According to WHO [128], leishmaniasis is endemic in tropical and subtropical areas and in the
Mediterranean basin, affecting 98 countries and about 12 million people. It is estimated that more
than 1 billion people live in endemic regions at risk of infection. In addition, about 1.3 million new
cases of the disease are registered annually, and mortality is 20,000 to 30,000 per year [128,129]. This
disease is endemic in five continents, in 98 countries located mainly in tropical and subtropical regions,
where socioeconomic status impacts disease control [95-97]. The clinical forms of leishmaniasis
are visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL) [130]. The factors that determine
the different clinical forms are the species of the infectious agent, which vary according to the
geographical area.

In the last decades, few drugs have been made available for the treatment of leishmaniasis,
among which none is suitable for treatment owing to high toxicity, prohibitive prices, intravenous
administration that requires hospitalization [131], and the risk of developing drug resistance [118].
In Brazil, mainly in northeastern Brazil, leishmaniasis presents a variety of clinical spectra, characterized
by tegumentar leishmaniasis and visceral leishmaniasis. Owing to the exposure of U.S. troops to both
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visceral and cutaneous leishmaniasis, after the deployments in the Middle East, the United States has
observed infections. In fact, the army has developed a topical to treat cutaneous leishmaniasis. As of
2007, about 1300 soldiers have been diagnosed with leishmaniasis [132-134], but the real problem is
the threat of leishmaniasis infection of autochthonous cases within the USA and the expansion of the
natural borders of Leishmania mexicana beyond Texas [135-137].

The drugs approved by the FDA for the treatment of leishmaniasis are as follows: (i) Pentavalent
antimonials—meglumine antimoniate and sodium stibogluconate—first-line drugs of choice, but when
accumulated in organic tissues, they can cause serious adverse effects, such as vomiting, severe nausea,
anorexia, headache, arthralgia, lethargy, cardiotoxicity, pancreatitis, and nephrotoxicity [138]; (ii)
Amphotericin B, also of the first line of choice; however, it can cause chills and fever, associated
with myocarditis and nephrotoxicity, in addition to a high cost for liposomal formulation [139];
(iii) Pentamidine, a second-line drug for patients resistant to antimony; however, it was discontinued
owing to severe adverse reactions such as myocarditis, headache, hypotension, hyperglycemia,
and hypoglycemia [140]; (iv) Paromomycin, an aminoglycoside antibiotic used in the topical treatment
of CL and as an alternative to VL; however, it causes respiratory dysfunction and changes in
lipid metabolism [117]; and (v) Miltefosine, an oral therapeutic drug for the treatment of all forms of
leishmaniasis, which was approved in 2014 [141,142]. However, the use of Miltefosine is contraindicated
for pregnant women and nursing mothers, because it is a teratogenesis drug.

Besides the limitations of currently used drugs, the failure of treatment owing to low plasma
concentration [143] highlight the necessity to develop effective anti-leishmaniasis drugs with reduced
side effects. In recent years, several approaches have been reported to identify and optimize
bisphosphonates as new drugs against Leishmania spp. parasites [144]. Initial studies by Martin
at al. evaluating the activities of various nitrogen containing bisphosphonates on the intracellular
proliferation of L. donovani amastigotes demonstrated that risedronate was most effective with an ICs
of 2.3 uM with little toxicity to host cells [27]. Further studies on nitrogen-containing bisphosphonates
as potential anti-Leishmania drugs were performed by Yardley and collaborators [25]. These authors
carried out preclinical tests in mice infected with L. donovani and evaluated the antiparasitic activity
in vivo of three bisphosphonate-based compounds, namely, alendronate, pamidronate, and risedronate.
Alendronate did not show antiparasitic activity against L. donovani. However, the compounds
pamidronate and risedronate showed antiparasitic activity when administered by intravenous or
intraperitoneal routes. In 2002, another study published by Rodriguez et al. demonstrated the
antiparasitic activity of pamidronate in an experimental model of L. mexicana amazonensis [10].
Pamidronate, when administered intraperitoneally with a dose of 10 mg/kg/day, for five days,
cured mice with cutaneous leishmaniasis with a healing process characterized by the extinction of
lesions over time and the disappearance of amastigote forms at the lesion site, as determined by
polymerase-chain reaction.

To investigate the target of bisphosphonates, Ortiz-Gomez and collaborators studied the effects
of bisphosphonate risedronate on L. major parasites overexpressing FPPS. In these studies, L. major
promastigotes were transfected with FPPS and the resulting tranfectants were characterized for the
overexpression of FPPS. The ICsy for risedronate against these parasites overexpressing LmFPPS was
found to be 70 times higher than the wild-type cells, indicating the correlation of degree of resistance
with the increase in enzyme activity. Furthermore, when resistance was induced by stepwise selection
with increasing concentrations of risedronate, the resulting resistant promastigotes exhibited a fourfold
increase in the levels of FPPS as a result of drug pressure. These studies further suggested that FPPS is
the main target of amino bisphosphonates in Leishmania [9].

Another interesting study by Gadelha and colleagues evaluated the effects of N-BPs on the cell
viability and ultrastructure of L. infantum, the FPPS of which is about 97% identical to that of L. major.
The N-BP risedronate had stronger anti-proliferative activity against L. infantum promastigotes with
an ICsp of 13.8 pM compared with other N-BPs such as ibandronate (IC5p = 85.1 pM) and alendronate
(IC5p = 112.2 uM). In addition, the three N-BPS displayed the same ultra-structural alterations in
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L. infantum promastigotes, such as accumulation of small vesicles in the Golgi region, mitochondrial
swelling, altered cell division, formation of intracellular vesicles and lamellae, plasma membrane
blebbing, as well as nuclear pyknosis and chromatin condensation [145].

To further understand the interaction of N-BPs with the target enzyme FPPS in L. major, the binding
affinities of nitrogen-containing bisphosphonates derivatives with pyridinium (e.g., 300B, 461, and 476A)
or imidazolium side chains (e.g., zoledronate/91B) (Figure 3C) were probed by isothermal titration
calorimetry. The binding affinity or K4 values for LmFPPS against these inhibitors were in the range of
28-343 nM. Of particular interest was zoledronate, as it exhibited five times higher affinity (Kq ~28 nM)
for Leishmania major FPPS compared to human FPPS (K4 ~150nM) [7,146]. Furthermore, zoledronate was
also found to have an inhibition constant or Ki of 11 nM for LmFPPS using inhibition studies, suggesting
its high potency [123]. The differential activities and affinities of these bisphosphonates for human and
Leishmania FPPS enzymes could be greatly exploited to design more effective parasite-specific inhibitors.
Despite these initial studies on the use of bisphosphonates in experimental leishmaniasis therapy,
further in vivo studies are needed to validate the use of these compounds as potential parasitic-specific
therapies for the treatment of leishmaniasis.

6. Overall Structure of LmFPPS and TcFPPS in Complex with Inhibitors

FPPS enzymes are dimers with an extensive buried surface area of about 3000 A2 [147].
The structures of trypanosomatids and human FPPS in complex with a bisphosphonate inhibitor
(risedronate/zoledronate or other N-BPs), substrate IPP, and three divalent cations (either Mngr or
Ca?*) have been determined by X-ray crystallography [7,11,147,148] (Figure 5A). In the structures of
these complexes, the nitrogen containing BP inhibitors occupy the allylic site and IPP (when present)
occupies the homoallylic site. An overall ‘closing’ of the active site is observed in the structures of
these complexes when compared with the apo structure [148]. Three divalent cations bridge the
side chains of aspartate residues from the two aspartate-rich motifs (DDXXD; residues 98-102 in the
first aspartate-rich motif and residues 250-254 in the second aspartate-rich motif) to coordinate the
bisphosphonate atoms of the inhibitor bound at the allylic site [83,147,148]. Each divalent cation
is coordinated by water molecules and oxygen atoms of the bisphosphonate. On the other hand,
the phosphate oxygen atoms of the IPP are recognized by positively charged residues (K48, R51,
and R360) without the involvement of divalent cations (Figure 5B).
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Figure 5. Active site of Trypanosoma cruzi farnesyl pyrophosphate synthase (FPPS) in complex with
a N-BP ([2-(n-propylamino)ethane-1,1-diyl] bisphosphonic acid), Mg?*, and isopentenyl pyrophosphate
(IPP) (PDB ID 4DX]J). (A) Coordination of Mg 2+ js shown with grey dashed lines. Residues of the
aspartate rich motifs are shown as sticks. Water molecules are shown as red crossmarks. (B) IPP is at
hydrogen bonding distance of K48, R51, and R360.

7. Conclusions and Perspectives

NTDs represent a group of diseases that affect millions of individuals worldwide, resulting from
the social and economic underdevelopment of developing countries [2]. In the context of these diseases,
those caused by parasitic protozoa, such as Chagas disease and leishmaniasis, deserve special attention,
mainly owing to the few therapeutic options, high toxicity associated with currently used drugs,
difficulty of access, high cost, and low efficacy that interfere with treatment adherence. Thus, there is
an urgent need to develop new drugs with novel modes of action that are more effective, cheaper, less
toxic, and easy to administer.

In this sense, bisphosphonate compounds are presented in this work as potential new compounds
with antiparasitic activity, as these compounds can be easily synthesized in different ways, facilitating
the rational design of new molecules with high antiparasitic activity and low toxicity. On the other
hand, some of these compounds are already being used in pharmacological therapy for bone diseases
in humans, thus facilitating the practice of repositioning drugs.

Thanks to the ability of some of these compounds to inhibit the mevalonate pathway in different
types of protozoa, mainly owing to their ability to inhibit the enzyme FPPS, an enzyme essential for
isoprenoid biosynthesis in trypanosomatids, nitrogenous bisphosphonates appear to be promising for
the study of structure-activity mechanisms of new compounds with antiparasitic activity. However,
in addition to the pharmacological action, knowledge of the synthesis process of these compounds
can facilitate the development of new ones that are less toxic and can be used more safely in the
context of pharmacological treatment of Chagas disease and leishmaniasis. In conclusion, further
pharmacological studies, chemical synthesis, and toxicology are necessary to move these compounds
forward for use in antiparasitic drug therapy.
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