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ABSTRACT 
 
 

Characterization of the Mutation Causative for Autosomal Recessive Hereditary 

Nephropathy in the English Cocker Spaniel and Analysis of Gene Expression in Multiple 

Models of Hereditary Nephropathy. (May 2007) 

Ashley Greene Davidson, B.S., New Mexico State University 

Chair of Advisory Committee: Dr. Keith E. Murphy 

 

The domestic dog, Canis familiaris, has over 450 naturally occurring inherited 

diseases. Over half of these diseases are clinically similar to human diseases making the 

dog an excellent model in which to study human hereditary diseases. Alport syndrome 

(AS), a group of heterogeneous, hereditary renal diseases, is one example of such a 

human disease. The disease is transmitted in three fashions: X-linked, autosomal 

recessive, and autosomal dominant. 

AS is caused by mutations in COL4α3, COL4α4 or COL4α5, all members of the 

type IV collagen family. The proteins products of these genes along with those of the 

other type IV collagen family members (COL4α1, COL4α2, and COL4α6) are structural 

components of basement membranes throughout the body. This dissertation describes the 

measurement of mRNA transcripts in two canine models of AS: a mixed breed model of 

X-linked AS (XLAS) and the English Cocker Spaniel (ECS) model of autosomal 

recessive AS (ARAS). The work done revealed a decrease in COL4α4 transcripts. 

The similarity between the decrease of COL4α5 in the XLAS model and that for 

COL4α4 in the ARAS model lead to the investigation of COL4α4 as the gene harboring 
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the mutation causative for ARAS in the ECS. Upon sequencing COL4α4, the causative 

mutation was determined to be an A to T transversion in exon 3.  

To provide an in vitro model to study type IV collagens, a protocol was designed 

and experimentally validated to isolate and culture canine Sertoli cells. Canine testes cells 

were isolated and cultured. Cells were verified as Sertoli cells through positive 

identification of both SOX9 and Clusterin B proteins, along with sequence verification of 

SOX9 transcripts. This in vitro model provides a tool to further study the type IV 

collagens. 

Overall, the research described herein lead to the identification of the mutation 

causative for ARAS in the ECS. With this knowledge a genetic test was developed to test 

for the disease. This research also provided valuable information about the transcript 

levels of type IV collagens in two models of AS, and provided a novel model in which to 

study the type IV collagens further. 
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CHAPTER I  
 

INTRODUCTION 
 

The dog as a model system 

 The domestic dog, Canis familiaris, is an especially useful animal model for study 

of human hereditary diseases. While diseases mimicking those found in humans can be 

induced for study in conventional model organisms (e.g., mouse), the dog has over 450 

naturally occurring hereditary diseases. [1]. More than half of these have the potential to 

be studied as models for a virtually identical human disease. These include both 

monogenic and multifactoral diseases [1, 2], and range from rare diseases such as 

narcolepsy and Alport syndrome to more common diseases such as arthritis and cataracts. 

The genes and specific mutations for many of these monogenic diseases have been 

elucidated. Importantly, using the dog as a model also provides a greater understanding 

of the disease and therefore, will help to improve the quality of life of the dog. 

 Several of the benefits of canine models branch from the specific role dogs play in 

our culture as a domesticated pet, as opposed to being a laboratory animal. In this role, 

the dog has the highest level of medical surveillance of any non-human species [2]. Not 

only do we give our dogs top-notch medical care, we also co-habitate with them, often 

sharing the same food and bed. A shared environment can act as a valuable control in 

studying diseases which may have environmental influences. Also, our interest in our 

dog’s heritage and desire to keep accurate breeding records has led to the maintenance of 

extensive and accurate multigenerational pedigrees, a very desirable trait in a model 

____________________ 
This dissertation follows the style of BMC Biology. 
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organism because they facilitate the study of hereditary traits, including diseases.                         

Because of its evolution and the present-day breeding practices, many breeds 

exhibit unique intra-breed homogeneity but inter-breed diversity. This phenomenon and 

the desire to propagate specific and individual breeds, along with their particular 

characteristics, has lead to the development of breed clubs. Today the American Kennel 

Club (AKC) recognizes over 150 breeds [3]. However, variation can be seen among more 

than just the registered breeds and there are over 1000 different variations (or breeds) of 

the dog world wide [4]. These stem not from natural selection but rather artificial 

selection by humans, as we carefully handpick individuals for propagation based on the 

role, personality, or physical characteristics desired for the particular breed. This breeding 

strategy, along with the breed club’s registration requirements (that both parents of a 

registered dog must be registered within the breed as well), has created a barrier to gene 

flow, leaving each breed as a genetically isolated population which can be a great 

advantage in genetic studies. 

Also adding to intra-breed genetic homogeneity is the low number of founders for 

some breeds, along with bottleneck and popular sire effects. Bottlenecking occurs when a 

small population of individuals is left to continue the breed; this has been seen after large 

disasters or catastrophic events that wipe out a large number of the breeding population. 

The popular sire effect, on the other hand, is the result of the popularity a particular stud 

attains after exhibiting exceptional breed standards. Breeders wish to introduce such 

sires’ desirable qualities in their lines, and if a single sire is brought into enough lines, 

this increases the already high level of genetic homogeneity.  
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Tools available to study the dog 

The inherent benefits, as described above, to studying the dog as model have been 

known for decades; however, only within the past few years have there been the 

necessary scientific advances to allow researchers to study the dog at the genetic level. 

Although research involving the domestic dog was slow at first, i.e., the complete 

karyotype of the dog was not available until 1999, research since then has rapidly 

advanced [5]. One of the major advances in canine genomics came in 2003, when the 

reference sequence consisting of 1.5X sequence coverage of the canine genome was 

published [6]. That same year a White Paper was submitted to, and funded by, the 

National Human Genome Research Institute (NHGRI) proposing to go beyond the 

reference sequence already published and undertake the sequencing of the entire dog 

genome. The project’s completion came with the sequence publication in 2005. The 

result was a 7.5X sequence coverage comprised of 31.5 million shotgun sequence reads 

[7]. The sequence covers ~99% of the euchromatic regions of the genome and over 99% 

has been correctly assembled. The sequence was assembled to span 2.41 Gb with only 

1% remaining as gaps. From this assembly, sequence was arranged and oriented on the 

38 canine autosomes and the X chromosome, however, about 3% could not be assigned a 

chromosomal position due to their highly repetitive nature [7].  

 The full sequence and details of its assembly are publicly available on the 

National Center for Biotechnology Information (NCBI) website 

(http://www.ncbi.nlm.nih.gov/). There, a user can search the deposited sequence using 

the site’s BLAST program, identify predicted genes or coding sequences from the 

assembly, compare genomic and coding sequences, and align unknown or predicted 
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sequences to the known genome sequence. These tools allow a researcher to obtain 

important information about the genes and putative proteins, they are studying. 

 These requisite tools for canine research have added to the advantages of studying 

the dog. They have also allowed investigators to make some fundamentally important 

discoveries and observations about mammalian genomes. For example, the completion of 

the 1.5X sequence revealed that the genetic distance between the human and dog is half 

that of the human and mouse, as assessed by genomic alignments [6].  And by comparing 

the canine sequence to that of other mammals, it is possible to perform more informative 

comparative analyses. For example, further understanding of the evolutionary shaping of 

mammalian genomes through chromosomal rearrangements, genomic insertion and 

deletions, and nucleotide divergences has been gained [7].  

 

Type IV collagens  

 The collagen superfamily is comprised of over 20 gene families, the most recently 

discovered being collagen type XXVIII [8]. All collagens can be divided into two distinct 

groups: fibril forming and non-fibril forming. These structural proteins are found 

throughout the body, from bone and cartilage to blood vessels and muscles. Specifically, 

the type IV collagens, categorized as non-fibril forming, are involved in the formation of 

extracellular (or basement) membranes of tissues including, but not limited to, the 

kidney, ear, eye, and testes [9-13]. This collagen family plays an important role not only 

in cell and tissue structure through their integration into basement membranes, but also in 

all the functions associated with those membranes [14]. 
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 The type IV collagen family is comprised of six distinct alpha chains (α1-6). The 

genes encoding these proteins are uniquely located in a head-to-head fashion on opposite 

strands of three canine chromosomes. Specifically, COL4α1and COL4α2 are located on 

canine chromosome 22 (CFA22), COL4α3and COL4α4 on CFA 25, and COL4α5 and 

COL4α6 on the CFA X [15]. These correspond to human chromosomes 13, 2, and X, 

respectively [16-20]. This unique genomic structure stems from the duplication and 

inversion events during the evolution of the type IV collagen gene family [21]. Because 

of these duplication events, the type IV collagen genes have a marked sequence identity. 

However, they can be split into two separate groups: α1-like, and α2-like. The α1-like 

genes, as the name suggests, were all duplicated from the COL4α1 gene and are 

comprised of COL4α1, COL4α3, and COL4α5 genes, and the α2-like genes, duplicated 

from the COL4α2 gene, contain the COL4α2, COL4α4, and COL4α6 genes [17, 21, 22].  

Collagen proteins encoded by these genes are composed of three distinct domains: 

a hypervariable NC1 domain at the carboxy terminal, a long collagenous region in the 

middle of the protein, and a short 7S domain at the amino terminal [13, 23-26]. Each 

alpha chain made is incorporated into trimers which link together to form the framework 

for basement membranes. To do this, the recognition sequence within the NC1 domain 

dictates which three proteins partner to comprise the trimer [27, 28]. The trimers are then 

linked together in pairs by their NC1 domains to create hexamers. Four of these hexamers 

are linked at the 7S domain to form the network found in membranes (figure 1) [26, 29, 

30]. The collagenous domain is made of multiple repeats of the amino acid sequence Gly-

X-Y. These repeats are periodically interrupted to give the helices flexibility [31, 32]. 

Defects in any one of the three alpha chains in any heterotrimer prevent proper assembly 
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and subsequent deposition, of any of the proteins involved, into their respective basement 

membrane [28]. 

7S
NC1

7S7S
NC1NC1

 
 

Figure 1.   Pictorial representation of collagen network in basement membranes. The 
NC1 domain (indicated on figure) links two trimers together and the 7S 
domain (indicated on figure) links four of the hexamers together. 

 

Although there are 720 possible trimer combinations for the six type IV collagen 

proteins, these trimers only follow a pattern of two α1-like and one α2-like proteins in 

one trimer. Further, there are only three distinct trimers actually produced and found in 

basement membranes: α1.α1.α2, α3.α4.α5, and α5.α5.α6 [33-35]. These heterotrimers are 

expressed in a spatially conditional pattern in basement membranes throughout the body. 

The α1.α1.α2 trimer is ubiquitously found in the body, while the α3.α4.α5 trimer is 

limited to membranes in the ear, eye, lung, testes and the glomerular basement membrane 

(GBM) of fetal and adult kidneys. The α5.α5.α6 heterotrimer is found the basement 

membranes of the skin, smooth muscle, esophagus, testes and Bowman’s capsule in the 

kidney [11, 36, 37]. 

 

Alport syndrome (AS) and hereditary nephropathy (HN) 

Alport syndrome (AS) describes a group of hereditary nephropathies affecting the 

GBM that occur in the human. Hereditary nephropathy (HN) is the most accurate term to 
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describe the corresponding group of diseases in the dog. While HN is currently the most 

exact term for the canine form, it has been referred to by many different terms, such as 

familial nephropathy (FN). Therefore, all three terms have been used interchangeably 

when discussing the disease. 

Although the dog represents an excellent natural model for AS, there are a few 

distinctions between human AS and canine HN. The most significant of these differences 

is the fact that HN does not display the multi-organ symptoms that AS patients can 

present with, such as sensorineural deafness and ocular lesions [38-41]. Both AS and HN 

are, however, characterized by distinctive ultrastructural changes to the GBM and 

progressive renal failure. They are caused by mutations in the genes that encode members 

of the type IV collagen proteins found in these basement membranes, as described above.  

AS and HN specifically affect the GBM of the kidney, causing a distinctive multilaminar 

splitting of the GBM ultrastructure, a phenomenon typical of this disease. This 

contributes to the development of hematuria, proteinuria, and progressive renal injury, 

which eventually lead to end stage renal disease (ESRD) [30].  

AS is transmitted in three fashions: X-linked (XLAS), autosomal recessive 

(ARAS), and autosomal dominant (ADAS). XLAS is caused by mutations in COL4α5, 

located on the X chromosome in both the human and the dog, and is the most common 

form of AS, accounting for approximately 85% of human cases [15, 19, 42]. More than 

300 mutations causative for human XLAS have been described [43]. ARAS occurs less 

frequently, accounting for about 15% of human AS cases, and is caused by mutations in 

either COL4α3 or COL4α4 [42, 44]. These genes are located on human chromosome 2 
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and canine chromosome 25 [15, 45]. Mutations in COL4α3 or COL4α4 have also been 

reported to cause ADAS, the rarest form of AS [46-49].  

The type IV collagen heterotrimer consisting of α3.α4.α5 is essential to the 

structure and function of the adult GBM, and, when absent, results in AS and HN [50]. 

As described above, the absence of any one of the three proteins in the trimer leads to the 

absence of the entire trimer in the basement membrane. Therefore, both XLAS and 

ARAS are characterized by the absence of COL4α3, COL4α4, and COL4α5 in the GBM 

of affected individuals.  

 

Animal models of AS 

While the underlying causes and modes of transmission of AS are well known, 

many aspects of the disease remain to be understood, and renal transplant is the only 

treatment option. Further understanding of this disease can be achieved through the use of 

available animal models (table 1). There are both murine and canine models for the two 

most common forms of AS (i.e., XLAS and ARAS) [38-40, 51-55].  

Two natural models of XLAS are found in the dog. The first, in a Samoyed 

kindred, was described in 1984, and in 1994 was determined to result from a G to T 

nucleotide substitution in the COL4α5 gene [40, 56]. Upon immunofluorescence (IF), 

these dogs show an absence of the trimer composed of α5.α5.α6 and decreased levels of 

the α3.α4.α5 trimer in the GBM [57]. Another XLAS canine model was described in a 

mixed breed originating in Navasota, Texas (and thus termed NAV dogs) in 1999 [39]. 

The causative mutation, a 10 base pair deletion in exon 9 of COL4α5, was described in 

2003 [58]. The type IV collagen staining for the these dogs is similar to that of the 
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Samoyed, specifically, in the GBM there is an absence of the α5.α5.α6 trimer and a 

decrease of the α3.α4.α5 trimer [39]. Recently, a third XLAS animal model, a murine 

model, was created by inducing the causative human mutation G5X in the murine 

COL4α5 gene [52]. Immunohistochemical studies on these mice reveal that α5 expression 

is lost along with that of α3 in the renal basement membranes [52].  

Murine models make up the majority of the ARAS models, with only a single 

naturally occurring canine model. HN has been described in the English Cocker Spaniel 

(ECS) for 50 years [59]. However, only very recent work reported in chapter III 

identified the causative mutation. A total of three murine models of ARAS have been 

generated. Two of these are targeted knockout models of the COL4α3 gene, while the 

third involves a transgenic deletion encompassing part of both the COL4α3 and COL4α4 

genes [53-55]. For all animal models of ARAS, the α3.α4.α5 trimer is completely absent 

from the GBM, as assessed by IF [38, 53-55] 

Two canine models of ADAS remain the only animal models of this form of AS 

described to date. The first of these to be identified was in 1995 when Hood and 

colleagues described a hereditary nephropathy transmitted in an autosomal dominant 

fashion in bull terriers [60]. The second, also described by Hood in 2002, occurs in 

Dalmatians [61]. The underlying mutations causing either of these forms of HN have yet 

to be described. Unlike the other forms of AS described above, IF shows positive staining 

for both α3,α4.α5 and α5.α5.α6 trimers in the GBM of both the bull terriers and 

Dalmatian affected with ADAS [60, 61]. 
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Table 1. List of available animal models of AS. Form of AS, species of model, genetic 
cause, and reference are listed. 

Form of 
AS 

Modeled 

Animal Causative Aberration Reference

 
XLAS 

 

 
Canine (2) 
     Samoyed 
     NAV dogs 
Murine (1) 
 
 

 
 
G to T, exon 35 
10 bp deletion, exon 9 
Induced human G5X mutation 

(G to T, exon 1) 

 
 
[40] 
[58] 
[52] 

 
ARAS 

 
Canine (1) 

English Cocker Spaniel 
Murine (3) 
 
 
 
 
 
 
 
 

 
 
Reported in chapter III 
Targeted insertion of Neo 

cassette, exon 5  
Targeted deletion of first three 

NC1 exons 
Transgene insertional mutation 

resulting in deletion of 
COL4α4 exons 1-12 and 
COL4α3 exons 1 and 2 

 
 
chapter III 
[53] 
 
[54] 
 
[55] 

 
ADAS 

 
Canine (2) 
     Bull Terrier      
     Dalmatian      

 
 
Uncharacterized 
Uncharacterized 

 
[60] 
[61] 
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CHAPTER II 

ANALYSIS OF TYPE IV COLLAGEN GENE EXPRESSION IN AUTOSOMAL 

RECESSIVE AND X-LINKED FORMS OF ALPORT SYNDROME IN THE 

ENGLISH COCKER SPANIEL AND MIXED BREED DOG* 

 

Background 

AS  refers to a progressive hereditary glomerular nephropathy caused by 

mutations in three members of the type IV collagen gene family that encode proteins 

required for normal glomerular basement membrane (GBM) structure and function. The 

condition occurs in the human and various breeds of the domestic dog and is transmitted 

in X-linked (XLAS), autosomal recessive (ARAS), and autosomal dominant (ADAS) 

fashions. Although the genetic and phenotypic spectra of AS are diverse, the primary 

structural abnormalities common to all forms of the disease are defects in the GBM. 

These abnormalities include a distinctive multilaminar splitting of the GBM, which 

contributes to the development of hematuria, proteinuria, and progressive renal injury. 

Additionally, sensorineural deafness and ocular lesions occur in many human AS cases 

[42, 62].  

            In the human, the genetic bases for the diseases are known for XLAS, ARAS, and 

ADAS. Mutations in COL4α5 are responsible for XLAS and mutations in COL4α3 or 

COL4α4 are responsible for the autosomal forms of AS. These three type IV collagen  

________________   
* Portions of this chapter are reprinted in part with permission from Davidson A, Bell R, 
Lees G, Kashtan C, Davidson G, Murphy K: Genetic cause of autosomal recessive 
hereditary nephropathy in the English Cocker Spaniel. JVIM 2007, 21  
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genes, along with the other three members of this gene family, encode six distinct 

peptides (α chains) that are assembled into three heterotrimers; α1.α1.α2, α3.α4.α5 and 

α5.α5.α6. These heterotrimers are distributed in basement membranes throughout the 

body [33-35]. In the kidney, the α1.α1.α2 and α3.α4.α5 heterotrimers are found in fetal 

and adult GBM, respectively [54]. The α3.α4.α5 heterotrimer is essential to the structure 

and function of the adult GBM, and, when absent, results in AS [50]. Therefore, both 

XLAS and ARAS are characterized by the absence of COL4α3, COL4α4 and COL4α5 in 

the GBM of affected individuals. 

More than 95% of human cases are either X-linked or autosomal recessive, 

although rare cases of ADAS have been reported. Mutations in COL4α5 result in XLAS, 

the most common form of AS, accounting for about 85% of human cases [19, 42, 63]. In 

both the human and the dog, COL4α5 is located on the X chromosome [15, 19]. More 

than 300 mutations in the COL4α5 gene causing human XLAS have been reported. 

ARAS, which accounts for about 15% of human cases, results from mutations in COL4α3 

or COL4α4, which are on chromosome 2 in the human and chromosome 25 in the dog 

[15, 64]. 

XLAS has been identified in two families of the dog: 1) a Samoyed kindred, and 

2) a kindred of a mixed breed dogs, the NAV dogs, so named due to the city of their 

origin [39, 65]. In each family, XLAS arises from a unique mutation in COL4α5. In the 

Samoyed model of XLAS, the causative mutation is a single base substitution in exon 35, 

which results in a stop codon [40]. The causative mutation in NAV dogs is a 10bp 

deletion in exon 9 [58]. The deletion causes a frameshift leading to a premature stop 

codon in exon 10 resulting in a severely truncated protein. Affected dogs manifest 
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clinical abnormalities typical of canine AS, including onset of proteinuria before six 

months of age and rapid progression to uremia in males at six to eighteen months of age 

[39].  

ARAS is present in the ECS. These dogs exhibit typical manifestations of AS, 

including distinctive thickening and splitting of the GBM, onset of proteinuria at five to 

eight months of age, and juvenile-onset renal failure [38]. As is the case for XLAS, this 

disease is characterized by abnormal GBM expression of type IV collagens, as 

demonstrated by immunofluorescence (IF) staining. The mutation causative for ARAS in 

the ECS is described in chapter III, but has been suspected to be in either COL4α3 or 

COL4α4, as in human AS [46, 47, 66].  

Characterization of the gene expression changes that occur in these two canine 

models of AS will enhance our understanding of the disease processes. Although gene 

expression profiles in other animal models of AS have been reported, no previous studies 

have utilized real time quantitative RT-PCR (qRT-PCR). Through the use of qRT-PCR, 

we identified the changes in expression of the type IV collagen genes of XLAS-affected, 

XLAS-carrier, and ARAS-affected dogs, compared with dogs having no signs of renal 

disease. These data suggest that COL4α4 is the gene causative for ARAS in the ECS.   

 

Results and discussion 

This study utilized qRT-PCR to analyze type IV collagen gene expression in AS. 

Other work included the use of IF staining to assess protein expression as well as 

northern blotting and RNase protection assays to assess mRNA expression [38, 39, 52, 

67]. To complement these data, qRT-PCR, a more sensitive method for assessment of 
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transcription, was performed. Data generated using this approach provide an enhanced  

insight regarding gene expression changes in the renal cortex of AS-affected subjects, 

and offer a useful comparison of gene expression changes between two different genetic 

forms of canine AS.  

 

XLAS-affected NAV dogs 

 To assess gene expression changes in XLAS-affected NAV dogs at ESRD, 

comparisons were made to dogs, including normal NAV dogs, with no signs of renal 

disease. As shown in Figures 2 and 3, there was a greater than two fold down regulation 

of COL4α5 (p=0.03) in XLAS-affected NAV dogs. No changes in gene expression levels 

were detected for COL4α3, COL4α4, and COL4α6 (p=0.65, 0.88, and 0.54, respectively).  
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Figure 2.   Results of quantitative real time RT-PCR analysis displayed by groups of 

dogs. Bars represent transcript levels of selected type IV collagen genes in the 
renal cortex of respective groups of dogs. Each bar shows the fold change in 
the designated group of affected dogs compared with the group of dogs 
without HN for the indicated gene. 
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Figure 3.   Results of quantitative real time RT-PCR analysis displayed by gene. Bars 
represent transcript levels of selected type IV collagen genes in the renal 
cortex of respective groups of dogs. Each bar shows the fold change in the 
designated group of affected dogs compared with the group of dogs without 
HN for the indicated gene. 

 

 Because the concentration of full length transcripts of COL4α5 were reduced in 

XLAS-affected dogs, and because COL4α3, COL4α4, and COL4α6 mRNA levels in 

XLAS-affected dogs were similar to levels in normal dogs, these data suggest that the 

absence of these proteins in renal basement membranes (previously demonstrated by IF 

[39]) is likely due to a post-translational event. That is, although COL4α3, COL4α4, and 

COL4α6 are properly translated, the absence of functional COL4α5 proteins prevents the 

formation of the α3.α4.α5 and α5.α5.α6 trimers and their subsequent deposition in renal 

basement membranes.  

 Expression patterns for the other type IV collagen genes differed from each other 

(Figures 2 and 3). That is, COL4α1 exhibited no change in expression (p=0.69), whereas, 

COL4α2, exhibited a greater than a two fold down regulation (p=0.13). Although the p-

value obtained for COL4α2 is not strongly significant, it does support the trend of down 
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regulation. This is perplexing since staining for COL4α1 and COL4α2 in the GBM, 

Bowman’s capsule (BC), tubule basement membrane (TBM), and interstitium of XLAS-

affected NAV dogs is positive [39]. However, one possible explanation could be that 

although there is a down regulation of transcription, this is not coupled with an increase 

in the degradation of the proteins. Because there is an absence of the α3.α4.α5 trimer in 

all basement membranes, the COL4α1 and COL4α2 proteins are able to be deposited in 

high enough amounts to be detected by IF staining. Therefore, the positive staining 

results may be due to increased retention of these collagens in the basement membranes, 

not an increase in their transcription or translation. Also contributing to this could be the 

fact that the renal samples are from whole renal cortex not isolated GBM. Therefore, any 

transcript level changes in membranes or interstitium outside the GBM will be included 

in these measurements along with those within the GBM. 

 Although IF findings for XLAS-affected Samoyeds are similar to those for 

XLAS-affected NAV dogs [39, 50], the gene expression profiles for the Samoyed model 

notably differ from those of the NAV dogs. That is, the most recently published data for 

the Samoyed [67] report both COL4α1 and COL4α2 to be up regulated, COL4α3 and 

COL4α4 to be down regulated, COL4α5 not detectable and COL4α6 to have no change. 

With the exception of COL4α5 and COL4α6, these data differ from the patterns reported 

here for the NAV dogs. The most striking difference is shown for COL4α3 and COL4α4, 

for which no changes were detected in the NAV dogs (Figures 2 and 3). However, gene 

expression changes reported herein do agree with those published for the murine model 

of XLAS [52]. It is important to note that the mutations leading to XLAS are different for 

each of these three models. It has been reported that the more severe the mutation in 
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COL4α5, the more severe the disease outcome [68], which may explain the differences in 

gene expression for these two canine models of XLAS. 

 It is important to address the fact that the type IV collagen gene expression 

profiles for the XLAS-affected NAV dogs more closely mimic a murine model of XLAS 

than another canine model of the same disease. This may be due to the differences in 

causative mutations.  That is, the XLAS-affected NAV dogs harbor a 10bp deletion in 

exon 9 of COL4α5, where as the XLAS-affected Samoyeds have a nonsense mutation in 

exon 35 of the same gene. Therefore, the XLAS-affected NAV dogs will have an absence 

of much of the collagenous domain of the COL4α5 protein, whereas the XLAS-affected 

Samoyeds will maintain a larger portion of the collagenous domain. The XLAS murine 

model mirrors the XLAS-affected NAV dogs in both the severity of the mutation and 

type IV collagen gene expression. This may be due to the fact that the mutation causative 

for XLAS in the murine model is a nonsense mutation in exon 1. 

 

XLAS-carrier NAV dogs 

This work also included analysis of gene expression of XLAS-carrier NAV dogs. 

To date, XLAS-carrier female NAV dogs have been less studied than their affected male 

counterparts; therefore fewer IF data are available for them and we cannot correlate gene 

expression changes with IF data.  

Expression of COL4α5 in XLAS-carrier females is dependent on Lyonization. 

Due to random X inactivation, some segments of the GBM will express the allele 

harboring the mutation, while others will express the wild type allele. Therefore, IF 

staining for COL4α5, as well as those chains that trimerize with COL4α5 (i.e., COL4α3, 

 



   18 

COL4α4, and COL4α6), is segmental (i.e., mosaic) in all basement membranes in which 

they normally are found (i.e., the GBM, BC and TBM) in young carrier females [39]. 

Like their affected male counterparts, carrier female NAV dogs exhibited a 

greater than two fold down regulation of COL4α5 (p=0.06). Expression of COL4α3 and 

COL4α6 was also comparable to that of the XLAS-affected dogs, that is, there was no 

change (p=0.75 and 0.42, respectively). In direct contrast to affected males, carrier 

females showed a greater than two fold down regulation of COL4α4 (p=0.03) (Figures 2 

and 3). However, the observed relationship between COL4α4 and the disease may be 

confounded with animal age. Although IF staining for COL4α1 and COL4α2 is 

consistently increased in GBM and interstitium of XLAS-carrier females [39] and 

although neither gene exhibited a greater than two fold change in expression (p=0.08 and 

0.3, respectively) (Figures 2 and 3), the p-value of for COL4α1 suggests a trend of down 

regulation.  

Differences in the ages of the dogs and the stages of progression of their renal 

disease at time of necropsies certainly could contribute to the differences in gene 

expression observed in affected male and carrier female NAV dogs. The XLAS-carrier 

females were euthanized for reasons unrelated to ESRD and their ages varied (13 to 84 

months), while XLAS-affected males were euthanized because of ESRD at a relatively 

young age (8 to 10 months) (Table 2). 
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Table 2. List of dogs used in study. Number, age, and gender of dogs used to evaluate 
type IV collagen gene expression in samples of renal cortex.  

         Number       Agea (months)  Gender 
 
ARHN 
Affected English  3                                    8-12                           F(1), M(2)  
Cocker Spaniels 
 
XLHN 
Affected mixed breed             3                                    8-10                                M 
 
Dogs without HN 
Normal mixed breed  2                                    9-15        M 
Havanese   1                                    120        M 
Dalmatian   2                                    1-2        F 
German Shepherd Dog 1                                  unknown                      unknown 
Great Dane   1                                      18        M 
 
a Age of the dogs when they were necropsied and renal cortex was obtained for 
subsequent RNA isolation. ARHN = autosomal recessive hereditary nephropathy, XLHN 
= X-linked hereditary nephropathy, HN = hereditary nephropathy. 
 

 

ARAS-affected ECS  

The ECS samples used for this study were obtained from client owned animals, 

and this is the reason for the small sample size. Renal tissue from ARAS-affected ECS 

was difficult to obtain because the dogs must have been diagnosed before they were 

euthanized, clients had to consent to the use of their dogs for research purposes, and the 

tissue had to be shipped from various locations. The fact that these dogs are client owned 

also precluded obtaining normal tissue. This is further complicated by the fact that there 

is no genetic test to distinguish ARAS-carrier and unaffected ECS. Only parents of 

affected offspring can be definitively diagnosed as ARAS-carriers. 
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Small sample size may not be the only consequence of the dogs being client 

owned. Because each dog was euthanized at a time determined by the owner, not by 

progression time points, the samples collected from ECS were taken at different time 

points in the disease. This fact could contribute to changes in transcript levels which may 

not otherwise be seen in time point matched dogs. 

 When compared to dogs without signs of renal disease (including normal NAVs), 

ARAS-affected ECS at ESRD showed a greater than two fold down regulation of 

COL4α4, similar to the down regulation of COL4α5 seen in the XLAS-affected NAV 

dogs (Figures 2 and 3). The established p-value for COL4α4 of 0.13 is not strongly 

significant but indicates a trend of down regulation.  

COL4α6 gene expression exhibited a greater than two fold change (Figures 2 and 

3); however, a p-value of 0.36 was obtained. No provocative gene expression changes 

were observed for COL4α1, COL4α2, COL4α3, and COL4α5 (p= 0.23, 0.48, 0.49, and 

0.91, respectively) (Figures 2 and 3). The different expression changes seen for COL4α1 

and COL4α2 in the NAV dogs versus the ECS could be explained by the fact that ECS 

and NAV dogs have different genetic backgrounds, and two forms of AS. This could lead 

one to hypothesize that different pathways for disease progression may result from for the 

different genetic causes of the disease.  

The IF findings for ARAS-affected ECS are similar, in some respects, to those for 

XLAS-affected NAV dogs. Specifically, there is complete absence of COL4α3 and 

COL4α4, one of which likely contains the causative mutation, in the GBM and distal 

tubule basement membrane (dTBM) [38]. Of the two genes encoding these proteins, 

COL4α4 showed a trend of down regulation and COL4α3 showed no change in 
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expression. Therefore, this suggests that the mutation is present in COL4α4. If this is the 

case, the decrease in transcript levels of COL4α4 could be explained by nonsense 

mediated degredation, the same would be true for COL4α5 in the XLAS-affected NAV 

dogs. Unlike the NAV dogs, ARAS-affected ECS do have widespread COL4α5 staining 

in their renal basement membranes [38, 39]. This is due to the fact that COL4α5 can 

trimerize with COL4α6, and in ARAS-affected ECS, these two peptides co-localize in the 

BC and collecting tubule basement membranes (ctTBM), as well as to some extent in the 

GBM. The persistence of COL4α5 in the GBM of ARAS-affected ECS is consistent with 

the normal levels of COL4α5 mRNA in these kidneys.  

Currently, there exist three murine models of ARAS, two of which are COL4α3 

NC1 domain knockouts and one of which is a COL4α3/COL4α4 transgenic insertion 

deleting the 5′ ends of both genes [53-55]. In those models for which northern blot or IF 

analysis were performed, the gene that is mutated is absent or expression is drastically 

reduced and this is also the case for XLAS-affected NAV dogs [53-55]. This supports our 

hypothesis that ARAS in the ECS is due to a mutation in COL4α4. However, none of the 

current murine models knocked out COL4α4 alone, which together with less quantitative 

forms of detection, may explain the differences observed in comparison of the ECS with 

the COL4α3 knock out murine model described by Miner et al. [54].  These differences 

are minor and include the increase in COL4α1 expression in the murine model [54]. 

There is an increase in COL4α1 and COL4α2 staining in the interstitium of the ECS, as 

previously demonstrated by IF staining [38]. However, there was no significant change in 

expression of these genes. 
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Conclusion 

 This report provides a comprehensive view of type IV collagen gene expression 

patterns in two canine models of AS. This allows for comparisons between previously 

published data for other murine and canine models, and also allows a comparison 

between two forms of AS. This study also provides a method suitable for investigating 

other forms of AS which have not yet been characterized, such as ADAS in the Bull 

Terrier [60]. Finally, the data provide evidence suggesting that COL4α4 is the causative 

gene in the ECS form of ARAS. Further studies are needed to identify the causative 

mutation.  

 
 
Materials and methods 
 
Animals 

The NAV dogs used in this study were members of a colony maintained at Texas 

A&M University. Status of normal and XLAS-affected NAV dogs was determined by 

genotype using primers designed to amplify the region harboring the 10bp deletion in 

COL4α5 (Forward 5′-CGCTTGACTATTTTGTGTGTCATAA-3′, Reverse 5′-

AAGGTGATGCTGTGATCTGATTTA-3′). However, the XLAS-carrier female NAV 

dogs were born prior to implementation of this test, and the status of these dogs was 

determined by IF staining of their epidermal basement membranes, as previously 

described [39]. XLAS-affected dogs were necropsied, whole kidneys harvested and renal 

cortex isolated, between eight and ten months of age, when their serum creatinine levels 

were ≥ 5.0 mg/dL, end-stage renal disease. Normal NAV dogs were euthanized, whole 
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kidneys harvested and renal cortex isolated, at eight and fifteen months of age. XLAS-

carrier female NAV dogs were euthanized (for reasons unrelated to AS) and necropsied 

between thirteen months and seven years of age. Whole kidneys were harvested and renal 

cortex isolated from the XLAS-carrier females in an identical fashion to the normal and 

XLAS-affected NAVs.  ECS used in this study were individual, client-owned dogs and 

were studied because they developed juvenile-onset renal failure caused by ARAS. 

Diagnosis of ARAS in affected ECS was confirmed by electron microscopic and IF 

evaluations of their GBM [38]. Affected ECS were euthanized at ESRD, between seven 

and nine months of age, and the renal cortex obtained. Because ECS were client-owned, 

kidneys from normal dogs of this breed were not available. Dogs not affected with AS, 

from several other breeds, were also used for this study. These dogs were both client-

owned and from an unrelated research colony and included two Dalmatians, one German 

Shepherd Dog, one Great Dane and one Havanese (Table 2). These dogs had no signs of 

renal disease and were euthanized for reasons unrelated to renal function. For all dogs, 

renal cortex taken at the time of necropsy was stored in RNAlater (Ambion, Austin, TX, 

USA) until isolation of RNA.  

 

RNA isolation 

Total RNA was isolated from renal cortex using RNA STAT-60 (Iso-Tex 

Diagnostics, Inc., Friendswood, TX, USA) according to the manufacturer’s protocol. The 

resulting RNA was cleaned using the Qiagen RNeasy Mini Kit (Qiagen Inc., Valencia, 

CA, USA) and the RNase-Free DNase Set (Qiagen Inc.), to avoid DNA contamination. 

RNA quality was assessed by one step RT-PCR with β-actin primers (Forward 5′-
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TGCGTGACATTAAGGAGAAG-3′, Reverse 5′-CTGCATCCTGTCGGCAATG-3′), 

using the Sigma Enhanced Avian HS RT-PCR kit (Sigma Aldrich, St. Louis, MO, USA). 

RNA was quantified by spectrophotometry and diluted to 1ng/ul.  

 

Real time quantitative RT-PCR 

The mRNA levels for the six type IV collagens and GAPDH (used for 

normalization) were quantified on the BioRad MyiQ Single-Color Real-Time PCR 

Detection System (BioRad Inc., Hercules, CA, USA). Primers and probes (Table 3) were 

based on the published canine sequence and designed using Primer Express 1.0 (Applied 

Biosystems, Foster City, CA, USA). When possible, probes were designed to span two 

exons to eliminate amplification of any DNA that might still be present. The 5′ and 3′ 

ends of the probes were labeled with 6-FAM (6-carboxyfluorescein) and Black Hole 

Quencher™, respectively (Biosearch Technologies, Novato, CA, USA). Each 25ul 

reaction contained 0.2uM of each forward and reverse primer and probe, 12.5ul of 2x 

QuantiTect Probe RT-PCR Master Mix (Qiagen Inc.), 0.25ul of QuantiTect RT Mix 

(Qiagen Inc.) and 7ng of RNA.  The amplification conditions were: 50° for 30 seconds, 

95° for 13 minutes and 30 seconds followed by 45 cycles at 95° for 10 seconds, 55° for 

30 seconds and 70° for 30 seconds. In order it ensure reproducibility, each sample was 

amplified at least in duplicate.  
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Table 3. Primer and probe sequences for quantitative real time RT-PCR.  
Name                 Size (bp)                Sequence 5′-3′ 
 
COL4Α3                 74                     Forward-GAGCCTTATATTAGCAGATGCAC 
                                                         Reverse-TCAGTGGTTTGGCTGTGAATG 
                                                         Probe-TGTGAAGGTCCTACGATTGCCATAG 
 
COL4Α4                 70                     Forward-GGCTACAGTCTGTTATACCTGAAGGA 
                                                         Reverse-AAGACCCCTGCCAGACCAA 
                                                         Probe-AGGAGAAGGCCCACAATCAGGA 
 
COL4Α5                170                    Forward-GAGCATGGAGCCCCTGAA 
                                                         Reverse-TCGTGTGCATCATGAAGGAATAG 
                                                         Probe-CCAGAGCATCCAGCCATTCATTAG 
 
 
 
 

Analysis 

 In order to obtain fold changes, analysis was carried out as described by Pfaffl 

[69] assuming a PCR efficiency (E) equal to two. All affected and carrier dogs were 

compared with dogs exhibiting no renal disease (Figure 4).  Fold changes greater than 

two were considered to be indicative of changes in gene expression. P-values were 

calculated for each group of dogs using the bootstrap with replacement method [70]. 

 

 

Normal Dogs 

n=7

XLAS-affected
NAV Dogs 

n=3

XLAS-carrier
NAV Dogs

n=6

ARAS-affected
ECS Dogs

n=3  

Figure 4.  Comparisons made to assess gene expression patterns in kidneys of dogs with 
AS. 
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CHAPTER III 

GENETIC CAUSE OF AUTOSOMAL RECESSIVE HEREDITARY 

NEPHROPATHY IN ENGLISH COCKER SPANIELS* 

 

Background 

Although terms used to identify the condition have varied over the years, a 

hereditary renal disease has been observed in the ECS since the late 1940s. Krook 

described a juvenile nephropathy that he termed renal cortical hypoplasia in 40 Cocker 

Spaniels that were examined at the Royal Veterinary College in Stockholm from 1946 to 

1956 [59]. He determined that the condition was characterized by albuminuria [59]. 

Additional early reports about renal cortical hypoplasia in Cocker Spaniels from Sweden, 

Switzerland and Australia also described juvenile onset of a fatal proteinuric nephropathy 

[71-73]. Later studies demonstrated that the disease was inherited in an autosomal 

recessive fashion and that the primary renal lesions involved glomeruli [74-77]. With 

these developments, familial nephropathy (FN) became the diagnostic term most widely 

used for the disease. We believe that hereditary nephropathy is the most appropriate 

diagnostic term for this type of primary glomerular disease in dogs. 

 Beginning in the 1980s, investigators using transmission electron microscopy 

noted that the ultrastructural appearance of the glomerular basement membranes (GBM) 

of affected dogs resembled that of the GBM in human AS [78, 79], but that morphologic 

finding was of little help while the molecular and genetic basis of AS remained obscure.  

__________________  
* Portions of this chapter are reprinted in part with permission from Davidson A, Bell R, 
Lees G, Kashtan C, Davidson G, Murphy K: Genetic cause of autosomal recessive 
hereditary nephropathy in the English Cocker Spaniel. JVIM 2007, 21 
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In the late 1980s  a series of discoveries established that AS was caused by type IV 

collagen defects [30, 44, 63, 66]. Thus, when distinctive ultrastructural GBM changes 

were identified in an affected dog examined in 1992 at Texas A&M University [80], 

systematic investigations of the disease based on the hypothesis that it was a type IV 

collagen disorder were initiated. Subsequent studies characterized the clinical, pathologic, 

and ultrastructural features of the disease, including the pattern of abnormalities observed 

as the disease progressed [38, 81]. Importantly, immunostaining of kidney from affected 

dogs demonstrated complete absence of the COL4α3 and COL4α4 peptide chains that 

normally are present in the GBM [38]. This finding further suggested that the mutation 

responsible for the disease was in one of the two genes encoding these proteins.  

Each of six type IV collagen genes encodes a distinct α chain (1-6) that can be 

assembled into three heterotrimers: α1.α1.α2, α3.α4.α5, and α5.α5.α6 [30]. In adult 

kidney, the collagen network that provides the structural framework for the GBM is 

composed of α3.α4.α5 heterotrimers. This network is essential for normal GBM structure 

and function because renal disease, most notably AS, ensues when it is absent or 

abnormal [30, 50]. Specifically, mutations in any one of the three genes encoding the 

COL4α3, COL4α4, or COL4α5 proteins can cause AS because a defect in any of the 

three chains can prevent proper assembly. The COL4α5 gene, which encodes the 

COL4α5 chain, is located on the X-chromosome in humans and dogs [15, 30], and 

mutations in this gene cause human X-linked AS and canine X-linked hereditary 

nephropathy (XLHN) [30, 40, 58, 82]. The COL4α3 and COL4α4 genes, encoding the 

COL4α3 and COL4α4 chains, respectively, are located on human chromosome 2 and 

canine chromosome 25 [15, 30]. Mutations in either one of these two genes cause 
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autosomal forms of AS in humans, and the same is suspected to be true of autosomal 

forms of canine hereditary nephropathy [44, 46, 47, 66, 83-85]. 

In this work the candidate gene approach was used to identify the genetic cause of 

autosomal recessive hereditary nephropathy (ARHN) in the ECS.  Sequencing of 

COL4Α4 identified a single base change in exon 3 that produces a premature stop codon. 

This is the first autosomal form of canine hereditary nephropathy for which the 

underlying genetic cause has been identified. Appropriate use of a genetic test for this 

mutation will permit breeders of ECS to eradicate the disease. 

 

Results 

 In total, all or part of COL4Α4 was sequenced in genomic DNA samples obtained 

from 134 ECS. These subjects were 12 affected dogs, 8 obligate carriers, and 89 other 

dogs from the United States and Canada, as well as 19 dogs from Great Britain and 6 

dogs from Sweden. 

To identify the causative mutation, the coding and the flanking intronic regions of 

COL4Α4 was sequenced and analyzed in its entirety for two affected dogs and two 

obligate carriers. The sequence obtained was compared with that obtained from two ECS 

of unknown status and two normal mixed breed dogs, as well as with the published 

canine coding sequence for COL4α4 (accession AY2633363) and the published 7X NIH 

genomic reference sequence for the canine. This analysis revealed a single nucleotide 

substitution (adenine changed to thymine) at base 115, causing a nonsense mutation 

(lysine changed to a stop codon) in exon 3 of both affected dogs (Figures 5 and 6). 

Additionally, each of the two carriers had both an adenine and a thymine (i.e., an adenine 
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from the normal allele and a thymine from the mutated allele) at base 115 (Figures 5 and 

6).  

 

 

 
5’ 3’ 

5’ 3’ 

 
 
Figure 5.   Schematic representation of genomic COL4α4 (top), exons 2, 3 and 4 

(enlarged beneath), and chromatograph (bottom). A star represents the 
location of the nonsense mutation. Chromatograph shows nucleotide 
sequences for ECS that: a) does not have the mutated allele that causes 
ARHN, b) is a heterozygous carrier of the mutated allele, and c) is a dog 
affected with ARHN because it is homozygous for the mutated allele. 
Asterisks indicate the position of the single base change in each dog’s 
nucleotide sequence. 
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Normal 
 
S      G      K      K     F     V     G      F      V     G      P      C      G     G     R     D      C    
AGTGGAAAGAAGTTTGTCGGCCCCTGTGGAGGAAGAGATTGCTCGGTGTGC 
AGTGGAAAGTAGTTTGTCGGCCCCTGTGGAGGAAGAGATTGCTCGGTGTGC 
S      G      K      * 
 
Affected 
 
 
Figure 6.   Nucleotide and amino acid sequence in exon 3 (base 106 – 157). Sequence for 

normal ECS is shown on top in black, and sequence for affected ECS is 
shown on bottom in red. The nonsense mutation is boxed, and truncation is 
indicated by a star. 

 

 To verify the mutation, exon 3 of COL4α4 was sequenced using genomic DNA 

from 12 ECS in which ARHN had been diagnosed, as well as from 8 obligate carriers. In 

every instance in which an affected or obligate carrier dog’s DNA was sequenced and 

analyzed, the same mutation was identified (i.e., homozygous in the affected dogs, and 

heterozygous in the carriers). 

 Sequence analysis of COL4α4 identified two single nucleotide polymorphisms 

SNPs) that also co-segregated with the disease. Both of these SNPs are in the intron 

upstream of exon 42. The first, which is a thymine to adenine substitution, is located 93 

bases upstream, while the second, which is a thymine to cytosine substitution, is 90 bases 

upstream. These two nucleotide changes do not alter the coding sequence of the gene, but 

they are inherited with the disease. 

 Exon 3 of COL4α4 was also sequenced using genomic DNA from 114 ECS 

having unknown genetic status. These dogs included 65 that were close relatives of 

obligate carriers (i.e., parents, siblings, or offspring) in which the random odds of finding 

the dog to be heterozygous for the mutation were one in two (i.e., 50% chance of also 
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being a carrier). Of these 65, 34 dogs (52.3%) were heterozygous for the mutation, and 

therefore, carriers. Of the remaining 44 dogs, in which the chances of being a carrier were 

≤ 25%, three (6.8%) were heterozygous for the mutation. Five dogs (two of which were 

identified as carriers) could not be placed into the above categories due to the absence of 

relationship information or conclusive diagnosis. Therefore, a total of 39 previously 

unknown carriers were identified. 

 Light microscopic examination of stained sections of formalin-fixed, paraffin-

embedded kidney from the Swedish ECS that died of juvenile-onset renal failure was 

sufficient to exclude ARHN as the cause of that dog’s renal disease. The histologic 

lesions were unmistakably those of renal dysplasia. Samples of DNA were available from 

the affected dog, both of its parents, and three other closely related dogs. Tests for the 

mutated COL4α4 allele that causes ARHN were negative in these six dogs. 

Results of the pathologic evaluations of kidney from the British ECS that was 

suspected to have ARHN were inconclusive. The light microscopic and transmission 

electron microscopic findings were compatible with the disease, but they were not 

sufficiently distinctive to permit definitive diagnosis. Glomerular ultrastructure was too 

poorly preserved in the available formalin-fixed tissue for critical evaluation, and the 

material was not suitable for immunostaining. However, DNA specimens were available 

from six related dogs, including the dog’s sire. Genetic testing demonstrated that the sire 

was heterozygous for the mutated COL4α4 allele and that the other five dogs were 

homozygous for the normal allele. 

Overall, the sequence data we obtained for exon 3 of COL4α4 in ECS identified 

the genetic status of 134 dogs from the United States, Canada, Great Britain, and Sweden. 
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With 12 affected dogs and 47 carriers in this sample, the overall frequency of the mutated 

allele in the study population was 0.2649 (71 of 268). However, this sample included at 

least four separate kindred, and in two small kindred (containing 19 and 6 dogs) in which 

an affected dog had not been diagnosed, the frequencies of the mutated allele were 

0.0263 (one of 38) and 0 (none of 12), respectively. This frequency, however, is not an 

accurate representation for the ECS population as a whole because the four kindred 

studied were selected based on the incidence of AS in their line. 

 

Discussion 

 Predictable consequences of the missense mutation in exon 3 of COL4α4 explain 

all of the salient features of ARHN in affected ECS. One feature of ARHN is that levels 

of mRNA for COL4α4 are greatly reduced in kidney of affected dogs as assessed by 

qRT-PCR, but levels of transcripts for COL4α3 and COL4α5 are not reduced. A similar 

pattern of altered mRNA levels has also been observed in dogs and mice with missense 

COL4α5 mutations in which mRNA for that gene is reduced, but mRNA for COL4α3 and 

COL4α4 are not reduced [52]. The mechanism by which such mutations lead to reduced 

levels of mRNA for their respective genes is uncertain, but nonsense-mediated decay is a 

potential explanation [86]. A second feature of ARHN in affected ECS is that 

immunostaining demonstrates total absence of COL4α4 chains and COL4α3 chains in 

GBM, together with greatly reduced GBM COL4α5 chain expression [38]. Because the 

mutation creates a premature stop codon, any protein synthesis directed by the mutated 

gene would result in a severely truncated peptide that would be unable to combine with 

its normal partners (i.e., COL4α3 and COL4α5 chains) to produce stable α3.α4.α5 
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heterotrimers. Without the ability to form α3.α4.α5 heterotrimers, the only collagen 

networks that can form in renal basement membranes of ECS with ARHN are composed 

of α1.α1.α2 or α5.α5.α6 heterotrimers, or both. This accounts for the observation that all 

renal basement membranes in ECS with ARHN that exhibit COL4α5 chain expression by 

immunostaining also exhibit co-expression of COL4α6 chains, but renal expression of 

both COL4α3 chains and COL4α4 chains are totally absent even where COL4α5 chains 

are expressed [38]. Finally, absence of the α3.α4.α5 network in the GBM of affected dogs 

accounts for all of the ultrastructural, clinical, and pathologic features of the progressive 

nephropathy that occurs in ECS with ARHN. The nephropathy that develops in these 

dogs has essentially the same ultrastructural, clinical, and pathologic features as the 

nephropathy that occurs in dogs with X-linked hereditary nephropathy in which the 

α3.α4.α5 network is missing from the GBM because of a COL4α5 mutation [39, 50, 57, 

87, 88]. 

 The fact that ARHN has persisted in the ECS breed for more than 50 years is a 

testament to the difficulties that have previously existed in identifying carriers of the 

mutated allele. In the past, carriers have been accurately identified only when a mating 

produced at least one affected dog that was properly diagnosed. Given that the random 

odds of any single dog produced by a carrier to carrier mating being affected are only one 

in four (25%) and that proper diagnosis of ARHN required very specialized evaluations, 

carriers were not always identified even when they were mated to one another. 

Additionally, all that was necessary to avoid risk of producing a dog that might develop 

juvenile onset renal failure caused by ARHN was to select pairs for mating such that at 

least one of the two dogs was highly unlikely to carry the mutated allele. However, for 
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any mating of a carrier to a genetically normal dog, each offspring’s random odds of 

being a carrier are one in two (50%). Thus, although astute breeders commonly managed 

to avoid producing affected dogs, the mutated allele readily persisted in the gene pool and 

unsuspected carriers eventually were mated to one another from time to time. Moreover, 

each diagnosis of ARHN typically had a devastating effect on any line of ECS in which it 

was discovered. Not only were the obligate carriers no longer bred, but all breeding to 

closely related dogs was frequently halted because of uncertainty about their carrier status 

for ARHN, regardless of their other desirable traits. Availability of a test for the mutated 

COL4α4 allele should solve these problems.  

 In ECS with renal disease, a test for the mutated COL4α4 allele will be useful 

only in those dogs with clinical and light microscopic findings that are compatible with a 

diagnosis of ARHN. Testing all ECS with any type of renal disease for the mutated allele 

will not be helpful. Moreover, even in young ECS with renal disease, testing for the 

mutated allele should not substitute for a through clinical and pathologic investigation of 

the dog’s illness for the following reason. A genetic test that excludes ARHN provides no 

information about what disease actually caused the nephropathy. That is, absent an 

appropriate clinical and pathologic investigation, the cause of the dog’s renal disease is 

certain to remain obscure in such an instance. 

 These concepts are illustrated by our evaluations of the specimens in this study 

from the ECS in Great Britain and Sweden. The clinical and pathologic features of the 

dogs from Great Britain were consistent with ARHN, but the condition could not be 

definitively diagnosed using the formalin-fixed tissues that were available for 

examination. In this setting, results of the genetic test permitted us to resolve uncertainty 
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about the correct diagnosis. Conversely, pathologic features of the nephropathy in the dog 

from Sweden were sufficient to exclude ARHN as its cause, and as expected, tests for the 

mutated allele in dogs from that kindred were negative. Nevertheless, results of genetic 

testing were not required to make the diagnosis, which was instead based on the results of 

clinical and histopathologic evaluations.  

 A test for the mutated COL4α4 allele has obvious utility as an aid in the diagnosis 

of ARHN in the ECS with renal disease. However, it will be of greatest value in guiding 

future selective breeding of these dogs. Indeed, proper use of a test to detect the mutated 

allele should permit breeders of ECS to eradicate ARHN from this breed in as short a 

time as one generation and without having to abandon any breeding lines that have other 

desirable traits. First, it will be possible to always know before a dog is bred whether or 

not it carries the mutated allele. Obligate carriers need not be mated at all unless there is a 

compelling reason; for example, to maintain some other highly desirable trait in the line. 

If breeding a carrier is judged to be potentially important, the first step is to verify by 

testing that the other dog in the pair does not carry the mutated allele. This avoids all risk 

of the mating producing a dog that will develop ARHN. The second step is to also test the 

progeny of the mating. Some progeny will be carriers (the random odds for each dog are 

one in two); however, such carriers can be confidently placed with owners who are 

seeking a pet because the health of these dogs is the same as that for genetically normal 

dogs. In addition, breeders can select among the progeny that are not carriers to choose 

the animals to keep as breeding stock and thus maintain the line’s most desirable traits.   
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Materials and methods  

Dogs and samples 

 From 1993 through 2005, ARHN was diagnosed at Texas A&M University in 18 

ECS. Each diagnosis was based on finding both the characteristic ultrastructural GBM 

changes by transmission electron microscopy and the distinctively abnormal pattern of 

type IV collagen expression in renal basement membranes by immunostaining, as 

previously described. Diagnosis of ARHN in individual dogs identified specific families 

in which the disease was inherited, so family histories were collected. Parents of affected 

dogs were presumed to be obligate heterozygous carriers of the disease trait. Whenever 

possible, genomic DNA was obtained from affected dogs, each of their parents, and as 

many closely related dogs as were available. Additionally, DNA samples were collected 

from some ECS that were not known to be related to any dog in which ARHN had been 

diagnosed.  

 Additionally, during 2005 and 2006, formalin-fixed specimens of kidney from 

ECS with juvenile-onset renal failure were received from Great Britain (two dogs) and 

Sweden (one dog). Before shipment to Texas A&M University, the tissue samples were 

processed and embedded for routine light microscopic and transmission electron 

microscopic evaluations (performed at the Institute of Pathology and Genetics in 

Loverval, Belgium). Upon receipt, the embedded tissues were sectioned, stained, and 

examined by standard methods, as previously described [38]. Family histories were also 

collected for these dogs, together with DNA specimens from closely related dogs. 
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Puregene DNA Isolation Kit was used to isolate DNA (Gentra Systems, 

Minneapolis, MN) from nucleated cells in whole blood or buccal swab specimens, 

according to the manufacturer’s instructions.  

 

Sequencing of COL4α4 

 Results from previous studies, reported elsewhere, demonstrated that mRNA 

transcripts for COL4α4, but not for COL4α3 or COL4α5, were reduced greater than 2-

fold, as measured by a quantitative real-time polymerase chain reaction (qRT-PCR) 

assay, in kidney of ECS with ARHN (described in chapter II). This pattern was similar to 

the reduction of COL4α5 mRNA that was observed in dogs with X-linked hereditary 

nephropathy, known to be caused by a deletion in COL4α5. Based on this observation, 

we hypothesized that the cause of ARHN in the ECS was most likely a COL4α4 defect. 

Thus, that gene was sequenced.  

    The canine COL4α4 gene contains 47 exons, and the entire coding region was 

sequenced and analyzed. Most of the gene (41 exons) was sequenced by amplifying 

individual exons together with their flanking intronic sequences and then sequencing 

each exon separately. However, three pairs of exons (10 and 11, 13 and 14, and 38 and 

39) were sequenced together because of the short length of their intervening introns. 

Thus, a total of (45) sets of primers were designed to amplify portions of COL4α4 using 

the published canine genome sequence (Table 4). Intron/exon boundaries were 

determined by aligning the canine genome sequence in the region on chromosome 25 

around COL4α4 and the previously published mRNA sequence for COL4α4 (accession 

No. AY263363).  
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      Amplification by PCR was carried out with each reaction containing 50ng of 

DNA, 2mM of MgCl, .25mM of each dNTP, 1.0uM of each primer (forward and 

reverse), 5% DMSO, 0.001mg of Bovine Serum Albumin (Promega, Madison, WI), 0.75 

units of Taq DNA Polymerase (Fisher Scientific, Pittsburgh, PA), and 1ul of  1X Taq 

DNA Polymerase Buffer B (Fisher Scientific, Pittsburgh, PA). Amplification cycling 

conditions were as follows: 94°C for 5 minutes, followed by 35 cycles of 94°C for 30 

seconds, 55° - 58°C for 30 seconds, and 72°C for 30 seconds, then a single cycle at 72°C 

for 10 minutes. Products were separated by gel electrophoresis and then visualized using 

ethidium bromide. When multiple amplification products were present, the desired 

amplicon was purified using a Qiaex® II Gel Extract Kit (Qiagen, Inc., Valencia, CA). If 

only the desired amplicon was present, 7ul of the product was purified using 10 units of 

Exonuclease I (Epicentre, Madison, WI) and 1 unit of Shrimp Alkaline Phosphatase 

(Roche, Indianapolis, IN) and incubated at 37°C for 30 minutes and followed by a 15 

minute incubation at 80°C. Purified products were then used for nucleotide sequencing 

using the Big Dye Terminator v 1.1 Cycle Sequencing Kit (Applied Biosystems) and 

resolved on an ABI 3730 Genetic Analyzer (Applied Biosystems).  

To identify the mutation, sequence was obtained from two affected dogs, two 

obligate carriers, two ECS of unknown genetic status, and two normal mixed breed dogs. 

Sequences were aligned using Clustal W (http://www.ebi.ac.uk/clustalw/) and nucleotide 

polymorphisms that segregated with ARHN in the ECS were identified. To verify the 

mutation, exon 3 was amplified and sequenced in every affected ECS and obligate carrier 

from which an adequate DNA sample was available. 
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Once the causative mutation was identified, exon 3 also was amplified and 

sequenced in 114 additional ECS having unknown genetic status. This was accomplished 

using the same primers for exon 3 (Table 4) and nucleotide sequencing procedure as has 

already been described. 

 

Table 4. Primers and melting temperatures (oC) used for PCR amplification of canine 
COL4α4 

Exon  Tm Sequence 
F: CAGGGCATAGAACCTCACTTA 1 55 
R: CTGCTGTGCTCTGGACATTAG 
F: TCACTAATGACAGCAGCCTAT 2 55 
R: ACCTGGGTAACTTGGTAAGAA 
F: CCCTCTCACCAAGCCAC 3 55 
R: GTTGCTGACTGTTGTTAGATGTT 
F: GTTTGTGTTAGAAGAGAGCG 4 55 
R:CATAGTAGTGCTGGTGAGTGG 
F: GCTCATTATTTATGTTTTCAAG 5 55 
R: AAGCACAGTAGGGAGAGGG 
F: GAGTCACCAT TGCCATAACG 6 57 
R: CAGCCTCCTCCCACAGTCT 
F: GAAATCTCCACTAGCGAAAC 7 55 
R: GCAAGAACAGTTAGGAGATACT 
F: CCACACAGCCTTCCACAGTT 8 57 
R: ACCCAGGTAATGCCAAATGAT 
F: GATGTTTCTGGGACTGTGAT 9 55 
R: ACTGGTAATGGGAGGTGTA 
F: GAACCCAGGGCAACC 10 and 11 55 
R: TTAACATCTGCTCCTCCAT 
F: GCCACGCAGGATTGTATG 12 55 
R: GCTGAGGTTGCTTTGGG 
F: GAAGAGATAATGTCTGAAAGATGTA 13 and 14 55 
R: CCCAGGTGCCCCAATA 
F: GCCATAAAGCAGTTTCATAAG 15 55 
R: ATCTGTAAAATAAATGTGTCTCC 
F: ATGCGATACTGAGATTTTGC 16 55 
R: GATACGAGGTGATCCCCA 
F: GTCGGATTCCTTTGTCATTC 17 55 
R: CCACCCAAGTCCCATCTC 
F: CAGTGCTGCTCCAAGTTC 18 55 
R: GGTGAGGGTGAGGCTGTC 
F: CGGTTTCCATTTGTGTGC 19 55 
R: CAGGCTTCATAGAACTGTTTG 
F: CTTAGAGAGAAAGAGTCATAGGAA 20 55 
R: AGGAGTGCTCATAGGCGTA 
F: CCCCCCAACAGACCAT 21 55 
R: CAGCACTGAGAACAGCACC 
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Table 4. Continued 
Exon Tm Sequence 

F: AGGTCAAGAGCCTCAGTTTTAT 22 55 
R: GAAATGTGAACAGCAAGGAATA 
F: GTCCTGTGTTTCCTCCTACT 23 55 
R: CCAAAGATGGCTCTGATTA 
F: GGTTTGCTATTGAGTAACTGTCTA 24 55 
R: TTATTGAACGGTTCTGCTGTA 
F: AGGCAGTTCAAATCGTCTC 25 55 
R: AACTATTGGTTCATCATCTTAC 
F: AGGCGAGGCAACAGTTACATA 26 55 
R: CCCTGGACCACCTGCTTAC 
F: CAAGGTGGCAAAGCAAC 27 55 
R: GCATTCTACATTTCTAAGGC 
F: CGTCGGTTGCTGGTACT 28 55 
R: GCTACTTGTCATTCTGTGGAG 
F: GATGGATGTTGCTTCGTG 29 55 
R: GGATGGACAGTATCAGGCT 
F: GTCCCACATCAGACTTCCT 30 55 
R: CTAAAGCAGACACCAGCAA 
F: TACTGTGCTGATACTGTGCTG 31 55 
R: GCTGGAACTGGTATTAGATGT 
F: TATGGCTTAGGGCAGGAA 32 55 
R: AAGGGCAATGATGTTTACAGA 
F: CACCTCTAATACTGGAGTTGTA 33 55 
R: ATGCTAAATGTGCGTGCT 
F: TGAAGATAAACTATAAAGACAAAT 34 55 
R: TGGAGCCCAACACAAG 
F: CAAGGGCTGAAGTTGGAGGTT 35 55 
R: GAGGGATGGGTAGGTCTGAGTG 
F: AGGTCTAGGGGATAAAAGTG 36 55 
R: CTGAGTGAGAGAGAAGAGGAA 
F: GAGCGTGTTAAATAATAGCCA 37 55 
R: TCATCTTCAGTCCTAATAATAGTCC 
F: GCAGCAGGTGGTTGGTCTCAGCA 38 and 39 55 
R: CCACCTGCCGCATTGA 
F: CCCTTCATCTCTCGCTTGC 40 55 
R: GAACTTGTGTTTCTTCCCCTTAC 
F: TGGGTTCAGTCCATCAGA 41 55 
R: GAATAGGGTCCTCACATACAG 
F: GGATGGGGACTTAGTTATGTA 42 55 
R:  AAGCACTCACGCTCTGG 
F: GGACTGTTGAGCATTCTTTG 43 55 
R: GCTTACACTGCCCCATACT   
F:  CTCGGGCTCAGGGTCTAAC 44 58 
R: GGCTGCGGATCAGTGC 
F: CTCCTCCTCTCTGGCTCC 45 55 
R: TAAAATGTTGATGAATCTGTAAAAT 
F: GGAGGCGTGTCTGTGGGT 46 56 
R: CCGTGTCTCAAGAGGCTATGG 
F: GTTGGTTCTTCCCTGGATAAT 47 55 
R: AACTGGAGTCTGAAATGAGCAC 
F: AGGCAGTTCAAATCGTCTC 25 55 
R: AACTATTGGTTCATCATCTTAC 
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Table 4. Continued 
Exon Tm Sequence 

F: AGGCGAGGCAACAGTTACATA 26 55 
R: CCCTGGACCACCTGCTTAC 
F: CAAGGTGGCAAAGCAAC 27 55 
R: GCATTCTACATTTCTAAGGC 
F: CGTCGGTTGCTGGTACT 28 55 
R: GCTACTTGTCATTCTGTGGAG 
F: GATGGATGTTGCTTCGTG 29 55 
R: GGATGGACAGTATCAGGCT 
F: GTCCCACATCAGACTTCCT 30 55 
R: CTAAAGCAGACACCAGCAA 
F: TACTGTGCTGATACTGTGCTG 31 55 
R: GCTGGAACTGGTATTAGATGT 
F: TATGGCTTAGGGCAGGAA 32 55 
R: AAGGGCAATGATGTTTACAGA 
F: CACCTCTAATACTGGAGTTGTA 33 55 
R: ATGCTAAATGTGCGTGCT 
F: TGAAGATAAACTATAAAGACAAAT 34 55 
R: TGGAGCCCAACACAAG 
F: CAAGGGCTGAAGTTGGAGGTT 35 55 
R: GAGGGATGGGTAGGTCTGAGTG 
F: AGGTCTAGGGGATAAAAGTG 36 55 
R: CTGAGTGAGAGAGAAGAGGAA 
F: GAGCGTGTTAAATAATAGCCA 37 55 
R: TCATCTTCAGTCCTAATAATAGTCC 
F: GCAGCAGGTGGTTGGTCTCAGCA 38 and 39 55 
R: CCACCTGCCGCATTGA 
F: CCCTTCATCTCTCGCTTGC 40 55 
R: GAACTTGTGTTTCTTCCCCTTAC 
F: TGGGTTCAGTCCATCAGA 41 55 
R: GAATAGGGTCCTCACATACAG 
F: GGATGGGGACTTAGTTATGTA 42 55 
R:  AAGCACTCACGCTCTGG 
F: GGACTGTTGAGCATTCTTTG 43 55 
R: GCTTACACTGCCCCATACT   
F:  CTCGGGCTCAGGGTCTAAC 44 58 
R: GGCTGCGGATCAGTGC 
F: CTCCTCCTCTCTGGCTCC 45 55 
R: TAAAATGTTGATGAATCTGTAAAAT 
F: GGAGGCGTGTCTGTGGGT 46 56 
R: CCGTGTCTCAAGAGGCTATGG 
F: GTTGGTTCTTCCCTGGATAAT 47 55 
R: AACTGGAGTCTGAAATGAGCAC 
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CHAPTER IV 

ISOLATION, CULTURE AND CHARACTERIZATION OF CANINE SERTOLI 

CELLS 

 

Background 

Collagen proteins play a significant role in cell and tissue structure as well as cell 

differentiation, growth, and adhesion. Specifically, the type IV collagens are critical 

structural components of basement membranes throughout the body [14, 33, 89]. Despite 

their great functional importance and the ubiquitous presence of basement membranes, 

regulation of this gene family is incompletely understood. It is known that the six type IV 

collagen genes are unique in their genomic arrangement and expression patterns. Each 

gene pair shares a single promoter region and is situated in a head-to-head formation on 

three separate chromosomes. COL4α1-COL4α2, COL4α3-COL4α4, and COL4α5-

COL4α6 are transcribed from opposite strands on CFA 22, 25, and X, respectively [15, 

35]. These genes, therefore, would appear to have the potential to be expressed in a 

straightforward manner, i.e. each pair, sharing a promoter, expressed together. However, 

the functionality of these gene products is dependant upon their ability to form three 

distinct heterotrimers: α1.α1.α2, α3.α4.α5, and α5.α5.α6 [34].  This leads to the tissue-

specific manner in which one such pair, COL4α5 and COL4α6, is expressed [11, 33, 35, 

90]. 

The few studies done to characterize the regulation of type IV collagen genes 

have typically been carried out in either immortalized cell lines or renal tissue [91-95]. 

The use of immortalized cell lines, however, does not accurately represent in vivo 
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regulation of these genes. Renal tissue has been an attractive model for these studies 

because it is one of the few organs which is relatively accessible and also expresses all of 

the type IV collagens. Unfortunately, they are not all expressed within the same basement 

membrane. The α1.α1.α2 trimer is found in all basement membranes, but the remainder 

of the type IV collagen genes are expressed in a tissue-specific fashion. The trimer 

composed of α3.α4.α5 is found in the glomerular basement membrane, while that 

composed of α5.α5.α6 is found in Bowman’s capsule [11, 33, 36, 37]. While the kidney 

may be a powerful system to study these genes, it is certainly not ideal. An ideal system 

would express all six chains in one basement membrane, from one cell type, as well as be 

easily accessible. These criteria are met only by one cell type in the body, Sertoli cells. 

The seminiferous tubule basement membrane (STBM), laid down by Sertoli cells in the 

testes, contains all three trimers made by type IV collagen genes [12]. This cell type is 

also readily available in the form of testes from castrated animals, such as the dog. 

Harvey et al. recently utilized frozen sections of testes removed from castrated dogs to 

study the expression of type IV collagens, demonstrating the usefulness of this tissue type 

[96]. Similar studies would benefit from using not only the frozen sections of such 

tissues, but also from the use of a primary cell culture model. 

The dog is certainly and excellent model system to study human diseases, 

including but certainly not limited to diseases involving several types of collagens, such 

as AS and dystrophic bullous epidermolysis [38, 39, 58, 97]. From these disease-related 

studies comes not only important information regarding the disease, such as its cause, 

progression or treatment, but also functional information about the disease process, 

proving that the dog can serve as a model for understanding physiological and cellular 
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functions as well. Aside from being used as a model system, interest in canine research 

has grown to areas in which the primary focus is information directly significant to the 

dog.   

 Primary Sertoli cell cultures have been established for other animals including 

the sheep and rhesus monkey, but not the dog [98, 99]. This study sought to establish a 

method to isolate and culture Sertoli cells from dogs following castration. The methods 

described here can be used to establish a system to study not only functions typically 

associated with Sertoli cells and the male reproductive system, but as described above, to 

study the expression of type IV collagens as well. Our system will be unique in that other 

studies involving Sertoli cells have focused on the function of these cells, specifically 

spermatogenesis and the genetic regulation of these functions while we propose the use 

of this system as an in vitro model to study type IV collagens [98-101]. 

 

Results 

Isolation and culture of Sertoli cells 

Sertoli cells were isolated from testes of castrated dogs through physical and 

enzymatic digestion. Once the cells attached to the flask/plate they were easily 

subcultured or frozen for later use. Cultures were grown to confluency, producing a 

monolayer with a consistent morphology indicating a mostly homogenous culture. This 

morphology was maintained throughout each passage and after thawing from frozen 

stocks. Cultured cells sustained a steady growth curve for several passages, dividing to 

confluency for seven passages, at which point division decreased dramatically. 

Confluency was typically reached by two days for earlier passages and could take as long 
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as ten days for later passages. Cells at passage one and passage seven (final passage) are 

shown in figure 7.  

 
 

 
Figure 7.   Pictures depicting morphology of isolated cells. a) cells at passage one and b) 

cells at passage seven. 
 

 

Characterization of Sertoli cells 

Cells were positively identified as Sertoli cells through western blot and sequence 

analysis. Western blot analysis was performed for both SOX9 and Clusterin B. Sertoli 

cells are the only cell type in the testes which produce these proteins; therefore, positive 

staining for these two proteins excluded other cell types potentially isolated and 

confirmed the presence of Sertoli cells. Figure 8 shows the western blot images: note the 

unique staining pattern and size rage for Cluterin B. This is due to the glycosylation of 

this protein. SOX9 did not have the expected size. Rather, staining was of a band twice 

the size expected for this protein. This is indicative of the presence of a multimer, which 
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would cause antibody staining at higher molecular weights, in multiple increments of the 

protein’s molecular weight.  
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Figure 8.  Western blots. These show antibody staining of a) SOX9 dimer (~136 kDa); 
note the lack of staining of the monomer (~68 kD) and b) Clusterin B (43-64 
kDa). 

 

 

Because the western blot results for SOX9 did not show binding to the protein of 

the correct molecular weight, sequence verification was performed to confirm the 

presence of the SOX9 transcript. Therefore, cDNA isolated from the cells in culture was 

amplified, and a product at the expected size (determined by gel electrophoresis) was gel 

extracted and sequenced. Sequence alignment of the obtained sequence to the known 

sequence of canine SOX9 verified the presence of the SOX9 transcript, thereby, providing 

evidence to support the idea that the protein detected by western blotting is indeed a 

SOX9 multimer. 
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Figure 7 shows the morphology of the isolated canine cells. Along with the 

consistency of the morphology, the cells also show a strong similarity to the Sertoli cell 

lines already published [98, 99, 102]. This similarity, along with the western blot results, 

verified by sequence analysis when necessary, for both proteins known to be produced in 

Sertoli cells, demonstrate the cells isolated and cultured were indeed Sertoli cells. 

 

Conclusions 

Primary culture of Sertoli cells will allow for further study into areas typically 

associated with this fundamental cell type of the testes, as well as allow for study into 

areas perhaps not initially associated with these cells. Because Sertoli cells are one of a 

select set of cell types which express all six genes in the type IV collagen family (alpha 

1-6), and because these cell types are easily accessible, they are an ideal candidate for the 

study of the expression of these genes [12].  

This cell system can also allow for further study of Sertoli cells in general. Recent 

research has implicated Sertoli cells as harboring potential immunoprotection for  tissue 

transplants [103-106].It has been known for many years that Sertoli cells are immuno-

privileged cells and do not elicit an autoimmune response [103]. Recent studies have 

indicated that these cells may confer their immunoprotection when co-transplanted with 

either allo- or xeno-genic transplants [106]. 

As a primary cell line, this new tool will allow for the study of cells from a living 

individual. Therefore, it is possible to obtain cells from multiple individuals for 

comparison studies. For example, cells could be isolated from individuals with type IV 

collagen abnormalities (such as hereditary nephropathy) along with those harboring no 
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abnormalities. The two populations of cells could then be studied to find regulation or 

expression differences between the two. Also, similar to cultures from biopsies, the 

individual from which cells are isolated is still alive after the collection of the tissue. 

Because each male has two testicle which could be removed either together or at two 

separate times, this could potentially allow for temporal or treatment studies. 

Additionally, these primary cultures also have the potential to be converted into a 

stronger tool through immortalization. The chance to use either the primary or 

immortalized cell lines in the clinical canine research setting and as a canine model for 

the human should allow for potentially great steps in these research arenas.  

 

Materials and methods 

Testes collection 

Seven mixed breed dogs, all part of a colony housed at Texas A&M University, at 

14 weeks of age were anesthetized following Institutional Animal Care and Usage 

(IACUC) guidelines. While under anesthesia a single testicle was aseptically removed 

from each dog. The capsule, epididymus, and blood vessels were then removed leaving 

only the exposed testicle. The testicle was cut into quarters and immediately placed in 

Dulbecco’s modified Eagle’s media: nutrient mixture F12 (DMEM : F12 (1:1)) (Gibco, 

Grand Island, NY, USA) supplemented with 29 ug/ml gentamicin (Gibco). 

 

Sertoli cell isolation and culture 

 Tissue was minced with sterile scissors and scalpel while still in DMEM:F12 

containing antibiotic. The minced tissue was then incubated at 37° C and digested with 

 



   49 

0.3 wv/mL Liberase Blendzyme 3 (Roche, Indianapolis, IN, USA) plus glass beads to aid 

in the digestion, while shaking gently. The supernatant was then collected and any 

undigested cell aggregates were avoided. The collected cell suspension was washed three 

times, centrifuged for five minutes at 300 RFC and new media supplemented with 

gentamicin and 20% Fetal Bovine Serum (FBS) (Invitrogen, Carlsbad, CA, USA) was 

added. Resuspended cells were then filtered through a 100um filter to remove any cell 

aggregates. Finally, cells were cultured or frozen for later use.  

Cells were cultured by seeding 100mm x 15mm culture treated dishes with sub-

confluent densities of cell suspensions plus DMEM:F12 supplemented with gentamicin 

and 20% FBS. Cultures were incubated at 37° C in the presence of 5% CO2 and allowed 

to adhere overnight. Once cells were adhered, free-floating cells and debris were removed 

with the media and new media was added. Cultures were then allowed to grow to 

confluency.  

At 70-80% confluency cells were split by removing the media and incubating 

with PBS for 15 min at 37° C. This was followed by a ten minute incubation in TrypLE 

Express stable trypsin replacement reagent (Gibco). Cells were split in a 1:2 ratio into a 

new flask or culture dish and supplemented DMEM:F12 was added.  

Frozen stocks were maintained for later use as well. Cells to be frozen were 

removed from the culture dish as described above with TrypLE Express. Equal volumes 

of cell suspension in TrypLE Express and freezing media (DMEM:F12, gentamicin, 20% 

FBS and 15% DMSO) were added to a cryovial and slowly frozen in a Nalgene Cryo 1° 

C Freezing Container (Nalge Nunc International, Rochester, NY, USA) placed at -80° C 

overnight. Frozen cryovials were then transferred to liquid nitrogen for long term storage.  
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When needed, cryovials stored in liquid nitrogen were removed and thawed in a 

37° C water bath. The cell suspension was then immediately added to 10mL of 

supplemented DMEM:F12. The new suspension was centrifuged at 300 RFC for 5 

minutes followed by removal of the supernatant. The pellet containing cells was 

resuspended in fresh supplemented DMEM:F12 and plated. These cultures were then 

maintained and split as described above.  

 

Western blot analysis 

Protein was extracted from cells passaged once using the RIPA Lysis Buffer Kit 

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) according to the manufacturer’s 

protocol. Extracted protein was quantified using the BCA Protein Assay Kit (Pierce, 

Rockford, IL, USA) following manufacturer’s protocol and either used immediately or 

stored at -80° C for later use. Loading dye, consisting of 100mM Tris, 25% Glycerol, 2% 

SDS, 0.01% Bromophenol Blue, and 10% Beta-Mercaptoethanol at pH 6.8, was added to 

total protein in a 1:2 ratio and boiled for 5 minutes. 76 ug of total protein was loaded onto 

a precast Ready Gel 4-15% Tris-HCl (BioRad Inc., Hercules, CA, USA). Proteins were 

separated by size by electrophoresis at 200 volts for 30-40 minutes and transferred to an 

Immuno-Blot PVDF membrane (0.2um) (BioRad) by electric current of 350 mA for 1 

hour at 4° C. Transfer of proteins was confirmed by staining with Ponceau S. PVDF 

membrane with proteins bound was then blocked for 2 hours rocking gently at room 

temperature in 5% non-fat milk TBS solution. After blocking, the membrane was 

incubated in primary antibody at 4°C overnight. The two primary antibodies and their 

concentrations used were as follows: SOX9 (H-90) rabbit polyclonal antibody (Santa 
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Cruz Biotechnology, catalog # sc-20095) at a 1:1000 dilution and Cluterin B (C-18) goat 

polyclonal antibody (Santa Cruz Biotechnology, catalog # sc-6419) at a 1:1000 dilution.  

Primary antibody was removed and the membrane was washed in 3% milk TBS solution 

once, 0.025% Tween 20 (BioRad) 3% milk solution twice, and once in TBS alone. All 

washes were performed at room temperature gently rocking for 10 minutes each. The 

membrane was then incubated with secondary antibody for one hour at room 

temperature, while gently rocking. The secondary antibody used to detect SOX9 was a 

goat anti-rabbit IgG-HRP antibody (Santa Cruz Biotechnology, catalog # sc-2004) at a 

1:20,000 dilution, and to detect Clusterin B, donkey anti-goat IgG-HRP antibody (Santa 

Cruz Biotechnology, catalog # sc-2020) at a 1:40,000 dilution. The secondary antibody 

was then removed and the membrane was incubated with Immobilon Western 

Chemiluminescent HRP Substrate (Millipore Corporation, Billerica, MA, USA) as per 

manufacturer’s protocol. Finally an x-ray film was exposed to the membrane for 30 

seconds and developed using a Mini-Medical x-ray film processor (AFP Imaging 

Corporation, Elmsford, NY, USA).  
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Figure 9.   Image of SOX9 amplicon (154 base pairs) separated on an agarose gel and 
stained with ethidium bromide. 

 

 

Sequencing cDNA 

Total RNA was isolated using RNA STAT-60 (Iso-Tex Diagnostics, Inc., 

Friendswood, TX, USA) according to the manufacturer’s protocol and cDNA was made 

from RNA using the Sigma Enhanced Avian HS RT-PCR kit (Sigma Aldrich, St. Louis, 

MO, USA) following the manufacturer’s protocol. PCR was performed to confirm the 

presence of SOX9 transcript. Amplification by PCR of cDNA was carried out with each 

20ul reaction containing 1.2mM of MgCl2, .25mM of each dNTP, 1.0uM of each primer 

(forward and reverse), 0.001mg of Bovine Serum Albumin (Promega, Madison, WI), 1 

unit of Taq DNA Polymerase (Fisher Scientific, Pittsburgh, PA), and 2ul of  1X Taq 

DNA Polymerase Buffer B (Fisher Scientific). Amplification cycling conditions were as 

follows: 94°C for 5 minutes, followed by 35 cycles of 94°C for 30 seconds, 55°C for 30 

seconds, and 72°C for 30 seconds, then a single cycle at 72°C for 10 minutes. The 

polymerase, plus half of the polymerase buffer and MgCl2 were added after the first 94°C 
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cycle. Primers used for SOX9 were F:CAAGAAAGACCACCCGGATTACAA and 

R:GGAGGAGGAGTGCGGCGAGT, (product size 154 bases). Products were separated 

by gel electrophoresis and then visualized using ethidium bromide (figure 9). Products at 

the correct size were cut out and purified using Qiaex® II Gel Extract Kit (Qiagen, Inc., 

Valencia, CA) following the manufacturer’s protocol. Excised DNA was then used for 

nucleotide sequencing using the Big Dye Terminator v 1.1 Cycle Sequencing Kit 

(Applied Biosystems) and resolved on an ABI 3730 Genetic Analyzer (Applied 

Biosystems). The resulting sequence was aligned to the known SOX9 sequence (GenBank 

accession number AY237827) using Clustal W (http://www.ebi.ac.uk/clustalw/). 
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CHAPTER V 

CONCLUSIONS 

 

 An important difference between canine models for human diseases and other 

animal models is the direct benefit the research has on the quality of life for the dog. This 

was certainly the case for the research done on ARHN in the ECS. For fifty years, HN 

has devastated the ECS. The autosomal recessive mode of inheritance made identification 

of HN carriers only possible through their production of dogs affected with the disease. 

To further complicate the situation, accurate diagnosis of a dog affected with HN requires 

confirmation of GBM ultrastructural changes and absence of collagen trimers. This can 

only be done by electron microscopy and immunofluorescence, both of which involve the 

collection of kidney tissue for analysis (typically through biopsy). Because the diagnosis 

cannot be made with a simple clinic visit or typical urine and blood tests, it is likely that 

cases of HN go unreported, meaning the parents of the affected dogs do not get identified 

as obligate carriers. A second difficulty derived from the diagnosis process is the 

misdiagnosis of HN when proper diagnostic methods are not performed. One of the 

characteristics of HN is its course which ultimately leads to end stage renal failure. This 

characteristic is common to the vast majority of chronic renal diseases, and without 

thorough examination, such as the diagnostic tests described above, ESRD looks the 

same no matter the disease causing it. These complications have made identifying 

carriers of HN difficult for breeders.  

The work described in chapter III, in which the mutation causative for HN was 

characterized, has allowed for the development of a genetic test to identify carriers. This 
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test will allow breeders to determine if their dogs carry the mutation causing HN, and 

then to proceed with informed matings. The proper use of this test to judiciously plan 

matings which will not produce an affected dog, will help to eradicate the disease from 

the ECS. 

 In order for the test to be available to breeders in a commercial form, a 

provisional patent application was filed. This application protected the rights to the test 

both within the US and world wide one for year after application date. To protect rights 

to the test beyond the year provided for in the provisional patent, US utility, European, 

and Australian patents were filed. In order to provide the test commercially, contracts 

have been established with several companies world wide. US and Canadian tests will be 

performed by Optigen, of New York, European tests by Antagene, of France, and those 

from the Asia and extended Pacific regions by Genetic Technologies, of Australia. 

 While the elucidation of the gene and mutation responsible for ARHN in the ECS 

described in chapter III and the expression studies on all six type IV collagens described 

in chapter II were important steps in understanding type IV collagen diseases, expression, 

and regulation, there is still much more to understand. However, it is possible to build on 

the research depicted here to make further progress in this research arena. Chapter IV 

lays out a method for creating a primary Sertoli cell line from testis tissue. Because these 

cells express all the type IV collagens, they can be used as an excellent model system. 

This tool, in combination with the dog models of AS, could provide a useful system to 

study type IV collagens in relation to the disease. Because they are primary in nature, it is 

possible to collect a single testicle from a dog at one time then the second at a later time, 

in both affected and unaffected individuals, in order to use the cells for a time course or 
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treatment study. The strength of this system would also greatly improve if changed to an 

immortalized cell line. Cells could still originate from affected and unaffected dogs and 

the immortalization of these cells would build a truly in vitro model of AS which could 

be more easily manipulated than the current primary cell line.  

 In conclusion, the domestic dog has served as man’s companion since its 

divergence from the wolf, some 15,000 -100,000 years ago [107-109]. The dog’s loyalty, 

reliability, and many diverse physical abilities have made it a staple in our lives. For 

centuries, we have incorporated the dog into daily routines as companions, hunting 

partners, rescue helpers, drug and bomb detectors, military sentries, and much more. 

Humankind’s best friend has now been given another important role in relation to us; he 

now serves as a highly effective research tool to help understand, prevent, and treat 

hereditary and infectious diseases. The work described here can be added to the ever 

growing list of successes using the canine model. This work helped lead to a greater 

understanding of both human and canine forms of AS, and HN, as well as the type IV 

collagens which are central to these diseases and led to the development of a test that can 

be used to eliminate the disease from the breed.  Finally, using the dog, it is now possible 

to derive a canine Sertoli cell system to further study AS and the type IV collagens in 

vitro.   
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