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Resumo  

O sistema de saúde guarda cada vez mais informação dos seus utentes o que dificulta ou até 

impossibilita a descoberta de novos conhecimentos só com as técnicas usualmente utilizadas, 

i.e., as tradicionais técnicas estatísticas. De facto, os investigadores clínicos têm sentido uma 

crescente necessidade em extrair novos conhecimentos para continuadamente contribuir para o 

melhoramento dos serviços de saúde prestados. Essa necessidade tem vindo a ser colmatada 

com a aplicação de um processo, chamado “data mining”, que auxilia, através da aplicação de 

diversas técnicas (i.e., classificação, clustering, associação, etc.), a descoberta de padrões de 

dados vistos como interessantes, mas ocultados com as tradicionais técnicas estatísticas. A área 

da infertilidade masculina já começou a aplicar o data mining, por exemplo, através da 

aplicação da técnica de classificação para prever o sucesso de uma técnica de Procriação 

Medicamente Assistida. Contudo, o varicocelo - um síndrome anatómico de varizes escrotais 

caracterizado pela dilatação das veias que drenam o sangue da região dos testículos que em 

certos casos dá origem à infertilidade - não foi ainda explorado com uma técnica de data mining. 

A sua prevalência atinge 40% dos homens tratados por infertilidade, sendo que a infertilidade 

masculina abrange 50% das causas da infertilidade de um casal. A correção do varicocelo pode 

ser alcançada com um tratamento radiológico chamado embolização, que tem por objetivo 

desvitalizar as veias dilatadas através da introdução de substâncias terapêuticas na circulação 

sanguínea. Neste contexto, este trabalho teve os seguintes principais objetivos: i) averiguar o 

sucesso da correção do varicocelo com a técnica da embolização através da identificação de 

algum melhoramento na média dos valores dos parâmetros seminais ou das categorias seminais 

com recurso a técnicas estatísticas inferenciais (i.e. ANOVA e Chi-quadrado); ii) predizer o 

sucesso da embolização com técnicas de classificação através da aplicação do decision tree do 

RapidMiner e do algoritmo W-J48; iii) identificar padrões que caracterizam os pacientes 

embolizados com a técnica de clustering através do algoritmo K-Means e eleger as relações de 

atributos que ocorrem mais frequentemente através da técnica de associação com o algoritmo 

FP-Growth. Este processo de análise de dados seguiu a metodologia Cross-Industry Standard 

Process for Data mining (CRISP-DM) aplicando-a à análise de uma amostra de 293 homens 

inférteis descritos com 64 atributos que foram submetidos à embolização no Centro Hospitalar 

e Universitário de Coimbra (CHUC) entre Janeiro de 2007 e Abril de 2016. Os resultados 

obtidos indicam que a embolização melhora significativamente a média das concentrações de 

espermatozoides até 12 meses e de suas morfologias até 6 meses depois da embolização 

(ANOVA p<0.05) o que permite fundamentar o interesse em prever o sucesso desta técnica 

terapêutica. Sua previsão computarizada com a árvore de decisão do RapidMiner permitiu 

prever com uma Accuracy e F-measure de 70.59% e uma AUC de 0.750 que a probabilidade 

condicional de engravidar tendo um homem com uma severidade baixa ou média do varicocelo 

e uma parceira entre os 24 e 33 anos inclusive é de 70.83%. Também se viu que a frequência 

relativa, de pacientes com uma concentração de espermatozoides normal 3 meses depois da 

embolização e uma motilidade progressiva normal destes antes do tratamento, é mais alta em 

grupos de pacientes que raramente trabalham em ambientes tóxicos. Estes resultados permitem 

contribuir para as investigações em curso no domínio da infertilidade, assim como na 
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identificação de medidas que permitem um maior auxílio na descoberta do conhecimento. 

Nomeadamente, vimos que a aplicação conjunta dos algoritmos de data mining com as técnicas 

estatísticas inferenciais, assim como a aplicação de diversas técnicas de data mining (i.e., 

classificação, clustering e associação), potencia a descoberta do conhecimento em dados 

clínicos. 

Palavras Chaves: Data mining, Varicocelo, Embolização, Parâmetros Seminais 
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Abstract  

Traditional statistic´s limitations took researchers to seek for advanced data analytic methods 

to better identify factors that may improve, for instance, treatment success. Since data mining 

techniques enhances the potential of knowledge discovery in data, by following the Cross-

Industry Standard Process for Data mining (CRISP-DM) methodology, we have applied data 

mining techniques to leverage our descriptive statistical findings on the male infertility domain. 

More precisely, on the varicocele condition corrected with the embolization treatment. The aim 

of this study is to identify data patterns on patient’s data with the varicocele condition and 

predict the success of the embolization treatment with data mining techniques in order to 

contribute to actual researches with an innovative data analysis approach that, to the best of our 

knowledge, have not been yet applied to the varicocele condition. In this context, after 

presenting our descriptive statistical results, we describe and apply the most commonly applied 

Data mining techniques in the healthcare domain: Classification with the RapidMiner´s 

Decision tree algorithm and the W-J48 java implementation of the C4.5 algorithm; Clustering, 

with the K-Means algorithm and Association, with the FP-Growth algorithm. Further on, we 

identify the most interesting obtained results, and at last, discuss the elected results and 

contributions for the studied domain.  

Keywords: Data mining, Varicocele, Embolization, Seminal Parameters 
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Chapter 1 Introduction  

The healthcare industry daily generates complex data from multiple sources, such as electronic 

patient records, medical reports, hospital devices, and billing systems (Cerquitelli, Baralis, 

Morra, & Chiusano, 2016), which makes knowledge discovery from this data harder or 

impossible to achieve using traditional statistics. In fact, several studies have suggested the 

advanced data analysis technique called data mining to overcome these data challenges 

(Cerquitelli et al., 2016) (Gonzalez, Tahsin, Goodale, Greene, & Greene, 2016).  

Data mining is the process of discovering interesting data patterns (Han, Kamber, & Pei, 2012) 

where standard statistical exploratory data analysis procedures - traditional statistics -  could 

not discover useful insights (Hand, Blunt, Kelly, & Adams, 2000). In our era, traditional 

statistics is viewed as the primary data analysis technique and data mining as the secondary 

technique due to its strengths and rapid developments (Hand, 1998). While the groundwork of 

both techniques is mathematics, data mining extends it with other subjects such as machine 

learning, database systems and visualization which brings important gains over the traditional 

statistics techniques (Tekieh & Raahemi, 2015). The main advantages of data mining over the 

traditional statistics techniques are its capability to analyze different types of data (i.e numbers, 

names, severity degrees etc.) as well as its ability to perform inductive analysis. This last 

advantage is fundamental in cases where researchers are trying to understand, for instance, the 

consequences of a treatment that are not fully known since many potential variables can difficult 

the formulation of a hypothesis to prove or reject.  

The varicocele condition is characterized by the dilation of the veins of the spermatic cord (Arif 

et al., 2018). Studies estimates that the varicocele condition is present in more than 35% of 

infertile couples (Kirby, Wiener, Rajanahally, Crowell, & Coward, 2016). The McGraw-Hill 

Concise Dictionary of Modern Medicine (“varicocele Definition,” 2002) goes even further, by 

stating that the varicocele condition is linked to infertility in 40% of males treated for infertility. 

By having in mind that male infertility factors are responsible for 50% of infertility causes 

(Kirby et al., 2016), the importance of assessing data patients with a condition with such 

prevalence is clear, given that infertility affects an estimated 15% of couples globally (Agarwal, 

Mulgund, Hamada, & Chyatte, 2015). Varicocele correction can be achieved with the 

radiological embolization technique that introduces substances into the circulation to devitalize 

the enlarged veins (Lippincott, Williams, & Wilkins, 2012).  

Several studies were carried out on the varicocele domain, however, to the best of our 

knowledge, none of them have applied an advanced data analysis process such as data mining. 

Therefore, data mining techniques were in this study applied on a data set of 293 infertile male 

patients with the varicocele condition that had undergone the embolization treatment in the 

Centro Hospitalar e Universitário de Coimbra (CHUC) with the aim of improving their 

chances of conceiving. This data set not only had general male patient´s information and 

external factors (i.e. if the patient drinks, smokes etc.) but also covered all semen analysis 

results carried out before and after the embolization treatment at 3, 6 and 12 months which were 

at the Reproductive Medicine Unit of the CHUC collected. 
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The aim of this work is to predict the varicocele embolization success and identify data patterns 

with data mining techniques. Accordingly, the main contributions of this study are the 

following: 

• Contribute to the ongoing research on varicocele embolization; 

• Leverage the findings in the global field of male infertility; 

• Identify measures that can leverage knowledge discovery on similar data sets. 

Its aim was achieved by following the Cross-Industry Standard Process for Data Mining 

(CRISP-DM) with the application of the commonly used data mining algorithms (i.e. Decision 

tree, K-Means and FP-Growth) which encompass the most commonly used data mining 

techniques in the health care industry (i.e. Classification, Clustering, and Association).  

This master thesis is structured as follows.  Chapter 1, introduces the carried-out study, as just 

discussed. Chapter 2, briefly describes the data mining technique and the varicocele condition 

with its correction. Chapter 3, discusses the surveys and researches that have been published on 

Data mining, as well as on the field of male infertility and varicocele. Chapter 4, presents the 

materials that this study has used and explains how this study was carried-out after describing 

each method applied. Chapter 5, presents the results of this real use case through several 

sections that reflects the CRISP-DM methodology. Finally, in Chapter 6, a conclusion is 

presented where future work is indicated. To better support the exposed study, a glossary is 

presented after Chapter 6 and most modelling results are documented in the Appendix C.     
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Chapter 2 Background  

In order to better convey the carried-out work, this chapter presents a background on Data 

mining and on the varicocele condition as follows: in section 2.1, we provide a brief overview 

of data mining and in section 2.2, we disclose in more details, what the varicocele condition is 

all about and how this condition can be corrected.  

2.1 Data mining  

Data mining is the extraction of implicit, previously unknown, and potential useful information 

from data (Witten, Frank, & Hall, 2011). It is also defined by Han et al. (2012) as the process 

of discovering interesting patterns and knowledge from data; and by Ting, Shum, Kwok, Tsang, 

and Lee (2009), as the process of finding patterns, associations or relationships among data 

using different analytical techniques involving the creation of a model that will compute useful 

information or knowledge. This is why data mining is also popularly called “knowledge 

discovery from data”, or KDD (Han et al., 2012). 

As specified by Ting et al. (2009), data mining techniques are applied upon the data through 

the creation of data mining models. A data mining model, is a set of several steps (e.g. data 

reading, feature selection, algorithm application etc.) build with a data mining tool that aims to 

optimize the knowledge discovery process.  

Data mining techniques extract knowledge from data with different methods that are 

implemented with various algorithms. These techniques can be divided into two main 

categories that reflects the main purposes of data mining (i.e. predict and describe data). Below, 

we describe these two main categories based on Tekieh & Raahemi (2015): 

• Predictive – analysis that tries to generate predictive rules with the classification of 

instances on a specific label attribute. Since most of the predictive algorithms carry out 

predictive analysis through a label attribute, we also call them supervised learning. 

These algorithms enable to build predictive data mining models to predict, for instance, 

the success of a treatment. Classification is the most widely used predictive data mining 

technique.  

• Descriptive – exploratory analysis that attempts to measure the similarity between data 

values, and discover data patterns and relationships. Hence, the aim of this category is 

to describe the data. The data mining algorithms that are applied to describe data are 

called unsupervised learning because they do not need a label attribute to compute as 

the predictive algorithms do. The mostly applied descriptive algorithms are the ones that 

perform Clustering or Association data mining techniques. However, Classification 

techniques can also be used to describe data in conjunction with Clustering techniques. 

As previously said, data mining is an advanced data analytic technique that has several 

advantages over the traditional statistical techniques. These main gains are the following 

(Tekieh & Raahemi, 2015)(Dj Hand, 1999): 
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• Heuristic technique – data mining is a technique designed to extract knowledge from 

data in a better and quicker way than with traditional statistics and surpass its results.   

• Open approach – the data mining technique is open to consider various approaches to 

mine the data and apply them in different orders. In opposition, traditional statistics is 

more conservative. 

• Inclusive – the nature of statistics methods is to run analysis only on a sample of data. 

In contrast, data mining can consider the whole dataset for analysis. 

• Generalized – most data mining methods can handle all types of data. In opposition, 

traditional statistics technique only analyzes numeric data. 

• Inductive – in statistics, a hypothesis is first created and then the data gets analyzed to 

prove or reject the hypothesis (hypothetical-deductive analysis). On the other hand, data 

mining explores the data and tries to find knowledge out of the data (inductive analysis).  

2.1.1 Data mining techniques 

Through our study, we have identified that the most commonly used data mining techniques in 

the health care domain were: Classification, Regression, Clustering and Association (Tekieh 

& Raahemi, 2015) (Ahmad, Qamar, Qasim, & Rizvi, 2015) (Tomar & Agarwal, 2013). 

Therefore, in the following sub-sections we describe each of these techniques. 

2.1.1.1 Classification 

Classification is a data analysis technique constructing models that predict categorical label 

attributes (Han et al., 2012). This technique is used when the data is required to be classified 

into different groups (Tekieh & Raahemi, 2015), and/or predict the conditional probability of a 

label attribute outcome based on historical records. This method has been used in various 

healthcare applications:  the classification technique was applied to better identify if a patient 

has dementia based on his/her neuropsychological test in Maroco et al. (2011). In Geman, 

Chiuchisan, & Covasa (2016), the Support Vector Machine and Artificial Neural Network 

algorithms were used to find correlations between a specific intestinal microbiota and the 

presence or absence of diabetes in order to predict metabolic diseases such as diabetes. In 

another work, the Support Vector Machine algorithm was also used along with the Particle 

Swarm Optimization, to predict seminal quality (Sahoo & Kumar, 2014). In Mirroshandel, 

Ghasemian, and Monji-Azad (2016), the K-Star algorithm was used to predict the outcome of 

individual sperm injection on humans in order to increase the implantation rate. In Kourou, 

Exarchos, Exarchos, Karamouzis, and Fotiadis (2015), a survey of works on data mining 

applications in the cancer prognosis and prediction field was presented. It turned out that all the 

presented works had applied algorithms that are classifiers. Just to name a few, Decision tree 

algorithms were used to predict breast cancer survival (Delen, Walker, & Kadam, 2005) and 

Bayesian Network to predict the recurrence of oral cancer considering several data types such 

as clinical imaging and genomic data from tissue and blood (Exarchos, Goletsis, & Fotiadis, 

2012).   
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2.1.1.2 Regression 

Regression is mainly used to demonstrate the correlation among different numerical attributes 

(Tomar & Agarwal, 2013) and predict a numerical value. Its limitation is that we already have 

to know the attribute that is independent and the attribute that is dependent in order to apply it 

(Ahmad et al., 2015). Since it is a technique that is closely related with what we do in statistics 

and the aim of this study is to explore data mining techniques by among other things, predict a 

nominal value, we did not delve further in this technique.     

2.1.1.3 Clustering 

Clustering is the process of partitioning a set of instances into subsets (Han et al., 2012) and by 

doing so, categorizing it. This technique is used when we do not have much information about 

the different types of instances (in our case, patients) involved in a population. As it is an 

unsupervised learning technique, it tries to find clusters of instances that are similar to each 

other without considering any specific target label (Tekieh & Raahemi, 2015). Since clustering 

is a technique specially used in the descriptive analysis stage, several works have applied 

clustering algorithms to usually categorize the handled data prior to classification. In fact, in 

Sharma, Singh, and Khatri (2016) a survey is presented on medical publications that have used 

Clustering techniques along with Classifications techniques where the following applications 

were pinpointed:  the K-Means clustering algorithm was used to contribute to the diagnose of 

heart disease patients  (Shouman, Turner, & Stocker, 2012) and to categorize colon tumors 

(Kumar & Wasan, 2010); Clustering methods were also used to categorize proteins into 

functional groups (Xu et al., 2012)  to predict the likelihood of diseases (Paul & Hoque, 2010) 

and to detect disease-specific clusters within medical image data (Bruse et al., 2017).    

2.1.1.4 Association 

Association is the process of finding common sets of attributes, also called in the literature as 

“frequent item sets”, to generate rules that can describe the data set (Han et al., 2012) by 

identifying data patterns. These rules can also have the ability to predict events if the consequent 

of the rule is a label attribute or an attribute that can enable the prediction of an event, as studied 

in Azevedo and Jorge (2007) and Liu, Hsu, and Ma (1998). The association technique is applied 

with a “frequent item set mining algorithm” and the most commonly applied algorithms are in 

this context the APRIORI and the FP_Growth algorithms. In fact, the APRIORI algorithm was 

used to find associations between clinical data from diabetic patients (Stilou, Bamidis, 

Maglaveras, & Pappas, 2001) and in Hanirex, Kaliyamurthie, and Kerana (2015), the 

FP_Growth algorithm was used to infer disease association. Other association rule mining 

algorithms were proposed to find associations between time, place and patient´s infections on 

public health surveillance data (Brossette et al., 1998); between clinical data and therapeutic 

treatments (Ting, Wang, Kwok, Tsang, & Lee, 2010); between medical data and rhinitis 

conditions (Yang, Li, & Luo, 2016); and between patient´s data for coronary heart disease 

diagnosis (Orphanou et al., 2016).  
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2.2 Varicocele 

Since the provided data set only covers male patients that have undergone varicocele correction, 

exploring the outlines of the varicocele condition with its corrections techniques was needed to 

better understand the data provided. Hence, in section 2.2.1, we present the definitions found 

on the varicocele condition and in section 2.2.2, we specify how this condition can be corrected. 

2.2.1 Definition  

As previously said, the varicocele condition is characterized by the dilation of the veins of the 

spermatic cord (Arif et al., 2018) that, depending of its severity grade, can be seen with naked 

eye on the patient´s scrotum. However, to better understand the provided data, a greater 

comprehensive and clinical definition was needed. Hence, complementary definitions were 

searched. Below, we present several clinical definitions of the varicocele condition that were 

retrieved from several medical dictionaries and related works. 

The Farlex Partner Medical Dictionary (“varicocele Definition,” 2012), defines varicocele as a 

condition manifested by “abnormal dilation of the veins of the spermatic cord, caused by 

incompetent valves in the internal spermatic vein and resulting in impaired drainage of blood 

into the spermatic cord veins when the person assumes an upright position”. The McGraw-Hill 

Concise Dictionary (“varicocele Definition,” 2009) goes further on this definition by specifying 

that the incompetent valves that patients with varicocele have in the internal spermatic vein are, 

in fact, abnormal valves that “obstruct normal blood flow causing a backup of blood, resulting 

in venous dilatation”. This same definition goes further by characterizing the varicocele 

condition by specifying that it usually develops “slowly” and that it may be “asymptomatic”. 

They also specify that the incidence of the varicocele condition is higher in male than in female 

patients, since the varicocele condition can also affect female patients with the enlargement of 

the veins within the uterus. The McGraw-Hill Concise Dictionary also characterizes varicocele 

patients by specifying that it has a higher incidence on patients between 15 and 25 years old 

and that 40% of the males treated for infertility has the varicocele condition in a context where 

male factors contribute to 50% of s infertility causes. Finally, McGraw-Hill also specifies that 

an “abrupt appearance of a varicocele in older male patients may be caused by renal tumor [..] 

that alters the blood flow through the spermatic vein”. The Collins Dictionary of Medicine also 

adds to this definition (“varicocele Definition,” 2009) by relating it to “Varices” that surrounds 

testicles and forms “irregular swelling in the scrotum” that may cause a “dragging ache”. The 

Collins Dictionary of Medicine also specifies that the varicocele incidence is higher in the left 

testis and that it may affect fertility, and in these cases, correction is needed.  

The varicocele condition has 3 severity grades (i.e. severity grade I, II and III) where the 

severity grade I is the mildest and the severity grade III is the severest.   

Through the study of related works on varicocele, we have seen that the incidence of the 

varicocele condition in normal healthy males is estimated to be between 8 to 23% with the 

majority of cases affecting the left side (Makris et al., 2018). Furthermore, the left testicular 

varicoceles were associated with decreased testicular volumes in 73%, 53% and 43% in 
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varicocele with grade III, II and I, respectively (Aza Mohammed & Frank Chinegwundoh, 

2009). 

2.2.2 Correction  

The correction of a varicocele can be carried out through surgery or a radiological technique. 

Over the last decades, the radiological technique has become increasingly popular as a less 

invasive technique - initially used when surgery failed but now has a treatment on its own 

(Makris et al., 2018). The radiological technique that is being used is the embolization technique 

which is the treatment that all our patients have undergone. In the medical dictionary for the 

health professions and nursing, embolization is defined as a therapeutic introduction of various 

substances into the circulation [..] to devitalize a structure or organ by occluding its blood 

supply (Lippincott Williams & Wilkins, 2012). In the varicocele domain, the objective of the 

Embolization is to devitalize the enlarged veins in the man´s scrotum to divert the blood flow 

away from the varicocele. 

The embolization technique uses mechanically occlusive solid or liquid embolic agents such as 

coils, sclerosants or glue to block blood circulation on the veins with varicocele. In the 

systematic review of 30 clinical studies on embolic agents carried out by Makris et al. (2018), 

898 patients out of 3505 were treated with coils alone and the average technical success rate 

was of 92%. The most common complication with coils was epididymis-orchitis (i.e testicle 

inflammation), pampiniform plexus phlebitis (i.e. inflammation of the veins) or hydrocele (i.e 

accumulation of fluids around testicle) which was observed in 3.4% of the patients. 

The glue was the least embolic material used with 251 patients in total and the average technical 

success rate was equal to the coils. The most common complication with this embolic material 

was the perforation of the internal spermatic vein with contrast extravasation which occurred 

in 5.8% of the cases. In terms of complications, the glue was associated with a significantly 

higher risk than the other embolic materials (p <0.05) and in terms of pain after the treatment, 

moderate post-embolization pain was also reported in 3,7% of these patients which shown to 

be significantly higher than the other materials (p < 0.05). Potential improvement in sperm 

characteristics were evaluated in 11 of the 30 studies assessed, all of which reported statistically 

significant improvement in sperm count and/or sperm motility. Furthermore, we have seen that 

4 studies out of 30 have reported outcomes on the frequency of successful pregnancies.
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Chapter 3 Related Work 

Prior to the application of data mining in our project, several related works were studied to 

provide some guidance. The election of the data mining tool and algorithms to use, as well as 

the guidance on factors that influence male infertility or are clinically relevant to assess the 

varicocele condition, were some of the aspects researched in the literature and in this chapter 

summarized as follows: subsection 3.1 presents a summary of surveys on data mining tools; 

subsection 3.2 provides an overview of studies that have applied data mining techniques to male 

infertility by presenting the data mining algorithms that have been used; subsection 3.3 presents 

an overview of works that identify factors that influence male infertility and subsection 3.4 

describes the latest statistical findings performed on data of patients with varicocele.  

3.1 Data mining tools 

Since the election of a suitable data mining tool is important to promote the success of a data 

mining project, we have looked up in several data mining tool surveys for guidance on which 

data mining tool we should use. Below, a summary of identified surveys is presented. 

In Mikut and Reischl (2011), an overview on most existing data mining tools was presented. 

Its main contribution is the presentation of tool categorization criteria based on different user 

groups, data structures, data mining tasks and methods, visualization and interaction styles, 

import and export options for data and models, platforms, and license policies. The authors used 

tool categorization criteria to classify the data mining tools into nine types (e.g. data mining 

Suites, Business intelligence packages, Mathematical packages etc.). The benefit of the authors´ 

approach is that they listed most data mining tools by specifying their tool types. Moreover, 

they also identified which types of tool are suitable for which identified user groups which are 

business applications, applied research, algorithm development and education. The drawback 

of this work is that they did not describe data mining tools in depth and did not compare them.  

In Begum (2013), the authors discussed the KDD process and various open source tools (R, 

Weka, Orange, RapidMiner, Tanagara). Its highlights are the identification of data mining 

current and future trends in most domains – cloud and distributed computing were identified as 

well as the heterogeneous and complex data characteristic. Another useful input is the 

identification of data mining methods to tackle the trends that are basically challenges of the 

KDD process. However, the discussed data mining tools were not compared or selected by any 

criteria.  

Due to the increased popularity of data mining tools, a number of data mining tools surveys 

were conducted. In Rangra and Bansal (2014) a theoretical analysis of six open source data 

mining tools, Weka, Keel, R, KNIME, RapidMiner, and Orange, was given. The strongest 

points of this paper it is that each data mining tool was described through its technical 

specifications, features and specializations, as well as its advantages and limitations. 

Unfortunately, the authors did not say why they have considered these tools in their survey, nor 

specified the areas to which they are suited. Furthermore, for healthcare researchers who are 
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beginners in the data mining field and want to identify the most suitable tools for their needs, 

all the technical aspects shown can be overwhelming.  

In Jović, Brkić, and Bogunović (2014), a data mining tool survey was conducted that specifies 

the reason of  its tools of choice – mostly on the results of the KDnuggets poll. Their work 

emphasizes the quality of RapidMiner, R, Weka, and KNIME platforms, identified in the 2013 

KDNuggets poll, but also acknowledges the significant advancements made in other tools like 

Orange and Scikit-Learn. The strongest aspect of this paper it its technical aspects: selected 

tools were compared based on their general characteristics (i.e. programming language, license, 

etc.), applicability (i.e. Big Data, Text Mining, etc.) and data mining algorithms and procedures 

(Data visualization, Decision tree algorithms, etc.).  

The performance of the classification algorithms (Naïve Bayes, Random Forest, Random Tree 

and Bagging) were evaluated through the use of three data mining tools (Weka, RapidMiner 

and Support Vector Machine) in Mishra and Thakur (2014).  The contribution of this work is 

the identification of the best algorithm and tool for spam/junk mail classification. One of the 

benefits of this work is the performance evaluation of the tools in a specified field. Although 

tool performance was compared, tools were not described.  

A similar work was carried out in Singh, Liu, Ding, and Li (2016) that presents an evaluation 

of RapidMiner and KNIME, on a customized predictive and descriptive model built with the 

VCF feature for telecom monitoring data. The strongest points of this paper are that it shows 

how it is possible to build a model in the KNIME and RapidMiner with the VCF feature, as 

well as its performance evaluation through their benchmarking. Although the tools were 

analyzed qualitatively and quantitively, the authors did not present a qualitative comparative 

table. We believe that this type of comparison would help in selecting a tool to adopt. 

In Al-odan and Saud (2015), a comparative study of data mining tools suited for small to 

medium enterprises (SMEs) was presented. The reviewed data mining tools were KNIME, 

RapidMiner, Weka, RStudio and Orange. These tools were evaluated by 17 participants with 

more than 15 work years’ experience in the IT field to assess their user experience though their 

intuitiveness, consistency, navigation, usability, installation manual, configuration guide, 

troubleshooting guide, and user tutorials. The weakest point of this paper is that the data mining 

tools are not clearly described in detail, in spite of their comparison. 

In P. Aalam and T. Siddiqui (2016) seven data mining tools - Weka, ELKI, Orange, R, KNIME, 

Scikit-learn, and RapidMiner – were compared for clustering. The positive aspect of this paper 

is that they describe and compare qualitatively (programming language, interface type, covered 

clustering algorithm, etc.) the data mining tools.  However, its focus is only on clustering. 

In Almeida and Bernardino (2016) a survey on seven open source data mining tools for SMEs. 

KEEL, KNIME, Orange, RapidMiner, RProject, Tanagra and Weka were qualitatively 

compared (programming language, interface existence, data types supported, etc.). The 

strongest points of this paper are the good descriptions of the selected tools and the 

identification of the Cloud Services and Big Data (large amounts of data) support of the tools. 

Since those aspects are important to assess data mining tools for the healthcare domain as well 

as due to its good tools description, we have adopted some of its conclusions. The weakest point 
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of this paper is that it does not evaluate the performance of the selected tools. In a subsequent 

paper (Almeida, Gruenwald, & Bernardino, 2016), the authors have addressed the interest of 

data mining for business and analyzed three popular Open Source data mining Tools – KNIME, 

Orange and RapidMiner. The strongest point of this paper is its tool evaluation that besides 

comparing the execution times of the tested algorithms, has also compared the results on seven 

other performance metrics – Precision, Recall, F-Measure, ROC, Accuracy, Specificity and 

Sensitivity. Although this work is related to the business domain, our work gains from it through 

its tool analysis and evaluation.  

In Sharma et al. (2016) a survey on the application of the Classification and Clustering data 

mining methods to heart and Cancer diseases was provided. The paper briefly suggested the 

following data mining tools: RapidMiner, Weka, R-Programming, Orange, KNIME and NLTK. 

The strongest point of this work is its survey on its data mining applications in its project´s aim. 

However, the way that they have suggested the data mining tools is its weakest point - They are 

briefly described, neither compared nor suggested based on healthcare requirements.  

In  (Gui, Zheng, Ma, Fan, & Xu, 2016), a data management architecture for the healthcare 

industry, more precisely, for the personal health problem detection and real-time vital sign 

monitoring was proposed. The strongest point of this work is its data architecture suggestion 

that has in account the large amount of data characteristic with its specificities. However, the 

domain requirements are not deeply investigated, leaving behind other requirements such as the 

user experience of the proposed data management architecture. Their prototyped system was 

constructed with the Hadoop Database named HBase, the Hadoop Data Warehouse Hive and 

the data mining Libraries MLib and Spark Streaming. The proposed combination of tools makes 

sense since the Spark Libraries works perfectly with the Hadoop tools. 

By analyzing all these works on data mining tools, we have seen that the Rapid Miner and the 

KNIME platform have been the most studied. Most of these studies elect the RapidMiner 

platform as the most intuitive and complete and by looking into the reports from the consulting 

company Gartner, we see that the RapidMiner platform has been placed for the fifth year in a 

row as a leader in the market of Data Science and Machine-learning platforms.   

3.2 Data mining algorithms 

To the best of our knowledge, no other work applies data mining techniques to a data set of 

patients with varicocele. However, we have found several works that use data mining 

techniques to study seminal parameters (i.e. sperm concentration, sperm progressive motility 

and sperm morphology), as well as external factors, in the male infertility context. Since 

seminal parameters and male external factors encompass a good part of the provided/collected 

data set, these studies were analyzed to guide us on the selection of the data mining algorithms 

for this study. Hence, Table 3.1 was built to give a glance on the data mining algorithms that 

have been applied in related works to better support the election of the data mining algorithms 

applied to this study.  
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Table 3.1 Studies that apply data mining algorithms to the infertility domain 

Reference Subject Data Set Preprocessing Algorithms Best Accuracy 

(Sahoo & 

Kumar, 2014) 

Predict seminal 

quality from 

environmental factors 

and life habits data. 

100 

instances, 

9 

attributes  

Feature 

Selection 

Multilayer perceptron 

(MLP),  

Decision Tree (DT),  

Naive Bayes (Kernel),  

Support vector machine 

+ Particle swarm 

optimization 

(SVM+PSO)  

Support vector machine 

(SVM)  

SVM + PSO -> 

94%  

(Bidgoli, 

Komleh, & 

Mousavirad, 

2015) 

Predict seminal 

quality from life 

habits and health 

status data. 

100 

instances, 

9 

attributes 

Balance Data 

Set 

Optimized MLP with 

genetic algorithm, 

SVM, DT and Naive 

Bayes (NB). 

Optimized 

MLP -> 

93.86% 

(Gil, Girela, 

De Juan, 

Gomez-Torres, 

& Johnsson, 

2012) 

Predict seminal 

quality by associating 

environmental factors 

and lifestyle  

100 

instances, 

9 

attributes 

Feature 

Selection 

DT (C4.5) in binary 

method, MLP and 

SVM. 

MLP -> 86% 

and SVM -> 

86%; 

(Guh, Wu, & 

Weng, 2011) 

Predict IVF outcome 

from several patient´s 

descriptions (e.g., 

patient’s age, number 

of embryos 

transferred, number of 

frozen embryos, 

culture days of 

embryo, sperm 

parameters etc.)  

5275 

instances,  

38 

attributes  

Balance Data 

Set & Feature 

Selection 

DT (C4.5) with 

Genetic Algorithm 

(GA) for attribute 

selection 

DT -> 

73.2% 

(Chen, Hsu, 

Cheng, & Li, 

2009) 

Predict IVF outcome 

from the patient’s 

physiology and the 

results of the stages of 

the IVF cycle  

654 

instances, 

10 

attributes 

Feature 

Selection 

PSO, Decision Tree 

J48, Naive Bayes, 

Bayes Net, MLP ANN 

PSO -> 73.03% 

 

By analyzing the built Table 3.1, we see that most identified studies have worked with small 

data sets and used the feature selection technique to select the attributes to mine. Furthermore, 

we see that only two of the five identified studies have balanced its data set, four of the five 

studies have applied the MLP algorithm and three of them, have also applied the SVM 

algorithm. Although several algorithms were used, the ones that gave the best accuracy were: 

Support Vector machine (SVM); Particle Swarm Optimization (PSO), Multilayer perceptron 

(MLP) and Decision Tree (DT). The study that has applied data mining algorithms upon sperm 

parameter values to predict a treatment outcome, similarly as we aim to do, is the work carried 

out by (Guh et al., 2011). Hence, we have chosen to go with the application of the decision tree 

algorithm (C4.5) since it is also a well-known algorithm that has been widely applied. In fact, 

in Table 3.1 we see that all identified works have applied it. 
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3.3 Risk Factors of Male Infertility  

To establish guidelines on the type of information to collect/select for this study, we have 

selected several related works on male infertility to identify risk factors. Table 3.2 presents an 

overview of all identified studies. 

Table 3.2 Risk Factors linked to male infertility  

Reference Risk Factors  

(Keller, Chen, & Lin, 2012) Erectile dysfunction 

 

(May et al., 2006) Weight, height and body mass index during childhood 

and adolescence (people with left varicocele were 

heavier and taller than an age-correlated normal 

population) 

(Mohammadali Beigi, Mehrabi, & 

Javaherforooshzadeh, 2007) 

Prevalence of varicocele in the patients’ brothers 

(Niederberger, 2015) Different infertility etiologies are genetically and 

clinically linked with other diseases 

(Wang et al., 2016) Environmental exposure to metals: tin, nickel, zinc and 

molybdenum may be associated decreased total 

testosterone or luteinizing hormone (total T/LH ratio). 

Manganese may induce spermatozoa apoptosis. Iron 

may be important for living spermatozoa.  

(Williams & Alderman, 2001) Woman Age 

(Xu et al., 2012) Proteins in the sperm 

(Yan et al., 2014) Nitric Oxide 

 

By considering the identified risk factors presented in Table 3.2, we see that the male patient 

partner age, as well as the previous diseases of the male patient were attributes seen as risks 

factors for male infertility; and therefore, they have also been studied in this work. 

3.4 Varicocele  

The varicocele condition has been widely covered and assessed with statistical techniques. 

Since this study also applies statistical techniques to better understand the data prior the 

application of data mining techniques, we found that the study of those works was worthwhile. 

Hence, we have analyzed the varicocele-related works by identifying the type of information 

that has been studied in its results, as well as the statistical tests that have been applied to guide 

us through our work. By targeting these interests, this section presents an overview of some of 

the latest studies on the varicocele condition, and specifies how our work is different, and 

innovative.        

In Delavar et al. (2014), it is seen that the percentage of varicocele is significantly higher in 

smokers compared with non-smokers. However, they have not found a significant difference 

between the varicocele condition and the occupation or the drinking alcohol habit of their 

patients. This study used the SPSS software version 16.0 for statistical analysis. Adjusted 

regression analysis was used to test associations between the nominal attributes and the 

significance level used was considered at p<0.05. This study relates to ours because our study 

also encompasses the external factors of the patients but for a different purpose: to assess if 
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there is a relation between the embolization success, through pregnancy outcome, and external 

factors.   

In DeWitt et al. (2018), it is shown that the laterality of the varicocele condition was not 

significantly associated with cancer diagnosis, nor vascular anomalies. Statistics were 

performed with the JMP Pro 12 of the SAS Institute. They used the mean and the standard 

deviation for the descriptive statistics and for the comparative statistics, they have used the Chi-

square test with Fisher exact tests for categorical data. The significance level used in this study 

was set at p<0.05. This study relates to ours because we also have the information of the 

laterality of the varicocele condition.   

In Bilreiro et al. (2017), it is seen that both materials improved the sperm parameters with 

similar success rates. This study applied the Student´s t test in numeric continuous attributes 

and Fisher´s exact test for categorical variables. The significant level used was p<0.05. This 

study used the Microsoft Office Excel 2010 and the Graphpad Prism 6 software. This study 

relates to ours since we also have had the interest to collect patient information regarding the 

embolic material used. 

In Çayan and Akbay (2018), it is seen that patients that have redone the microsurgical sub 

inguinal procedure have significantly improved their postoperative sperm parameters, serum 

total testosterone level and spontaneous pregnancy rates. Statistical significance was assessed 

with the Student´s t test on sperm parameters and with the Chi-square test, for comparison of 

pregnancy results. These tests were applied with the SPSS 16.0 software package. This study 

relates to ours because, although covering the microsurgical sub inguinal varicocelectomy 

treatment rather than the embolization treatment, both studies assesses the success of their 

treatments with the increase of seminal parameters values, as well as pregnancy rates. 

In Samplaski, Lo, Grober, Zini, and Jarvi (2017), it is shown that the correction of a varicocele 

could reduce the need of in vitro fertilization (IVF). This study used the Student´s t test to 

compare the changes in the semen parameters and used the Chi-square test to compare groups 

of patients. The level of significance used was p<0.05. This study relates to ours since we also 

use the sperm parameters attributes to assess the improvement of the embolization treatment. 

In Kirby et al. (2016), we identify that the varicocele correction improves pregnancy and live 

birth rates. Since this paper is a review, the statistical tests used does not relate to our 

application. However, its main contribution does since our work also analysis the impact of the 

varicocele correction by assessing the success of the embolization treatment through the 

patient´s pregnancy outcome and analyses the evolution of semen categorizations (i.e. 

azoospermia, oligospermia) after the treatment. 

In terms of attributes assessed in the varicocele domain, we see that sperm parameters, as well 

as semen categorization have been analyzed. Moreover, external factors such as previous 

diseases, occupation, drinking and smoking habits have also been assessed, as well as the 

laterality and embolic materials used during embolization. If we look up for the attributes that 

have been used to assess the impact of varicocele, we see that the pregnancy outcome and the 

rate of live babies has been used. Hence, these two attributes could also be used to predict the 

success of the embolization treatment.  
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Regarding the statistical tests used, we see that the Student´s t test (i.e. the ANOVA test only 

applied to two groups of data) and the Chi-square test were frequently used in varicocele 

studies. Furthermore, we have seen that in the WHO laboratory manual for the examination and 

processing of human sperm, the ANOVA test is also used to assess systematic differences 

among the sperm parameter values recorded by the technicians (WorldHealthOrganization, 

2010). Moreover, all studies used a significance level of p<0.05. Hence, this study has also used 

these statistical tests and configuration to explore its data.   

As we know, statistical “power” is achieved with a large amount of data. Hence, to see if our 

data set has an acceptable dimension in comparison to the data sets assessed in related works, 

we have also looked up for the number of patients (i.e. examples or instances in data mining) 

that these works had. To achieve that goal, we have also studied the work carried out by Makris 

et al. (2018) which studies 30 related works that statistically assesses patients treated with the 

varicocele embolization that, on average, entails data sets of 117 patients - the smallest data set 

had 16 and the largest, 468 patients, followed by 244 patients. The standard deviation of the 

number of patients assessed by all these 30 studies is of 102 patients which means that the 

dimension of the data sets that have been studied in this domain is very heterogeneous. Since 

our final and preprocessed data set has 293 patients, we consider that we have a very good data 

dimension since it is a number well above the average in varicocele-related works. 

In contrast to all other studies noted above, this study applies descriptive and predictive data 

mining techniques while, to the best of our knowledge, only statistical techniques were 

previously used. Hence, this work has a high degree of innovation in terms of varicocele-based 

research.
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Chapter 4 Materials and Methods 

This study has used several materials and methods to achieve its data mining goals; and 

therefore, this section discloses in section 4.1, the materials that were used, and describes in 

section 4.2, the methods that were followed to better convey how, and for which purpose, they 

were used. The results of the application of all these methods are showcased in Chapter 5 with 

the CRISP-DM methodology.  

4.1 Materials 

In this section, in order to better convey the several assessed attributes disclosed in section 

4.1.2, we previously expose in section 4.1.1, in which context these assessed attributes were 

obtained and how semen parameters were interpreted. At last, in section 4.1.3, we disclose the 

tools that were used to tackle the aim of this work. 

4.1.1 Data Collection and Selection 

The investigation team named “Biology of Reproduction and Stem Cells” (BRSC) of the Center 

for Neuroscience and Cell Biology (CNC) of Coimbra University has initially provided the data 

set for this study. The initial data set had 320 examples and 67 attributes, where 28 of them, 

were attributes generated by the BRSC investigators for statistical analysis purposes, 5, for data 

set management purposes - such as extra notes and example´s identifications - and 2, were 

empty or filled with the same value which down sized the data set width to 32 attributes that 

were selected with the BRSC team. These 32 attributes (i.e. 67-28-5-2=32) are in the Appendix 

A disclosed and are in this study identified as the “initially provided and selected attributes”.    

After assessing the data quality of the attributes disclosed in the appendix A, we have seen that 

data preprocessing was needed to achieve the goals set. During the data preprocessing step, and 

based on the related works presented in the subsections 3.3 and 3.4, as well as our understanding 

of the varicocele condition and its correction described in subsection  0, we have reorganized 

and validated these 32 attributes. In the end, we have ended up with a total of 167 attributes. 

Out of these 167 attributes, 39 attributes mainly encompassed the 32 initially provided and 

selected attributes. Based on these 39 attributes, 25 were generated to better tackle the goals of 

this study. The remaining 103 attributes (167 preprocessed attributes minus 39 reorganized 

attributes minus 25 generated attributes) were mainly created to support the filling of missing 

values in the possible label attributes. For instance, to know if a patient´s partner got pregnant, 

we have recorded the pregnancy test results of all fertility procedures that the patient partner 

had undergone and at last, we have created an EXCEL condition clause that checked if the 

patient´s partner had at least one positive pregnancy result. If so, it would fill the missing 

“Gravidez” attribute with the value Yes. Since a patient partner can get also pregnant 

spontaneously (i.e. without an ART procedure) we have further on also checked the hospital´s 

information systems to look up for a possible child that could have born after the embolization 

treatment. These remaining 103 attributes were not considered for analysis since the goal of 

this study was to mainly analyze the information that the initially provided data set 

encompassed and mainly focus on the semen analysis since it is the most reliable and complete 
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information that we could have. In fact, sperm parameter values could be validated with its 

related clinical test reports; and therefore, were all manually validated. Remaining patient data 

were validated or collected through the medical dossiers and hospital information systems 

where the physicians had recorded the medical appointment outcomes and scheduled the next 

medical appointments or tests. When some of the patient data were not found, the biologists of 

the Reproductive Medicine Unit of the CHUC that work for the BRSC research team have also 

contacted the patients by phone. Unfortunately, not all data could be to validated or collected, 

and we carried on with the data available. Why and how the initially provided and select 

attributes were preprocessed to achieve the 39 initially preprocessed attributes is disclosed in 

detail in the data Preparation section 5.4 and which attributes were selected for data mining 

purposes are at the end of this same section disclosed.  

Since sperm parameter values were previously seen in the overview of related works as an 

important patient information, in the below subsection, we describe in more details how semen 

was collected and how this study has analyzed semen parameters. 

4.1.1.1 Semen Collection and Analysis 

To the patients of the provided data set it was asked to carry out a semen analysis in the Coimbra 

University Hospitals before the embolization treatment and 3, 6 and 12 months after the 

treatment. In order to carry out semen analyses, a sample of semen was obtained through 

masturbation after 3 to 5 days of sexual abstinence. Afterwards, sperm samples were analyzed 

and then elaborated a semen analysis report with the following information:  

• the number of spermatozoa per milliliter of semen (i.e. sperm concentration); 

• the percentage of spermatozoa as moving forward rapidly and slowly (i.e sperm 

progressive motility); 

• the percentage of spermatozoa seen in the semen that have a normal shape (i.e. sperm 

morphology). 

Further on, the recorded sperm parameter values were manually gathered in an EXCEL file that 

was then validated by comparing if the recorded values in the EXCEL file was the same with 

the ones recorded in the semen analysis paper report.  

From then on, we have analyzed the validated sperm parameter values based on the thresholds 

defined by the last World Health Organization (WHO) Report published in 2010 

(WorldHealthOrganization, 2010). These thresholds state that a male patient is considered with 

normozoospermia (i.e. with normal sperm parameter values) if he has the following semen 

characteristics: 

• sperm concentration equal or above 15 million/ml; 

• sperm progressive motility with at least 32%; 

• sperm morphology with at least 4%.  

Based on these thresholds, sperm parameter values were in this study assessed quantitatively 

and qualitatively as follows: 
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A. Quantitatively: 

A.1) Sperm parameter values;  

A.2) Number of altered sperm parameters (encompasses missing values). 

B. Qualitatively: 

B.1) Semen classification (see table 4.1 for definitions) 

B.2) Sperm category (i.e. normality/abnormality of the sperm parameter values). 

In the below Table 4.1, we present and describe the semen classifications. Hence, in the column 

called “Semen Classification”, we present the name of the classifications used to tackle the 

assessment B.1, the column called “Semen characteristics”, indicates the sperm parameter 

values that the semen analysis report must deliver to classify a semen into the corresponding 

semen classification, and in the column called “Number of altered sperm parameters”, we 

specify the number of altered sperm parameter values in each semen classification.  

Table 4.1 Description of Semen classifications 

Semen Classification Semen characteristics Number of altered sperm parameters 

Normozoospermia 

Sperm concentration => 15 million/mL 

Sperm progressive motility => 32%  

Sperm morphology => 4% 

0 

Oligozoospermia 

Sperm concentration < 15 million/mL 

Sperm progressive motility => 32%  

Sperm morphology => 4% 

1 

OligoAsthenozoospermia 

Sperm concentration < 15 million/mL 

Sperm progressive motility < 32%  

Sperm morphology => 4% 

2 

OligoTeratozoospermia 

Sperm concentration < 15 million/mL 

Sperm progressive motility => 32%   

Sperm morphology < 4% 

2 

Asthenozoospermia 

Sperm concentration => 15 million/mL 

Sperm progressive motility < 32%  

Sperm morphology => 4% 

1 

AsthenoTeratozoospermia 

Sperm concentration => 15 million/mL 

Sperm progressive motility < 32%  

Sperm morphology < 4% 

2 

Teratozoospermia 

Sperm concentration => 15 million/mL 

Sperm progressive motility => 32%  

Sperm morphology < 4% 

1 

OligoAstenoTeratozoospermia 

Sperm concentration 15 < million/mL 

Sperm progressive motility < 32%  

Sperm morphology < 4% 

3 

Azoospermia 

Sperm concentration = 0 million/mL 

Sperm motility does not exist  

Sperm morphology does not exist 

1 

4.1.2 Data set  

Data analysis was carried out upon a preprocessed data set of 293 heterosexual infertile couples 

(i.e. couples that were unable to get pregnant after 1 year of regular intercourse) - arising from 

the 320 provided instances - described throughout 64 preprocessed features (i.e. attributes), 

where the male partner had undergone an embolization treatment for varicocele correction 

between January 2007 and April 2016.   
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Regarding patient age, that male patients was between 23 and 54 years old, and their female 

partner, between 20 and 46 years old at the time of embolization treatment.  

All male partners had undergone a semen analysis test before and at 3, 6, 12 months after the 

embolization treatment, with a previous sexual abstinence of 3 to 5 days. Furthermore, couples 

were followed in fertility appointments where some of the female partners have undergone ART 

procedures such as intrauterine insemination (IUI), in vitro fertilization (IVF), intracytoplasmic 

sperm injection (ICSI) or intracytoplasmic morphologically selected sperm injection (IMSI). 

However, some couples were able to achieve pregnancy spontaneously. Moreover, all follow 

up tests were performed in the CHUC and most patients were from Portuguese origin. 

In the following subsection 4.1.2.1, we describe the assessed 64 attributes.    

4.1.2.1 Attributes  ́Description 

The description of an attribute not only encompasses its definition but also specifies its attribute 

type. Attribute type is determined by the set of possible values that an attribute can have. Hence, 

we have qualitative (usually words) and quantitative (numbers) attributes (Barbara Ilowsky; 

Susan Dean, 2017):  we can say that any kind of value from which a mean can be computed, is 

a quantitative attribute, otherwise, it is a qualitative attribute. Moreover, qualitative attributes 

can also be called ordinal attributes, if there is a meaningful order among its values; or binary, 

if the attribute can only have two nominal values (i.e. states) (Han et al., 2012). In the below 

Table 4.2 we describe these different types of attributes organized by its qualitative and 

quantitative category. 

Table 4.2 Description of attribute types 

Category Type Description Example 

Qualitative 

Attributes 

 

Nominal (No) 

 

Values that are symbols or names 

of things that do not have any 

meaningful order or a maximum of 

two diferent values. Note: Numeric 

labels are nominal values. 

Marital status, 

Occupation, 

Medical test names. 

 

Binary (Bi) 

 

Nominal values with only two 

states. 

Gender, HIV medical 

test outcome. 

 

Ordinal (Or) 

 

Nominal values that have a 

meaningful order or ranking among 

them. 

Size, Professional 

Category, Disease 

severity 

Quantitative 

Attributes 

 

Numeric Discrete (ND)  

 

A finite or countably infinite value. Number of Babies  

Numeric Continuous (NC) 

A measurable quantity typically 

represented as a floating-point 

value. 

Spermatozoa 

concentration, dates 

(i.e. birth date, 

treatment dates etc.)  

 

Regarding the dimensionality of the preprocessed data set, in Table 4.3, the 39 initially provided 

attributes are referenced with the ID 1 to 39 and the generated 25 attributes, referenced with the 

ID 40 to 64.  

Table 4.3 can be interpreted as follows: the column named “ID”, presents the id of the attribute; 

the column named “Based on ID”, indicates the id of the attributes upon which the recorded 
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value in the corresponding attribute was generated from; the column named “Attribute name”, 

presents the name of the attribute; the column named “Attribute code name”, indicates the code 

of the attribute used in the RapidMiner; the column named “Description”, describes the 

information that the attribute records; the column named “Type”, specifies the attribute type of 

the corresponding attribute with the several abbreviations specified in the previous Table 4.2  

and at last, the column named “Attribute value”, discloses the range of values (for numeric 

continuous attributes), the values (for binominal or ordinal attributes) or some values (for 

nominal attributes) recorded in the corresponding attribute. For layout purposes, we have 

renamed the attribute code name called 

“ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos” and referenced with the ID 

44, into the “ProfissãoComRiscoDeContacto” code name.
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Table 4.3 Attribute ´s description 

ID Based on ID Attribute name Attribute code name Description Type Attribute value 

1  Man age Idade_H Age of the male patient at embolization time NC 23-54 

2  Woman age Idade_M Age of the patient´s partner at embolization NC  20-46 

3  Infertility time Tempo_Infert Months the couple have been trying to conceive  ND  4-192 

4  Type of infertility Prim_Sec Patient´s partner first or second pregnancy  Bi Primary, Secondary 

5  Woman infertility factor Factor_Infertilidade_Feminino Patient´s partner diagnosed infertility cause  No Anovulation 

6  Man infertility factor Factor_Infertilidade_Masculino Male patient diagnosed infertility cause  No  Azoospermia, OAT  

7  Smoking habit HabitosTabagicos Male patient smoking habits No  4 cigarettes per day 

8  Drinking habit HabitosAlcoolicos Male patient drinking habits No  Socially, Rarely 

9  Surgeries Cirurgias Male patient surgeries before treatment No  Hernioplasty  

10  Diseases Doença Male patient diseases before treatment No  Left Epididymis cyst  

11  Occupation Profissao Male patient occupation before treatment No  Factory worker 

12  Severity grade Grau_Varicoc varicocele severity grade before treatment Or   I, II, III 

13  Laterality Lateralidade Scrotum site of the varicocele condition No  Left, Right, Both 

14  Testis volume Volume_Testiculo_Médico Categorization of the patient´s testis volume  No Above 20cc, Normal 

15  Embolization date Data_Embolização Date of the embolization treatment NC  01/17/2007-04/28/2016 

16  Embolized laterality TratamentoFeito_lateralidade Treated scrotum laterality No Left, Right, Both 

17  Material of Embolization TratamentoFeito_material Material used during the treatment No Coils, Glue 

18  Complications Complicações Complications after the embolization treatment No None, Pain 

19  Repeat embolization Repetia_embolização Whether the patient would repeat the treatment No Unknown, Yes, No 

20  Reason to not repeat Razão_não_repetir Reason told for not repeating the treatment No Unknown, Pain 

21  Concentration before treatment Conc_Pre Concentration of spermatozoa before  NC 0-220 

22  Concentration at 3 months Conc_3M Concentration of spermatozoa at 3 months  NC  0-170 

23  Concentration at 6 months Conc_6M Concentration of spermatozoa at 6 months  NC 0-160 

24  Concentration at 12 months Conc_1A Concentration of spermatozoa at 12 months  NC 0-80 

25  Progressive motility before treatment A_B_pré Percentage of fast/slow spermatozoa before  NC 0-89 

26  Progressive motility at 3 months A_B_3M Percentage of fast/slow spermatozoa at 3 months  NC  0-94 

27  Progressive motility at 6 months A_B_6M Percentage of fast/slow spermatozoa at 6 months NC  0-83 

28  Progressive motility at 12 months A_B_1A Percentage of fast/slow spermatozoa at 12 months NC  0-83 

29  Morphology before treatment Formas_N_pré Percentage of normal spermatozoa before   NC  0-38 

30  Morphology at 3 months Formas_N_3M Percentage of normal spermatozoa at 3 months NC  0-21 

31  Morphology at 6 months Formas_N_6M Percentage of normal spermatozoa at 6 months NC 0-21 

32  Morphology at 12 months Formas_N_1A Percentage of normal spermatozoa at 12 months NC 1-10 

33  Pregnancy outcome Gravidez Couple got or not pregnant after embolization Bi   No, Yes 
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ID Based on ID Attribute name Attribute code name Description Type Attribute value 

34  Number of pregnancies Num_Gravidezes Number of pregnancies had after embolization  ND  0-3 

35  Birth Nascimento Couple got or not a birth after embolization Bi No, Yes 

36  Number of alive babies Num_Bebés Number of alive babies born after embolization  ND  0-3 

37  Time took to conceive Gravidez_pós_emb Number of months after embolization  ND 0-79 

38  ART PMA Patient´s partner got pregnant with ART  Bi No, Yes 

39  Spontaneous pregnancy Gravidez_espontanea Patient´s partner got pregnant spontaneously Bi No, Yes 

40 7 Preprocessed smoking habit HabitosTabagicos_Processado_Simplificado Male patient smokes or not Bi No, Yes 

41 8 Preprocessed drinking habit HabitosAlcoolicos_Processado_Simplificado Male patient drinks or not Bi No, Yes 

42 9 Preprocessed surgeries Cirurgias_Processado_Simplificado Male patient got surgeries before treatment  Bi No, Yes 

43 10 Preprocessed diseases DoençaSimplificada Male patient got diseases before treatment No Epididymis 

44 11 Hazardous occupation ProfissãoComRiscoDeContacto Male patient works or not in a toxic environment  Bi No, Yes 

45 21; 25; 29 Altered before Numero_alterações_Pre Number of altered sperm parameters before ND 0, 1, 2, 3 

46 22; 26; 30 Altered at 3 months  Numero_alterações_3M Number of altered sperm parameters at 3 months ND 0, 1, 2, 3 

47 23; 27; 31 Altered at 6 months Numero_alterações_6M Number of altered sperm parameters at 6 months ND 0, 1, 2, 3 

48 24; 28; 32 Altered at 12 months Numero_alterações_1A Number of altered sperm parameters at 12 months ND 0, 1, 2, 3 

49 21; 25; 29 Semen classification before treatment Qualificar_Espermograma_Pre Semen classification before treatment No OAT 

50 22; 26; 30 Semen classification at 3 months Qualificar_Espermograma_3M Semen classification 3 months after treatment No Normozoospermia 

51 23; 27; 31 Semen classification at 6 months Qualificar_Espermograma_6M Semen classification 6 months after treatment No Azoospermia 

52 24; 28; 32 Semen classification at 12 months Qualificar_Espermograma_1A Semen classification 12 months after treatment No Azoospermia 

53 21 Concentration category before treatment Conc_Pre_Qualificado Normality of the concentration value before Bi Abnormal, Normal 

54 22 Concentration category at 3 months Conc_3M_Qualificado Normality of the concentration value at 3 months Bi Abnormal, Normal 

55 23 Concentration category at 6 months Conc_6M_Qualificado Normality of the concentration value at 6 months Bi Abnormal, Normal 

56 24 Concentration category at 12 months Conc_1A_Qualificado Normality of the concentration value at 12 months Bi Abnormal, Normal 

57 25 Progressive motility category before A_B_Pre_Qualificado Normality of the motility value before Bi Abnormal, Normal 

58 26 Progressive motility category at 3 months A_B_3M_Qualificado Normality of the motility value at 3 months Bi Abnormal, Normal 

59 27 Progressive motility category at 6 months A_B_6M_Qualificado Normality of the motility value at 6 months Bi Abnormal, Normal 

60 28 Progressive motility category at 12 months A_B_1A_Qualificado Normality of the motility value at 12 months Bi Abnormal, Normal 

61 29 Morphology category before treatment Formas_N_Pre_Qualificado Normality of the morphology value before  Bi Abnormal, Normal 

62 30 Morphology category at 3 months Formas_N_3M_Qualificado Normality of the morphology value at 3 months Bi Abnormal, Normal 

63 31 Morphology category at 6 months Formas_N_6M_Qualificado Normality of the morphology value at 6 months Bi Abnormal, Normal 

64 32 Morphology category at 12 months Formas_N_1A_Qualificado Normality of the morphology value at 12 months Bi Abnormal, Normal 
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If we analyze the generated attributes with the id 40 to 64, we see that their aim was to simplify 

the information of the original attributes. Regarding the hazardous occupation attribute, we have 

classified the man occupation recorded in the occupation attribute into whether its occupation 

is in contact with putative toxic environments or products, as stated by the international labour 

organization for hazardous occupations (international labour organization, n.d.). In fact, the 

international labour organization state that the most hazardous occupations are related to 

agriculture, construction, mining and ship-breaking, as well as any occupation exposed to 

chemical substances or radiation, to name a few.  

By considering the attributes described in the above Table 4.3 we can say, based on the related 

works presented in 3.3 and 3.4, that on the matter of attribute selection, the preprocessed data 

set has the needed information to tackle the aims of this project. In fact, it has sperm parameter 

data before and after the treatment to see if the embolization treatment improves said 

parameters, it has several attribute candidates for the prediction of embolization success and it 

encompasses external factors such as surgeries, diseases, occupation, drinking, smoking habits 

and more, which can enable us to find interesting insights on eventual data patterns.    

4.1.3 Tools 

In terms of hardware, this study was carried out with one computer with the following 

characteristics: 

• Operative system: Microsoft Windows 10 Home, 64 bits 

• CPU: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz 

• RAM: 16 GB 

In terms of software, this study used the software tools that we below specify for each purpose 

of use in the carried-out work: 

• Data collection and preparation: Microsoft Excel 2016, Home and Student Edition 

installed in Portuguese. 

• Data integration: Microsoft SQL Server Management Studio 2012. 

• Data Analysis (Statistical & Mining): RapidMiner Studio Educational platform, 

version 8.1.001. 

RapidMiner was the data mining tool that was selected since related works and consulting 

companies (as seen in subsection 3.1) has elected it as the best free/open source tool to apply 

data mining techniques. Since there is no open source (i.e. non-commercial and free) tools that 

fits all needs and the aim of this study is the application of data mining techniques, the need for 

a good data mining tool outweighed in this study the need of a tool that implements statistical 

tests. In fact, statistical tests are applied to better understand the preprocessed data and highlight 

possible data patterns that are further on explored with data mining techniques. Hence, we have 

only explored and applied statistical tests that the Rapid Miner had and that were applied in 

related works. 

RapidMiner is a data science software platform developed by the company of the same name. 

It was formerly known as YALE (Yet Another Learning Environment) and was developed at 
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the Artificial Intelligence Unit of the Technical University of Dortmund, Germany, that has its 

initial release in 2006. This software platform as a Free Edition that can be used on data sets up 

to 10 000 rows with a limit of 1 logical processor that is distributed under the AGPL license. 

AGPL is a license that can be attributed to open source software that can be run over a network.  

RapidMiner is written in the Java programming language and provides a GUI to design and 

execute analytical processes. These processes are built with the mean of drag and drop 

components that can apply data transformation tasks, descriptive statistical tests and data 

mining algorithms to the data. These components are in RapidMiner called “operators” and the 

connection of several operators is called visual composition framework (VCF). Each operator 

has several parameters that can be configured and always has input and output ports to 

respectively receive the data from the previous operator and send it to the next operator.   

4.2 Methods 

This study used several methods that are described below. Hence, in section 4.2.1, we specify 

how the assessment of the quality of the initially provided and selected data - presented in the 

appendix A - was carried out, and in section 4.2.2, how this data was preprocessed to achieve 

the first 39 collected attributes described in Table 4.3. Next, in section 4.2.3, we specify how 

the 25 generates attributes were produced and in the following section 4.2.4, how and which 

label attribute was mainly selected to tackle our predictive goals. Furthermore, in section 4.2.5, 

we describe some of the statistical measures that this study has used and in the following section 

4.2.6, we briefly specify how the selected statistical tests were applied. Further on, in section 

4.2.7, we describe the data mining algorithms that were selected to tackle the aim of this work 

and afterwards, in section 4.2.8 we specify how these data mining algorithms were 

trained/tested and evaluated, and at last, in section 4.2.9, we provide a glance on how data 

modeling was carried out. 

4.2.1 Data Quality Assessment 

Before any data analysis, analyzing whether the provided data is trustworthy to respond to the 

data mining goals is fundamental (Thatipamula, 2013) (Maydanchik, 2007). Therefore, the data 

was checked through the assessment of a set of key data dimensions before analyzing it with 

statistical and/or data mining techniques. Hence, this study checked the initially provided and 

selected attributes disclosed in Appendix A with the key data dimensions described in Table 

4.4 to know whether we could pursue our data analysis with or without preparing it (i.e. with 

or without data preparation). As shown in Table 4.4, after describing each key data dimension 

under the column named “Definition” based on the author Thatipamula (2013), we have 

specified how they were measured under the column named “Score formula” based on the 

author Maydanchik (2007). At last, under the column named “Assessment”, we specify how 

the key data dimensions were assessed.  

By analyzing the “Score formula” column, we see that only the Completeness and the Accuracy 

dimension is specified since only these two dimensions were measured. In fact, the CRISP-DM 

methodology (Chapman et al., 2000) and one of the main authors in the data quality domain, 

Maydanchik (2007), supports this option. If we analyze the “Assessment” column, we see that 
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the Completeness, the Consistency and the Conformity dimensions were assessed by verifying 

whether the provided data set complied with the data characteristics specified under the key 

dimension´s definition. However, the Accuracy and the Integrity dimensions were assessed by 

validating if the provided data was the same with the ones recorded in the patient´s medical 

dossiers and information technology systems gathered/installed at CHUC and if the data values 

were coherent with other data values of the dataset.     

Table 4.4 Definition of the key data dimensions  

Key data dimension Definition  Score formula Assessment 

Completeness 

Having all the attributes needed, in 

a usable sate (e.g. not having the 

male and female infertility risk 

factors mixed in one attribute) and 

filled (i.e. without missing values), 

to tackle the Data mining goals that 

were initially set.  

((Number of total instances - 

Number of missing values) 

/ Number of total 

instances)*100 

Verification 

Consistency 

Showing data coherence (e.g. if a 

patient got an live baby, its related 

“Gravidez” attribute as to be set to 

yes “Sim”). Furthermore, the 

dataset must not have duplicated 

instances. 

 Verification 

Conformity 

Showing that data comply with a 

specific format in all instances (e.g. 

all embolization dates are with the 

formal dd/mm/yyyy) 

 Verification 

Accuracy Having the correct data  

((Number of total instances - 

Number of erroneous 

values) 

/ Number of total 

instances)*100 

Validation 

Integrity 

Having the correct data linkage - the 

data can be traced and connected to 

other data correctly (e.g. the 

information of the patient´s partner 

is in fact related with its correct 

patient´s partner) 

 Validation 

 

4.2.2 Data Preparation 

After assessing the initially provided and selected data set with the data quality dimensions 

described in Table 4.4, we have seen that the data needed to be preprocessed to achieve the 

Data mining goals that were set. Thus, this study carried out the data preparation tasks disclosed 

in Table 4.5 to produce the initially preprocessed data set. The order of their execution is 

roughly specified under the column named “Order”. We say roughly, because after the data 

integration task more data cleaning and reformatting was also carried out. The final 

preprocessed data set was obtained after generating new attributes upon the initially 

preprocessed data set. 
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Table 4.5 Carried out data preparation tasks 

Order Data Preparation Tasks  

1 Data Construction 

2 Data Reorganization 

3 Data Cleaning 

4 Data Format 

5 Data Integration 

6 Attributes selection for Data mining purposes 

 

4.2.3 Attribute Generation  

To better detect some possible data patterns and optimize data mining results, sperm and semen 

analysis results were qualified, as previously indicated, and patient external factors were 

simplified (e.g. smokes 4 cigarettes per day, to only the word “Yes”). Most of these data 

transformations were carried out in the RapidMiner platform with the “Generate Attribute” 

operator. This operator has the ability to, based on a code wrote by the data analyst (called in 

RapidMiner “Expression”), generate a new attribute with the result of the devised expression. 

Figure 4.1 presents the RapidMiner´s interface at attribute generation time which can be 

interpreted as follows: at the top left, we have the built process to generate new attributes; at 

the top-right, the settings of the selected operator that is shown in the built process highlighted 

in orange and called “Normal or Abnormal parameter” (this operator implements the qualitative 

semen analysis identified in 4.1.1.1 as B.2); at the bottom left, some of the generated attributes 

from the selected operator; and at bottom right, one of the several expressions devised, which 

in this case is the expression devised to qualify sperm concentrations at 3 months. The 

expression presented in Figure 4.1 generates the information specified in the previous 

subsection 4.1.1.1 as B.2 which can be translated as follows: “if the sperm concentration at 3 

months is missing, write nothing. Otherwise, look if the sperm concentration is below 15 

million/ml, and if so, check if it is above 0 million/ml, if so, write Abnormal and otherwise, also 

write Abnormal for the cases that will be equal to 0 - the data set does not have negative values. 

If the sperm concentration is equal or above 15 million/ml, then write Normal”. All other 

generated attributes were in this process similarly coded, in exception to the attribute that 

simplifies the occupation attribute.  

 

Figure 4.1 Generate Attributes with the RapidMiner platform. 
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4.2.4 Label Selection 

The final preprocessed data set has a set of attributes that could be used as labels for 

Classification tasks. However, not all these labels were seen good classifiers due to their 

frequency of possible and missing values. Therefore, this subsection presents the analysis upon 

these data characteristics, as well as specifies whether these label attributes provide a balanced 

data set based on the number of instances they can classify. For this purpose, Table 4.6 was 

built to better compare the characteristics of the possible label attributes referenced with its id. 

If we analyze this table, we see that the “Pregnancy outcome” attribute seems to be the best 

label candidate since it does not have a lot of missing values, in comparison to others, and it 

provides a quite balanced data set which enables to train the positive and the negative instances 

equally. Furthermore, this attribute was already seen used in related works to assess the impact 

of the embolization treatment, as well as the live births. If we check this last attribute, we can 

see that the “Number of alive babies” attribute has too many missing values in our data set to 

consider it as a label. Regarding the other possible label attributes, we see that the ones without 

missing values are far from being balanced. Therefore, the “Pregnancy outcome” was the 

elected label attribute. Please note that the “Pregnancy outcome” value that was set as the most 

important, was the value/class “Yes” since this study aims to predict the success of the 

embolization through the male patient´s partner ability to conceive.     

Table 4.6 Analysis of label characteristics 

ID Possible Lables  Possible Values Missing  Balanced Data Set? 

33 Pregnancy outcome Yes (123); No (107) 64   Quite YES 

34 Number of pregnancies {0 (187); 1 (84); 2 (19); 3 (4)} 0  NO  

35 Birth No (146); Yes (84) 64  NO 

36 Number of alive babies {0 (3); 1 (57); 2 (22); 3 (2)} 210  NO   

37 Time to conceive [0,79] 189  NO 

38 ART No (227); Yes (66) 0  NO 

39 Spontaneous pregnancy No (181); Yes (49) 64  NO 

  

4.2.5 Statistical Measures 

In DeWitt et al. (2018) the statistical measures used were the mean and the standard deviation. 

However, the data mining authors Han et al. (2012) asserts that to preprocess the data 

successfully, it is essential to have an overall picture of the data with a wider statistical 

description. The basic statistical description suggested in Han et al. (2012) encompasses the 

analysis of the central tendency of the data (i.e. the Mean, Median and Mode of each attribute), 

as well as its dispersion (i.e. the minimum value (Min), the value of the first quartile (Q1), the 

value of the third quartile (Q3), the maximum value (Max) and the standard deviation (SD) of 

each attribute). Hence, this study has computed all these statistical measures to statistically 

understand its quantitative data. The Min, Max, Mean (in RapidMiner called Average) and SD 

(in RapidMiner called Deviation) was with the RapidMiner platform computed. In Figure 4.2, 

we can see a print screen of the RapidMiner platform where in the center of the figure, part of 

the descriptive statistics computed by this tool for this study, can be seen. However, in some 

situations, such as generating graphs in EXCEL, we have also computed these measures with 

the Portuguese edition of the Microsoft Excel software. In Table 4.7 we present the definition 
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of each statistical measure calculated in this study and specify the EXCEL formula used to 

compute them.  

Table 4.7 Measures´ Definition 

Measure Name Definition (Barbara Ilowsky; Susan Dean, 2017) Excel Formula Used 

Mean A number that measures the central tendency of data. 
This measure is obtained by the sum of all values in the 
sample divided by the number of values in the sample. 

AVERAGE() 

Median A number that separates ordered data into halves and 
corresponds to the second quartile value (Q2 ) of a 
sample. 

MEDIAN() 

Mode The value that appears most frequent in a set of data. MODE() 

Min The minimum value of a sample. MIN() 

Q1 The Median of the values below the Median of the 
sample. This value indicates that 25% of the values of a 
sample is below Q1.   

QUARTILE(;1) 

Q3 The Median of the values above the Median of the 
sample. This value indicates that 25% of the values of a 
sample is above Q3.   

QUARTILE(;3) 

Max The maximum value of a sample. MAX() 

SD A number that is equal to the square root of the sum of 
the squares of the distance between each value of a 
sample to their mean divided by the difference of the 
sample size and one. This measure tells how far the data 
values are in average from their mean. 

STDEV() 

    

As we know, qualitative attributes do not have statistical measures as do quantitative attributes. 

Thus, to have an overall picture of the values of a qualitative attribute we have identified the 

possible values, as well as the least and the most frequent values of each qualitative attribute. 

In fact, in the last 5 rows of the center table depicted in Figure 4.2, we can see that the 

RapidMiner platform presents this information including their frequency (in parentheses). 

Therefore, the possible values, as well as the least and the most frequent values of each 

qualitative attribute and its frequency were retrieved from RapidMiner.         

The number of filled values per attribute (indicated in this study with the name “Filled”) is a 

measure that is also presented. In fact, in the center of Figure 4.2, we can see the descriptive 

statistics computed by the RapidMiner platform where we see under the column name 

“Missing”, the number of missing values for each attribute. The Filled measure was calculated 

by doing the number of total patients of the data set, which is 293 patients, minus the missing 

values indicated in the RapidMiner. Thereby, the Filled value for the attribute that records the 

age of each male patient partner, indicated with the attribute called “Idade_M”, is 293 patients 

minus the 9 missing values indicated in the RapidMiner which gives 285 Filled records.  
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Figure 4.2 RapidMiner´s Descriptive Statistics 

4.2.6 Statistical Tests 

Most previously disclosed varicocele-related works applied the Chi-square and the ANOVA 

test upon sperm parameter values for statistical inference. Hence, these statistical tests were 

also applied in this work to identify possible data patterns to guide us through the construction 

of the data mining models. 

How these statistical tests were applied is briefly discussed in the following subsections. Hence, 

subsection 4.2.6.1, discusses the Chi-square test and subsection 4.2.6.2, discusses the One-way 

ANOVA test. Further on, other statistical tests were also explored and tested in the RapidMiner 

platform. Hence, subsection 4.2.6.3, covers the Kolmogorov-Smirnov test and subsection 

4.2.6.4, the Pearson Correlation test. 

4.2.6.1 Chi-square  

The Chi-square test, or 𝒙𝟐 test, is a nonparametric statistical test applied to, among other 

applications, assess if two nominal attributes, A and B, are independent through the assessment 

of its relative frequencies. The null hypothesis for this statistical test is that A and B are 

independent and the level of significance used was p=0.05. However, in the context of the 

assessment of the computed association rules, we have raised the significance level to p=0.10 

to complement the lift measure with the aim of ascertain with a greater precision the relation 

between the antecedent and the consequent attribute of a rule.  

4.2.6.2 One-Way ANOVA 

The purpose of the One-Way ANOVA parametric test, is to determine the existence of a 

statistically significant difference among several group means through variance calculation in 

order to assess if their mean differences are not random variations (Barbara Ilowsky; Susan 

Dean, 2017). The null hypothesis is that all group population means are equal and the level of 

significance used was p=0.05, as applied in varicocele-related works.   
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4.2.6.3 Kolmogorov-Smirnov 

In this study, the Kolmogorov Smirnov Test operator was applied to sperm parameter values to 

assess if the sperm parameters values of patients that got pregnant had the same data distribution 

than the ones that did not got pregnant to identify data distribution differences.  

The confidence level was in this study set to its default value which is 0.05 and its null 

hypothesis was defined as whether the mean of the population from which example sets are 

drawn are equal. This Kolmogorov Smirnov operator returns true if the null hypothesis can be 

rejected (i.e if the null hypothesis is rejected it means that both example sets are different in 

shape since their population´s mean is different; and therefore, might show a statistical 

significance when p is less than 0.05).  

4.2.6.4 Pearson Correlation 

The Pearson correlation, also called correlation coefficient, is a measure that indicates through 

a coefficient identified as r, how the linear correlation is between two attributes (Barbara 

Ilowsky; Susan Dean, 2017). This r coefficient can be interpreted as follows: 

• r > 0.9 -> Very high correlation 

• 0.7 < r < 0.9 -> High 

• 0.5 < r < 0.7 -> Moderate 

• 0.3 < r <0.5 -> Low 

• 0.0 to 0.3 -> Despicable 

This measure was used because it is widely suggested in the data mining field (Han et al., 2012) 

to identify the attributes to model. Hence, in the Rapid Miner platform, we have applied it to 

quantitative attributes.  

4.2.7 Data mining algorithms 

As we have seen in Table 3.1, several data mining algorithms have already been applied in the 

context of male infertility. Since this study covers similar patient information, we have at first 

applied the decision tree algorithm due to its acceptable outcome seen in Guh et al. (2011) for 

prediction purposes upon sperm parameter data, and then applied the K-means and Association 

rules algorithms due to their popularity in the identification of interesting data patterns in the 

healthcare domain. Hence, in this section, we briefly describe all these algorithms that we have 

applied upon the final preprocessed dataset by covering the following aspects: their main 

purposes; their type of results; how they work; their specificities and the RapidMiner operator 

we have used to apply them in the built models. Thus, this section is organized as follows: in 

section 4.2.7.1, we approach the decision tree algorithm; in section 4.2.7.2, we disclose the K-

means algorithm and at last, in section 4.2.7.3, we cover the FP-Growth algorithm. 

4.2.7.1 Decision tree  

Decision trees are mostly applied to identify the most interesting attributes that one should use 

to mine and/or to predict the conditional probability of a label attribute outcome based on its 

historical records. The decision tree algorithm C4.5 is the most commonly applied for these 
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main purposes and even in this field, it has already been applied (see section 3.2). In fact, as the 

authors Witten et al. (2011) state, the C4.5 algorithm is probably one of the most popular 

classifiers. 

The final result of this type of algorithm is a tree that begins with a root, ramifies with decision 

nodes and at last, ends with leaf nodes – analogous to real trees. A decision node has two or 

more branches that reflect the attribute values of the ramified node/attribute and the leaf node 

represents a classification or decision based on the selected label attribute (“Decision Tree,” 

n.d.). Hence, these leaf nodes present a label attribute value for each tree branch. 

Classifiers as the decision tree algorithm C4.5, began with the attribute that promotes the 

highest gain of information by placing it at its root and its ramification is guided with the 

entropy measure. In fact, the C4.5 algorithm aims to decrease the entropy through the 

downward splitting of the nodes; and hence, choose as attribute nodes, the one that produces 

the purest daughter nodes (i.e. entropy equal to zero) to compute the smallest tree as soon as 

possible (Witten et al., 2011). Therefore, the C4.5 algorithm works as follows: after splitting a 

node and testing whether the entropy of the next node is lesser than the entropy before splitting 

and if this value is the least as compared to all possible test-cases for splitting, then the node is 

split into its purest constituents (i.e. attribute values). This assessment is recursively performed 

with the remaining attributes until all leaf nodes are pure (i.e. leaf nodes with instances 

belonging to one class, such as: “Pregnancy outcome”= “Yes” or “Pregnancy outcome”= 

“No”), or until it is not possible to further on split because the entropy is equal to 1. In other 

words, as Witten et al. (2011) states, this algorithm works top-down, seeking at each stage for 

an attribute that can better split the classes (i.e. yields the highest gain of information at each 

stage). The gain of information is in the C4.5 algorithm computed with the Gain ratio 

measurement which is an extension of the information gain measure used by the ID3 algorithm. 

Since decision trees are supervised learners, most decision trees algorithms need a binomial 

attribute as a label and some implementations, require non-missing values in this special 

attribute. Hence, prior to the application of the algorithm we need to select a label attribute, 

transform it as binomial (if it is not yet binomial), filter the rows of the data set by non-missing 

value on the label attribute, apply some algorithm optimizations (e.g., other algorithms, attribute 

discretization, attribute normalization etc.), train the decision tree algorithm with different 

algorithm configurations (i.e. different parameter values) and test the algorithm. 

Decision trees have the possibility to be pruned. Note that pruning refers to the removal of those 

branches in the decision tree which do not contribute significantly to our decision process. In 

the RapidMiner platform, pruning can be applied or not into the generated decision trees. In 

fact, pruning comes in the RapidMiner platform as a setting option. When we have a small data, 

such as is the case, it is important to activate that option; and hence, prune the computed 

decision trees because they tend to overfit (i.e. to adapt to the dataset). The C4.5 algorithm can 

perform the highest percentage of pruning which can go up to 10%.   

Regarding the decision tree algorithms that are available in the RapidMiner platform, we have 

seen that the “Decision tree” operator was an own implementation and that the “W-J48” 

operator, which is an operator from the Weka data mining platform, is the free java 
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implementation of the C4.5 algorithm. The senior community manager Scott Genzer at 

RapidMiner has stated in a post that the “Decision tree” operator was by far better; hence, both 

decision tree algorithms were applied in this study upon the final preprocessed data set to 

explore its statement. The W-J48 operator was get through the installation of the Weka 

extension 7.3.000 into our RapidMiner environment. 

4.2.7.2 K-Means 

K-means is a commonly used data mining algorithm for the application of clustering 

techniques; and therefore, its aim is to partition a data set into k groups of instances (called 

clusters). Its partitioning is performed with an agglomerative/partitional technique and not a 

hierarchical one, so its results are not expressed into a dendrogram. Hence, its results can be 

interpreted through its centroid table and its related plots. In the RapidMiner platform, the 

identified clusters are colored in different colors to enable us to conclude that the instances (i.e. 

patients) that are in the same cluster are similar to each other on the attributes assessed because 

they are all closer to the same cluster´s central point, called centroid. In the k-means algorithm 

this centroid is defined as the mean value of the points within the cluster so the centroid is not 

a value from the data set. Hence, the k-means algorithm mines numeric attributes and calculates 

the distance between the instance values and the centroid to decide in which cluster the instance 

should be part of. In Figure 4.3, we present the K-mean algorithm shown in  Han et al. (2012) 

to provide a clearer understanding on the way this algorithm works.  

 

Figure 4.3 K-means algorithm (Han et al., 2012) 

The K-mean algorithm works well for finding spherical-shaped clusters in small to medium-

size data sets and are good at handling low-dimensional data such as data sets involving only 

two or three attributes (Han et al., 2012). Since our data set is small, as is the number of selected 

attributes, we have applied the K-means algorithm to, in the first place, identify data patterns 

and, more importantly, define how the selected attributes could be discretized in the built 

predictive models to optimize the classifiers applied. In fact, we could discretize, for instance, 

the sperm parameters values by WHO thresholds but the question is: “does that discretization 
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really distribute the patients according to success in the treatment?” and the answer is no, 

because we have patients in the final preprocessed data set that had low sperm parameters 

values, yet was able to conceive. Hence, we ran the K-means algorithm upon each single 

selected attribute with the “Pregnancy outcome” attribute to see if we could find an interesting 

partition of the data based on the main aim of this study. In the RapidMiner platform, this 

algorithm was applied with the operator called “K-Means”. 

4.2.7.3 FP-Growth 

Through our data understanding, we have found that we were more successful at identifying 

the most correlated attributes with the label attribute with the Chi-square  test than the Pearson 

correlation test. Hence, our idea to apply a data mining algorithm that would identify common 

frequent item sets has flourished and made us apply an association rule algorithm not only to 

find data patterns, but also to find rules that could predict the success of the embolization 

treatment. In fact, as previously seen, decision trees are “greedy” algorithms that do not provide 

interesting results in small data sets. For this reason, we have sought which association rule 

algorithm we could apply to our data set, and have seen that the RapidMiner platform had the 

association rule algorithm called FP-Growth.  

The FP-Growth algorithm aims to find frequent patterns and interesting relationships among 

the data set attributes. This algorithm is an optimization of the APRIORI algorithm since it has 

the ability to only perform two scans of the data set to identify the most frequent item sets (i.e. 

the first scan is to detect the frequency of each attribute and the other one, is to build the FP-

Tree). Furthermore, the FP-Growth algorithm can better convey its results due to its several 

ways of disclosing them (i.e. tabularly, textually and graphically). 

The FP_Growth algorithm performs the following ordered steps to generate its rules (Han et 

al., 2012): 

1. Scan the dataset to find the frequent single items (i.e. the algorithm begins to read the 

data set and returns, in this study, the number of instances set to “TRUE” for each 

attribute of the dataset with at least the set min_support). 

2. Sort the frequent items computed in the previous step by its frequency and in 

descending order (this list is called the f-list). Then, for each instance, we will have an 

associated list of frequent ordered attributes based on the computed f-list.  

3. Scan the data set again and construct a tree that presents the association between the 

frequent attributes with the indication of their support in each node (this tree is called 

FP-tree). This FP-tree is constructed based on the frequent ordered attributes 

computed in the previous step for each instance and the support indicated along each 

tree node tells the number of times each path occurs in the data set until the assessed 

node. 

4. Mine the FP-tree to generate conditional pattern-base. This mining is performed by 

partitioning the FP-tree by each attribute that is presented as nodes in the FP-tree. This 

is why this step is called “divide and conquer”. 

5. Mine each conditional pattern-base recursively to identify frequent patterns and at 

last, formulate the association rules based on the min-support and min-confidence that 
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was initially set. In the RapidMiner platform, the formulation of the association rules 

are not performed by the FP_Growth algorithm but by another algorithm/operator.     

The FP_Growth algorithm requires that all input attributes have to be binomial, and to better 

interpret the result it is a good practice to map the attribute values. In contrast to the K_Means 

algorithm that cannot accept data sets with empty values, this algorithm can. However, the 

algorithm does not consider the missing attributes values since this algorithm seeks to count 

frequencies (i.e. count attribute values set to TRUE). Nevertheless, this point is useful for our 

type of data set since it has a low number of instances with all attributes filled. Furthermore, 

this technique is widely used in the bioinformatics field which reinforced its selection to tackle 

the aim of this work. In the RapidMiner platform, this algorithm was applied with the operator 

called “FP-Growth”. 

4.2.8 Model´s Training and Assessment 

As suggested by the CRISP-DM methodology, before building the data mining models, it is 

recommended to define how the models will be trained, tested and assessed because the built 

VCFs implement the decisions made on these matters. Hence, before disclosing how the 

modeling phase was carried out, we here disclose the decisions made on these matters. 

As we have previously seen, to tackle the aim set we have applied several data mining 

algorithms that have their own specificities. Hence, the application of these different algorithms 

entailed the training of different parameters (i.e. RapidMiner´s operator settings) and the 

assessment of different performance metrics. Therefore, to better convey how these algorithms 

were tested, trained and assessed we disclose them grouped by each applied data mining 

technique as follows: in section 4.2.8.1, we specify how the Decision Tree algorithm was tested, 

trained and assessed - the Decision Tree algorithm is a supervised learner so we have also tested 

it through the selected label attribute defined in section 4.2.4; in section 4.2.8.2, we specify how 

the K-means algorithm was trained and assessed and in section 4.2.8.3, we specify how the FP-

Growth algorithm was trained and assessed.  

4.2.8.1 Classification 

The followed test designs were: 

A. Split the data set into 3 parts – 80% for training/testing and 20% for validation, where 

in the 80% part, 70% is taken to train and the remaining 30%, to test the data set. 

B. Split the data set into 2 parts – 70% for training and 30% for testing. 

In Guh et al. (2011), the followed testing design was the one noted in B since they have divided 

their data set of 5275 instances into two parts: They have used 80% for training and 20% for 

testing; and hence, have not validated the model. However, the CRISP-DM methodology 

(Chapman et al., 2000), the founder of the RapidMiner platform (Mierswa, 2012), as well as 

the consulting company SimaFore (Deshpande, 2012), suggest the test design disclosed in A to 

avoid test overfitting which especially occurs with small data sets. Therefore, we have chosen 

test design A, but to further on compare our results with related works, we have recomputed 

the best decision tree model by following test design B. This enabled us to assess the generated 



Chapter 4                                                                                                                      MATERIALS AND METHODS 

Judith Santos Pereira                                                                                                                                             34 
 

decision tree upon all preprocessed data set (advantage of the test design B), as well as check 

the stability of the model throughout the comparison of the different test results. 

The main data set splitting performed within the test design A was executed with the “Split 

data” operator. This split of data was performed with the sampling type called “Stratified” to 

ensure that we have in each sub-dataset the same number of instances classified as “Sim” and 

“Não”, although we have a quite balanced data set (107 instances classified as “Sim” and 123 

instances classified as “Não”). Regarding the splitting ratio used, we have gone for the ratios 

that the RapidMiner platform uses in its tutorials which is the exposed 80% for training/testing 

and 20% for validation. Afterwards, the training/testing data set was further on divided into the 

training and testing dataset with the following operators, which were also used in the test design 

B: 

A. Split Validation – operator that splits the data set with a single iteration. 

B. Cross Validation – operator that performs several split validations. 

The “Split Validation” operator split the data set into 70% for training and 30% for testing.  

Since these sub-datasets can be generated with several types of samplings, the ones that were 

tested were: Linear, Shuffle or Stratified. 

The “Cross Validation” operator internally performs several “Split Validations”. In fact, the 

“Cross Validation” operator splits the data set into k sub-datasets and keeps one sub-dataset for 

testing and the remaining ones for training. Next, it recursively selects another sub-dataset for 

testing and considers the remaining ones for training. This test is done k times (i.e. until all sub-

datasets were at least 1 time a testing dataset) and several k values can be tested. In this study, 

we have tested the model with k=2 to k=4.  

The error measures delivered by the cross-validation operator are an average of all computed 

error measures since this operator generates k models during its testing. This is why we present 

with each error measure its standard deviations. The cross validation delivers the model applied 

to all trained/tested data set; and hence, with the test design A, it has returned the model applied 

with the 80% training/testing part.  

Since we have applied 2 decision tree algorithms (i.e. the decision tree from the RapidMiner 

platform and the W-J48 algorithm), all decision tree models built have executed the 4 testing 

steps disclosed in Table 4.8: 

Table 4.8 Testing steps of Decision tree´s algorithms  

Testing Step Number Task 

1 Test the RapidMiner´s Decision tree 

algorithm within a Split Validation 

operator. 

2 Test the RapidMiner´s Decision tree 

algorithm within a Cross Validation 

operator. 

3 Test the W-J48 algorithm within a 

Split Validation operator. 

4 Test the W-J48 algorithm within a 

Cross Validation operator. 
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The training of the Decision tree algorithm entailed its application on several groups of selected 

attributes with the variation of the parameters disclosed in Table 4.9 within each testing step 

disclosed in Table 4.8. Therefore, the Decision tree models were exhaustively trained/tested in 

order to choose the optimal parameter values; and hence, the best model. The parameters were 

selected based on the guidelines explained by the founder and principal of the SimaFore 

company in Deshpande (2012). The variation of the model parameters entailed the execution 

of 8664 tests per modeling step of the decision tree algorithm - in each modeling step we have 

carried out 2160 tests for the decision tree algorithm ran within a simple validation, 6480 tests 

for the decision tree algorithm ran within a cross validation, 6 tests for the J-W48 algorithm ran 

within a simple validation and 18 tests for the J-W48 algorithm ran within a cross validation. 

The best computed results are in the Appendix C.1 disclosed. 

Table 4.9 Parameters varied through decision tree training 

Related Operator Parameter Name Tested Values Parameter Description  

Decision tree Criterion Information_gain;  

Gain_ratio;  

Gini_index;  

Accuracy. 

Selects the criterion on which Attributes will 

be selected for splitting  

Decision tree Minimal size for split 4; 5; 6. 

 

The size of a node is the number of 

Examples in its subset. Only those nodes 

whose size is greater than or equal to the 

minimal size for split parameter are split. If 

we set a minimal number too high, we can 

end up with leaves that are not exclusive to 

one class. 

Decision tree Minimal gain 0.100; 0.140; 

0.180; 0.220; 

0.260; 0.300. 

The node is split if its gain is greater than the 

minimal gain. A higher value of minimal 

gain results in fewer splits and thus a smaller 

tree.  

Decision tree Minimal leaf size 2;3;4;5; 6. The size of a leaf is the number of Examples 

in its subset. The tree is generated in such a 

way that every leaf has at least the minimal 

leaf size number of Examples. Hence, a high 

minimal leaf size also reduces the tree size. 

Decision tree Maximal depth 20 The tree stops to grow when it achieves 20 

levels. Since it never reaches that value, this 

value was set as a dummy value.  

Decision tree; 

W-J48 

Apply pruning Yes; No. If the Apply pruning parameter is set to 

“Yes”, some branches are replaced by leaves 

according to the default error calculation of 

pruning set by the RapidMiner platform 

which is a confidence value equal to 0.25.  

Split Validation; 

Cross Validation 

Sampling Type Linear sampling; 

Shuffled sampling; 

Stratified sampling. 

Types of sampling for building subsets.  

 

Cross Validation Number of folds 2;3;4. The number of folds is the number of 

subsets the dataset should be divided into. 

Each subset has equal number of Examples. 

Furthermore, the number of iterations that 

will take place is equal to the number of 

folds set.  

 

The range of values that were tested in each parameter was based on the numeric default values 

of the RapidMiner platform since we have placed these default values as the maximum values 
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in the corresponding range of values. The minimum value was based on the minimum value 

that the computed decision tree could manage. For instance, we know that the “decision tree” 

operator splits numerical values into two branches and to prevent leaves with one instance we 

have set the “minimal size for split” parameter starting with the value 4 and the “minimal leaf 

size” parameter, with the value 2. Furthermore, regarding the “minimal gain” parameter, we 

have computed the gain ration of all attributes and have identified that the minimal gain could 

start with the value 0.018 since it was the gain ratio for the “Severity grade” attribute on the 

“Pregnancy outcome” attribute. Moreover, in the first runs, we have seen that the computed 

decision tree only had a leaf as an output so we have also tested the “apply_prunning” set to 

True and False to see if we could see a subjectively interesting decision tree. Therefore, the 

maximal depth was not a concern; and hence, we have left the default value as the only value 

to test with (i.e. the value 20). Additionally, several splitting criteria were also tested (i.e. 

gain_ratio, information_gain, gini_index, accuracy). All these parameter values were tested 

with the “Optimize Parameters” operator as suggested in Deshpande (2012) and the varied 

parameters were selected based on the guidelines explained in Deshpande (2012).  

Please note that this training was carried-out upon each selected groups of attributes disclosed 

in section 5.4.4, as well as upon the groups of preprocessed attributes that delivered the most 

interesting results during the application of the Clustering technique. By doing so, we were able 

to train the decision tree model upon the attributes preprocessed differently (i.e. upon the 

original preprocessed attribute values; afterwards, upon its categorized values, as well as, upon 

its binomial, numerical, normalized and discretized values).  

At the end of the decision tree training/testing, evaluation measures called performance metrics 

or error rates, were retrieved to elect the right and best model to tackle the goals of this study. 

Bellow, in Table 4.10, we disclose under the column named “Performance Metric”, some of 

the performance metrics that could be used to assess the several trained/tested data mining 

models with classification techniques. In order to better convey which ones were in this study 

considered as determinant to choose the best model and why, under the column named 

“Definition”, we present their definitions, and under the column named “Formula”, how they 

are computed in the Rapid Miner platform. Note that the first 4 performance metrics are counts; 

and therefore, they do not have a formula specified in the RapidMiner´s documentation. The 

formula for the AUC performance metric is not also specified in the RapidMiner´s 

documentation.  

Table 4.10 Performance Metrics Used (a.k.a error measures) 

Performance Metric Definition Formula 

True Positive (TP) The number of instances classified correctly 

as Positive since the label attribute was set to 

Positive (i.e. Gravidez = “Sim”).  

 

False Positive (FP) The number of instances classified wrongly as 

Positive since the label attribute was in fact 

Negative (i.e. Gravidez = “Não”).  

 

True Negative (TN) The number of instances classified correctly 

as Negative since the label attribute was set to 

Negative (i.e. Gravidez = “Não”). 
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Performance Metric Definition Formula 

False Negative (FN) The number of instances classified wrongly as 

Negative since the label attribute was in fact 

Positive (i.e. Gravidez = “Sim”). 

 

Accuracy The proportion of instances classified 

correctly among the total number of instances. 

(TP + TN) / (TP + FP + FN + TN) 

Classification Error The proportion of instances classified wrongly 

among the total number of instances. 

(FP + FN) / (TP + FP + FN + TN) 

Precision  

a.k.a. 

Positive Predicted Value 

                                      

The proportion of instances classified 

correctly as Positive among the number of 

instances classified/predicted Positively (i.e. 

predicted that Gravidez = “Sim”). 

(TP)/(TP+FP) 

Recall  

a.k.a. 

 Sensitivity  

or  

True Positive Rate 

The proportion of instances classified 

correctly as Positive among the number of 

instances with the label attribute set to 

Positive (i.e. Gravidez = “Sim”). 

(TP)/(TP+FN) 

Specificity 

a.k.a. 

 True Negative Rate 

The proportion of instances classified 

correctly as Negative among the number of 

instances with the label attribute set to 

Negative (i.e. Gravidez = “Não”). 

(TN) / (TN + FP) 

F-Measure The harmonic mean of Precision and Recall. 2 (Precision * Recall) / (Precision 

+ Recall) = 2TP / (2TP + FP + 

FN)  

False Positive Rate The proportion of instances classified wrongly 

as Positive among the number of instances 

with the label attribute set to Negative (i.e. 

Gravidez = “Não”). 

(FP)/(FP+TN) = 1 - Specificity 

False Negative Rate The proportion of instances classified wrongly 

as Negative among the number of instances 

with the label attribute set to Positive (i.e. 

Gravidez = “Sim”). 

(FN)/(FN+TP) 

AUC 

a.k.a. 

 Area Under the ROC 

Curve 

 

The probability that the classifier will rank a 

randomly chosen positive instance higher than 

a randomly chosen negative instance. Note 

that the ROC curve is drawn by ordering in 

ascending order the obtained True Positive 

and False Positive Rates of all possible 

classification thresholds of a generated model 

and by plotting the False Positive Rate in the 

x axis and the True Positive Rate, in the y 

axis.  

 

 

The metrics that were determinant in the choice of the right data mining model for the prediction 

of the embolization success were, in the following order: F-Measure, AUC, Recall and the 

Accuracy metric that are highlighted in Table 4.10 with orange lettering. In fact, in the context 

of this study, it is important to have a Classifier that can correctly classify its instances (i.e. 

have a good Accuracy rate) and specially, as Positive (i.e. have a good Recall rate) since this 

study prizes more the instances with the “Pregnancy outcome” label attribute set to “Yes” than 

the other instances. Note that if we maximize the number of True Positive, we diminish the 

number of False Negative (see the Recall formula), which is what we want since we do not 

want to see our algorithm classifying instances as Negative when they are in fact Positive. 

However, there is a trade-off: if we only optimize the Recall metric, the Precision tends to 

diminish which means that if the model classifies all the instances correctly as Positive, the 
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classifier will tend to classify wrongly an instance as Positive when in fact they had the 

“Pregnancy outcome” label attribute set to “No”. This is why it is important to consider, along 

with the Recall metric, the Precision metric to have a broader knowledge of how the model 

classifies positive instances; and therefore, the F-Measure was in this context considered as the 

most important metric to select the best model because, as we can see in Table 4.10, it considers 

both metrics. However, the AUC metric was also checked because through this metric we can 

assess the cost-sensitive learning (i.e. see the False Positives generated when True Positives are 

classified) and learning in the presence of unbalanced classes (Fawcett, n.d.), as the select label 

attribute is slightly. 

These metrics were computed by the RapidMiner platform with the operator called 

“Performance Binomial Classification” added at the end of the built VCFs. The best computed 

metrics were recorded into a table with the specifications of the ran models to ease the election 

of the best model. During the training of the models we have considered the Accuracy measure 

to select the parameter values that we could use during validation of the model. The best model 

was at last considered as the one with the highest F-Measure value, although we also checked 

if the Recall and Accuracy values were also high. However, the ROC Curve was at a starting 

point assessed to see if the built Classifier was better than a random one by checking if the 

plotted graph of the True Positive Rate vs the False Positive Rate generated by the Rapid Miner 

platform (i.e. the ROC curve), had its plotted curve close to the top-left corner of its graph 

(“Visualizing the Confusion Matrix - Sanyam Kapoor,” n.d.). In fact, if this graph shows a 

straight line at a 45 degree angle it indicates that for every False Positive he detects, he has a 

corresponding True Positive so the algorithm performs a random performance that shows an 

AUC=0.5; and therefore, the AUC metrics were also looked for to be high (Fawcett, n.d.) - note 

that a model whose predictions are 100% correct has an AUC of 1.0.  

Since all related works that have applied data mining techniques to sperm parameters have 

obtain Accuracies above 73% (see subsection 3.2 ), this study considers that an Accuracy above 

this value is also acceptable during the training/testing of the classification model.  

Concerning previous work (Guh et al., 2011), these authors have used the following measures 

to assess its Decision tree model: sensitivity, specificity and accuracy. Hence, the AUC measure 

was not used, which we see as a drawback, since the AUC measure allows to assess if the model 

is worth applying. 

Regarding the AUC measure, we have followed the following interpretation (Tape, n.d.): 

• 0.90-1 = excellent (A) 

• 0.80-0.90 = good (B) 

• 0.70-0.80 = fair (C) 

• 0.60-0.70 = poor (D) 

• 0.50-0.60 = fail (F) 

4.2.8.2 Clustering 

The training of the K-means algorithm entailed its application on several groups of selected 

attributes with the variation of the parameters disclosed in the below Table 4.11. This Clustering 
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training entailed the execution of at least 114 runs during the variation of its parameters upon 

different groups of attributes. These computed results are in the Appendix C.2 disclosed.   

Table 4.11 Varied parameters through K-means training 

Parameter Name Tested Range of Values Description 

Number of clusters 2 to 4 clusters Number of clusters that the algorithm 

aims to form. We have not tested more 

clusters because we would end up with 

small groups of patients due to the small 

data set we have. 

Numerical measures Euclidean and Manhattan Distance between a point to assign to a 

cluster and the centroids  

 

Clustering results were assessed externally and internally as follows: externally, by analyzing 

generated plots (e.g. scatter plot) and internally, by assessing its centroid table that presents the 

means of each cluster per attribute. For the most interesting models, we have applied the 

ANOVA statistical test upon these generated centroid means, inspired by Zancanaro, Kuflik, 

Boger, Goren-Bar, and Goldwasser (2007). Furthermore, clusters were also internally assessed 

with the distance similarity index called Davies Bouldin which is indicated for crisp/hard 

clusters (i.e. clusters where each instance only falls within one cluster). The RapidMiner 

platform computes this index and specifies that the closer the absolute index is to 0, the better, 

since it tells that the identified clusters have a low intra-cluster distance and a high inter-cluster 

distance (i.e. through a scatter plot, we would see that the identified clusters have a high density 

of data points and that clusters are apart from each other). Please note that in cases where we 

are assessing more than 3 attributes at the time, it is not possible to represent the generated 

clusters with a scatter plot; and hence, the centroid table is assessed with its corresponding 

series plot to identify interesting patient data patterns. 

4.2.8.3 Association 

The training of the FP-Growth algorithm entailed its application upon the selected groups of 

attributes, as well as the variation of the parameters below disclosed. Hence, this FP-Growth 

algorithm was at least 19 times applied upon the preprocessed data set through 6 modeling steps 

that we disclose in the next section which are mainly disclosed in the Appendix C.3.   

Table 4.12 Varied parameters through FP-Growth training 

Parameter Name Tested Range of Values Parameter Description 

Support  0 to 0.1 Defines the support threshold. 

Confidence 0 to 0.8 Defines the confidence threshold. 

 

As performed in Yildirim (2015), association rules were evaluated objectively (i.e. through the 

computed rules´ measures) and subjectively (i.e. through the evaluation of the clinical sense 

and interest of the generated rule).  

Objectively, the rules were assessed through their computed support, confidence, lift and 

conviction measure since a high support indicates that the rule occurs frequently; if it has a high 

confidence, it tells that its conditional probability is high; if the lift measure presents a different 
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measure than 1, it means that the attributes covered in the rule are related with each other - 

which means that the generated rule can be considered as interesting - and if the conviction 

measure is different than 1, it means that the rule direction has an implication; and hence, it also 

contributes for its interestingness.  

The initial support value was set to 0.1 and the confidence to 0.8 to find the objectively most 

interesting rules. Which means that all generated rules that were bellow these metric values 

were excluded; and hence, the setting of these measures pruned the generated results. This 

practice is recommended in the mining of health care data since this type of data tend to generate 

a large number of rules with low support. In fact, in Shukla, Patel, and Sen (2014) – a study 

that performs a review on the application of data mining techniques in the health care domain 

– the authors state that in the health care domain, we tend to have a significant fraction of 

association rules that are irrelevant and that the most relevant rules, often appear with high 

quality metrics but with a low support. We believe that this is the reason why in Yildirim (2015), 

the support was set to 1% and the confidence to 40% since its work was also performed in the 

health care domain. Furthermore, after our first application of the FP-Growth algorithm, we 

have seen that a support=0.1 and a confidence=0.8 would not generate subjectively interesting 

rules so we have lowered this threshold to 0.0 and after that, have seen that a support equal to 

0.1 and a confidence equal to 0.4 was in our case also enough to identify the most objectively 

and subjectively interesting rules as in Yildirim (2015).  

But what are subjectively interesting rules in this study? Well, we could say that since all 

assessed attributes are related with pregnancy outcome, all generated rules could be seen in the 

clinical perspective as interesting. However, an association rule that provides a predictive 

information is more interesting in this case (i.e. rules where an attribute filled before the 

treatment implies another one that occurs after the embolization treatment, can be seen as a 

predictive rule). Furthermore, since one of the main goals of this study is to predict the success 

of the embolization treatment, looking for rules that have the “Pregnancy outcome” attribute as 

conclusions is in line with our goals. In fact, even if the association data mining technique is 

usually applied to discover patterns/relations between sets of attributes (i.e. descriptive 

purposes), we can also use this technique for predictive purposes as performed by Azevedo and 

Jorge (2007). Hence, we have further on filtered our data set by non-missing values in the 

“Pregnancy outcome” attribute prior the application of the association algorithm, with the aim 

of generating rules upon patients which we know were able to get their partner pregnant or not. 

Hence, the interestingness factor (IF) of the lift and conviction measure value was interpreted 

as follows (Yildirim, 2015): 

• IF(X, Y) =1.0,  X and Y are independent, 

• IF(X, Y) >1.0, X and Y are positively correlated, 

• IF(X, Y) <1.0, X and Y are negatively correlated. 

However, in terms of lift and conviction, we have focused, as suggested in Rapid Miner´s 

tutorials, on seeking rules higher than 1.0 because it conveys that the rule is more interesting 

than below 1.0. In fact, if we have a lift higher than 1.0, it tells us that the probability of the 
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attribute occurring consequent is lower than its conditional probability - based on the lift 

formula. 

The choice of all these measures was based on Yildirim (2015). In fact, in Yildirim (2015), the 

author states that the support measures the statistical significance of the computed rule; the 

confidence, the strength of the rule, and the lift and conviction, its interestingness through the 

assessment of the correlation between the antecedent and the consequent attributes. Based on 

that statement, we have ranked the results by statistical significance (i.e. the support measure) 

and if the other measures, especially the confidence measure, had good values, we have 

considered that first ranked rule as objectively the most interesting one. In fact, the authors (Han 

et al., 2012) state that association rules are considered interesting if they both satisfy a minimum 

support threshold and a minimum confidence threshold; and therefore, a rule that has these two 

measurements above a set threshold should be assessed with the lift and conviction measures to 

seek for objectively interesting rules. Furthermore, in Azevedo and Jorge (2007) the conviction 

measure proved to be effective for predictive tasks, which also reinforces the selection of these 

metrics. 

The initial support value was set to 0.1 and the confidence to 0.8 to find the most objectively 

interesting rules. Further on, to find some subjectively interesting rules, we have lowered the 

support and confidence to 0.0 and have seen through the first tests that we could adjust the 

threshold values to 0.1, for the support, and 0.4, for the confidence, as in Yildirim (2015). 

Hence, the selection of the most objectively and subjectively interesting association rules 

entailed the assessment of each computed association rule by the following conditions which 

can be seen as the pruning conditions: 

• Objectively interesting: 

o support > = 0.1 

o confidence > = 0.4 

o lift and conviction > = 1.1 

• Subjectively interesting: 

o The antecedent occurred before, or at the same time of, the consequent. 

o support > = 0.15 which means that the rule encompasses at least 35 patients. 

In order to better convey the computed results, we have presented them by the consequent 

attributes that were seen in each test as objectively interesting where the objectively interesting 

rules were marked with a check mark and the subjectively interesting ones, with an exclamation 

mark in the generated result tables.  

The selection of the most interesting rules was performed by checking if the previously 

selected/prunned association rules had a statistically significant dependence between their 

antecedent and consequent (i.e. if the relation between the antecedent and consequent, 

presented by the lift and conviction measure, is statistically significant).  This assessment was 

carried out by applying the Chi-square  test as firstly proposed in Brin, Motwanit, and 

Silverstein, (1997)  for a significance level of p=0.10, p=0.05 and p=0.01 to elect a greater 

number of interesting association rules.  Rule selection was carried out by inserting into an 

excel sheet all previously selected association rules and by calculating, for each of them, the 
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Chi-square  test in terms of confidence, support and lift measures as performed in Yildirim 

(2015). In fact, it has also been shown (Alvarez, 2003) that the x2 value could be directly 

calculated in terms of these standard measures (i.e. the Chi-square  statistical formula presented 

in Formula 4.1 satisfies the equality defined by the author Sergio A. Alvarez). This formula is 

defined as: 

𝑥2 = 𝑛(𝑙𝑖𝑓𝑡 − 1)2
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 ∗ 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

(𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 − 𝑆𝑢𝑝𝑝𝑜𝑟𝑡)(𝐿𝑖𝑓𝑡 − 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)
 

      Formula 4.1 Chi-square  (Alvarez, 2003) 

Hence, in our study the above formula is applied with an n equal to 230 - since it is the number 

of instances without missing values in the “Pregnancy outcome” attribute - to elect the best 

computed association rules.  

We have considered that an association rule with an antecedent and a consequent is statistically 

significant if the computed x2 value, calculated with the Formula 4.1Erro! A origem da 

referência não foi encontrada., is equal or above the following values: 

• For p= 0.10         2.706 

• For p= 0.05         3.841 

• For p= 0.01         6.635 

These values were retrieved from the x2 distribution for a degree of freedom of 1 since all 

attribute values are binomial; and therefore, the contingency table would always have 2 rows 

and 2 columns, called a two-dimensional table. In fact, (Alvarez, 2003) aggregates the items of 

the antecedent and, separately, the items of the consequent by performing a Boolean product 

over each of these item sets to end up with a two-dimensional table with the aim of increasing 

the possibility of achieving the minimum cell counts required for the validity of the Chi-square  

analysis - which is 5. Hence, the above x2   threshold values were always used for this purpose. 

On the set of the most interesting rules (i.e. pruned rules with a statistically significant 

dependence between the antecedent and consequent) we have considered that the best rule was 

the one with the highest support and/or confidence value since it indicates, respectively, the 

statistical significance and strength of the rule. Most works only use the confidence measure to 

elect the best rules but since we have a small data set and the healthcare domain tend to generate 

rules with low support, it was in the context of this study important to firstly check for their 

support.  

4.2.9 Modeling  

The CRISP-DM modeling phase was carried-out by following a set of sub-phases (see Table 

4.13 ) which in turn, entailed the execution of a set of modeling steps that are in the Appendix 

B described along with the built models.  
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Table 4.13 Modeling Sub-Phases 

Sub-phase Nª Carried out modeling steps General Tasks 

1 Decision tree modeling step 1 and 2 
(see step details in Table 6.1) 

Apply a Decision tree model upon the 
attributes that have a good data quality, and 
afterwards, only upon the first group of 
selected attributes.  

2 K-Means modeling step 1 to 5  
(see step details in Table 6.3) 

Find interesting data patterns with several K-
Means models. 

3 All FP-Growth modelling steps 
(see step details in Table 6.6) 

Find interesting data patterns and predictive 
information with several FP-Growth models. 

4 Decision tree modeling step 3 to 9 
(see step details in Table 6.1) 

Continue the Decision tree application by 
applying its models upon the remaining 
groups of selected attributes and afterwards, 
upon the data set transformed into 
numerical and nominal values and at last, try 
to optimize one of the best computed result 
with the Bagging ensemble meta-algorithm.  

5 K-Means modeling step 6 
(see step detail in Table 6.3) 

Apply the best decision tree model upon the 
most interesting clustered instances to 
better describe its findings. 
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Chapter 5 Study of the Varicocele Condition  

This section presents the results of the application of the previously described methods by 

following the CRISP-DM project methodology. Hence, this section begins by describing in 

section 5.1, the CRISP-DM project methodology, and then presents the outcomes of each 

CRISP-DM phase as follows: in section 5.2, we present the requirements of the “Biology of 

Reproduction and Stem Cells” (BRSC) research team, what the project resources and 

constraints/project risks were – with the indication of the ways to tackle them -, the data mining 

Goals set, as well as the data mining tools and techniques used. In section 5.3, we present the 

statistical results that were obtained with the final preprocessed data set. In section 5.4, we 

specify de quality of the initially provided data set, as well as describe the data preparation that 

was performed to achieve the final preprocessed data set. In section 5.5, we disclose, identify 

and interpret the best data mining results generated for each applied data mining technique and 

in section 5.6, we present a summary of the best results and discuss them by evaluating their 

contributions. 

5.1 Project Methodology 

This study follows the CRISP-DM methodology since it is the most popular for data mining 

projects (Piatetsky, n.d.). After the data preparation phase, the data mining techniques are 

applied to the preprocessed data set to build data mining models and evaluate them. Finally, the 

selected models are deployed/disclosed to the client. In our case, the discloser of the data mining 

models built was performed through the presentation of the acquired results presented in this 

chapter. The schema of the CRISP-DM methodology is shown in Figure 5.1. 

 

Figure 5.1 Phases of the CRISP-DM project methodology (Chapman et al., 2000) 
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As we can see in Figure 5.1, CRISP- DM is a project methodology that encompasses a set of 

phases that are executed in iterative ways. In 2014, CRISP-DM was still the mostly used data 

mining project methodology (Piatetsky, n.d.) and CRISP-DM attributes its success to its 

practical approach on planning projects since it was built upon real-world experiences of how 

people conduct data mining projects (Chapman et al., 2000).   

5.2 Business Understanding  

This initial phase focuses on understanding the project objectives and requirements from a 

business perspective, then converting this knowledge into data mining Goals and preliminary 

plan the project to achieve the previously defined data mining Goals (Chapman et al., 2000). 

Thus, in this section we present in subsection 5.2.1 the business background and objectives of 

the research team with whom this work was carried out. In 5.2.2, an inventory of the resources 

available to the project, as well as the constraints and problems/risks that this project 

encountered and tackled. In 5.2.3, the data mining goals of our project. In 5.2.4, the selected 

data mining tool, and in 5.2.5, the data mining techniques/algorithms that were used.     

5.2.1 Background, Objective and Requirements  

This work was carried out with the BRSC research team of the Center for Neuroscience and 

Cell Biology (CNC) that works with the Medicine of Reproduction Unit of the Centro 

Hospitalar e Uiversitário de Coimbra (CHUC) located in Portugal.  

The main research domain of the BRSC team is to study male infertility and its main objectives 

are to study the mechanisms, conditions (e.g varicocele) and external aspects (e.g 

environmental aspects, patient lifestyle and fiscal characteristics etc.) that might be associated 

with male infertility, to increase treatment success.    

One of the ongoing research areas of the BRSC team is the study of the varicocele condition 

where its actual main needs/requirements are to predict the success of the varicocele treatment, 

performed in CHUC, as well as its prevalence.     

5.2.2 Resources, Constraints and Project´s Risks  

This project had several resources available shown in Table 5.1, that indicates these resources 

by purpose and when applicable, specifies the preprocessed attributes (attributes presented in 

Table 4.3) that used the corresponding resource to validate and collect its data (indicated under 

the column named “Attributes”). If we analyze the attributes specified under this column, we 

see that some attributes used several information systems to validate and collect its data. It is 

the case of the male patient external factors (i.e. Man infertility factor, Smoking habits, 

Drinking habits, Surgeries, Diseases), that used the information technology system called 

“SMR” to validate and retrieve that information, and when the “SMR” system had empty fields 

for these attributes, we have looked up into the patient medical dossiers. The pregnancy 

outcome attribute was also checked in another information system due to the lack of information 

that was found in the initially available information systems for some of the patients.  
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Table 5.1 Project´s Resources 

Purpose Resource Attributes 

Business expertise BRSC team members and CHUC 

personnel 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Validation and Collection 

CHUC´s information technology 

system called “Doentes” 

Man age; Woman age; 

Occupation; Embolization date; 

Birth; Number of alive babies; 

Spontaneous pregnancy; 

Pregnancy outcome 

SHR´s information technology system 

called “SMR” 

Type of infertility; Woman 

infertility factor; Male infertility 

factor; Smoking habit; Drinking 

habit; Surgeries; Diseases; 

Pregnancy outcome; Number of 

pregnancies; ART 

CHUC information technology 

system called “Anatomia Patológica” 

Pregnancy outcome (before 

2012, pregnancy test results 

were in this system recorded) 

Patient medical dossiers  Type of infertility; Woman 

infertility factor; Man infertility 

factor; Smoking habit; Drinking 

habit; Surgeries; Diseases; 

Severity grade; Laterality; 

Testis volume; Embolized 

laterality; Material of 

embolization; Complications  

Original Semen Analysis Reports Concentration before treatment; 

Concentration at 3 months; 

Concentration at 6 months; 

Concentration at 12 months; 

Progressive motility before 

treatment; 

Progressive motility at 3 

months; 

Progressive motility at 6 

months; 

Progressive motility at 12 

months; 

Morphology before treatment; 

Morphology at 3 months; 

Morphology at 6 months; 

Morphology at 12 months 

     

The initially identified constraints were:  

• The missing values in the data set, as well as in the final and preprocessed data set; 

• The small data set that we ended up with (i.e. 293 instances) for the data mining 

universe. 

However, these data constraints are expectable for the health care domain and the size of the 

final and preprocessed data set is good for the varicocele domain as we have seen through the 

review of related works presented in section 3.4.  

For the data preparation step, another main constraint was raised:  

• The impossibility of exporting patient information to a digital format.  
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However, we were able to export the patient´s information gathered in the “SMR” information 

system to an EXCEL file, and afterwards, import that data to a temporary Database, built for 

this purpose in the Microsoft SQL Server 2012, to at last, retrieve the needed information with 

SQL queries. All other attributes, that were not validated with the “SMR” information system, 

were validated and filled manually.  

As in any project, this study also encountered some problems/risks. The main ones were: 

• The time line of the project was short to acquaint with knowledge needed to further 

understand and analyze the data, to look up and retrieve the needed information in the 

available information systems and to preprocess and generate/build new attributes;  

• The generation of an interesting data mining model due to the missing values and small 

correlations seen with the initial data set; 

• The risk of not being able to formulate some conclusions for each data mining goals set 

due to the outcomes achieved.  

To tackle these problems and risks, I dedicated a big part of my time to fill in the missing values, 

correct the provided ones and generate new attributes to increase our chances of having higher 

correlations. Moreover, we have decided to carry out an inductive statistical analysis with the 

ANOVA and Chi-square statistical tests during the Data understanding step to further on serve 

as an input for the data mining algorithms, and, finally, we have identified and exhaustively 

applied the data mining algorithm that showed the best performance on sperm parameter data 

(i.e. Decision tree seen in (Guh et al., 2011)) to guide and increase our chances of formulating 

interesting conclusions for data mining by also using the knowledge acquire with the other 

applied data mining techniques.  

5.2.3 Data mining goals 

As seen in section 5.2.1, the BRSC team has been studying the varicocele condition, as well as 

its treatment outcomes with embolization. By considering their main requirements (i.e. predict 

the prevalence of the varicocele condition, as well as its treatment success), the following data 

mining goals were identified with a different degree of importance which made us highlight 

them with different colors to better convey its priority; i.e., goals with orange lettering are the 

most important to achieve, goals with yellow lettering are secondary and goals with black 

lettering could not be achieved: 

With predictive data mining techniques: 

Goal 1) Predict the varicocele condition. 

Goal 2) Predict the success of the varicocele embolization carried out at CHUC. 

With descriptive data mining techniques assess: 

Goal 3) Semen classification vs the condition laterality. 

Goal 4) The varicocele condition vs the patients that do not have the condition.  

Goal 5) Other male infertility patterns (e.g. sperm evolution through time with statistical 

tests and semen classification vs patient´s external factors with data mining techniques). 
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After understanding and assessing the completeness of the provided dataset, we have seen that 

this study could achieve all these data mining goals, except the Goal 1 and 4 (see section 5.4.1 

for the rationale). Furthermore, we have identified that the goals with the highest interest for 

the BRSC team was: the prediction of the embolization success (i.e. Goal 2), as well as the 

description of the relation between the patient semen classification and its external factors (i.e. 

occupation, drinking, alcohol, disease) and the statistical description of the evolution of the 

patient sperm parameter values through time (i.e. Goal 5); and therefore, this study focused on 

Goal 2 and 5, and afterwards, on Goal 3.  

5.2.4 Data mining Tool Selection  

Through previous work, we have analyzed the requirements of the healthcare industry and have 

identified that the RapidMiner platform was one of the mostly suited tools to perform 

knowledge discovery (KDD) on clinical data sets. Hence, in this work we have choose to use 

the RapidMiner Educational tool, version 8.1.001. 

5.2.5 Techniques Used  

By considering the studies presented in section 3.2, as well as the characteristics of the data 

mining algorithms described in section 4.2.7, we have selected the data mining algorithms for 

this study. Since data mining algorithms can be categorized as predictive or descriptive, we 

specify below the selected data mining algorithms grouped by these categories. Hence, in 

section 5.2.5.1, we specify the predictive algorithms that were used in this study, and in section 

5.2.5.2, the descriptive ones. 

5.2.5.1  Predictive Algorithms 

Due to their good performance shown in related works, this study applies the following 

algorithms: 

• RapidMiner´s Decision tree; W-J48 (Classification data mining technique); 

• FP-Growth (Association data mining technique). 

5.2.5.2  Descriptive Algorithms 

Due to its popularity, this study also applies the following algorithms: 

• K-means (Clustering data mining technique);   

• FP-Growth (Association data mining technique). 

5.3 Data Understanding  

The data understanding phase starts with initial data collection and proceeds with activities that 

enable to become familiar with the provided data (Chapman et al., 2000). In fact, studying the 

varicocele condition and its treatments, as shown in section 2.2, as well as its related works, as 

show in sections 3.3 and 3.4, acquainted us with the provided data to further on statistically 

understand it.  
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Statistical analysis is an important asset to a data mining study because its findings can give us 

clues on data patterns than can be further on investigated with data mining techniques. In fact, 

we cannot forget that the data mining technique also encompasses, along with other fields, 

statistical concepts. Hence, this section aims to present our statistical findings on the attributes 

described in the section 4.1.2.1 since they have guided us through our data mining application. 

In order to better convey our statistical findings, the statistical results are presented as follows: 

in subsection 5.3.1, we disclose the basic statistical descriptions of each attribute disclosed in 

Table 4.3, as specified in section 4.2.5, and in the subsection 5.3.2, we statistically explore the 

previously disclosed attributes into different angles by going further with the application of the 

statistical tests described in section 4.2.6. 

5.3.1 Data Description  

In order to know where do most values fall, we have computed the measures of central tendency 

(i.e. the Mean, Median and Mode of each attribute). Table 5.2 presents these results, as well as 

the number of filled values that each attribute has by specifying it under the column named “n”.  

Table 5.2 Statistical description of quantitative attributes - Measures of central tendency 

ID Attribute code name Mean Median Mode n 

1 Idade_H 34.43 34 36 293 

2 Idade_M 32.22 32 33 284 

3 Tempo_Infert 39.22 34,5 24 254 

14 Data_Embolização Dec 29, 2012 Oct 12, 2013  293 

21 Conc_Pre 13.93 4.2 0 281 

22 Conc_3M 19.07 11 0 245 

23 Conc_6M 17.21 7.6 0 131 

24 Conc_1A 15.78 8 0 137 

25 A_B_pré 26.90 24 0 251 

26 A_B_3M 31.12 29 0 217 

27 A_B_6M 28.91 23 0 116 

28 A_B_1A 28.44 26 0 121 

29 Formas_N_pré 4.06 2 1 210 

30 Formas_N_3M 4.67 3 2 180 

31 Formas_N_6M 4.79 3 3 47 

32 Formas_N_1A 3.13 3 1 23 

34 Num_Gravidezes 0.46 0 0 293 

36 Num_Bebés 1.27 1 1 84 

37 Gravidez_pós_emb 17.70 13 9 105 

    

In order to have an idea of how the quantitative data is spread out (Han et al., 2012), we have 

also identified for each quantitative attribute the following values: the minimum value (Min), 

the value of the first quartile (Q1), the value of the third quartile (Q3), the maximum value (Max) 

and the standard deviation (SD). Table 5.3 presents these results.   

Table 5.3 Statistical description of quantitative attributes - Measures of data dispersion 

ID Attribute code name Min Q1 Q3 Max SD 

1 Idade_H 23 31 37,75 54 5.22 

2 Idade_M 20 30 35 46 4.40 

3 Tempo_Infert 4 24 48 192 28.87 

14 Data_Embolização Jan 17, 2007   Apr 28, 2016  
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ID Attribute code name Min Q1 Q3 Max SD 

21 Conc_Pre 0 0.8 14 220 23.64 

22 Conc_3M 0 1 27.1 170 24.94 

23 Conc_6M 0 1.1 27 160 24.07 

24 Conc_1A 0 1.5 26 80 18.66 

25 A_B_pré 0 7 40.5 89 22.46 

26 A_B_3M 0 12 46 94 22.21 

27 A_B_6M 0 5 50 83 25.05 

28 A_B_1A 0 11 43 83 23.14 

29 Formas_N_pré 0 1 5 38 4.826 

30 Formas_N_3M 0 2 6 21 4.443 

31 Formas_N_6M 0 2 6 21 4.515 

32 Formas_N_1A 0 1.5 3.5 10 2.510 

34 Num_Gravidezes 0 0 1 3 0.679 

36 Num_Bebés 0 1 2 3 0.567 

37 Gravidez_pós_emb 0 9 21 79 15.09 

 

To have an overall picture of each qualitative attribute, we have identified some of the least and 

most frequent values of each qualitative attributes and specified between parentheses its 

frequency. We have also specified the number of filled values has in the previous tables. This 

information is presented in Table 5.4. 

Table 5.4 Statistical description of quantitative attributes - Basic statistical description   

ID Attribute code name Least Frequent Most Frequent n 

4 Prim_Sec Secundária (54) Primária (216) 270 

5 Factor_Infertilidade_Feminino 

Anovulação + Tubar (1) 

Baixa reserva (1) 

Baixa reserva + Patologia Uterina (1) 

Dismenorreia I Ligeira (1) 

Anovulação (25) 85 

6 Factor_Infertilidade_Masculino 

Hiperprolactinemia (1) 

Oligoespermia Severa (1) 

Tumor testicular (1) 

Masculino (82) 163 

7 HabitosTabagicos 

Não – exfumador há 18 anos (1) 

Não – exfumador há 2 anos (1) 

Sim – 1 cigarro por dia     (1) 

Sim – 13 cigarros por dia (1) 

Sim – esporadicamente (1) 

Sim – ocasional (1) 

Não (88) 204 

8 HabitosAlcoolicos 

Não – 50oils50ca50c (1) 

Sim – 1 copo ao jantar (1) 

Sim – 50oils50ca50c (1) 

Sim – 50oils50 (1) 

Sim – à refeição (1) 

Não (80) 116 

9 Cirurgias 

Sim – Amigdalectomia aos 11 anos (1) 

Sim – Amigdalectomia. Adenoidectomia 

(1) 

Sim – Apendicectomia aos 21 anos (1) 

Sim – Bypass Gástrico (1) 

Sim – Circuncisão (1) 

Sim – Criptorquidia (1) 

Não (53) 138 

10 Doença 

Apendicite aguda gangrenosa (1) 

Ardor ejaculatório (1) 

Artrite reumatoide (1) 

Doença celíaca (1) 

Epididimite pré-embolização (1) 

Excesso de peso – IMC 30,9 (1) 

Parotidite (12) 92 
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ID Attribute code name Least Frequent Most Frequent n 

11 Profissao 

Afinador maquinas (1) 

Agente da PSP (1) 

Assistente comercial (1) 

Engenheiro Zootécnico (1) 

Engenheiro agrónomo (1) 

Fabricante de capacete (1) 

Ferroviário (1) 

Fiel de armazém (1) 

GNR (1) 

Empresário (6) 202 

12 Grau_Varicoc III (33) II (111) 211 

13 Lateralidade Direito (1)  Esquerdo (178) 218 

14 Volume_Testiculo_Médico Reduzido (1) Bom (14) 44 

16 TratamentoFeito_lateralidade Embolização apenas Direita (1) 

Embolização 

apenas Esquerda 

(200) 

206 

17 TratamentoFeito_material Cola + Lipiodol (2) Coils (15) 23 

18 Complicações 

Abcesso (1) 

Dor intensa (1) 

Lombargia e dor (1) 

Muita dor. Fez reacção 51oils51ca ao 

contraste iodado (1) 

Sim – aquando a cateterização da 

artéria(1) 

Não (271) 293 

19 Repetia_embolização 
Não (10) 

 

Desconhecido 

(144) 
293 

20 Razão_não_repetir 

Infeção (1) 

Recuperação difícil (1) 

Técnica (1) 

NA (283) 293 

33 Gravidez Sim (107) Não (123) 230 

35 Nascimento Sim (84) Não (146) 230 

38 PMA Sim (66) Não (228) 293 

39 Gravidez_espontanea Sim (49) Não (181) 230 

5.3.2 Data Exploration  

In this subsection, we present the results of the data exploration carried out with descriptive and 

inferencial statistics upon the attributes described contextually in Table 4.3, and statistically, in 

Table 5.2, Table 5.3 and Table 5.4. Please note that important results disclosed in tables are 

usually highlighted in orange color. 

To better convey our findings, this section presents our statistical results through several 

subsections that analyze the attributes that are clinically important. Clinical importance was 

related with the understanding of some of the aspects of male infertility learned from the BRSC 

team and complemented with the study of related works on the varicocele condition that were 

previously summarized. As seen in related works, sperm parameters are one of the most 

common attributes that are clinically assessed in the male infertility and varicocele domains; 

and therefore, this study has assessed them from different angles (subsection 5.3.2.2, 0and 

5.3.2.4) after analyzing the descriptive statistics of the 39 initially preprocessed attributes 

(subsection 5.3.2.1).  Later, we analyze if there is a pattern on the month on which the patient´s 

partner conceives (subsection 5.3.2.5) and then identified the attributes that were more 

correlated with the pregnancy attribute (subsection 5.3.2.6). Finally, through several 

subsections, we have also analyzed other data relationships to guide us on the identification of 

other data patterns (in subsection 5.3.2.7, between laterality and severity grade, and in the 
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subsections 5.3.2.8, 5.3.2.9 and 5.3.2.10, between the semen classification and varicocele 

laterality, as well as drinking and smoking habits, respectively). At last, in section 5.3.2.11, we 

assess the relation between the patient´s age and the pregnancy outcome.   

5.3.2.1 Analysis of the descriptive statistics 

In this subsection we aim to, through data visualization (i.e. graphs), analyze the attributes 

statistically described in section 5.3.1 and draw the first statistical conclusions or give insights 

of the attributes that might not be considered for data mining analysis due to its poor provided 

data knowledge. To better convey our first conclusions, we have grouped our results by several 

subjects and have disclosed them through several subsections.  

5.3.2.1.1 Patient age vs date of embolization treatment 

By analyzing the values of the attribute “Data_embolization” we see that the embolization 

treatment was performed between January 2007 and April 2016. If we analyze the dispersion 

of the male patients´ ages though time, we see that half of them (51.70%) were treated between 

July 2013 and July 2016 (152 on 293 instances) which is clearly seen in the scatter graph 

depicted in Figure 5.2  through a higher dot concentration in that time span. Moreover, if we 

analyze the evolution of the male patient age through time, we see that they have been treated 

at a similar age. In fact, if we divide the patients into halves by median date of treatment (i.e. 

Data_Embolização); and hence, compare the male patient age treated between December 10th 

of 2008 and October 10th of 2013 inclusively, that have an age mean of 34.46 ±5.18 years old 

on a sample of 142 patients, with the ones treated between October 14th of 2013 and February 

24th of 2016 inclusively, that have an mean age of 34.36 ±5.10 years old, for a sample with the 

same size, we see that the age mean is similar, as well as its standard deviation. The same 

happens for their corresponding partners: 32.25 ±4.36 for the time span between December 10th 

of 2008 and October 10th of 2013, and 32.23 ±4.40, for the time span between October 14th of 

2013 and February 24th of 2016.  

If we analyze the male patient age with the age of the corresponding partner, we see that women 

are on average younger than males, and with a lower standard deviation which means that the 

women´s age are not as spread out as the men are. Figure 5.3 depicts a scatter graph of the 

women ages by the date of the embolization to see how the data is spread out through time, as 

well as the corresponding age of their male partner. As expected, most women have male 

partners with similar ages and between the first and third quartile of the male patient´s age 

which is from 31 to 38 years old since most dots in the scatter graph are colored in turquoise to 

green, representing this range of years.    

Regarding the success of pregnancy after varicocele treatment, we see in Figure 5.2 that the 

provided data set is quite homogeneous in that matter, where if the male patient´s partner got 

pregnant (blue dot), did not got pregnant (green dot) and we do not know (red dot), dispersed 

through time and with homogeneity. We have calculated the number of patients that did not got 

and got pregnant and have seen that of the 293 patients assessed, we were able to categorize 

230 male patients in terms of if they were able to conceive their partner, and from these 230 

male patients, 46.52% (107/230) were successful.  
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Figure 5.2 Scatter graph of male patient´s age by treatment date 

 

Figure 5.3 Scatter graph of male patient´s partner age by treatment date 

5.3.2.1.2 Infertility time vs male patient´s age and outcome 

During the exploration of the values of the “Infertility time” attribute, we have seen that the 

most common time span for a couple to seek medical help is 24 months (25.59% 65/254), 

followed by 36 months (16.14% 41/254). By generating a histogram, we have seen that these 

times were positively skewed as suspected since its mean, median and mode are different (see 

Figure 5.4).  

If we analyze the  “Man age”  attribute with the “Infertility time” attribute, we see that the data 

seems to create a cluster of 198 patients that encompasses 77.95% of this sample (198/254). 

This cluster seems to go from 25 to 40 years old and from 5 to 60 months of infertility. Out of 

these 198 patients, 81 patients achieved pregnancy at most 77 months after the embolization 

treatment, 63 out of these 81 patients, achieved live births and 61 out of these 63 pregnancies 

resulted in 1 or 2 live babies whereas 37 out of these 61 patients, conceived with an ART 

procedure. 
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Figure 5.4 Histogram of the infertility time 

5.3.2.1.3 Dispersion of the sperm parameters values through time 

 The exploration of the sperm parameter values was carried out through the analysis of its five-

number summary (i.e. minimum, first quartile, median, third quartile and maximum value), as 

well as its mean, standard deviation and sample dimension (n). Since the range of values of 

each sperm parameter differs substantially – specially sperm concentration – each sperm 

parameter was separately analyzed through the elaboration of summary tables presented in 

Table 5.5, Table 5.6 and Table 5.7, and box plots presented in Figure 5.5, Figure 5.6 and Figure 

5.7. The built box plots can be interpreted as follows: the value at the end of the top whisker 

denote the maximum value of the sperm parameter values indicated in Table 5.5, Table 5.6 and 

Table 5.7 with the id (Max); the length of the top whiskers represents 25% of the sperm 

parameter values and goes from the maximum sperm parameter value to the third quartile (Q3); 

the gray block depicts the difference between the third quartile (Q3) and the median (Median); 

the orange bloc depicts the difference between the median and the first quartile (Q1) and the 

bottom whisker, the difference between the first quartile (Q1) and the minimum value (Min). 

Hence, the median is represented in the box plot by de separation between the gray and the 

orange block.  Furthermore, as the top whisker, the length of the bottom whisker represents 25 

% of the lowest sperm parameter values. Hence, the data between the third and the first quartile, 

depicted with the gray and orange box, represent 50% of the data that is close to the median of 

the sperm parameter values. 

 

Table 5.5 Sperm Concentrations through time – Main statistical results 

Attribute code name Com_Pre Com_3M Com_6M Com_1A 

Min 0 0 0 0 

Q1 0.8 1 1.1 1.5 

Median 4.2 11 7.6 8 

Q3 14 27.1 27 26 

Max 220 170 160 80 

Mean 13.93 19.07 17.21 15.78 

Mean-Median 9.73 8.071 9.61 7.78 

Standard Deviation 23.64 24.94 24.07 18.66 

n 281 245 131 137 
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Figure 5.5 Sperm Concentrations through time - Box Plot with mean values  

Table 5.6 Sperm Progressive Motilities through time – Main statistical results 

 

 

Figure 5.6 Sperm Progressive Motilities through time – Box Plot with mean values 
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Attribute code name A_B_Pre A_B_3M A_B_6M A_B_1A 

Min 0 0 0 0 

Q1 7 12 5 11 

Median 24 29 23 26 

Q3 40.5 46 50 43 

Max 89 94 83 83 

Mean 26.90 31.12 28.91 28.44 

Mean-Median 2.90 2.12 5.91 2.44 

Standard Deviation 22.46 22.21 25.05 23.15 

n 251 217 116 121 
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Table 5.7 Sperm Morphologies through time – Main statistical results 

 

  

Figure 5.7 Sperm Morphologies through time – Box Plot with mean values 

 

If we analyze the Min and Max values presented in the summary tables, we see that the sperm 

concentration and morphology have its widest data dispersion before the embolization 

treatment in contrast to the progressive motility, where this occurs at 3 months after treatment. 

Furthermore, mean and median values are different for all sperm parameters. In fact, in the box 

plots above, we see that the black dots, that represents the mean value, are all above the median 

value.  

Since the mean value for all patient´s follow-up times and sperm parameters is larger than the 

median value with a difference between both values always above 0, this indicates that sperm 

parameter values are skewed (i.e. not normally distributed). To validate this idea, histograms 

were generated with the RapidMiner Platform and shown in Figure 5.8, Figure 5.9 and Figure 

5.10, where we can indeed see that the data is right-skewed, also called positive skewness, since 

right-skewed distributions have a larger mean value than the median value (“Skewed 

Distribution: Definition, Examples - Statistics How To,” n.d.). That happens because the mean 

value is influenced by extreme scores; and therefore, pulls towards, in right-skewed 

distributions, to the right long tail of the f(x) function. In fact, this explains why the sperm 

concentration, before the embolization treatment, has the larger “Mean – Median” value since 
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Attribute code name Forma_N_Pre Forma_N_3M Forma_N_6M Forma_N_1A 

Min 0 0 0 0 

Q1 1 2 2 1.5 

Median 2 3 3 3 

Q3 5 6 6 3.5 

Max 38 21 21 10 

Mean 4.062 4.67 4.79 3.13 

Mean-Median 2.06 1.67 1.79 0.13 

Standard Deviation 4.83 4.44 4.51 2.51 

n 210 180 47 23 
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the sperm concentration before the embolization treatment has also the biggest range of values 

(Max-Min) which tends to further pull the mean from the median.    

 

Figure 5.8 Histogram of sperm concentrations 

 

Figure 5.9 Histogram of sperm progressive motilities 

 

Figure 5.10 Histogram of sperm morphologies 

5.3.2.1.4  Pregnancy related attributes  

Out of the 230 women that we were able to determine the pregnancy outcome, 107 (i.e. 46.52%) 

got pregnant and mostly, for the first time. In fact, we have 85 women with the “Prim_Sec” 

attribute set to “Primária” out of these 107 pregnant women leading to a rate of 79.44%. 

If we explore how these pregnant women conceived, we see that 54.21% (58/107) of them have 

conceived with an ART procedure, 38.31% (41/107) spontaneously and 7.48% (8/107) with 

both methods, through at least 2 different pregnancies.  Out of these 107 pregnant women, most 

of them had 1 valid pregnancy: valid pregnancies are in this study pregnancies that have 

occurred after the embolization treatment (this condition was guaranteed/validated during data 

preparation). In fact, we have seen that 78.50% (84/107) had 1 pregnancy, 17.75% (19/107) 

had 2 pregnancies and 3.74% (4/107) had 3 pregnancies after the embolization treatment.  



Chapter 5                                                                                        STUDY OF THE VARICOCELE CONDITION 

Judith Santos Pereira                                                                                                                                             58 
 

In terms of births, we see that 78.50% of these patients (84/107) were able to give birth to a 

child and 96.43% (81/84) of them, to an alive baby. 67.86% (57/84) of these couples had one 

child. Hence, we can say that the alive baby rate of the dataset is of 35.22% (i.e. 84 births minus 

3 stillborn babies divided by the 230 patients of the pregnancy sample).    

5.3.2.1.5 Infertility factors  

Out of the 85 women with infertility factor information, 29.41% had anovulation (25/85), 

23.53% had diseases related with tubal ((17 tubal + 1 endometrioses + 1 endometrioses with 

tubal + 1 anovulation with tubal) /85) and 17.65% had previous abortions (15/85). 

Regarding male infertility factors, we have seen that half of them (50.31% 82/163) had the 

indication that the infertility cause was only from themselves. To look up for more details, we 

checked their corresponding semen classification before treatment and have seen that out of 

these 82 men, 20 had OligoAsthenoTeratozoospermia. Please note that the semen 

classifications indicated under the man infertility factor attribute were not considered for 

analysis since through the years the World Health Organization (WHO) has updated its 

threshold. 

5.3.2.1.6 External factors 

By analyzing the frequency of the values specified on all external factor attributes statistically 

described in section 5.3.1, we can characterize the male patients of the data set as follows: 

• 48.04% of the patients (98/204) smoke; 

• 30.17% of the patients (35/116) drink alcohol; 

• 61.59% of the patients (85/138) undergone surgery before the embolization treatment; 

• 21.98% of the patients (20/91) had parotitis disease before the embolization treatment, 

followed by the epididymis cysts 8.79% (8/91) and overweight condition 6.59% (6/91).  

• 36.14% of the patients (73/202) have an occupation in an environment that has a certain 

level of toxicity, and the textile industry was the most frequent and toxic occupation 

(8/202) of this sample since most of these patients alleged that they work in an 

environment with high temperatures. Since the occupation attribute is highly 

fragmented (i.e has several different attributes with low frequencies), it lead us to 

generate a new attribute upon it to categorize the recorded occupations into whether 

they encompass toxic products or environments. 

5.3.2.1.7 Severity grade vs varicocele´s laterality 

To explore whether the severity grade of varicocele is related with the site on which the 

condition appears (i.e. if the varicocele appears on the right, left or both testes), several graphs 

were generated in RapidMiner, with the values of the attribute “Grau_Varicoc” and 

“Lateralidade”.   

If we analyze the frequency of the values of the “Grau_Varicoc” attribute, from the 211 patients 

that had as established severity grade 111 patients had severity grade II (52.61%), 67 patients 
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had severity grade I (31.75%) and 33 patients had severity grade III (15.64%). Hence, most 

patients of the dataset have the severity grade I or II (84.36%). 

If we analyze the frequency of the values of the “Lateralidade” attribute, we see that from the 

218 patients where data was available, 178 had the condition on its left testicle (i.e. 81.65% 

178/218). 

By crossing that data with a scatter graph, we see that 176 out of 207 patients had the varicocele 

condition on the left testicle and with a grade I or II which includes 85.02% of the sample. In 

Figure 5.11, we present the scatter graph where we can see a higher dot concentration for the 

left testicle, indicated in the scatter graph with the name “Esquerdo”, and for the severity grade 

II and I.  

 

Figure 5.11 varicocele´s laterality by severity grade 

5.3.2.1.8 Testicle volume vs varicocele´s severity grade 

Through previous research, we have seen that patients with an advanced and untreated 

varicocele condition are prone to testis reduction since the veins on the scrotum do not irrigate 

well the testis; and therefore, cause testis atrophy (Aza Mohammed & Frank Chinegwundoh, 

2009). Due to that information, we analyze the information of testis volume of some of the 

patients. Thus, of the 294 provided patients, we could retrieve information on testis volume for 

44 patients and analyzed that information by generating the scatter graph depicted in Figure 

5.12. By analyzing this scatter graph, we see that, according to diagnosis, 75% of the assessed 

patients (33 out of 44 patients), had normal to good testis volume (i.e. a testis volume equal or 

bigger than 20cc) and only 6 out of these 33 patients (18.18%), had a varicocele severity grade 

of III which tells us that most patients of this sample have treated the varicocele condition in its 

initial stage since most of them have lower severity grades and from normal to good testis 

volumes.  
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Figure 5.12 Scatter graph of the testicle volume by the severity grade 

5.3.2.1.9 Diagnosed and Treated laterality vs sperm improvement 

From the 293 patients assessed, we knew on which testicle the varicocele correction was carried 

out in 206. We have seen that 97.9% (200/206) of these 206 patients, underwent embolization 

on the left testicle. From these 200 patients, 12% (24/200) had the varicocele condition on both 

testis. The remaining 6 patients out of the 206 patients, underwent embolization on both testis 

(5 patients) or on the right testicle (1 patient). If we analyze initial diagnoses, the ones that had 

the procedure carried out on both testis, 4 out of the 5 patients treated, had initially the 

varicocele condition also diagnosed in both testis, and the remaining patient, had it diagnosed 

on the left testicle. Hence, the data set has 28 patients (24+4) with the varicocele condition 

diagnosed in both testis but 85.71% of them (24/28), only underwent embolization on the left 

testicle.  

Due to the high percentage of varicocele correction on the left testicle, this attribute does not 

provide much information. However, despite the small sample size on patients with varicocele 

on both testicles (n=28), it was seen of clinical importance to explore if the ones that underwent 

embolization on both testicles (4 patients) had better sperm parameter values than the other 

patients (24 patients). To assess that situation, we have grouped sperm parameter values in the 

RapidMiner platform by varicocele laterality, severity grade and treated laterality (Table 5.8).   

If we only focus on the patients that were embolized on both testicles, indicated with the word 

“Bilateral”, and consider only the grouped sperm parameter mean values that have laterality 

information,”, the severity grade, and its treated laterality, we see that the patients with a 

severity grade I or II and embolized in both testis have improved all sperm parameters at 3 

months after the treatment. However, if we analyze the ones that were only embolized at their 

left testis, we see that for the ones with a severity grade of I, there is a mean sperm concentration 

decrease of 8.97 millions/ml at 3 months after the treatment although other sperm parameters 

improving with treatment; and for patients with severity grade II, we see that the progressive 

motility suffered a slight decrease of 1.7%. Therefore, these results suggest that embolization 

should be carried out in both testis when the patient also has varicocele in both testis. However, 
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the small number of patients that we have as diagnosed and treated in both testis is to small (4 

patients) to formulate a founded conclusion, and require further investigations.  

Table 5.8 Sperm parameters values before and 3 months after the treatment grouped by the 

diagnosed laterality, its severity grade and its treated laterality  

 

5.3.2.2 Evolution of semen and sperm categorizations through time 

As seen previously, semen can be qualitatively and quantitatively analyzed. Hence, some of the 

first questions raised in this context was: which is the largest semen and sperm qualification 

group before and after the embolization treatment? Does it change during follow up? And how 

about the number of normal sperm parameters, does it change through time/with treatment? To 

address all these questions, several crosstabs were built and are presented and interpreted 

through the application of the Chi-square teste.  

To identify the largest semen classification throughout the patient follow up times, a crosstab 

was built (Table 5.9) and a bar chart was generated based on its computed relative frequencies 

(Figure 5.13). As we can appreciate in Table 5.9, before the embolization treatment, the biggest 

semen classification is the OligoAsthenoTeratozoospermia (OAT) with 26.89% (64/238); 3 

months after embolization, the biggest group is Normozoospermia with 19.90% (41/206) and 6 

months later, Azoospermia with 24.19% (15/62) which continued to lead 12 months after the 

treatment with 39.47% (15/38) – all these values are highlighted in orange in Table 5.9 . Since 

there is a difference between the relative frequencies through time, we have analyzed if these 

differences occurred by chance or if they were influenced by the time at which the semen 

analysis was carried out, to assess if the semen classifications have improved with time.  

With the Chi-square  test, we have computed a p value less than 0.05 (i.e. 0.0000001582755) 

which tells us that there is enough evidence to conclude that there is a statistically significant 

relationship between the semen classification and the time when the semen analysis was carried 

out. Since the biggest relative frequency at 3 months after the embolization treatment is from 

patients with normal sperm parameters, we can say that the embolization treatment improved 

sperm parameters in 14.02% of cases (i.e. 19,90% with normozoospermia 3 months after the 

treatment minus 5.99% with normospermia before the treatment). 
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Table 5.9 Crosstab of semen classifications by patient´s follow up time  

 

Before treatment 

  

3 Months 

  

6 Months 

  

12 Months 

  Total 

 Count 

% of 

total Count 

% of 

total Count 

% of 

total Count 

% of 

total 

 

Normozoospermia 14 5.88 41 19.90 7 11.29 3   65 

Oligozoospermia 21 8.82 15 7.28 4 6.45 0 0 

        

40 

OligoAsthenozoospermia 27 11.34 11 5.34 2 3.23 3 7.89 43 

OligoTeratozoospermia 31 13.03 16 7.77 2 3.23 3 7.89 52 

Asthenoozoospermia 21 8.82 22 10.68 8 12.90 0 0 

        

51 

AsthenooTeratozoospermia 18 7.56 24 11.65 9 14.52 4 10.53 55 

Teratozoospermia 14 5.88 22 10.68 3 4.84 3 7.89 42 

OligoAstenoTeratozoospermia 64 26.89 28 13.59 12 19.35 7 18.42 111 

Azoospermia 28 11.76 27 13.11 15 24.19 15 39.47 85 

Total 238 100 206 100 62 100 38 100 544 

Statistically significant p<0.05 

 

Figure 5.13 Evolution of the relative frequencies of the semen classifications through time  

When we analyze the normality of the sperm parameter values through time, we see that there 

is a statistically significant relationship between the semen normality and when they were 

clinically assessed. In fact, after applying the Chi-square  test to the crosstab presented in Table 

5.10, the null hypothesis was rejected for all three sperm parameters with a p value under 0.001. 
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Table 5.10 Crosstab of sperm parameter normality according to follow up time  

 Before treatment 3 Months 6 Months 12 Months 

Total  Count 
% of 
Total Count 

% of 
Total Count 

% of 
Total Count 

% of 
Total 

Normal Concentration 67 28.15 109 52,91 27 43,55 10 26,32 213 

Abnormal Concentration 171 71.85 97 47,09 35 56,45 28 73,68 331 

Total 238 100.00 206 100.00 62 100.00 38 100.00 544 

Normal Progressive Motility 80 33.61 94 45.63 16 25.81 9 23.68 199 

Abnormal Progressive Motility 130 54.62 85 41.26 31 50.00 14 36.84 260 

Missing Progressive Motility 28 11.76 27 13.11 15 24.19 15 39.47 85 

Total 238 100.00 206 100.00 62 100.00 38 100.00 544 

Normal Morphology 83 34.87 89 43.20 21 33.87 6 15.79 199 

Abnormal Morphology 127 53.36 90 43.69 26 41.94 17 44.74 260 

Missing  Morphology 28 11.76 27 13.11 15 24.19 15 39.47 85 

Total 238 100.00 206 100.00 62 100.00 38 100.00 544 

Statistically significant p<0.05 

In Table 5.10, we can see that for sperm progressive motility, as well as for the sperm 

morphology, their corresponding missing values were also covered by the Chi-square  test. In 

fact, these missing values were not completely obtained by chance since they express the 

patients with azoospermia; and therefore, must also be computed by the Chi-square  test.  

By analyzing the values presented in Table 5.10, we see that 3 months after embolization the 

proportion of normal sperm concentrations tend to be 24.76% higher than before the treatment 

(i.e. 52.91% 3 months after the treatment minus 28.15% before the treatment) for the target 

population. The same trend occurs in the two other sperm parameters but with a lower 

improvement: 12.02% higher for sperm progressive motility and 8.33% higher for sperm 

morphology. Unfortunately, these improvements decrease at 6 months and further on at 12 

months after the treatment as seen in Figure 5.14. Moreover, at 12 months, the sample 

proportion of normal sperm parameters is lower than before the treatment: -1.84% for sperm 

concentration (i.e. 26.32% at 12 months minus the corresponding 28.15% before the treatment), 

-9.93% for sperm progressive motility and -19,08 for sperm morphology.    

 

Figure 5.14 Evolution of the frequencies of the sperm parameter´s normality through time 
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To assess the evolution of the abnormality of sperm parameter values through time, we have 

analyzed the number of abnormal (i.e. altered) sperm parameters that were identified in each 

semen analysis report (described in Table 4.1). When we assess if there is an association 

between the number of altered sperm parameters with when the semen analysis report was 

carried out (Table 5.11), we see that there is a statistical significant relationship between both 

attributes (p<0.001). By analyzing the higher values highlighted in orange in Table 5.11, we 

see that at each patient´s follow up time, the biggest sample proportion is always held by 

samples with one altered sperm parameter, which increases throughout the year but sees a slight 

depletion after 12 months. Figure 5.15 shows that trend by presenting a time series graph of the 

sample proportions presented in Table 5.11. By analyzing this graph, we can also see that the 

proportion of patients without altered sperm parameter values (i.e. patients with 

Normozoospermia) increases at 3 months and decreases gradually until 12 months but at the 

end, it is still 2.01% higher than before the treatment which is good since this sample represent 

the patients with normal semen. Furthermore, we see that the sample proportion of patients with 

OAT decreases throughout the follow up year in -8.47% which is also good (i.e. 18.42% at 12 

Months for OAT, minus 26.89% which is the corresponding sample proportion that exists 

before the treatment).    

Table 5.11 Number of abnormal sperm parameters through time 

 Before treatment  2 Months  6 Months  12 Months  
Total 
   Count 

% of 
Total Count % of Total Count 

% of 
Total Count 

% of 
Total 

Normozoospermia 14 5.88 41 19.90 7 11.29 3 7.89 65 

1 altered sperm 
parameter 84 35.29 86 41.75 30 48.39 18 47.37 218 

2 altered sperm 
parameters 76 31.93 51 24.76 13 20.97 10 26.32 150 

OAT 64 26.89 28 13.59 12 19.35 7 18.42 111 

Total 238 100 206 100 62 100 38 100 544 

Statistically significant p<0.05; OAT stands for OligoAsthenoTeratozoospermia 

 

Figure 5.15 Evolution of the relative frequencies of the number of abnormal sperm parameters 

through time 
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5.3.2.3 Evolution of sperm parameters values through time 

If we analyze sperm mean values (Figure 5.16) before and at 12 months after the treatment, we 

see that the sperm concentration goes from being under the 15 million/ml threshold (i.e. 13.93 

million/ml) to slightly above this threshold (i.e. 15.78 million/ml) suggesting improvement with 

treatment. To assess statistical significance, the ANOVA test was applied upon the mean of the 

preprocessed sperm parameter values at each follow up time (i.e. before the treatment, 3,6 and 

12 after the treatment) and the following results were generated: 

• For sperm concentration -> Statistically significant difference since p < 0.05 (p=0.017); 

• For sperm progressive motility -> No statistical significance since p > 0.05 (p=0.376); 

• For sperm morphology -> Statistically significant difference since p < 0.05 (p=0.001).  

By analyzing the time series graph in Figure 5.16, as well as the bar graph depicted in Figure 

5.17 of the sperm parameter mean values according to patient follow up time, we can say that 

the embolization treatment only significantly improves sperm concentrations (p=0.017) and 

morphologies (p=0.001) which still confirms the importance of the procedure.  

Furthermore, if we analyze the dimension of the population at each patient follow up time (see 

Table 5.12, Table 5.13 and Table 5.14 at row “n”), we see that the information regarding sperm 

morphologies at 6 and 12 months, is based on a reduced population (i.e. n at 6 months is 47 

patients and at 12 months, is 23 patients) in comparison with sperm concentrations and sperm 

progressive motilities. This situation occurs because in some cases, sperm morphology cannot 

be assessed or was not evaluated. Please note that for any ART procedure a semen analysis is 

always carried out, but only concentration and progressive motility are usually assessed. 

Nevertheless, we have also considered these ART semen analysis results although we do not 

have the corresponding sperm morphologies.  

 

Figure 5.16 Time series of sperm parameters´ evolution – analysis of mean values 
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Table 5.12 Main statistical results for sperm concentrations 

Table 5.13 Main statistical results for progressive motilities 

Table 5.14 Main statistical results for morphologies 

 

By analyzing the above standard deviations, we can say that the standard deviations are roughly 

equal for each sperm parameter through the follow up times. In fact, for the ANOVA test, it is 

good enough if the largest standard deviation is less than double the smallest standard deviation 

(Sullivan, 2011), which is in our case true. 

 

 

Figure 5.17 Bar Graph of the mean values of the sperm parameters with its standard 

deviations by the patient ´s follow up times  

Before Treatment 3 Months 6 Months 12 Months

Concentration 13,92562278 19,07118367 17,20580153 15,78131387

Progressive Motility 26,90438247 31,11520737 28,9137931 28,43801653

Morphology 4,061904762 4,672222222 4,787234043 3,130434783
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Concentration Before treatment 3 months 6 months 12 months 

Mean 13.93 19.07 17.21 15.78 

SD 23.64 24.94 24.07 18.66 

n 281 245 131 137 

Progressive Motility Before treatment 3 months 6 months 12 months 

Mean 26.90 31.12 28.91 28.44 

SD 22.46 22.21 25.05 23.15 

n 251 217 116 121 

Morphology Before treatment 3 months 6 months 12 months 

Mean 4.062 4.672 4.79 3.13 

SD 4.83 4.44 4.51 2.51 

n 210 180 47 23 
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5.3.2.4 Sperm parameter values vs pregnancy outcome 

Since this study aims to predict the success of the embolization treatment, the assessment of 

sperm parameter mean values as related to pregnancy outcomes is very important. Hence, this 

subsection aims to present the analysis with a partitioned data set.  

To assess if sperm parameter values are different in these two groups, the two-sample K-S test 

of the Kolmogorov Smirnov statistical test was in the RapidMiner Platform applied with the 

operator “Kolmogorov Smirnov test”. This statistical test was selected since sperm parameters 

values are continuous and without a well know underlying data distribution – even though our 

sample seems to be positively skewed. The results are presented in Table 5.15 and can be 

interpreted as follows:  

• attribute -> Name of the attribute tested;  

• p_value -> Statistical results of the two-sample K-S test that indicates that there is a 

statistical difference if p_value is below 0.05; 

• null_hypothesis_rejected -> Boolean value that indicates whether the null hypothesis of 

the two samples K-S test is rejected. 

Table 5.15 Kolmogorov Smirnov test results on the comparison of seminal parameters per 

pregnancy outcome 

Attribute p_value Null_hypothesis_rejected 

Concentration before treatment 0.549 false 

Concentration at 3 months 0.040 true 

Concentration at 6 months 0.000 true 

Concentration at 12 months 0.002 true 

Progressive motility before treatment 0.362 false 

Progressive motility at 3 months 0.002 true 

Progressive motility at 6 months 0.000 true 

Progressive motility at 12 months 0.000 true 

Morphology before treatment 0.002 true 

Morphology at 3 months 0.002 true 

Morphology at 6 months 0.000 true 

Morphology at 12 months 0.000 true 

 

As previously seen, the K-S operator returns true if the null hypothesis can be rejected, which 

means that both samples are different in shape and their population´s mean values are different. 

The sperm parameters with a different data distribution are highlighted in orange. With this in 

mind, and by analyzing the results presented in Table 5.15, we see that, notwithstanding the 

sperm concentration (p=0.549) and progressive motility (p=0.362) before embolization, all 

other sperm parameter values have a different data distribution at any patient follow up time. 

These results allow us to say that, before the treatment, the values of sperm morphology are 

statistically different in terms of data distribution for patients that we could achieve a 

pregnancy, in comparison to the ones that did not.  

If we analyze the values disclosed in Table 5.16, we see that patients that got their partner 

pregnant have higher mean values in all three sperm parameters and at all patient follow-up 

times after the embolization treatment. To assess whether these improvements are significant, 

the ANOVA test was applied. The computed results are presented in Table 5.17 where 
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statistically significant differences are highlighted in orange. Please note that the attribute 

Morphology at 12 months is not highlighted since it is not regarded as interesting due to the 

small sample size.  

Table 5.16 Sperm parameter mean values per pregnancy outcome and assessment time   

Sperm Parameter 
** ANOVA p<0.05  
*** ANOVA p<0.01 

Pregnancy 
Outcome 

n mean mean difference SD 

Concentration 

before treatment 
Yes 107 14.5 -0.4 21.6 

No 119 14.9 27.2 

3 months 
Yes 94 22.9 4.8 24.2 

No 107 18.1 27.5 

6 months** 
Yes 50 22.9 8.2 29.5 

No 65 14.7 20.6 

12 months 
Yes 60 18.8 4.3 19.5 

No 69 14.5 18.2 

Progressive Motility 

before treatment** 
Yes 102 29.9 6.9 23.3 

No 107 23.0 20.8 

3 months 
Yes 92 33.2 3.3 21.6 

No 92 29.9 21.1 

6 months 
Yes 49 33.5 6.2 25.1 

No 57 27.3 25.6 

12 months 
Yes 58 30.8 4.1 23.6 

No 58 26.7 22.8 

Morphology 

before treatment 
Yes 89 4.0 0.4 5.0 

No 87 3.6 3.5 

3 months*** 
Yes 78 5.5 1.6 5.0 

No 74 3.9 3.4 

6 months 
Yes 22 5.0 0.5 3.2 

No 19 4.5 5.2 

12 months*** 
Yes 10 4.0 1.1 3.3 

No 12 2.9 1.4 

 

Table 5.17 ANOVA results for sperm parameter differences between pregnancy results 

Sperm Parameter ANOVA p value Difference statistically significant? 

Concentration before treatment 0.903 No 

Concentration at 3 months 0.165 No 

Concentration at 6 months 0.015 Yes 

Concentration at 12 months 0.081 No 

Progressive motility before treatment 0.018 Yes 

Progressive motility at 3 months 0.236 No 

Progressive motility at 6 months 0.064 No 

Progressive motility at 12 months 0.171 No 

Morphology before treatment 0.488 No 

Morphology at 3 months 0.004 Yes 

Morphology at 6 months 0.327 No 

Morphology at 12 months 0.000 Yes 

 

By analyzing the ANOVA test results (Table 5.17), we see that even though sperm progressive 

motility does not significantly improve after the embolization treatment, its value highlights a 

data pattern which indicates that sperm progressive motility before the treatment of patients that 

were able to get their partner pregnant is statistically different (ANOVA test, p=0.018), despite 
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their data distribution being the same (two sample KS test, p=0.362). Furthermore, we see that 

sperm morphology at 3 months is significantly different in its data distribution (two sample KS 

test, p=0.002) and values (ANOVA test, p=0.004). Since our sample size for the Formas_N_1A 

is of 22 patients, we only consider the significance given to the sperm morphology at 3 months 

that includes 152 patients which is a more acceptable sample dimension to formulate a valid 

conclusion. For sperm morphology before the treatment that showed a significant difference in 

its data distribution with the two sample KS test, their values are not significantly different 

(ANOVA test gave p=0.488). Despite not having a significant difference on all sperm parameter 

values, the mean values of all sperm parameters are all higher in group b (Gravidez=Sim) after 

the treatment which suggests that the patients that got their partner pregnant had a greater 

response to the treatment with a statistical significance on the sperm morphology at 3 months 

(p=0.004) and at 6 months on the sperm concentration (p=0.015). 

To analyze the differences between the mean values presented under the column name “mean” 

of Table 5.16, graphs were generated using the RapidMiner platform. Each graph below depicts 

the mean values of each sperm parameter: in Figure 5.18, we can see the mean sperm 

concentration values, in Figure 5.19, mean sperm progressive motility values and in Figure 

5.20, mean sperm morphology values.  

 

Figure 5.18 Means of sperm concentrations 

 

Figure 5.19 Means of sperm progressive motility 
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Figure 5.20 Means of sperm morphology 

5.3.2.5 Time took to conceive vs type of conception 

If we analyze the values of the “Gravidez_após_emb” attribute, we see that the dataset has 105 

instances filled with the number of months a couple took to conceive after the embolization 

treatment. Moreover, we also see, based on quartiles values, that 50% of the male patients get 

their partner pregnant between the 9th and the 21th month after the embolization treatment. 

However, on average, couples get pregnant around the 13th month and with a high standard 

deviation of ±15.09 months.   

To identify a pattern on when the pregnancies are achieved after the embolization, we have 

built a bar graph to analyze the number of pregnancies per the number of months the couple 

took to conceive. If we analyze the resultant bar graph depicted in Figure 5.21, we see that in 

some months we have much more pregnancies than others (e.g. at 3, 4, 6, 8, 9, 12, 17, 24,26, 

28 and 48 months after the embolization we have much more pregnancies than in the other 

months) encompassing 54 out of the 105 patients assessed (51.43%). To see if there is a 

statistically significant difference, we have applied an ANOVA and have seen that the number 

of pregnancies occurring at 3, 4, 6 etc. months, is statistically significantly different (p=0.016) 

than the number of pregnancies occurring at 0, 1, 2, 5 etc. months where we clearly see less 

pregnancies happening. 

To have some insights on the causes of this difference, we have analyzed how the patient 

partners have conceived (i.e. if they have conceived spontaneously or/and with an ART 

procedure after the treatment). The group of patients that stands out in Figure 5.21 (i.e. group 

of patients that have conceived at the month 3, 4, 6 etc) are presented in Table 5.18 with the 

name “Stand out” and the other patients (i.e. group of patients that have conceived at the month 

0, 1, 2, 5 etc.), with the name “Does not stand out”. If we analyze the frequencies (count of 

patients by type of conception) presented in Table 5.18 we see that the ART procedures are the 

most frequent among both groups. However, the number of ART procedures performed in the 

“Stand out” group is lower than the “Does not stand out” group which in turn has more 

spontaneous pregnancies. Moreover, the relative frequency of spontaneous pregnancies tends 

to be 15% higher in the “Stand out” group in comparison with the other group. However, the 
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highest relative frequency gap between both groups are for the patients that after the 

embolization treatment had more than one pregnancy, one with an ART procedure, the other 

spontaneously (that information can be analyzed under the column name “Both”). In fact, the 

“Stand out” group tends to have 25% more pregnancies and with both conceptions’ methods. 

In terms of the relationship between the two subjects, we see that there is no significant 

relationship between these groups of patients and the type of conception they used (Chi-square 

test p=0.42)  

 

Figure 5.21 Relative frequency of patients by the number of months they took to conceive  

Table 5.18 Crosstab of groups of patients by the type of conception  

 Type of conception 

Total 
Groups of patients 

ART  Spontaneously Both 

Count 
% of 
Total 

Count 
% of 
Total 

Count 
% of 
Total 

Stand out 26 45.61 23 57.5 5 62.5 54 

Does not stand out 31 54.39 17 42.5 3 37.5 51 

Total 57 100 40 100 8 100 105 

Statistically not significant p>0.05 

If we consider the first 12 months after the embolization treatment – which is when the male 

patient follow up time was carried out – we see that 48.57% (51/105*100) of the 105 couples 

were able to conceive until the end of the year. In Figure 5.22 we present a cumulative relative 

frequency bar graph that depicts that reality since the height of the bar of the graph at 12 months 

is quite half the height of the last cumulative bar which represents all 105 instances  
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Figure 5.22 Cumulative frequencies of patients by the number of months they took to conceive  

Since we have previously seen that the sperm parameter values improve after the embolization 

treatment, we have applied an ANOVA test, to further on inspect the difference in sperm 

parameter values between both patients’ groups.  

If we analyze the obtained results presented in Table 5.19, we see that the mean values of the 

sperm concentrations are significantly different at 12 months after embolization between the 

“Stand out” and the “Does not stand out” patient group (Concentration at 12 months has 

p=0.011) which corresponds to the 12th month when the highest percentage of patients achieved 

pregnancy (8.57%) along with the 9th month. In terms of the other sperm parameters, we see 

that only the sperm morphology at 6 months is significantly different (Morphology at 6 months 

has p=0.013).  

Table 5.19 Statistical parameters per sperm parameter and patient group   

Sperm Parameter Patients group n Mean SD ANOVA (p) 

Concentration before treatment 

 

Does not Stand out 51 13.89 21.36 0.754 

 Stand out 54 15.24 22.35 

Concentration at 3 months  

 

Does not Stand out 45 27.39 28.92 
0.086 

Stand out 47 19.21 18.51 

Concentration at 6 months  

 

Does not Stand out 17 21.29 26.60 
0.728 

Stand out 32 23.29 31.63 

Concentration at 12 months  

 

Does not Stand out 33 23.11 20.98 
0.011 

Stand out 26 13.46 16.83 

Progressive motility before treatment 

 

Does not Stand out 49 32.12 23.91 
0.389 

Stand out 51 28.16 23.04 

Progressive motility at 3 months 
Does not Stand out 45 35.20 22.20 

0.393 
Stand out 45 31.53 21.60 

Progressive motility at 6 months 
Does not Stand out 17 32.77 23.15 

0.746 
Stand out 31 34.36 26.76 

Progressive motility at 12 months 
Does not Stand out 31 31.90 22.35 

0.635 
Stand out 26 29.65 25.77 

Morphology before treatment 

 

Does not Stand out 45 3.13 2.69 
0.090 

Stand out 43 4.83 6.60 
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Sperm Parameter Patients group n Mean SD ANOVA (p) 

Morphology at 3 months 
Does not Stand out 39 4.82 5.05 

0.146 
Stand out 37 6.24 4.91 

Morphology at 6 months 
Does not Stand out 8 5.75 3.11 

0.013 
Stand out 13 4.23 3.03 

Morphology at 12 months 
Does not Stand out 6 3.67 3.39 

0.232 
Stand out 4 4.50 3.70 

 

In Figure 5.23, on the right, we have the graph for sperm concentrations and on the left, the 

configurations set in the advanced charts option of the RapidMiner platform to generate that 

type of graph (since other similar graphs were analogously configurated, we will from now on 

only present the generated graph). If we focus on the higher sperm concentration mean values 

that the “Stand out” group has, we see that they had a higher sperm concentration before and 6 

months after the treatment but they are not significantly higher statistically (Conc_Pre has 

p=0.754 and Conc_Pre has p=0.728). However, we see that the mean value of the sperm 

concentration at 12 months is significantly lower statistically (Conc_1A has p=0.011) than the 

“Does not Stand out group” with a mean value of 13.46 millions/ml in contrast to the good 

concentration average that the “Does not Stand out group” has (23.11 millions/ml). If we check 

how these 26 “Stand out” patients conceived at the 12th month, we see that 73.08% (19/26) have 

conceived with an ART procedure: 19 with ART, 3 spontaneously and 4 with both methods 

since as of the 12th month they had 2 pregnancies, one with ART and the other one 

spontaneously.   

In Figure 5.24, we see that the patients of the “Stand Out” group have a higher sperm 

progressive motility mean value at 6 months but it is not significant (A_B_6M has p=0.746).  

If we analyze the sperm morphologies depicted in Figure 5.25, we see that the “Stand Out” 

group does not have significantly better sperm morphology before and 3 months after the 

treatment (Formas_N_Pre p=0.090 and Formas_N_3M p=0.146) but has a significantly lower 

sperm morphology at 6 months after the treatment (Formas_N_6M p=0.013). If we analyze the 

13 patients of that sample we see that 6 of them conceived with ART procedures, 5 

spontaneously and 2 with both methods.  

Contrarily to what we had initially expected, the “Stand out” group distinguished itself from 

the “Does not stand out group” from its statistically significantly lower mean values in one of 

its sperm parameters: at 6 months, with a lower mean value of its sperm morphology and at 12 

months, with a lower mean value of its sperm concentration. Since the sample size of the sperm 

morphology at 6 months is of 8 patients, for the “Does not stand out”, and 13 patients, for the 

“Stand out” group, we will not consider the significance obtained for sperm morphology in our 

final conclusions, due to the small sample size at 6 months. 
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Figure 5.23 Mean values of the sperm concentrations by the patient group on RapidMiner  

 

Figure 5.24 Mean values of the sperm progressive motilities by the patient group 

 

Figure 5.25 Mean values of the sperm morphologies by the patient group 



Chapter 5                                                                                        STUDY OF THE VARICOCELE CONDITION 

Judith Santos Pereira                                                                                                                                             75 
 

To sum up the findings on this matter, we have built the bar graph presented in Figure 5.26 that 

depicts the statistically significant findings on the perspective of this “Stand out” patient group. 

This sum up bar graph as the following legend:  

• Light blue bar = month with a normal number of patients that achieved pregnancy (i.e. 

the “Does not stand out” patients’ group). It encompasses 51 patients; 

• Orange and strong blue bar = month that has a significant number of patients that 

achieved pregnancy (p=0.016) (i.e. the “Stand out” patients’ group) in comparison to 

the other months. These bars encompass 54 patients; 

• Orange bar = month that have a statistically significant number of patients that achieved 

pregnancy and has a significant difference in one of its sperm parameter values; 

• Bar´s notes = indication of the statistically significant difference on sperm parameter 

values of the patients in the “Stand out” group and other important findings. 

Under the bar graph we can see the relative frequency of patients that achieved pregnancy by 

month the pregnancy, and below it, we have the number of patients encompassed in each of 

these months which in total covers the 105 patients assessed in this analysis. 

 

Figure 5.26 Sum up bar graph with the significant sperm parameter results  

5.3.2.6 Most correlated attributes 

As suggested by Han et al. (2012) correlation analysis can be performed with the Pearson 

correlation test, between numeric attributes, or by the Chi-square  test, between nominal or 

discrete attributes  (Wujek, Hall, & Güneș, n.d.). Since the aim of this study is to predict the 

success of the embolization treatment through pregnancy outcomes, we have assessed the 
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relation of the attributes with the selected label attribute to identify the ones that are more related 

with the pregnancy outcome. 

Pearson correlation measures showed that sperm morphology at 12 months “Formas_N_1A” 

(r=-0.286) and the time of the treatment “Data_Embolização” (r=0.204) were the attributes that 

presented the highest correlation with the pregnancy; and hence, all correlations were seen as 

minor for the “Gravidez” label attribute (see Table 5.20).  

Table 5.20 Pearson Correlation results 

Attribute Name Pearson Correlation with the pregnancy outcome 

Idade_H 0.021 

Idade_M 0.156 

Tempo_Infert 0.154 

Data_Embolizacao 0.204 

Conc_Pre 0.008 

Conc_3M -0.092 

Conc_6M -0.161 

Conc_1A -0.115 

A_B_Pre -0.155 

A_B_3M -0.079 

A_B_6M -0.123 

A_B_1A -0.091 

Formas_N_Pre -0.045 

Formas_N_3M -0.186 

Formas_N_6M -0.068 

Formas_N_1A -0.286 

Numero_alterações_Pre 0.007 

Numero_alterações_3M 0.143 

Numero_alterações_6M 0.089 

Numero_alterações_1A 0.033 

 

In terms of interesting correlations, we have seen that sperm parameters are mainly moderately 

dependent between themselves during the follow up times (all computed results with the 

Pearson correlation test are in Appendix A): 

• Sperm concentration before the treatment “Conc_Pre” with the sperm concentration at 

6 months after the treatment “Conc_6M”  (r=0.633);  

• Sperm concentration 3 months after the treatment “Conc_3M” with the sperm 

concentration at 6 months after the treatment “Conc_6M” (r=0.685);  

• Sperm concentration 6 months after the treatment “Conc_6M” with the sperm 

concentration at 12 months after the treatment “Conc_1A” (r=0.738);  

• Sperm progressive motility before the treatment “A_B_Pre” with the sperm progressive 

motility at 6 months “A_B_6M” (r=0.588); 

• Sperm progressive motility 3 months after the treatment “A_B_3M” with the sperm 

progressive motility at 6 months “A_B_6M” (r=0.597); 

• Sperm progressive motility 12 months after the treatment “A_B_1A” with the sperm 

progressive motility at 3 months “A_B_3M” (r=0.427); 

• Sperm morphology at 3 months after the treatment “Formas_N_3M” with the sperm 

morphology at 12 months (r=0.544). 
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Furthermore, we also have seen that the age of the male patient is moderately correlated with 

the age of his female partner (r=0.544). 

By analyzing the results computed with the Chi-square test, we see that the attributes that are 

more related with pregnancy are the following: 

• Severity grade (p=0.049); 

• Occupational hazard due to possible toxic exposure (p=0.023); 

• Categorization of the sperm concentration at 3 months (p=0.017); 

• Categorization of the sperm progressive motility before (p=0.027) and 3 months 

(p=0.022) after the treatment; 

• Categorization of the semen analysis reports performed before (p=0.017), 3 (p=0.018) 

and 6 (p=0.036) months after the treatment.  

In Table 5.21, we present the results of the computed Chi-square  test for each qualitative 

attribute described in Table 4.3. 

Table 5.21 Chi square results  

Attribute Name Chi square value p value 

Prim_Sec 0.080 0.961 

Factor_Infertilidade_Feminino 17.551 0.093 

Factor_Infertilidade_Masculino 17.828 0.058 

HabitosTabagicos 25.692 0.691 

HabitosAlcoolicos 12.124 0.277 

Cirurgias 62.988 0.512 

Doença 68.543 0.527 

Profissao 119.292 0.445 

Grau_Varicoc 7.869 0.049 

Lateralidade 1.503 0.472 

Volume_Testiculo_Médico 10.468 0.655 

TratamentoFeito_lateralidade 2.653 0.265 

TratamentoFeito_material 3.917 0.271 

Complicações 7.045 0.532 

Repetia_embolização 1.077 0.584 

Razão_não_repetir 6.610 0.251 

HabitosTabagicos_Processado_Sim

plificado 
1.007 0.604 

HabitosAlcoolicos_Processado_Si

mplificado 
2.409 0.300 

Cirurgias_Processado_Simplificado 1.045 0.593 

DoençaSimplificada 45.400 0.413 

ProfissãoComRiscoDeContactoDeP

rodutosOuAmbientesToxicos 
7.549 0.023 

Qualificar_Espermograma_Pre 20.145 0.017 

Qualificar_Espermograma_3M 20.007 0.018 

Qualificar_Espermograma_6M 17.776 0.038 

Qualificar_Espermograma_1A 8.588 0.284 

Conc_Pre_Qualificado 3.760 0.153 

Conc_3M_Qualificado 8.135 0.017 
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Attribute Name Chi square value p value 

Conc_6M_Qualificado 3.186 0.203 

Conc_1A_Qualificado 0.677 0.713 

A_B_Pre_Qualificado 7.221 0.027 

A_B_3M_Qualificado 7.625 0.022 

A_B_6M_Qualificado 0.405 0.817 

A_B_1A_Qualificado 1.175 0.556 

Formas_N_Pre_Qualificado 5.359 0.069 

Formas_N_3M_Qualificado 5.446 0.066 

Formas_N_6M_Qualificado 4.123 0.127 

Formas_N_1A_Qualificado 1.503 0.472 

 

If we analyze the Crosstab in Table 5.22, we see that the most common severity grade for the 

patients that were and were not able to conceive is the severity grade II which tends to be 

13.77% more prevalent on patients that were able to conceive. In contrast, the severity grade 

III, that is seen as the less prevalent severity grade among both types of patients, tends to be 

13.06% more prevalent on patients that were not able to conceive. Most important values are 

in Table 5.22, and similarly in other below crosstabs, highlighted in orange. 

Table 5.22 Crosstab of the severity grade by the pregnancy test result (p=0.049) 

 Pregnancy test result 

Total 
Severity Grade 

Yes No 

Count % of Total Count % of Total 

I 29 34.12 31 34.83 60 

II 48 56.47 38 42.70 86 

III 8 9.41 20 22.47 28 

Total 85 100 89 100 174 

Statistically significant p<0.05 

If we analyze the Crosstab depicted in Table 5.23, we see that the putative toxicity of the male 

patient´s occupation (a.k.a. toxic occupation) is related with achieving pregnancy (p=0.023). 

Even if most male patients have a non-toxic occupation, we see that the male patients that were 

able to achieve pregnancy tend to have 2.46% less chance of having a toxic occupation.    

Table 5.23 Crosstab of the toxicity of the patient´s occupation by the pregnancy test result  

 Pregnancy test result 

Total 
Toxic Occupation 

Yes No 

Count % of Total Count % of Total 

Yes 22 31.88 34 34.34 56 

No 47 68.12 65 65.66 112 

Total 69 100 99 100 168 

Statistically significant p<0.05 

Furthermore, we have seen that it is not by chance that the qualification of the sperm 

concentration values at 3 months are related with the fact of being able to achieve pregnancy 

(p=0.017). In fact, we see (Table 5.24) that the male patients that were able to achieve 

pregnancy tend to have at 3 months 20.07% more normal sperm concentration values than other 

patients since the male patients that were not able to achieve pregnancy tend to have at 3 months 

20.07% more abnormal sperm concentration values.    
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Table 5.24 Crosstab of the qualification of the sperm concentration at 3 months by pregnancy 

test result  

 Pregnancy test result 

Total 
Conc_3M_Qualificado 

Yes No 

Count % of Total Count % of Total 

Normal 54 57.45 40 37.38 94 

Abnormal 40 42.55 67 62.62 107 

Total 94 100 107 100 201 

Statistically significant p<0.05 

If we analyze the qualification of sperm progressive motility before the treatment, we see  

(Table 5.25) that the male patients that could achieve pregnancy after the embolization 

treatment tend to have already 10.38% more normal values on sperm progressive motility 

before the treatment. However, even if the relative frequency of the abnormality of the sperm 

parameter values overcomes its normality in both patient groups, the patients that were not able 

to achieve pregnancy tend to have 10.38% more abnormal values on its sperm progressive 

motility than other patients.  

Table 5.25 Crosstab of the qualification of the sperm progressive motility before the treatment 

by the pregnancy test result  

 Pregnancy test result 

Total 
A_B_Pre_Qualificado 

Yes No 

Count % of Total Count % of Total 

Normal 43 42.16 34 31.78 77 

Abnormal 59 57.84 73 68.22 132 

Total 102 100 107 100 209 

Statistically significant p<0.05 

Similarly with what happened with the sperm concentration values at 3 months, the values of 

sperm progressive motility at 3 months tends to have 13.05% more normal values on patients 

that were able to achieve pregnancy than on other patients. In contrast, the patients that were 

not able to achieve pregnancy tend to have 13.05% more abnormal sperm progressive motility 

values (see Table 5.26).  

Table 5.26 Crosstab of the qualification of the sperm progressive motility at 3 months after 

the treatment by pregnancy test result  

 Pregnancy test result 

Total 
A_B_3M_Qualificado 

Yes No 

Count % of Total Count % of Total 

Normal 50 54.35 38 41.30 88 

Abnormal 42 45.65 54 58.70 96 

Total 92 100 92 100 184 

Statistically significant p<0.05 

Moreover, if we analyze the qualification of the semen analysis report before and after the 

treatment (at 3 and 6 months), we see that they also have a statistically significant relationship 

with the pregnancy test result. If we analyze the Crosstab depicted in Table 5.27, we see that 

the male patients that were not able to conceive tend to be 6.92% more Azoospermic, 7.03% 

more Teratozoospermic and 8.94% more OligoAsthenoTeratozoospermic than the male 

patients that were able to conceive. Furthermore, this last semen qualification is more prevalent 
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on patients that were not able to conceive, despite being the most frequent semen qualification 

in both patient groups before treatment. The semen classification that has the biggest relative 

frequency discrepancy between the two patient groups is the OligoTeratozoospermia which is 

15.33% more prevalent in patients that were able to conceive.  

Table 5.27 Crosstab of the qualification of the semen analysis report before the treatment by 

the pregnancy test result  

 Pregnancy test result 

Total 
Qualificar_Espermograma_Pre 

Yes No 

Count % of Total Count % of Total 

Normozoospermia 6 6.45 5 5.10 11 

Oligozoospermia 10 10.75 9 9.18 19 

OligoAsthenozoospermia 12 12.90 10 10.20 22 

OligoTeratozoospermia 19 20.43 5 5.10 24 

Asthenozoospermia 9 9.68 8 8.16 17 

AsthenoTeratozoospermia 8 8.60 8 8.16 16 

Teratozoospermia 2 2.15 9 9.18 11 

OligoAsthenoTeratozoospermia 23 24.73 33 33.67 56 

Azoospermia 4 4.30 11 11.22 15 

Total 93 100 98 100 191 

Statistically significant p<0.05 

In terms of the sample proportions of the semen classification, we see that 3 months after the 

embolization treatment, patients that were able to conceive tend to be 18.76% more 

normozoospermic and that normozoospermia is the most prevalent semen classification 3 

months after the embolization treatment in contrast to before the treatment, where the main 

category was OligoAsthenoTeratozoospermia. If we analyze the male patients that were not 

able to conceive, we see that the most prevalent semen classification is Azoospermia that tends 

to be 14.35% greater, followed by the OligoAsthenoTeratozoospermia that tends to be 4.48% 

greater than for the patients that were able to conceive (see Table 5.28).     

Table 5.28 Crosstab of the qualification of the semen analysis report at 3 months after the 

treatment by the pregnancy test result  

 Pregnancy test result 

Total 
Qualificar_Espermograma_3M 

Yes No 

Count % of Total Count % of Total 

Normozoospermia 24 30.00 10 11.24 34 

Oligozoospermia 4 5.00 9 10.11 13 

OligoAstenozoospermia 5 6.25 4 4.49 9 

OligoTeratozoospermia 8 10.00 7 7.87 15 

Asthenozoospermia 9 11.25 10 11.24 19 

AsthenoTeratozoospermia 8 10.00 12 13.48 20 

Teratozoospermia 11 13.75 8 8.99 19 

OligoAstenoTeratozoospermia 9 11.25 14 15.73 23 

Azoospermia 2 2.50 15 16.85 17 

Total 80 100 89 100 169 

Statistically significant p<0.05 

If we analyze the evolution of the sample proportions of the semen classifications at 6 months 

( Table 5.29), we see that Asthenozoospermia overtakes Normozoospermia in patients that have 

conceived by increasing by 10.49% (21.74% - 11.25%). However, the most prevalent semen 

classifications are still the same for the patients that were not able to conceive and a greater 
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discrepancy of the relative frequencies between each patiens groups is seen: 25.28% (29.63%-

4.35%) for Azoospermia and 16.59% (29.63%-13.04%) for OligoAsthenoTeratozoospermia. 

Furthermore, in the group of patients that were not able to conceive, we see that at 6 months 

after treatment there is no patient with Oligozoospermia, OligoAsthenozoospermia and 

OligoTeratozoospermia. 

Table 5.29 Crosstab of the qualification of the semen analysis report at 6 months after the 

treatment by pregnancy test result  

 Pregnancy test result 

Total 
Qualificar_Espermograma_6M 

Yes No 

Count % of Total Count % of Total 

Normozoospermia 2 8.70 4 14.81 6 

Oligozoospermia 4 17.39 0 0.00 4 

OligoAstenozoospermia 2 8.70 0 0.00 2 

OligoTeratozoospermia 2 8.70 0 0.00 2 

Asthenozoospermia 5 21.74 2 7.41 7 

AsthenoTeratozoospermia 3 13.04 3 11.11 6 

Teratozoospermia 1 4.35 2 7.41 3 

OligoAstenoTeratozoospermia 3 13.04 8 29.63 11 

Azoospermia 1 4.35 8 29.63 9 

Total 23 100 27 100 50 

Statistically significant p<0.05 

5.3.2.7 Varicocele laterality vs severity grade 

When have analyzed the patients with the varicocele condition on the left or on both testes along 

with its severity (subsection 5.3.2.1.7), we have further on wondered if there was a relationship 

between these two attributes. 

Table 5.30 presents the computed result. If we analyze the result shown, we see that the 

laterality of the varicocele condition is not related with its severity grade (p>0.05).  

Table 5.30 Chi Square result for the varicocele´s severity grade vs its laterality 

 

5.3.2.8 Semen classification vs Laterality 

Of the 230 male patients that were able to conceive, we have assessed the statistical relationship 

between the semen classification and the laterality of the varicocele condition and have only 

considered the patients that had the condition on the left and both testicles since only 1 patient 

has it on its right testicle. We have seen that there is no statistical significant relationship 

between the patients that have the varicocele condition on the left side or on both sides in terms 

of semen classification or pregnancy (p>0.05; Table 5.31). 
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Table 5.31 Chi Square results for semen classification vs laterality 

 

5.3.2.9 Semen classification vs Drinking habit 

We have assessed the statistical relationship between the semen classification and the simplified 

drinking habits of the patients and have seen that there is no statistical significant relationship 

between the semen classification and the fact that the patients drink or do not drink (Table 5.32)  

Table 5.32 Chi Square results for semen classification vs drinking habit  

 

5.3.2.10 Semen classification vs Smoking habit 

We have also assessed the statistical relationship between the semen classification and the 

simplified smoking habits of the patients and have seen that there is no statistically significant 

relationship between the semen classifications and the smoking habits. (Table 5.33)  

Table 5.33 Chi Square results for Semen classification vs Smoking habit 

 

5.3.2.11 Patient age vs Pregnancy outcome 

By applying the ANOVA test, we have seen that the age of the male patient does not 

significantly differ between the ones that were able to conceive and the ones that were not 

(p=0.752). However, the age of the male patient´s partner (i.e. the woman patient) significantly 

differs (p=0.018). Figure 5.27, depicts this difference for the 230 patients that had no-missing 

values under the “Gravidez” attribute and shows that the patient´s partners that did not 

conceived were in average 1.318 (±1.228) year older than the ones that were able to conceive. 
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In contrast, we see that the mean of the male patient age is quite the same (± 34 years old). The 

values of the means and standard deviations depicted in Figure 5.27 can be seen in Table 5.34. 

 

Figure 5.27 Bar Graph of the patient´s mean age with its standard deviations by the patient´s 

pregnancy outcome 

Table 5.34 Means and Standard Deviations of the patient´s ages vs the pregnancy outcomes 

Mean Patient´s age (Man) Patient´s partner age (Woman) 

Pregnancy Outcome = Yes 34.533 31.813 

Pregnancy Outcome = No 34.748 33.131 

Standard Deviation Patient´s age (Man) Patient´s partner age (Woman) 

Pregnancy Outcome = Yes 5.008 3.489 

Pregnancy Outcome = No 5.268 4.717 

 

5.4 Data Preparation  

In this section, we disclose how the data preparation was carried out. Hence, in section 5.4.1, 

we present the results of data quality assessment; in section 5.4.2, we specify how new attributes 

were constructed and how the initially provided and selected attributes were reorganized, 

cleaned and formatted; in section 5.4.3, we specify how we have merged the imported data that 

we have used to fill some of the attributes that were seen missing in the final preprocessed data 

set, and finally, in section  5.4.4., we showcase the attributes that were selected to mine.    

5.4.1 Data Quality Assessment 

The quality of the data of the attributes disclosed in the Appendix A was carried out, as 

suggested by the CRISP-DM methodology, by addressing the following questions: if the data 

covered all the cases required to achieve the data mining goals set; if the data was correct; if it 

had errors, and if so, their frequency; if there are missing values (i.e. seen in the initially 

provided data set with blanks or with the unknown values) and if so, where do they occur and 

how common they were.  
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To check if the provided data covered all the cases required to tackle all data mining goals set, 

we have assessed if the initially provided and selected attributes encompassed the information 

needed to tackle them. For it, we have built the below Table 5.35 were we have identified the 

attributes of the Appendix A that could be analyzed to tackle each data mining goal based on 

the type of information they provide. Hence, this table has the following structure: the column 

named “Original Attributes” specifies all attributes in Appendix A, the column named “Type 

of information” specifies the type of information that the Original Attribute provides, and the 

remaining columns, specifies the data mining goals that were initially set out – these Goals are 

grouped by the type of analysis that one can perform in the data mining domain. This table was 

filled based on the information that was studied in the related works exposed in section 3.3 and 

3.4 and acquired from the BRSC team. Further on, this table helped us to identify if all Goals 

were achievable, if more information (i.e. Attributes) was needed to fulfill the aims set or if the 

reorganization of the information gathered in some of the attributes was needed. The attributes 

that could be used to tackle each data mining goal is identified in the next Table 5.35 with a 

green check mark. When an attribute needed to be reorganized into new attributes a black check 

mark was written, otherwise nothing was specified. 

If we analyze Table 5.35, we can see that the data mining goals 1 and 4 do not have any 

attributes that could be used to tackle them. In fact, these goals aim to predict how a male patient 

can develop a varicocele condition (Goal 1) and identify some patterns (Goal 4). Since the 

initially provided data set only has 2 patients (i.e. instances) that did not have the varicocele 

condition, these goals were not possible to achieve due to the low number of instances for these 

cases for the data mining algorithms to use. Hence, the incompleteness of the provided data set 

on this matter, incapacitated us to achieve the Goals 1 and 4 since it was not even possible to 

retrieve more data in the CHUC databases on that matter. For this reason, this study only 

focused on men with the varicocele condition and deleted the remaining and duplicated 

instances which made the data set end up with 293 instances. 

 For the other data mining goals, we see that the “FR” attribute, as well as the “Factor_F” and 

“Notas”, needed to be reorganized. In fact, each of them gathers data from different 

entities/subjects. For example, the “FR” attribute gathers external factors such as occupation, 

diseases and smoking/drinking habits in the same attribute, which makes the assessment of each 

of these subjects harder. Hence, new attributes were created.  

If we analyze the attributes that the initially provided data set to tackle Goal 2, we see that all 

attributes could be used, in terms of the type of information they provide. However, we could 

think that the attributes “Idade_M”, “Tempo_Infert” and “Prim_Sec” would not provide at first 

sight useful information to predict the success of the male´s treatment due to their relation with 

the patient female partner, but since the success of the embolization is measured with pregnancy 

outcome, these attributes might also contribute for the aim set in Goal 2. 

Concerning sperm parameter values, we see that to achieve the data mining Goal 3, we need to 

generate several attributes that categorizes the sperm parameter values to further on assess 

seminal quality (i.e. assess if they have Azoospermia etc.). At last, for the Goal 5, we see that 

any attribute can be interesting to assess since it aims to identify any kind of data patterns; and 
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therefore, the creation of new attributes is welcomed. However, some patterns were initially 

suggested to assess which led us to focus on these specific subjects: the patient´s seminal quality 

vs smoking and drinking habits, as well as laterality. Furthermore, since we have seen that the 

materials used during the embolization procedure could influence its success (Bilreiro et al., 

2017), and the testis size, indicate the advanced state of the varicocele condition (Aza 

Mohammed & Frank Chinegwundoh, 2009), we have also created new attributes to gather those 

data. Unfortunately, we were not able to retrieve those data for all patients that we had in our 

dataset, but it at least provided us with some clues. 

Table 5.35 Data Set Completeness Assessment 

  Predictive Descriptive 

  1) 

Varicocele 

2) 

Embolization 

Success 

3) 

Semen 

Classification 

Vs 

Laterality 

4) 

Varicocele  

vs  

Male´s 

Infertility 

5) 

Find other 

male´s 

infertility 

patterns 

Original Attribute  Type of information  

Idade_H Patient´s info      
Idade_M Patient´s Partner info               
Tempo_Infert Patient´s Partner info                
Prim_Sec Patient´s Partner info               
FR Male Patient´s risk factors      
Fator_F Couple´s infertility factor       
Grau_Varicoc varicocele´s info      
Lateralidade varicocele´s info      
Data Embolization Data       
Notas Embolization´s feedback      
Complicações Embolization´s feedback      
Conc_Pre Sperm parameter value      
Conc_3M Sperm parameter value      
Conc_6M Sperm parameter value      
Conc_1A Sperm parameter value      
A_B_pré Sperm parameter value      
A_B_3M Sperm parameter value      
A_B_6M Sperm parameter value      
A_B_1A Sperm parameter value      
Formas_N_pré Sperm parameter value      
Formas_N_3M Sperm parameter value      
Formas_N_6M Sperm parameter value      
Formas_N_1A Sperm parameter value      
Gravidez Possible Label attribute      
Num_Gravidezes Possible Label attribute      
Nascimento Possible Label attribute      
Num_Bébés Possible Label attribute      
Gravidez_pós_emb Possible Label attribute      
PMA Possible Label attribute      
Gravidez_espontanea Possible Label attribute      
Repetia_embolização Embolization´s feedback      
Razão_não_repetir Embolization´s feedback      

 

In the following Table 5.36 we present the results of the overall data quality assessment 

performed upon the data attributes initially provided and selected. Hence, in this table we have 
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specified for each key dimension the type of information that did not comply with the data 

characteristics disclosed in the key data dimension´ specified in section 4.2.1. Note that the type 

of information in this table was categorized in the previous table and the Requirements in the 

key dimension definitions was disclosed in Table 4.4  

Table 5.36 Data Quality Assessment of the initially provided data set 

Key dimension Requirements Type of information that did not comply 

Completeness Directly usable (without data 

preparation needed) and 

Filled  

All attributes  

Consistency Coherent and without 

duplicated instances. 

Some Possible Label attributes showed in the same 

instance incoherence between them and the provided 

data set had duplicated instances. 

Conformity Rightly Formatted The Embolization data had the format mm/dd/yyyy so it 

was then formatted to dd/mm/yyyy. The Male Patient 

risk factors, the Couple´s Infertility factors and the 

Embolization´s feed backs had different values for the 

same meaning; and therefore, the values were 

standardized on meaning and format before generating 

new attributes upon these attributes.  

The Sperm parameter values were provided rounded in a 

wrong way; and therefore, it was corrected: for the sperm 

concentrations, to a decimal value with only one decimal 

point, and the other sperm parameters, to an integer 

value.    

Accuracy Correct Data  All data needed to be validated with the medical dossier 

or the information technology systems in the CHUC  

Integrity Correct Data linkage  One instance had the wrong Patient ´s Partner info, so 

its related Possible Label attributes and Couple´s 

infertility factors information, was recollected and fixed.   

 

If we analyze the type of information that did not comply with the requirements of each key 

dimension, we see that all attributes needed to be preprocessed since none of them fully 

complied with all requirements (see Table 5.36). The effort that was needed to preprocess that 

data can be seen in Table 5.37. This table presents, as specified in section 4.2.1, the data quality 

scoreboard for each initially provided and selected attribute for the final 293 filtered instances. 

The original attributes that were not validated with information technology systems or medical 

dossiers, or replaced by new attributes, have its related meta-data colored in gray and the 

“Validation rate” column set to 0% or NA respectively. In fact, if we analyze the Validation 

rate of the “Temp_Infert”, “Repetia_embolização” and “Razão_não_repetir” attribute, we see 

that these attributes were not validated. The reason behind it is that they are attributes that gather 

approximated values told by the patient that cannot be validated with accuracy; and therefore, 

were not considered for further data analysis. However, these attributes were initially explored 

to better understand the data – as previously disclosed in section 5.3.2.1. Despite not having 

validated the “Repetia_embolização” and “Razão_não_repetir” attribute, we have verified them 

with the other initially provided and selected attributes. This data verification enabled us to 

reorganize and produce a coherent data set that through the process enabled the identification 

of erroneous data.  
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The other computed Validation rate that can be seen in this table, is the 27.3 validation rate. 

This rate represents the 80 male patient medical dossiers that it was possible to look at in the 

CHUC (i.e. 80 patients were validated / 293 filtered attributes = 27.3%). These s medical 

dossiers were used to validate the data values other than the sperm parameter and possible label 

attribute values.       

By analyzing Table 5.37, we can see that the sperm parameter values required the highest 

validation effort due to its possibility to be accurately validated with clinical test reports and be 

considered important by related works (see related works studied in section 3.3 and 3.4 on this 

matter), as well as the BRSC team. Furthermore, since the prediction of the embolization 

success was since the beginning seen as the most important from the BRSC team, we have also 

dedicated our time to validate and fill the attributes that could be possible labels to further apply 

supervised predictive algorithms, such as decision trees, to the preprocessed data set. Therefore, 

the validation rate of these related attributes, as well as the patient age attributes and 

embolization date, were our focus.  

If we analyze the numbers of the “Final Missing Values”, we see that some them are even higher 

than before. This situation is seen in some of the sperm parameters values because some of the 

Azoospermic patients had the value 0 in motility and morphology when they should have had 

blank values instead, and some of the added sperm parameters values, only had sperm 

concentration and motility specified in the medical dossiers since they were from sperm 

analysis reports conducted for ART procedures. Moreover, the filling of the possible label 

attributes had a different mindset, and some of them were incoherent, which also led to a higher 

number of missing values in the final preprocessed data set.  

Table 5.37 Data Quality Scoreboard for the original attributes 

Original Attribute 

Initial 

Missing 

Values 

Final 

Missing 

Values 

Validation 

Rate 

Identified 

Erroneous 

Values 

Initial 

Completeness 

Score 

Final 

Completeness 

Score 

Initial 

Accuracy 

Score 

Idade_H 15 0 100% 44 94.88 100.00 84,98 

Idade_M 27 9 100% 112 90.78 96.93 61.77 

Tempo_Infert 46 39 0%   84.30 86.69   

Prim_Sec 35 23 100% 25 88.05 92.15  91.47 

FR 176   NA   39.93     

Fator_F 266   NA   9.22     

Grau_Varicoc 155 82 27.30%  47.10 72.01   

Lateralidade 150 75 27.30%  48.81 74.40   

Data 2 0 100% 0 99.32 100.00 100.00 

Notas 279   NA   4.78     

Complicações 282 0 27.30%  3.75 100.00   

Conc_Pre 23 12 100% 33 92.15 95.90 88.74 

Conc_3M 49 48 100% 35 83.28 83.62 88.05 

Conc_6M 218 162 100% 46 25.60 44.71 84.30 

Conc_1A 241 156 100% 39 17.75 46.76 86.69 

A_B_pré 53 42 100% 23 81.91 85.67 92.15 

A_B_3M 73 76 100% 34 75.09 74.06 88.40 

A_B_6M 230 177 100% 39 21.50 39.59 86.69 

A_B_1A 247 172 100% 28 15.70 41.30 90.44 

Formas_N_pré 73 83 100% 32 75.09 71.67 89.08 

Formas_N_3M 97 113 100% 22 66.89 61.43 92.49 

Formas_N_6M 268 246 100% 29 8.53 16.04 90.10 
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Original Attribute 

Initial 

Missing 

Values 

Final 

Missing 

Values 

Validation 

Rate 

Identified 

Erroneous 

Values 

Initial 

Completeness 

Score 

Final 

Completeness 

Score 

Initial 

Accuracy 

Score 

Formas_N_1A 287 270 100% 18 2.05 7.85 93.86 

Gravidez 83 63 100% 27 71.67 78.50 90.78 

Num_Gravidezes 78 0 100% 33 73.38 100.00 88.74 

Nascimento 87 63 100% 35 70.31 78.50 88.05 

Num_Bébés 87 209 100% 19 70.31 28.67 93.52 

Gravidez_pós_emb 144 188 100% 43 50.85 35.84 85.32 

PMA 80 0 100% 56 72.70 100.00 80.89 

Gravidez_espontanea 142 63 100% 14 51.54 78.50 95.22 

Repetia_embolização 145 144 0%  50.51 50.85   

Razão_não_repetir 1 0 0%  99.66 100.00   

Average         55.86 70.40 88.34 

 

If we analyze the average of filled attributes in the initially provided data set indicated in the 

above table row named “Average”, we see that nearly half the attributes values were filled 

(55.86%). However, after the data preparation step, we could increase this data set on average 

by 14.54% (i.e. 70.40-55.86). In terms of the correctness of the provided data, we have seen 

that the values were on average 11.66% (100-88.34) incorrect. However, all these erroneous 

values were corrected throughout the data preparation step. Please note that the number of 

erroneous values was only counted when all the values of the corresponding attribute was 

validated since this value was only used to compute the “Initial Accuracy Score”.  

As we can see in Table 5.37 above, some of the attributes were not validated since new attributes 

were created in replacement (attributes with the Validation rate set to NA). Hence, in Table 

5.38 below we present the number of missing values that these newly created attributes had. 

These attributes were already described in Table 4.3. Their values came from the information 

gathered in the original attributes, specified under the column “Original Attribute Based On”, 

as well as the information technology systems and medical dossiers looked up in the CHUC. 

The gray cells under the column named “Original Attribute Based On” means that the attribute 

was created from scratch. Despite being newly created attributes, we also had missing values 

since patients do not have all the same data filled in their respective information technology 

systems or medical dossiers. Furthermore, some of these attributes, such as  

“Volume_Testicular_Médico” and “TratamentoFeito_material”, which has one of the highest 

number of missing values, were created during the analysis of the patient medical dossiers and 

identified as a possible interesting information; and therefore, only encompasses the patients 

that we could check. 

Table 5.38 Data Quality Scoreboard for the newly created attributes 

Original Attribute Based On Attribute Name Final Missing Values 

Factor_F Factor_Infertilidade_Feminina 208 

Factor_F Factor_Infertilidade_Masculina 130 

FR Hábitos Tabágicos 89 

FR Hábitos Alcoolicos 177 

FR Cirurgias 155 

FR Doença 201 

FR Profissão 91 

 Volume_Testicular_Médico 249 

Notas TratamentoFeito_lateralidade 87 
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Original Attribute Based On Attribute Name Final Missing Values 

 TratamentoFeito_material 270 

5.4.2 Data Construction, Reorganization, Cleaning and Format 

Before carrying out the data integration task, we constructed new attributes to reorganize the 

information recorded in the original attributes Factor_F, FR and Notas, as seen in Table 5.38, 

and then, cleaned the data set by retrieving the instances that were duplicated or out of the aim 

of this study. At last, we have formatted the embolization data. To better convey what was done 

during these data preparation tasks, we will partly present how the initially provided data set 

was, and how this initially provided data set was reorganized and preprocessed. Hence, in 

Figure 5.28 we see a print screen of part of the initially provided data set and in the Figure 5.29, 

the same instances reorganized with the where we can see (noted with green arrows) the newly 

created attributes for the FR attributes, and with the yellow arrows, the ones created for the 

Factor_F attributes. In this context, we can relate each instance of Figure 5.28 with the 

preprocessed instance shown in Figure 5.29 through the embolization date specified under the 

column name “Data” in Figure 5.28, and “Data Embolização” in the Figure 5.29. 

In Figure 5.28 the initially provided data set can be seen in the center-bottom. In the second 

row of this EXCEL table we see the names of some of the original attributes described in 

Appendix A, and below it, its values. If we analyze the values of the attribute FR, we see, as 

previously indicated, that this attribute gathers information from different subjects. In fact, the 

EXCEL row 39 indicates for this attribute that the patient drinks (specified with the word 

“Alcool”), in the row 46, that the patient had Parotitis disease (specified with the word 

“Parotidite”), in the row 47, that the patient smokes (specified with the word “Tabágicos …”) 

and in the row 50, that the patient also smokes but specified differently (with the word 

“Tabaco”).  Hence, this small portion of data can already disclose why we have reorganized 

that information and uniformized it under the green attributes named seen in Figure 5.29. For 

the attributes names colored in yellow in Figure 5.29, we can see that we have already filled 

these attributes with more information than those provided in its original attribute “Factor_F”. 

Furthermore, we also see that the patient embolization date recorded in the initially 

preprocessed dataset under the attribute named “Data_Embolização” is formatted into 

dd/mm/yyyy. Moreover, the initially preprocessed dataset shown in Figure 5.29 has one less 

instance because the 2 last instances shown in Figure 5.28 were duplicates. 

At the end of the data integration task, we had to uniformize the data and one of the most 

important uniformizations were the sperm parameter values. In fact, as we can see in the 

EXCEL row 49 of Figure 5.28 and under the column named “Formas_N_pré”, this patient has 

Azoospermia and has the value 0 for its morphology which is wrong. Hence, in these situations, 

motility and morphology were replaced with blank values.  
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Figure 5.28 Part of the initially provided data set 

 

Figure 5.29 Part of the initially preprocessed data set 

5.4.3 Data Integration  

Data Integration contributed for the improvement of some of the key dimensions qualities 

exposed in Table 5.36. In fact, some of the provided data was validated, corrected and filled 

using a temporary Database created with the Microsoft SQL server and EXCEL 

scripting/clauses. How this process was exactly performed is specified here by disclosing the 

steps that were followed to preprocess the provided data set and produce the initial 

preprocessed data set. These steps were executed in the following order: 

1) Retrieved from the “Doentes” information system the identification of the patient´s 

partner with their birth date, the patient´ birth date with occupation and the number of 

babies the patient´s partner had after her partner´s embolization. Through this process 

we have also validated the embolization dates recorded in the initially provided data set 

and checked if there was an indication of whether the patient´s partner got pregnant after 

the embolization and gave birth to a child. All this information was recorded in new 

temporary attributes created in the reorganized initially provided data set produced in 

the previous subsection 5.4.2. Note that the “SMR” information system only has the 
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information of patients that undergone procedures after 2012; and therefore, data 

collection entailed to looked up into the several resources specified in Table 5.1 that 

also indicates which attribute was checked from where;   

2) Created a database in the Microsoft SQL server without any tables, called 

“varicoceleBD”; 

3) Imported to the database previously created, the data set produced in the step 1) – during 

data import we have edited the mapping of the source data with the destination data and 

verified if the autogenerated type of data was correct;   

4) Exported from the “SMR” information technology system the data to fill the following 

attributes: Prim_Sec, Factor_Infertilidade_Feminino, Factor_Infertilidade_Masculino, 

HabitosTabagicos, HabitosAlcoolicos, Cirurgias, Doença, Gravidez, Num_Gravidezes, 

PMA. Note that the “SMR” information technology system only exports the data by its 

type of information and when it was recorded in the system; and therefore, the data to 

fill the first 7 attributes, were exported into one Excel file, and the data to fill the other 

3 attributes, needed to be exported into several Excel files. For instance, the first IVF, 

ICSI or ISMI procedure that the patient´s partner had undergone in CHUC was exported 

into one excel file, the second one, into another excel file etc. At the end, we had 

exported 30 Excel files to fill the aimed attributes: 7 from the undergone IVF, ICSI or 

ISMI procedures, 7 from the undergone IVF, ICSI or ISMI procedures carried out with 

cryopreservation, 8 from the undergone IUI, 7 from the fertilized embryos and 1 from 

the couple’s general information;    

5) Imported to the database created in 2) the data exported in the previous step – as done 

in 3); 

6) Built in the Microsoft SQL server a SQL query to join all the needed information from 

the imported Excel files;  

7) Exported to EXCEL the result of the SQL query computed in the previous step; 

8) Created temporary attributes, in the data set produced in 7), to gather the possible values 

of the possible label attributes – these values were achieved by building EXCEL 

scripts/clauses upon the dataset generated in 7);    

9) Validated, Corrected and Filled the Possible label attributes with the created attributes 

in 8) if the values of the Possible label attributes were missing or if the patient was not 

previously questioned. Note that in the initially provided data set, the Possible label 

attributes were filled by questioning patients by phone. Unfortunately, not all patients 

answered the call;    

10) Validated, Corrected and Filled the remaining attributes – the Patient Partner info, the 

Male Patient risk factors and the Couple´s infertility factor – with the data set produced 

in 9);  

11) Validated, Corrected and Filled the remaining instances that were not preprocessed with 

the exported information from the “SMR” and “Doentes” information systems with the 

80 medical dossiers that we had received. In parallel, sperm parameter values were also 

validated, corrected and filled with the original semen analysis reports;  

12) Uniformized the format of the attribute values of the data set produced in 11); 
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13) Loaded the data set produced in 12) into the RapidMiner platform. This loaded data set 

is the so called initially preprocessed data set that has the first 39 attributes described 

in Table 4.3 upon which other attributes were generated with the RapidMiner.  

In Table 5.39, we present the rationale used in the creation of the EXCEL scripts/clauses 

indicated in step 8 for the validation, correction and filling of the Possible label attributes. 

Table 5.39 Rationale of the Excel clauses  

Attribute Name Mind Set 

Gravidez 

if the woman of the male patient has a hospital event such has an ART procedure 
(“PMA” or “TEC”) 3 days after the embolization with a positive pregnancy test, 
or an ultrasound, 10 days after the embolization, or a birth, 168 days after the 
embolization, we say that the partner had a pregnancy after the embolization. 
Otherwise, we write the value no “Não”. If we do not have any information of 
the patient, we write nothing (i.e. blank value). 

Num_Gravidezes 

The number of pregnancies is equal to the number of ART procedures performed 
after the embolization date with a positive pregnancy test result  
“Num_PMAs_Positivos_após_Embolização” + (the total number of ultrasounds 
“Num_Total_Ecos” – the number of ART procedures with an ultrasound 
“Num_PMAs_com_Ecos”) + (the total number of births “Num_Total_Partos” – 
the number of births with an ultrasound  “Num_Partos_com_Ecos”) 

Nascimento 
if the patient´s partner has at least one birth 168 days after her partner´s 
embolization treatment, we say that the partner had a birth. 

Num_Bébés 
The number of babies is equal to the sum of babies recorded in the “Doentes” 
system under the patient´s partner id with birth dates that have occurred at 
least 168 days after her partner´s embolization date. 

Gravidez_pós_emb 
We consider the date of the hospital event (ART procedure, ultrasound or birth) 
that has a shorter time span with the embolization date and records its 
difference in days 

PMA 

if the patient´s partner has a hospital event such has an ART procedure (“PMA” 
or “TEC”) 3 days, or an insemination (“IIU”) 0 days, after the embolization 
treatment with a positive pregnancy test, we put the value Yes “Sim”. Otherwise, 
we put the value No “Não”. 

Gravidez_espontanea 

if the patient´s partner has more natural conceptions than valid pregnancies 
from ART procedures, we put the value Yes “Sim”. Otherwise, we put the value 
No “Não” if we have at least an information about the patient´s partner such as 
the ART dates and techniques performed or a ultrasound or birth date. 

 

Below, in Figure 5.30, we can see a print screen of the data set during the preparation of the 

possible label attributes where in the bottom of the figure the preprocessed possible label 

attributes can be seen with names colored in green, the original ones in white, and the 

temporary ones created with the excel clauses, in red. Above it, the Excel Clause built for 

the “Gravidez” attribute can be seen. By analyzing the data preparation carried out on these 

attributes, we see that the values under the green colored attributes, have less 

missing/unknown values. Note that all unknown values that are in this figure seen, were at 

the end replaced with blank values to be easier/cleaner to manage in the RapidMiner 

platform.    
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Figure 5.30 Validation, Correction and Filling of the Possible label attributes 

Below, we present some print screens of our working environment during the data 

integration task performed with the Microsoft SQL server 2012. 

 

In Figure 5.31, on the left, the database created c “varicoceleBD” can be seen with part of 

its imported tables underneath; on the top right, we can see part of the SQL query that was 

built to join the information needed to complement the one initially provided in the 

attributes that gathered the Couple´s infertility factors (with the attribute seen in the first 

column), the Patient´s Partner info (with the attribute seen in the second and third column) 

and the Male Patient´s risk factors (with the attributes seen in the remaining columns). To 

the reorganized initially provided data set produced in the cleaning and formatted process, 

we have added this joined information to the newly constructed attributes exposed in Table 

5.38 and afterwards, checked if in the patient medical dossier, we could find more 

information to fill the remaining missing values.     
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Figure 5.31 Query result of the Couple infertility factor, the Patient Partner info and the Male 

Patient risk factors  

At the top of Figure 5.32, we can see part of the SQL query that was built to join the 

information needed to validate, correct or fill the possible label attributes and at its bottom, 

we can see part of the result generated. This result was by the built EXCEL clauses, exposed 

in Table 5.39, transformed to further on validate, correct and fill the values of the possible 

label attributes. 

 

Figure 5.32 Query result of the undergone ART procedures 

5.4.4 Attribute Selection  

The selection of the attributes to mine was the culmination of all the work performed until the 

modelling step. Hence, based on all the acquired data understanding and data quality 

assessment, we have built a summary table to better identify the attributes that were valuable to 
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achieve the data mining goals set in section 5.2.3 and finally planned how the selected attributes 

could be mined. Table 5.40 is the summary table that can be interpreted as follows:  

The column named “ID” and “Attribute Name”, specifies the name of the final preprocessed 

attributes; the column named “Significance”, indicates if the corresponding attribute values 

present a statistical significant difference between the patients that got and did not conceive – 

probabilities computed with the Chi-square test came from section 5.3.2.6 and the ones 

computed with the ANOVA test, came from section 5.3.2.4; the column named “Correlation”, 

indicates if the corresponding attribute is correlated with the “Gravidez” label attribute – the 

presented coefficients were computed with the Pearson Correlation measure and came from 

section 5.3.2.6; the column named “Stability”, indicates how stable/constant the corresponding 

attribute values are – stabilities were retrieved from the RapidMiner platform and are equal to 

the number of rows with the most frequent non-missing value divided by the total number of 

data rows with non-missing values; the column named “Missing”, indicates the percentage of 

missing values of the corresponding attribute – these values were also retrieved from the 

RapidMiner platform and are equal to the number of missing values divided by the total number 

of instances; the column named “Selected”, presents a check mark at the attributes that were 

considered for data mining and discloses if the RapidMiner suggested it or not for prediction 

tasks through its cell color  (i.e. green cells mean that RapidMiner suggests the corresponding 

attribute for prediction, yellow cells mean that RapidMiner does not suggest it because of its 

low or high correlation and red cells mean that RapidMiner does not suggest it because of poor 

data quality); Furthermore, the column named “Goal”, specifies if the corresponding attribute 

will be used to predict the success of the embolization (Goal 2) – by indicating the number  “2” 

– or describe the relation between the semen classification and the varicocele laterality (Goal 

3) – by indicating the number  “3” – or the relation between the semen classification and the 

patient external factors (Goal 5)  - by indicating the number  “5” – or several – by indicating 

the id of the goals that the corresponding attribute can be mined for, for example, the 

combination “2 & 5” means that the corresponding attribute can be used to achieve Goals 2 and 

5. 

Rows colored in gray indicate that the corresponding attribute has a direct cause-and-effect 

relationship with the “Gravidez” label attribute (e.g. the attributes that were initially set as 

possible label attributes), or has no relation at all with the “Gravidez” label attribute (e.g. the 

date of the varicocele treatment called “Data_Embolização”) or has a validation rate equal to 

0% (computed and showcased in the data quality scoreboard presented in Table 5.37); and 

therefore, they will not be considered for analysis. 

Attribute names colored in blue indicate that they are the initially preprocessed attributes 

described in Table 4.3. The other attributes, are the ones that were later on generated. 

Good statistical “Significance” or “Correlation” values are highlighted with orange lettering.  

The attributes were selected for mining purposes based on the following criteria:  

• Low values for the “Significance” probability (i.e. <0.05); 

• High values for the “Correlation” criteria (or at least higher than 0.01 which is the 

minimum considered by the RapidMiner platform);  
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• Low rates for the “Stability” and “Missing” criteria (i.e. lower than 90% for “Stability” 

and lower than 70% for “Missing” values – these thresholds were also suggested by the 

RapidMiner platform).   

The reason behind the criteria noted above is the way data mining algorithms work: Algorithms 

used for prediction tasks tend to choose the attributes that are more correlated/significant with 

the label attribute since it indicates that they are the dependent factors (i.e. attributes) of the 

label attribute. Decision trees are often used for prediction tasks and they compute for their root, 

the attribute that promotes the highest gain of information. The attribute that promotes the 

highest gain of information is the one that can better separate its instances; and therefore, has a 

greater capability to reduce Entropy. In fact, classifiers such as decision trees, began with the 

attribute that promotes the highest gain of information and ramifies with the Entropy. The 

Entropy measures the state of confusion of a set of instances based on its label attribute; and 

therefore, if in a set of instances the label attribute has the same value for all instances, for 

example, all “Gravidez”=”Sim”, we then can say that this set of instances is pure (i.e. not 

confused) since they all have the same label value on that set of instances; and therefore, its 

Entropy is equal to 0. In contrast, if we have as many instances with the “Gravidez” attribute 

set to “Sim” as set to “Não”, we will then have a set of instances that is totally mixed/confused; 

and therefore, the Entropy is equal to 1. If we consider the first set of instances that gave an 

Entropy equal to 0, we can say that all these patients had a pregnancy, and this conclusion is 

the biggest gain of information that the algorithm has at that moment. On the other hand, if we 

consider the case that ended up with an Entropy equal to 1, we see that the algorithm cannot 

conclude much on its instances so we say that the algorithm did not gain any information. 

Furthermore, when we have an attribute with a high “Stability”, we often end up with an 

attribute that also generates a high Entropy (i.e. that provides a low gain of information). For 

instance, our initially preprocessed data set has half “Gravidez”=”Sim” and “Gravidez”=”Não” 

which is a good thing but if we have, lets say, an infertility time attribute equal to 6 months for 

all instances of the data set, the algorithm will not be capable to identify an information that 

differentiates the patients that conceived from the ones that did not, in terms of the infertility 

time attribute; and therefore, the algorithm will not select the infertility time attribute for its 

decision tree since it could not gain any information from it. This is why we look for attributes 

with low stability (i.e. with variability on values). Moreover, since data mining algorithms have 

to first train their models, having a high number of missing values will decrease its capacity to 

learn; and therefore, the probability of generating a model with good quality. Please note that 

for fitting purposes of the Table 5.40 longer attribute names where truncated.  

Table 5.40 Summary table for attributes selection upon 293 instances 

  Selection criteria   

ID Attribute Name Significance (p) Correlation (r) Stability  Missing  Select Goal 

1 Man age     ANOVA 0.752 0.021 9.22% 0.00%   

2 Woman age      ANOVA 0.018 0.156 11.27% 3.07%  2 & 5 

3 Infertility time       

4 Type of infertility Chi-square 0.961  80.00% 7.85%   

5 Woman infertility factor Chi-square 0.093  29.41% 70.99%   

6 Man infertility factor Chi-square 0.058  50.31% 44.37%   

7 Smoking habit Chi-square 0.691  43.14% 30.38%   
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  Selection criteria   

ID Attribute Name Significance (p) Correlation (r) Stability  Missing  Select Goal 

8 Drinking habit Chi-square 0.277  68.97% 60.41%   

9 Surgeries Chi-square 0.512  38.41% 52.90%   

10 Diseases Chi-square 0.527  13.04% 68.60%   

11 Occupation Chi-square 0.445  3.96% 31.06%   

12 Severity grade Chi-square 0.049  52.61% 27.99%  2 & 5 

13 Laterality Chi-square 0.472  81.65% 25.60%   

14 Testis volume Chi-square 0.655  31.82% 84.98%   

15 Embolization date       

16 Embolized laterality Chi-square 0.265  97.09% 29.69%   

17 Material of Embolization Chi-square 0.271  65.22% 92.15%   

18 Complications Chi-square 0.532  92.47% 0.00%   

19 Repeat embolization       

20 Reason to not repeat       

21 Concentration before treatment ANOVA 0.903 0.008 9.96% 4.10%   

22 Concentration at 3 months ANOVA 0.165 -0.092 11.02% 16.38%   

23 Concentration at 6 months ANOVA 0.015 -0.161 11.45% 55.29%  2 & 5 

24 Concentration at 12 months ANOVA 0.081 -0.115 10.95% 53.24%   

25 Progressive motility before treatment ANOVA 0.018 -0.155 12.35% 14.33%  2 & 5 

26 Progressive motility at 3 months ANOVA 0.236 -0.079 11.06% 25.94%   

27 Progressive motility at 6 months ANOVA 0.064 -0.123 17.24% 60.41%   

28 Progressive motility at 12 months ANOVA 0.171 -0.091 14.05% 58.70%   

29 Morphology before treatment ANOVA 0.488 -0.045 19.05% 28.33%   

30 Morphology at 3 months ANOVA 0.004 -0.186 16.11% 38.57%  2 & 5 

31 Morphology at 6 months ANOVA 0.327 -0.068 19.15% 83.96%   

32 Morphology at 12 months ANOVA 0.000 -0.286 26.09% 92.15%   

33 Pregnancy outcome            

34 Number of pregnancies       

35 Birth       

36 Number of alive babies       

37 Time took to conceive       

38 ART       

39 Spontaneous pregnancy       

40 Preprocessed smoking habit Chi-square 0.604  51.96% 30.38%   

41 Preprocessed drinking habit Chi-square 0.300  69.83% 60.41%   

42 Preprocessed surgeries Chi-square 0.593  61.59% 52.90%   

43 Preprocessed diseases Chi-square 0.413  21.98% 68.94%   

44 Hazardous Occupation Chi-square 0.023  63.86% 31.06%  2 & 5 

45 Number of altered sperm parameters before   0.007 36.65% 4.10%    

46 Number of altered sperm parameters at 3   0.143 37.96% 16.38%   

47 Number of altered sperm parameters at 6   0.089 41.98% 55.29%   

48 Number of altered sperm parameters at 12   0.033 40.88% 53.24%   

49 Semen classification before treatment Chi-square 0.017  26.89% 18.77%  2 & 5 

50 Semen classification at 3 months Chi-square 0.018  19.90% 29.69%  2 & 5 

51 Semen classification at 6 months Chi-square 0.038  24.19% 78.84%   

52 Semen classification at 12 months Chi-square 0.284  39.47% 87.03%   

53 Concentration category before treatment Chi-square 0.153  75.80% 4.10%   

54 Concentration category at 3 months Chi-square 0.017  54.69% 16.38%  2 & 5 

55 Concentration category at 6 months Chi-square 0.203  61.07% 55.29%   

56 Concentration category at 12 months Chi-square 0.713  62.04% 53.24%   

57 Progressive Motility category before  Chi-square 0.027  62.55% 14.33%  2 & 5 

58 Progressive Motility category at 3 months Chi-square 0.022  53.46% 25.94%  2 & 5 

59 Progressive Motility category at 6 months Chi-square 0.817  62.93% 60.41%   

60 Progressive Motility category at 12 months Chi-square 0.556  61.98% 58.70%   

61 Morphology category before treatment Chi-square 0.069  60.48% 28.33%   

62 Morphology category at 3 months Chi-square 0.066  50.56% 38.57%   

63 Morphology category at 6 months Chi-square 0.127  55.32% 83.96%   

64 Morphology category at 12 months Chi-square 0.472  73.91% 92.15%   
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By analyzing Table 5.40, we see that the Goal 3 could not be carried out since, as we have seen 

in section 5.3.2.8, patient semen classification is not related with varicocele laterality. However, 

the main data mining goals set were possible to carry out (i.e. the prediction of the embolization 

success (Goal 2) and the identification of patterns between semen classification and external 

factors (Goal 5)).  

If we analyze the attributes that were selected in Table 5.40, we see that some of them will not 

be possible to mine together since they are related to each other (e.g. sperm parameter values 

are related with their corresponding sperm and semen categorization attributes). Hence, we have 

applied a feature selection technique to filter the final preprocessed attributes by having this 

aspect in consideration. We specify below in which order and with which attribute combination 

we have mined the final preprocessed data set: 

1. Grau_Varicoc, Conc_6M, A_B_pré, Formas_N_3M, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos, Gravidez. 

2. Grau_Varicoc, Conc_3M_Qualificado, A_B_Pre_Qualificado, A_B_3M_Qualificado, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos, Gravidez. 

3. Grau_Varicoc, Qualificar_Espermograma_Pre, Qualificar_Espermograma_3M, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos, Gravidez.  

4. Idade_M, Grau_Varicoc, Conc_6M, A_B_pré, Formas_N_3M, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos, Gravidez. 

5. Idade_M, Grau_Varicoc, Conc_3M_Qualificado, A_B_Pre_Qualificado, 

A_B_3M_Qualificado, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos, Gravidez. 

6. Idade_M, Grau_Varicoc, Qualificar_Espermograma_Pre, 

Qualificar_Espermograma_3M, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos, Gravidez.  

The attribute combinations presented in the above step 1, 2 and 3 only focus on male patient 

information. In contrast, the other attributes combinations (i.e. step 4, 5 and 6) adds the woman 

patient partner info to see if a better and more interesting model can be generated. These 

attribute combinations were mined to predict the success of the embolization treatment (Goal 

2) and identify data patterns (Goal 5).  

To these groups of attributes, we have at last added the label attribute “Gravidez” since it is the 

main attribute that through this study was used to predict the success of the embolization 

treatment.  

5.5 Modeling  

As previously seen in section 2.1.1, the most commonly applied data mining techniques in the 

health care domain are the Classification, Clustering and Association techniques; and therefore, 

this study has also applied these techniques upon the final preprocessed data set described in 

section 4.1.2.1 to tackle the goals set and disclosed in section 5.2.3. To achieve the best possible 

results, we have applied these data mining techniques with well-known data mining algorithms 
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upon the groups of attributes disclosed in the previous section 5.4.4 since they are the ones that 

are more related with the pregnancy outcome.  

This study has applied the following algorithms: the Decision Tree algorithm, for the 

Classification technique; the K-MEANS algorithm, for the Clustering technique and the FP-

Growth algorithm, for the Association technique. These algorithms were applied with the 

RapidMiner platform and most of the generated results, are in the Appendix C documented. 

The most interesting ones are in this section disclosed grouped by each applied data mining 

technique initially described in section 2.1.1. In order to better identify the most interesting 

findings, we have highlighted them with orange lettering. 

5.5.1 Classification 

All results generated during the first 8 decision tree modeling steps described in the Appendix 

B.1, can be seen in the Appendix C.1. From all these generated and disclosed results, we have 

identified that the model that outperformed during its training/testing was the model 

implemented with the RapidMiner Decision tree algorithm ran within a simple validation 

operator that achieved an F-measure of 75%. This model was executed upon a set of 85 

instances with non-missing and parsed to numerical values that were at first preprocessed at the 

time of the application of the K-means algorithm. Hence, this model was applied upon the 

following attributes - that corresponds to the 5th group of assessed attributes - with the decision 

tree Model 2 that was built during the decision tree modeling step 6 depicted in Figure 6.5: 

• Idade_M – not transformed; 

• Grau_Varicoc - manually dichotomized (i.e. mapped and generated new attributes); 

• ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos – mapped “Não” to 

0 and “Sim” to 1, as well as parse to number; 

• Conc_3M_Qualificado - mapped “Anomal” to 0 and “Normal” to 1, as well as parse to 

number; 

• A_B_Pre_Qualificado - mapped “Anomal” to 0 and “Normal” to 1, as well as parse to 

number; 

• A_B_3M_Qualificado - mapped “Anomal” to 0 and “Normal” to 1, as well as parse to 

number; 

• Gravidez – not transformed (i.e. remained the nominal values “Sim” and “Não”) and 

informed the algorithm, with the “Remap binomials” operator, which was the positive 

and negative value.  

 

The performance of the best model upon the above attributes is shown in the below Table 5.41. 
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Table 5.41 Best decision tree model of the first 8 modeling steps – Model of step 6 

Step Nº |n Accuracy Precision Recall F-Measure AUC Output 
6.1 

Training/ 

Testing 

 

48 

instances 

for 

training 

 

20 

instances 

for testing 

 

80.00% 85.71% 66.67% 75.00% 0.717 

 

 

Model´s characteristics: 

 

Validation 

 

17 

instances 

to validate 

the model 

6.1.1 

 

70.59% 66.67% 75.00% 70.59% 0.750 

 

 

Model´s characteristics: 
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As we can see, the F-Measure and the AUC of the training/testing of the above model are close 

to the ones computed during the validation which tells us that the model is quite stable. 

Furthermore, despite most of its performance measures being slightly lower in the validation 

test, it is still the best validation measures that we have found during the first 8 modeling steps. 

Moreover, all other model validations have roughly failed the test (i.e. the other models have 

generated AUC measures between 0.5 and 0.613).  

The confusion matrix and the ROC plot of the validation of the model ran in step 6.1 and 

disclosed in Table 5.41, can be seen below. 

 

Figure 5.33 Confusion Matrix of the Validation of the Model 6.1 

 

Figure 5.34 ROC plot of the validation of the model 6.1 

If we analyze the confusion matrix depicted in Figure 5.33, we can see that it encompasses the 

17 instances split for validation on the model 6.1, as well as its reported metrics. If we look at 

the ROC plot presented next, we see that the model 6.1 is fair due to its computed value (0.750). 

If we interpret its decision tree model 6.1 we can say with 70.59% of accuracy through the 

model validation that: 

• The probability of a woman getting pregnant above 33 years old is lower (i.e. 32.43% 

(12/(12+25))) than for the ones below 33 years old (i.e. 61.29% (19/(19+12))). 

• All women patients with 24 years old or younger were not able to get pregnant; and 

hence, the decision tree also tells us that woman below 24 years old does not get 

pregnant.  
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• Most of the women patients between 24 and 33 years old, that have a male partner that 

does not have a varicocele with a high severity grade (i.e. has a severity grade equal to 

I or II), are able to get pregnant (i.e. 70.83% (17/(17+7)). 

Since some related works have not divided its dataset into training/testing and validation, we 

have also trained/tested this best generated model (i.e. model 6.1) without validating it to further 

on better compare our results with the ones obtained in related works (e.g. (Guh et al., 2011)). 

To do so, we have considered the decision tree Model 2 and mainly have deleted the “Split 

Data” operator from it. The computed results can be seen below in Table 5.42.  

Table 5.42 Model of step 6 without validation  

Step Nº |n Accuracy Precision Recall F-Measure AUC Output 

6.1.1 

Training/ 

Testing 

 

59 instances 

for training 

 

26 instances 

for testing 

 

 

 

 

80.77% 70.00% 77.78% 73.68% 0.801 

 

 

 

 

As we can see, the performance measures of model 6.1.1 surpassed the ones obtained in the 

model 6.1 during its validation. However, the computed decision tree is not very interesting: It 

only says that woman patients 33 years old or younger achieve pregnancy and that woman 

patients older than 33 years old do not. However, this result was useful to assess if the tree root 

of the model 6.1 and 6.1.1 remained the same (i.e. with the same splitting attribute and value).  

If we analyze the number of instances obtained in each tree leaves of the model 6.1, we see that 

we have a small number of instances in most of them, specially favored by the restricted number 

of assessed instances (i.e. 85 instances). Hence, we have also looked up for the right ran decision 

tree model upon the 230 instances that we have also assessed and have seen that the decision 

tree modeling step 3.1 has generated the model with the second highest performance measure 

during the training of the 8 modeling steps with an Accuracy of 74.55%, an F-measure of 

73.08% and a AUC measure of 0.747 during the training/testing of the model. However, its 

issue is its validation measures that indicates that it is a worthless test since its AUC measure 

is equal to 0.554 and its Accuracy and F-Measure measure is equal to 47.83%. However, due 

to its acceptable performance during its training upon the 230 instances, we have tried to 

improve its classification by applying the Bagging ensemble method with the aim of also 
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minimizing the clear test overfit that we have got in the training/testing of the model. To do 

this, the model depicted in Figure 6.12 was built to run the Rapid Miner´s decision tree 

algorithm within the Bagging RapidMiner operator with the parameter values found to be the 

best during the execution of the model 3.1. The right parameter values of model 3.1 are: 

• Validation sampling type during training/testing: stratified;  

• Decision tree splitting criterion: accuracy; 

• Decision tree pruning: True; 

• Decision tree minimal size for split: 4; 

• Decision tree minimal gain: 0.1; 

• Decision tree minimal leaf size: 4; 

• Decision tree maximal depth: 20. 

 

Regarding the choice of the Bagging ensemble method, we have used it  because the related 

work carried out in (Guh et al., 2011) - the one that had its best decision tree model computed 

with an accuracy of 73.2% - also applied the Bagging ensemble method during the 

training/testing of their decision tree model to achieve its 73.2% of accuracy. However, we have 

seen that their 73.2% of accuracy was delivered during the training/testing of their model and 

not during its validation which gave us confidence to optimize the model found in step 3.1 since 

during the training/testing of our model and without the bagging ensemble method we have 

surpassed their accuracy by 1.35% (i.e. Accuracy of model 3.1 = 74.55%, see first row of Table 

5.43). In the table below, we show the results with the application of the Bagging ensemble 

method on model 3.1, as described in the corresponding methods section, and at last, show the 

results of applying the model 3.1 on all the dataset. 

Table 5.43 Bagging Application – Improvement of Model 3.1 

Step Nº |n Accuracy Precision Recall F-Measure AUC Output 

3.1 

Training/ 

Testing  

 

129 

instances to 

train 

 

55 instances 

to test 

 

74.55% 73.08% 73.08% 73.08% 0.747 
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Validation 

of model 3.1 

 

46 instances 

to validate 

the model 

3.1 

 

47.83% 44.00% 52.38% 47.83% 0.554 

 

 

 

3.1.1 

Trainning/ 

Testing of 

model 3.1 

with 

Bagging and 

with the 

optimized 

parameters 

of model 3.1 

 

129 

instances to 

train 

 

55 instances 

to test 

 

70.91% 77.78% 53.85% 63.64% 0.668 (Generated 10 decision trees with the baggining ensemble 

method) 

Validation 

of model 

3.1.1 with 

Bagging and 

with the 

optimized 

parameters 

of model 3.1  

 

46 instances 

to validate 

the model 

3.1 

 

58.70% 54.55% 57.14% 55.81% 0.644 (Generated 10 decision trees with the baggining ensemble 

method) 
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3.1.1.1 

Training/ 

Testing of 

model 3.1 

applied to all 

instances 

(i.e. without 

Validation) 

and without 

Bagging 

 

161 

instances to 

train 

 

69 instances 

to test 

 

 

68.12% 63.16% 75.00% 68.57% 0.652  

 

 

3.1.1.1.1 

Training/ 

Testing of 

model 

3.1.1.1 with 

Bagging 

 

161 

instances to 

train 

 

69 instances 

to test 

 

72.46% 67.57% 78.12% 72.46% 0.758 (Generated 10 decision trees with the bagging ensemble method) 

 

 

 As we can appreciate, the results obtained with the bagging ensemble increased the accuracy 

of the validation of model 3.1 (i.e the accuracy of the validation of model 3.1=47.83% and the 

accuracy of the validation of model 3.1.1=58.70%) but its AUC, despite also increasing from 

0.554, in model 3.1, to 0.644, in model 3.1.1, remains poor.  
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 Regarding the training/testing of the model 3.1, we can see that the values have decreased after 

the application of Bagging (i.e. the accuracy of the training of the model 3.1=74.55% and the 

accuracy of the training of the model 3.1.1=70.91%) which depicts the minimization of the 

overfit that this ensemble method promises.  

 If we look at the two last rows of the table above, we see the results of applying model 3.1 to 

all 230 instances without bagging (i.e. Model 3.1.1.1) and with bagging (i.e. Model 3.1.1.1.1). 

If we compare these two results, we see that with the bagging, the model has increased its 

accuracy (i.e the accuracy of the model 3.1.1.1=68.12% and the accuracy of the model 

3.1.1.1.1=72.46%) and the AUC has reached a fair performance measure (AUC of model 

3.1.1.1 = 0.652 and AUC of model 3.1.1.1.1=0.758). However, the F-measure of model 

3.1.1.1.1 is slightly under the one obtained in model 3.1 (i.e. F-measure of the training model 

3.1 =73.08% and the F-measure of the training model 3.1.1.1.1 =72.0846%); and hence, model 

3.1 remained the right model during step 3 for the assessment of all 230 instances. If we 

compare the training of the model 3.1 to the model 6.1, we conclude that 6.1 is a better model 

due to its higher f-measure (i.e. the f-measure of the training of the model 3.1=73.08% and the 

f-measure of the training of the model 6.1=75%). Furthermore, model 6.1 shows a lower 

difference between the performance measures obtained during the training of the model vs the 

ones obtained during its validation. 

5.5.2 Clustering 

The aim of identifying data patterns and better understanding the selected numerical attributes 

in the context of the label attribute “Gravidez”, as well as the need to discretize the “Idade_M” 

attribute for further data mining applications, made us apply the well-known K-means 

algorithm upon the final preprocessed data set.  

From the groups of attributes tested discussed in section 5.4.4, we have seen that the fifth group 

(i.e. the group with the attributes: Idade_M, A_B_Pre_Qualificado, A_B_3M_Qualificado, 

Conc_3M_Qualificado, Grau_Varicoc,  

ProfissãoComRiscoDeContactoDeProdutosOuAmbientes, Gravidez) was the one that 

provided, with the model shown in Figure 6.14, the most interesting clusters with the following 

configurations: Number of clusters = 4 and Numerical measure for the distance calculation  = 

Euclidean Distance (see in the Appendix C.2 the results of all 114 performed tests).  

One of the things that made this model stand out from the rest was its higher number of covered 

patients/instances (85 instances for the fifth group of attributes vs 28 instances for the first and 

forth group and 76 instances, for the third and sixth group of attributes). In fact, due to the K-

Means specificity that requires all attribute values to be filled, the computed results ended up 

with a fewer number of instances in each generated cluster due to the reduced number of filtered 

instances. However, since it was the one that covered the highest number of instances, we have 

decided to further on seek for an interesting data pattern based on that group of attributes that 

could maintain the same number of instances. With that in mind, we have decided to initially 

add to the fifth group of attributes, the age of the male patient recorded in the attribute 

“Idade_H” since it does not have missing values. In fact, despite the attribute “Idade_H” not 

being a statistically significant attribute, clinically, it is an interesting one that could support a 
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more domain wise data pattern. Furthermore, we have also tested the K-Means algorithm with 

several different data transformations upon the attribute “Grau_Varicoc” and “Idade_M”: The 

“Grau_Varicoc” attribute was manually dichotomized as shown in Figure 6.21 and mapped as 

shown in Figure 6.24; and at last, women ages were discretized as shown in Figure 6.25 and 

applied to the model depicted in Figure 6.21 with the fine-tuned model disclosed in Figure 6.26. 

Therefore, in the following subsections, we present and interpret the obtained results from each 

of these built data mining models described in the Appendix B.2. 

5.5.2.1 Severity grade dichotomized (Model 2)  

In this subsection, we present the results obtained with the model depicted in Figure 6.21 where 

we have manually dichotomized the severity grade attribute “Grau_Varicoc” as specified in 

Table 6.5. 

This model was executed with the following conditions: 

• Selected attributes: Idade_M, Idade_H, A_B_Pre_Qualificado, A_B_3M_Qualificado, 

Conc_3M_Qualificado, Grau_I, Grau_II, Grau_III, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientes, Gravidez; 

• Filtered the attributes listed above by non-missing values; and therefore, iterations were 

performed upon 85 instances; 

• All attributes were transformed into numerical values (i.e. 0 and 1) and the woman´s 

age attribute “Idade_M” was normalized; and hence, the assessed data set only 

contained numerical attributes going from 0 to 1;  

• Number of clusters: 2 to 4; 

• Distance measure: Euclidean and Manhattan Distance. 

After testing the data mining model depicted in Figure 6.21 with different settings (i.e. a number 

of clusters going from 2 to 4 and a numerical measure of Manhattan or Euclidean), we have 

concluded that the best iteration was the one with the following K-Means setting: Number of 

clusters = 4 and Numerical measure for the distance calculation = Manhattan Distance. In fact, 

this iteration can be seen in Table 5.44, identified as the iteration 6, with the lowest Davies 

Bouldin index (Davies Bouldin index = -1.367). Hence, we further on showcase its results.     

Table 5.44 Davies Bouldin results for the model depicted in Figure 6.21 

 

This iteration has separated the 85 patients into 4 groups of similar patient’s characteristics 

and each cluster covered between 12 to 38 patients, as we can see in Figure 5.35. 
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Figure 5.35 Cluster´s distribution in the iteration nº 6 – Best result 

The centroid table computed in this iteration clearly shows that what mainly differentiates each 

generated cluster is varicocele severity grade. In fact, if we analyze this centroid table depicted 

in Table 5.45, along with its complementary ones disclosed in Table 5.46 and Table 5.47 we 

can formulate the following conclusions – please note that for the attributes that can only be 

assigned the value 0 or 1, we can consider the centroid means in Table 5.46 as relative 

frequencies for the value 1: 

• Cluster 0 only has patients with a low varicocele severity grade (i.e. “Grau_Varicoc”=I);   

• Cluster 1 only has patients with a moderate varicocele severity grade (i.e. 

“Grau_Varicoc”=II);   

• Cluster 2 has a mix of low and high varicocele severity grades (i.e. “Grau_Varicoc”=I 

or III). However, most of them (78.6%, which is 11 patients), have the severity grade I 

and the remaining ones (21.4%, which is 3 patients), have the severity grade III;   

• Cluster 3 only has patients with a high varicocele severity grade (i.e. 

“Grau_Varicoc”=III).   

Regarding the other attributes shown in the centroid table we can also conclude that: 

• The means of the patients´ ages do not vary much across the several clusters (see 

centroid´s means in the Idade_H and Idade_M attribute) which means that the patients 

of each data cluster have similar ages. In fact, there is no statistical significance between 

them (p>0.05);  

• Despite cluster 0, 1 and 2 having a similar relative frequency of patients that conceived 

in the cluster 3, only 8.3% (i.e. 1 patient out of the 12) conceived and all of them had a 

high varicocele severity grade; 

• Despite cluster 0 and 3 having a similar relative frequency of patients that work in toxic 

environments or with toxic products (respectively 42.9% and 50%), cluster 1 and 2 have 

a very low number of patients in these conditions. In fact, cluster 1 indicates that only 

15.8% of its patients do work in a toxic environment and in cluster 2, only 7.1% also do 

so. Further on, we see that patients that did not work in toxic environments mainly had 

a severity grade equal to I or II. In fact, the joining of cluster 1 and 2 includes 52 patients 

(38 patients for the cluster 1 and 14 patients for cluster 2) and only 21.4% of the patients 

in cluster 2 (i.e. 3 patients) had a severity grade III, which means that 94.23% of the 

patients in these 2 clusters ((52 patients – 3 patients with the high severity grade in the 

cluster 2)/52) have a severity grade that is low to moderate when the patient works in a 

none toxic environment; 
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• Cluster 2 has also the highest relative frequency of patients with a normal sperm 

parameter value (i.e. 100% with a “Con_3M_Qualificado” set to “Normal”, 92.9% for 

the “A_B_Pre_Qualificado” and 78.6% for the A_B_3M_Qualificado). Furthermore, 

this cluster has the lowest relative frequency of patients that work in a toxic environment 

(7.1%). 

The above-mentioned conclusions can be visualized through the series plot depicted in Figure 

5.36 where we can see that each colored line represents each cluster described in the centroid 

table disclosed in Table 5.45. These colored lines can be interpreted as: 

• Blue line – presents the mean value for each attribute within cluster 0; 

• Green line – presents the mean value for each attribute within cluster 1; 

• Yellow line – presents the mean value for each attribute within cluster 2; 

• Red line – presents the mean value for each attribute within cluster 3. 

Table 5.45 Centroid Table for the iteration nº6 – Best result 

 

Table 5.46 Complementary Centroid Table for the iteration nº6 – Mean, Standard-deviation 

and ANOVA result – Best result 

 

Cluster 0 

n=21 Cluster 1 n=38 Cluster 2 n=14 Cluster 3 n=12 P   

Idade_H 
36.524 

(±5.006) 

35.947 

(±5.266) 

36.643 

(±4.236) 

37.500 

(±5.248) 
0.778 

Idade_M 
33.762 

(±4.049) 

32.789 

(±4.400) 

34.357 

(±4.517) 

34.833 

(±3.927) 
0.336 

Gravidez 
0.476 

(±0.512)  

0.526 

(±0.506) 

0.571 

(±0.514) 

0.083 

(±0.289) 
0.030 

ProfissãoComRiscoDe

Contacto 

0.429 

(±0.507) 

0.158 

(±0.370) 

0.071 

(±0.267) 

0.500 

(±0.522) 
0.007 

Conc_3M_Qualificado 
0.238 

(±0.436) 

0.605 

(±0.495) 

1 

(±0) 

0.333 

(±0.492) 
0.001 

A_B_Pre_Qualificado 
0.048 

(±0.218) 

0.342 

(±0.481) 

0.929 

(±0.267) 

0.167 

(±0.389) 
0.001 

A_B_3M_Qualificado 
0.286 

(±0.463) 

0.342 

(±0.481) 

0.786 

(±0.426) 

0.417 

(±0.515) 
0.011 

Grau_I 
1 

(±0) 

0 

(±0) 

0.786 

(±0.426) 

0 

(±0) 
0.001 

Grau_II 
0 

(±0) 

1 

(±0) 

0 

(±0) 

0 

(±0) 
0.001 

Grau_III 
0 

(±0) 

0 

(±0) 

0.214 

(±0.426) 

1 

(±0) 
0.001 
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Table 5.47 Complementary Centroid Table for the iteration nº6 – Frequency – Best result 

 

 

Figure 5.36 Series plot of the centroid means presented in Table 5.45 – Best result 

Due to the interesting results obtained, we have applied the Decision tree model showcased in 

Figure 6.22 (i.e. Model 2.1) on the clustered instances generated. Since the first goal of this 

study is to predict the success of the embolization treatment, we have generated trees by 

considering the “Gravidez” attribute as a label. These decision trees are shown in Table 5.48  

and were generated with the following model parameter values that were found to be the best 

during the application of the decision tree algorithm (i.e. modeling step 6.1 depicted in Table 

5.41): 

• Criterion = Accuracy; 

 

Value Cluster 0 

n=21 

Cluster 1 

n=38 

Cluster 2 

n=14 

Cluster 3 

n=12 

Idade_H      

Idade_M      

Gravidez 
0  (Não) 11 18 6 11 

1 (Sim) 10 20 8 1 

ProfissãoComRiscoDe

Contacto 

0 (Não) 12 32 13 6 

1 (Sim) 9 6 1 6 

Conc_3M_Qualificado 
0 (Anormal) 16 15 0 8 

1 (Normal) 5 23 14 4 

A_B_Pre_Qualificado 
0 (Anormal) 20 25 1 10 

1 (Normal) 1 13 13 2 

A_B_3M_Qualificado 
0 (Anormal) 15 25 3 7 

1 (Normal) 6 13 11 5 

Grau_I 
0  0 38 3 12 

1 (Grau_Varicoc=1) 21 0 11 0 

Grau_II 
0  21 0 14 12 

1 (Grau_Varicoc=2) 0 38 0 0 

Grau_III 
0  21 38 11 0 

1 (Grau_Varicoc=3) 0 0 3 12 
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• Apply pruning = True; 

• Minimal Size For split = 4; 

• Minimal gain = 0.1; 

• Minimal Leaf Size = 2; 

• Maximal depth = 20; 

The decision trees in Table 5.48 have “age” denormalized to better interpret the computed 

results. The decision tree leaf nodes have the pregnancy outcome normalized; and hence, the 

value 0 can be interpreted as not pregnant and the value 1, as pregnant.  The decision tree paths 

that cover the highest frequency of pregnancies are highlighted in blue. 

Table 5.48 Decision Tree results upon the clusters generated in the last iteration 6  

Cluster Nº | n Decision tree 

Cluster 0 n=21 

  

Cluster 1 n=38  

 

Cluster 2 n=14 

 

Cluster 3 n=12 

 

 

If we analyze the decision trees above, we can appreciate that the cluster that delivers the most 

interesting information is the cluster 1, which has the highest number of patients. The decision 

tree of cluster 1 tells us that a normal sperm progressive motility at 3 months after embolization 

generates more pregnancies (i.e. 10/(10+3)=76.9%) and that the highest frequency of 

unsuccessful couples (14/(8+14)=63.63%) is held by male patients above 29 years old with 

abnormal sperm progressive motility at 3 months after treatment. Regarding Cluster 0, it tells 

us that most pregnancies occur when couples are of a male patient 36 years old or younger and 

a woman 34 years old or younger (7(/1+7)=87.5%). This cluster also tells us that these couples 

are less successful when the male patient is 40 years old or younger and the woman older than 
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34. The decision tree generated from the cluster 3 complies with what was said previously: most 

patients in this cluster are unsuccessful (i.e. 11/(11+1)=91.67%) . Cluster 2 indicates that 

woman patients 33 years old or younger are more prone to get pregnant (5/(5+1)=83.33%). This 

result makes us recall what we have seen during the Decision tree modelling step 6 depicted in 

Table 5.42. 

Further on, we have rerun this k-means model without the “Idade_H” attribute to assess if the 

Davies Bouldin index would decrease and it has slightly lowered to -1.349. However, since all 

other computed results remained the same and our focus is on the male infertility, we have 

continued with model 2 as the best model.  

5.5.2.2 Severity grade mapped (Model 3) 

In this subsection, we present the results obtained with the model depicted in Figure 6.24. This 

model had the severity grade mapped, instead of dichotomized as previously disclosed. 

This model was executed with the following conditions: 

• Selected attributes: Idade_M, Idade_H, A_B_Pre_Qualificado, A_B_3M_Qualificado, 

Conc_3M_Qualificado, Grau_Varicoc, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientes, Gravidez. 

• Filtered the above listed attributes by non-missing values; and therefore, all these 

iterations were ran on the same 85 instances. 

• Number of clusters: 2 to 4. 

• Distance measure: Euclidean and Manhattan Distance 

This model generated the Davies Bouldin results presented in Table 5.49 where we can see that 

the best setting for this model is: Distance measure = Euclidean Distance and Number 

Clusters=4 (Davies Bouldin index=-1.632). The generated clusters have the distribution 

presented in the Figure 5.37.  

Table 5.49 Davies Bouldin results for the model depicted in Figure 6.24 
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Figure 5.37 Cluster´s distribution in the iteration nº 3 

Table 5.50 Centroid Table for the iteration nº3  

 

To better support our analysis of the series plot depicted in Figure 5.38, we have built 

complementary centroid tables that are depicted in the Table 5.51 and Table 5.52, below. The 

first complementary centroid table presents: de-normalized means (these means have its cells 

colored in beige); ± the standard deviations; and the statistical significance (p). The next 

complementary centroid table presents the frequencies for each attribute value specified under 

the column “Value”.      

Table 5.51 Complementary Centroid Table for the iteration nº3 – Mean, Standard-deviation 

and ANOVA result 

 

 

 Cluster 0 n=23 Cluster 1 n=15 Cluster 2 n=24 Cluster 3 n=23 p 

Grau_Varicoc 
1.783 

(±0.795) 

1.533 

(±0.640) 

1.958 

(±0.806) 

1.826 

(±0.576) 
0.345 

Idade_H 
36.13  

(±4.605) 

34.333  

(±3.940) 

36.25  

(±4.674) 

38.261  

(±5.856) 
0.111 

Idade_M 
33.957  

(±4.084) 

31.867  

(±3.543) 

34.083  

(±4.872) 

33.783  

(±4.199) 
0.384 

Gravidez 
0.522  

(±0.511) 

1 

(±0) 

0  

(±0) 

0.522  

(±0.511) 
0.000 

ProfissãoComR

iscoDeContacto 

0.217  

(±0.422) 

0.333  

(±0.488) 

0.375  

(±0.495) 

0.130  

(±0.344) 
0.236 

Conc_3M_Qual

ificado 

1  

(±0) 

0  

(±0) 

0  

(±0) 

1  

(±0) 
(not significant) 

A_B_Pre_Quali

ficado 

1 

(±0) 

0.133  

(±0.352) 

0.167  

(±0.381) 

0 

(±0) 
0.000 

A_B_3M_Qual

ificado 

0.652  

(±0.487) 

0.2  

(±0.414) 

0.333  

(±0.482) 

0.391  

(±0.499) 
0.028 
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Table 5.52 Complementary Centroid Table for the iteration nº3 – Frequency 

 

 

Figure 5.38 Series plot of the centroid means presented in Table 5.50   

If we analyze the plot in Figure 5.38, we see that in all clusters, the varicocele severity grade, 

as well as the patient ages are quite the same (p>0.05). Moreover, the cluster represented in 

green (cluster 1) is quite the same as the one represented in yellow (cluster 2). In fact, we can 

see that most attributes have almost the same mean in these two clusters which tells us that the 

patients that were able to conceive do not have a different pattern from the ones that did not got 

pregnant. Similarly, we have the other two clusters – blue (Cluster 0) and red (Cluster 3) – that 

only differ in terms of sperm progressive motility. In fact, we see that the group of patients with 

normal sperm progressive motility before the treatment (Cluster 0) is still the largest one 3 

months after the varicocele embolization in spite of its decline; i.e., from the group of 23 

patients with normal sperm progressive motility before the treatment (Cluster 0), 8 of them 

show a decline in their sperm progressive motility 3 months after the treatment. Furthermore, 

if we compare cluster 0 and 3 with clusters 1 and 2, we see that we have a lower percentage of 

patients in cluster 0 and 3 that are exposed to toxic products or environments at their job than 

 Value 
Cluster 0 

n=23 

Cluster 1  

n=15 

Cluster 2  

n=24 

Cluster 3  

n=23 

Grau_Varicoc 

1 (Grau_Varicoc=1) 10 8 8 6 

2 (Grau_Varicoc=2) 8 6 9 15 

3 (Grau_Varicoc=3) 5 1 7 2 

Idade_H      

Idade_M      

Gravidez  
0 (Não) 11 0 24 11 

1 (Sim) 12 15 0 12 

ProfissãoComRiscoDeContacto 
0 (Não) 18 10 15 20 

1 (Sim) 5 5 9 3 

Conc_3M_Qualificado 
0 (Anormal) 0 15 24 0 

1 (Normal) 23 0 0 23 

A_B_Pre_Qualificado 
0 (Anormal) 0 13 20 23 

1 (Normal) 23 2 4 0 

A_B_3M_Qualificado 
0 (Anormal) 8 12 18 13 

1 (Normal) 15 3 8 9 
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the patients in cluster 1 and 2. However, this gap is not statistically significant (p>0.05); and 

therefore, it did not add useful information.      

5.5.2.3 Idade_M discretization (Model 4) 

In this subsection, we present the results computed with the model depicted in  Figure 6.25. 

This model aims to visually show how the woman age varies with the “Gravidez” attribute 

through a scatter plot since the ANOVA statistical results, disclosed in section 5.3.2.11, 

indicated that the mean of the woman age significantly varied (p=0.018) with the label attribute.      

This model was executed with the following conditions: 

• Selected attributes: Idade_M, Gravidez; 

• Filtered the above listed attributes by non-missing values; and therefore, all these 

iterations were upon the same 229 instances ran (Note that we have 230 instances with 

the “Gravidez” attribute filled but we have 1 missing value in the “Idade_M” attribute 

which leads us to 229 instances); 

• Number of clusters: 2 to 4; 

• Distance measure: Euclidean and Manhattan Distance. 

This model generated the Davies Bouldin results presented in Table 5.53 where we can see that 

the best setting for this model is: Distance measure = Euclidean Distance and Number 

Clusters=2 (Davies Bouldin index=-0.244). The generated clusters have the distribution 

presented in Figure 5.39 where Cluster 0, represents the patients that conceived (i.e. 

“Gravidez”= “Sim”) and Cluster 1, represents the patients that did not conceive (i.e. 

“Gravidez”= “Não”). Through the clustering distribution shown below, we can see that we have 

quite 7% less patients that conceived, as we have statistically previously seen (i.e. (122-

107)/229=0.065. In the scatter plots depicted in Figure 5.40 and Figure 5.41, we can see the 

distribution of the women ages within these 2 clusters. 

Table 5.53 Davies Bouldin results for the model depicted in Figure 6.25 
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Figure 5.39 Cluster´s distribution in the iteration nº1  

 

Figure 5.40 Scatter plot between Idade_M vs Clusters – max jitter 

 

Figure 5.41 Scatter plot between Idade_M vs Clusters – min jitter 

If we assess the frequencies of the women age depicted in Table 5.54, we see that the most 

common ages in the group of patients that conceived are: 31 (14 patients) and 32 (14 patients) 

years old and in the group of patient that did not conceive are: 36 (14 patients) and 35 (12 

patients) years old. Hence, just by the most common ages of each cluster, we see that there is 

in fact a difference since the most frequent ages of the group of patients that got pregnant is 
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lower than the other group which contributes to a lower age mean, as we can see in the centroid 

tables depicted in Figure 5.43.  

Table 5.54 Highest frequencies of the filtered woman´s ages grouped by clusters 

 

Table 5.55 Normalized Centroid Table for the iteration nº1  

 

Table 5.56 Denormalized Centroid Table for the iteration nº1 – mean 

 

Table 5.57 Denormalized Centroid Table for the iteration nº1 – median 

 

By assessing the scatter plots depicted in Figure 5.40 and Figure 5.41 we can say that there is a 

different age distribution between these two clusters that can be further explored. In fact, we 

can see ranges of age values with only the “Gravidez” attribute set to “Não” which leads us to 

discretize the “Idade_M” attribute by its entropy to potentiate the discovery of interesting 

information within these ranges of age values. Hence, if we focus on the scatter plot depicted 

in Figure 5.41 and in cluster 1, we can formulate the following discretization for the “Idade_M” 

attribute (the number of patients that falls in each range is specified between parentheses): 

Idade_M<=24 (8 patients); 25<= Idade_M <= 39 (211 patients); Idade_M>= 40 (10 patients) 
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After looking up for the values of the label attribute “Gravidez” in each range of values, we 

have seen that in the middle range of values that goes from 25 to 39 years old, we have 106 

patients with the “Gravidez” attribute set to “Sim” and 105 patients with the “Gravidez” 

attribute set to “Não”; and therefore, the entropy would be in this range of values close to 1. On 

the other hand, the other range of values would be close to 0: all patients below 24 years old 

have the “Gravidez” attribute set to “Não” and for the patients above 40 years old, only one 

patient out of the 10 patients identified, has the “Gravidez” attribute set to “Sim”. The problem 

with this discretization is that we have a small number of patients in the range of value with 

low entropy and the one close to 1 has the main patients; and therefore, we have sought for 

another type of discretization, but before that, we have applied the “Discretize by Entropy” 

operator that is available in the RapidMiner platform – this operator implements the entropy 

discretization proposed in (Fayyad & Irani, 1993). This operator has computed a range of values 

going from negative to positive infinity. This operator/discretization method was not able to 

propose a discretization for the “Idade_M” attribute which made us move to another more 

suitable method for our dataset. Hence, since this study also applies the association rule 

algorithm, which is based on frequencies of values, we have decided to explore the 

discretization per frequency method. Hence, we had the idea of building a box plot for the 

woman age, since each part of the box plot (i.e. Top Wisker, Upper Box, Lower Box and Bottom 

Wisker) cover 25% of the data; and therefore, we have formulated the discretization of the 

“Idade_M” attribute based on these parts of the box plot depicted in  Figure 5.42. This box plot 

was built in EXCEL with the statistical values disclosed in Table 5.58 that were computed as 

specified in section 4.2.5.    

Table 5.58 Main Statistical values of the “Idade_M” attribute  

 

 

 

 

 

 

ID Idade_M 

Min 20 

Q1 30 

Median 32 

Q3 36 

Max 46 

Mean 32.52 

Mean-Median 0.515 

Standard Deviation 4,23 

n 229 
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 Figure 5.42 Woman´s age distribution – Box Plot of “Idade_M” 

Thus, based on the statistical measures disclosed in Table 5.58Table 5.58, we have formulated 

and fine-tuned the following discretization for the “Idade_M” attribute:  

Idade_M<=30; 30< Idade_M <=32; 32< Idade_M <36; Idade_M>=36 

 

The above discretization was fine-tuned on the matter of its equalities with the RapidMiner 

operator called “Discretize By Frequency” for 4 bins. The “Discretize By Frequency” operator 

creates bins in such a way that the number of unique values in all bins are (almost) equal. This 

operator has computed the following ranges of values which enabled us to not only fine-tune 

the discretization previously set, but also go with the decision of using the “Discretize by 

frequency” operator to discretize the “Idade_M” attribute:  

• Range 1:  infinity to 30.500;  

• Range 2:  30.500 to 32.500; 

• Range 3:  32.500 to 35.500; 

• Range 4:  35.500 to infinity. 

 

In the below Figure 5.43, we can see a print screen of part of the computed results by the 

“Discretize by frequency” operator where we can see the original value under the column 

named “Idade_M Original”, the discretized value under the column named “Idade_M” and the 

label outcome under the column named “Gravidez”. The original value was computed with the 

RapidMiner´s “Generate Attribute” operator to assess if the assigned discretization was correct.     

0

5

10

15

20

25

30

35

40

45

50

Id
ad

e_
M Upper Box - Third Quartile

Lower Box - Second Quartile

Mean



Chapter 5                                                                                        STUDY OF THE VARICOCELE CONDITION 

Judith Santos Pereira                                                                                                                                             120 
 

 

Figure 5.43 Discretization of the “Idade_M” attribute by frequency 

To better understand the data in each range of age values, the below Table 5.59 shows the 

number of patients covered in each range of values under the column named “n”, the 

frequencies of the “Gravidez” attribute values under the columns with the prefix “Gravidez”, 

as well as the means and standard deviations of the ages in each range of values under the 

column named “Mean(±SD)”.  

Table 5.59 Description of the instances in each range of values  

Range n  “Gravidez” = “Sim”  “Gravidez” = “Não” Mean (±SD) 

Range 1 infinity to 30.5 71 39 32 27.831 (±2.426) 

Range 2 30.5 to 32.5 46 28 18 31.500 (±0.506) 

Range 3 32.5 to 35.5 54 22 32 33.852 (±0.856) 

Range 4 35.5 to infinity 58 18 40 37.810 (±2.259) 

 

By analyzing the information disclosed in Table 5.59, we see that the first range of values 

encompasses the highest number of patients (i.e. 71 patients – we have 23 women with 30 years 

old) and that the frequencies of patients with the “Gravidez” attribute equal to “Sim”, is almost 

the same with the ones that have the “Gravidez” attribute equal to “Não” (i.e. 39 vs 32). In 

contrast, the other ranges of values have a reasonable and similar number of patients, as well as 

an interesting difference between the frequencies of the “Gravidez” attribute values. An 

interesting aspect that we can see in this table is that in the first two ranges (i.e. ages under 32.5) 

we have more patients that have conceived, and in the last two ranges (i.e. ages above 32.5), 
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the inverse is seen (i.e. less patients have conceived). Hence, we can say that women have 

conceived more until they were 32 years old.      

To assess the interest of this discretization, we have applied the ANOVA test upon the 

discretized ages (i.e. set “Idade_M Original” grouped by “Idade _M” in the ANOVA operator 

upon the data that was partly shown in Figure 5.43). The ANOVA test showed that the means 

of the ages between the generated ranges were significantly different (p<0.001) which makes 

an interesting discretization to test since we could draw the hypothesis that if there is a 

difference in the age means, some attributes might influence this difference. Hence, this 

possibility made us go with the discretization by frequency presented in Table 5.59. 

5.5.2.4 K-means application of the patient´s age discretization (Model 5) 

In this subsection, we present the results obtained with the model depicted in Figure 6.26 

(Model 5). This model aimed to apply the previously defined discretization of the “Idade_M” 

attribute upon the most interesting clustering result (i.e. the model with the “Grau_Varicoc” 

attribute manually dichotomized depicted in Figure 6.21). 

This model was executed with the following conditions: 

• Selected attributes: Idade_M, A_B_Pre_Qualificado, A_B_3M_Qualificado, 

Conc_3M_Qualificado, Grau_I, Grau_II, Grau_III, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientes, Gravidez; 

• Filtered the above listed attributes by non-missing values; and therefore, all these 

iterations were running on the same 85 instances; 

• Number of clusters: 2 to 4; 

• Distance measure: Euclidean and Manhattan Distance. 

This model generated the Davies Bouldin results presented in Table 5.60 where we can see that 

the best setting for this model is: Distance measure = Euclidean Distance and Number Clusters 

= 4 (Davies Bouldin index= -1.432). The generated clusters have the distribution presented in 

Figure 5.44 and its means in Table 5.61 and its related series plot, Figure 5.45.  

Table 5.60 Davies Bouldin results for the model depicted in Figure 6.26 
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Figure 5.44 Cluster´s distribution in the iteration nº3  

Table 5.61 Centroid Table for the iteration nº3 

 

 

Figure 5.45 Series plot of the centroid means presented in Table 5.61 

As we can see, the results generated are exactly the same as previously disclosed in section 

5.5.2.1 (all but the mean value of the “Idade_M” attribute – Note that the clusters were renamed 

in this test), which means that even if the mean is statistically different between the defined age 
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ranges, when partitioned, the clusters generated end up with a mix of woman age ranges that 

makes it still statistically insignificant (p=0.441). Hence, we can say that the discretization of 

the “Idade_M” attribute did not improve this model. Moreover, the best Davies Bouldin result 

is even worse (Model 2: -1.367 vs Model 5: -1.432). However, we have continued to explore 

its application with the FP-Growth algorithm and its results can be seen in the next subsection.   

5.5.3 Association 

The association technique was applied with the FP-Growth algorithm to identify attribute 

relations that were interesting and statistically significant with the aim of tackling the goals 2 

and 5 described in section 5.2.3. As documented in Appendix C.3, several tests were carried 

out with the FP-Growth algorithm through six modeling steps described in Table 6.6 that aim 

to identify the most interesting rules. 

In order to select the most interesting rules we have at first selected the most objectively and 

subjectively interesting ones by identifying the rules that complied with the pruning conditions 

defined in section 4.2.8.3 and at last, computed the Chi-square test based on the standard 

measures of confidence, support and lift of each pruned rule with the formula disclosed in 

Formula 4.1. In Table 5.62, we disclose all selected/pruned association rules during the first 5 

modeling steps of the application of the FP-Growth algorithm, as well as identify the ones that 

have a statistically significant dependence between the antecedent and consequent attributes of 

the rule. The corresponding x2 value of these rules highlighted below in bold and with one 

asterisk (*) if the dependency between the attributes was statistically significant for a p<=0.10 

(i.e. x2   >= 2.706), or with two asterisks (**), for a p<=0.05 (i.e. x2   >= 3.841), or with three 

asterisks (***), for a p<=0.01 (i.e. x2   >= 6.635). However, despite all these significance levels, 

the rules that were in fact elected are the ones that have a p<=0.05. Elected rules are highlighted 

in yellow in the following result tables. 

To specify how the generated results - results disclosed under the column names colored in a 

stronger gray color - were computed during the first 5 modeling steps by the RapidMiner 

platform, other information was added to Table 5.62 that indicates the following information: 

• “Rule ID” - Rule identification number. 

• “Test Nº” - Test number related to the outputs shown in Appendix C.3, that has the 

following format: [Modeling step Number].[Time Ran]. Hence, for example, the test 

1.2, references the results obtained during the second run of the association modelling 

step 1. Note that the tests 1.x to 2.x were computed with the model disclosed in Figure 

6.27 FP-Growth model 1 (used in step 1 and 2) and the tests 3.x to 5.x, were computed 

with the model disclosed in Figure 6.28 FP-Growth model 2 (used in step 3 to 5). 

• “Gravidez Filtered” - Indicates whether the “Gravidez” attribute was filtered by non-

missing values. 

• “Support threshold” and “Confidence threshold” - Indicates the support and confidence 

thresholds set in the corresponding test.  

• “x2” - Chi-square value computed with the EXCEL software. 

• “n” - Number of instances encompassed in the corresponding test. 
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Table 5.62 Selected results in the first 5 modeling steps  

Rule ID Test Nº 
“Gravidez” 
Filtered 

Support 
threshold  

Confidence 
threshold  

Antecedent Consequent Support Confidence Lift Conviction x2 n 

1 1.1 No 0.1 0.8 Grau_Varicoc=I A_B_Pre 0.198 0.866 1.153 1.855 6.13444398 ** 293 

2 1.2 No 0.0 0.0 A_B_Pre Formas_N_3M 0.468 0.623 1.14 1.203 20.894662 *** 293 

3 1.2 No 0.0 0.0 A_B_Pre Gravidez 0.317 0.423 1.158 1.1 12.58891263 *** 293 

4 1.2 No 0.0 0.0 Formas_N_3M Gravidez 0.253 0.463 1.266 1.181 14.40116299 *** 293 

5 1.2 No 0.0 0.0 A_B_Pre, Formas_N_3M Gravidez 0.229 0.489 1.339 1.242 17.06157362 *** 293 

6 2.1 No 0.0 0.0 A_B_Pre 
Formas_N_3M, 
Gravidez 0.229 0.305 1.206 1.075 12.68232854 *** 293 

7 2.1 No 0.0 0.0 Conc_6M Gravidez 0.167 0.422 1.157 1.099 2.715615806 * 293 

8 2.1 No 0.0 0.0 Grau_Varicoc=II Gravidez 0.164 0.432 1.184 1.118 3.487211005 * 293 

9 3.2 Yes 0.0 0.0 A_B_Pre Formas_N_3M 0.517 0.654 1.106 1.181 14.11070966 *** 230 

10 3.2 Yes 0.0 0.0 Formas_N_3M Gravidez 0.322 0.544 1.17 1.173 8.378246668 *** 230 

11 3.2 Yes 0.0 0.0 A_B_Pre 
Formas_N_3M, 
Gravidez 0.291 0.368 infinity 1.583 Infinity *** 230 

12 3.2 Yes 0.0 0.0 A_B_Pre, Formas_N_3M Gravidez 0.291 0.563 1.21 1.224 9.442665918 *** 230 

13 3.3 Yes 0.1 0.4 Grau_Varicoc=II Formas_N_3M 0.222 0.593 1.003 1.004 0.001791514 230 

14 3.3 Yes 0.1 0.4 Grau_Varicoc=II A_B_Pre,Formas_N_3M 0.196 0.523 1.011 1.012 0.01787736 230 

15 3.3 Yes 0.1 0.4 A_B_Pre,Grau_Varicoc=II Formas_N_3M 0.196 0.662 1.119 1.208 1.984420491 230 

16 3.3 Yes 0.1 0.4 Grau_Varicoc=I Formas_N_3M 0.178 0.683 1.156 1.291 2.848821379 * 230 

17 3.3 Yes 0.1 0.4 Grau_Varicoc=I 
A_B_Pre, 
Formas_N_3M 0.152 0.583 1.127 1.158 1.402075017 230 

18 3.3 Yes 0.1 0.4 A_B_Pre,Grau_Varicoc=I Formas_N_3M 0.152 0.686 1.161 1.303 2.450825696 230 

19 3.4 Yes 0.1 0.4 Grau_Varicoc=II Gravidez 0.209 0.558 1.2 1.21 4.78859224 ** 230 

20 3.4 Yes 0.1 0.4 Grau_Varicoc=II A_B_Pre, Gravidez 0.174 0.465 1.15 1.114 2.100530514 230 

21 3.4 Yes 0.1 0.4 A_B_Pre, Grau_Varicoc=II Gravidez 0.174 0.588 1.264 1.299 5.860237633 ** 230 

22 4.1 Yes 0.1 0.4 Conc_3M_Qualificado Gravidez 0.235 0.574 1.235 1.257 7.646138449 *** 230 

23 4.1 Yes 0.1 0.4 A_B_3M_Qualificado Gravidez 0.217 0.568 1.221 1.238 6.040879256 ** 230 

24 4.1 Yes 0.1 0.4 A_B_Pre_Qualificado Gravidez 0.187 0.558 1.2 1.211 4.03046074 ** 230 
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Rule ID Test Nº 
“Gravidez” 
Filtered 

Support 
threshold  

Confidence 
threshold  

Antecedent Consequent Support Confidence Lift Conviction x2 n 

25 4.1 Yes 0.1 0.4 
Conc_3M_Qualificado, 
A_B_3M_Qualificado Gravidez 0.157 0.667 1.433 1.604 11.55926365 *** 230 

26 4.2 Yes 0.1 0.4 A_B_3M_Qualificado Conc_3M_Qualificado 0.235 0.614 1.501 1.53 24.7785958 *** 230 

27 4.2 Yes 0.1 0.4 A_B_Pre_Qualificado Conc_3M_Qualificado 0.178 0.532 1.303 1.265 7.326340305 *** 230 

28 4.2 Yes 0.1 0.4 A_B_3M_Qualificado 
Gravidez, 
Conc_3M_Qualificado 0.157 0.409 1.742 1.295 24.20627243 *** 230 

29 4.3 Yes 0.1 0.4 Conc_3M_Qualificado A_B_3M_Qualificado 0.235 0.574 1.501 1.451 24.78013169 *** 230 

30 4.3 Yes 0.1 0.4 A_B_Pre_Qualificado A_B_3M_Qualificado 0.165 0.494 1.29 1.219 6.020405714 ** 230 

31 5.1 Yes 0.1 0.4 
Qualificar_Espermograma
_3M = Normozoospérmico Gravidez 0.104 0.706 1.517 1.818 9.24548327 *** 230 
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As previously seen, the FP-Growth algorithm considers the attribute values set to “True” to 

compute the most frequent item sets; and therefore, to interpret the above generated association 

rules we must keep in mind the attribute values that were considered as “True” in the above ran 

tests. Table 5.63 presents these values: the attributes specified with the value All, under the 

column named “True Value”, indicates that all non-missing values of the corresponding 

attribute are considered as “True” by the algorithm since these attributes are polynominal 

attributes that were dichotomized with the “Nominal to Binomial” RapidMiner´s operator - as 

seen in the model depicted in Figure 6.27 FP-Growth model 1 and  Figure 6.28 FP-Growth 

model 2.   

Table 5.63 Attribute´s True Values in the first 5 modeling steps 

Attribute Name True Value 

Grau_Varicoc All  

Conc_6M Conc_6M>0 

A_B_pré A_B_pré>0 

Formas_N_3M Formas_N_3M>0 

Conc_3M_Qualificado Normal 

A_B_Pre_Qualificado Normal 

A_B_3M_Qualificado Normal 

Qualificar_Espermograma_Pre All 

Qualificar_Espermograma_3M All 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos Sim 

Gravidez Sim 

 

Upon the set of the most interesting rules (i.e. the pruned rules with a statistically significant 

dependence between the antecedent and consequent attributes that are in shown in Table 5.62), 

we have elected the best rules. Those best rules are highlighted in yellow in Table 5.62 and can 

be interpreted as follows in the context of its main measures: 

• The rule with the highest statistical significance (i.e. support) is: 

A_B_Pre -> Formas_N_3M (for n=230) 

This rule tells us that the conditional probability (i.e. confidence) of observing 3 months 

after the embolization treatment a normal sperm morphology given a normal sperm 

motility before the embolization treatment is of 65% (i.e. 119/182). In the dataset, we 

have 119 male patients out of 230 that have before the treatment a normal sperm motility 

and 3 months after the embolization treatment, a normal sperm morphology, which 

gives a support of 0.198. This rule is interesting since there is a strong relation between 

these two sperm parameters (p<0.01). 

• The rule that showed the best strength (i.e. confidence) was: 

Grau_Varicoc=1 -> A_B_Pre (for n=293) 

This rule tells us that the conditional probability of observing normal sperm motility 

before the embolization treatment given a low severity grade of the varicocele condition 

is of 87% (i.e. 58/67). In the dataset, we have 58 male patients out of 293 that have 

before the treatment a low severity grade of the varicocele condition and a sperm 
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motility above 0, which gives a support of 0.198. This rule is interesting since there is a 

relation between the severity grade and the sperm motility before the treatment (p<0.05). 

• The rule that computed the highest dependency between its antecedent and consequent 

attributes (i.e. x2) was: 

A_B_Pre -> Formas_N_3M, Gravidez (for n=230) 

This rule tells us that the conditional probability of observing a normal sperm 

morphology 3 months after the embolization treatment and getting pregnant (i.e. 

“Gravidez”=”Sim”) given a normal sperm motility before the treatment is 37% (i.e. 

67/182). In the dataset, we have 67 male patients out of 230 that were able to conceive 

with a normal sperm motility before the treatment and a normal sperm morphology 3 

months after the treatment which gives a support of 0.291. This rule is interesting since 

there is a very strong relation between the antecedent and consequent attributes of the 

rule (p<0.01). 

• The rule that showed the highest statistical significance (i.e. support) for the consequent 

attribute “Gravidez” was: 

Formas_N_3M -> Gravidez (for n=230) 

This rule tells us that the conditional probability of a woman conceiving (i.e. 

“Gravidez”=”Sim”) given a partner with normal sperm morphology 3 months after the 

treatment is of 54% (i.e. 74/136). In the dataset, we have 74 male patients out of 230 

that could impregnate their partner with normal sperm morphology 3 months after the 

treatment above 0 which gives a support of 0.322. This rule is interesting since there is 

a strong relation between the antecedent and consequent attributes of the rule (p<0.01) 

and through all the FP-Growth application, it was seen the rule with the highest support 

towards the “Gravidez” consequent. 

• The top 3 rules that showed the best strength (i.e. confidence) for the consequent 

attribute “Gravidez” was, in the order of appearance: 

Qualificar_Espermograma_3M = Normozoospérmico -> Gravidez (for n=230) 

This rule tells us that the conditional probability of a woman conceiving (i.e. 

“Gravidez”=”Sim”) given a Normozoospermic partner at 3 months after the treatment 

is of 71% (i.e.24/34). In the dataset, we have 24 male patients out of 230 that 

impregnated their partner by being Normozoospermic at 3 months after the treatment 

which gives a support of 0.104. This rule is interesting since there is a strong relation 

between the antecedent and consequent attributes of the rule (p<0.01). 

Conc_3M_Qualificado, A_B_3M_Qualificado -> Gravidez (for n=230) 

This rule tells us that the conditional probability of a woman conceiving (i.e. 

“Gravidez”=”Sim”) given a partner with a Normal sperm concentration and sperm 

motility at 3 months after the treatment is of 67% (i.e. 36/54). In the dataset, we have 

36 male patients out of 230 that impregnated their partner by having these sperm 

parameters above or equal to the WHO thresholds. This rule is interesting since there is 

a strong relation between the antecedent and consequent attributes of the rule (p<0.01). 
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A_B_Pre, Grau_Varicoc=II -> Gravidez (for n=230) 

This rule tells us that the conditional probability of a woman conceiving (i.e. 

“Gravidez”= “Sim”) given a partner with sperm motility before the treatment above 0 

and a moderate varicocele´severity grade is of 59% (40/68). In the dataset, we have 40 

male patients out of 230, that impregnated their partner with normal sperm motility and 

a moderate severity grade of varicocele before the treatment. These last attributes are 

related with the pregnancy outcome since it has computed a p<0.05.   

If we analyze the assessed “True” attribute values disclosed in Table 5.63 above, we see that 

some attributes values were not mined: the abnormal sperm parameter values and other ranges 

of sperm parameters values. Since one of the aims of this study is to find data patterns, 

essentially between sperm related attributes and external factors (i.e. Goal 5), we have applied 

the FP-Growth algorithm on the sperm parameters covered in the fourth, fifth and sixth group 

of attributes disclosed in section 5.4.4 with other attributes related with patient external factors 

to seek for interesting association rules. Furthermore, we have also looked for rules with the 

consequent attribute “Gravidez” to tackle the prediction of embolization success (i.e. Goal 2). 

Hence, in this last six modeling steps we have discretized the sperm parameters and have added 

other external factors (i.e. smoking and drinking habits) that were not seen in this study as 

statistically significant with the “Gravidez” attribute, nor with a good data quality (see section 

5.4.4),  but yet has been studied in related works (Delavar et al., 2014). Nevertheless, we have 

assessed the statistical significance between these external factors and the semen classification 

but not with the sperm parameters, so we have also aimed to do it through this sixth modeling 

step. Furthermore, we have added the “PMA” and “Gravidez_espontanea” attribute to see if 

there were attribute values related with these types of conceptions and have added the age of 

the woman discretized as defined in section 5.5.2.3, but this time, with the “Discretized by User 

Specification” operator to ensure that the previously defined ranges were retested.  

Sperm parameter discretization was carried out in the sixth modeling step similarly as with the 

“Idade_M” attribute that was discussed in section 5.5.2.3. Hence, we have at first tested the 

RapidMiner´s operator called “Discretization by Entropy” where we have seen that the 

proposed ranges of values, for all assessed sperm parameters (i.e. Conc_3M , Conc_6M, 

A_B_pré, A_B_3M, Formas_N_3M), were from negative infinity to positive infinity and then 

have tested the “Discretization by frequency” operator for 4 bins. When we analyzed the 

proposed ranges of values of this last operator, we have realized that the best way to discretize 

these values was to use a user specified discretization with the operator called “Discretized by 

User Specification” to better interpret the patients that have normal or abnormal sperm 

parameter values. In fact, with the “Discetization by Frequency” operator, for, for example the 

“Conc_3M” attribute, the second proposed range went from 1.75 to 18.5 million sperm per 

milliliter; and therefore, this range covered patients that had normal and abnormal sperm 

concentration values since the WHO threshold is set to 15 million/milliliter. To facilitate the 

interpretation of the results, we have discretized the sperm parameters by the WHO thresholds 

described in section 4.1.1.1. Therefore, we have ended up with the discretization disclosed in 

Table 5.64 that can be interpreted as follows: under the column named “Attribute Name”, we 

have the name of the numeric attributes that were discretized for this test; under the column 
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named “Discretization”, we have the proposed ranges of values; under the column named “n”, 

the number of instances that falls in each of these specified ranges of values with non-missing 

values in the “Gravidez” attribute and in the following two columns, we have the number of 

instances that have the “Gravidez” attribute filled with the value Yes (“Sim”) or No (“Não”) 

for the corresponding attribute and range of values. 

This proposed discretization encompasses patients with the value 0, as well as patients with 

abnormal sperm parameter values, which makes us consider information that was not yet 

assessed in this study with the FP-Growth algorithm. If we analyze the number of instances that 

falls into abnormal sperm parameter values, we see that this data set as more patients with 

abnormal sperm parameters than normal sperm parameters in the selected attributes which 

supports our will to also assess that population in this last modeling step.  

Table 5.64 Attribute discretization - step 6 – test 6.1 

Attribute Name Discretization n Gravidez (Sim) Gravidez (Não) 

Conc_3M 0 17 2 15 

0.01 to 14.9 90 38 52 

15 to positive infinity 94 54 40 

Conc_6M 0 9 1 8 

0.01 to 14.9 60 25 35 

15 to positive infinity 46 24 22 

A_B_pré 0 27 18 9 

1 to 31 105 50 55 

32 to positive infinity 77 43 34 

A_B_3M 0 18 7 11 

1 to 31 78 35 43 

32 to positive infinity 88 50 38 

Formas_N_3M 0 16 4 12 

1 to 3 61 32 29 

4 to positive infinity 75 42 33 

Idade_M Infinity to 30.500 71 39 32 

30.500 to 32.500 46 28 18 

32.500 to 35.500 54 22 32 

35.500 to infinity 58 18 40 

 

In Figure 5.46, we can see the discretization performed by the RapidMiner platform with the 

“Discretized by User Specification” operator. As we can see, at left, we have all discretized 

attributes and at right, its original values that enabled the validation of the performed 

discretization. In the following Figure 5.47, we can see the “Idade_M” and the “Conc_3_M” 

attribute that were subsequently dichotomized with the “Nominal to Binomial” operator. The 

FP_Growth algorithm has then run upon this type of dichotomized data.    
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Figure 5.46 Discretized Attributes – step 6 – test 6.1 

 

Figure 5.47 Dichotomized Attributes - step 6 – test 6.1 

In orther to better convey the generated results with these discretized and dichotomized 

attributes, in the following subsections we present the computed results during the sixth 

modeling step of the FP-Growth algorithm grouped by its performed tests.   

5.5.3.1 Generated results – Step 6 – Test 6.1 (Model 3) 

In the first test of the sixth modeling step of the FP-Growth algorithm, we have applied the 

model depicted in Figure 6.29 with the following selected attributes: 

Idade_M, Grau_Varicoc, Conc_3M , Conc_6M, A_B_pré, A_B_3M, Formas_N_3M, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientes, 

HabitosTabagicos_Processado_Simplificado, 

HabitosAlcoolicos_Processado_Simplificado, 

Gravidez, PMA, Gravidez_espontanea. 
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A print screen of part of the generated association rules for the consequent attribute “Gravidez” 

is shown in Figure 5.48 - all generated rules are in Appendix C.3.6.  

 

 

Figure 5.48 Association rules for the 4th and 5th group of attributes – step 6 - test 6.1 

As we can see, this step has generated a wide variety of association rules (208 association rules) 

mainly lead by the several dichotomized attributes that we have ended up with (i.e. 28 

attributes). Hence, we have focused on the identification of the association rules with the highest 

statistical significance (i.e. support) and/or strength (i.e. confidence) for the several patient 

aspects we aimed to assess through this test: pregnancy outcome, type of conception, abnormal 

sperm parameters, external factors and woman age range. Thus, Table 5.65 presents these rules 

with its corresponding x2 value. Note that all these association rules were generated upon the 

data set filtered by non-missing values in the “Gravidez” attribute (i.e. n=230) and for the 

following thresholds: support=0.1 and confidence=0.4. 

Table 5.65 Selected Results – step 6 - test 6.1 

Rule ID Antecedent Consequent Support Confidence Lift Conviction x2 

1 PMA Gravidez 0.287 1 2.15 ∞ 106.4677419 *** 

2 Gravidez_espontanea Gravidez 0.213 1 2.15 ∞ 71.5864 *** 

3 A_B_Pre = 1 to 31 A_B_3M = 1 to 31 0.209 0.457 1.348 1.217 12.03980423 *** 

4 A_B_3M = 1 to 31 Conc_3M = 0.01 to 14.9 0.178 0.526 1.343 1.283 8.9108785 *** 

5 Formas_N_3M = 1 to 3 Conc_3M = > 15 0.170 0.639 1.564 1.64 18.31982 *** 

6 Idade_M = Range 1   <31 Gravidez 0.170 0.549 1.181 1.187 2.935959 * 

7 Conc_3M = 0.01 to 14.9 Conc_6M = 0.01 to 14.9 0.157 0.4 1.533 1.232 14.90409858 *** 

8 HabitosTabagicos_Proce
ssado_Simplificado A_B_3M = > 32 0.152 0.443 1.158 1.108 1.858191 

9 Idade_M = Range 1   <31 HabitosTabagicos_Proce
ssado_Simplificado 

0.143 0.465 1.353 1.227 6.664957734 *** 

10 A_B_Pre = 1 to 31, PMA Gravidez 0.143 1 2.15 ∞ 44.13477246 *** 

11 Conc_3M = > 15, PMA Gravidez 0.143 1 2.15 ∞ 44.13477246 *** 
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Rule ID Antecedent Consequent Support Confidence Lift Conviction x2 

12 HabitosTabagicos_Proce
ssado_Simplificado, PMA 

Gravidez 0.130 1 2.15 ∞ 39.52298851 *** 

13 A_B_Pre = 1 to 31, 
Conc_3M = > 15 

Gravidez 0.122 0.596 1.281 1.323 4.067032595 ** 

14 Conc_3M = > 15, 
Gravidez_espontanea 

Gravidez 0.122 1 2.15 ∞ 36.75284738 *** 

15 Grau_Varicoc = II, 
Gravidez_espontanea 

Gravidez 0.117 1 2.15 ∞ 35.04699887 *** 

16 Idade_M = Range 1  <31, 
PMA 

Gravidez 0.117 1 2.15 ∞ 35.04699887 *** 

17 Conc_3M = 0.01 to 14.9, 
PMA 

Gravidez 0.113 1 2.15 ∞ 33.69616685 *** 

18 Grau_Varicoc = II, PMA Gravidez 0.113 1 2.15 ∞ 33.69616685 *** 

19 Formas_N_3M = 1 to 3 HabitosTabagicos_Proce
ssado_Simplificado 

0.113 0.426 1.241 1.144 2.520855881 

20 A_B_3M = 1 to 31, PMA Gravidez 0.109 1 2.15 ∞ 32.35746352 *** 

21 PMA, Formas_N_3M = 1 
to 3 

Gravidez 0.109 1 2.15 ∞ 32.35746352 *** 

22 Formas_N_3M = > 4, 
Gravidez_espontanea 

Gravidez 0.104 1 2.15 ∞ 30.70089286 *** 

23 A_B_Pre = 1 to 31, 
Grau_Varicoc = II 

Gravidez 0.100 0.622 1.336 1.413 4.333392833 ** 

24 A_B_3M = > 32, PMA Gravidez 0,122 1 2.15 ∞ 36,75284738 *** 

25 A_B_Pre = > 32, PMA Gravidez 0,113 1 2.15 ∞ 33,69616685 *** 

26 A_B_3M = > 32, 
Gravidez_espontanea 

Gravidez 0,122 1 2.15 ∞ 36,75284738 *** 

 

The first association rule that is presented in the Table 5.65  (i.e. PMA -> Gravidez), as well as 

the second one, are not subjectively interesting rules despite being the ones with the highest 

support and/or confidence value in this test. In fact, if we consider the first rule, the “PMA” 

attribute is highly related (x2 = 106,468) with the “Gravidez” attribute because it specifies the 

pregnancy´s type of conception (i.e. whether the recorded pregnancy was achieved with an ART 

procedure or not). Hence, the confidence value equal to 1 does not tell that all performed ART 

procedures were successful. Thus, the only information that we can extract from these types of 

rules is that 66 patients out of 230 (i.e. 28%) conceived with an ART procedure carried out at 

CHUC and that 49 patients conceived spontaneously which tells us that 107 couples out of 230 

were able to conceive and that we have more patients in the data set that conceived with an 

ART procedures than spontaneously (i.e. we have 17 more patients that conceived with an ART 

procedure). Note that these 107 couples had a total of 115 pregnancies because 8 out of them 

got pregnant twice: 5 couples got pregnant twice and at last, had 2 live babies; 2 other couples, 

got pregnant twice, but only completed one of the pregnancies with a live baby and the last 

couple had also two pregnancies but we do not have information on outcome.  

The following rules are the most subjectively and objectively interesting rules that were 

identified in this test (i.e. rule 3,4,5 and 7 that are highlighted in yellow in Table 5.65) and can 

be interpreted as follows: 

• A_B_Pre = 1 to 31 -> A_B_3M = 1 to 31 (Rule ID =3) 
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The conditional probability of having an abnormal sperm motility going from 1% to 

31% three months after the embolization treatment having had the same result before 

the treatment is of 45.7% (i.e. confidence=0.457). In fact, we have 48 patients out of 

230 that have abnormal sperm motility before and after the treatment over 105 patients 

that have abnormal sperm motility before the treatment (i.e. 48/105=0.457).  

• A_B_3M = 1 to 31 -> Conc_3M = 0.01 to 14.9 (Rule ID =4) 

The conditional probability of having an abnormal sperm concentration 3 months after 

the embolization treatment that goes from 0.01 to 14.9 million/milliliter given an 

abnormal sperm motility that goes from 1% to 31% at the same time is of 52.6% (i.e. 

confidence = 0.526). In fact, we have 41 patients that had abnormal sperm motility and 

an abnormal sperm concentration 3 months after the treatment in these ranges of values 

over 78 patients that had an abnormal sperm motility at the same time (i.e. 41/78=0.526). 

• Formas_N_3M = 1 to 3 -> Conc_3M = > 15 (Rule ID =5) 

The conditional probability of having a normal sperm concentration 3 months after the 

treatment given at the same time an abnormal sperm morphology that goes from 1% to 

3% is of 63.9% (i.e. confidence = 0.639 which is 39/61). In fact, we have 39 patients 

that had an abnormal sperm morphology 3 months after the treatment that goes from 

1% to 3% and a normal sperm concentration over 61 patients that had an abnormal 

sperm morphology from 1% to 3% at the same time (i.e. 39/61=0.639).   

• Conc_3M = 0.01 to 14.9 -> Conc_6M = 0.01 to 14.9 (Rule ID =7) 

The conditional probability of having an abnormal sperm concentration going from 0.01 

to 14.9 million/milliliter 6 months after the treatment given an abnormal sperm 

concentration in that same range of values 3 months earlier is of 40% (i.e. 36 patients 

with abnormal sperm concentration at 3 and 6 months from 0.01 to 14.9 million per 

milliliter over 90 patients with abnormal sperm concentrations in that same range of 

values 3 months earlier).   

Through the identification of the rules listed above, we have seen that the rules with the highest 

support were mostly related with normal sperm parameter values and/or rules that were already 

showcased in Table 5.62; and therefore, these rules were not redisclosed in Table 5.65. 

However, the maximum support found through this test was the value 0.287 - related with the 

first association rule disclosed in the above Table 5.65 – which tells us that this test did not 

generated rules that encompassed a wide number of patients.  

Even though the rules 9 to 26 were only objectively interesting, due to low support value (i.e. 

below 0.15), we have decided to include them anyway in Table 5.65 because they encompassed 

the subjects that we aim to assess. In fact, these last rules mainly characterize the pregnancies 

carried-out with ART procedures and/or spontaneously among the 230 patients that were able 

to conceive or not. Hence, through their support value, we can see the percentage of patients 

that encompasses each of these displayed “if then” conditions which lead us to the following 

statements: 

• 14.3% of the woman that got pregnant with an ART procedure had a partner that had 

abnormal sperm motility before the embolization treatment that went from 1% to 31% 

(i.e. we have 33 instances that has the “Gravidez” attribute set to TRUE, the “PMA” 
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attribute set to TRUE and the “A_B_Pre = 1 to 31” set to TRUE among the 230 

instances assessed in the test 1.1 which gives 33/230=14.3%. Analogously, the 

following rules must be interpreted the same way) (Rule ID = 10);  

• 14.3% of woman that conceived with an ART procedure had a partner that had a 

normal sperm concentration 3 months after the treatment (Rule ID = 11); 

• 13% of the women that conceived with an ART procedure had a partner that smoked 

(Rule ID = 12); 

• 12.2% of the woman that conceived spontaneously had a partner with a normal sperm 

concentration 3 months after the embolization treatment (Rule ID = 14);  

• 11.7% of the woman that conceived spontaneously had a partner with a moderate 

varicocele (severity grade II) (Rule ID = 15); 

• 11.3% of the woman that conceived with an ART procedure had a partner with an 

abnormal sperm concentration that went from 0.01 to 14.9 million/milliliter 3 months 

after the embolization treatment (Rule ID = 17); 

• 11.3% of the woman that conceived with an ART procedure had a partner with a 

moderate varicocele (severity grade II) (Rule ID = 18); 

• 10.9% of the woman that conceived with an ART procedure had a partner with an 

abnormal sperm motility that went from 1% to 31% 3 months after the embolization 

treatment (Rule ID = 20); 

• 10.9% of the woman that conceived with an ART procedure had a partner with an 

abnormal sperm morphology three months after the embolization treatment that went 

from 1% to 3% (Rule ID = 21); 

• 10.4% of the woman that conceived spontaneously had a normal sperm morphology 3 

months after the embolization treatment (Rule ID =22). 

Regarding the above interpreted association rules, we can see that there is a pattern between 

them and the rules identified with the id 24, 25 and 26 in the above Table 5.65. This pattern is 

disclosed below by its related rules and context: 

• Rule 10 vs 25 – ART procedure (“PMA”) vs Sperm motility before treatment 

A slightly higher percentage of patients with an abnormal sperm motility value before 

the treatment has conceived with an ART procedure. In fact, 14.3% had an abnormal 

sperm motility value different than 0 (rule 10) vs 11,3%, had a normal sperm motility 

value (rule 25); 

• Rule 24 vs 20 – ART procedure (“PMA”) vs Sperm motility 3 months after the 

treatment 

A slightly higher percentage of patients with a normal sperm motility value 3 months 

after the embolization treatment conceived with an ART procedure. In fact, 12.2% had 

a normal sperm motility value (rule 24) vs 10,9%, had an abnormal sperm motility value 

different than 0 (rule 20); 

• Rule 14, 15, 22 and 26 – Spontaneous conception (“Gravidez_espontanea”) 

The generated objectively interesting rules have shown that the biggest groups of 

couples identified (i.e. support > 0.104) that conceived spontaneously all had at least 
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one of the sperm parameter values categorized as normal 3 months after the 

embolization treatment (i.e. Rule 14, 22 and 26 encompasses sperm parameter values 

that are normal by the WHO thresholds), as well as a moderate varicocele condition 

(Rule 15).  

Since we could not assess the association measures for the rules that covered the types of 

conceptions (with exception of the support measure), in Table 5.66 below, we present the 

generated results for the “PMA” and “Gravidez_espontanea” attribute set as consequent during 

test 6.1. As we can see, the support values of these rules are the same as disclosed in Table 5.65 

but we have here unbiased confidence, lift, conviction and x2 values; and hence, these values 

were the ones that were considered for further analyses on the matter of the types of conceptions 

among the 230 couples that achieved pregnancy or not. In the Table 5.67, we have these same 

rules but only generated on the couples that were successful (i.e. only for instances with 

“Gravidez”=“Sim”). In Appendix C.3.6, we disclose all these results but in Table 5.66 and in 

Table 5.67 we only present the objectively interesting rules.  

Table 5.66 Selected Results – step 6 - test 6.1 - Types of Conceptions for n=230 

  

Table 5.67 Selected Results – step 6 - test 6.1.1 - Types of Conceptions for n=170 

Related 
Rule id Antecedent Consequent Support Confidence Lift Conviction x2 

10 A_B_Pre = 1 to 31 PMA 0.308 0.66 1.07 1.127 0.738495732 

11 Conc_3M = > 15 PMA 0.308 0.611 0.991 0.985 0.014165584 

12 HabitosTabagicos_Simplificado PMA 0.28 0.769 1.247 1.66 6.01347209 ** 

14 Conc_3M = > 15 Gravidez_espontanea 0.262 0.519 1.132 1.126 1.609187652 

Related 
Rule ID 

Antecedent Consequent Support Confidence Lift Conviction x2 

1 Gravidez PMA 0.287 0.617 2.15 1.861 106.4718*** 

2 Gravidez Gravidez_espontanea 0.213 0.458 2.15 1.452 71.58172*** 

10 Gravidez, A_B_Pre = 1 to 31 PMA 0.143 0.66 2.3 2.097 43.26733*** 

11 Gravidez, Conc_3M = > 15 PMA 0.143 0.611 2.13 1.834 36.09594*** 

12 
Gravidez, HabitosTabagicos 
_Simplificado 

PMA 0.13 0.769 2.681 3.09 53.1795*** 

14 Gravidez, Conc_3M = > 15 Gravidez_espontanea 0.122 0.519 2.434 1.634 39.39073*** 

15 Gravidez, Grau_Varicoc = II Gravidez_espontanea 0.117 0.562 2.64 1.799 43.98779*** 

16 
Gravidez, Idade_M = Range 1    
<31 

PMA 0.117 0.692 2.413 2.317 37.57123*** 

17 
Gravidez, Conc_3M = 0.01 to 
14.9 

PMA 0.113 0.684 2.384 2.258 35.07919*** 

18 Gravidez, Grau_Varicoc = II PMA 0.113 0.542 1.888 1.556 19.23664*** 

20 Gravidez, A_B_3M = 1 to 31 PMA 0.109 0.714 2.489 2.496 36.95628*** 

21 Formas_N_3M = 1 to 3 PMA 0.109 0.41 1.428 1.208 6.144852** 

21 
Gravidez, Formas_N_3M = 1 
to 3 

PMA 0.109 0.781 2.723 3.26 44.54074*** 

22 Gravidez, Formas_N_3M = > 4 Gravidez_espontanea 0.104 0.571 2.682 1.836 39.19622*** 

24 Gravidez, A_B_3M = > 32 PMA 0.122 0.56 1.952 1.621 23.35803*** 

25 Gravidez, A_B_Pre = > 32 PMA 0.113 0.605 2.107 1.804 26.07485*** 

26 Gravidez, A_B_3M = > 32 Gravidez_espontanea 0.122 0.56 2.629 1.789 46.01329*** 
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Related 
Rule id Antecedent Consequent Support Confidence Lift Conviction x2 

15 Grau_Varicoc = II Gravidez_espontanea 0.252 0.562 1.228 1.239 3.815525892 * 

16 Idade_M = Range 1    <31 PMA 0.252 0.692 1.122 1.245 1.467874555 

17 Conc_3M = 0.01 to 14.9 PMA 0.243 0.684 1.109 1.213 1.127383383 

18 Grau_Varicoc = II PMA 0.243 0.542 0.878 0.836 2.087846344 

20 A_B_3M = 1 to 31 PMA 0.234 0.714 1.158 1.341 2.094053694 

21 Formas_N_3M = 1 to 3 PMA 0.234 0.781 1.267 1.752 5.243841981 ** 

22 Formas_N_3M = > 4 Gravidez_espontanea 0.224 0.571 1.248 1.265 3.583052094 * 

24 A_B_3M = > 32 PMA 0.262 0.56 0.908 0.871 1.28130713 

25 A_B_Pre = > 32 PMA 0.243 0.605 0.98 0.969 0.046351691 

26 A_B_3M = > 32 Gravidez_espontanea 0.262 0.56 1.223 1.232 3.951418507 ** 

 

The rules in highlighted inTable 5.66 and in Table 5.67 enables us to formulate the following 

conclusions regarding the types of conceptions: 

• 61.7% of the pregnancies were from an ART procedure carried out in the CHUC. In 

fact, we have 66 patients that conceived with an ART procedure out of the 107 patients 

achieved pregnancy (confidence= 66/107=0.617).   

• 45.8% of the pregnancies were spontaneous. In fact, we have 49 patients that conceived 

spontaneously out of the 107 pregnant patients (confidence= 49/107=0.458). 

• 76% of the woman that conceived did so with an ART procedure and having a partner 

that smokes. In fact, we have 30 women that have a smoker partner and conceived via 

ART over the 39 male smokers that we have among the 107 couples that conceived (i.e. 

confidence = 30/39=0.769). Hence, among the 173 patients with defined smoking 

habits, 45.66% (79/173) smoked and half of them (49.37% (39/79)) were able to 

conceive mainly with the help of an ART procedure with a confidence of 76% (30/39) 

since the ones that conceived spontaneously in these conditions were only of 33.33% 

(13/39). Hence, we have a support of 28% (i.e. support = 30/107 = 0.280). Note that we 

have not identified an interesting rule that relates smoking habits with spontaneously 

getting pregnant. 

• 78.10% of the woman that conceived, did so via ART by having a partner with an 

abnormal sperm morphology 3 months after the treatment that went from 1% to 3%. In 

fact, we have 25 women that have a partner with an abnormal sperm morphology that 

ranges from 1% to 3% and that conceived with an ART over the 32 male partners that 

have an abnormal sperm morphology in that range of values (i.e. confidence = 

25/32=0.781), among the 107 couples that conceived. Hence, we have a support of 

23.4% (i.e. support = 25/107 = 0.234). 

• 56% of the woman that conceived did so spontaneously by having a partner with normal 

sperm morphology 3 months after the embolization treatment.  In fact, we have 28 

women with a partner with normal sperm motility and conceived spontaneously over 

the 50 male partners that we have with a normal sperm motility 3 months after the 

embolization treatment (i.e. confidence = 28/50=0.56), among the 107 couples that 

conceived. Hence, the support is equal to 26.2% (i.e. support = 28/107 = 0.262). 
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Regarding the age ranges, we have only identified rules related with the woman patient ages 

under 31 years old but none of them were seen subjectively and objectively interesting and with 

a good Chi-square  value. However, the one that showed to be only subjectively and objectively 

interesting was: 

• Idade_M = Range 1 <31 -> Gravidez (Rule ID =6) 

The conditional probability of getting pregnant before 31 years old is of 54.9%. In fact, 

we have 39 women that got pregnant before 31 years old, over the 71 women that we 

have in that range of age values (i.e. 39/71=0.549). However, there is not a statistically 

significant relation between being under 31 years old and getting pregnant since the 

computed Chi-square  value disclosed in Table 5.65 was only above the significance 

level of p=0.010 since its x2 is equal to 2.9. 

Furthermore, in that range of women ages we have seen with the 9th rule of Table 5.65 that 

14.3% of these couples had a male patient that smoked and these two aspects were shown to be 

related (i.e. x2 = 6.6649 which is a p<0.01). Moreover, with the 16th rule of Table 5.66 we have 

seen that 11.7% of ART procedures in the CHUC were performed on women under the age of 

31 and the relation of this aspect was seen statistically significant (i.e.  x2=37,57123 which is a 

p<0.01).  

Regarding the attribute association between the drinking or smoking habit with other attribute 

values, we have seen that the drinking habit does not even appear in the 208 generated rules 

which means that the drinking habit is not a relevant attribute. However, regarding the smoking 

habit, we have seen some rules with the “HabitosTabagicos_Processado_Simplificado” 

attribute as an antecedent or a consequent in the identified rules (i.e. Rule ID 8, 9,12, 19). The 

most subjectively interesting association rule in the context of sperm parameters is the 8th rule 

since it conveys that 15.2% of the patients that smoke have normal sperm motility. However, 

the computed x2 value did not indicate that there was a relation between these two attributes. In 

the same context, the 19th rule was objectively interesting and also relevant for this context 

since it tells that 11.3% of the male patients that had abnormal sperm parameters 3 months after 

the treatment that went from 1% to 3% was a smoker. Unfortunately, even though the computed 

x2 value is close to be statistically significant for p<0.01, it is not (it has a x2 = 2.5208 and the 

x2 for a p=0.10 is 2.706). Hence, the smoking habit of the male patient is not related with the 

abnormal sperm morphology at 3 months, neither with other attributes; and therefore, we can 

say that the final preprocessed data set did not compute statistically significant association rules 

regarding patient smoking or drinking habit with the assessed attributes. Note that for rule 19th 

we have even retested the model with only two ranges of values for the sperm morphology by 

appending the range 0% to the following range 1% to 3%, and no rule was generated for the 

sperm morphology attribute, so it showed to be an even worse discretization.     

Regarding the sperm parameters and the pregnancy outcome, only two rules were seen 

objectively (i.e. support < 0.15) interesting (Rule 13 and 23) because the other rules were biased 

- since they had a type of conception as an antecedent and the “Gravidez” attribute, as a 

consequent or they were related with the woman age. These two rules can be interpreted as 

follows: 
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• A_B_Pre = 1 to 31, Conc_3M = > 15 -> Gravidez (RULE 13) 

The conditional probability of getting pregnant given an abnormal sperm motility before 

the treatment that goes from 1% to 31% and a normal sperm concentration 3 months 

after the embolization treatment is of 59.6% (i.e. 28/47). 

• A_B_Pre = 1 to 31, Grau_Varicoc = II -> Gravidez (RULE 23) 

The conditional probability of getting pregnant given an abnormal sperm motility before 

the treatment that goes from 1% to 31% with a moderate varicocele is of 62.2% (i.e. 

23/37). 

5.5.3.2 Generated results – Step 6 – Test 6.2 (Model 4) 

To look up into the 230 instances for what the semen categorization can tell us, we have adapted 

and rerun the model depicted in Figure 6.29 by getting rid of all sperm parameter values, as 

well as its related discretization, and have added the semen categorization attributes related with 

before and 3 months after the treatment (i.e. the attribute “Qualificar_Espermograma_Pre” and 

“Qualificar_Espermograma_3M” that were seen statistically related with the “Gravidez” 

attribute). Finally, we have ended up with the model depicted in Figure 6.30. 

In this test, all subjectively and objectively interesting rules were seen as the same as previously 

identified and the ones that appeared related with the semen categorization, had very low 

support (i.e. support = 0.10) (see Figure 5.49); and therefore, they were not considered for 

further analyses. However, the semen categorization at 3 months after the embolization 

treatment presented a high Chi-square  above 0.01 (x2 = 9,245483) but we unfortunately had a 

small sample (see Rule No. 26 in Table 5.68): 24 patients out of the 230 patients assessed had 

a pregnancy by having 3 months after the treatment a normal semen (24/230=0,104) and the 

conditional probability of conceiving having a normal semen is of 70.6% (24/34), which is a 

pretty high probability. Hence, it is for sure an objectively interesting rule but not subjectively 

interesting since it encompasses a small number of patients (i.e. has a support lower than 0.15).  

The results can be partly seen below, where we can see these only two generated rules coming 

at last in the table depicted in Figure 5.49 that presents a print screen of the generated results in 

the RapidMiner platform. The following Table 5.68 and Table 5.69, disclose the generated 

resulted for the semen classifications where the only conclusions that were seen generated for 

these attributes were the type of conception.   
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Figure 5.49 Association rules for the 6th group of attributes – Step 6 - test 6.2 

Table 5.68 Selected Results – Step 6 - test 6.2 – Semen Classifications for n=230 

No. Antecedent Consequent Support Confidence Lift Conviction x2 

5 

Qualificar_Espermograma_Pre 
= 
OligoAstenoTeratozoospérmico Gravidez 0.1 0.411 0.883 0.908 0.881534 

26 
Qualificar_Espermograma_3M 
= Normozoospérmico Gravidez 0.104 0.706 1.517 1.818 9.245483*** 

 

Table 5.69 Selected Results – Step 6 - test 6.2.1 – Semen Classifications for n=170 

No. Antecedent Consequent Support Confidence Lift Conviction x2 

24 

Qualificar_Espermograma_Pre 
= 
OligoAstenoTeratozoospérmico PMA 0.14 0.652 1.057 1.102 0.15303266 

20 
Qualificar_Espermograma_3M 
= Normozoospérmico Gravidez_espontanea 0.131 0.583 1.274 1.301 1.96430206 

17 
Qualificar_Espermograma_3M 
= Normozoospérmico PMA 0.121 0.542 0.878 0.836 0.73835755 

25 
Qualificar_Espermograma_Pre 
= OligoTeratozoospérmico PMA 0.121 0.684 1.109 1.213 0.43972476 

9 
Qualificar_Espermograma_3M 
= Normozoospérmico Grau_Varicoc = II 0.103 0.458 1.022 1.018 0.01220181 

12 

Qualificar_Espermograma_Pre 
= 
OligoAstenoTeratozoospérmico Grau_Varicoc = II 0.103 0.478 1.066 1.057 0.10407063 

 

To define a data pattern for the types of conceptions, we have further assessed the 49 patients 

that conceived spontaneously, and then the 66 patients that did so via ART pby adapting the 

model depicted in Figure 6.30 with the resetting of the “Select Attribute” operator accordingly 

to this aim.   
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Regarding the 49 patients that conceived spontaneously, we have looked up for patients with 

normal semen since we have previously identified an objectively interesting rule on that matter 

(Rule No 26 in  Table 5.68). Hence, into the dataset we have looked up for the semen 

categorization set as “Normozoospermia” before and 3 months after the embolization treatment 

for the couples that spontaneously conceived and we have seen that out of the 49 couples, 3 had 

Normozoospermia before the treatment and 3 months later, 14 had Normozoospermia. Hence, 

the probability of getting pregnant spontaneously by having normozoospermia at 3 months after 

the treatment is of 28.6% (14/49) and by having a moderate varicocele condition is 55.1% 

(27/49). Regarding the patients that conceived spontaneously with a mild varicocele (severity 

grade=I), we have 18.4% (9/49). We have also seen that the greater group of patients that 

conceived spontaneously had less than 31 years old (15/49 = 30.6%) and that the male patient 

was a smoker 26.5% (13/49) of the time. All these probabilities were extracted through the 

support presented in the Figure 5:61. This figure depicts the most subjectively and objectively 

interesting results obtained on the data set filtered by the couples that conceived spontaneously 

t. Hence, these rules were generated on the 49 instances that had the “Gravidez_espontanea” 

attribute set to TRUE. This is why confidence values are seen all equal to 1 for the conclusions 

with the “Gravidez_espontanea” attribute alone. Hence, this analysis was only descriptive.   

 

Figure 5:61 Association Rules for the spontaneous pregnancies – step 6 – test 6.2.2 

Regarding the ART procedure, in the next figure, we present the most subjectively and 

objectively interesting results obtained on the data set filtered by the patients that conceived via 

ART p (i.e. these rules were generated on the 66 instances that had the “PMA” attribute set to 

TRUE analogously as disclosed in Figure 5:61).  

If we focus on the rules with the highest support, we see that 45.5% (30/66) of the couples that 

have conceived with an ART procedure had the male patient as a smoker and 40.9% (27/66) of 

the woman were younger than 31 years. Regarding the severity grade of the varicocele 

condition, while 55.1% (27/49) of the spontaneous pregnancies had a moderate varicocele 

condition, with the ART procedure, only 39.4% (26/66) had that same severity grade followed 

by 30.3% (20/66) for the low severity grade (severity grade=I). On the matter of semen 

categorization, we see that while the spontaneous pregnancies had 28.9% (14/49) of its male 
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patient with normozoospermia 3 months after the treatment, we here only have 19.7% (13/66) 

of the patients with normal sperm parameter values for that same time. Hence, male patients 

that were able to conceive through an ART procedure did not improve in semen categorization 

as much as the ones that were able to get pregnant spontaneously but we have to say that the 

panorama of the semen categorization before the treatment was also worse for patients that got 

pregnant with an ART procedure (i.e. OAT->PMA (support=0.227) vs OAT-

>Gravidez_espontanea (support=0.204) ).  

 

Figure 5:62 Association Rules for the pregnancies from ART – step 6 – test 6.2.3 
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5.6 Evaluation and Discussion  

Regarding the data understanding and the modeling phases, they were carried out with the 

RapidMiner platform version 8.1.001. In fact, from the last poll (Piatetsky, 2018), that has 

inquired 2025 participants on which Data Science tools they were using, the RapidMiner 

platform was seen the mostly used rising from 33% in 2017 to 52.7% in 2018 which reassured 

our choice after choosing it in 2016 through a comprehensive study in that matter. However, 

after its use, we have determined that it has some limitations in the statistics field (e.g. there is 

only one and unstable non-parametric inferential statistical test) which is understandable due 

its focus on data mining algorithms. Nevertheless, its wide range of operators and extensions 

made it possible to meet the goals set.    

Regarding data volume, the initial data set had 320 instances and 32 attributes which was at 

first sight seen as small on the matter of its number of instances. However, after analyzing the 

literature review in Makris et al. (2018) that studies 30 clinical investigations on the varicocele 

embolization domain, we have seen that the provided data set had an interesting volume of data 

since related works were in average of 117 patients (± 102 patients). Hence, even the 230 

preprocessed instances with non-missing values under the pregnancy outcome attribute - that 

were the instances mostly analyzed during this study - remained a good volume of data. 

Regarding the application of data mining techniques, we have seen that it was possible since 

the reviewed related works on the infertility domain mainly deal with similar volume of data 

(as seen in Table 3.1). 

Data quality was assessed with key data quality dimensions to know if the attributes provided 

were directly usable to tackle the data mining goals set (i.e. completeness), as well as coherent 

(i.e. consistency), rightly formatted (i.e. conformity), correct (i.e. accurate with the available 

information systems) and correctly linked (i.e. integrity) as suggested in Maydanchik (2007). 

To have a glimpse of this assessment, we have built a data quality score board after 

preprocessing (see Table 5.37). As we have seen, most attributes were validated/filled/corrected 

with the available information systems of the CHUC which enabled us to increase it 

completeness by going in average from a 55.86% to a 70.40% filled dataset. However, the 

severity grade, the varicocele´s laterality and the embolization ´s complications were not fully 

validated (i.e. validated 27.30% of the 293 not duplicated and provided instances). The reason 

behind this validation rate was that we have decided to review the medical dossiers that we 

were able to receive in a stipulated time span and then go with the information that we had to 

minimize the overhead of retrieving data that could latter on reveal itself to be not statistically 

significant with the goals set.  

After preprocessing the provided data set, our main concern was to statistically analyze the 

preprocessed dataset to not only better understand it, but also, check if the embolization 

treatment was in the first place a successful treatment since one of the goals of the BRSC team 

was to predict its success. To do so, we have first determined criteria of success, i.e. 

improvement of sperm parameters as carried out in Kirby et al. (2016), and then, have applied 

inference statistics such as the ANOVA statistical test, upon numerical attributes, and the Chi-

square statistical test, upon nominal attributes, to test our hypothesis. The choice of these 
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statistical tests was based on the literature since the ANOVA and the Chi-square statistical tests 

were mostly used in the varicocele domain and specially, upon sperm parameter data (see 

section 3.4).  

Statistical results helped us to overcome some encountered difficulties. In fact, it enabled us to 

elect a balanced label attribute, as well as, select the attributes that were more related with it 

since the Pearson correlations were all seen as low with the selected label attribute.  

Regarding the label attribute, we have selected the pregnancy outcome attribute as in Guh et al. 

(2011)  since it delivered the most balanced data set (i.e. 123 instances have the pregnancy 

outcome set to No and 107 have it set to Yes). Concerning the identification of the most 

statistically significant attributes, we have seen with the ANOVA and the Chi-square  test that 

the following attributes were seen related with the pregnancy outcome (Table 5.40): Woman 

age (ANOVA p=0.018); Severity grade (Chi-square p=0.049); Concentration at 6 months 

(ANOVA p=0.015); Progressive motility before treatment (ANOVA p=0.018); Morphology at 

3 months (ANOVA p=0.004); Concentration category at 3 months (Chi-square p=0.017); 

Progressive Motility category before treatment (Chi-square p=0.027); Progressive Motility 

category at 3 months (Chi-square p=0.022); Semen classification before treatment (Chi-square 

p=0.017); Semen classification at 3 months (Chi-square p=0.018) and Hazardous Occupation 

(Chi-square p=0.023). As these attributes reveal, several data transformations were carried out 

upon the provided and preprocessed data set which showed to potentiate knowledge discovery. 

These data transformations were: dichotomization of the severity grade, normalization of the 

numeric attributes and transformation of the numerical attributes into different nominal 

attributes. 

To maximize knowledge discovery, we have selected the most commonly applied data mining 

techniques in the healthcare industry (i.e. classification, clustering and association) with their 

well tested algorithm based on Tekieh and Raahemi (2015), Ahmad et al. (2015) and Tomar 

and Agarwal (2013). Thereby, these data mining techniques were applied with the following 

algorithms: classification, with the RapidMiner´s Decision tree algorithm and the W-J48 java 

implementation of the C4.5 algorithm; clustering, with the K-means algorithm and association 

rule, with the FP-Growth algorithm.  

All these algorithms were mainly trained upon the identified attributes that were related with 

pregnancy outcome by varying its main parameters as specified in section 4.2.8. This task was 

achieved with the “optimized parameter” operator that helped us to automatically loop the 

several model parameters in order to select the best based on performance measures (i.e. mainly 

the F-measure along with the Accuracy and the AUC measure). This “optimized parameter” 

operator was very useful since during our first sub-modeling phase (i.e. decision tree modeling 

step 1 and 2) we struggled to find a decision tree with even 1 level. Hence, when we have sought 

a solution that could optimize the training process by exhaustively train/test the algorithms, we 

have found this operator which enabled us to also maximize knowledge discovery. 

Since knowledge discovery was difficult with the decision tree algorithm, we have applied the 

clustering and the association rule technique in an early modeling stage to bring another 

understanding of the data that could help us on our search for the predictive model. This is the 
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reason behind the order of the sub-modeling phases that this study has followed and disclosed 

in Table 4.13, where we see that right after applying 2 out of the 9 decision tree modeling steps 

during the sub-modelling phase 1, we have gone for the other data mining techniques in sub-

modeling phase 2 and 3 to further on continue with the training of the decision tree algorithm 

in sub-modeling phase 4.  

This modeling strategy was seen successful since the most interesting knowledge discovery 

was achieved during the K-Means application (disclosed in Table 5.70 as result id 14) which 

gave us the idea to train/test the decision tree algorithm on this same preprocessed dataset 

during the sub-modeling phase 4 and in turn, also gave us the predictive model (disclosed in 

Table 5.70 as result id 5). Through this data mining experiment we have seen that due to the 

small and missing data that we had, it is understandable that it is more achievable to extract 

interesting knowledge with a K-means algorithm, that is less influenced by missing data since 

it seeks to group the data through similarities between data points, than with a decision tree 

algorithm, that tries to train/test upon missing values; and hence, struggles to select the attribute 

that promotes the highest gain of information for its decision tree. Hence, due to this experience, 

we can say that it is important to first identify the most commonly applied data mining 

techniques in a research domain and apply them as a whole, since the different techniques can 

complement each other and potentiate interesting knowledge discovery. 

Regarding the association rule technique, we have found that it is a good technique to identify 

attributes or relations that are interesting (i.e. mainly with the highest support and/or 

confidence). This technique clearly depicts one of the advantages of data mining, which is to 

be an inductive technique and not a hypothetic-deductive technique as statistical analysis is. 

Therefore, it is, in our point of view, an interesting technique to begin with during the data 

understanding modeling phase, even before inferential statistics, to identify relations or 

attributes that we might want to assess statistically later on - when we are not able to formulate 

a hypothesis – or detect interesting data patterns (e.g. result id 11). Since all clinical research 

on varicocele have used hypothetic-deductive techniques, such as the ANOVA and the Chi-

square  test (seen in section 3.4), we can say, based on what we have experienced, that the 

joining of data mining techniques with inferential statistical techniques, is very useful because 

they complete each other in spite of being rarely joined together in related work. In contrast, 

this study has joined these data analysis techniques as follows: along with the clustering 

technique, we have applied the ANOVA statistical test upon the computed k-means centroid 

means to assess if their was a statistical significant difference between the cluster means as in 

Zancanaro et al. (2007), Furthermore,  along with the association rule technique, we have 

applied the Chi-square  test upon the FP-Growth performance measure to assess if there was a 

statistical significant relationship between the antecedent and the consequent of the rule as in 

Brin et al. (1997) to complement the lift measure that only tells us how far from independent 

the events are. We believe that the reason why the joining of these techniques is rarely applied 

is that most works are not performed in a multidisciplinary investigation team where there is a 

sharing of practices between fields as we have experienced in this project. 

Regarding the testing of the decision tree algorithms, we have followed two test designs to 

unveil eventual test overfits; i.e, we have firstly tested the data set by splitting it into 3 parts 
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(i.e. 80% for training/testing and 20% for validation, where in the 80% part, 70% was taken for 

training and the remaining 30%, for testing the data set) and the best models were retested by 

splitting into 2 parts (i.e. 70% for training and 30% for testing). The 3 parts test design was 

suggested by the CRISP-DM methodology (Chapman et al., 2000), the founder of the 

RapidMiner platform (Mierswa, 2012), as well as the consulting company SimaFore 

(Deshpande, 2012) to overcome test overfitting. However, most related works as (Guh et al., 

2011) only implement the 2-part test design. Since we have applied both test designs, we were 

able to discuss its benefit: Through the several generated decision tree models depicted in 

Appendix C.1, we have seen that the only model that has computed an acceptable AUC during 

the validation was the one computed during the step 6 (i.e. AUC = 0.750). Nevertheless, we 

believe that the non-missing values requirement trained/tested in this step 6 has also contributed 

to its acceptable result. In contrast, all other models have failed with an AUC from 0.500 to 

0.604 during the validation of their best model (i.e. model that computes the highest F-measure 

during a modeling step). Hence, if we would not have tested the models with the 3-part test 

design, we would not be able to say that the elected model was stable, but more importantly, 

that we were not misled by the performance measures obtained during its training/testing. In 

fact, in Appendix C.1 are models that had computed acceptable AUC and F-measures during 

training, but failed during validation (e.g. model of step 3 has a training/testing AUC=0.747 

and a validation AUC=0.554). Hence, based on this experience, we believe that the 3-part test 

design is more suitable for health care data sets that usually have several missing values as 

stated in Tekieh and Raahemi (2015). Please note that the elected model 6 is identified as result 

id 5 in Table 5.70.   

Results were firstly elected based on their performance metrics, as specified in section 4.2.8, 

and afterwards, on the fulfillment of the defined data mining goals. Finally, the BRSC team has 

approved these models and pinpointed the most interesting ones for their research. By doing so 

the evaluation Crisp-DM phase was achieved.  

The outcome of the evaluation phase is depicted in the below Table 5.70 where we can see the 

mapping of the best elected results with the defined data mining goals, as well as the pinpointing 

of the most interesting results for the varicocele clinical research that are highlighted in light 

orange in the corresponding “Result ID” cell. Thereby, we can see that this study has achieved 

its possible data mining goals disclosed in section 5.2.3, as well as tackled with success the 

project risks initially identified in section 5.2.2. During the construction of Table 5.70, we have 

also rerun (i.e. tested) the built models and reviewed its modeling process, as the CRISP-DM 

suggests, to technically validate these clinically approved models. Some of the model results 

disclosed in Table 5.70 were adjusted to better convey them to the BRSC team.  

Next, we discuss the highlighted results of Table 5.70 by relating them with the initially 

computed statistical results (i.e. section 5.3.2); the statements of medical dictionaries (i.e. 

Chapter 2) and the findings of related works (i.e. Chapter 3). At last, conclusions are defined 

based on the generalizations validated by the BRSC team.  
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Table 5.70 Summary of highlighted results and models  

Result ID Goal Nº Task Description Best elected Result Interesting Related outcome Data mining Step 

1 5 Understanding 

the evolution of 

semen 

categorization 

and sperm 

normality through 

time 

There is a statistically significant 

relationship between the semen 

classification and the time when the 

semen analysis was carried out (x2 

p<0.05). We have seen that before the 

treatment, the biggest semen 

classification was the 

OligoAsthenoTeratozoospermia (OAT) 

with 26.89% (64/238) and 3 months later, 

it was Normozoospermia with 19.90% 

(41/206) by increasing in 14%. Further 

on, we have also seen that there is a 

statistically significant relationship 

between the relative frequency of 

patients with normal sperm parameter 

values and the time when the semen 

analysis was carried out (x2 p<0.05). In 

this matter, we have seen that the relative 

frequency of normal sperm parameter 

values has increased 3 months after the 

embolization treatment for all sperm 

parameters. However, 12 months after the 

treatment, the relative frequency of 

normal sperm parameter values is lower 

than before the treatment and the largest 

semen categorization group is of 

Azoospermia.  

 

 

Data 

Understanding 

(Bar graph from 

Figure 5.13 and 

series plot from 

Figure 5.14) 
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Result ID Goal Nº Task Description Best elected Result Interesting Related outcome Data mining Step 

 
 

2 5 Understanding 

the evolution of 

sperm parameter 

values through 

time  

The embolization treatment 

statistically significantly improves the 

mean value of sperm concentration 

(ANOVA p=0.017) and sperm 

morphology (ANOVA p=0.001) until 6 

months after the treatment. However, 

the sperm parameter that benefits more 

from it is the sperm concentration. In 

fact, 12 months after the embolization, it 

is still higher than before. Furthermore, 

patients that got their partner 

pregnant had in average a greater 

response to the treatment since they 

had a higher mean value in its sperm 

morphology at 3 months (ANOVA 

p=0.004) and sperm concentration at 6 

months (ANOVA p=0.015). Moreover, 

successful patients also had a higher 

mean value in its sperm progressive 

 

Data 

Understanding  

(series plot from 

Figure 5.16, bar 

graph from 

Figure 5.17 and 

pregnancies 

results from  

Table 5.16) 
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Result ID Goal Nº Task Description Best elected Result Interesting Related outcome Data mining Step 

motility before the treatment (ANOVA 

p=0.018).  

  

 
 

 
3 5 Assessment of 

the relation 

between semen 

There is no statistically significant 

relationship between the semen 

classification and the smoking or 

 

Data 

Understanding 
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Result ID Goal Nº Task Description Best elected Result Interesting Related outcome Data mining Step 

classification and 

patient´s external 

factors  

drinking habit. The only statistical 

significant relation identified with the x2  

statistical test regarding smoking habits 

was related with the woman age (p<0.01) 

where we have seen that the conditional 

probability of having a male partner that 

smoked given a women under 31 years 

old is of 46.5% and both situations occur 

14.3% of the times. 

( x2 statistical 

results are in 

Table 5.32 and in 

Table 5.33) 

4 2 Prediction of the 

embolization 

success 

We can say with 80.77% of Accuracy, 

73.68% of F-Measure and 0.801 of AUC 

that most women below and equal to 33 

years old are able to get pregnant (i.e. 

63.41% (26/26+15)) in contrast to 

29.55% (13/13+31) for women above 33 

years old).  

Model ran with the following parameter values: 

Sampling type during training/testing: shuffled;  

Decision tree splitting criterion: accuracy; 

Decision tree pruning: false; 

Decision tree minimal size for split: 5; 

Decision tree minimal gain: 0.1; 

Decision tree minimal leaf size: 3; 

Decision tree maximal depth: 20. 

 

Computed decision tree: 

 
Tree description: 

Woman age  >    33:  Not Pregnant { No=31, Yes=13} 

Woman age  <=  33:  Pregnant         { No=15, Yes=26} 

 

 

Decision tree 

Modeling Step 6 

without validation 

(result disclosed 

in Table 5.42) 
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Result ID Goal Nº Task Description Best elected Result Interesting Related outcome Data mining Step 

5 2 Prediction of the 

embolization 

success 

We can say with 70.59% of Accuracy and 

F-measure, as well as with 0.750 of 

AUC, that a man patient without a high 

varicocele severity grade is more prone 

to conceive if his partner is above 24 

years old and below 33 years old 

inclusively. In fact, 70.83% (17/(7+17)) 

of the assessed couples with these 

characteristics got pregnant (Please see 

the decision tree path highlighted in blue 

in the related model). Note that most 

female patients above 33 years old did 

not got pregnant (i.e. 67.57% 

(25/(25+12)), as well as none of the 

female patients below 24 years old 

inclusively. 

 

Model ran with the following parameter values: 

Sampling type during training/testing: linear;  

Decision tree splitting criterion: accuracy; 

Decision tree pruning: True; 

Decision tree minimal size for split: 4; 

Decision tree minimal gain: 0.1; 

Decision tree minimal leaf size: 2; 

Decision tree maximal depth: 20. 

 

Computed decision tree: 

 
Tree description: 

Woman age  >    33:  Not Pregnant { No=25, Yes=12} 

Woman age  <=  33   

|        Woman age  >   24   

|        |           Severity grade = III     : Not Pregnant {No=3, Yes=2} 

|        |           Severity grade = I or II: Pregnant {No=7, Yes=17} 

|        Woman age  <= 24: Not Pregnant {No=2, Yes=0} 

Decision tree 

Modeling Step 6 

with validation 

(result disclosed 

in Table 5.41) 
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Result ID Goal Nº Task Description Best elected Result Interesting Related outcome Data mining Step 

6 2 Prediction of the 

embolization 

success 

The conditional probability of a 

woman getting pregnant given a 

partner with a sperm morphology 3 

months after the treatment greater 

than 0% is of 54.4% (i.e. 74/136) and 

both situations occur 32.2% of the times. 

This association rule was the one that has 

computed the highest support value for 

the pregnancy outcome consequent 

attribute. 

Morphology at 3 months > 0% -> Pregnancy outcome=Yes 

(p<=0.01 for n=230) 

support=0.322, confidence=0.544, lift=1.170, Conviction=1.173, x2=8.38 

 

 

Association Rule 

modeling step 3 

(result 

summarized in 

Table 5.62) 

7 5 Data pattern for 

Sperm parameters 

The conditional probability of 

observing 3 months after the 

embolization treatment a sperm 

morphology greater than 0% given a 

sperm progressive motility before the 

embolization treatment also greater 

than 0% is of 65.4% (i.e. 119/182) and 

both situations occur 51.7% of the times. 

This association rule was the one that has 

computed the highest support value 

among the objectively and subjectively 

interesting rules generated in this study. 

Progressive Motility before treatment>0% -> Morphology at 3 months > 

0% (p<=0.01 for n=230) 

support=0.517, confidence=0.654, lift=1.106, Conviction=1.181, x2=14.11 

 

 

Association Rule 

modeling step 3 

(result 

summarized in 

Table 5.62) 

8 5 Data pattern for 

Sperm parameters 

The conditional probability of 

observing a sperm progressive motility 

before the embolization treatment 

greater than 0% given a low severity 

grade of the varicocele condition is of 

86.6% (i.e. 58/67) and both situations 

occur 19.8% of the times. This 

association rule was the one that has 

computed the highest confidence value 

among the objectively and subjectively 

interesting rules generated in this study. 

Severity grade=I -> Progressive Motility before treatment>0%  

(p<=0.05 for n=293) 

support=0.198, confidence=0.866, lift=1.153, conviction=1.855, x2=6.13 

 

Association Rule 

modeling step 1 

(result 

summarized in 

Table 5.62) 

9 5 Data pattern for 

Sperm parameters 

The conditional probability of having a 

normal sperm concentration 3 months 

after the treatment given at the same 

Morphology at 3 months = 1 to 3 -> Concentration at 3 months = > 15 

(p<=0.01 for n=230) 

support=0.170, confidence=0.639, lift=1.564, conviction=1.64, x2=18.32 

Association Rule 

modeling step 6 
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Result ID Goal Nº Task Description Best elected Result Interesting Related outcome Data mining Step 

time an abnormal sperm morphology 

is of 63.9% (i.e. 39/61) and both 

situations occur 17% of the times. This 

association rule was the one that 

presented the highest confidence for rules 

related with discretized sperm parameter 

values.  

 

 

(result 

summarized in 

Table 5.65) 

10 5 Data pattern per 

conception types  

61.7% of the pregnancies were carried 

out with an ART procedure 

(confidence= 66/107=0.617) and 45.8% 

were achieved spontaneously 

(confidence= 49/107=0.458). 

 

Pregancy outcome=Yes -> ART=Yes  

(p<=0.01 for n=230) 

support=0.287, confidence=0.617, lift=2.15, conviction=1.861, x2=106.47 

Pregancy outcome=Yes -> Spontaneous pregnancy =Yes  

(p<=0.01 for n=230) 

support=0.213, confidence=0.458, lift=2.15, conviction=1.452, x2=71.58 

 

 

Association Rule 

modeling step 6 

(result 

summarized in 

Table 5.66) 

11 5 Data pattern for 

Spontaneous 

conceptions 

The biggest identified groups of 

couples (i.e. support > 0.104) that 

conceived spontaneously all had 3 

months after the embolization 

treatment at least one of the sperm 

parameter values categorized as 

normal or a moderate varicocele 

condition. However, the concentration at 

3 months was seen to not be statistically 

significant. In the next column, all 

generated association rules for the 

consequent attribute Spontaneous 

pregnancy with a p<=0.10 are disclosed. 

 

Severity grade = II -> Spontaneous pregnancy =Yes  

(p<=0.10 for n=107) 

support=0.252, confidence=0.562, lift=1.228, conviction=1.239, x2=3.82 

Morphology at 3 months = > 4 -> Spontaneous pregnancy =Yes  

(p<=0.10 for n=107) 

support=0.224, confidence=0.517, lift=1.248, conviction=1.265, x2=3.58 

Progressive Motility at 3 months = > 32 -> Spontaneous pregnancy =Yes 

(p<=0.05 for n=107) 

support=0.262, confidence=0.560, lift=1.223, conviction=1.232, x2=3.95 

 

 

 

Association Rule 

modeling step 6 

for 107 instances 

(result 

summarized in 

Table 5.67). 

12 5 Data pattern for 

ART conceptions 

Among the 173 patients that we were 

able to know their smoking habits, 

45.66% (79/173) smoked and quite half 

of them, (i.e. 49.37% (39/79)) were able 

to get pregnant. However, the conditional 

probability of a woman getting pregnant 

with an ART procedure given a male 

Preprocessed smoking habit =Yes -> ART=Yes 

 (p<=0.05 for n=107) 

support=0.28, confidence=0.769, lift=1.247, conviction=1.66, x2=6.01 

 

Association Rule 

modeling step 6 

for 107 instances 

(result 

summarized in 

Table 5.67). 
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Result ID Goal Nº Task Description Best elected Result Interesting Related outcome Data mining Step 

partner smoker is of 76.9% (30/39) and 

both situations occur 28% of the times. In 

other words, man patients that smoke 

are more successful to conceive with 

the help of an ART procedure than 

spontaneously (i.e. 76% (30/39) vs 33.33 

(13/39)). 

 

 

 

 

 

 

 

 

 

 

 

 

13 5 Data pattern for 

ART conceptions 

The conditional probability of a 

woman getting pregnant with an ART 

procedure given a partner with an 

abnormal sperm morphology is of 

78.1% (25/32) and both situations occur 

23.4% of the times. 

Morphology at 3 months =1 to 3 -> ART=Yes 

 (p<=0.05 for n=107) 

support=0.234, confidence=0.781, lift=1.267, conviction=1.752, x2=5.24 

 

Association Rule 

modeling step 6 

for 107 instances 

(summarized in 

Table 5.67). 
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Result ID Goal Nº Task Description Best elected Result Interesting Related outcome Data mining Step 

14 5 Data pattern for 

varicocele´s 

patients 

When we have non-missing values under 

the patient´s ages, the pregnancy 

outcome, the putative hazardous 

occupations of the male patient, the 

sperm concentration at 3 months, the 

sperm progressive motility before and 3 

months after the embolization treatment, 

as well as under the varicocele´s severity 

grade, we are able to conclude the 

following: Infertile male patients with a 

high varicocele severity grade rarely 

conceive and that the relative 

frequency of patients with normal 

sperm concentrations 3 months after 

the varicocele embolization and 

normal sperm progressive motility 

before the treatment is higher in 

clusters where fewer male patients 

work in putative hazardous 

occupations. In the next column, the 

series plot with its complementary 

centroid table can be seen. 

 

 

 

K-means 

modeling step 2 

with ANOVA 

(series plot from 

Figure 5.36 and 

complementary 

centroid table 

from Table 5.46) 
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During data exploration of sperm parameter values, we have seen that sperm concentration and 

sperm morphology have their widest data dispersion before varicocele embolization (i.e. 

biggest max-min difference seen in Table 5.5 and Table 5.7, respectively) and that for sperm 

progressive motility it occurs 3 months after the varicocele embolization (seen in Table 5.6). 

These data dispersions have raised the hypothesis that the varicocele embolization might 

influence sperm parameter values through time; and hence, we have then assessed its evolution 

through the patient´s follow up times. During this assessment we have seen, with the series plot 

depicted as result id 2 in Table 5.70, that mean values have improved and reached the highest 

value at 3 months for sperm concentration (ANOVA p<0.05) and at 6 months for sperm 

morphology (ANOVA p<0.05). These improvements were coherent with the ones obtained in 

the result id 1, where the biggest semen classification at 3 months following treatment is 

normozoospermia. In fact, all sperm parameter mean values at 3 months were close to 

normality. However, in the following follow up times azoospermia becomes the leading semen 

classification which goes with the visual depletion seen in the result id 2 after its peak values at 

3 and 6 months after treatment. Nevertheless, if we analyze the sperm parameter mean values 

at 12 months, we see that the panorama is not as pessimistic. In fact, considering the result id 

2, we see that sperm concentration and sperm progressive motility mean values remain even 

higher at the 12 months follow up time than before varicocele embolization. Moreover, the 

sperm concentration mean value even went, on average, from an abnormal to a normal state 

based on the WHO thresholds (WHO, 2010); i.e., Concentration before treatment=13.93 vs 

Concentration at 12 months=15.78. However, the sperm morphology mean value showed a 

worse value than before the treatment at 12 months, which can be justified by the small number 

of filled values under this attribute (i.e. Morphology at 12 months has an n=23). A particularity 

of the sperm morphology mean values is that, even before the treatment, its values were always 

seen in average normal based on the WHO thresholds (i.e. Morphology before treatment=4.06). 

Hence, these results show that these embolized infertile men only have on average abnormal 

sperm concentrations and sperm progressive motility before the treatment and that the 

varicocele embolization improves all sperm parameter mean values with a statistical 

significance for sperm concentration and morphology. If we consider the varicocele 

embolization review carried out in Makris et al. (2018), we see that all 11 studies showed sperm 

parameter improvements, have reported a statistically significant improvement in sperm 

concentration and/or motility which goes along with our findings. Regarding the wide group of 

patients seen with azoospermia in the result id 1 after the 3 months follow up time, it can be 

explained by the fact that it only considers patients with all its sperm parameters filled and that 

most patients that are asked to repeat its semen analysis have azoospermia, which shows a 

version of the story that is not close to the reality expressed through the result id 2.  

If we assess the sperm concentration as related to pregnancy outcome (section 5.3.2.4), we see 

that sperm concentration at 6 months after treatment is, on average, significantly greater for 

patients that were able to conceive; i.e., the mean value of the concentrations at 6 months for 

pregnancy outcome equal to Yes is of 22.86 million/ml vs 14.75 million/ml for pregnancy 

outcome equal to No. Therefore, this attribute was considered to mine (see selected attributes 

in Table 5.40), as well as the sperm morphology at 3 months after treatment which was seen in 
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the result id 6 and 7 related with the association rules that have computed the highest support 

measure. In another perspective, 17.14% of the successful couples conceived at 9 (8.57%) or 

12 (8.57%) months after the embolization treatment with a statistically significant difference in 

the sperm concentration mean value at 12 months; i.e. ANOVA p<0.05 for the concentration at 

12 months with a mean value of 13.46 million/ml (Table 5.19). This sperm concentration mean 

value might be considered low but it enabled a successful ART procedure. In fact, 73.08% of 

the pregnancies carried out at 12 months after treatment were achieved with an ART procedure 

(see Figure 5.26).  

Regarding the laterality of varicocele, most patients had the condition on the left testicle 

(178/218=81.65%) which is coherent with the statement in Makris et al. (2018) and similar to 

the 80.2% of left sided varicoceles identified in DeWitt et al. (2018). In the varicocele overview 

performed by Aza Mohammed and Frank Chinegwundoh (2009), the high incidence of the 

condition on the left testicle is due to its spermatic vein configuration since blood flow is 

drained at a right angle - rather than obliquely as on the right side - which causes a higher blood 

pressure. Concerning its relationship with other patient features, we have seen that it was not 

related with the semen classification (Table 5.31), or severity grade (Table 5.30) since they both 

have computed a Chi-square  p>0.05.  

Concerning varicocele severity grade, we have identified that it was related with the pregnancy 

outcome (Chi-square p = 0.049) and that severity grade III could even be used to classify 

patients where embolization was unsuccessful, since the K-means algorithm shows that they 

rarely conceive (cluster 3). In fact, only 3 patients out of the 15 patients that had a high severity 

grade among the 85 clustered patients have conceived - 2 out of these 3 patients were included 

in cluster 2 and the remaining patient in cluster 3 due to low pregnancy success. If we validate 

this last affirmation by assessing all our 230 preprocessed instances, we see that the conditional 

probability of conceiving given a severity grade III is of 28.57% (8/28), given a severity grade 

II, is 55.81% (48/86), and given a severity grade I, is 48.33% (29/60). Hence, patients with a 

severity grade III have a lower support and confidence than the other severity grades to conceive 

and these proportions are similar to the clustered data set. However, for patients with a high 

severity grade, the confidence in the clustered data set was slightly lower (i.e. 3/15=20.00% vs 

8/28=28.57%). Nevertheless, this aspect was not an impediment to find interesting results since 

we have seen that cluster 3, that only has patients with the severity grade III, has the highest 

relative frequency of patients that work in hazardous occupations (50%), as well as the lowest 

relative frequency of pregnancies (8.3%) which was statistically significant (ANOVA p<0.05) 

in comparison to the other relative frequencies computed in each cluster and attribute. We 

should stress that the clustered data set only encompasses filled attributes; and hence, the 

conclusions related with the K-Means and the Decision Tree best results, disclosed in Table 

5.70 as result id 4, 5 and 14, are related with non azoospermic patients.  

Furthermore, during the application of the RapidMiner´s decision tree, we have also seen that 

the most interesting model has used the severity grade attribute to predict the success of 

varicocele embolization (result id 5 in Table 5.70) with an Accuracy and F-measure of 70.59%, 

as well as an AUC of  0.750 during the model validation. In fact, from this decision tree we 

could estimate the following conditional probability: the probability of conceiving given a 
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couple with a man without a high varicocele severity grade and a woman older than 24 and 

younger 33 years old, inclusively, is of 70.83% (17/17+7). The interpretation of result id 5 

enable us to say that woman age is overridden by a high varicocele severity grade when the 

woman is in a more fertile age. In contrast, for older women, the severity grade is no longer 

important to predict the pregnancy outcome which is mainly negative, likely due to the 

prevalence of a female factor. The cases under or equal to 24 years old can be discarded due to 

the the fact that there are only 2 patients in this age range.     

Moreover, the severity grade also appeared in the association rule that has computed the highest 

confidence value (result id 8), as well as among the rules that characterizes spontaneous 

pregnancies (result id 11). Regarding the negative events caused by a high severity grade (i.e. 

grade III), other authors (Aza Mohammed & Frank Chinegwundoh, 2009) show that higher the 

severity grade are directly correlated with higher testicular volume reduction in adolescents. 

This situation can be seen as a negative clinical event since the lost of testicular volume in 

adolescents with varicocele was associated with a decrease on sperm concentration (Haans, 

Laven, Mali, te Velde, & Wensing, 1991); and hence, our idea that an high severity can be 

related to a negative events is also indirectly confirmed by previous literature. 

Another attribute in the elected predictive models (result id 4 and 5) was woman age. During 

the 2 test designs, the attribute that delivered the highest gain of information was woman age 

with a splitting value at 33 years old in both test designs. In fact, woman age is the tree root in 

both approved results. If we cross this splitting value with the women age in Table 5.59, we see 

that the age range 1 and 2 - that includes women until 32 years old - clearly has a higher 

frequency of patients that were able to conceive. In contrast, this panorama completely changes 

at older female ages. Despite the splitting value of the decision tree being one year above of 

what it is depicted in Table 5.59, it enabled us to validate/support the decision tree results; and 

hence, say that the decision tree generated is coherent with what we have previously seen. 

Please note that the one-year difference can be justified with the fact that the result id 4 and 5 

is computed in a smaller sample of data (i.e. 85 instances vs 229 assessed in Table 5.59). 

Clinically, this splitting age seemed acceptable since the provided and preprocessed data set 

only encompasses infertile couples. Furthermore, this splitting age is not far from the 35 years 

old indicated where women are have an accentuated drop in oocyte quality, which negatively 

influences pregnancy success (Williams & Alderman, 2001). Since the focus of this study is 

male infertility, we have contextualized this information and have seen that there is a 

statistically significant difference between male patient partner age means for whether they 

conceive or not (ANOVA p=0.018). Regarding male patient age, we have not seen a 

relationship with the success of the treatment (i.e. the pregnancy outcome attribute; ANOVA 

p=0.752). This result was expected since Figure 5.2 shows that pregnancies appeared 

homogenously through the scatter plot which was confirmed in Table 5.34, where male patient 

age mean was roughly at 34 years old for both pregnancy outcomes. Regarding the male age 

values, the age range went from 23 to 54 years old in the final preprocessed data set (Table 5.3) 

which is a different age range than the one specified in the McGraw-Hill Concise Dictionary 

that states that the higher incidence of varicocele is between 15 and 25 years old (disclosed in 

section 2.2.1). Nevertheless, this difference can be explained by the fact that our male patients 
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are from a population that aim to achieve parenthood, in contrast to the medical dictionary that 

aims to depict the condition on the overall population. During the study of related works in 

male infertility (Williams & Alderman, 2001) greater pregnancy rates in patients with younger 

female partners. In fact, these authors (Williams & Alderman, 2001) state that the pregnancy 

rate for woman under 30 years old is of 15.8%, and above 40 years old is 0% in the context of 

couples undergoing donor sperm insemination. Furthermore,  patient partner age was also 

identified as the first modeling attribute in other study (Guh et al., 2011). However, this work 

did not assess male patient age since its focus is the construction of a decision tree that predicts 

IVF fertilization with donor sperm.  

Through our analysis of the varicocele severity grade, another interesting attribute arose during 

K-means application: the putative hazardous occupation of the male patient. In fact, the relative 

frequency of patients with normal sperm concentrations 3 months after varicocele embolization 

and normal sperm progressive motility before the treatment is higher in clusters where fewer 

male patients work in putative hazardous occupations (result id 14). If we take a closer look 

into this result, we see that cluster 1 and 2 have a lower relative frequency of patients that work 

in hazardous occupations (i.e. cluster 1 = 15.8% and cluster 2 = 7.1% vs cluster 0 = 42.9% and 

cluster 3 = 50% with an ANOVA p = 0.007) and that these same clusters are related with the 

highest relative frequencies of patients with normal sperm concentrations 3 months after 

varicocele embolization (i.e. cluster 1=60.5% and cluster 2= 100% vs cluster 0=23.8% and 

cluster 3=33.33% with an ANOVA p = 0.001), as well as the highest pregnancy rates, above 

50% (i.e. cluster 1=52.6% and cluster 2= 57.1% vs cluster 0=47.6% and cluster 3=8.3% with 

an ANOVA p = 0.030). Furthermore, cluster 2 has the lowest relative frequency of patients with 

a putative hazardous occupation (i.e. 7.1%); and only has patients with normal sperm 

concentrations 3 months after the treatment. Similarly, the same pattern is seen for sperm 

progressive motility before the treatment (cluster 1=34.2% and cluster 2= 92.9% vs cluster 

0=4.8% and cluster 3=16.7% with an ANOVA p = 0.001). If we assess the relation between the 

pregnancy outcome and the hazardous occupation attribute, we see that there is in fact a 

statistically significant relationship between these two attributes (Chi-square p=0.023) which 

supports the results obtained. This relation has indirectly already raised interest among the 

scientific community since other authors  have studied the relation of some toxic components, 

such as the exposure to metals, with reproductive hormone levels (Wang et al., 2016). 

When considering other factors, such as drinking alcohol or smoking, there was no statistically 

significant relationship with pregnancy outcome (depicted in Table 5.40), as well as between 

the drinking/smoking habit and semen classifications (section 5.3.2.9 and 5.3.2.10 

respectively). Concerning patient occupation, we have considered it predictable due to the low 

data stability seen under the occupation attribute. In fact, this was the reason behind the 

transformation into an attribute that could record putative hazardous occupations to promote a 

higher information gain from the pregnancy outcome attribute. As expected, this transformation 

has increased data stability (i.e. occupation stability=3.96% vs hazardous occupation 

stability=63.86%) which enabled the identification of an interesting knowledge discovery (e.g. 

result id 14). In the result id 14 putative hazardous occupations are related with normal sperm 

concentration, which was only shown via data mining. Other authors (Delavar et al., 2014) h 
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identified a higher prevalence of varicocele in smokers, however, they did not find a significant 

difference regarding the occupation or the alcohol drinking habits. We recall that in (Delavar et 

al., 2014), they compare patients with and without varicocele , which is different from this study 

that only assesses infertile patients that have undergone varicocele embolization. Hence, 

although relevant for the discussion, the results of (Delavar et al., 2014) cannot be directly 

compared with ours.  

In summary, the results obtained are in line with the literature and made sense to the clinical 

experts (i.e. the BRSC team). However, as far as we know, this study cannot be totally compared 

with other studies. In fact, even though the varicocele condition is widely researched with 

inferential statistics, it was never studied with data mining techniques, which, as we have 

shown, potentiate knowledge discovery; and hence, enabled us to contribute with different and 

interesting findings as those in result id 5, 11 and 14. Therefore, this study not only contributes 

to the ongoing research of the BRSC team, but also serves as a basis to research other infertility-

related matters. Moreover, the issues raised in this project that made us seek for a 

comprehensive data analysis to meet the data mining goals set such as joining the most popular 

data mining techniques applied in healthcare to the commonly used statistical tests. In fact, this 

enabled us to potentiate knowledge discovery along with the use of RapidMiner operators (e.g. 

the generate attribute operator and the optimize parameter operator). Therefore, we believe that 

this is what differentiates our work from most data mining works (see some in section 3.2) that 

usually only apply one technique, mostly the classification technique, and focus model choice 

on the performance measures which should, in our point of view, complement the seeking of 

interesting results since knowledge discovery is the essence of data mining. 

Furthermore, since 68 features were needed to validate/generate the possible label attributes, 

but not directly assessed due to the domain of this study, we could use these male patient partner 

attributes to, for instance, research female infertility. Hence, our final data set could be used in 

other clinical projects, which usually struggle with data collection. In fact, data is a very 

valuable asset in this field, since healthcare data is usually incomplete (Tomar & Agarwal, 

2013) and time-consuming to collect, as indeed we have experienced.  
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Chapter 6 Conclusions and Future Work  

Using statistical and data mining techniques this study has analyzed a data set of 293 embolized 

varicocele infertile male patients in the Centro Hospitalar e Universitário de Coimbra 

described with 64 patients features (e.g., man partner age, varicocele severity grade, hazardous 

occupation and sperm parameter values collected before and after the treatment). More 

precisely, it has ascertained the success of the varicocele embolization with the Chi-square and 

ANOVA inferential statistical tests; predicted its success through the pregnancy outcome with 

the RapidMiner decision tree algorithm and the W-J48 java implementation of the C4.5 

algorithm; and then identified interesting data patterns with the K-Means and FP-Growth 

algorithm which enabled the formulation of the following data analysis conclusions: 

• Varicocele embolization improves sperm concentration mean values up to one year after 

the treatment and sperm morphology up to 6 months, which positively influences 

pregnancy success (mostly related with result id 1 and 2); 

• A severity grade from low to moderate is mainly related with positive events; i.e., 

having a sperm progressive motility above 0% before the treatment (result id 8) and 

spontaneously conceiving (result id 11). In contrast, a high severity grade is related with 

negative events; i.e., rarely conceives (result id 14); 

• Although varicocele embolization success is not related with the male patient age, it is 

however related with male patient partner age, decreasing when the partner is 33 years 

old or older (result id 4 and 5); 

• On the context of non azoospermic patients, the varicocele embolization is more 

efficient on patients that do not work in putative hazardous occupations and sperm 

concentration values are more prone to normalize 3 months after the treatment for these 

patients (result id 14).  

These findings were seen relevant to clinical experts and contributed to on-going research not 

only in the male infertility domain, but also in the knowledge discovery domain since it enabled 

us to identify measures that can potentiate the discovery of interesting results in similar data 

sets. 

In fact, regarding the collection of data, recording it through an information system technology 

is the best method. However, these systems must also be thought for data analysis purposes to 

fully enhance knowledge discovery. Actually, through access of some of the CHUC information 

systems, we have formulated the following recommendations to improve knowledge discovery: 

• The most relevant attributes for research purposes must have its corresponding fields 

set as mandatory and when possible, filled with the aid of an item selection box.  

• Information systems should minimize the risk of inserting incoherent values by, for 

instance, firstly asking for the semen classification, and, if azoospermia is selected, 

automatically lock the remaining sperm parameter fields by automatically include the 

value 0 in all of them.  

• Incorrect value formats must require correction to proceed with the form.  
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Based on the implementation of these recommendations, we believe that we would improve 

data quality; and hence, the possibility of achieving even more interesting results with clinical 

data.  

Concerning the data mining application, the application of inferential statistical tests was seen 

useful to identify attributes that are more related with the label attribute when the Pearson 

correlations were low, as well as ascertain whether the predictive goal makes sense. 

Furthermore, we have seen that the application of several data mining techniques such as 

classification, clustering an association, provides greater knowledge discovery, even if the aim 

is to only predict a specific outcome, since it not only helps to guide the modeling process, but 

also enables to validate the knowledge that is found by comparing its different perspectives. 

Additionally, joining K-Means with the ANOVA statistical test, as well as the FP-Growth 

algorithm with the Chi-square statistical test, helps to identify results that are also objectively 

interesting. Moreover, the application of different test designs where models are also assessed 

with different performance measures such as the F-measure, Accuracy and AUC, minimizes 

the risk of selecting misleading models. In this context, we have identified that the following 

measures improves knowledge discovery: 

• Follow the CRISP-DM methodology; 

• Fill/validate the provided data; 

• Collect more data; 

• Use feature selection techniques that are mostly use in the studied domain; 

• Apply the most commonly applied data mining techniques in the studied domain even 

if the aim is to only predict an outcome; 

• Optimize the training of the models when possible; 

• Follow a 3-parts test design; 

• Not only focus on the performance of the models but also on its interestingness.  

All these measures are in our point of view important contributions for further data mining 

projects in the healthcare field, since healthcare data sets are commonly known to be difficult 

to mine due to their characteristics. 

As initially said, data mining techniques were not until know applied to the varicocele condition 

in spite of its high prevalence in the male infertility domain; and therefore, thanks to the data 

mining´s inductive capabilities, we were able to identify overlooked couple´s features that 

potentiate the success of the varicocele embolization and hence, the  infertility treatment. In 

fact, our findings enabled us to not only validate with literature that the varicocele embolization 

can significantly increase sperm concentration (p<0.05) and morphology (p<0.05) but also, 

alert the clinical community that the varicocele severity grade, as well as the occupation of the 

male patient should require further investigations by the biologists and attention by the 

physicians since they were not until know very studied in related works. Therefore, we can say 

that this work contributes and leverage the findings in the global field of male infertility due to 

its innovative approach.  

Regarding the obtained model performances, we have seen that the Decision tree model has 

surpassed the 73% of Accuracy seen in the similar related work of Guh et al. (2011) by reaching 
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an accuracy of 80.77% within a similar test design that does not validate the model. However, 

within a test design that validates it, we have obtained an Accuracy and F-Measure of 70.59% 

with an AUC of 0.750 which was seen acceptable for a model validation. Since the domain-

interestingness of the identified knowledge discoveries are usually not the central point in data 

mining-related works where model´s performance evaluations take the lead, this work shows 

the opposite approach raised from the need of achieving the data mining goals set. Since similar 

works would require the same approach, we have also sought to identify the tasks/measures that 

could potentiate the discovery of interesting findings. Since we have seen during the validation 

of the elected models by the BRSC teams that we had successfully reached the data mining 

goals set, we have seen that our identified measures could be useful to other data scientists. 

This novel application enabled us to publish and present our most interesting results in the 53rd 

Annual Scientific Meeting of the European Society for Clinical Investigation that was published 

in the European Journal of Clinical Investigation (see Appendix D). Furthermore, we are 

actually in the submission process of the final paper of this work that can be seen in the 

Appendix E.   

As future work, we would like to further explore the identified knowledge discovery measures 

with more data mining algorithms, as well as on other healthcare data sets, to formulate a good 

data mining practice guide for this field, since they contribute towards research that could 

improve our lives.
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 Glossary 

Since this study uses some knowledges of biology, statistics and computer science, this section 

aims to present the definition of some of the technical terms used during the discloser of the 

carried-out work from these domain knowledges.  

To better present these definitions, we have grouped the technical terms by domain of 

knowledge and presented them in the following order: Biology, Statistics and Computer 

Science. For the Computer Science domain, we have described the technical terms used in the 

context of data mining and applied to the carried-out work to better explain them. Hence, in this 

section we also present some expressions that we have also used. 

Biology 

ART: Refers to any Assisted Reproductive Technology used to get a woman pregnant. These 

technologies can be: IUI, IVF, ICSI or IMSI.   

Concentration: the percentage of spermatozoa in the semen. 

ICSI: Intracytoplasmic Sperm Injection.  

IMSI: Intracytoplasmic Morphologically Selected Sperm Injection. 

IUI: Intrauterine Insemination. 

IVF: In Vitro Fertilization. 

Laterality: Testis with the varicocele condition (e.g. left, right or both testis) 

Morphology: the percentage of spermatozoa with a normal shape in the semen. 

Motility: the percentage of motile spermatozoa. 

Semen Analysis Report: Report carried-out by a biologist to record the concentration, the 

morphology and the motility of the spermatozoa.    

Semen: organic fluid that may contain spermatozoa. 

Spermatozoa: sperm cells that aims to join an ovum to form a zygote that normally develops 

into an embryo. 

Computer Science 

In this section, we describe the main terms used to describe the carried-out work in the domain 

of Computer science: 

Absolute Support: The number of instances in the data set (i.e. frequency) that contains an 

attribute or a set of attributes filled, in this study, with the value “TRUE” (RapidMiner´s 

definition). 

Accuracy: It is a performance metric that also gave its name to the splitting criterion tested with 

the variation of the Decision tree´s “criterion” parameter that as the same name. By the 

RapidMiner platform, this criterion selects an attribute for splitting if it maximizes the 
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performance metric accuracy of the whole tree. We here recall that the performance metric 

Accuracy is the proportion of instances classified correctly among the total number of instances.   

Antecedent or Premises: In the context of association, the antecedent is the attribute that 

appears at the left side of the implication. In RapidMiner, it is called “Premises”. For example, 

in a rule as (X -> Y), X is the antecedent or premise of the rule.  

Association rule: Association found between attributes, read X implies Y and written (X->Y) 

that expresses that “if X occurs then Y occurs”. The probability of this association is assessed 

through several metrics as Support, Confidence, Lift and Conviction, that are below described. 

Attribute: column of the data set that describes, in our case, patients in one subject (e.g. their 

age, treatment date, sperm concentration etc. are all attributes).  

Bagging:  Machine learning ensemble meta-algorithm, also called “Bootstrap aggregating”, that 

aims to improve classification in terms of stability and classification accuracy. Model´s stability 

is achieved through the reduction of model´s variance which helps to avoid data overfitting. 

Bagging works as follows: it repeatedly sub-samples the dataset (i.e. it sub-samples the data set 

the number of times specified under the iteration field of the Bagging operator) and applies the 

nested classifier (e.g. decision tree) upon the data ratio defined for training in the Bagging 

operator. In practice, very different trees are often grown from the different sub-samples which 

illustrates instability of models. The single generated prediction measures are obtained through 

simple voting. This voting elects as the final classification the one that is most often predicted 

by the different generated trees (RapidMiner´s definition).   

Blank Value: Data value that appears empty in the EXCEL file but when exported to the 

RapidMiner platform, presents a Null value shown with a question mark “?”.  

Centroid table: Table generated after running the K-Means algorithm that presents the mean 

attribute values for each identified cluster. This artefact is important because through the mean 

of each attribute within each cluster, we can identify what differentiates each cluster in terms 

of patient’s characteristics to further on identify a patient´s data pattern.   

Classifier:  A data mining algorithm that implements classification.  

Conditional pattern-bases: Conditional pattern-bases are what the FP_Growth algorithm first 

generates when it mines the computed FP-tree. These conditional pattern-bases are all the paths 

that can lead to a specific attribute in the FP-tree. Usually it begins to identify the paths that 

leads to one of the FP-tree´s leaves and then it recursively identifies the paths that leads to the 

other nodes of the FP-tree by going up in the tree. These paths do not include the attribute that 

is being assessed, so if the algorithm is seeking for all the paths that leads to an attribute that is 

for instance a leaf, this leaf attribute will not be part of the identified path. This is why we call 

them “conditional”.  

Confidence: Confidence it is the conditional probability, written Pr, of observing Y given X 

(RapidMiner´s definition). This measure is defined as: 
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confidence (X implies Y) =  
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (X U Y)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (X)
= 𝑃𝑟(𝑌|𝑋) 

Formula Glossary 1 Association measure - Confidence (RapidMiner´s definition) 

The “support (X U Y)” is the proportion of instances where the values of the attributes X and 

Y both appear, in this study, both with the value “TRUE”. Note that the FP_Growth algorithm 

only manages binominal attributes; and therefore, the attributes´ values were transformed in 

this study with the RapidMiner´s operator called “Numerical to Binomial” and “Nominal to 

Binomial” to transform the filled attributes´ values into “TRUE” or “FALSE”.   

Since confidence is a conditional probability, the higher the confidence of a rule is, the better. 

In fact, a high confidence, let’s say of 100% - in RapidMiner expressed by 1 - would mean in 

this study that each time a patient has both attributes filled with the value “TRUE”, the attribute 

that is antecedent in the rule only occurs when both attributes are filled with the value “TRUE”, 

so the rule has an high statistical strength. 

The confidence measure ranges from 0 to 1. 

Consequent or Conclusion: In the context of association, the consequent is the attribute that 

appears at the right side of the implication. In RapidMiner, it is called “Conclusion”. For 

example, in a rule as (X -> Y), Y is the consequent or conclusion of the rule. 

Conviction: Conviction attempts to measure the degree of implication of a rule since the 

generated rules are sensitive to the rule direction (RapidMiner´s definition). Conviction is 

defined as: 

conviction (X implies Y)  =
(1 −  𝑠𝑢𝑝𝑝ort (Y))

(1 −  𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (X implies Y) )
 

Formula Glossary 2 Association measure - Conviction (RapidMiner´s definition) 

As the lift measure, conviction values different than 1.0 indicates interesting rules. If we analyze 

the conviction formula we can say that the conviction is equal to the ratio of the probability of 

not occurring the consequent attribute over its conditional probability of not also occurring; 

and therefore, if we lower the conditional probability of not occurring Y given X, the conviction 

value gets higher which expresses a more interesting rule. 

The conviction measure goes from 0.5 to positive infinity and a value equal to positive infinity 

indicates that the implication is logical (Azevedo & Jorge, 2007).  

Correlation Similarity: Correlation between the Attribute vectors of the two Examples 

(RapidMiner´s definition). 

Data Quality: The degree to which a set of data characteristics fulfills the domain requirements. 

For instance, data completeness is one of the data characteristics that shows the quality of a 

provided data.   

Data set: A file that contains one or more records. A record is a basic unit of information that 

can be used by a program (IBM, 2010). A data set is organized in rows and columns, as our 
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provided data set is, and records are the rows of the data set that are in the data mining universe 

named Instances or Examples.  

Data validation: Checking the accuracy of the source/provided data prior data analyzes.  

Data verification: Checking the consistency of the source/provided data prior data analyzes to 

assess the coherence between the attribute´s values. 

Davies Bouldin:  Index used for the assessment of the quality of identified clusters by clustering 

algorithms. This index measures the average of similarity between each cluster and its most 

similar one (Kovács, Legány, & Babos, n.d.). Since the aim of clustering is to partition a data 

set into similar data, we will try to minimize this index by testing the built models with several 

parameters and inputs to see if we can find a clustering model that can minimize this index and 

achieve the aims of the study. Hence, lower values are the ones that we seek.  

Discretize: Convert a numeric continuous attribute into a numeric discreate attribute by creating 

several ranges of values (i.e. bins).     

Entropy: Measure that indicates the state of confusion of a set of instances based on its label 

attribute. This measure calculates the proportion of values that are positive minus the ones that 

are negative and can be interpreted as the expected information needed to classify an instance 

in the partition D is given by the below formula where 𝑝i is the nonzero probability that an 

arbitrary instance in D belongs to class Ci  (Han et al., 2012). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐷) =  − ∑ 𝑝i log2(𝑝i

𝑚

𝑖=1

) 

Formula Glossary 3 Entropy - based on (Han et al., 2012) 

In our case, positive instances have the corresponding “Gravidez” attribute value set to “Sim” 

and negative instances, set to “Não”. Hence, when the entropy is equal to 0, it means that the 

data set is pure in the assessed attribute because all its instances are from the same class (i.e. all 

instances have the same value in the “Gravidez” attribute; and therefore, they all are equal to 

“Sim” or equal to “Não”). If the entropy is equal to 1, it means that half of the instances are 

positive, and the other half, negative, so the data set is totally “confused”.  

Euclidean Distance: Square root of the sum of quadratic differences over all attributes 

(RapidMiner´s definition). 

Example set: collection of rows of a data set.  

Feature selection: Selection of attributes during the modeling process built in the RapidMiner 

platform. 

Final preprocessed attributes: attributes of the Final preprocessed data set. 

Final preprocessed data set: The data set that is already treated with data preparation tasks that 

includes the initially preprocessed attributes and the ones that were upon them generated which 

encompasses 293 instances and 64 attributes (39 initially preprocessed attributes, and 25, upon 

them generated).  
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Frequent item/attribute: In the context of the APRIORI and the FP_Growth algorithm, we say 

that a frequent item/attribute is an attribute that appears in the data base, in this study, with its 

value set to “TRUE” more than the defined min_support.     

Gain ratio: Measure used by the C4.5 algorithm to compute the gain of information of each 

attribute to build its decision tree. This measure is an extension of the information gain measure 

and attempts to overcome its issue: biased toward attributes with many values. This measure 

applies a kind of normalization to the information gain previously presented with the “split 

information” value that can be seen at the denominator of the below gain ratio formula - the 

split information formula is in the next formula disclosed.    

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =
𝐺𝑎𝑖𝑛(𝐴)

 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴 (𝐷)
 

Formula Glossary 4 Gain Ratio - based on (Han et al., 2012) 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) =  − ∑  
|𝐷𝑗|

|𝐷|
∗ log2 (

|𝐷𝑗|

|𝐷|
)

𝑣

𝑗=1

 

Formula Glossary 5 Split information - based on (Han et al., 2012) 

The split information value represents the potential information generated by splitting the 

training data set, D, into v partitions, corresponding to the v outcomes of a test on attribute A. 

Note that, for each outcome, it considers the number of tuples having that outcome with respect 

to the total number of tuples in D which is different than the information gain which measures 

the information with respect to classification that is acquired based on the same partitioning 

(Han et al., 2012). 

Gini_Index: In this context, it is a splitting criterion tested with the variation of the Decision 

tree´s “criterion” parameter. By the RapidMiner platform, this criterion is a measure of 

inequality between the distributions of label characteristics. 

Information gain: Measure used by the decision tree algorithm ID3 (predecessor of the C4.5 

algorithm) to compute the nodes of its decision tree. The information gain measures the 

reduction of the entropy when it ramifies in each node (i.e. attribute). Note that a node with an 

entropy=0 tells us that the value of the information gain measure is high since we can say that 

all instances are positive or negative; and therefore, it generates “information” - this is why 

decision trees algorithms build its trees by reducing the entropy.  The information gain is 

calculated with the below formula: 

𝐺𝑎𝑖𝑛(𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑  
|𝐷𝑗|

|𝐷|
∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑗

𝑣

𝑗=1

) 

Formula Glossary 6 Information Gain - based on (Han et al., 2012) 
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The term 
|𝐷𝑗|

|𝐷|
 acts as the weight of the jth partition which is the number of instances that goes 

down at each branch of the assessed node and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑗 ) calculates the entropy of the 

attribute node value at the jth partition. Hence, the Information gain is defined as the difference 

between the original information requirement calculated with the entropy for the root/node (i.e., 

based on just the proportion of classes) and the new requirement (i.e., obtained after partitioning 

on A) (Han et al., 2012). Hence, what the algorithm does at each node before splitting is to see 

if the split in one attribute generates a gretter gain of information than splitting in another 

attribute values.  

Initially preprocessed attributes: Attributes of the initially preprocessed data set which is the 

data set with the 39 attributes. 

Initially preprocessed data set: The data set that is already treated with data preparation tasks 

but does not yet include the generated attributes.  

Initially provided and selected attributes: Attributes selected from the initially provided data 

set to carry out this study. These attributes were with the BRSC team selected and without 

statistical tests or data mining algorithms. These attributes are also called in this study “Original 

attribute”. 

Initially provided data set: The first data set provided by the BRSC team.  

Instance/example: row of the data set that records, in our case, the information of one patient. 

Key Data Dimensions: Key characteristics of the data values of a data set in the matter of data 

quality. 

Label Attribute: Special attribute role that can be set in the RapidMiner platform to an attribute 

to act as a target attribute for learning tasks, as classification. Label attributes are also often 

called “target variable” or “class” (RapidMiner, 2016).    

Lift: Lift measures how far from independence are X and Y. Values equal to 1 imply that X 

and Y are independent; and hence, the rule is not interesting (RapidMiner´s definition). In fact, 

a lift equal to 1 tells that the conditional probability of Y given X is equal to Y occurring 

randomly so it is not an interesting rule. We seek rules with lifts higher than 1.0, as suggested 

in RapidMiner´s tutorials. The lift measure can be simplified as (RapidMiner´s definition): 

lift (X implies Y) =
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (X implies Y)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (Y)
 

Formula Glossary 7 Association measure - Lift (RapidMiner´s definition) 

By observing the above lift formula and by considering the previous measure´s definitions, we 

can in fact say that the lift is equal to the ratio of the conditional probability of the event Y 

given X over the probability of occurrence of the event Y.  

By RapidMiner, the lift measure ranges within 0 to positive infinity where a value close to 1.0 

implies that the attributes are independent so a value equal to positive infinity indicates that the 

attributes are totally dependent. 
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Manhattan Distance: Sum of the absolute distances of the Attribute values (RapidMiner´s 

definition). 

Min_confidence: confidence initially set by the programmer to prune the results computed by 

the association algorithm. 

Min_support: support initially set by the programmer to prune the results computed by the 

association algorithm. It therefore works as a threshold where we say that any attribute that is 

frequent, has a support higher than the defined min_support.   

Regular Attribute: Attribute that does not have a special attribute role and is used as an input 

for learning tasks (RapidMiner, 2016). 

Relative Support or Support : The relative support of a rule, or simply called support, is the 

proportion of instances in the data set that contains an attribute or a set of attributes filled, in 

this study, with the value “TRUE” (RapidMiner´s definition). In (Han et al., 2012), the authors 

describes the support as the probability of having a transaction with both X and Y events and 

in some algorithms it is called “coverage”. 

The support is indicated as “support ()” and can be interpreted in this study as the probability 

of a patient having an attribute set to “TRUE”. For example, if we have a total of 100 patients 

and we have the information of if they smoke (recorded in the data set as “Sim”) or not 

(recorded in the data set as “Não”) in an attribute called X and for 30 of them, we have the 

information that they smoke since we have 30 “Sim” values under that attribute X, then the 

support of , written support(X), is equal to 30/100=0.30. Which means that in this dataset, the 

probability of having a patient that smokes is of 30%. The absolute support would be in this 

case 30 patients. Hence, this measure is defined as: 

support (𝑋, 𝑌) =  
𝑃 (X U Y)

𝑁
 

Formula Glossary 8 Association measure - Support , based on (Yildirim, 2015) 

Since it is a probability, the higher the value of the support is, the better. The support measure 

ranges from 0 to 1.  

Supervised learning: Data mining task that needs a label attribute to train to further on build a 

function that will classify new instances. 

Unsupervised learning: Data mining task that describes the structure of a “unlabeled” data set. 

The drawback of these algorithms is that they cannot be assessed with performance metrics. 

Value: In our case, it is the patient´s information gathered in the rows and columns of the data 

set. 

VCF: work flow built in the RapidMiner platform that implements a data mining model. The 

VCF name stands for “visual composition framework”.  
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Statistics 

In this section, we describe all the statistical terms that were in this study used to describe the 

performed work. 

Bar Graph: A Bar Graph consists 2 attributes, one dependent arranged in the y axis of a graph 

and the other one, independent arranged in the x axis (“Statistics Wikibooks.org,” 2012). This 

graph is a set of horizontal or vertical bars that aims to show the frequencies of each value of 

an attribute through the length, for horizontal bar graphs, or the height, for vertical bar graphs, 

of its bars (Barbara Ilowsky; Susan Dean, 2017).  

Box plot: A box plot is a type of graph that allows to visually see how data is distributed. This 

graph presents the following main points: the minimum value, the first quartile, the median, the 

third quartile and the maximum value of the data set (Barbara Ilowsky; Susan Dean, 2017). To 

assess the data distribution of sperm parameters, this plot was performed. 

Crosstab: A Crosstab (also called contingency table (Yeager, n.d.))  is a frequency table that 

describes the relationship between two nominal attributes - let us say attribute A and B – to 

assess their statistical relation (some authors also calls it correlation but we have kept the 

correlation term for Pearson correlations only). In a crosstab, the nominal or discreate values of 

the attribute A determine the rows of the table (r) and the nominal or discreate values of the 

attribute B, determine the columns (c). B is the independent attribute and A is the dependent 

attribute. The cells of the table contain the number of times that a particular combination of 

nominal values occurred (“Count”). The dimension of a crosstab is reported as r × c (Han et 

al., 2012). This table also presents the row sums and column sums specified in the crosstab 

table under the name “Total”. These totals are called marginal frequencies (Yeager, n.d.). As 

suggested by (Yeager, n.d.), in some cases we also refer in these tables the sample proportions 

of the counts of the attribute A against the corresponding total of the independent attribute B to 

directly compare, across the independent attribute, the percentages that the values of the 

attribute A has in each category of the attribute B. In this study, the B attribute is usually the 

patient´s follow-up time. 

Cumulative Relative Frequency: It is the total relative frequency up to a given data value. 

Descriptive Statistics: A facet of statistics that deals with describing the observed data with 

basic statistical measures (i.e. mean, median, mode etc.), without considering its population.  

Expected frequencies: Expected frequencies are events that according to probability rules are 

expected to occur with frequencies e1, e2, e3, ..., ek (Murray R. Spiegel; Larry J. Stephens, n.d.). 

These expected frequencies are calculated based on the Crosstab generated with the observed 

frequencies. These expected frequencies are the number of times an event occurs if the two join 

attributes are independent (i.e. can occur by chance). These values are computed when we want 

to analyse the discrepancy between the observed and expected frequencies to assess if two 

attributes are correlated (i.e dependent). Since these expected frequencies are with Crosstabs 

presented, expected frequencies are presented as eij since it represents the expected join event 

that the attribute A takes on ai and attribute B takes on bj. Expected frequencies are calculated 

as follows (Han et al., 2012): 
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𝑒ij =
𝑐𝑜𝑢𝑛𝑡(𝐴 = 𝑎i) ∗ 𝑐𝑜𝑢𝑛𝑡(𝐵 = 𝑏j)

𝑛
 

Formula Glossary 9 Expected frequencies 

where n is the number of data tuples, count (A = ai) is the number of tuples having value ai for 

A, and count (B = bj) is the number of tuples having value bj for B. 

Frequency table: A Frequency table is used to describe a single nominal or discreat attribute 

(Yeager, n.d.). This table is a data representation in which a grouped data, or not, is displayed 

along with the corresponding frequencies  (Barbara Ilowsky; Susan Dean, 2017).   

Frequency: The number of times an attribute value appears in a data set. In this study, 

frequencies are in tables specified under the name “Count”. 

Histogram: An histogram is a graphic version of frequency distribution that allows to, not only 

see data frequencies of continuous quantitative data (Barbara Ilowsky; Susan Dean, 2017), but 

also, have an idea of the shape of the distribution of the data to see if the data is normally 

distributed or not (i.e. if data distribution forms a bell shape or not). Histograms can also tell if 

the data has a uniform range of values, which indicates that the data might have a high entropy 

equal to 1, or if there is one or two peaks and a lot of valleys of values, which indicates that the 

data might have a low entropy close to 0. That last information is interesting since some 

algorithms, such as decision trees uses the low entropy to identify the nodes of its tree through 

the information gain which is a measure based on the entropy. 

This graph consists a set of bars of equal width drawn adjacent to each other where the 

horizontal scale represents classes/ranges of quantitative data values and the vertical scale, 

frequencies. The ranges for the horizontal scale are selected by the data analyst (Barbara 

Ilowsky; Susan Dean, 2017).  

In the RapidMiner platform, histograms can be built and the ranges for the horizontal scale can 

be configured in the generated graph setting named bins. Bins can also be 0 which mean that in 

this case RapidMiner plots one bar for each unique data value that the example set has to 

indicate the number of times a specific value appears in the data set (i.e. frequency distribution). 

In the RapidMiner platform, histograms were in this study generated to better assess if sperm 

parameters values are normally distributed. 

Independent samples: Samples that are selected randomly so that its observations do not depend 

on  values of other observations (Minitab 18, 2017). Moreover, independent samples are also 

set of values that are not exactly covering the same population. For instance: if some of the 

patients that have performed a stereogram before the treatment does not carry out stereograms 

in all patient´s follow ups performed at 3, 6 and 12 months after the treatment, these different 

samples have a different number of patients and observations; and therefore, independent.    

Inferential/Inductive Statistics: A facet of statistics that deals with estimating a population 

parameter based on a sample statistic (Barbara Ilowsky; Susan Dean, 2017) or inferring 

properties of a population to a sample to test statistical hypothesis. 
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Nonparametric test: Statistical tests applied to data samples that are not drawn from a normal 

distribution. These statistical tests are independent of population distributions and associated 

parameters (i.e mean and standard deviation of population). They are also valuable in dealing 

with nonnumerical data such as ordinal data (e.g severity grade of a condition ) (Murray R. 

Spiegel; Larry J. Stephens, n.d.). 

Normal distribution: After plotting a graphic that shows the frequency distribution of a data 

population, with for instance a histogram, the analyses of how the data is distributed is 

performed in order to assess if the data tends to be around a central value or not. An 

approximation of the plotted frequencies called probability distribution function f(x) is usually 

drawn. This function presents the undercurve probability of occurring a value in a range of 

values (Barbara Ilowsky; Susan Dean, 2017).  

In many situations, f(x) depicts a bell curve shape. For instance, the heights of people, the size 

of things produced by machines, errors in measurements, blood pressure and marks on a test 

are some examples where the approximation of data frequencies forms a bell shape (Math´s 

Fun, 2017). When f(x) depicts a bell curve shape, we statistically say that the data is normally 

distributed. Figure Glossary 1 presents an example of a f(x) function normally distributed were 

the shaded area in the figure depicts the probability of a value occurring between the value 1 

and 2.  

 

Figure Glossary 1 Example of a normal distribution (Barbara Ilowsky; Susan Dean, 2017) 

Data displayed in a normal distribution have the following property (Math´s Fun, 2017): 

• The mean of the data is equal to the median and the mode. 

• The histogram presents a symmetry at its center 

• 50% of the values are less than the mean and 50% are greater 

Figure Glossary 2 depicts these properties.    

 

Figure Glossary 2 Properties of normal distribution (Math´s Fun, 2017) 

Knowing that everything tends towards the mean in a normal distribution, that data in a normal 

distribution has a specific shape or that the standard deviation has an unambiguous relationship 
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to the probability of an outcome, means we can do very powerful statistical tests (Ted Wrigley, 

2016). Based on these statistical concepts, several statistical tests were form statisticians 

devised to, for instance, assess if there is a statistical significance difference between samples 

based on their f(x). We are saying shape since f(x) can have or not a normal distribution. To 

encompass this situation, statistical tests were devised for each type of data distribution. 

Nerveless, even if we apply a statistical test for normal distributed data to data that is not 

normally distributed, it can also work, but in the case of assessing statistical significance 

differences between samples, some differences might not show through. For this reason, it is 

always good to also apply to data a statistical test that is suitable to its distribution; and thereby, 

initially assess the distribution of the sample by analyzing, from other aspects, if its mean is 

equal to its median to further on select the most suitable statistical tests that one should use.  

Observed frequencies: Observed frequencies are events that in a particular sample were 

observed to occur with frequencies o1, o2, o3, ... , ok (Murray R. Spiegel; Larry J. Stephens, 

n.d.). These observed frequencies are presented in Crosstabs when we want to assess the 

relationship between two attributes and are in these cases presented as oij which presents the 

join event that the attribute A takes on value ai and attribute B takes on value bj. 

Parameter: A number that is a property of a population such as the median, mean etc (Barbara 

Ilowsky; Susan Dean, 2017). 

Pie Graph: A Pie Graph is a circular statistical graphic which is divided into slices. Each slice 

is proportional to the quantity of data values it represents. This study has used the pie graph to 

have an overall picture of how the data values of an attribute qualitative or quantitative is 

distributed in terms of its value´s frequency since the RapidMiner presents by default, near each 

slice, the number of times each attribute value occurs (i.e. frequency) in contrast to the bar 

charts were the frequencies can only be seen in the RapidMiner through its y axis, which can 

bring some confusion. Therefore, in this study we have more used this type of graph than the 

most common Bar Graph. 

Sample proportion a.k.a Relative Frequency: if X is the number of successes out of a sample of 

n observations and each observation is considered has a success, we can say that a sample 

proportion represented by �̂� is equal to (“The Sample Proportion,” n.d.): 

�̂� =
𝑋

𝑛
∗ 100 

Formula Glossary 10 Sample Proportion 

In this study, sample proportions are in tables specified under the name “% of total”. A sample 

proportion is in statistics also called relative frequency. 

Sample: A portion of a larger population represented with the size n. In this study, the provided 

data is a sample since it is a portion of all patients that frequented the Coimbra´s Hospital.   

Scatter plot: A scatter plot is a graph of data points where each pair of attributes´ values is 

treated as a pair of coordinates and plotted as points in a plane (Han et al., 2012). Scatter plots 

were in this study used to provide a first look at bivariate data (i.e. where each value of one 
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attribute is paired with a value of the other attribute) to see clusters of points and outilers, or to 

explore the possibility of correlation relationships.     

Time series: A time series is a graph of data points plotted by time. Hence, the independent 

variable (i.e. the x axis) on these graphs is time and the dependent variable (i.e. the y axis), is 

the value of the data that can be plotted by time. The line or curve plotted by joining the data 

points are often called a trend line or trend curve (Murray R. Spiegel; Larry J. Stephens, n.d.). 

Hence, time series were in this study built to visually assess the trend of sperm parameters 

through time (i.e. before the treatment and 3,6,12 months after the treatment).
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Appendix A: Data understanding  

The table below describes the attributes that were initially provided and selected. 

Table A. 1 Description of the initially provided and selected attributes 

ID Attribute code name  Description 
Attribute 
Category 

Attribute Type 

1 Idade_H Age of the male patient at the time of the 
embolization 

Quantitative Numeric Continuous 

2 Idade_M Age of the woman´s male patient at the time of 
the partner´s embolization 

Quantitative Numeric Continuous 

3 Tempo_Infert Infertility time (i.e Time told in months by the 
patient´s partner regarding the time that they 
have been trying to conceive until the first 
fertility appointment) 

Quantitative Numeric Continuous 

4 Prim_Sec Woman´s Infertility type (i.e told by couple -  if it 
is an infertility condition related to the first, 
indicated with the value "Primária", or second, 
indicated with the value "Secundária", 
pregnancy). Note: if the male patient has a child 
from a previous relationship but his current 
partner does not have a child yet, it is 
"Primária".  

Qualitative Binary 

5 FR Risk factors that the male patient has that might 
contribute to his infertility. These factors were 
identified through male´s interrogation and 
clinical report analysis. (i.e The patient did not 
told or their are no information about it so it is 
unknown  (desconhecido), ….). 

Qualitative Nominal 

6 Fator_F Infertility factors indicated by the couple and 
from clinical avaliation for the male patient and 
its female partner (i.e unknow (desconhecido), 
Clinically studied but infertility cause were not 
identified (Não tem).... ). 

Qualitative Nominal 

7 Grau_Varicoc Degree of varicocele´s severity (i.e  lowest 
severity (1), medium severity (2) and highest 
severity (3)) 

Qualitative Ordinal 

8 Lateralidade Scrotum site of the varicocele condition (i.e if 
varicocele is in the right (2), left (1) or on both 
(3) scrutum) 

Qualitative Nominal 

9 Data Scheduled date for the embolization treatment Quantitative Numeric Continuous 

10 Notas Notes taken by the physician after the 
embolization treatment. It can specify in which 
testicle the embolization was carried out or the 
type of complication the male patient felt after 
it. 

Qualitative Nominal 

11 Complicações Complications from Embolization treatment (i.e 
none (0), orquiepididimite (1), pain (2) or other 
(3)) 

Qualitative Nominal 
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ID Attribute code name  Description 
Attribute 
Category 

Attribute Type 

12 Conc_Pre Quantity of spermatozoa in millions per 
milliliters (concentration) of semen before the 
Embolization treatment. The minimum 
quantificated value for concentration is 0.1 so 
even if someone as only 3 spermatozoa e put 
0.1.  

Quantitative  Numeric Discrete 

13 Conc_3M Quantity of spermatozoa in millions per 
milliliters (concentration) of semen 3 months 
after the Embolization treatment. The minimum 
quantificated value for concentration is 0.1 so 
even if someone as only 3 spermatozoa e put 
0.1.  

Quantitative  Numeric Discrete 

14 Conc_6M Quantity of spermatozoa in millions per 
milliliters (concentration) of semen 6 months 
after the Embolization treatment. The minimum 
quantificated value for concentration is 0.1 so 
even if someone as only 3 spermatozoa e put 
0.1.  

Quantitative  Numeric Discrete 

15 Conc_1A Quantity of spermatozoa in millions per 
milliliters (concentration) of semen 1 year after 
the Embolization treatment. The minimum 
quantificated value for concentration is 0.1 so 
even if someone as only 3 spermatozoa e put 
0.1.  

Quantitative  Numeric Discrete 

16 A_B_pré Percentage of spermatozoa with progressive 
motility  in the semen before the Embolization  
treatment. 

Quantitative  Numeric Discrete 

17 A_B_3M Percentage of spermatozoa with progressive 
motility 3 months after the Embolization  
treatment. 

Quantitative  Numeric Discrete 

18 A_B_6M Percentage of spermatozoa with progressive 
motility 6 months after the Embolization  
treatment. 

Quantitative  Numeric Discrete 

19 A_B_1A Percentage of spermatozoa with progressive 
motility 12 months after the Embolization  
treatment. 

Quantitative  Numeric Discrete 

20 Formas_N_pré Percentage of spermatozoa that have a normal 
shape in the semen before the Embolization  
treatment. 

Quantitative  Numeric Discrete 

21 Formas_N_3M Percentage of spermatozoa that have a normal 
shape in the semen 3 Months after the 
Embolization  treatment. 

Quantitative  Numeric Discrete 

22 Formas_N_6M Percentage of spermatozoa that have a normal 
shape in the semen 6 Months after the 
Embolization  treatment. 

Quantitative  Numeric Discrete 

23 Formas_N_1A Percentage of spermatozoa that have a normal 
shape in the semen 1 Year after the 
Embolization  treatment. 

Quantitative  Numeric Discrete 

24 Gravidez Indicates if the female partner got pregnant 
after her partner ´s emolization treatment (i.e. 
Got pregnant (1), Did not got pregnant (0), Do 
not know if she got or not pregnant (2)) 

Qualitative  Nominal 
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ID Attribute code name  Description 
Attribute 
Category 

Attribute Type 

25 Num_Gravidezes How many pregnancies the female partner had 
after her partner´s embolization treatment. 

Quantitative Numeric Discrete 

26 Nascimento If their was a birth after the embolization (i.e 
Yes (1), No (0), do not know if their was or not a 
birth (2)) 

Qualitative Nominal 

27 Num_Bébés Number of alive babies born after her partner´s 
embolization treatment. 

Quantitative Numeric Discrete 

28 Gravidez_pós_emb Months that took the female partner to 
conceive after her partner´s embolization 
treatment (Told by the patient or through 
clinical report analysis). 

Quantitative  Numeric Continuous 

29 PMA Inicial definition: if the female partner had a 
fertility treatment (ART). Actual definition: if the 
female partner had a fertility treatment (ART) to 
conceive after the embolization in the SMR 
service (i.e Yes (1), No (0)). (PMA stands for 
"Procriação Medicamente Assitida" which can 
be: insemination  "inseminação artificial 
intrauterina" (IIU), in vitro fertilization  
"fertilização in vitro" (FIV), ICSI "microinjecção 
intracitoplasmática de espermatozóides", etc.)  

Qualitative Binary 

30 Gravidez_espontanea if the pregnancy was spontaneous after the 
embolization (i.e Yes (1), No (0)). 

Qualitative  Binary 

31 Repetia_embolização If the male pacient would repeate the 
Embolization Treatment (i.e Yes (1), No (0), we 
could not get the opinion of the pacient (2)) 

Qualitative Nominal 

32 Razão_não_repetir Reason to not repeat the Embolization 
treatment (i.e Pain (1), Infection (2), Technique 
(3), Do not have a specifique reason why he 
would not repeat the Embolization treatment 
(4)). 

Qualitative Nominal 

 

Table A. 2 and Table A. 3 depict all Pearson correlations that were by the RapidMiner platform 

computed. These correlations were computed with the “Gravidez” attribute mapped to “Sim”=1 

and “Não”=2 and the data set filtered by non-missing values in the “Gravidez” attribute for the 

numerical attributes of the final data set. Hence, these correlations were performed upon the 

230 filtered and finally preprocessed instances of the provided data set.  
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Table A. 2 Pearson Correlations of related sperm parameter attributes 

Table A. 3 Pearson Correlations of patient´s information 

Attributes Gravidez Idade_H Idade_M Tempo_Infert Data_Embolizacao 

Gravidez 1 0.021 0.156 0.154 0.204 

Idade_H 0.021 1 0.526 0.126 0.164 

Idade_M 0.156 0.526 1 0.088 0.139 

Tempo_Infert 0.154 0.126 0.088 1 0.094 

Data_Embolizacao 0.204 0.164 0.139 0.094 1 

Attributes Conc_Pre Conc_3M Conc_6M Conc_1A A_B_Pre A_B_3M A_B_6M A_B_1A 
Formas_
N_Pre 

Formas_
N_3M 

Formas_
N_6M 

Formas_
N_1A 

Numero_
alteraçõe
s_Pre 

Numero_
alteraçõe
s_3M 

Numero_
alteraçõe
s_6M 

Numero_
alteraçõe
s_1A 

Conc_Pre 1 0.491 0.633 0.508 0.138 -0.001 0.055 0.022 0.104 0.034 0.418 0.013 -0.383 -0.211 -0.233 -0.221 

Conc_3M 0.491 1 0.685 0.661 0.177 0.178 0.345 0.088 0.217 0.271 0.040 0.212 -0.230 -0.429 -0.447 -0.311 

Conc_6M 0.633 0.685 1 0.738 0.202 0.213 0.223 0.276 0.188 -0.069 0.389 -0.053 -0.345 -0.205 -0.463 -0.471 

Conc_1A 0.508 0.661 0.738 1 0.312 0.170 0.284 0.248 0.195 0.131 0.322 0.180 -0.322 -0.317 -0.496 -0.547 

A_B_Pre 0.138 0.177 0.202 0.312 1 0.444 0.588 0.409 0.123 0.259 0.329 0.224 -0.581 -0.304 -0.427 -0.386 

A_B_3M -0.001 0.178 0.213 0.170 0.444 1 0.597 0.427 0.123 0.377 0.440 0.246 -0.173 -0.582 -0.560 -0.396 

A_B_6M 0.055 0.345 0.223 0.284 0.588 0.597 1 0.398 0.241 0.305 0.392 0.287 -0.246 -0.421 -0.701 -0.438 

A_B_1A 0.022 0.088 0.276 0.248 0.409 0.427 0.398 1 -0.087 0.290 0.202 0.247 -0.161 -0.150 -0.259 -0.678 

Formas_N_Pre 0.104 0.217 0.188 0.195 0.123 0.123 0.241 -0.087 1 0.392 0.206 0.089 -0.482 -0.173 -0.173 0.012 

Formas_N_3M 0.034 0.271 -0.069 0.131 0.259 0.377 0.305 0.290 0.392 1 0.342 0.544 -0.240 -0.636 -0.143 -0.233 

Formas_N_6M 0.418 0.040 0.389 0.322 0.329 0.440 0.392 0.202 0.206 0.342 1 0.964 -0.337 -0.326 -0.598 -0.346 

Formas_N_1A 0.013 0.212 -0.053 0.180 0.224 0.246 0.287 0.247 0.089 0.544 0.964 1 -0.029 -0.386 -0.114 -0.487 

Numero_alterações_Pre -0.383 -0.230 -0.345 -0.322 -0.581 -0.173 -0.246 -0.161 -0.482 -0.240 -0.337 -0.029 1 0.284 0.340 0.243 

Numero_alterações_3M -0.211 -0.429 -0.205 -0.317 -0.304 -0.582 -0.421 -0.150 -0.173 -0.636 -0.326 -0.386 0.284 1 0.428 0.275 

Numero_alterações_6M -0.233 -0.447 -0.463 -0.496 -0.427 -0.560 -0.701 -0.259 -0.173 -0.143 -0.598 -0.114 0.340 0.428 1 0.452 

Numero_alterações_1A -0.221 -0.311 -0.471 -0.547 -0.386 -0.396 -0.438 -0.678 0.012 -0.233 -0.346 -0.487 0.243 0.275 0.452 1 

Gravidez 0.008 -0.092 -0.161 -0.115 -0.155 -0.079 -0.123 -0.091 -0.045 -0.186 -0.068 -0.286 0.007 0.143 0.089 0.033 

Idade_H -0.009 0.186 -0.023 0.186 -0.007 -0.086 0.082 0.069 0.079 -0.007 -0.062 0.156 -0.050 -0.099 -0.021 -0.177 
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Appendix B: Data Mining Models 

This section discloses the modeling steps followed during the application of each data mining 

algorithm, as well as describes the models that were ran during this process. Hence, this section 

is organized as follows: in section B.1, we present the modeling steps and models built to apply 

the classification technique; in section B.2, we disclose the modeling steps and models built to 

apply the clustering technique, and finally, in section B.3, we showcase the modeling steps and 

models built to apply the FP-Growth algorithm. 

B.1 Classification with Decision tree  

As we have seen, we have at first applied the Decision tree algorithm upon the originally 

provided and preprocessed attributes that the RapidMiner platform determined to have good 

data quality (i.e. attributes disclosed in Table 5.40 with the cells under the column named 

“Attribute Name” colored in blue and the cells under the column named “Selected”, colored in 

green); afterwards, we have applied the Decision tree algorithm to the groups of selected 

attributes identified in section 5.4.4; and finally we have reapplied it upon these same selected 

attributes but with the numerical attributes discretized as specified in Table 5.64. After 

recording the parameters of the models that had the best Accuracy during the training/testing of 

the RapidMiner´s Decision Tree and J-W48 algorithm (i.e. C4.5 algorithm) for the simple and 

cross validations (see Appendix B.1 for these results), we have selected the best model. The 

best model had operator parameter values that enabled a better performance during model 

training/testing (i.e. output of the “optimize parameter operator”), as well as during its 

validation. Hence, to predict the success of the embolization treatment we have followed several 

modeling steps that we summarize in Table 6.1.  

Table 6.1 Modeling steps of the application of the Decision tree Algorithm 

Step 
Number 

Tested Attributes   Task performed 

1 

Idade_H, Idade_M, 
Cirurgias, Doença, 
Factor_Infertilidade_Masculino, 
Grau_Varicoc, 
HabitosAlcoolicos, 
HabitosTabagicos, Lateralidade, 
Profissao, 
Conc_3M, Conc_6M, Conc_1A, 
A_B_Pre, A_B_3M, A_B_6M, 
A_B_1A, 
Formas_N_Pre, Formas_N_3M, 
Gravidez 

Applied the Decision Tree algorithm with the model depicted 
in Figure 6.4 (Model 1) upon the attributes with good data 
quality by the RapidMiner´s assessment.  

2 A_B_Pre 
Conc_6M 
Formas_N_3M 
Grau_Varicoc 
Gravidez 
ProfissãoComRiscoDeContacto… 

Applied the Decision Tree algorithm with the model depicted 
in Figure 6.4 (Model 1) on the first group of selected 
attributes. 
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Step 
Number 

Tested Attributes   Task performed 

3 A_B_Pre_Qualificado 
A_B_3M_Qualificado 
Conc_3M_Qualificado 
Grau_Varicoc 
Gravidez 
ProfissãoComRiscoDeContacto… 

Applied the Decision Tree algorithm with the model depicted 
in Figure 6.4 (Model 1) on the second group of selected 
attributes. 

4 Grau_Varicoc 
Gravidez 
ProfissãoComRiscoDeContacto... 
Qualificar_Espermograma_3M 
Qualificar_Espermograma_Pre 

Applied the Decision Tree algorithm with the model depicted 
in Figure 6.4 (Model 1) on the third group of selected 
attributes. 

5  Retested the steps 2 to 4 by adding the Idade_M attribute to 
check if we could surpass the f-measure found in phase 3. 
Hence, this step also ran the model depicted in Figure 6.4 
(Model 1). 

6 A_B_3M_Qualificado 
A_B_Pre_Qualificado 
Conc_3M_Qualificado 
Grau_Varicoc 
Gravidez 
Idade_M 
ProfissãoComRiscoDeContacto… 

Filtered the data set by non-missing values under the fifth 
group of selected attributes, transformed its nominal values 
into numerical values through mapping and dichotomization 
and normalized all values to test the decision tree algorithm 
on a normalized and numerical data set. The choice of this set 
of attributes and transformations was guided by the most 
interesting result identified with the clustering technique (i.e. 
K-means modeling step 2). This task was performed by 
running the VCF depicted in Figure 6.5 (Model 2).  

7 A_B_3M_Qualificado 
A_B_Pre_Qualificado 
Conc_3M_Qualificado 
Grau_Varicoc 
Gravidez 
Idade_M 
ProfissãoComRiscoDeContacto… 

Reran the model 2 without filtering the data set by non-
missing values under the fifth group of selected attributes. 
This task was executed with the VCF depicted in Figure 6.8 
(Model 3). 

8 A_B_3M 
A_B_Pre 
Conc_3M 
Conc_6M 
Formas_N_3M 
Grau_Varicoc 
Gravidez 
HabitosAlcoolicos_Processado… 
HabitosTabagicos_Processado… 
Idade_M 
ProfissãoComRiscoDeContacto… 

Transformed the numerical attributes into nominal with a user 
defined discretization that reflects the WHO thresholds for the 
sperm parameters attributes, the woman´s age quartiles for 
the Idade_M attribute and the severity grade was 
automatically dichotomized; Hence, all the data set was 
transformed into nominal attribute values. The choice of this 
set of attributes and transformations was raised after the 
application of the association technique. This task was 
executed with the VCF depicted in Figure 6.9 (Model 4). 

9 A_B_Pre_Qualificado 
A_B_3M_Qualificado 
Conc_3M_Qualificado 
Grau_Varicoc 
Gravidez 
ProfissãoComRiscoDeContacto… 

Optimized the best decision tree model obtained upon the 
230 preprocessed instances (i.e. model obtained in step 3) 
with the Bagging ensemble method. This task was executed 
with the VCF depicted in Figure 6.12 (Model 5). Please note 
that the best model was obtained from the step 6. 

 

As we can see from the table above, the Decision tree algorithm was mainly applied with the 

model depicted in Figure 6.4. This model is described in the following figures: Figure 6.1, 

depicts a close-up of the upper half of the decision tree model shown in Figure 6.4 where we 

can see the 4 testing steps depicted within the 4 colored rectangles; Figure 6.2, shows the nested 
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built model for the training and testing of the decision tree algorithm and Figure 6.3, depicts 

the application of the decision tree model upon the validation data set – this figure is a close-up 

of the lower half of the model disclosed in Figure 6.4.  

The only things that varied between the several runs that were carried out with this model (i.e. 

modeling steps) were the selection of attributes to mine - specified within the “Select 

Attributes” operator here entitled “Select 19 Original” - and the alteration of the model 

parameters to validate at the end of each application – carried out within the Decision tree 

operator that is highlighted in Figure 6.3 with the name “Optimized Decision Tree”.  

All the tests performed with the model depicted in Figure 6.4 were carried out on 230 labeled 

instances (i.e. 129 instances to train + 55 instances to test + 46 instances to test).   

If we look closer into the partial view of the decision tree model in Figure 6.1 we see that it 

reflects the validation process previously disclosed in section 4.2.8.1. In fact, the operator that 

we can see entitled “Split Data” at the bottom-left of Figure 6.1 splits the data set into training 

and validation, and the training data set, is served as an input to the “Optimize Parameters” 

operator which is a nested operator that contains the “Split Validation” operator or the “Cross 

Validation” operator, which in turn, has the decision tree algorithm nested with its application 

and computed performance measures that are depicted in Figure 6.2. 

If we analyze the model´s validation depicted in Figure 6.3, we can see that the model´s 

validation is performed with the same operators than those shown in Figure 6.2 since it performs 

the same task (i.e. test/validate the application of a model). The only difference here, is that the 

apply model operator, here called “Apply Optimized Mo..” receives as an input the partitioned 

data set split for validation purposes instead of testing purposes, as depicted in Figure 6.2.  

 

Figure 6.1Main Decision tree model - partial view 
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Figure 6.2 Decision Tree´s training and testing 

 

Figure 6.3 Model´s validation 

 

Figure 6.4 Main Decision Tree model - complete view (Model 1 – used in step 1 to 5) 
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In order to establish a model that computes the highest f-measure, we have fine-tuned the model 

depicted in Figure 6.4 by adding a set of RapidMiner´s operators to transform the 5th group of 

selected attribute values into numerical and dichotomized values in order to test the model on 

a numerical data set (step 6 and 7). A close-up of the beginning of this fine-tuned model can be 

seen in Figure 6.5 based on the model in Figure 6.4. During the construction of this model we 

have also tested the transformation of the “Gravidez” attribute into 1 and 0 and the 

normalization of the woman´s age but its performance metrics and results remained the same; 

and therefore, we have decided not to go with these transformations since they only made the 

interpretation of the computed models more difficult. Further on, we have also tested the 

Decision tree model on all sperm parameters and woman´s age attributes, as well as on 

Varicocele severity grade manually dichotomized to also test the model only on nominal values 

(step 8). A close-up of the beginning of this model can also be seen in Figure 6.9. 

 

Figure 6.5 First Fine-Tuned model - partial view (Model 2 - used in step 6) 

The pink operators seen in the above model have its purposes disclosed in the below Table 6.2.  

Table 6.2 Attribute transformations of the Decision tree Model 2  

Operator name Purpose 

Selected 64 attributes Selects the 64 attributes that were selected to assess. 

Select to model (4)  

Selects the attributes encompassed in the 5th group of attributes 
for this model to mine:  
A_B_3M_Qualificado 
A_B_Pre_Qualificado 
Conc_3M_Qualificado 
Grau_Varicoc 
Gravidez 
Idade_M 
ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos 
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Operator name Purpose 

Filter to model (2) 
Filters the data set by non-missing values in the previously 
selected attributes.  

Map_SpermParamet… 
Maps the sperm parameter values into:  
Anormal -> 0 
Normal -> 1 

Map_Profissão (2) 

Maps the values of the 
“ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos” 
atribute into: 
Não -> 0 
Sim -> 1 

Map_Grau 

Maps the values of the “Grau_Varicoc” attribute into: 
I -> 1 
II -> 2 
III -> 3 

Dichotomize_Grau 

Dichotomizes the mapped “Grau_Varicoc”  attribute by 
generating 3 new attributes to manage separately the severity 
grades. For this purpose the following attributes were generated: 
Grau_I 
Grau_II 
Grau_III 

Transform all nomin… 
Transforms all previously mapped attributes into numerical 
attributes. 

Select to Cluster 
Reselects all transformed attributes to mine, except the 
“Grau_Varicoc” attribute since its dichotomized attributes are 
the ones that we aim to mine. 

Remap Binomials 
Indicates that the “Gravidez” attribute value “Sim” must be 
considered as a positive value and the “Não” value, as a negative 
value. 

Set Role  Indicates that the “Gravidez” attribute is a lable attribute. 

 

These attribute transformations enabled us to normalize the data and end-up with a numerical 

data set. We disclose this transformation by showing, in Figure 6.6 the first filtered data set 

rows by the decision tree Model 2, and in Figure 6.7 these same rows transformed after the 

application of the operators described in Table 6.2.   

 

Figure 6.6 First filtered data set rows by the Decision tree Model 2 

 

Figure 6.7 Transformation of the first filtered data set rows by the Decision tree Model 2  
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Since the Decision tree Model 2 filters its data set by non-missing values, we have ended up 

with 85 instances to mine (i.e. 48 instances to train + 20 instances to test + 17 instances to 

validate); and hence, the resulting decision tree shown leaves with a small number of instances. 

To tackle this situation, we have rerun the decision tree Model 2 on all 230 instances which 

produced Model 3 that we below partly disclose in Figure 6.8. As we can see, this model does 

not have the “Filter to model (2)” operator that was previously seen, which enabled us to mine 

all 230 instances with selected attributes transformed as shown in Table 6.2. The remainder of 

this model is the same as the one depicted in Figure 6.4.     

 

Figure 6.8 Second Fine-Tuned model - partial view (Model 3 - used in step 7) 

If we look closer into the operators used to implement the 8th decision tree modeling step 

depicted in Figure 6.9, we see that we have several operators named after sperm parameters and 

woman´s age attributes in the center-left of the presented VCF. These operators implement the 

discretization of their corresponding attribute that was carried-out with the “Discretize by User 

Specification” operator. Afterwards, the operator called “Remap Binomials (2)”, indicates that 

the attribute value “Não” must be considered as a negative value and the attribute value “Sim”, 

as a positive attribute value. At last, the “Nominal to Binomial” operator dichotomizes the 

“Grau_Varicoc” attribute. Hence, after all these attribute transformations we have ended-up 

with a binomial data set. This transformed data set can be partly seen in Figure 6.10 and Figure 

6.11 where in Figure 6.10, we show the first 5 rows of the data set before attribute 

transformation (at the time of the “Set Role (2)” operator) and in Figure 6.11, we showcase part 

of these same rows transformed by model operators. The remainder of the Model 4 was built 

as the Model 1 in Figure 6.4.     
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Figure 6.9 Third Fine-Tuned model - partial view (Model 4 - used in step 8) 

 

Figure 6.10 Filtered rows by the “Filter Examples (2)” operator of the Decision tree Model 4 

 

Figure 6.11 Transformation of the filtered data set rows by the Decision tree Model 4 

To the best trained/tested model on the 230 assessed instances (i.e. model obtained during the 

decision tree modeling step 3 at the first testing step), we have finally applied the Bagging 

ensemble method to increase the performance measures and minimize overfit.  

The Bagging ensemble method was applied with the “Bagging” RapidMiner operator which is 

a nested operator that ran the decision tree algorithm with the best parameter values identified 

through the several modeling steps. The “Bagging” RapidMiner´s operator can be seen 

highlighted in orange in the model depicted in Figure 6.12 and next, in Figure 6.13, we can see 

the built process executed within the “1-Validation (2)” operator of Model 5.  
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Figure 6.12 Bagging Application – (Model 5 – used in step 9) 

 

Figure 6.13 Bagging application within the “1-Validation (2)” operator of Model 5 

The “Bagging” operator was executed with its default parameter value in the iteration field; 

(i.e. a number of iterations equal to 10) and the sample ratio was set to 0.7.    
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B.2 Clustering with K-means  

The K-Means partitioning clustering algorithm was also applied through several modeling 

steps. These steps are summarized in Table 6.3. 

Table 6.3 Modeling steps of the application of the K-Means Algorithm 

Step 
Number 

Tested Attributes   Task performed 

1  
Applied the K-Means algorithm upon all selected groups of 
attributes. This task was performed with model 1 shown in 
Figure 6.14.   

2 

Idade_M, Idade_H, 
A_B_Pre_Qualificado, 
A_B_3M_Qualificado, 
Conc_3M_Qualificado, Grau_I, 
Grau_II, Grau_III, 
ProfissãoComRiscoDeContacto,, 
Gravidez. 
 

Filtered the tested attributes - that were based on the fifth 
group of selected attributes with more filled instances - by 
non-missing values. Afterwards, manually dichotomized the 
severity grade attribute named “Grau_Varicoc”, normalized 
all attribute values by previously transforming them into 
numerical values and at last, applied the K-Means 
algorithm. These tasks were performed with model 2 
depicted in Figure 6.21. In this step, we have also 
performed another sub-step where we have retested 
model 2 without the “Idade_H” attribute which improved 
its performance. 

3 

Idade_M, Idade_H, 
A_B_Pre_Qualificado, 
A_B_3M_Qualificado, 
Conc_3M_Qualificado, 
Grau_Varicoc, 
ProfissãoComRiscoDeContacto…, 
Gravidez. 

Reran the step 2 with the severity grade mapped instead of 
dichotomized. This step was executed with model 3 
depicted in Figure 6.24. 

4 Idade_M, Gravidez 
Defined the best discretization for the idade_M attribute to 
be used by also other data mining algorithms. This step was 
executed with model 4 depicted in Figure 6.25.  

5 

Idade_M, A_B_Pre_Qualificado, 
A_B_3M_Qualificado, 
Conc_3M_Qualificado, Grau_I, 
Grau_II, Grau_III, 
ProfissãoComRiscoDeContacto, 
Gravidez. 
 

Applied the previously defined discretization of the 
“Idade_M” attribute upon the most interesting clustering 
result until then found (i.e. model generated in step 2 
without the “Idade_H” attribute). This task was executed 
with the model 5 that can be seen in Figure 6.26. 

6 

Idade_M, A_B_Pre_Qualificado, 
A_B_3M_Qualificado, 
Conc_3M_Qualificado, Grau_I, 
Grau_II, Grau_III, 
ProfissãoComRiscoDeContacto,, 
Gravidez. 
 

Applied the best decision tree model (i.e. decision tree 
obtained in the decision tree modeling step 6) upon each 
clustered data set generated from the step 2. This task was 
executed with the model 6 that is depicted in Figure 6.22. 

 

As we have previously seen, this technique was applied with the RapidMiner´s “K-mean” 

operator. Furthermore, distances were calculated with the Euclidean and Manhattan measure 

since all nominal values were converted into numeric values. Moreover, prior to the “k-Means” 

application, the data selection operators called “Select Attributes” and “Filter Examples” were 

firstly applied to the data set, as well as the “Nominal to Numerical” operator to prepare the 

nominal attributes for the k-Means specificities. Afterwards we also tested the K-means 

algorithm by converting the nominal attributes that were not binomial, to binomial with the 
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“Nominal to Binomial” operator before converting them to numeric, and have also normalized 

the sperm parameter values with the “Normalize” operator to have all sperm parameters values 

between 0.0 and 1. Hence, we ended up with a data set with all its attribute values in the same 

range of values to identify clusters of data in the same scale of values. To identify clusters of 

data, we have tested the K-means algorithm upon the final preprocessed data set for 2 to 4 

clusters and for the Euclidean and Manhattan distances. Figure 6.14 presents the first model 

that was built to apply the K-means algorithm on the final and preprocessed data set where all 

operators mentioned can be seen.  

The K-means was tested with several selected and filtered attributes that were manually 

changed in the operator within the yellow rectangle that can be seen in the center-left of the 

figure below. The operator in green called “Optimize Parameter…” performs a loop on all 

parameters that were tested within the K-means algorithm. This loop is presented in the 

following Figure 6.15 where we can see the nested operators of the “Optimize Parameter…”  

operator. As we can see, the K-means is linked to a performance operator to retrive the Davies 

Bouldin index; and hence, internally evaluate the generated clusters – all the tests performed 

with this model are reported in the Appendix B.2. 

 

Figure 6.14 General Clustering Model (Model 1) 
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Figure 6.15 K-Means application 

After analyzing the results that were generated from model in Figure 6.14 we have selected the 

most interesting data pattern in terms of the number of instances it covers, and from there, fine-

tuned this model to not only seek for more interesting data patterns, based on the elected 

attributes, but mainly, enhance our capability of interpreting the results generated. Therefore, 

we have altered the model depicted in Figure 6.14 by personalizing the nominal to numerical 

mapping – with the “Map”, “Nominal to numerical” and “Parse numbers” operators – and de-

normalizing the numerical attributes; and afterwards, by applying statistical analysis upon the 

clustered data. In summary, the operators between the operator named in Figure 6.14 as “Filter 

to model” and “Normalize” were altered/added and several operators were then, after the 

“Optimize Parameters (Grids)” operator, added to better interpret the generated clusters of data.  

Figure 6.16 presents the first fine-tuned clustering data mining model, Figure 6.17, partly 

discloses the process that was built to interpret its results and Figure 6.24, presents an overview 

of the best built K-means´ data mining model that mainly joins the two last VCFs. 

Regarding the model depicted in Figure 6.16, we can see that its main differences in comparison 

with the one in Figure 6.14, are the operators within the beige rectangle called “Map attribute 

values”. In fact, these are the ones that were added to the model depicted in Figure 6.14: the 

first two operators with the prefix “Map..” used the operator called “Map”; the third operator, 

with the prefix “Grau_Varicoc..”, used the “Nominal to Numerical” operator with the 

“coding_type” setting set to the option “dummy coding” – this option transforms the 

“Grau_Varicoc” attribute, that is nominal, into 3 dichotomized bi-numerical attributes – and 

the last operator, with the prefix “Transform..”, used the “Parse numbers” operator, to 

transforms all nominal values into numerical ones. The operator named “Normalize idade”, that 

appears in the following pink rectangle, only normalizes the original numerical attributes (i.e. 

“Idade_M” and “Idade_H”). Hence, it only transforms the filtered patient´s ages into a value 

within 0 and 1, were 0, represents the lowest age that appears in the filtered data set, and 1, the 

highest one.  
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Figure 6.16 Fine-tuned Clustering Model  

In Table 6.4 we show how the nominal attributes tested with the model depicted above in Figure 

6.16 were mapped with the “Map” operator. Note that, as previously stated in Figure 6.16, the 

“Grau_Varicoc” attribute was automatically dichotomized with the “Nominal to Numerical” 

operator; and therefore, it is not covered in the table below.  

Table 6.4 Mapping values of the fine-tuned clustering model depicted in Figure 6.16 

Attribute Name Original Value New mapped value 

Conc_3M_Qualificado A_B_Pre_Qualificado 
A_B_3M_Qualificado 

Anormal 0 

Normal 1 

Gravidez 
ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos 

Não 0 

Sim 1 

 
Figure 6.17 De-normalize K-Means results (Partly) 
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To put in context the de-normalization process shown in Figure 6.17, the operator called 

“Normalize idade”, seen in the previous Figure 6.16, was connected to the operator “De-

Normalize (3)”. This last operator was then connected to the operator “Apply Model (3)” that 

also receives the best K-means´ result computed by the operator “Optimize Parameter”. Hence, 

based on the information that the operator “Apply Model” has (i.e. the patient´s ages de-

normalized and the best clustered data set generated by the K-means algorithm), the model 

computes all main statistical measures (i.e. count, mean, standard deviation, maximum value, 

minimum value and median), for each attribute within each generated cluster (i.e. performs a 

group by cluster and attribute) – these statistical measures were calculated with the “Aggregate” 

operator which are the last pink operators seen with a calculator icon inside them. Furthermore, 

we have also applied the statistical significance test ANOVA with the “Group ANOVA” 

operator to each group of clustered data and attribute.  

 During the testing of the RapidMiner´s statistical operators, we have seen that the dichotomized 

“Grau_Varicoc” attribute by the “Nominal to Numerical” operator - in Figure 6.16 named as 

“Grau_Varicoc to nume…” - was not being handled by the RapidMiner´s statistical operators; 

and therefore, we have manually dichotomized this attribute with the RapidMiner´s operators 

that can be seen highlighted in orange in Figure 6.18 below and described as follows:  

• “Map_Grau” – uses the “Map” operator to map the “Grau_Varicoc” values. 

• “Dichotomize_Grau” – uses the “Generate Attributes” operator to create 3 new 

attributes called “Grau_I”, “Grau_II” and Grau_III” filled with the results of the 

function expressions seen in Figure 6.19 below - the values of each of these newly 

created attributes are described in Table 6.5. 

• “Select to Cluster” – uses the “Select Attributes” operator to discard the former 

“Grau_Varicoc” attribute of the model. 

All attributes modeled by the VCF depicted in the below Figure 6.18 are depicted in Table 6.5 

where all data transformations performed are disclosed.   

 

Figure 6.18 Manual dichotomization of the “Grau_Varicoc” attribute – VCF 
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Table 6.5 Data transformations of the model depicted in Figure 6.18 

 

 

Figure 6.19 Manual dichotomization of the “Grau_Varicoc” attribute – Implementation 

 

Figure 6.20 Selected attributes to model in the VCF depicted in Figure 6.18 

Type of data 
transformation 

Attribute Name Original Value New mapped value 

Mapping Conc_3M_Qualificado 
A_B_Pre_Qualificado 
A_B_3M_Qualificado 

Anormal 0 

Normal 1 

Gravidez 
ProfissãoComRiscoDeContact
oDeProdutosOuAmbientesTox
icos 

Não 0 

Sim 1 

Grau_Varicoc I 1 

II 2 

III 3 

Dichotomization Grau_I Dichotomized attribute that has the value 1 
when the corresponding value of the 
attribute “Grau_Varicoc” has the value 1.   

Grau_II Dichotomized attribute that has the value 1 
when the corresponding value of the 
attribute “Grau_Varicoc” has the value 2.   

Grau_III Dichotomized attribute that has the value 1 
when the corresponding value of the 
attribute “Grau_Varicoc” has the value 3.   



APPENDIX B 

Judith Santos Pereira                                                                                                                                             201 
    

An overview of the model partly shown in Figure 6.18 can be seen in Figure 6.21 belowm 

where we show in the upper/first half of the model the VCF depicted in Figure 6.18 and in the 

lower/second half, part of the VCF presented in Figure 6.17. Furthermore, the application of 

the statistical significance test ANOVA is shown in the bright yellow rectangle. 

 

Figure 6.21 Overview of the model partly shown in Figure 6.18 – “Grau_Varicoc” manually 

dichotomized (Model 2) 

Due to the interestingness of the results obtained in Model 2, we have at last applied the best 

decision tree model that we have obtained during the decision tree application step 6.1.1 upon 

the delivered partitioned data set by Model 2. This task was achieved by: 

0 Filtering the data set by one of the attribute values of the “Cluster” attribute (the attribute 

“Cluster” is generated by the K-means algorithm to classify the instances by its clusters). 

1 Transforms the “Gravidez” attribute into Binomial, but by remaining the 0 and 1 value 

instead of the “Não” and “Sim” value because the decision tree modeling step 6.1.1 gave 

better results than the step 6.1. Please note that this transformation was needed to use 

the decision tree´s splitting criteria that we have tested (i.e. accuracy, gain ratio etc.) 

2 Set the “Gravidez” attribute as a label “attribute”. 

3 Apply upon the filtered instances in step 1 the Decision tree model with the 

RapidMiner´s operator called “Decision Tree”, with its parameters set with the 

characteristics found for the model generated in the decision tree aplication step 6.1.1 – 

since the aim is to describe the clusters, we have not trained/tested the data set within 

each cluster because we have a small number of instances.  

4 Record the generated decision tree and redo all the steps until all clusters are modelled 

by the decision tree operator.  
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The built model that implements the above steps is shown in Figure 6.22 where we can see that 

the results delivered by the K-means operator within the “optimize parameters” operator is 

connected to the “Multiply (4)” operator that creates several copies of the partitioned data set 

to serve as inputs to the following operators that implement the steps disclosed previously. 

These operators append the previous Model 2.  

 

Figure 6.22 Decision Tree applied upon Clustered Data (Model 6) 

Model 2 gave us the idea to also test the K-means algorithm with only the “Grau_Varicoc” 

attribute mapped, as specified in Table 6.5. Hence, we have deleted the operators called 

“Dichotomize_Grau” and “Select to Cluster” of the model depicted in Figure 6.18, and in the 

operator with the prefix “Normalize..”, also normalized the “Grau_Varicoc” attribute since in 

this context the severity grade was ranging between 1 and 3. This altered VCF can be see in 

Figure 6.23 below, and the overview of this model is depicted in Figure 6.24. This last overview 

can also serve as a general view of the fine-tuned K-means´ models that were ran since the only 

difference between all these K-means models tested was the way the attributes “Grau_Varicoc”, 

“Idade_M” and “Idade_H” were transformed/preprocessed within the beige rectangle, after 

electing the best starting model (model depicted in Figure 6.16).  
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Figure 6.23 Mapping of the “Grau_Varicoc” attribute – VCF  

  

 

Figure 6.24 Overview of the model partly shown in Figure 6.23 – “Grau_Varicoc” Mapped 

(Model 3) 

We also had the idea to discretize woman ´s age “Idade_M” to at last, reapply the K-Means 

model depicted in Figure 6.21 – where the “Grau_Varicoc” attribute is manually dichotomized 

– with the defined discretization. Note that we have only applied the woman´s age discretization 

to the model where the “Grau_Varicoc” attribute was manually dichotomized because this 

model gave more interesting results. The application of the K-Means algorithm served in this 

case to better understand the pattern of the patient´s partner age prior the formulation of its 

discretization to guide us through the best way to potentiate information discovery.  
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In Dougherty, Kohavi, and Sahami (1995), an interesting study on how we can discretize 

continuous attributes is presented. They expose the “Equal Interval Width” method, that merely 

divides a range of observed values into k equal sized bins, where k is a user supplied parameter, 

to end up with bins with the same range width (i.e. if the width is 10, all boundaries of the 

ranges will be multiples of 10); the “Equal Frequency Intervals” method, that divides a 

continuous variable into k bins to end up with a similar number of instances in each bin (if all 

values were unique we would end up with a quite same number of instances in each bin); and 

the “Discretize by Entropy” method, that considers the label attribute to define ranges of values 

that minimized the Entropy. This last option has caught our interest since the woman´s ages 

varies with the label attribute values; and therefore, we have explored that option by previously 

assessing with the K-means algorithm if there were ranges of woman´s ages that were only part 

of one label class to seek for ranges with low Entropy. To do so, we have altered the model 

depicted in Figure 6.21 to only apply the K-means algorithm upon the “Idade_M” and 

Gravidez” attribute. This altered model can be seen in Figure 6.25 (Model 4).      

 

Figure 6.25 Assessment to the “Idade_M” attribute vs the “Gravidez” attribute (Model 4) 

In Figure 6.26 below we disclose the model depicted in Figure 6.21 with the selected 

discretization of the “Idade_M” attribute. This discretization was carried out with RapidMiner 

operators that can be seen in the bright yellow rectangle called “Discretize Idade_M”. The 

selected discretization method was the “Equal Frequency Intervals” method and was 

implemented with the “Discretized by Frequency” operator that can be seen in Figure 6.26 

renamed as “Discretize” – the reason behind the election of this discretization is in section 

5.5.2.3 disclosed. The two following operators with the prefix “Transform” handle the applied 

discretization: we have changed the display of the discretization values gathered in the 

“Idade_M” attribute to a numerical value by applying the “Generate Attribute” operator with 

the script “cut(Idade_M,5,1)” and transformed the resulting value into a numerical value with 
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the “Parse Numbers” operator (i.e. has transformed “range1 [-∞-30.500]” to “1” with the 

“Generate Attribute” operator and the resulting value “1” was transformed into the number 1 

with the “Parse Numbers” operator).   

 

Figure 6.26 “Grau_Varicoc” manually dichotomized and “Idade_M” discretized (Model 5) 
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B.3 Association with FP-Growth 

The FP_Growth algorithm was applied in 6 modeling steps that are summarized in Table 6.6.  

Note: the names of the following attributes were for formatting reasons summarized as: 

“ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos” to “ProfissãoComRisco”, 

“HabitosTabagicos_Processado_Simplificado” to “HabitosTabagicos_Simplificado”, and 

“HabitosAlcoolicos_Processado_Simplificado” to “HabitosAlcoolicos_Simplificado).  

Table 6.6 Modeling steps of the application of the FP-Growth Algorithm 

Step 
Number 

Tested Attributes  Settings  Task performed 

1 Grau_Varicoc, 
Conc_6M, A_B_pré, 
Formas_N_3M, 
ProfissãoComRisco, 
Gravidez 
 

Support=0.1  
Confidence=0.8 

Applied the FP_Growth algorithm with the 
model 1 depicted in Figure 6.27 FP-Growth 
model. This model applied the association 
algorithm upon the first group of selected 
attributes with a support set to 0.1 and a 
confidence set to 0.8 to identify objectively 
interesting rules ordered by its support. 

2 Grau_Varicoc, 
Conc_6M, A_B_pré, 
Formas_N_3M, 
ProfissãoComRisco, 
Gravidez 
 

Support=0.0    
Confidence=0.0 

Applied the FP_Growth algorithm with 
model 1 presented in Figure 6.27. This step 
also applies the association algorithm upon 
the first group of selected attributes but sets 
the support to 0.0 and confidence set to 0.0 
to identify subjectively interesting rules. 

3 Grau_Varicoc, 
Conc_6M, A_B_pré, 
Formas_N_3M, 
ProfissãoComRisco, 
Gravidez 
 

Filtered by non-
missing values in the 
“Gravidez” 
Attribute 
and 
Support=0.0  
Confidence=0.0 
and at last, adjusted 
to: 
Support=0.1  
Confidence=0.4 
 

Filtered the data set by the instances that 
have non-missing values in the “Gravidez” 
attribute and reapplied the FP_Growth 
algorithm with the model depicted in Figure 
6.28 (model 2). This step applies the model 
upon the first group of selected attributes to 
seek for interesting rules with a support and 
confidence maintained to 0.0 and 
afterwards, fine-tunes the thresholds to 
support=0.1 and confidence=0.4 to seek for 
objectively and subjectively interesting rules 
based on the conditions set (i.e. conditions 
disclosed in section 4.2.8.3). 

4 Grau_Varicoc, 
Conc_3M_Qualificado, 
A_B_Pre_Qualificado, 
A_B_3M_Qualificado, 
ProfissãoComRisco, 
Gravidez. 

Filtered by non-
missing values in the 
“Gravidez” 
Attribute 
and 
Support=0.1  
Confidence=0.4 
 

Applied the FP_Growth algorithm with the 
model presented in Figure 6.28 (model 2), 
upon the second group of selected 
attributes to seek for objectively and 
subjectively interesting rules based on the 
conditions set (i.e. conditions disclosed in 
section 4.2.8.3).  

5 Grau_Varicoc, 
Qualificar_Espermogra
ma_Pre, 
Qualificar_Espermogra
ma_3M, 
ProfissãoComRisco, 
Gravidez.  
 

Filtered by non-
missing values in the 
“Gravidez” 
Attribute 
and 
Support=0.1  
Confidence=0.4 
 

Applied the FP_Growth algorithm with the 
model presented in Figure 6.28 (model 2), 
upon the third group of selected attributes 
to seek for objectively and subjectively 
interesting rules based on the conditions set 
(i.e. conditions disclosed in section 4.2.8.3).  
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Step 
Number 

Tested Attributes  Settings  Task performed 

6 Idade_M, Grau_Varicoc, 
Conc_3M , Conc_6M, 
A_B_pré, A_B_3M, 
Formas_N_3M,  
Qualificar_Espermogra
ma_Pre, 
Qualificar_Espermogra
ma_3M, 
ProfissãoComRisco, 
HabitosTabagicos_Simpl
ificado, 
HabitosAlcoolicos_Simpl
ificado, 
Gravidez, PMA, 
Gravidez_espontanea 

Filtered by non-
missing values in the 
“Gravidez” 
Attribute 
and 
Support=0.1  
Confidence=0.4 
 

Applied the FP_Growth algorithm with the 
models presented in Figure 6.29 (model 3) 
(to mainly test the sperm parameter values 
discretized) and Figure 6.30 (model 4) (to 
mainly test the semen classifications)  to 
further explore the groups of selected 
attributes already tested to seek for other 
objectively and subjectively interesting rules 
based on the conditions set (i.e. conditions 
disclosed in section 4.2.8.3). This step 
entailed the addition of more attributes, as 
well as the discretization of all numerical 
attributes.  

  

All results are presented in Appendix B.,  and the identification of the most interesting rules of 

these first 5 modeling steps are shown in section 5.5.3, as well as the results of the final step 6 

since it is the most interesting test that we have carried out with the FP-Growth algorithm in 

terms of aspects assessed. The reason behind the selection of the tested attributes in this sixth 

step of the application of the FP-Growth algorithm is also shown in section 5.5.3.  

In Figure 6.27, we present the model that was built to implement the first and second step of 

the application of the FP_Growth algorithm upon all 293 instances; afterwards, in  Figure 6.28, 

we present the model that was built for the third to fifth step upon the 230 filtered instances; in 

Figure 6.29, we disclose the model that was built for the last sixth step to test all numerical 

attributes discretized in these 230 filtered instances and the final model depicted in Figure 6.30, 

depicts the same previous model but adapted to test the attributes related with semen 

classifications. 

If we analyze Figure 6.27 we see that on the left we have the model that began to filter the 

dataset using the selected attributes, mainly with the operators named “Select Significant” and  

“Select to model” with the RapidMiner operator called “Select Attributes”. Afterwards, the 

model prepares the data set for the FP_Growth algorithm by mapping the attribute values to 

“True” and “False” (e.g. “Normal” and “Sim” attribute values were set as positive values; and 

hence, the algorithm as interpreted them as “True”) and by transforming the selected attributes 

to binomial attribute (e.g. The sperm categorizations were transformed to binomial; and 

therefore, several new columns were generated to say if a patient was normozoospermic before 

the treatment or not, or azoospermic or not, etc. to end up with a binomial attribute); then, the 

FP_Growth algorithm is applied, generating the most frequent item set based on the support 

and confidence values set in the above right corner of the figure in the field called respectively 

min_support and min_confidence; and at last, it creates the association rules with the last 

operator called “Create Association Rules” – in this figure appearing with the name “Create 

Association…” – based on the frequent item sets previously generated. 
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Figure 6.27 FP-Growth model 1 (used in step 1 and 2) 

If we look at Figure 6.28, we see that the unique difference from the previous figure is that we 

have a filter operator called “Filter examples” to filter the instances by the non-missing values 

of the “Gravidez” attribute prior the “select to model” operator. Furthermore, we can see that 

in the above right corner of the figure, the min confidence value is set at the end of this step to 

0.4.   
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 Figure 6.28 FP-Growth model 2 (used in step 3 to 5) 

If we analyze the model depicted in Figure 6.29, we see that this model mainly adds a set of 

new operators to the previous model, that can be seen in the center of the model within a gray 

rectangle. These new operators, named by sperm parameters, discretizes each sperm parameter 

with the “Discretized by User Specification” operator but before that, uses the “Generate 

Attributes” operator, here named with the prefix “Copy Sperm Param…”, to create a copy of 

the discretized attributes to further on validate the computed discretization. 

The next model depicted in Figure 6.30, is exactly the same as the model depicted in Figure 

6.29, but only has the discretization of woman age.  

In spite of not being seen, the main difference between these last two models is also the 

configuration of the “Select Attributes” and “Filter Examples” operators that can be seen within 

the yellow rectangle at the top of Figure 6.29 and Figure 6.30. In fact, the “Select Attributes” 

operator, here called “Select Significant”, was used to select the attributes and the “Filter 

example” operator, was used to filter the data set by: non-missing values in the “Gravidez” 

attribute (test 6.1 and 6.2 of the 6th step); the “Gravidez” attribute set to “Sim” (test 6.1.1 and 

6.2.1 of the 6th step); the “Gravidez_espontanea” attribute set to “Sim” (test 6.2.2 of the 6th step) 

and the “PMA” attribute set to “Sim” (test 6.2.3 of the 6th step).   
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Figure 6.29 FP-Growth model 3 (used in step 6 - test 6.1) 

 

Figure 6.30 FP-Growth model 4 (used in step 6 - test 6.2) 
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Appendix C: Models´ results 

In this section, we present the results that were obtained through the application of the several 

Data mining techniques that this study has applied upon the final preprocessed dataset. Hence, 

section C.1, presents the results obtained during the application of the Classification Data 

mining technique; section C.2, presents the results obtained with the K-means algorithm during 

the application of the Clustering Data mining technique and section C.3, presents the ones 

obtained with the FP-Growth algorithm during the application of the Association Data mining 

technique.    

C.1 Classification  

In this section, we present in the below Table C.1 1 the best results achieved with the Decision 

tree´s modeling steps disclosed in Table 6.1.  

The step numbers specified under the column named “Step Nº” of Table C.1 1 Best Decision 

tree model´s results 

specify the modeling step along with the testing step number (e.g. the row identified with the 

step 2.4, showcases the best result obtained during the fourth testing step of the decision tree 

model during the second decision tree modeling step). The best F-Measures per modeling step 

were highlighted in orange, as well as the best validation test, which corresponds to the elected 

model described in the modelling section 5.5.1. 

We recall that the results disclosed in step 1 to 5, inclusively, were computed with the decision 

tree model depicted in Figure 6.4; in step 6 and 7, with the fine-tuned decision tree model 

depicted in Figure 6.5 and Figure 6.8, respectively; and in step 8, with the fine-tuned decision 

tree model depicted in Figure 6.9. 
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Table C.1 1 Best Decision tree model´s results 

Step 
Nº 

Tested Attributes 
Attribute´s 
Transformations 

Algorithm 
Model´s 
Testing 

Accuracy Precision Recall F-Measure AUC Output (Decision Tree and related Model´s Parameters) 

1.1 Idade_H, Idade_M, 
Cirurgias, Doença, 
Factor_Infertilidade_Masculino, 
Grau_Varicoc, 
HabitosAlcoolicos, 
HabitosTabagicos, Lateralidade, 
Profissao, 
Conc_3M, Conc_6M, Conc_1A, 
A_B_Pre, A_B_3M, A_B_6M, 
A_B_1A, 
Formas_N_Pre, Formas_N_3M, 
Gravidez 

No RapidMiner´s 
Decision tree 

Simple 

Validation 

67.27% 60.71% 70.83% 65.38% 0.680 

 

 

1.2 Cross 

Validation 

58.14% 
+/- 
3.00% 

57.38% 40.23% 
+/- 
28.48% 

47.62% 0.575 
+/- 
0.054  

 

1.3 W-J48 Simple 

Validation 

60.00% unkown 

 

 

 

 

 

 

0.00% unknown 0.500 
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1.4 Cross 

Validation 

54.35% 
+/- 
0.00% 

58.33% 7.95% 
+/- 
7-95% 

14.29% 0.498 
+/- 
0.002 

 

 

Validation of the right model found in step 1 with the 
best parameter´s settings found for the operator called 
“1-Decision tree” which are related to the highest f-
measure found in step 1.1 that is above highlighted in 
orange color. 

RapidMiner´s 

Decision tree 

- 54.35% unknown 0.00% unknown 0.500 

 

Validation of the model in step 1 with the lowest 
parameter´s settings (i.e.  minimal size for split=4; 
minimal gain=0.018; minimal leaf size=2; maximal 
depth=20 and without prunning) and the splitting 
criterion gain ratio. 

RapidMiner´s 

Decision tree 

- 52.17% 0.00% 0.00% unknown 0.500 

 

2.1 A_B_Pre 
Conc_6M 
Formas_N_3M 
Grau_Varicoc 
Gravidez 
ProfissãoComRiscoDeContacto… 

No RapidMiner´s 

Decision tree 

Simple 

Validation 

67.27% 68.18% 57.69% 62.50% 0.701 
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2.2 Cross 

Validation 

60.33% 
+/- 
2.72% 

65.84% 
+/- 
7.41% 

38.57% 
+/- 
15.19% 

45.88% 
+/- 
8.39% 

0.638 
+/- 
0.029 
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2.3 W-J48 Simple 

Validation 

61.82% 58.82% 41.67% 48.78% 0.603 

 

 

2.4 Cross 

Validation 

58.70% 
+/- 
2.17% 

57.88% 
+/- 
2.12% 
 

48.16% 
+/- 
20.89% 

49.60% 
+/- 
12.10% 

0.570 
+/- 
0.051 

 

 

Validation of the right model found in step 2 with the 
best parameter´s settings found for the operator called 
“1-Decision tree” which are related to the highest f-
measure found in step 2.1 that is above highlighted in 
orange color. 

RapidMiner´s 

Decision tree 

- 56.52% 52.38% 52.38% 52.38% 0.509 

 



APPENDIX C 

Judith Santos Pereira                                                                                                                                                                                                                                                           216 
    

Validation of the model in step 2 with the lowest 
parameter´s settings (i.e.  minimal size for split=4; 
minimal gain=0.018; minimal leaf size=2; maximal 
depth=20 and without prunning) and the splitting 
criterion gain ratio. 

RapidMiner´s 

Decision tree 

- 60.87% 60.00% 42.86% 50.00% 0.572 (generated a too long decision tree) 

3.1 A_B_Pre_Qualificado 
A_B_3M_Qualificado 
Conc_3M_Qualificado 
Grau_Varicoc 
Gravidez 
ProfissãoComRiscoDeContacto… 

No RapidMiner´s 

Decision tree 

Simple 

Validation 

74.55% 73.08% 73.08% 73.08% 0.747 

 

 

3.2 Cross 

Validation 

62.50% 
+/- 
1.63% 

60.28% 
+/- 
3.14% 

58.12% 
+/- 
0.97% 

59.16% 
+/- 
2.02% 

0.613 
+/- 
0.053 
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3.3 W-J48 Simple 

Validation 

63.64% 57.14% 36.36% 44.44% 0.606 

 

 

3.4 Cross 

Validation 

63.59% 
+/- 
3.80% 

61.63% 
+/- 
2.66% 

58.28% 
+/- 
6.01% 

59.85% 
+/- 
4.43% 

0.621 
+/- 
0.001 
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Validation of the right model found in step 3 with the 
best parameter´s settings found for the operator called 
“1-Decision tree” which are related to the highest f-
measure found in step 3.1 that is above highlighted in 
orange color. 

RapidMiner´s 

Decision tree 

- 47.83% 44.00% 52.38% 47.83% 0.554 

 

Validation of the model in step 3 with the lowest 
parameter´s settings (i.e.  minimal size for split=4; 
minimal gain=0.018; minimal leaf size=2; maximal 
depth=20 and without prunning) and the splitting 
criterion gain ratio. 

RapidMiner´s 

Decision tree 

- 60.87% 55.56% 71.43% 62.50% 0.595 (generated a too long decision tree) 

4.1 Grau_Varicoc 
Gravidez 
ProfissãoComRiscoDeContacto... 
Qualificar_Espermograma_3M 
Qualificar_Espermograma_Pre 

No RapidMiner´s 

Decision tree 

Simple 

Validation 

67.27% 57.89% 52.38% 55.00% 0.616 
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4.2 Cross 

Validation 

61.92% 
+/- 
4.91% 

59.72% 
+/- 
5.20% 

54.61% 
+/- 
8.97% 

56.88% 
+/- 
6.98% 

0.569 
+/- 
0.076 

 

 

4.3 W-J48 Simple 

Validation 

70.91% 70.00% 58.33% 63.64% 0.739 (generated an unpruned tree that was too 

long) 

 

4.4 Cross 

Validation 

66.30% 
+/- 
2.43% 

66.11% 
+/- 
2.20% 

58.12% 
+/- 
12.89% 

60.95% 
+/- 
6.88% 

0.684 
+/- 
0.053 

(generated an unpruned tree that was too 

long) 

 

Validation results of the right model found in step 4 with 
the best parameter´s settings found for the operator 
called “3-W-J48” which is related to the highest f-
measure found in step 4.3 that is above highlighted in 
orange color. 

RapidMiner´s 

Decision tree 

- 56.52% 53.33% 38.10% 44.44% 0.604 (generated a too long tree) 
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Validation of the model in step 4 with the lowest 
parameter´s settings (i.e.  minimal size for split=4; 
minimal gain=0.018; minimal leaf size=2; maximal 
depth=20 and without prunning) and the splitting 
criterion gain ratio. 

RapidMiner´s 

Decision tree 

- 58.70% 56.25% 42.86% 48.65% 0.613 (generated a too long tree) 

5 Retested the step 2 to 4 by adding the Idade_M attribute to check if we could surpass the f-measure of 73.08% found in step 3 but the max f-measure generated was 70.18%. The best 
obtained measures were during this step all related with the operator called “1-Decision Tree” and the obtained results were for: Attribute group 4 -> 66.67%; Attribute group 5 -> 
70.18% and Attribute group 6 -> 65.22% so the group of attributes that has generated the best result is still the group of attributes related with the  categorized sperm parameters values 
(e.g. A_B_Pre_Qualificado etc).Since this group of attributes also has generated interesting results with the clustering algorithm, we have further on tested the 5th group of attributes in 
the next 6th and 7th step by transforming its attribute values into numerical and normalized values. 

Validation results of the right model found in step 5 with 
the best parameter´s settings found for the operator 
called “1-Decision tree” which computed the following 
performance measures during its training/testing:  
accuracy=69.09%, precision=64.52%, recall=76.92%, f-
measure = 70.18%, AUC=0.711. 

RapidMiner´s 

Decision tree 

- 58.70% 53.57% 71.43% 61.22% 0.577 Model´s parameter values that have computed the 
best performance measures during the step 5: 

 

Tree generated by the model applied to the 
validation data set with the model´s parameter 
values disclosed above: 
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6.1 A_B_3M_Qualificado 
A_B_Pre_Qualificado 
Conc_3M_Qualificado 
Grau_Varicoc 
Gravidez 
Idade_M 
ProfissãoComRiscoDeContacto… 

The dataset 
was filtered by 
non-missing 
values and 
binominal 
attributes were 
parsed into 
numerical, the 
“Grau_Varicoc” 
attribute was 
manually 
dichotomized 
and the 
“Idade_M” 
attribute 
normalized to 
end up with 
numerical 
values 
between 0 to 1 
of 85 instances. 
(see Table 6.2) 

RapidMiner´s 

Decision tree 

Simple 

Validation 

80.00% 85.71% 66.67% 75.00% 0.717 

 

Note: Since the above decision tree has its woman 
´s age normalize, we can interpret 0.519=34 years 
old and 0.154=25 years old. Further more, since 
the yougest and oldest woman´s we have in this 
filtered data set goes from 20 to 46, the 
normalized value 0 is equal to 20 years old and the 
normalized value 1, is equal to 46 years old. 
 

 

6.2 Cross 

Validation 

64.71% 
+/- 
11.00% 

64.58% 
+/- 
27.24% 

47.50% 
+/- 
19.92% 

53.20% 
+/- 
20.26% 

0.589 
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6.3 W-J48 Simple 

Validation 

55.00% 50.00% 44.44% 47.06% 0.439 

 

 

6.4 Cross 

Validation 

60.29% 
+/- 
11.30% 

56.25% 
+/- 
13.34% 

52.23% 
+/- 
17.47% 

53.72% 
+/-
14.91% 

0.644 
+/- 
0.135 

 

 

Validation results of the right model found in step 6 with 
the best parameter´s settings found for the operator 
called “1-Decision tree” which is related to the highest f-
measure found in step 6.1 that is above highlighted in 
orange color. 

RapidMiner´s 

Decision tree 

- 70.59% 66.67% 75.00% 70.59% 0.750 
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Validation of the model in step 6 with the lowest 
parameter´s settings (i.e.  minimal size for split=4; 
minimal gain=0.018; minimal leaf size=2; maximal 
depth=20 and without prunning) and the splitting 
criterion gain ratio. 

RapidMiner´s 

Decision tree 

- 47.06% 46.67% 87.50% 60.87% 0.500 

 

7.1 A_B_3M_Qualificado 
A_B_Pre_Qualificado 
Conc_3M_Qualificado 
Grau_Varicoc 
Gravidez 
Idade_M 
ProfissãoComRiscoDeContacto… 

Binominal 
attributes were 
parsed into 
numerical 
attributes, the 
“Grau_Varicoc” 
attribute was 
manually 
dichotomized 
and the 
“Idade_M” 
attribute 
normalized to 
end up with a 
data set that 
only has 
numerical 
values 
between 0 to 1 
of 230 
instances. 
(see Table 6.2) 

RapidMiner´s 

Decision tree 

Simple 

Validation 

70.91% 66.67% 76.92% 71.43% 0.716 

 

 

7.2 Cross 

Validation 

60.33% 
+/- 
9.65% 

58.10% 
+/- 
4.24% 

54.81% 
+/- 
25.62% 

53.14% 
+/- 
17.49% 

0.629 
+/- 
0.099 
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7.3 W-J48 Simple 

Validation 

67.27% 65.38% 65.38% 65.38% 0.682 (too lon unprunned tree) 

 

7.4 Cross 

Validation 

64.13% 
+/- 
3.61% 

60.70% 
+/- 
2.27% 

64.94% 
+/- 
15.03% 

62.09% 
+/- 
7.02% 

0.666 
+/- 
0.048 
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Validation results of the right model found in step 7 with 
the best parameter´s settings found for the operator 
called “1-Decision tree” which is related to the highest f-
measure found in step 7.1 that is above highlighted in 
orange color. 

RapidMiner´s 

Decision tree 

- 45.65% 42.31% 52.38% 46.81% 0.465 

 

Validation of the model in step 7 with the lowest 
parameter´s settings (i.e.  minimal size for split=4; 
minimal gain=0.018; minimal leaf size=2; maximal 
depth=20 and without prunning) and the splitting 
criterion gain ratio. 

RapidMiner´s 

Decision tree 

- 54.35% unknown 0.00% unknown 0.581 

 

8.1 A_B_3M 
A_B_Pre 
Conc_3M 
Conc_6M 
Formas_N_3M 
Grau_Varicoc 
Gravidez 
HabitosAlcoolicos_Processado… 
HabitosTabagicos_Processado… 
Idade_M 
ProfissãoComRiscoDeContacto… 

Transformed 
the numérical 
attributes into 
nominal with a 
user defined 
discretization 
that refrects 
the WHO 
thresholds for 
the sperm 
parameters 
attributes, the 
woman´s age   
quartiles for 
the Idade_M 
attribute and 
the severity 

RapidMiner´s 

Decision tree 

Simple 

Validation 

67.27% 66.67% 75.86% 70.97% 0.710 

 

 

8.2 Cross 

Validation 

61.41% 
+/- 
1.63% 

60.01% 
+/- 
1.90% 

83.67% 
+/- 
4.08% 

69.78% 
+/- 
0.14% 

0.623 
+/- 
0.012 
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grade was 
automatically 
dichotomized; 
Hence, all the 
data set was 
transformed 
into nominal 
attribute 
values. 

 

8.3 W-J48 Simple 

Validation 

63.64% 66.67% 70.97% 68.75% 0.603 (too long unprunned tree) 

 

8.4 Cross 

Validation 

63.04% 
+/- 
5.95% 

65.74% 
+/- 
5.43% 

65.92% 
+/- 
7.51% 

65.43% 
+/- 
4.31% 

0.627 
+/- 
0.061 

(too long unprunned tree) 

 

Validation results of the right model found in step 8 with 
the best parameter´s settings found for the operator 
called “1-Decision tree” which is related to the highest f-
measure found in step 8.1 that is above highlighted in 
orange color. 

RapidMiner´s 

Decision tree 

- 50.00% 53.85% 56.00% 54.90% 0.502 

 

Validation of the model in step 8 with the lowest 
parameter´s settings (i.e.  minimal size for split=4; 
minimal gain=0.018; minimal leaf size=2; maximal 
depth=20 and without prunning) and the splitting 
criterion gain ratio. 

RapidMiner´s 

Decision tree 

- 45.65% 50.00% 52.00% 50.98% 0.373 (too long tree) 
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C.2 Clustering 

In the below Table C.2 1, we present the first results that were computed with the clustering K-

means data mining model depicted in Figure 6.14. These tests were executed in the RapidMiner 

platform where we have tested several K-mean ́ s input and parameter values that were in Table 

4.11 disclosed.   

This table discloses the settings of each performed test identified with the id specified under the 

column named “Test ID” and presents, in the last 3 columns, its corresponding results as 

follows: under the column named “Davies Bouldin”, we present the Davies Bouldin index 

computed by the RapidMiner platform; under the column named “n”, we showcase the 

distribution of the patients by the generated clusters for the best models (we present the 

clustering distribution by indicating that, for example, cluster 1, indicated by C1, has x patients 

etc.) and under the column named “Centroid Table”, we disclose the generated normalized 

centroid tables for the best models and when possible, its related scatter plot.  

In regards of the Davies Bouldin index, the RapidMiner platform multiplies the Davies Bouldin 

index by -1 for maximization purposes and concerning its interpretation, the RapidMiner 

suggests that we have to consider the absolute value of the generated index and look for the 

index value that is closer to 0 for the selection of the best clustering models.  

In this context, the best computed models suggested by the RapidMiner platform are in Table 

C.2 1 highlighted in orange and the most interesting ones, in red. 
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Table C.2 1 K-mean´s results of the model depicted in Figure 6.14 

Test ID Attribute selection Number of clusters Numerical measure Davies Bouldin index n Centroid Table  

1 A_B_Pre, Conc_6M, Formas_N_3M, Grau_Varicoc, 
ProfissãoComRiscoDeContactoDeProdutosOuAmbie
ntes, Gravidez. 

2 ManhattanDistance -1.438 C0: 7 items 
C1: 3 items 
C2: 11 items 
C3: 7 items 
Total: 28 

 
2 3 ManhattanDistance -1.054 

3 4 ManhattanDistance -1.097 

4 2 EuclideanDistance -1.438 

5 3 EuclideanDistance -1.054 

6 4 EuclideanDistance -0.901 

7 A_B_Pre_Qualificado, A_B_3M_Qualificado, 
Conc_3M_Qualificado, Grau_Varicoc, 
ProfissãoComRiscoDeContactoDeProdutosOuAmbie
ntes, Gravidez. 

2 ManhattanDistance -1.786 C0: 22 items 
C1: 38 items 
C2: 14 items 
C3: 11 items 
Total: 85 

 

8 3 ManhattanDistance -1.473 

9 4 ManhattanDistance -1.420 

10 2 EuclideanDistance -1.786 

11 3 EuclideanDistance -1.473 

12 4 EuclideanDistance -1.339 

13 Grau_Varicoc, Qualificar_Espermograma_Pre, 
Qualificar_Espermograma_3M, 
ProfissãoComRiscoDeContactoDeProdutosOuAmbie
ntesToxicos, Gravidez.  
 

2 ManhattanDistance -1.399 C0: 20 items 
C1: 28 items 
C2: 16 items 
C3: 12 items 
Total: 76 

 
14 3 ManhattanDistance -1.099 

15 4 ManhattanDistance -1.097 

16 2 EuclideanDistance -1.399 

17 3 EuclideanDistance -1.099 

18 4 EuclideanDistance -1.097 

19 Idade_M, A_B_Pre, Conc_6M, Formas_N_3M, 
Grau_Varicoc, 
ProfissãoComRiscoDeContactoDeProdutosOuAmbie
ntes, Gravidez. 

2 ManhattanDistance -1.466 C0: 7 items 
C1: 7 items 
C2: 3 items 
C3: 11 items 
Total: 28 

 

20 3 ManhattanDistance -1.089 

21 4 ManhattanDistance -0.964 

22 2 EuclideanDistance -1.466 

23 3 EuclideanDistance -1.089 

24 4 EuclideanDistance -0.964 

25 Idade_M, A_B_Pre_Qualificado, 
A_B_3M_Qualificado, Conc_3M_Qualificado, 
Grau_Varicoc, 
ProfissãoComRiscoDeContactoDeProdutosOuAmbie
ntes, Gravidez.  

2 ManhattanDistance -1.802 C0: 22 items 
C1: 38 items 
C2: 14 items 
C3: 11 items 
Total: 85 

 

26 3 ManhattanDistance -1.488 

27 4 ManhattanDistance -1.435 

28 2 EuclideanDistance -1.802 

29 3 EuclideanDistance -1.488 

30 4 EuclideanDistance -1.357 

31 Idade_M, Grau_Varicoc, 
Qualificar_Espermograma_Pre, 

2 ManhattanDistance -1.421 C0: 12 items 
C1: 28 items 32 3 ManhattanDistance -1.120 
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Qualificar_Espermograma_3M, 
ProfissãoComRiscoDeContactoDeProdutosOuAmbie
ntesToxicos, Gravidez.  
 

 

 

 

 

 

 

 

 

 

 

 

 

C2: 36 items 
Total: 76 

 

33 4 ManhattanDistance -1.134 

34 2 EuclideanDistance -1.421 

35 3 EuclideanDistance -1.120 

36 4 EuclideanDistance -1.134 

37 Gravidez vs Conc_6M 2 ManhattanDistance -0.222 C0: 50 items 
C1: 65 items 
Total: 115 

 

38 3 ManhattanDistance -0.389 

39 4 ManhattanDistance -0.526 

40 2 EuclideanDistance -0.222 

41 3 EuclideanDistance -0.412 

42 4 EuclideanDistance -0.526 

37 Gravidez vs A_B_Pre 2. ManhattanDistance -0.409 C0: 102 items 
C1: 107 items 
Total: 209 

 
38 3 ManhattanDistance -0.432 

39 4 ManhattanDistance -0.533 

40 2 EuclideanDistance -0.409 
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41 3 EuclideanDistance -0.432 

 

42 4 EuclideanDistance -0.533 

43 Gravidez vs Formas_N_3M 2 ManhattanDistance -0.307 C0: 78 items 
C1: 74 items 
Total: 152 

 

 

44 3 ManhattanDistance -0.404 

45 4 ManhattanDistance -0.489 

46 2 EuclideanDistance -0.307 

47 3 EuclideanDistance -0.404 

48 4 EuclideanDistance -0.511 

49 Gravidez vs Conc_3M_Qualificado 2 ManhattanDistance -0.938 C0: 94 items 
C1: 40 items 
C2: 0 items 
C3: 67 items 
Total: 201 

 

 

50 3 ManhattanDistance -0.441 

51 4 ManhattanDistance Infinity 

52 2 EuclideanDistance -0.938 

53 3 EuclideanDistance -0.441 

54 4 EuclideanDistance -0.0 

55 Gravidez vs A_B_Pre_Qualificado 2 ManhattanDistance -0.916 C0: 59 items 
C1: 0 items 
C2: 77 items 
C3: 73 items 
Total: 209 

 

 

56 3 ManhattanDistance -0.444 

57 4 ManhattanDistance Infinity 

58 2 EuclideanDistance -0.916 

59 3 EuclideanDistance -0.444 

60 4 EuclideanDistance Infinity 

61 Gravidez vs A_B_3M_Qualificado 2 ManhattanDistance -0.973 C0: 54 items 
C1: 92 items 
C2: 38 items 
C3: 0 items 
Total: 184 

 

 

62 3 ManhattanDistance -0.443 

63 4 ManhattanDistance Infinity 

64 2 EuclideanDistance -0.973 

65 3 EuclideanDistance -0.443 

66 4 EuclideanDistance Infinity 

67 Gravidez vs Qualificar_Espermograma_Pre 2 ManhattanDistance -0.564 C0: 93 items 
C1: 41 items 
C2: 57 items 
Total: 191 

 

 

68 3 ManhattanDistance -0.389 

69 4 ManhattanDistance -0.472 

70 2 EuclideanDistance -0.564 

71 3 EuclideanDistance -0.389 

72 4 EuclideanDistance -0.472 

73 Gravidez vs Qualificar_Espermograma_3M 2 ManhattanDistance -0.607 C0: 43 items 
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74 3 ManhattanDistance -0.431 C1: 46 items 
C2: 55 items 
C3: 25 items 
Total: 169 

 

 

75 4 ManhattanDistance -0.422 

76 2 EuclideanDistance -0.607 

77 3 EuclideanDistance -0.431 

78 4 EuclideanDistance -0.390 

79 Gravidez vs Grau_Varicoc 2 ManhattanDistance -0.634 C0: 85 items 
C1: 31 items 
C2: 38 items 
C3: 20 items 
Total: 174 
Without 
binomial 
operator 

 

 

80 3 ManhattanDistance -0.443 

81 4 ManhattanDistance -0.278 

82 2 EuclideanDistance -0.634 

83 3 EuclideanDistance -0.443 

84 
4 EuclideanDistance -0.358 

85 Gravidez vs 
ProfissãoComRiscoDeContactoDeProdutosOuAmbie
ntesToxicos. 

2 ManhattanDistance -0.885 C0: 56 items 
C1: 65 items 
C2: 47 items 
C3: 0 items 
Total: 168 

 

 

86 3 ManhattanDistance -0.410 

87 4 ManhattanDistance Infinity 

88 2 EuclideanDistance -0.885 

89 3 EuclideanDistance -0.432 

90 4 EuclideanDistance Infinity 

91 Gravidez vs Idade_M 2 ManhattanDistance -0.244 C0: 107 items 
C1: 122 items 
Total: 229 

 

92 3 ManhattanDistance -0.484 

93 4 ManhattanDistance -0.579 

94 2 EuclideanDistance -0.244 

95 3 EuclideanDistance -0.484 

96 
4 EuclideanDistance -0.581 

97 Grau_Varicoc vs Qualificar_Espermograma_Pre vs 
ProfissãoComRiscoDeContactoDeProdutosOuAmbie
ntesToxicos. 

2 ManhattanDistance -1.752 C0: 36 items 
C1: 70 items 
Total: 106 
Without 
binomial 
operator for 
severity grade 

 

 

 

 

98 3 ManhattanDistance -0.958 

99 4 ManhattanDistance -1.054 

100 2 EuclideanDistance -0.919 

101 3 EuclideanDistance -1.049 

102 
4 EuclideanDistance -1.038 
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103 Idade_M vs Qualificar_Espermograma_Pre 2 ManhattanDistance -0.721 C0: 92 items 
C1: 142 items 
Total: 234 

 

 

104 3 ManhattanDistance -0.876 

105 4 ManhattanDistance -1.004 

106 2 EuclideanDistance -0.721 

107 3 EuclideanDistance -0.876 

108 4 EuclideanDistance -0.972 

109 Idade_H vs Qualificar_Espermograma_Pre 2 ManhattanDistance -0.711 C0: 94 items 
C1: 144 items 
Total: 238 

 

 

110 3 ManhattanDistance -0.915 

111 4 ManhattanDistance -1.017 

112 2 EuclideanDistance -0.711 

113 3 EuclideanDistance -0.915 

114 4 EuclideanDistance -0.941 
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C.3 Association  

In this section, we present the obtained results with the FP_Growth algorithm. These results 

came by implementing the six modeling steps described in Table 6.6 for the groups of attributes 

specified in section 5.4.4. Hence, we have tested the built models presented in section 0 by 

altering the selected attributes set in the operator named “Select to model” and by adjusting the 

support and confidence measure as planed in the defined modeling steps. In order to better 

convey the obtained results, we below present, through several sections, the results obtained in 

each carried out modeling step. The most interesting rules are in each result´s table identified 

with a check mark and an exclamation mark - the check mark identifies the rules that are 

objectively interesting and the exclamation mark, the ones that are subjectively interesting.  

C.3.1 Results of Step 1 

Firstly, we have tested the model presented in Figure 6.27 FP-Growth model, with the attributes 

specified in Figure C.3 1 (first modeling step of the association rule application). The first 

obtained results with a support=0.1 and confidence=0.8 are presented in Figure C.3 2. 

 

Figure C.3 1 Selected attributes for the steps 1,2 and 3 of the FP_Growth algorithm 

 

Figure C.3 2 test 1.1: group 1 - unfiltered - support=0.1 and confidence=0.8 

If we interpret the result of the first association rule presented in the above Figure C.3 2 that 

can be translated into Formas_N_3M -> A_B_Pre, we can say that the existence of values 

greater than zero in the attribute Formas_N_3M  implies the existence of values greater than 

zero in the attribute A_B_Pre 47% of the times (i.e. the support of X union Y written (X U Y), 

where X=Formas_N_3M and Y=A_B_Pre, is equal to an absolute support of 137 and a relative 

support of 47% since the identified 137 instances divided by our total of 293 instances is equal 

to 0.468 which means that 47% of the patients of our preprocessed data set have values higher 
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than zero on their sperm morphology at 3 months, as well as on their sperm motility before the 

treatment). The computed confidence value for this association rule enables us to say that the 

probability of observing a patient with a sperm motility before the treatment (i.e. having a 

A_B_Pre > 0) given a sperm morphology 3 months later (i.e. having a Formas_N_3M > 0) is 

of 86% (i.e. confidence(Formas_N_3M->A_B_Pre) = confidence(X->Y) = P(Y|X) = 

support(XUY) / support(X) = 137/160 = 0.856 ). Moreover, we see that the “direction” of the 

rule is different than the other way around since the conviction measure is different than the 

value 1.0, which reinforces the interestingness of the rule. If we assess each sperm parameter 

independently, we see that 75% (i.e. 220/293=0.750) of the assessed patients had an A_B_Pre 

above 0 and that 55% (i.e. 160/293=0.546) of the patients had a Formas_N_3M  above 0, which 

means that the prior probability of having a patient with a sperm motility before the treatment 

is more likely than having a sperm morphology 3 months later (i.e. A_B_Pre = 75% vs 

Formas_N_3M = 55%). However, since the conditional probability of A_B_Pre given 

Formas_N_3M  is higher than the support of A_B_Pre, we have a lift value greater than  1.0 

which tells us that the Formas_N_3M attribute is related with the A_B_Pre (i.e. 

Lift(Formas_N_3M->A_B_Pre) = Lift(X->Y) = confidence (X->Y)/support(Y) = 0.856/0.75 = 

1.14).  

Even if all these measures indicate that we have here an interesting rule, in terms of clinical 

interest, this rule only identifies a pattern on the preprocessed data. In fact, if the rule was in the 

opposite direction (i.e. A_B_Pre ->Formas_N_3M) it would be much more interesting because 

it would provide a predictive information where we could conclude that before the embolization 

treatment, a patient with a sperm motility above zero implies having 3 months later a sperm 

morphology also greater than 0. To try to find this rule, we have lowered the support and the 

confidence value to 0.00 and ran again the process to identify the metrics related to this rule. 

Figure C.3 3 presents the obtained results where we can see that the rule A_B_Pre -

>Formas_N_3M appears in the first row. If we analyze its results, we see that it has a lower 

confidence and conviction metric than the former assessed Formas_N_3M->A_B_Pre rule. 

However, these values are still acceptable since its metrics are: support=0.468, 

confidence=0.623, lift=1.140 and conviction=1.203.  

 

Figure C.3 3 test 1.2: group 1 - unfiltered - support=0.0 and confidence=0.0 
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If we interpret the remaining results presented in Figure C.3 2, we can briefly say that:   

• All generated association rules with a support equal or above 0.1 and a confidence equal 

or above 0.8 for the group of attributes: A_B_Pre, Conc_6M, Formas_N_3M, 

Grau_Varicoc, Gravidez, ProfissãoComRiscoDeContactoDeProdutosOuAmbientes; 

have the same consequent attribute (i.e. the A_B_Pre attribute appears as a conclusion 

on all generated rules). Therefore, we can say that the most interesting association rules 

are for this group of attributes the ones with the A_B_Pre attribute as a consequent.  

• The second association rule with the highest support is the Conc_6M -> A_B_Pre, 

support=0.324, confidence=0.819, lift=1.091 and conviction=1.376. However, this 

association rule is not interesting: even if the support and the confidence is acceptable, 

its lift value is too close to 1.0; and hence, it is not an interesting rule because the 

conditional probability of the event A_B_Pre given Conc_6M is quite equal to the 

probability of the event A_B_Pre. Furthermore, subjectively, this rule is not interesting. 

• The association rule with the highest confidence, lift and conviction is the rule: 

Formas_N_3M, Conc_6M -> A_B_Pre, support=0.174, confidence=0.911, lift=1.213 

and conviction=2.790. Its measures tells us that 17% of the patients have the sperm 

morphology at 3 months and the concentration at 6 months above 0 and that the 

conditional probability of having an A_B_Pre before treatment above 0 given 

Formas_N_3M and Conc_6M also above 0 occurs in 91% of the times. Furthermore, 

this conditional probability does not occur randomly since its lift is above 1.0 and the 

direction of the rule is objectively interesting due to its high conviction measure. 

Unfortunately, subjectively, it is not an interesting rule due to its direction.  

• The only objectively and subjectively interesting rule in the first run is: 

Grau_Varicoc=I->A_B_Pre, support=0.198, confidence=0.866, lift=1.153 and 

conviction=1.855.  This rule tells us that 58 patients of the data set (293 instances * 

0.198) have a severity grade equal to I and sperm motility above 0. The conditional 

probability of having a sperm motility above 0 given a severity grade equal to I is of 

87% (i.e. confidence=0.866). Furthermore, we can say that these two attributes are not 

independent and that the direction of the rule, has a logical implication due to its 

considerable high conviction value.    

If we analyze the results of  Figure C.3 3 - which presents the generated results with the support 

and confidence measure set 0.0 - we see that we have found other objectively and subjectively 

interesting rules (e.g. the rules identified with the No. 2133, 2168 and 2177 have the attribute 

“Gravidez” set as the consequent in all these rules which indicates that they are predictive rules. 

The smaller number of patients they encompass is 67 patients, i.e, 293 instances * 0.229). 

C.3.2 Results of Step 2 

In this test, we have tested the model presented in Figure 6.27 FP-Growth model with the same 

attributes specified in Figure C.3 1, and the support and confidence values set to 0.0 to look up 

for subjectively interesting association rules (second step of the association rule application). 

Since most subjectively interesting rules were previously seen with the “Gravidez” attribute set 

as the consequent attribute, we have in this test continued to explore those type of rules. Hence, 
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the below Figure C.3 4 presents the generated rules ordered by its support in descendant order 

and filtered by the “Gravidez” attribute as a consequent.  

Figure C.3 4 test 2.1: group 1 - unfiltered - support=0.0 and confidence=0.0 

 

By analyzing the results presented in Figure C.3 4, we can say that the most objectively and 

subjectively interesting association rule in this test is the first one: 

A_B_Pre -> Gravidez, support=0.317, confidence=0.423, lift=1.158 and conviction=1.100. 

This rule tells us that 92 patients from the data set have a sperm motility above 0 before the 

treatment as well as a pregnancy after the treatment. The conditional probability of getting 

pregnant having before the treatment a sperm motility above 0 is of 42% (i.e. 

confidence=0.423).  

If we order the generated rules by the conviction measure and continue on seeking rules with 

the “Gravidez” attribute as a consequent, we obtain the results presented in the below Figure 

C.3 5. 

 

Figure C.3 5 test 2.2: group 1 - unfiltered - support=0.0 and confidence=0.0 
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If we analyze the generated results presented in the above Figure C.3 5, we see that this run did 

not gave any objectively and subjectively interesting rules since their support are all low (i.e. 

lower than 0.116 which is quite lower than 33 patients). 

C.3.3 Results of Step 3 

In this test, we have tested the model presented in Figure 6.28 FP-Growth model with the same 

attributes specified in Figure C.3 1. We have at first, maintained the support and confidence 

values to 0.0 to look up for objectively and subjectively interesting association rules upon the 

rows with no missing values in the “Gravidez” attribute (third step of the association rule 

application). The generated results are in Figure C.3 6 and Figure C.3 7 presented. 

 

Figure C.3 6 test 3.1: group 1 - filtered - support=0.0 and confidence=0.0 

 

Figure C.3 7 test 3.2: group 1 - filtered - support=0.0 and confidence=0.0 
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If we analyze these results, we can conclude that the rules that are more subjectively and 

objectively interesting are: 

• A_B_Pre -> Formas_N_3M, support=0.517, confidence=0.654, lift=1.106 and 

Conviction=1.181. 

• Formas_N_3M -> Gravidez, support=0.322, confidence=0.544, lift=1.170 and 

Conviction=1.173. 

• A_B_Pre -> Formas_N_3M, Gravidez, support= 0.291, confidence=0.368, 

lift=+infinity and Conviction=1.583. 

• A_B_Pre, Formas_N_3M -> Gravidez, support= 0.291, confidence=0.563, lift=1.210 

and Conviction=1.224. 

Based on the obtained results, we have seen that the most subjectively and objectively 

interesting  rules would appear if we would set our support and confidence measure as in 

(Yildirim, 2015) since only one of the subjectively interesting rules presented in Figure C.3 

6Erro! A origem da referência não foi encontrada. would not be generated with that setting 

(lowering the confidence to 0.29 would not be objectively interesting). Hence, we have reran 

the model depicted in Figure 6.28 for the attributes specified in Figure C.3 1 Selected attributes 

for the steps 1,2 and 3 of the FP_Growth algorithm 

 and for the following settings: support=0.1 and confidence=0.4 (forth step of the association 

rule application).  

In order to better identify the most subjectively interesting rules, we have filtered the rules by 

its consequent attributes and have identified at each run the most interesting rules based on the 

conditions disclosed in the fourth step of the application of the FP_Growth algorithm.  

In the below Figure C.3 8, we present the generated results by the FP_Growth algorithm for the 

consequent attribute “Formas_N_3M”. As we can see, the better rules are the ones identified 

with the No. 48, 44, 31, 49, 52, 41 and 53 since they all have support values above 0.15 and an 

antecedent that has occurred before, or at the same time of, the consequent. 
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Figure C.3 8 test 3.3: group 1 - “Formas_N_3M” as consequent - support=0.1 and 

confidence=0.4 

In the below Figure C.3 9, we present the generated results by the FP_Growth algorithm for the 

consequent attribute “Gravidez”. We see that the better rules are the rules identified with the 

No. 35, 38,36,18 and 42. 

 

 

Figure C.3 9 test 3.4: group 1 - “Gravidez “ as consequent - support=0.1 and confidence=0.4 

In the below Figure C.3 10, we present the generated results by the FP_Growth algorithm for 

the consequent attribute “Conc_6M”. As we can see, in this test we were not able to identify 

objectively interesting rules since all generate rules had a lift and a conviction measure value 

below 1.1; and therefore, we have concluded that in this run, we did not have a rule that stood 

out from the rest. 
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Figure C.3 10 test 3.5: group 1 - “Conc_6M” as consequent - support=0.1 and confidence=0.4 

 In the below Figure C.3 11, we present the generated results by the FP_Growth algorithm for 

the consequent attribute “Grau_Varicoc=II”. As we can see, this run did not give subjectively 

interesting rules since all antecedents occurred after the consequent attribute 

“Grau_Varicoc=II”. In fact, the severity grade of the varicocele condition (i.e. “Grau_Varicoc”) 

is known before the embolization treatment.  

 

Figure C.3 11 test 3.6: group 1 - “Grau_Varicoc=II” as consequent - support=0.1 and 

confidence=0.4 

C.3.4 Results of Step 4 

In this step, we have tested the model presented in Figure 6.28 with the attributes specified in 

the below Figure C.3 12 to look up for objectively and subjectively interesting association rules 

upon the rows with no missing values under the “Gravidez” attribute with the following 

thresholds: support >0.1 and a confidence > 0.4 (forth step of the association rule application).   

In this test, we have obtained the results presented in Figure C.3 13, Figure C.3 14, Figure C.3 

15 and Figure C.3 16. Each of these tables depicts the association rules that were respectively 

computed for the following consequent attributes:  “Gravidez”, “Conc_3M_Qualificado”, 

“A_B_3M_Qualificado” and “Grau_Varicoc=II”.  As we can see, the consequent 

“ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos” does not here appear 

because association rules with this consequent attribute were not computed in this test with the 

specified settings.  
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Figure C.3 12 Selected attributes for the step 4 of the FP_Growth algorithm 

For the consequent attribute “Gravidez”, the most interesting rules were the ones with the No. 

27, 26, 23, 25 e 33 (see Figure C.3 13) since they at least encompass 36 patients of the data set. 

The rule that presented the highest support encompassed 54 patients (i.e. a support value of 

0.235) which is not a very high support value.  

 

Figure C.3 13 test 4.1: group 2 - “Gravidez” as consequent - support=0.1 and confidence=0.4 

For the consequent attribute “Conc_3M_Qualificado”, we have seen that the rules with the No. 

30, 19 and 4 were in this run the most interesting ones. These rules are in the below Figure C.3 

14 depicted with the check mark and the exclamation mark as in the other runs. 

 

 

Figure C.3 14 test 4.2: group 2 - “Conc_3M_Qualificado” as consequent - support=0.1 and 

confidence=0.4 
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For the consequent attribute “A_B_3M_Qualificado”, the algorithm has generated the rules 

presented in Figure C.3 15 where we can see that the rules with the No. 28 and 17 were the 

most interesting ones.  

 

Figure C.3 15 test 4.3: group 2 - “A_B_3M_Qualificado” as consequent - support=0.1 and 

confidence=0.4 

 

For the consequent attribute “Grau_Varicoc=II”, the algorithm has generated the rules 

presented in Figure C.3 16. As we can see, in this run, in spite of all rules being objectively 

interesting, none of them is subjectively interesting.   

 

Figure C.3 16 test 4.4: group 2 - “Grau_Varicoc=II” as consequent - support=0.1 and 

confidence=0.4 

Since the attribute “A_B_Pre_Qualificado” does not enable subjectively interesting rules as a 

consequent attribute, we have not presented its related results. 

C.3.5 Results of Step 5 

In this test, we have tested the model presented in Figure 6.28 with the attributes specified in 

Figure C.3 17 to look up for objectively and subjectively interesting association rules upon the 

rows with no missing values in the “Gravidez” attribute with the following thresholds: support 

>0.1 and a confidence > 0.4 (fifth step of the association rule application).   

In this test, the obtained results for all tested attributes as consequents are in Figure C.3 18 

presented. 
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Figure C.3 17 Selected attributes for the step 5 of the FP_Growth algorithm 

 

Figure C.3 18 test 5.1: group 3 - support=0.1 and confidence=0.4 

This test has generated less rules than the other ones. However, it has computed two objectively 

and subjectively interesting rules since we have considered one of them as a subjectively 

interesting rule in spite of its very low support (i.e. 

Qualificar_Espermograma_3M=Normozoospérmico -> Gravidez, support=0.104, 

confidence=0.706, lift=1.517, conviction=1.818) due to its other good measure values and 

clinical interest.  

C.3.6 Results of Step 6 

In Table C.3 1, we present all generated association rules by the model depicted in Figure 6.29 

that applies the FP-Growth algorithm with the following discretized or dichotomized attributes 

upon the data set filtered by non-missing values in the “Gravidez” attribute (n=230): 

Idade_M, Grau_Varicoc, Conc_3M , Conc_6M, A_B_pré, A_B_3M, Formas_N_3M, 

ProfissãoComRiscoDeContactoDeProdutosOuAmbientes, 

HabitosTabagicos_Processado_Simplificado, 

HabitosAlcoolicos_Processado_Simplificado, 

Gravidez, PMA, Gravidez_espontanea. 

Table C.3 2 discloses all generated results by the same model depicted in Figure 6.29, but this 

time, the data set was filtered by “Gravidez” = “Sim” and the “Gravidez” attribute was then 

excluded from the test with the “Feature Selection” operator (n=107). This model was also 

applied upon the semen categorizations (i.e. the 6th group of attributes) but the identified 

interesting rules were already encompassed in Table B.3:17. Therefore, these identified 

interesting rules did not encompass semen categorizations.  

The association rules are ordered in descending order by the support value and the rules with a 

p<=0.10 have its Chi-square values highlighted in bold. 
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Table C.3 1 test 6.1:  group 4 & 5 - support=0.1 and confidence=0.4 - “Gravidez” = “Sim” OR “Não” (n=230) 

No. Antecedent Consequent Support Confidence Lift Conviction x2 

157 Gravidez PMA 0,287 0,617 2,15 1,861 106,4718 

193 PMA Gravidez 0,287 1 2,15 ∞ 106,4677 

97 Gravidez Conc_3M = > 15 0,235 0,505 1,235 1,194 7,647794 

142 Conc_3M = > 15 Gravidez 0,235 0,574 1,235 1,257 7,646138 

143 Conc_3M = > 15 A_B_3M = > 32 0,235 0,574 1,501 1,451 24,78013 

155 A_B_3M = > 32 Conc_3M = > 15 0,235 0,614 1,501 1,53 24,7786 

132 Conc_3M = > 15 Formas_N_3M = > 4 0,23 0,564 1,729 1,545 40,74905 

176 Formas_N_3M = > 4 Conc_3M = > 15 0,23 0,707 1,729 2,016 40,77189 

69 Gravidez A_B_Pre = 1 to 31 0,217 0,467 1,024 1,02 0,096412 

70 Gravidez A_B_3M = > 32 0,217 0,467 1,221 1,159 6,039175 

73 A_B_Pre = 1 to 31 Gravidez 0,217 0,476 1,024 1,021 0,096413 

133 A_B_3M = > 32 Gravidez 0,217 0,568 1,221 1,238 6,040879 

61 Gravidez Gravidez_espontanea 0,213 0,458 2,15 1,452 71,58172 

194 Gravidez_espontanea Gravidez 0,213 1 2,15 ∞ 71,5864 

50 Gravidez Grau_Varicoc = II 0,209 0,449 1,2 1,135 4,789931 

60 A_B_Pre = 1 to 31 A_B_3M = 1 to 31 0,209 0,457 1,348 1,217 12,0398 

122 Grau_Varicoc = II Gravidez 0,209 0,558 1,2 1,21 4,788592 

156 A_B_3M = 1 to 31 A_B_Pre = 1 to 31 0,209 0,615 1,348 1,413 12,03033 

49 A_B_Pre = 1 to 31 Conc_3M = > 15 0,204 0,448 1,095 1,07 1,201681 

88 Conc_3M = > 15 A_B_Pre = 1 to 31 0,204 0,5 1,095 1,087 1,202172 

111 A_B_3M = > 32 Formas_N_3M = > 4 0,204 0,534 1,638 1,446 27,99353 

162 Formas_N_3M = > 4 A_B_3M = > 32 0,204 0,627 1,638 1,654 28,00112 

36 A_B_Pre = 1 to 31 Conc_3M = 0,01 to 14,9 0,196 0,429 1,095 1,065 1,124756 

89 Conc_3M = 0,01 to 14,9 A_B_Pre = 1 to 31 0,196 0,5 1,095 1,087 1,124632 

3 Gravidez A_B_Pre = > 32 0,187 0,402 1,2 1,112 4,031012 

124 A_B_Pre = > 32 Gravidez 0,187 0,558 1,2 1,211 4,030461 

125 Formas_N_3M = > 4 Gravidez 0,183 0,56 1,204 1,215 4,040174 

41 Conc_3M = > 15 A_B_Pre = > 32 0,178 0,436 1,303 1,18 7,326234 

59 Conc_3M = 0,01 to 14,9 A_B_3M = 1 to 31 0,178 0,456 1,343 1,214 8,907022 
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No. Antecedent Consequent Support Confidence Lift Conviction x2 

108 A_B_3M = 1 to 31 Conc_3M = 0,01 to 14,9 0,178 0,526 1,343 1,283 8,910878 

110 A_B_Pre = > 32 Conc_3M = > 15 0,178 0,532 1,303 1,265 7,32634 

19 Conc_3M = > 15 Formas_N_3M = 1 to 3 0,17 0,415 1,564 1,256 18,33568 

87 HabitosTabagicos_Processado_Simplificado Gravidez 0,17 0,494 1,061 1,056 0,391233 

116 Idade_M = Range 1    <31 Gravidez 0,17 0,549 1,181 1,187 2,935959 

165 Formas_N_3M = 1 to 3 Conc_3M = > 15 0,17 0,639 1,564 1,64 18,31982 

5 Conc_3M = > 15 Grau_Varicoc = II 0,165 0,404 1,081 1,051 0,621694 

27 Conc_3M = 0,01 to 14,9 Gravidez 0,165 0,422 0,908 0,926 1,085252 

38 A_B_3M = > 32 A_B_Pre = > 32 0,165 0,432 1,29 1,171 6,018565 

43 Grau_Varicoc = II Conc_3M = > 15 0,165 0,442 1,081 1,059 0,621761 

86 A_B_Pre = > 32 A_B_3M = > 32 0,165 0,494 1,29 1,219 6,020406 

26 A_B_3M = > 32 A_B_Pre = 1 to 31 0,161 0,42 0,921 0,938 0,748031 

37 Grau_Varicoc = II A_B_Pre = 1 to 31 0,161 0,43 0,942 0,954 0,388916 

72 A_B_3M = 1 to 31 Conc_3M = > 15 0,161 0,474 1,161 1,125 2,11584 

1 Conc_3M = 0,01 to 14,9 Conc_6M = 0,01 to 14,9 0,157 0,4 1,533 1,232 14,9041 

10 A_B_3M = > 32 Gravidez, Conc_3M = > 15 0,157 0,409 1,742 1,295 24,20627 

147 Conc_6M = 0,01 to 14,9 Conc_3M = 0,01 to 14,9 0,157 0,6 1,533 1,522 14,89182 

168 Gravidez, Conc_3M = > 15 A_B_3M = > 32 0,157 0,667 1,742 1,852 24,18703 

169 Conc_3M = > 15, A_B_3M = > 32 Gravidez 0,157 0,667 1,433 1,604 11,55926 

182 Gravidez, A_B_3M = > 32 Conc_3M = > 15 0,157 0,72 1,762 2,112 25,7332 

44 HabitosTabagicos_Processado_Simplificado Conc_3M = 0,01 to 14,9 0,152 0,443 1,132 1,093 1,345894 

45 HabitosTabagicos_Processado_Simplificado A_B_3M = > 32 0,152 0,443 1,158 1,108 1,858191 

51 A_B_3M = 1 to 31 Gravidez 0,152 0,449 0,965 0,97 0,125472 

67 Formas_N_3M = > 4 A_B_Pre = 1 to 31 0,152 0,467 1,022 1,019 0,045199 

55 Formas_N_3M = > 4 Conc_3M = > 15, A_B_3M = > 32 0,148 0,453 1,931 1,4 29,64919 

121 Formas_N_3M = 1 to 3 A_B_Pre = 1 to 31 0,148 0,557 1,221 1,228 3,409871 

164 Conc_3M = > 15, A_B_3M = > 32 Formas_N_3M = > 4 0,148 0,63 1,931 1,82 29,64184 

166 Conc_3M = > 15, Formas_N_3M = > 4 A_B_3M = > 32 0,148 0,642 1,677 1,722 19,59001 

183 A_B_3M = > 32, Formas_N_3M = > 4 Conc_3M = > 15 0,148 0,723 1,77 2,138 24,23789 

23 HabitosTabagicos_Processado_Simplificado A_B_Pre = 1 to 31 0,143 0,418 0,915 0,933 0,726756 
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No. Antecedent Consequent Support Confidence Lift Conviction x2 

24 HabitosTabagicos_Processado_Simplificado Conc_3M = > 15 0,143 0,418 1,022 1,016 0,04006 

25 HabitosTabagicos_Processado_Simplificado Idade_M = Range 1    <31 0,143 0,418 1,353 1,187 6,662623 

42 Formas_N_3M = > 4 Gravidez, Conc_3M = > 15 0,143 0,44 1,874 1,366 25,95576 

66 Idade_M = Range 1    <31 HabitosTabagicos_Processado_Simplificado 0,143 0,465 1,353 1,227 6,664958 

90 PMA A_B_Pre = 1 to 31 0,143 0,5 1,095 1,087 0,698708 

91 PMA Conc_3M = > 15 0,143 0,5 1,223 1,183 3,168379 

93 PMA Gravidez, A_B_Pre = 1 to 31 0,143 0,5 2,3 1,565 43,24938 

94 Gravidez, PMA A_B_Pre = 1 to 31 0,143 0,5 1,095 1,087 0,698708 

95 PMA Gravidez, Conc_3M = > 15 0,143 0,5 2,13 1,53 36,08568 

96 Gravidez, PMA Conc_3M = > 15 0,143 0,5 1,223 1,183 3,168379 

153 Gravidez, Conc_3M = > 15 Formas_N_3M = > 4 0,143 0,611 1,874 1,733 25,97041 

154 Gravidez, Conc_3M = > 15 PMA 0,143 0,611 2,13 1,834 36,09594 

161 Conc_3M = > 15, Formas_N_3M = > 4 Gravidez 0,143 0,623 1,338 1,417 6,820843 

167 Gravidez, A_B_Pre = 1 to 31 PMA 0,143 0,66 2,3 2,097 43,26733 

190 Gravidez, Formas_N_3M = > 4 Conc_3M = > 15 0,143 0,786 1,922 2,759 30,08562 

195 A_B_Pre = 1 to 31, PMA Gravidez 0,143 1 2,15 ∞ 44,13477 

196 Conc_3M = > 15, PMA Gravidez 0,143 1 2,15 ∞ 44,13477 

6 HabitosTabagicos_Processado_Simplificado Grau_Varicoc = II 0,139 0,405 1,083 1,052 0,494587 

7 HabitosTabagicos_Processado_Simplificado A_B_Pre = > 32 0,139 0,405 1,21 1,118 2,666605 

20 A_B_Pre = > 32 HabitosTabagicos_Processado_Simplificado 0,139 0,416 1,21 1,123 2,666701 

107 Formas_N_3M = 1 to 3 Gravidez 0,139 0,525 1,128 1,125 1,181455 

4 A_B_Pre = > 32 Grau_Varicoc = II 0,135 0,403 1,077 1,048 0,410727 

17 Formas_N_3M = > 4 Grau_Varicoc = II 0,135 0,413 1,105 1,067 0,734919 

98 Formas_N_3M = 1 to 3 A_B_3M = 1 to 31 0,135 0,508 1,499 1,344 10,62537 

100 Grau_Varicoc = I A_B_Pre = 1 to 31 0,135 0,517 1,132 1,124 1,190588 

28 Idade_M = Range 1    <31 A_B_Pre = 1 to 31 0,13 0,423 0,926 0,941 0,469937 

29 Idade_M = Range 1    <31 Conc_3M = 0,01 to 14,9 0,13 0,423 1,08 1,054 0,420493 

30 Idade_M = Range 1    <31 A_B_3M = > 32 0,13 0,423 1,104 1,069 0,685588 

56 PMA HabitosTabagicos_Processado_Simplificado 0,13 0,455 1,323 1,204 5,03135 

57 PMA 
Gravidez, 
HabitosTabagicos_Processado_Simplificado 0,13 0,455 2,681 1,522 53,13852 
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No. Antecedent Consequent Support Confidence Lift Conviction x2 

58 Gravidez, PMA HabitosTabagicos_Processado_Simplificado 0,13 0,455 1,323 1,204 5,03135 

188 Gravidez, HabitosTabagicos_Processado_Simplificado PMA 0,13 0,769 2,681 3,09 53,1795 

203 HabitosTabagicos_Processado_Simplificado, PMA Gravidez 0,13 1 2,15 ∞ 39,52299 

8 Idade_M = Range 1    <31 Conc_3M = > 15 0,126 0,408 0,999 1 7,09E-05 

80 Grau_Varicoc = I Gravidez 0,126 0,483 1,039 1,035 0,107258 

112 Conc_3M = > 15, A_B_3M = > 32 A_B_Pre = > 32 0,126 0,537 1,604 1,437 12,94614 

177 Conc_3M = > 15, A_B_Pre = > 32 A_B_3M = > 32 0,126 0,707 1,849 2,109 22,25825 

186 A_B_3M = > 32, A_B_Pre = > 32 Conc_3M = > 15 0,126 0,763 1,867 2,497 23,63484 

31 PMA A_B_3M = > 32 0,122 0,424 1,109 1,072 0,683296 

32 PMA Gravidez, A_B_3M = > 32 0,122 0,424 1,952 1,359 23,36669 

33 Gravidez, PMA A_B_3M = > 32 0,122 0,424 1,109 1,072 0,683296 

62 Formas_N_3M = 1 to 3 A_B_3M = > 32 0,122 0,459 1,2 1,141 2,063062 

68 Conc_6M = 0,01 to 14,9 A_B_Pre = 1 to 31 0,122 0,467 1,022 1,019 0,033124 

79 Idade_M = Range 4   <36 A_B_Pre = 1 to 31 0,122 0,483 1,057 1,051 0,212503 

101 Gravidez, Conc_3M = > 15 A_B_Pre = 1 to 31 0,122 0,519 1,136 1,129 1,099657 

102 Gravidez, Conc_3M = > 15 Gravidez_espontanea 0,122 0,519 2,434 1,634 39,39073 

126 Gravidez, A_B_Pre = 1 to 31 Conc_3M = > 15 0,122 0,56 1,37 1,344 6,063453 

127 Gravidez, A_B_3M = > 32 Formas_N_3M = > 4 0,122 0,56 1,717 1,532 15,94067 

128 Gravidez, A_B_3M = > 32 PMA 0,122 0,56 1,952 1,621 23,35803 

129 Gravidez, A_B_3M = > 32 Gravidez_espontanea 0,122 0,56 2,629 1,789 46,01329 

134 Gravidez_espontanea Conc_3M = > 15 0,122 0,571 1,398 1,38 6,834993 

135 Gravidez_espontanea A_B_3M = > 32 0,122 0,571 1,494 1,441 9,434733 

136 Gravidez_espontanea Gravidez, Conc_3M = > 15 0,122 0,571 2,434 1,786 39,3879 

137 Gravidez, Gravidez_espontanea Conc_3M = > 15 0,122 0,571 1,398 1,38 6,834993 

138 Gravidez_espontanea Gravidez, A_B_3M = > 32 0,122 0,571 2,629 1,826 46,01233 

139 Gravidez, Gravidez_espontanea A_B_3M = > 32 0,122 0,571 1,494 1,441 9,434733 

145 A_B_Pre = 1 to 31, Conc_3M = > 15 Gravidez 0,122 0,596 1,281 1,323 4,067033 

146 A_B_3M = > 32, Formas_N_3M = > 4 Gravidez 0,122 0,596 1,281 1,323 4,067033 

150 Idade_M = Range 2    31 to 32 Gravidez 0,122 0,609 1,308 1,367 4,762119 

151 Conc_6M = > 15 Conc_3M = > 15 0,122 0,609 1,489 1,511 9,534788 
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No. Antecedent Consequent Support Confidence Lift Conviction x2 

170 Gravidez, Formas_N_3M = > 4 A_B_3M = > 32 0,122 0,667 1,742 1,852 17,588 

197 Conc_3M = > 15, Gravidez_espontanea Gravidez 0,122 1 2,15 ∞ 36,75285 

199 A_B_3M = > 32, PMA Gravidez 0,122 1 2,15 ∞ 36,75285 

200 A_B_3M = > 32, Gravidez_espontanea Gravidez 0,122 1 2,15 ∞ 36,75285 

9 PMA Idade_M = Range 1    <31 0,117 0,409 1,325 1,17 4,346357 

11 PMA Gravidez, Idade_M = Range 1    <31 0,117 0,409 2,413 1,405 37,55266 

12 Gravidez, PMA Idade_M = Range 1    <31 0,117 0,409 1,325 1,17 4,346357 

52 Grau_Varicoc = I Conc_3M = > 15 0,117 0,45 1,101 1,075 0,569828 

53 Grau_Varicoc = I A_B_3M = > 32 0,117 0,45 1,176 1,123 1,551568 

113 Gravidez, A_B_3M = > 32 A_B_Pre = > 32 0,117 0,54 1,613 1,446 12,03063 

117 Gravidez_espontanea Grau_Varicoc = II 0,117 0,551 1,474 1,394 8,316308 

118 Gravidez_espontanea Gravidez, Grau_Varicoc = II 0,117 0,551 2,64 1,762 43,98705 

119 Gravidez, Gravidez_espontanea Grau_Varicoc = II 0,117 0,551 1,474 1,394 8,316308 

131 Gravidez, Grau_Varicoc = II Gravidez_espontanea 0,117 0,562 2,64 1,799 43,98779 

163 Gravidez, A_B_Pre = > 32 A_B_3M = > 32 0,117 0,628 1,641 1,659 13,41402 

174 Gravidez, Idade_M = Range 1    <31 PMA 0,117 0,692 2,413 2,317 37,57123 

178 A_B_3M = > 32, A_B_Pre = > 32 Gravidez 0,117 0,711 1,527 1,847 10,96296 

202 Grau_Varicoc = II, Gravidez_espontanea Gravidez 0,117 1 2,15 ∞ 35,047 

207 Idade_M = Range 1    <31, PMA Gravidez 0,117 1 2,15 ∞ 35,047 

35 Formas_N_3M = 1 to 3 HabitosTabagicos_Processado_Simplificado 0,113 0,426 1,241 1,144 2,520856 

78 Gravidez, Conc_3M = > 15 Grau_Varicoc = II 0,113 0,481 1,288 1,207 3,491524 

114 Gravidez, Grau_Varicoc = II Conc_3M = > 15 0,113 0,542 1,325 1,29 4,429485 

115 Gravidez, Grau_Varicoc = II PMA 0,113 0,542 1,888 1,556 19,23664 

148 Gravidez, A_B_Pre = > 32 PMA 0,113 0,605 2,107 1,804 26,07485 

172 Conc_3M = > 15, Grau_Varicoc = II Gravidez 0,113 0,684 1,471 1,693 8,775934 

173 Gravidez, Conc_3M = 0,01 to 14,9 PMA 0,113 0,684 2,384 2,258 35,07919 

198 Conc_3M = 0,01 to 14,9, PMA Gravidez 0,113 1 2,15 ∞ 33,69617 

201 Grau_Varicoc = II, PMA Gravidez 0,113 1 2,15 ∞ 33,69617 

205 A_B_Pre = > 32, PMA Gravidez 0,113 1 2,15 ∞ 33,69617 

13 Formas_N_3M = 1 to 3 PMA 0,109 0,41 1,428 1,208 6,144852 
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No. Antecedent Consequent Support Confidence Lift Conviction x2 

14 Formas_N_3M = 1 to 3 Gravidez, PMA 0,109 0,41 1,428 1,208 6,144852 

21 Conc_6M = 0,01 to 14,9 Gravidez 0,109 0,417 0,896 0,917 0,766427 

22 Grau_Varicoc = I Conc_3M = 0,01 to 14,9 0,109 0,417 1,065 1,043 0,221305 

65 Idade_M = Range 3   33 to 35 A_B_Pre = 1 to 31 0,109 0,463 1,014 1,012 0,011664 

71 Conc_3M = > 15, Formas_N_3M = > 4 A_B_Pre = 1 to 31 0,109 0,472 1,033 1,029 0,063278 

92 Gravidez, A_B_Pre = 1 to 31 A_B_3M = 1 to 31 0,109 0,5 1,474 1,322 7,395121 

103 A_B_Pre = 1 to 31, A_B_3M = 1 to 31 Gravidez 0,109 0,521 1,12 1,116 0,762133 

104 A_B_Pre = 1 to 31, A_B_3M = 1 to 31 Conc_3M = 0,01 to 14,9 0,109 0,521 1,331 1,27 4,288109 

109 A_B_Pre = 1 to 31, Conc_3M = > 15 Formas_N_3M = > 4 0,109 0,532 1,631 1,44 11,42317 

120 A_B_Pre = 1 to 31, Conc_3M = 0,01 to 14,9 A_B_3M = 1 to 31 0,109 0,556 1,638 1,487 11,73102 

152 Conc_3M = 0,01 to 14,9, A_B_3M = 1 to 31 A_B_Pre = 1 to 31 0,109 0,61 1,336 1,393 4,746663 

179 Gravidez, A_B_3M = 1 to 31 A_B_Pre = 1 to 31 0,109 0,714 1,565 1,902 11,09851 

180 Gravidez, A_B_3M = 1 to 31 PMA 0,109 0,714 2,489 2,496 36,95628 

181 A_B_Pre = 1 to 31, Formas_N_3M = > 4 Conc_3M = > 15 0,109 0,714 1,748 2,07 16,00958 

189 Gravidez, Formas_N_3M = 1 to 3 PMA 0,109 0,781 2,723 3,26 44,54074 

204 A_B_3M = 1 to 31, PMA Gravidez 0,109 1 2,15 ∞ 32,35746 

208 PMA, Formas_N_3M = 1 to 3 Gravidez 0,109 1 2,15 ∞ 32,35746 

2 Grau_Varicoc = I Formas_N_3M = > 4 0,104 0,4 1,227 1,123 2,014075 

18 Idade_M = Range 4   <36 Conc_3M = > 15 0,104 0,414 1,012 1,009 0,007692 

46 Gravidez, Conc_3M = > 15 A_B_Pre = > 32 0,104 0,444 1,328 1,197 3,80155 

47 Gravidez, Conc_3M = > 15 A_B_3M = > 32, Formas_N_3M = > 4 0,104 0,444 2,175 1,432 24,91402 

48 Conc_3M = > 15, A_B_3M = > 32 Gravidez, Formas_N_3M = > 4 0,104 0,444 2,434 1,471 32,27829 

54 Conc_3M = > 15, Formas_N_3M = > 4 Gravidez, A_B_3M = > 32 0,104 0,453 2,083 1,43 22,34103 

77 Gravidez, A_B_3M = > 32 Conc_3M = > 15, Formas_N_3M = > 4 0,104 0,48 2,083 1,48 22,34282 

83 Gravidez_espontanea Formas_N_3M = > 4 0,104 0,49 1,502 1,321 7,561307 

84 Gravidez_espontanea Gravidez, Formas_N_3M = > 4 0,104 0,49 2,682 1,602 39,19055 

85 Gravidez, Gravidez_espontanea Formas_N_3M = > 4 0,104 0,49 1,502 1,321 7,561307 

99 A_B_3M = > 32, Formas_N_3M = > 4 Gravidez, Conc_3M = > 15 0,104 0,511 2,175 1,564 24,91782 

105 Conc_6M = > 15 Gravidez 0,104 0,522 1,121 1,118 0,730129 

106 Conc_6M = > 15 A_B_Pre = > 32 0,104 0,522 1,558 1,391 8,977678 
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123 Gravidez, A_B_Pre = > 32 Conc_3M = > 15 0,104 0,558 1,366 1,338 4,874054 

140 Gravidez, Formas_N_3M = > 4 Gravidez_espontanea 0,104 0,571 2,682 1,836 39,19622 

141 Gravidez, Formas_N_3M = > 4 Conc_3M = > 15, A_B_3M = > 32 0,104 0,571 2,434 1,786 32,2824 

144 Conc_3M = > 15, A_B_Pre = > 32 Gravidez 0,104 0,585 1,258 1,29 2,877374 

171 Gravidez, Conc_3M = > 15, A_B_3M = > 32 Formas_N_3M = > 4 0,104 0,667 2,044 2,022 22,43085 

175 Conc_3M = > 15, A_B_3M = > 32, Formas_N_3M = > 4 Gravidez 0,104 0,706 1,517 1,818 9,245483 

184 Gravidez, Conc_3M = > 15, Formas_N_3M = > 4 A_B_3M = > 32 0,104 0,727 1,901 2,264 19,30141 

192 Gravidez, A_B_3M = > 32, Formas_N_3M = > 4 Conc_3M = > 15 0,104 0,857 2,097 4,139 26,42035 

206 Formas_N_3M = > 4, Gravidez_espontanea Gravidez 0,104 1 2,15 ∞ 30,70089 

15 ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos Conc_3M = 0,01 to 14,9 0,1 0,411 1,05 1,033 0,118918 

16 ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos Idade_M = Range 1    <31 0,1 0,411 1,33 1,173 3,601817 

34 Conc_3M = > 15, A_B_3M = > 32 A_B_Pre = 1 to 31 0,1 0,426 0,933 0,947 0,26611 

39 Conc_3M = > 15, Formas_N_3M = > 4 Grau_Varicoc = II 0,1 0,434 1,161 1,106 1,065586 

40 Conc_3M = > 15, Formas_N_3M = > 4 A_B_Pre = > 32 0,1 0,434 1,296 1,175 3,037717 

63 Gravidez, A_B_Pre = 1 to 31 Grau_Varicoc = II 0,1 0,46 1,23 1,159 2,019055 

64 Gravidez, A_B_3M = > 32 Grau_Varicoc = II 0,1 0,46 1,23 1,159 2,019055 

74 Gravidez, Grau_Varicoc = II A_B_Pre = 1 to 31 0,1 0,479 1,05 1,043 0,127271 

75 Gravidez, Grau_Varicoc = II A_B_3M = > 32 0,1 0,479 1,252 1,185 2,388063 

76 A_B_Pre = 1 to 31, A_B_3M = 1 to 31 Conc_3M = > 15 0,1 0,479 1,172 1,135 1,240931 

81 A_B_Pre = 1 to 31, Conc_3M = > 15 A_B_3M = > 32 0,1 0,489 1,279 1,209 2,848842 

82 A_B_Pre = 1 to 31, Conc_3M = > 15 A_B_3M = 1 to 31 0,1 0,489 1,443 1,294 5,947661 

130 Conc_3M = > 15, A_B_Pre = > 32 Formas_N_3M = > 4 0,1 0,561 1,72 1,535 12,51905 

149 Conc_3M = > 15, Grau_Varicoc = II Formas_N_3M = > 4 0,1 0,605 1,856 1,707 16,1392 

158 A_B_Pre = 1 to 31, Grau_Varicoc = II Gravidez 0,1 0,622 1,336 1,413 4,333393 

159 A_B_Pre = 1 to 31, A_B_3M = > 32 Conc_3M = > 15 0,1 0,622 1,521 1,563 8,274914 

160 Conc_3M = > 15, A_B_3M = 1 to 31 A_B_Pre = 1 to 31 0,1 0,622 1,362 1,436 4,853255 

185 Grau_Varicoc = II, Formas_N_3M = > 4 Conc_3M = > 15 0,1 0,742 1,815 2,291 16,45554 

187 A_B_3M = > 32, Grau_Varicoc = II Gravidez 0,1 0,767 1,648 2,292 12,60583 

191 A_B_Pre = > 32, Formas_N_3M = > 4 Conc_3M = > 15 0,1 0,852 2,084 3,991 24,85407 
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Table C.3 2 test 6.1.1:  group 4 & 5 - support=0.1 and confidence=0.4 – “Gravidez” = “Sim” (n=107) 

No. Antecedent Consequent Support Confidence Lift Conviction x2 

362 A_B_3M = > 32 Conc_3M = > 15 0,336 0,72 1,427 1,769 17,38443832 

323 Conc_3M = > 15 A_B_3M = > 32 0,336 0,667 1,427 1,598 17,38053149 

398 Formas_N_3M = > 4 Conc_3M = > 15 0,308 0,786 1,557 2,312 21,80645934 

142 PMA Conc_3M = > 15 0,308 0,5 0,991 0,991 0,014158159 

143 PMA A_B_Pre = 1 to 31 0,308 0,5 1,07 1,065 0,73777595 

285 Conc_3M = > 15 Formas_N_3M = > 4 0,308 0,611 1,557 1,562 21,79477199 

284 Conc_3M = > 15 PMA 0,308 0,611 0,991 0,985 0,014165584 

322 A_B_Pre = 1 to 31 PMA 0,308 0,66 1,07 1,127 0,738495732 

390 HabitosTabagicos_Processado_Simplificado PMA 0,28 0,769 1,247 1,66 6,01347209 

93 PMA HabitosTabagicos_Processado_Simplificado 0,28 0,455 1,247 1,165 6,000450838 

41 PMA A_B_3M = > 32 0,262 0,424 0,908 0,925 1,283116838 

180 Conc_3M = > 15 A_B_Pre = 1 to 31 0,262 0,519 1,11 1,106 1,159090091 

181 Conc_3M = > 15 Gravidez_espontanea 0,262 0,519 1,132 1,126 1,609187652 

324 Formas_N_3M = > 4 A_B_3M = > 32 0,262 0,667 1,427 1,598 11,07638486 

228 A_B_3M = > 32 PMA 0,262 0,56 0,908 0,871 1,28130713 

229 A_B_Pre = 1 to 31 Conc_3M = > 15 0,262 0,56 1,11 1,126 1,15898953 

238 Gravidez_espontanea Conc_3M = > 15 0,262 0,571 1,132 1,156 1,608969083 

239 Gravidez_espontanea A_B_3M = > 32 0,262 0,571 1,223 1,243 3,951161925 

230 A_B_3M = > 32 Gravidez_espontanea 0,262 0,56 1,223 1,232 3,951418507 

231 A_B_3M = > 32 Formas_N_3M = > 4 0,262 0,56 1,427 1,381 11,07881944 

18 PMA Idade_M = Range 1    <31 0,252 0,409 1,122 1,075 1,46635156 

302 A_B_Pre = > 32 A_B_3M = > 32 0,252 0,628 1,344 1,432 7,443204994 

236 Grau_Varicoc = II Gravidez_espontanea 0,252 0,562 1,228 1,239 3,815525892 

224 Gravidez_espontanea Grau_Varicoc = II 0,252 0,551 1,228 1,228 3,815449891 

208 A_B_3M = > 32 A_B_Pre = > 32 0,252 0,54 1,344 1,3 7,441259104 

349 Idade_M = Range 1    <31 PMA 0,252 0,692 1,122 1,245 1,467874555 

130 Conc_3M = > 15 Grau_Varicoc = II 0,243 0,481 1,073 1,063 0,473022919 

209 Grau_Varicoc = II PMA 0,243 0,542 0,878 0,836 2,087846344 

210 Grau_Varicoc = II Conc_3M = > 15 0,243 0,542 1,073 1,081 0,47300894 

279 A_B_Pre = > 32 PMA 0,243 0,605 0,98 0,969 0,046351691 
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No. Antecedent Consequent Support Confidence Lift Conviction x2 

340 Conc_3M = 0.01 to 14.9 PMA 0,243 0,684 1,109 1,213 1,127383383 

396 Formas_N_3M = 1 to 3 PMA 0,234 0,781 1,267 1,752 5,243841981 

359 A_B_3M = 1 to 31 A_B_Pre = 1 to 31 0,234 0,714 1,529 1,864 12,78822724 

358 A_B_3M = 1 to 31 PMA 0,234 0,714 1,158 1,341 2,094053694 

145 A_B_Pre = 1 to 31 A_B_3M = 1 to 31 0,234 0,5 1,529 1,346 12,7992338 

423 A_B_3M = > 32, Formas_N_3M = > 4 Conc_3M = > 15 0,224 0,857 1,698 3,467 18,79852427 

77 Conc_3M = > 15 A_B_Pre = > 32 0,224 0,444 1,106 1,077 0,821005046 

365 Conc_3M = > 15, Formas_N_3M = > 4 A_B_3M = > 32 0,224 0,727 1,556 1,953 12,91794034 

327 Conc_3M = > 15, A_B_3M = > 32 Formas_N_3M = > 4 0,224 0,667 1,698 1,822 17,05320778 

227 A_B_Pre = > 32 Conc_3M = > 15 0,224 0,558 1,106 1,121 0,82101426 

240 Formas_N_3M = > 4 Gravidez_espontanea 0,224 0,571 1,248 1,265 3,583052094 

243 Formas_N_3M = > 4 Conc_3M = > 15, A_B_3M = > 32 0,224 0,571 1,698 1,548 17,05003829 

141 Gravidez_espontanea Formas_N_3M = > 4 0,224 0,49 1,248 1,191 3,582452126 

127 A_B_3M = > 32 Conc_3M = > 15, Formas_N_3M = > 4 0,224 0,48 1,556 1,33 12,91131212 

80 Conc_3M = > 15 A_B_3M = > 32, Formas_N_3M = > 4 0,224 0,444 1,698 1,329 18,79340159 

101 A_B_Pre = 1 to 31 Grau_Varicoc = II 0,215 0,46 1,025 1,021 0,047779935 

102 A_B_3M = > 32 Grau_Varicoc = II 0,215 0,46 1,025 1,021 0,047779935 

122 Grau_Varicoc = II A_B_Pre = 1 to 31 0,215 0,479 1,025 1,023 0,047779456 

123 Grau_Varicoc = II A_B_3M = > 32 0,215 0,479 1,025 1,023 0,047779456 

95 Grau_Varicoc = II Formas_N_3M = > 4 0,206 0,458 1,168 1,121 1,592487932 

342 Formas_N_3M = 1 to 3 A_B_Pre = 1 to 31 0,206 0,688 1,471 1,705 8,913996316 

187 Formas_N_3M = > 4 PMA 0,206 0,524 0,849 0,805 2,54815416 

188 Formas_N_3M = > 4 Grau_Varicoc = II 0,206 0,524 1,168 1,158 1,591797657 

69 A_B_Pre = 1 to 31 Formas_N_3M = 1 to 3 0,206 0,44 1,471 1,252 8,918071832 

430 Conc_3M = > 15, A_B_Pre = > 32 A_B_3M = > 32 0,196 0,875 1,873 4,262 20,6384023 

28 A_B_Pre = 1 to 31 Gravidez_espontanea 0,196 0,42 0,917 0,935 0,545055739 

29 A_B_3M = > 32 Idade_M = Range 1    <31 0,196 0,42 1,152 1,096 1,241129836 

47 Gravidez_espontanea A_B_Pre = 1 to 31 0,196 0,429 0,917 0,932 0,545101758 

48 Gravidez_espontanea A_B_Pre = > 32 0,196 0,429 1,066 1,047 0,26405212 

393 A_B_3M = > 32, A_B_Pre = > 32 Conc_3M = > 15 0,196 0,778 1,541 2,229 10,75391139 

377 PMA, A_B_3M = > 32 Conc_3M = > 15 0,196 0,75 1,486 1,981 9,111420117 

138 A_B_Pre = > 32 Gravidez_espontanea 0,196 0,488 1,066 1,059 0,264141629 
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201 Idade_M = Range 1    <31 A_B_3M = > 32 0,196 0,538 1,152 1,154 1,241408811 

305 PMA, Conc_3M = > 15 A_B_3M = > 32 0,196 0,636 1,362 1,465 5,471731882 

266 Conc_3M = > 15, A_B_3M = > 32 PMA 0,196 0,583 0,946 0,92 0,253792237 

268 Conc_3M = > 15, A_B_3M = > 32 A_B_Pre = > 32 0,196 0,583 1,452 1,436 7,427703034 

150 Formas_N_3M = > 4 A_B_Pre = > 32 0,196 0,5 1,244 1,196 2,760215478 

139 A_B_Pre = > 32 Formas_N_3M = > 4 0,196 0,488 1,244 1,187 2,760162663 

140 A_B_Pre = > 32 Conc_3M = > 15, A_B_3M = > 32 0,196 0,488 1,452 1,297 7,428081418 

30 A_B_3M = > 32 PMA, Conc_3M = > 15 0,196 0,42 1,362 1,192 5,470252325 

31 A_B_3M = > 32 Conc_3M = > 15, A_B_Pre = > 32 0,196 0,42 1,873 1,337 20,62547667 

1 A_B_3M = > 32 HabitosTabagicos_Processado_Simplificado 0,187 0,4 1,097 1,059 0,507243467 

17 Gravidez_espontanea Conc_3M = > 15, A_B_3M = > 32 0,187 0,408 1,213 1,121 2,081884348 

360 Conc_3M = > 15, Gravidez_espontanea A_B_3M = > 32 0,187 0,714 1,529 1,864 9,308221646 

361 A_B_3M = > 32, Gravidez_espontanea Conc_3M = > 15 0,187 0,714 1,415 1,734 6,660259585 

175 HabitosTabagicos_Processado_Simplificado A_B_3M = > 32 0,187 0,513 1,097 1,093 0,50728938 

226 Conc_3M = > 15, A_B_3M = > 32 Gravidez_espontanea 0,187 0,556 1,213 1,22 2,081937304 

348 Grau_Varicoc = I PMA 0,187 0,69 1,118 1,235 0,892949165 

6 A_B_3M = > 32 Conc_3M = > 15, Gravidez_espontanea 0,187 0,4 1,529 1,231 9,31371993 

433 A_B_Pre = > 32, Formas_N_3M = > 4 Conc_3M = > 15 0,178 0,905 1,793 5,201 16,79002556 

428 PMA, Formas_N_3M = > 4 Conc_3M = > 15 0,178 0,864 1,711 3,632 14,3169068 

407 Conc_3M = > 15, A_B_Pre = > 32 Formas_N_3M = > 4 0,178 0,792 2,017 2,916 20,74275356 

256 Conc_3M = > 15, Formas_N_3M = > 4 PMA 0,178 0,576 0,933 0,903 0,346596825 

276 Formas_N_3M = 1 to 3 Conc_3M = > 15 0,178 0,594 1,177 1,219 1,461419414 

255 PMA, Conc_3M = > 15 Formas_N_3M = > 4 0,178 0,576 1,467 1,432 6,746821938 

257 Conc_3M = > 15, Formas_N_3M = > 4 A_B_Pre = > 32 0,178 0,576 1,433 1,41 6,0302895 

91 Formas_N_3M = > 4 PMA, Conc_3M = > 15 0,178 0,452 1,467 1,263 6,750864185 

92 Formas_N_3M = > 4 Conc_3M = > 15, A_B_Pre = > 32 0,178 0,452 2,017 1,416 20,76439185 

76 A_B_Pre = > 32 Conc_3M = > 15, Formas_N_3M = > 4 0,178 0,442 1,433 1,239 6,03287408 

425 A_B_Pre = > 32, Formas_N_3M = > 4 A_B_3M = > 32 0,168 0,857 1,834 3,729 15,91813549 

414 A_B_Pre = 1 to 31, Formas_N_3M = 1 to 3 PMA 0,168 0,818 1,326 2,107 4,732651162 

397 A_B_3M = > 32, Grau_Varicoc = II Gravidez_espontanea 0,168 0,783 1,709 2,493 12,42399275 

103 Idade_M = Range 1    <31 Conc_3M = > 15 0,168 0,462 0,915 0,92 0,450533775 

104 HabitosTabagicos_Processado_Simplificado Conc_3M = > 15 0,168 0,462 0,915 0,92 0,450533775 
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381 Gravidez_espontanea, Formas_N_3M = > 4 A_B_3M = > 32 0,168 0,75 1,605 2,131 9,916900886 

363 PMA, Formas_N_3M = 1 to 3 A_B_Pre = 1 to 31 0,168 0,72 1,541 1,903 8,358682925 

330 Gravidez_espontanea, Grau_Varicoc = II A_B_3M = > 32 0,168 0,667 1,427 1,598 5,764484894 

331 A_B_3M = > 32, A_B_Pre = > 32 Formas_N_3M = > 4 0,168 0,667 1,698 1,822 11,3545657 

215 PMA, Conc_3M = > 15 A_B_Pre = 1 to 31 0,168 0,545 1,167 1,172 1,165173957 

216 PMA, A_B_Pre = 1 to 31 Conc_3M = > 15 0,168 0,545 1,081 1,09 0,318092522 

310 A_B_3M = > 32, Gravidez_espontanea Grau_Varicoc = II 0,168 0,643 1,433 1,544 5,775094885 

311 A_B_3M = > 32, Gravidez_espontanea Formas_N_3M = > 4 0,168 0,643 1,638 1,701 9,954711987 

312 A_B_3M = > 32, Formas_N_3M = > 4 Gravidez_espontanea 0,168 0,643 1,404 1,518 5,219014412 

313 A_B_3M = > 32, Formas_N_3M = > 4 A_B_Pre = > 32 0,168 0,643 1,6 1,675 9,15379086 

309 Conc_3M = > 15, A_B_Pre = 1 to 31 PMA 0,168 0,643 1,042 1,073 0,107581132 

237 Formas_N_3M = 1 to 3 PMA, A_B_Pre = 1 to 31 0,168 0,562 1,824 1,581 13,795207 

217 PMA, A_B_Pre = 1 to 31 Formas_N_3M = 1 to 3 0,168 0,545 1,824 1,542 13,79532989 

176 A_B_3M = 1 to 31 Conc_3M = 0.01 to 14.9 0,168 0,514 1,448 1,328 5,738379038 

118 Conc_3M = 0.01 to 14.9 A_B_3M = 1 to 31 0,168 0,474 1,448 1,279 5,737821662 

55 Formas_N_3M = > 4 A_B_3M = > 32, Gravidez_espontanea 0,168 0,429 1,638 1,292 9,947750882 

56 Formas_N_3M = > 4 A_B_3M = > 32, A_B_Pre = > 32 0,168 0,429 1,698 1,308 11,34381323 

27 A_B_Pre = > 32 A_B_3M = > 32, Formas_N_3M = > 4 0,168 0,419 1,6 1,27 9,147153435 

64 Idade_M = Range 1    <31 Grau_Varicoc = II 0,159 0,436 0,972 0,977 0,039168676 

65 HabitosTabagicos_Processado_Simplificado Grau_Varicoc = II 0,159 0,436 0,972 0,977 0,039168676 

66 HabitosTabagicos_Processado_Simplificado A_B_Pre = > 32 0,159 0,436 1,085 1,06 0,298112905 

67 Idade_M = Range 1    <31 Conc_3M = 0.01 to 14.9 0,159 0,436 1,227 1,143 1,744467381 

87 Conc_3M = 0.01 to 14.9 A_B_Pre = 1 to 31 0,159 0,447 0,957 0,964 0,095733221 

88 Conc_3M = 0.01 to 14.9 Idade_M = Range 1    <31 0,159 0,447 1,227 1,15 1,744428 

136 A_B_3M = 1 to 31 Conc_3M = > 15 0,159 0,486 0,962 0,963 0,076706057 

356 Conc_6M = > 15 Conc_3M = > 15 0,159 0,708 1,404 1,698 5,145117602 

357 Gravidez_espontanea, Formas_N_3M = > 4 Conc_3M = > 15 0,159 0,708 1,404 1,698 5,145117602 

178 Conc_3M = > 15, Formas_N_3M = > 4 Gravidez_espontanea 0,159 0,515 1,125 1,118 0,630417592 

337 PMA, A_B_3M = 1 to 31 A_B_Pre = 1 to 31 0,159 0,68 1,455 1,665 5,931618107 

194 Formas_N_3M = 1 to 3 A_B_3M = > 32 0,159 0,531 1,137 1,136 0,752143996 

280 Idade_M = Range 2    31 to 32 PMA 0,159 0,607 0,984 0,975 0,015652734 

281 Conc_3M = > 15, Gravidez_espontanea Formas_N_3M = > 4 0,159 0,607 1,547 1,546 7,337335508 
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336 Conc_6M = 0.01 to 14.9 PMA 0,159 0,68 1,102 1,197 0,547444358 

338 A_B_Pre = 1 to 31, A_B_3M = 1 to 31 PMA 0,159 0,68 1,102 1,197 0,547444358 

177 PMA, A_B_Pre = 1 to 31 A_B_3M = 1 to 31 0,159 0,515 1,575 1,388 7,676583129 

355 Conc_6M = > 15 PMA 0,159 0,708 1,148 1,314 1,092226148 

137 A_B_3M = 1 to 31 PMA, A_B_Pre = 1 to 31 0,159 0,486 1,575 1,345 7,676747005 

7 Formas_N_3M = > 4 Conc_3M = > 15, Gravidez_espontanea 0,159 0,405 1,547 1,24 7,338534949 

431 Conc_3M = > 15, HabitosTabagicos_Processado_Simplificado PMA 0,15 0,889 1,441 3,449 6,802529918 

19 Idade_M = Range 1    <31 A_B_Pre = > 32 0,15 0,41 1,021 1,014 0,01826766 

20 Idade_M = Range 1    <31 HabitosTabagicos_Processado_Simplificado 0,15 0,41 1,126 1,078 0,561194768 

21 HabitosTabagicos_Processado_Simplificado Idade_M = Range 1    <31 0,15 0,41 1,126 1,078 0,561194768 

22 HabitosTabagicos_Processado_Simplificado Conc_3M = 0.01 to 14.9 0,15 0,41 1,155 1,093 0,81619263 

432 A_B_3M = > 32, A_B_Pre = > 32, Formas_N_3M = > 4 Conc_3M = > 15 0,15 0,889 1,761 4,458 12,82286848 

32 Conc_3M = 0.01 to 14.9 Grau_Varicoc = II 0,15 0,421 0,939 0,952 0,179109141 

33 Conc_3M = 0.01 to 14.9 HabitosTabagicos_Processado_Simplificado 0,15 0,421 1,155 1,098 0,816122175 

418 Conc_3M = > 15, A_B_Pre = > 32, Formas_N_3M = > 4 A_B_3M = > 32 0,15 0,842 1,802 3,374 13,08454235 

384 Gravidez_espontanea, A_B_Pre = > 32 A_B_3M = > 32 0,15 0,762 1,63 2,237 9,137764469 

385 Conc_3M = > 15, A_B_3M = > 32, A_B_Pre = > 32 Formas_N_3M = > 4 0,15 0,762 1,941 2,551 15,00873286 

386 A_B_Pre = > 32, Formas_N_3M = > 4 Conc_3M = > 15, A_B_3M = > 32 0,15 0,762 2,265 2,787 21,27652296 

134 Conc_3M = > 15, Formas_N_3M = > 4 Grau_Varicoc = II 0,15 0,485 1,081 1,07 0,255797176 

366 Grau_Varicoc = II, Formas_N_3M = > 4 Conc_3M = > 15 0,15 0,727 1,441 1,816 5,50823679 

195 PMA, HabitosTabagicos_Processado_Simplificado Conc_3M = > 15 0,15 0,533 1,057 1,061 0,13849111 

332 Conc_3M = > 15, A_B_Pre = > 32 A_B_3M = > 32, Formas_N_3M = > 4 0,15 0,667 2,548 2,215 26,3793108 

333 Conc_3M = > 15, A_B_3M = > 32, Formas_N_3M = > 4 A_B_Pre = > 32 0,15 0,667 1,659 1,794 9,065034987 

244 Conc_3M = > 15, Gravidez_espontanea Grau_Varicoc = II 0,15 0,571 1,274 1,287 2,324742471 

296 Conc_3M = > 15, Grau_Varicoc = II Gravidez_espontanea 0,15 0,615 1,344 1,409 3,445772149 

297 Conc_3M = > 15, Grau_Varicoc = II Formas_N_3M = > 4 0,15 0,615 1,568 1,579 7,186227641 

273 Gravidez_espontanea, Grau_Varicoc = II Conc_3M = > 15 0,15 0,593 1,174 1,216 1,119562564 

274 A_B_3M = > 32, A_B_Pre = > 32 Gravidez_espontanea 0,15 0,593 1,294 1,331 2,649126193 

275 A_B_3M = > 32, A_B_Pre = > 32 Conc_3M = > 15, Formas_N_3M = > 4 0,15 0,593 1,921 1,698 13,72294078 

246 A_B_3M = > 32, Gravidez_espontanea A_B_Pre = > 32 0,15 0,571 1,422 1,396 4,555377695 

252 A_B_3M = > 32, Formas_N_3M = > 4 Conc_3M = > 15, A_B_Pre = > 32 0,15 0,571 2,548 1,81 26,38543707 

364 ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos PMA 0,15 0,727 1,179 1,405 1,433511765 
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133 PMA, Conc_3M = > 15 HabitosTabagicos_Processado_Simplificado 0,15 0,485 1,33 1,234 2,99462978 

135 Conc_3M = > 15, Formas_N_3M = > 4 A_B_3M = > 32, A_B_Pre = > 32 0,15 0,485 1,921 1,451 13,72577226 

85 Conc_3M = > 15, A_B_3M = > 32 A_B_Pre = > 32, Formas_N_3M = > 4 0,15 0,444 2,265 1,447 21,30010683 

23 HabitosTabagicos_Processado_Simplificado PMA, Conc_3M = > 15 0,15 0,41 1,33 1,173 2,995888169 

26 Conc_3M = > 15, A_B_3M = > 32 Grau_Varicoc = II 0,14 0,417 0,929 0,945 0,222031624 

49 A_B_3M = 1 to 31 Grau_Varicoc = II 0,14 0,429 0,955 0,965 0,08560725 

406 Conc_3M = > 15, Formas_N_3M = 1 to 3 A_B_Pre = 1 to 31 0,14 0,789 1,689 2,53 9,605944081 

158 PMA, HabitosTabagicos_Processado_Simplificado A_B_3M = > 32 0,14 0,5 1,07 1,065 0,178854776 

179 Grau_Varicoc = I Conc_3M = > 15 0,14 0,517 1,025 1,026 0,025274194 

339 A_B_Pre = 1 to 31, Formas_N_3M = 1 to 3 Conc_3M = > 15 0,14 0,682 1,351 1,557 3,471242997 

196 Idade_M = Range 2    31 to 32 Conc_3M = > 15 0,14 0,536 1,062 1,067 0,148176404 

199 Conc_3M = > 15, A_B_Pre = 1 to 31 Grau_Varicoc = II 0,14 0,536 1,194 1,188 1,159735586 

225 A_B_3M = > 32, A_B_Pre = > 32 PMA 0,14 0,556 0,901 0,862 0,568780329 

258 PMA, A_B_Pre = > 32 A_B_3M = > 32 0,14 0,577 1,235 1,259 1,66003032 

259 Conc_3M = > 15, Grau_Varicoc = II A_B_Pre = 1 to 31 0,14 0,577 1,235 1,259 1,66003032 

260 Conc_3M = > 15, Grau_Varicoc = II A_B_3M = > 32 0,14 0,577 1,235 1,259 1,66003032 

320 A_B_Pre = 1 to 31, Grau_Varicoc = II Conc_3M = > 15 0,14 0,652 1,292 1,424 2,54141259 

321 A_B_3M = > 32, Grau_Varicoc = II Conc_3M = > 15 0,14 0,652 1,292 1,424 2,54141259 

197 PMA, A_B_3M = > 32 A_B_Pre = > 32 0,14 0,536 1,333 1,288 2,821055061 

198 PMA, A_B_3M = > 32 HabitosTabagicos_Processado_Simplificado 0,14 0,536 1,47 1,369 4,795459823 

200 Conc_3M = > 15, A_B_Pre = 1 to 31 Formas_N_3M = 1 to 3 0,14 0,536 1,791 1,51 10,10859177 

378 A_B_3M = > 32, HabitosTabagicos_Processado_Simplificado PMA 0,14 0,75 1,216 1,533 1,844016605 

116 Formas_N_3M = 1 to 3 A_B_3M = 1 to 31 0,14 0,469 1,433 1,267 4,153244675 

117 Formas_N_3M = 1 to 3 Conc_3M = > 15, A_B_Pre = 1 to 31 0,14 0,469 1,791 1,39 10,10672084 

50 A_B_3M = 1 to 31 Formas_N_3M = 1 to 3 0,14 0,429 1,433 1,227 4,152535393 

42 PMA, Conc_3M = > 15 Grau_Varicoc = II 0,131 0,424 0,946 0,958 0,113310544 

43 PMA, Conc_3M = > 15 A_B_Pre = > 32 0,131 0,424 1,056 1,039 0,100649654 

45 PMA, A_B_Pre = 1 to 31 Grau_Varicoc = II 0,131 0,424 0,946 0,958 0,113310544 

415 A_B_Pre = > 32, HabitosTabagicos_Processado_Simplificado PMA 0,131 0,824 1,335 2,171 3,660309124 

416 Conc_3M = > 15, A_B_3M = 1 to 31 A_B_Pre = 1 to 31 0,131 0,824 1,762 3,019 10,31706472 

417 Conc_3M = > 15, Gravidez_espontanea, Formas_N_3M = > 4 A_B_3M = > 32 0,131 0,824 1,762 3,019 10,31706472 

392 A_B_Pre = 1 to 31, A_B_3M = > 32 Conc_3M = > 15 0,131 0,778 1,541 2,229 6,465474184 
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115 PMA, HabitosTabagicos_Processado_Simplificado A_B_Pre = > 32 0,131 0,467 1,161 1,121 0,727654062 

394 Conc_3M = > 15, Idade_M = Range 1    <31 A_B_3M = > 32 0,131 0,778 1,664 2,397 8,387505665 

395 A_B_3M = > 32, Gravidez_espontanea, Formas_N_3M = > 4 Conc_3M = > 15 0,131 0,778 1,541 2,229 6,465474184 

132 Grau_Varicoc = I A_B_Pre = 1 to 31 0,131 0,483 1,033 1,03 0,038082437 

146 Idade_M = Range 2    31 to 32 A_B_3M = > 32 0,131 0,5 1,07 1,065 0,163275092 

147 Idade_M = Range 2    31 to 32 Gravidez_espontanea 0,131 0,5 1,092 1,084 0,271551783 

151 Idade_M = Range 2    31 to 32 A_B_Pre = > 32 0,131 0,5 1,244 1,196 1,519866451 

156 PMA, A_B_3M = > 32 Formas_N_3M = > 4 0,131 0,5 1,274 1,215 1,84229374 

157 A_B_3M = > 32, Formas_N_3M = > 4 PMA 0,131 0,5 0,811 0,766 2,181533723 

160 Conc_3M = > 15, A_B_Pre = 1 to 31 A_B_3M = > 32 0,131 0,5 1,07 1,065 0,163275092 

161 Conc_3M = > 15, A_B_Pre = 1 to 31 Gravidez_espontanea 0,131 0,5 1,092 1,084 0,271551783 

162 Conc_3M = > 15, Gravidez_espontanea A_B_Pre = 1 to 31 0,131 0,5 1,07 1,065 0,163275092 

164 A_B_3M = > 32, Formas_N_3M = > 4 Grau_Varicoc = II 0,131 0,5 1,115 1,103 0,408431544 

350 Conc_3M = > 15, A_B_3M = > 32, Gravidez_espontanea Formas_N_3M = > 4 0,131 0,7 1,783 2,025 9,761935065 

182 Gravidez_espontanea, Grau_Varicoc = II Formas_N_3M = > 4 0,131 0,519 1,321 1,262 2,408942324 

202 PMA, Grau_Varicoc = II Conc_3M = > 15 0,131 0,538 1,067 1,073 0,157230528 

203 Conc_3M = > 15, Grau_Varicoc = II PMA 0,131 0,538 0,873 0,83 0,89208364 

204 PMA, A_B_Pre = > 32 Conc_3M = > 15 0,131 0,538 1,067 1,073 0,157230528 

205 PMA, Grau_Varicoc = II A_B_Pre = 1 to 31 0,131 0,538 1,152 1,154 0,697207009 

326 A_B_Pre = 1 to 31, Gravidez_espontanea Conc_3M = > 15 0,131 0,667 1,321 1,486 2,748200625 

328 A_B_3M = > 32, Idade_M = Range 1    <31 Conc_3M = > 15 0,131 0,667 1,321 1,486 2,748200625 

233 PMA, Formas_N_3M = 1 to 3 Conc_3M = > 15 0,131 0,56 1,11 1,126 0,402539487 

235 A_B_Pre = 1 to 31, A_B_3M = 1 to 31 Conc_3M = > 15 0,131 0,56 1,11 1,126 0,402539487 

304 Idade_M = Range 3   33 to 35 A_B_Pre = 1 to 31 0,131 0,636 1,362 1,465 3,186407615 

306 PMA, Formas_N_3M = > 4 A_B_3M = > 32 0,131 0,636 1,362 1,465 3,186407615 

307 Grau_Varicoc = II, Formas_N_3M = > 4 A_B_3M = > 32 0,131 0,636 1,362 1,465 3,186407615 

308 Grau_Varicoc = II, Formas_N_3M = > 4 Gravidez_espontanea 0,131 0,636 1,39 1,491 3,561054981 

267 Conc_3M = > 15, A_B_Pre = > 32 PMA 0,131 0,583 0,946 0,92 0,145233261 

269 Gravidez_espontanea, Formas_N_3M = > 4 Grau_Varicoc = II 0,131 0,583 1,3 1,323 2,269386918 

270 Conc_3M = > 15, A_B_3M = > 32, Formas_N_3M = > 4 Gravidez_espontanea 0,131 0,583 1,274 1,301 1,964302058 

283 A_B_3M = > 32, Grau_Varicoc = II Formas_N_3M = > 4 0,131 0,609 1,551 1,552 5,755681642 

282 A_B_Pre = 1 to 31, Grau_Varicoc = II PMA 0,131 0,609 0,987 0,979 0,007984346 
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271 Gravidez_espontanea, Formas_N_3M = > 4 Conc_3M = > 15, A_B_3M = > 32 0,131 0,583 1,734 1,593 8,462564455 

303 Idade_M = Range 3   33 to 35 PMA 0,131 0,636 1,032 1,054 0,045648402 

232 Conc_6M = 0.01 to 14.9 Conc_3M = 0.01 to 14.9 0,131 0,56 1,577 1,466 5,989857376 

234 PMA, A_B_3M = 1 to 31 Conc_3M = 0.01 to 14.9 0,131 0,56 1,577 1,466 5,989857376 

206 PMA, A_B_Pre = > 32 HabitosTabagicos_Processado_Simplificado 0,131 0,538 1,477 1,377 4,489666743 

207 PMA, Conc_3M = 0.01 to 14.9 A_B_3M = 1 to 31 0,131 0,538 1,646 1,458 6,978598542 

163 Conc_3M = > 15, A_B_Pre = 1 to 31 A_B_3M = 1 to 31 0,131 0,5 1,529 1,346 5,165289658 

169 Conc_3M = > 15, Gravidez_espontanea A_B_3M = > 32, Formas_N_3M = > 4 0,131 0,5 1,911 1,477 11,17142185 

170 A_B_3M = > 32, Gravidez_espontanea Conc_3M = > 15, Formas_N_3M = > 4 0,131 0,5 1,621 1,383 6,53395741 

171 A_B_3M = > 32, Formas_N_3M = > 4 Conc_3M = > 15, Gravidez_espontanea 0,131 0,5 1,911 1,477 11,17142185 

376 Conc_3M = > 15, Formas_N_3M = 1 to 3 PMA 0,131 0,737 1,195 1,456 1,415316865 

391 Conc_3M = 0.01 to 14.9, A_B_3M = 1 to 31 PMA 0,131 0,778 1,261 1,724 2,377192074 

68 Formas_N_3M = 1 to 3 PMA, Conc_3M = > 15 0,131 0,438 1,419 1,229 3,578902334 

44 PMA, Conc_3M = > 15 Formas_N_3M = 1 to 3 0,131 0,424 1,419 1,217 3,578971786 

46 Conc_3M = > 15, Formas_N_3M = > 4 A_B_3M = > 32, Gravidez_espontanea 0,131 0,424 1,621 1,282 6,534951361 

4 A_B_3M = 1 to 31 PMA, Conc_3M = 0.01 to 14.9 0,131 0,4 1,646 1,262 6,980873662 

5 A_B_3M = 1 to 31 Conc_3M = > 15, A_B_Pre = 1 to 31 0,131 0,4 1,529 1,231 5,166306725 

437 PMA, A_B_3M = > 32, Formas_N_3M = > 4 Conc_3M = > 15 0,121 0,929 1,84 6,935 11,52958556 

8 Formas_N_3M = 1 to 3 Conc_3M = 0.01 to 14.9 0,121 0,406 1,144 1,086 0,518225697 

429 A_B_Pre = 1 to 31, HabitosTabagicos_Processado_Simplificado PMA 0,121 0,867 1,405 2,874 4,587511741 

63 PMA, HabitosTabagicos_Processado_Simplificado A_B_Pre = 1 to 31 0,121 0,433 0,927 0,94 0,193830101 

89 Grau_Varicoc = I Formas_N_3M = > 4 0,121 0,448 1,142 1,101 0,515367025 

90 Grau_Varicoc = I A_B_3M = 1 to 31 0,121 0,448 1,37 1,22 2,633734159 

109 Idade_M = Range 2    31 to 32 A_B_Pre = 1 to 31 0,121 0,464 0,994 0,994 0,001189651 

110 Idade_M = Range 2    31 to 32 HabitosTabagicos_Processado_Simplificado 0,121 0,464 1,274 1,186 1,623338599 

112 Conc_3M = > 15, Gravidez_espontanea A_B_Pre = > 32 0,121 0,464 1,155 1,117 0,608945405 

131 PMA, Idade_M = Range 1    <31 Conc_3M = 0.01 to 14.9 0,121 0,481 1,356 1,244 2,50555342 

155 PMA, Conc_3M = 0.01 to 14.9 A_B_Pre = 1 to 31 0,121 0,5 1,07 1,065 0,146832153 

183 PMA, Formas_N_3M = 1 to 3 A_B_3M = > 32 0,121 0,52 1,113 1,11 0,363330444 

341 PMA, Conc_3M = > 15, Formas_N_3M = > 4 A_B_3M = > 32 0,121 0,684 1,464 1,687 4,341684022 

211 Conc_6M = > 15 A_B_Pre = > 32 0,121 0,542 1,348 1,305 2,504435117 

212 Conc_3M = > 15, A_B_Pre = > 32 Gravidez_espontanea 0,121 0,542 1,183 1,183 0,870824198 
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213 Gravidez_espontanea, Formas_N_3M = > 4 A_B_Pre = > 32 0,121 0,542 1,348 1,305 2,504435117 

214 Conc_3M = > 15, A_B_3M = > 32, Formas_N_3M = > 4 PMA 0,121 0,542 0,878 0,836 0,738357554 

299 Gravidez_espontanea, A_B_Pre = > 32 Formas_N_3M = > 4 0,121 0,619 1,577 1,595 5,592636226 

300 A_B_Pre = > 32, Formas_N_3M = > 4 Gravidez_espontanea 0,121 0,619 1,352 1,423 2,720268713 

301 PMA, Conc_3M = > 15, A_B_3M = > 32 Formas_N_3M = > 4 0,121 0,619 1,577 1,595 5,592636226 

272 PMA, Formas_N_3M = > 4 Conc_3M = > 15, A_B_3M = > 32 0,121 0,591 1,756 1,622 7,986866708 

298 Gravidez_espontanea, A_B_Pre = > 32 Conc_3M = > 15 0,121 0,619 1,227 1,3 1,363887626 

159 PMA, Conc_3M = 0.01 to 14.9 Idade_M = Range 1    <31 0,121 0,5 1,372 1,271 2,710624362 

387 A_B_Pre = 1 to 31, Conc_3M = 0.01 to 14.9 PMA 0,121 0,765 1,24 1,629 1,86497747 

388 A_B_3M = > 32, Formas_N_3M = 1 to 3 PMA 0,121 0,765 1,24 1,629 1,86497747 

389 Idade_M = Range 1    <31, Conc_3M = 0.01 to 14.9 PMA 0,121 0,765 1,24 1,629 1,86497747 

111 PMA, A_B_3M = > 32 Formas_N_3M = 1 to 3 0,121 0,464 1,552 1,308 4,905036784 

113 PMA, A_B_3M = > 32 Conc_3M = > 15, Formas_N_3M = > 4 0,121 0,464 1,505 1,291 4,290669224 

114 A_B_3M = > 32, Formas_N_3M = > 4 PMA, Conc_3M = > 15 0,121 0,464 1,505 1,291 4,290669224 

9 Formas_N_3M = 1 to 3 PMA, A_B_3M = > 32 0,121 0,406 1,552 1,243 4,90392545 

2 PMA, HabitosTabagicos_Processado_Simplificado Grau_Varicoc = II 0,112 0,4 0,892 0,919 0,394595122 

3 PMA, HabitosTabagicos_Processado_Simplificado Formas_N_3M = > 4 0,112 0,4 1,019 1,012 0,009707018 

435 Conc_3M = > 15, Gravidez_espontanea, A_B_Pre = > 32 A_B_3M = > 32 0,112 0,923 1,975 6,925 12,32469381 

436 Gravidez_espontanea, A_B_Pre = > 32, Formas_N_3M = > 4 A_B_3M = > 32 0,112 0,923 1,975 6,925 12,32469381 

24 Grau_Varicoc = I A_B_3M = > 32 0,112 0,414 0,886 0,909 0,452337822 

25 Grau_Varicoc = I Conc_3M = 0.01 to 14.9 0,112 0,414 1,165 1,1 0,595556748 

424 A_B_3M = > 32, Idade_M = Range 2    31 to 32 Conc_3M = > 15 0,112 0,857 1,698 3,467 7,986218699 

426 Formas_N_3M = > 4, Idade_M = Range 1    <31 A_B_3M = > 32 0,112 0,857 1,834 3,729 9,814403001 

427 PMA, Conc_3M = > 15, A_B_Pre = > 32 A_B_3M = > 32 0,112 0,857 1,834 3,729 9,814403001 

51 PMA, A_B_3M = > 32 A_B_Pre = 1 to 31 0,112 0,429 0,917 0,932 0,228947652 

52 PMA, A_B_3M = > 32 Idade_M = Range 1    <31 0,112 0,429 1,176 1,112 0,672519009 

53 Conc_3M = > 15, A_B_Pre = 1 to 31 Formas_N_3M = > 4 0,112 0,429 1,092 1,063 0,20704367 

54 Idade_M = Range 2    31 to 32 Conc_3M = > 15, A_B_3M = > 32 0,112 0,429 1,274 1,161 1,440934524 

57 A_B_3M = > 32, Formas_N_3M = > 4 Idade_M = Range 1    <31 0,112 0,429 1,176 1,112 0,672519009 

410 Conc_3M = > 15, Idade_M = Range 2    31 to 32 A_B_3M = > 32 0,112 0,8 1,712 2,664 7,745839576 

411 Grau_Varicoc = II, A_B_3M = 1 to 31 A_B_Pre = 1 to 31 0,112 0,8 1,712 2,664 7,745839576 

78 PMA, Idade_M = Range 1    <31 A_B_3M = > 32 0,112 0,444 0,951 0,959 0,075898097 
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79 PMA, Idade_M = Range 1    <31 A_B_Pre = > 32 0,112 0,444 1,106 1,077 0,272019744 

412 A_B_3M = 1 to 31, Formas_N_3M = 1 to 3 A_B_Pre = 1 to 31 0,112 0,8 1,712 2,664 7,745839576 

81 Gravidez_espontanea, Grau_Varicoc = II A_B_Pre = 1 to 31 0,112 0,444 0,951 0,959 0,075898097 

82 A_B_3M = > 32, A_B_Pre = > 32 Grau_Varicoc = II 0,112 0,444 0,991 0,993 0,002373255 

413 PMA, A_B_3M = > 32, A_B_Pre = > 32 Conc_3M = > 15 0,112 0,8 1,585 2,477 6,074988002 

105 PMA, Grau_Varicoc = II HabitosTabagicos_Processado_Simplificado 0,112 0,462 1,266 1,18 1,392140141 

106 PMA, A_B_Pre = > 32 Formas_N_3M = > 4 0,112 0,462 1,176 1,128 0,686282391 

107 PMA, A_B_Pre = > 32 Idade_M = Range 1    <31 0,112 0,462 1,266 1,18 1,392140141 

108 PMA, A_B_Pre = > 32 Conc_3M = > 15, A_B_3M = > 32 0,112 0,462 1,372 1,232 2,405582297 

124 Conc_6M = 0.01 to 14.9 A_B_Pre = 1 to 31 0,112 0,48 1,027 1,024 0,020832214 

380 A_B_Pre = 1 to 31, Formas_N_3M = > 4 Conc_3M = > 15 0,112 0,75 1,486 1,981 4,521027089 

128 A_B_Pre = 1 to 31, A_B_3M = 1 to 31 Grau_Varicoc = II 0,112 0,48 1,07 1,06 0,129819307 

382 A_B_3M = > 32, Gravidez_espontanea, A_B_Pre = > 32 Conc_3M = > 15 0,112 0,75 1,486 1,981 4,521027089 

383 A_B_3M = > 32, Gravidez_espontanea, A_B_Pre = > 32 Formas_N_3M = > 4 0,112 0,75 1,911 2,43 10,07040459 

148 Conc_6M = > 15 Grau_Varicoc = II 0,112 0,5 1,115 1,103 0,332093705 

351 PMA, Conc_6M = > 15 Conc_3M = > 15 0,112 0,706 1,399 1,684 3,272145548 

354 Grau_Varicoc = II, A_B_Pre = > 32 A_B_3M = > 32 0,112 0,706 1,511 1,811 4,620255326 

184 A_B_Pre = 1 to 31, Grau_Varicoc = II Gravidez_espontanea 0,112 0,522 1,139 1,133 0,477785409 

186 A_B_3M = > 32, Grau_Varicoc = II A_B_Pre = > 32 0,112 0,522 1,298 1,251 1,746060363 

218 PMA, Formas_N_3M = > 4 A_B_Pre = > 32 0,112 0,545 1,357 1,316 2,367504479 

329 Conc_3M = > 15, HabitosTabagicos_Processado_Simplificado A_B_3M = > 32 0,112 0,667 1,427 1,598 3,455228784 

334 A_B_3M = > 32, Gravidez_espontanea, Formas_N_3M = > 4 A_B_Pre = > 32 0,112 0,667 1,659 1,794 6,305126557 

335 A_B_3M = > 32, A_B_Pre = > 32, Formas_N_3M = > 4 Gravidez_espontanea 0,112 0,667 1,456 1,626 3,795660263 

241 A_B_3M = > 32, Idade_M = Range 1    <31 PMA 0,112 0,571 0,926 0,894 0,229964241 

242 A_B_Pre = > 32, Formas_N_3M = > 4 PMA 0,112 0,571 0,926 0,894 0,229964241 

245 A_B_Pre = 1 to 31, Gravidez_espontanea Grau_Varicoc = II 0,112 0,571 1,274 1,287 1,592102498 

249 Conc_3M = > 15, A_B_3M = > 32, A_B_Pre = > 32 PMA 0,112 0,571 0,926 0,894 0,229964241 

250 Conc_3M = > 15, A_B_3M = > 32, A_B_Pre = > 32 Gravidez_espontanea 0,112 0,571 1,248 1,265 1,354378079 

277 A_B_3M = > 32, HabitosTabagicos_Processado_Simplificado Conc_3M = > 15 0,112 0,6 1,189 1,238 0,893596671 

278 Conc_3M = > 15, A_B_3M = > 32, Gravidez_espontanea A_B_Pre = > 32 0,112 0,6 1,493 1,495 4,010288422 

247 A_B_3M = > 32, Idade_M = Range 1    <31 Formas_N_3M = > 4 0,112 0,571 1,456 1,417 3,502770131 

248 PMA, Conc_3M = > 15, A_B_3M = > 32 A_B_Pre = > 32 0,112 0,571 1,422 1,396 3,119755542 



APPENDIX C 

Judith Santos Pereira                                                                                                                                                                                                                                                           261 
    

No. Antecedent Consequent Support Confidence Lift Conviction x2 

251 Gravidez_espontanea, A_B_Pre = > 32 Conc_3M = > 15, A_B_3M = > 32 0,112 0,571 1,698 1,548 6,444840182 

253 Gravidez_espontanea, A_B_Pre = > 32 A_B_3M = > 32, Formas_N_3M = > 4 0,112 0,571 2,184 1,723 12,95669574 

254 A_B_Pre = > 32, Formas_N_3M = > 4 A_B_3M = > 32, Gravidez_espontanea 0,112 0,571 2,184 1,723 12,95669574 

325 A_B_Pre = 1 to 31, A_B_3M = > 32 PMA 0,112 0,667 1,081 1,15 0,228246616 

219 PMA, Formas_N_3M = > 4 HabitosTabagicos_Processado_Simplificado 0,112 0,545 1,497 1,398 3,913688313 

220 A_B_Pre = 1 to 31, Formas_N_3M = 1 to 3 A_B_3M = 1 to 31 0,112 0,545 1,668 1,48 5,993542303 

185 A_B_Pre = 1 to 31, Grau_Varicoc = II A_B_3M = 1 to 31 0,112 0,522 1,595 1,407 5,034109479 

154 Conc_6M = > 15 PMA, Conc_3M = > 15 0,112 0,5 1,621 1,383 5,312729043 

352 Conc_3M = > 15, Conc_6M = > 15 PMA 0,112 0,706 1,144 1,303 0,674327592 

353 Grau_Varicoc = II, HabitosTabagicos_Processado_Simplificado PMA 0,112 0,706 1,144 1,303 0,674327592 

166 Conc_3M = > 15, A_B_Pre = > 32 PMA, A_B_3M = > 32 0,112 0,5 1,911 1,477 9,083428862 

168 Conc_3M = > 15, A_B_Pre = > 32 A_B_3M = > 32, Gravidez_espontanea 0,112 0,5 1,911 1,477 9,083428862 

174 Gravidez_espontanea, Formas_N_3M = > 4 A_B_3M = > 32, A_B_Pre = > 32 0,112 0,5 1,981 1,495 10,03513075 

379 A_B_Pre = > 32, Idade_M = Range 1    <31 PMA 0,112 0,75 1,216 1,533 1,410470381 

125 PMA, A_B_3M = 1 to 31 Formas_N_3M = 1 to 3 0,112 0,48 1,605 1,348 5,08573171 

126 PMA, Formas_N_3M = 1 to 3 A_B_3M = 1 to 31 0,112 0,48 1,467 1,294 3,453916448 

129 A_B_Pre = 1 to 31, A_B_3M = 1 to 31 Formas_N_3M = 1 to 3 0,112 0,48 1,605 1,348 5,08573171 

83 A_B_3M = > 32, A_B_Pre = > 32 PMA, Conc_3M = > 15 0,112 0,444 1,441 1,245 3,126286012 

84 A_B_3M = > 32, A_B_Pre = > 32 Conc_3M = > 15, Gravidez_espontanea 0,112 0,444 1,698 1,329 6,226729441 

86 A_B_3M = > 32, A_B_Pre = > 32 Gravidez_espontanea, Formas_N_3M = > 4 0,112 0,444 1,981 1,396 10,03484882 

408 
Formas_N_3M = > 4, 
HabitosTabagicos_Processado_Simplificado PMA 0,112 0,8 1,297 1,916 2,473203538 

409 A_B_3M = 1 to 31, Formas_N_3M = 1 to 3 PMA 0,112 0,8 1,297 1,916 2,473203538 

58 PMA, A_B_3M = > 32 Conc_3M = > 15, A_B_Pre = > 32 0,112 0,429 1,911 1,357 9,08214394 

59 Conc_3M = > 15, Gravidez_espontanea A_B_3M = > 32, A_B_Pre = > 32 0,112 0,429 1,698 1,308 6,226572561 

60 A_B_3M = > 32, Gravidez_espontanea Conc_3M = > 15, A_B_Pre = > 32 0,112 0,429 1,911 1,357 9,08214394 

61 A_B_3M = > 32, Gravidez_espontanea A_B_Pre = > 32, Formas_N_3M = > 4 0,112 0,429 2,184 1,407 12,95466284 

62 A_B_3M = > 32, Formas_N_3M = > 4 Gravidez_espontanea, A_B_Pre = > 32 0,112 0,429 2,184 1,407 12,95466284 

434 PMA, A_B_Pre = > 32, Formas_N_3M = > 4 Conc_3M = > 15 0,103 0,917 1,816 5,944 9,195737362 

10 PMA, Idade_M = Range 1    <31 Conc_3M = > 15 0,103 0,407 0,807 0,836 1,374030758 

11 PMA, Idade_M = Range 1    <31 A_B_Pre = 1 to 31 0,103 0,407 0,872 0,899 0,519886828 

12 PMA, Idade_M = Range 1    <31 HabitosTabagicos_Processado_Simplificado 0,103 0,407 1,118 1,072 0,288959011 
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13 A_B_3M = > 32, A_B_Pre = > 32 Idade_M = Range 1    <31 0,103 0,407 1,118 1,072 0,288959011 

14 A_B_3M = > 32, A_B_Pre = > 32 HabitosTabagicos_Processado_Simplificado 0,103 0,407 1,118 1,072 0,288959011 

15 Gravidez_espontanea, Grau_Varicoc = II Conc_3M = > 15, A_B_3M = > 32 0,103 0,407 1,211 1,12 0,817053867 

34 PMA, Grau_Varicoc = II A_B_3M = 1 to 31 0,103 0,423 1,293 1,166 1,437564632 

35 PMA, Conc_3M = 0.01 to 14.9 HabitosTabagicos_Processado_Simplificado 0,103 0,423 1,161 1,102 0,511689826 

36 PMA, Conc_3M = 0.01 to 14.9 Formas_N_3M = 1 to 3 0,103 0,423 1,415 1,215 2,529274193 

37 Conc_3M = > 15, Grau_Varicoc = II A_B_3M = 1 to 31 0,103 0,423 1,293 1,166 1,437564632 

38 PMA, A_B_Pre = > 32 Conc_3M = > 15, Formas_N_3M = > 4 0,103 0,423 1,372 1,199 2,124374398 

419 Conc_3M = 0.01 to 14.9, Formas_N_3M = 1 to 3 PMA 0,103 0,846 1,372 2,491 3,301434515 

420 Formas_N_3M = > 4, Grau_Varicoc = I Conc_3M = > 15 0,103 0,846 1,677 3,22 6,921159619 

421 Conc_3M = > 15, Gravidez_espontanea, A_B_Pre = > 32 Formas_N_3M = > 4 0,103 0,846 2,156 3,949 12,80108921 

422 Gravidez_espontanea, A_B_Pre = > 32, Formas_N_3M = > 4 Conc_3M = > 15 0,103 0,846 1,677 3,22 6,921159619 

70 Conc_6M = 0.01 to 14.9 HabitosTabagicos_Processado_Simplificado 0,103 0,44 1,207 1,135 0,803876078 

71 PMA, A_B_3M = 1 to 31 Conc_3M = > 15 0,103 0,44 0,872 0,885 0,545732692 

72 PMA, A_B_3M = 1 to 31 Grau_Varicoc = II 0,103 0,44 0,981 0,985 0,009601823 

73 PMA, Formas_N_3M = 1 to 3 Conc_3M = 0.01 to 14.9 0,103 0,44 1,239 1,152 1,028709619 

74 A_B_Pre = 1 to 31, A_B_3M = 1 to 31 Conc_3M = 0.01 to 14.9 0,103 0,44 1,239 1,152 1,028709619 

400 Formas_N_3M = > 4, Idade_M = Range 1    <31 Conc_3M = > 15 0,103 0,786 1,557 2,312 5,103626186 

401 PMA, Conc_3M = > 15, Formas_N_3M = 1 to 3 A_B_Pre = 1 to 31 0,103 0,786 1,681 2,486 6,571946711 

402 PMA, Conc_3M = > 15, A_B_Pre = > 32 Formas_N_3M = > 4 0,103 0,786 2,002 2,835 10,47188135 

94 Conc_6M = > 15 Gravidez_espontanea 0,103 0,458 1,001 1,001 2,61853E-05 

403 A_B_3M = > 32, Grau_Varicoc = II, Formas_N_3M = > 4 Conc_3M = > 15 0,103 0,786 1,557 2,312 5,103626186 

97 Conc_3M = > 15, A_B_3M = > 32, Formas_N_3M = > 4 Grau_Varicoc = II 0,103 0,458 1,022 1,018 0,012201814 

404 A_B_3M = > 32, Grau_Varicoc = II, Formas_N_3M = > 4 Gravidez_espontanea 0,103 0,786 1,716 2,53 6,991428826 

405 Gravidez_espontanea, Grau_Varicoc = II, Formas_N_3M = > 4 A_B_3M = > 32 0,103 0,786 1,681 2,486 6,571946711 

369 Grau_Varicoc = II, A_B_3M = 1 to 31 Conc_3M = > 15 0,103 0,733 1,453 1,857 3,654671405 

370 
Formas_N_3M = > 4, 
HabitosTabagicos_Processado_Simplificado Conc_3M = > 15 0,103 0,733 1,453 1,857 3,654671405 

371 Conc_3M = > 15, Grau_Varicoc = I Formas_N_3M = > 4 0,103 0,733 1,868 2,278 8,51192947 

372 Gravidez_espontanea, Idade_M = Range 1    <31 A_B_3M = > 32 0,103 0,733 1,569 1,998 4,965953892 

374 Conc_3M = > 15, A_B_3M = > 32, Grau_Varicoc = II Gravidez_espontanea 0,103 0,733 1,601 2,033 5,335973283 

144 Idade_M = Range 3   33 to 35 Conc_3M = > 15 0,103 0,5 0,991 0,991 0,002289834 
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375 Conc_3M = > 15, A_B_3M = > 32, Grau_Varicoc = II Formas_N_3M = > 4 0,103 0,733 1,868 2,278 8,51192947 

149 Idade_M = Range 3   33 to 35 Grau_Varicoc = II 0,103 0,5 1,115 1,103 0,298484006 

152 Idade_M = Range 3   33 to 35 Formas_N_3M = > 4 0,103 0,5 1,274 1,215 1,34635834 

153 ProfissãoComRiscoDeContactoDeProdutosOuAmbientesToxicos HabitosTabagicos_Processado_Simplificado 0,103 0,5 1,372 1,271 2,202773762 

345 A_B_Pre = > 32, Idade_M = Range 1    <31 A_B_3M = > 32 0,103 0,688 1,471 1,705 3,67226173 

346 Conc_3M = > 15, Gravidez_espontanea, Grau_Varicoc = II A_B_3M = > 32 0,103 0,688 1,471 1,705 3,67226173 

347 Conc_3M = > 15, Grau_Varicoc = II, Formas_N_3M = > 4 A_B_3M = > 32 0,103 0,688 1,471 1,705 3,67226173 

189 A_B_3M = > 32, Idade_M = Range 1    <31 Gravidez_espontanea 0,103 0,524 1,144 1,138 0,458778955 

190 A_B_3M = > 32, Idade_M = Range 1    <31 A_B_Pre = > 32 0,103 0,524 1,303 1,256 1,616657394 

221 PMA, Grau_Varicoc = I A_B_Pre = 1 to 31 0,103 0,55 1,177 1,184 0,677571547 

222 A_B_3M = > 32, HabitosTabagicos_Processado_Simplificado A_B_Pre = > 32 0,103 0,55 1,369 1,329 2,254472797 

223 Conc_3M = > 15, A_B_3M = > 32, Gravidez_espontanea Grau_Varicoc = II 0,103 0,55 1,226 1,225 1,024581125 

316 Conc_3M = > 15, A_B_3M = 1 to 31 Grau_Varicoc = II 0,103 0,647 1,442 1,562 3,221096926 

317 A_B_Pre = 1 to 31, Conc_3M = 0.01 to 14.9 A_B_3M = 1 to 31 0,103 0,647 1,978 1,907 9,419460678 

319 Conc_3M = > 15, Gravidez_espontanea, Formas_N_3M = > 4 A_B_Pre = > 32 0,103 0,647 1,61 1,695 5,064770445 

261 Conc_3M = > 15, Formas_N_3M = 1 to 3 A_B_3M = > 32 0,103 0,579 1,239 1,265 1,160231039 

288 Conc_3M = > 15, Idade_M = Range 1    <31 Formas_N_3M = > 4 0,103 0,611 1,557 1,562 4,347281413 

264 Conc_3M = > 15, A_B_Pre = > 32, Formas_N_3M = > 4 PMA 0,103 0,579 0,939 0,91 0,138563799 

265 Conc_3M = > 15, A_B_Pre = > 32, Formas_N_3M = > 4 Gravidez_espontanea 0,103 0,579 1,264 1,287 1,363985946 

289 Conc_3M = > 15, HabitosTabagicos_Processado_Simplificado Formas_N_3M = > 4 0,103 0,611 1,557 1,562 4,347281413 

291 PMA, Conc_3M = > 15, A_B_Pre = 1 to 31 Formas_N_3M = 1 to 3 0,103 0,611 2,043 1,802 10,06987546 

294 A_B_3M = > 32, Gravidez_espontanea, Grau_Varicoc = II Formas_N_3M = > 4 0,103 0,611 1,557 1,562 4,347281413 

286 Idade_M = Range 4   <36 Gravidez_espontanea 0,103 0,611 1,334 1,394 2,045281719 

287 Conc_3M = > 15, Idade_M = Range 1    <31 PMA 0,103 0,611 0,991 0,985 0,00282553 

290 Conc_3M = 0.01 to 14.9, A_B_3M = 1 to 31 A_B_Pre = 1 to 31 0,103 0,611 1,308 1,37 1,804127204 

292 PMA, A_B_Pre = 1 to 31, Formas_N_3M = 1 to 3 Conc_3M = > 15 0,103 0,611 1,211 1,274 0,983585597 

293 A_B_3M = > 32, Gravidez_espontanea, Grau_Varicoc = II Conc_3M = > 15 0,103 0,611 1,211 1,274 0,983585597 

262 Conc_3M = > 15, Formas_N_3M = 1 to 3 PMA, A_B_Pre = 1 to 31 0,103 0,579 1,877 1,643 7,943595254 

295 A_B_3M = > 32, Gravidez_espontanea, Formas_N_3M = > 4 Grau_Varicoc = II 0,103 0,611 1,362 1,418 2,313000382 

263 PMA, Conc_3M = > 15, Formas_N_3M = > 4 A_B_Pre = > 32 0,103 0,579 1,441 1,421 3,024562244 

314 Conc_3M = > 15, A_B_3M = 1 to 31 PMA 0,103 0,647 1,049 1,086 0,078287512 

315 A_B_3M = > 32, Formas_N_3M = 1 to 3 Conc_3M = > 15 0,103 0,647 1,282 1,403 1,641537751 
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318 A_B_Pre = > 32, HabitosTabagicos_Processado_Simplificado A_B_3M = > 32 0,103 0,647 1,385 1,509 2,63264003 

191 A_B_Pre = > 32, Formas_N_3M = > 4 PMA, Conc_3M = > 15 0,103 0,524 1,698 1,452 5,692629799 

192 Gravidez_espontanea, A_B_Pre = > 32 Conc_3M = > 15, Formas_N_3M = > 4 0,103 0,524 1,698 1,452 5,692629799 

193 A_B_Pre = > 32, Formas_N_3M = > 4 Conc_3M = > 15, Gravidez_espontanea 0,103 0,524 2,002 1,55 9,318182297 

343 
Idade_M = Range 1    <31, 
HabitosTabagicos_Processado_Simplificado PMA 0,103 0,688 1,115 1,226 0,401440681 

344 
HabitosTabagicos_Processado_Simplificado, Conc_3M = 0.01 to 
14.9 PMA 0,103 0,688 1,115 1,226 0,401440681 

165 A_B_Pre = 1 to 31, Formas_N_3M = 1 to 3 PMA, Conc_3M = > 15 0,103 0,5 1,621 1,383 4,775051806 

167 PMA, Formas_N_3M = > 4 Conc_3M = > 15, A_B_Pre = > 32 0,103 0,5 2,229 1,551 12,1257685 

172 Grau_Varicoc = II, Formas_N_3M = > 4 Conc_3M = > 15, A_B_3M = > 32 0,103 0,5 1,486 1,327 3,325034253 

173 Grau_Varicoc = II, Formas_N_3M = > 4 A_B_3M = > 32, Gravidez_espontanea 0,103 0,5 1,911 1,477 8,164136178 

367 A_B_Pre = 1 to 31, Idade_M = Range 1    <31 PMA 0,103 0,733 1,189 1,437 1,004484393 

368 Grau_Varicoc = II, A_B_3M = 1 to 31 PMA 0,103 0,733 1,189 1,437 1,004484393 

373 Conc_3M = > 15, A_B_Pre = 1 to 31, Formas_N_3M = 1 to 3 PMA 0,103 0,733 1,189 1,437 1,004484393 

119 A_B_3M = > 32, Grau_Varicoc = II Conc_3M = > 15, Gravidez_espontanea 0,103 0,478 1,828 1,415 7,134187781 

120 A_B_3M = > 32, Grau_Varicoc = II Conc_3M = > 15, Formas_N_3M = > 4 0,103 0,478 1,551 1,326 3,974853321 

121 A_B_3M = > 32, Grau_Varicoc = II Gravidez_espontanea, Formas_N_3M = > 4 0,103 0,478 2,132 1,487 10,88366034 

96 Conc_3M = > 15, A_B_Pre = > 32 PMA, Formas_N_3M = > 4 0,103 0,458 2,229 1,467 12,12671949 

98 Conc_3M = > 15, A_B_Pre = > 32 Gravidez_espontanea, Formas_N_3M = > 4 0,103 0,458 2,043 1,432 9,758823821 

399 A_B_Pre = 1 to 31, Grau_Varicoc = I PMA 0,103 0,786 1,274 1,788 1,951210608 

99 Gravidez_espontanea, Formas_N_3M = > 4 Conc_3M = > 15, A_B_Pre = > 32 0,103 0,458 2,043 1,432 9,758823821 

100 Gravidez_espontanea, Formas_N_3M = > 4 A_B_3M = > 32, Grau_Varicoc = II 0,103 0,458 2,132 1,449 10,88417529 

75 PMA, Formas_N_3M = 1 to 3 Conc_3M = > 15, A_B_Pre = 1 to 31 0,103 0,44 1,681 1,318 5,377324192 

39 Conc_3M = > 15, Grau_Varicoc = II A_B_3M = > 32, Gravidez_espontanea 0,103 0,423 1,617 1,28 4,644910954 

40 Conc_3M = > 15, Grau_Varicoc = II A_B_3M = > 32, Formas_N_3M = > 4 0,103 0,423 1,617 1,28 4,644910954 

16 Gravidez_espontanea, Grau_Varicoc = II A_B_3M = > 32, Formas_N_3M = > 4 0,103 0,407 1,557 1,246 3,980653522 
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Published in the abstract book of the European Journal of Clinical Investigation and presented 

by the first author in the 53rd Annual Scientific Meeting of the European Society for Clinical 

Investigation in 22/05/19 (can be see in https://doi.org/10.1111/eci.13108 at S5-O3). 

Data Mining Applied to the Varicocele Condition 

Judith Santos-Pereira 1, Ana Paula Sousa 2, João Ramalho-Santos 3, Jorge Bernardino 4 

1 ISEC, Polytechnic Institute of Coimbra, Coimbra, Portugal; 2 Biology of Reproduction & Stem Cell Group, 

Center for Neuroscience and Cell Biology, University of Coimbra, Reproductive Medicine Unit, Centro Hospitalar 

e Universitário de Coimbra, Coimbra, Portugal; 3 Biology of Reproduction & Stem Cell Group, Center for 

Neuroscience and Cell Biology, University of Coimbra, Department of Life Sciences, University of Coimbra, 

Coimbra, Portugal; 4 ISEC, Polytechnic Institute of Coimbra, CISUC, University of Coimbra, Coimbra, Portugal 

Background: varicocele is manifested by an abnormal dilation of the veins within the scrotum. 

Its prevalence is related to 40% of the males treated for infertility where male factors encompass 

50% of infertility causes. Its correction can be achieved with the radiological embolization 

technique that introduces substances into the circulation to devitalize the enlarged veins. The 

aim of this study was to identify data patterns on patient’s data that have undergone varicocele 

embolization with Data Mining since, to the best of our knowledge, this advanced data analysis 

technique has not been yet applied upon this highly prevalent condition. 

Materials and methods: Data analysis was carried out upon a preprocessed data set of 293 

men from infertile couples described using 64 features that have undergone varicocele 

embolization between January 2007 and April 2016. Data mining was achieved by following 

the Crisp-DM methodology with the application of the most commonly applied Data Mining 

algorithms (i.e. C4.5, K-Means and FP-Growth).   

Results: The K-Means algorithm was the most effective with the following features, where 

statistical significance between the computed centroid values were with the ANOVA test 

calculated: male patient´s age (p=0.778); normality of the sperm concentration 3 months after 

the treatment (p<0.001); normality of the sperm progressive motility before (p<0.001) and 3 

months after the treatment (p=0.011); varicocele severity grade (p<0.001); presumed 

occupational exposure (p=0.007) and pregnancy outcome (p=0.030). The resultant data set was 

of 85 couples partitioned into 4 clusters with the Manhattan distance. 

Conclusions: This clinical investigation enlightened the possibility that infertile male patients 

with a high varicocele severity grade rarely conceive and that the frequency of patients with 

normal sperm concentrations 3 months after the varicocele embolization is much higher in 

clusters where fewer male patients work in putative hazardous environments. 
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Abstract 

Varicocele is manifested by an abnormal dilation of the veins within the scrotum. Its prevalence 

is related to 40% of the males treated for infertility where male factors encompass 50% of 

infertility causes. Its correction can be achieved with the radiological embolization technique 

which has been seen to positively impact pregnancy rates. To leverage ongoing investigations, 

this work aims to predict the success of the varicocele embolization through the pregnancy 

outcome and identify data patterns with data mining techniques since, to the best of our 

knowledge, an advanced data analysis technique has not been yet applied upon the correction 

of this highly prevalent condition. In this context, we have followed the CRISP-DM 

methodology and used the RapidMiner platform to apply the most commonly used data mining 

techniques in the health care domain; i.e., classification, clustering and association rule. These 

techniques were applied upon a dataset of 293 men from infertile couples that have undergone 

varicocele embolization. Our main findings suggest that among non azoospermic infertile 

embolized patients, the success of the varicocele embolization could be predicted with a F-

measure of 77.78% through the male patient partner age and influenced by some of the male 

patient´s features. In a data mining application point of view, this work enabled us to conclude 

that knowledge discovery can be potentiated by how data mining techniques are applied; and 

hence, this paper provides a practical guideline for similar studies due to its interesting 

outcomes validated by clinical experts. 

Keywords: Knowledge discovery, Decision tree, Clustering, Association Rule, varicocele 

embolization 

1. Introduction  

High dimensionality, noisy and missing values are some of the general medical data challenges 

that require a good time investment to preprocess it and identify data modeling steps that 

potentiate knowledge discovery. In this context, this paper aims to provide guidance to other 
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similar works by sharing how we have carried out the knowledge discovery process that has 

computed our most interesting data mining results that we also disclose. 

Data Mining is the process of discovering interesting data patterns (Han, Kamber, & Pei, 2012) 

where standard statistical exploratory data analysis procedures - traditional statistics -  could 

not discover useful or new insights (Hand, Blunt, Kelly, & Adams, 2000). In our era, traditional 

statistics is viewed as the primary data analysis technique and data mining as the secondary 

technique due to its strengths and rapid developments (Hand, 1998). While the groundwork of 

both techniques is mathematics, data mining extends it with other subjects such as machine 

learning, database systems and visualization which brings important gains over the traditional 

statistics techniques (Tekieh & Raahemi, 2015). The main advantages of data mining over the 

traditional statistical techniques are its capability to analyze different types of data (i.e. 

numbers, names, severity degrees etc.), as well as its ability to perform non hypothetical 

deductive analysis. In fact, this study has benefited by this last advantage since we have found 

new insights on the varicocele embolization domain. 

The varicocele condition is characterized by the dilation of the veins of the spermatic cord (Arif 

et al., 2018). The McGraw-Hill Concise Dictionary of Modern Medicine (“varicocele 

Definition,” 2002) state that the varicocele condition is linked to infertility in 40% of males 

treated for infertility. By having in mind that male infertility factors are responsible for 50% 

(Kirby, Wiener, Rajanahally, Crowell, & Coward, 2016) of infertility causes, the importance of 

assessing data patients with a condition with such prevalence is clear, given that infertility 

affects an estimated 15% of couples globally (Agarwal, Mulgund, Hamada, & Chyatte, 2015).  

The varicocele correction can be achieved through surgery or radiologically. Over the last 

decades, radiological techniques such as embolization has become increasingly popular as a 

less invasive technique. This technique introduces substances such as coils, sclerosants or glue 

into the circulation to devitalize the enlarged veins (Lippincott Williams & Wilkins, 2012).  

Related works have shown that embolization successfully corrects varicocele, whether it is with 

coils or glue, in an average of 92% (Makris et al., 2018). Furthermore, varicocele correction is 

considered has an important procedure in the treatment of infertility (Samplaski, Lo, Grober, 

Zini, & Jarvi, 2017) since it has been seen to increase the pregnancy rate of those undergoing 

varicocele correction compared with those with untreated varicocele (Kirby et al., 2016). In 

terms of patient´s features that were analyzed in related work, we have seen that sperm 

parameters, as well as its categorizations were the mostly studied (Çayan & Akbay, 2018) 

(Samplaski et al., 2017) (Makris et al., 2018). Moreover, external factors such as previous 

diseases (Niederberger, 2015), occupation, drinking and smoking habits have also been 

assessed (Delavar et al., 2014), as well as the condition laterality (DeWitt et al., 2018) and its 

severity grade (Aza Mohammed & Frank Chinegwundoh, 2009). To the best of our knowledge, 

all these patient´s features were in the varicocele domain uniquely assessed with traditional 

statistics and never analyzed in the perspective of predicting or defining patterns for the 

varicocele embolization success which raised the need for further investigations with an 

advanced data analysis technique such as data mining to identify new insights in this such 

important infertility treatment.  
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In this context, the aim of this work is to predict the success of the varicocele embolization 

through the pregnancy outcome and identify data patterns that can contribute to the ongoing 

varicocele researches. 

To tackle these data mining goals, we have applied upon a varicocele embolized population the 

most commonly used data mining techniques in the healthcare domain: classification, with the 

decision tree algorithm; clustering, with the K-Means algorithm and association, with the FP-

Growth algorithm. In spite of these data mining techniques having a proven applicability in the 

healthcare domain (Tekieh & Raahemi, 2015; Ahmad, Qamar, Qasim, & Rizvi, 2015; Tomar 

& Agarwal, 2013), they are rarely applied together in the medical treatment domain as seen in 

the meta-analysis carried out in Esfandiari, Babavalian, Moghadam, & Tabar (2014) work. 

Accordingly, the main contributions of this paper are: 

• Identify measures that had leverage knowledge discovery; 

• Contribute to the ongoing research on varicocele embolization; 

• Leverage the findings in the global field of male infertility. 

The remainder of this paper is organized as follows. Section 2 specifies the materials used and 

describes the knowledge discovery process that was followed to achieve our most interesting 

results. Section 3 presents the best obtained results (i.e., the ones that have achieved the highest 

performance and clinical interest). Section 4 discusses the followed knowledge discovery 

process by exploring its utility through the identification of measures that were seen potentiators 

of knowledge discovery. Section 5 briefly disclose the context of this work by enhancing the 

difference of the followed methodology from related works; and finally, section 6 presents 

conclusions and future work.  

2. Material and methodology 

In order to better convey how this work was carried out, this section describes the materials that 

were used and the methodologies that were followed to achieve the results disclosed in the 

following section 3. 

2.1 Materials 

In this section, we describe the studied population with its analyzed attributes and we specify 

the electronic tools that were used to achieve the data mining goals set. 

2.1.1 Studied Population 

Data analysis was carried out upon a preprocessed data set of 293 infertile couples (i.e. couples 

that were unable to get pregnant after 1 year of regular intercourse) where male partners had 

undergone varicocele embolization between January 2007 and April 2016 in the Portuguese 

public hospital called Centro Hospitalar e Universitário de Coimbra (CHUC) with the aim of 

improving their chances of conceiving.  

All male partners had undergone a semen analysis according to the fifth edition of the World 

Health Organization (WHO) laboratory manual for the examination and processing of human 

semen (WorldHealthOrganization, 2010) before and at 3, 6, 12 months after the varicocele 

embolization treatment, with a previous sexual abstinence of 3 to 4 days. Furthermore, couples 
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were followed in fertility appointments where some of the female partners have undergone 

Assisted Reproduction Techniques (ART) procedures such as intrauterine insemination (IUI), 

in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) or intracytoplasmic 

morphologically selected sperm injection (IMSI) to conceive. However, some couples were 

able to achieve pregnancy spontaneously.  

In this context, we have collected 39 patient’s attributes which were seen studied in the male 

infertility domain and have subsequently generated 25 attributes. Table 1 describes all these 64 

analyzed attributes where the first 39 listed below are the ones that were collected in the CHUC 

and the following ones, are the ones that were subsequently generated. Under the “Attribute 

value” column, we disclose the range of values (for numeric continuous attributes), the values 

(for binominal or ordinal attributes) or some values (for nominal attributes) recorded in each 

corresponding attribute specified under the “Attribute name” column. The indication of the 

attribute type is under the column named “Type” indicated with the following abbreviations: 

“Nu” (i.e. Numeric); “Bi” (i.e. Binominal); “No” (i.e. Nominal) or “Or” (i.e. Ordinal). The 

collected attributes that were seen with a good data quality by the RapidMiner platform (i.e. 

without having the same attribute value in all instances or/add a lot of missing values) after the 

data preparation step, have a check symbol (i.e. ) under this column. Note that the attributes 

which could associate a particular person were either deleted or deidentified to ensure 

confidentiality of the intervenient. 

Table 1 

List of assessed attributes 

ID Attribute name Description Type Attribute value 

1 Man age Age of the male patient at embolization time Nu  23-54 

2 Woman age Age of the patient´s partner at embolization Nu  20-46 

3 Infertility time Months the couple have been trying to conceive  Nu  4-192 

4 Type of infertility Patient´s partner first or second pregnancy  Bi Primary, Secondary 

5 Woman infertility factor Patient´s partner diagnosed infertility cause  No Anovulation 

6 Man infertility factor Male patient diagnosed infertility cause  No  Azoospermia, OAT  

7 Smoking habit Male patient smoking habits No  4 cigarettes per day 

8 Drinking habit Male patient drinking habits No  Socially, Rarely 

9 Surgeries Male patient surgeries before treatment No  Hernioplasty  

10 Diseases Male patient diseases before treatment No  Left Epididymis cyst  

11 Occupation Male patient occupation before treatment No  Factory worker 

12 Severity grade varicocele severity grade before treatment Or   I, II, III 

13 Laterality Scrotum site of the varicocele condition No  Left, Right, Both 

14 Testis volume Categorization of the patient´s testis volume  No Above 20cc, Normal 

15 Embolization date Date of the embolization treatment Nu  01/17/2007-

04/28/2016 

16 Embolized laterality Treated scrotum laterality No Left, Right, Both 

17 Material of Embolization Material used during the treatment No Coils, Glue 

18 Complications Complications after the embolization treatment No None, Pain 

19 Repeat embolization Whether the patient would repeat the treatment No Unknown, Yes, No 

20 Reason to not repeat Reason told for not repeating the treatment No Unknown, Pain 

21 Concentration before treatment Concentration of spermatozoa before  Nu  0-220 

22 Concentration at 3 months Concentration of spermatozoa at 3 months  Nu  0-170 

23 Concentration at 6 months Concentration of spermatozoa at 6 months  Nu  0-160 

24 Concentration at 12 months Concentration of spermatozoa at 12 months  Nu  0-80 

25 Progressive motility before treatment Percentage of fast/slow spermatozoa before  Nu  0-89 

26 Progressive motility at 3 months Percentage of fast/slow spermatozoa at 3 months  Nu  0-94 

27 Progressive motility at 6 months Percentage of fast/slow spermatozoa at 6 months Nu  0-83 

28 Progressive motility at 12 months Percentage of fast/slow spermatozoa at 12 months Nu  0-83 

29 Morphology before treatment Percentage of normal spermatozoa before   Nu  0-38 

30 Morphology at 3 months Percentage of normal spermatozoa at 3 months Nu  0-21 

31 Morphology at 6 months Percentage of normal spermatozoa at 6 months Nu  0-21 

32 Morphology at 12 months Percentage of normal spermatozoa at 12 months Nu  1-10 
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ID Attribute name Description Type Attribute value 

33 Pregnancy outcome Couple got or not pregnant after embolization Bi   No, Yes 

34 Number of pregnancies Number of pregnancies had after embolization  Nu  0-3 

35 Birth Couple got or not a birth after embolization Bi No, Yes 

36 Number of alive babies Number of alive babies born after embolization  Nu  0-3 

37 Time took to conceive Number of months after embolization  Nu  0-79 

38 ART Patient´s partner got pregnant with ART  Bi No, Yes 

39 Spontaneous pregnancy Patient´s partner got pregnant spontaneously Bi No, Yes 

40 Preprocessed smoking habit Male patient smokes or not Bi No, Yes 

41 Preprocessed drinking habit Male patient drinks or not Bi No, Yes 

42 Preprocessed surgeries Male patient got surgeries before treatment  Bi No, Yes 

43 Preprocessed diseases Male patient got diseases before treatment No Epididymis 

44 Hazardous occupation Male patient works or not in a toxic environment  Bi No, Yes 

45 Altered before Number of altered sperm parameters before Nu 0, 1, 2, 3 

46 Altered at 3 months  Number of altered sperm parameters at 3 months Nu 0, 1, 2, 3 

47 Altered at 6 months Number of altered sperm parameters at 6 months Nu 0, 1, 2, 3 

48 Altered at 12 months Number of altered sperm parameters at 12 months Nu 0, 1, 2, 3 

49 Semen classification before treatment Semen classification before treatment No OAT 

50 Semen classification at 3 months Semen classification 3 months after treatment No Normozoospermia 

51 Semen classification at 6 months Semen classification 6 months after treatment No Azoospermia 

52 Semen classification at 12 months Semen classification 12 months after treatment No Azoospermia 

53 Concentration category before 

treatment 

Normality of the concentration value before Bi Abnormal, Normal 

54 Concentration category at 3 months Normality of the concentration value at 3 months Bi Abnormal, Normal 

55 Concentration category at 6 months Normality of the concentration value at 6 months Bi Abnormal, Normal 

56 Concentration category at 12 months Normality of the concentration value at 12 months Bi Abnormal, Normal 

57 Progressive motility category before Normality of the motility value before Bi Abnormal, Normal 

58 Progressive motility category at 3 

months 

Normality of the motility value at 3 months Bi Abnormal, Normal 

59 Progressive motility category at 6 

months 

Normality of the motility value at 6 months Bi Abnormal, Normal 

60 Progressive motility category at 12 

months 

Normality of the motility value at 12 months Bi Abnormal, Normal 

61 Morphology category before 

treatment 

Normality of the morphology value before  Bi Abnormal, Normal 

62 Morphology category at 3 months Normality of the morphology value at 3 months Bi Abnormal, Normal 

63 Morphology category at 6 months Normality of the morphology value at 6 months Bi Abnormal, Normal 

64 Morphology category at 12 months Normality of the morphology value at 12 months Bi Abnormal, Normal 

 

2.1.2 Tools 

In terms of software, this study used the software tools that we below specify for each following 

purpose of use: 

• Data collection and preparation: Microsoft Excel 2016, Home and Student 

Edition. 

• Data integration: Microsoft SQL Server Management Studio 2012. 

• Data Analysis (Statistical & Mining): RapidMiner Studio Educational platform, 

version 8.1.001. 

RapidMiner was the data mining tool that was selected since related works (Al-odan & Saud, 

2015) (Almeida, Gruenwald, & Bernardino, 2016) (Sharma, Singh, & Khatri, 2016) and 

consulting companies such as Gartner highly ranks this tool.  

This data mining tool is a data science software platform developed by the company of the same 

name. It was formerly known as YALE (Yet Another Learning Environment) and was 

developed at the Artificial Intelligence Unit of the Technical University of Dortmund, 

Germany, that has its initial release in 2006. This software platform as a Free Edition that can 

be used on data sets up to 10 000 rows with a limit of 1 logical processor that is distributed 
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under the AGPL license - AGPL is a license that can be attributed to open source software that 

can be run over a network. However, for academic use, the RapidMiner enables the use of a 

one year unlimited version which is the one that we have used.  

RapidMiner is written in the Java programming language and provides a GUI to design and 

execute analytical processes. These processes are built with the mean of drag and drop 

components that can apply data transformation tasks, descriptive statistical tests and Data 

Mining algorithms already implemented to the data. These components are in RapidMiner 

called “operators” and the connection of several operators is called visual composition 

framework (VCF). Each operator has several parameters that can be configured and always has 

input and output ports to respectively receive the data from the previous operator and send it to 

the next operator. Through this experience, we have identified that the main advantages of 

RapidMiner are its capabilities to optimize the data modeling process through its intuitive 

operators, as well as the good support delivered by its vast and active online community. 

2.2 Methodology 

This study was carried out by following the methodology called cross-industry standard process 

for data mining projects (CRISP-DM). This methodology encompasses a set of six phases that 

can be executed recursively and be briefly described as covering the following tasks (Chapman 

et al., 2000): 

• Business understanding – determine the business objectives and data mining 

goals; 

• Data understanding – collect, describe and explore the data and verify its quality;  

• Data preparation – select, clean, construct, integrate and format the previously 

understood data; 

• Modeling – select modeling techniques, define the training/testing design, build 

the data mining models and assess them with performance measures; 

• Evaluation – assess models with respect to business objectives and domain 

expertise; 

• Deployment – results deployment (e.g. simple report). 

Therefore, this study has begun with the understanding of the male infertility domain, as well 

as the identification of the needs/objectives of the ongoing clinical investigations that were 

converted into the data mining goals set (i.e. aims of this work); followed by the understanding 

of the collected data; the preparation of said data; the assessment of the execution of a set of 

defined data modeling steps implemented with models built in the RapidMiner platform; the 

evaluation of the models´ compliance with the business objectives and clinical expectations, 

and at last, the disclosure of findings. 

In order to showcase a practical guideline that potentiates knowledge discovery, in this 

subsection we explain how the data understanding, the data preparation, and the modelling 

phase were carried out during this data mining application since they are the steps that young 

data scientists usually seek for guidance. In order to better convey the executed modelling 

phase, we also disclose how each selected data mining algorithm was applied.  
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2.2.1 Data Understanding 

The data of the first 39 attributes listed in Table 1 was collected from the information 

technology systems, patient medical dossiers and semen analysis reports of the CHUC which 

were all integrated with the Microsoft SQL Server and then exported to an Excel file for further 

assessments.  

Afterwards, these attributes were described and explored statistically as suggested in Han et al. 

(2012) to successfully prepare the data for the mining process. In fact, these authors state that 

one should analysis the central tendency of the data (i.e. compute the Mean, Median and Mode 

of each attribute), as well as its dispersion (i.e. compute the minimum value (Min), the value of 

the first quartile (Q1), the value of the third quartile (Q3), the maximum value (Max) and the 

standard deviation (SD) of each attribute). Hence, this study has computed all these statistical 

measures and complemented its assessment by generating graphs such as time series, box plots 

and histograms with the RapidMiner platform and the Excel software to better understand the 

collected attributes.  

At last, we have verified the quality of the understood data as suggested in Thatipamula (2013) 

and Maydanchik (2007) to assess if the collected data was trustworthy and ready to respond to 

the Data Mining goals set. The collected data was checked regarding the compliance of the 

requirements of the following key data dimensions that can be briefly described as the following 

(Thatipamula, 2013): 

• Completeness - having all attributes needed and in a usable state to tackle the 

Data Mining goals; 

• Consistency - showing data coherence between attributes and without duplicated 

instances; 

• Conformity - data complies with a specific format that is the same across all 

instances; 

• Accuracy - having the correct data; 

• Integrity - having the correct data linkage (e.g. the recorded male patient partner 

is correct). 

The Completeness, Consistency and Conformity were assessed by verifying whether the 

provided data complied with the key dimension´s requirements where the previously carried 

out statistical analysis had given us some insights. In the other hand, the Accuracy and Integrity 

were assessed by validating whether  the collected data was coherent across the several 

information technology systems from which the data was retrieve from since several people 

were involved in its collection. 

2.2.2 Data Preparation 

After the Data Understanding phase, we have seen that several data preparation tasks were 

needed to tackle the Data Mining goals set; and hence, all CRISP-DM tasks proposed for this 

phase were carried out to leverage its data quality which has begun with the selection and the 

cleaning of the data during the assessment of its key data dimensions: during the selection task, 

we have mainly deleted duplicated and empty instances and during the cleaning task, we have 
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corrected the data based on all the requirements of the key data dimensions. At last, we were 

not able to fill all missing values due to the inexistence of some of them in the medical 

information systems but nearly half of the attributes values were on average filled (55.86%). 

This study has not used a technique to fill the remaining missing values since we aimed to 

analyze them exactly as they were - data estimation techniques could bias the findings due to 

our small sample size.   

The data construction and integration tasks encompassed the production of derived attributes 

based on: the simplification (e.g. attribute with the id 40 to 44 of the previous Table 1); the 

aggregation (e.g. attribute with the id 45 to 52 of the previous Table 1) and the categorization 

(e.g. attribute with the id 53 to 64 of the previous Table 1) of existing attributes. All these 

attributes cover the 25 subsequently generated attributes.  

These attributes mainly handle sperm parameter data to enable the mining of this such relevant 

information in the male infertility domain on different perspectives; and hence, potentiate 

knowledge discovery. Therefore, we have transformed the collected numerical sperm parameter 

attributes into categorized ones based on the lower reference limits defined by the WHO 

(WorldHealthOrganization, 2010). These lower reference limits, also called thresholds, state 

that a male patient is considered with normospermia (i.e. with normal sperm parameter values) 

when having the following semen characteristics: 

• Sperm concentration equal or above 15 million/ml; 

• Sperm progressive motility with at least 32%; 

• Sperm morphology with at least 4%.  

These reference limits enabled us to categorize the sperm parameters values on whether or not 

its values are normal (i.e. attribute with the id 53 to 64 of the previous Table 1), as well as 

classify the semen (i.e. attribute with the id 49 to 52 of the previous Table 1) and indicate the 

number of altered sperm parameters seen in the semen (i.e. attribute with the id 45 to 48 of the 

previous Table 1) as defined in Table 2. 

Table 2 

Description of semen classifications and number of altered sperm parameters 

Semen classification Semen characteristics Number of altered parameters 

Normozoospermia Sperm concentration =>15 million/mL 

Sperm progressive motility => 32%  

Sperm morphology => 4% 

0 

Oligozoospermia Sperm concentration < 15 million/mL 

Sperm progressive motility => 32%  

Sperm morphology => 4% 

1 

OligoAstenozoospermia Sperm concentration < 15 million/mL 

Sperm progressive motility < 32%  

Sperm morphology => 4% 

2 

OligoTeratozoospermia Sperm concentration < 15 million/mL 

Sperm progressive motility => 32%   

Sperm morphology < 4% 

2 

Asthenozoospermia Sperm concentration => 15 million/mL 

Sperm progressive motility < 32%  

Sperm morphology => 4% 

1 

AsthenoTeratozoospermia Sperm concentration => 15 million/mL 

Sperm progressive motility < 32%  

Sperm morphology < 4% 

2 
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Semen classification Semen characteristics Number of altered parameters 

Teratozoospermia Sperm concentration => 15 million/mL 

Sperm progressive motility => 32%  

Sperm morphology < 4% 

1 

OligoAstenoTeratozoospermia Sperm concentration 15 < million/mL 

Sperm progressive motility < 32%  

Sperm morphology < 4% 

3 

Azoospermia Sperm concentration = 0 million/mL 

Sperm motility does not exist  

Sperm morphology does not exist 

1 

 

Next, the data was reexplored statistically - as carried out during the data understanding phase 

since the data is in this stage trustworthy to guide our mining process - and then, have extended 

our statistical analysis by applying the Pearson correlation and the ANOVA statistical test upon 

the collected continuous numerical attributes and the Chi-square  test upon the collected 

nominal attributes to identify the attributes that are more related with the pregnancy outcome. 

Furthermore, for each of these attributes, we have analyzed the Stability criterion (i.e. the 

proportion of the most frequent value), as well as have identified their proportion of Missing 

values. Hence, the attributes were in this study selected based on the following selection criteria 

where their thresholds, below specified under parentheses, were the ones suggested by the 

RapidMiner platform:  

• Low value on the Significance probability computed with ANOVA and Chi-

square  (i.e. <0.05); 

• High value on the Correlation with the Pregnancy outcome (i.e. > 0.01);   

• Low rate on the Stability (i.e. <90%) and Missing criteria (i.e. <70%).   

Since regular attributes should not be correlated, we have separated the selected attributes into 

several groups to overcome this situation which also lead us to the execution of several 

modelling steps. 

At last, we have formatted the selected data to comply with the specifications of each data 

mining technique (e.g. transform all nominal attributes into numerical and afterwards normalize 

all attributes between 0 and 1 to apply the K-Means algorithm).  

2.2.3 Decision tree 

Decision tree is an umbrella name for a set of algorithms that computes decision trees. Decision 

trees are very popular for the application of the classification data mining technique and in the 

health care domain, they are the most commonly used due to their higher result ´s 

interpretability (Esfandiari et al., 2014). They are mainly applied to identify the most interesting 

attributes that one should use to mine and/or to predict the conditional probability of an 

outcome, recorded under a special attribute called label, based on its historical records. The 

most commonly used algorithm is the C4.5 algorithm.  

Classifiers as the decision tree algorithm C4.5, began with the attribute that promotes the 

highest gain of information by placing it at its root and its ramification is guided with the 

entropy measure. In fact, the C4.5 algorithm aims to decrease the entropy through the 

downward splitting of the nodes; and hence, choose as attribute nodes, the one that produces 
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the purest daughter nodes (i.e. entropy equal to zero) to compute the smallest tree as soon as 

possible (Witten, Frank, & Hall, 2011). Therefore, the C4.5 algorithm works as follows: after 

splitting a node and testing whether the entropy of the next node is lesser than the entropy before 

splitting and if this value is the least as compared to all possible test-cases for splitting, then the 

node is split into its purest constituents (i.e. attribute values). This assessment is recursively 

performed with the remaining attributes until all leaf nodes are pure (i.e. leaf nodes with 

instances belonging to one class, such as: “Pregnancy outcome”= “Yes” or “Pregnancy 

outcome”= “No”), or until it is not possible to further on split because the entropy is equal to 1. 

In other words, as Witten et al. (2011) states, this algorithm works top-down, seeking at each 

stage for an attribute that can better split the classes (i.e. yields the highest gain of information 

at each stage). The gain of information is in the C4.5 algorithm computed with the Gain ratio 

measurement which is an extension of the information gain measure used by the ID3 algorithm 

(Han et al., 2012). 

Since decision trees are supervised learners, most decision trees algorithms need a binomial 

attribute as a label attribute and some implementations, require non-missing values under this 

special attribute. Hence, the application of this algorithm entails to select a label attribute, 

transform it as binomial (if it is not yet binomial), filter the rows of the data set by non-missing 

value under the label attribute, apply some optimizations (e.g., other algorithms, attribute 

discretization, attribute normalization etc.), train and test the decision tree algorithm with 

different settings (i.e. different parameter values) and then, validate the model that has 

previously computed the highest elected performance measures.  

Regarding the test design that we have followed, we have implemented a test design that splits 

the data set into 3 parts; and therefore, called the 3-parts test design, which partitions the data 

set into 80% for training/testing and 20% for validation where in the 80% part, 70% is taken to 

train and the remaining 30%, to test the data set. 

In Guh, Wu and Weng (2011) work, they have divided their data set of 5275 instances into only 

two parts. In fact, they have used 80% for training and 20% for testing; and hence, they have 

not validated their model. However, the CRISP-DM methodology (Chapman et al., 2000) 

suggests a 3-part test design to avoid test overfitting which especially occurs with small data 

sets. 

The first 80%/20% data set partitioning was executed with the RapidMiner´s Split data operator. 

This partitioning was performed with the Stratified sampling type to ensure that we have in 

each subset the same number of instances classified as “Yes” and “No” to promote balanced 

subsets. Afterwards, the 80% training/testing subset was further on partitioned into 70% 

training and 30% testing with the following operators: 

A.Split Validation - operator that splits the data set with a single iteration. 

B.Cross Validation - operator that performs several split validations. 

The Split Validation operator has partitioned this last 80% subset with several sampling types 

(e.g. Linear, Shuffle and Stratified) to test the one that delivered the best performance. 
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On the other hand, Cross Validation, which was already used in related works to predict seminal 

quality (Gil, Girela, De Juan, Gomez-Torres, & Johnsson, 2012), was in this study also applied 

with its corresponding RapidMiner´s operator which performs several Split Validations. In fact, 

this operator splits the data set into k sub-datasets and keeps one sub-dataset for testing and the 

remaining ones for training. Next, it recursively selects another sub-dataset for testing and 

considers the remaining ones for training. This test is done k times (i.e. until all sub-datasets 

were at least 1 time a testing dataset) and several k values can be tested. In this study, we have 

tested the model with k=2 to k=4 since the default number of folds set by the RapidMiner 

platform is 4 and our small number of training/testing subset lead us to also test the model with 

larger subsets (i.e. lower number of k folds) 

Since we have applied two decision tree algorithms (i.e. the decision tree from the RapidMiner 

platform and the java application of the C4.5 algorithm called W-J48), all built decision tree 

models have executed the following ordered testing steps: 

1. Test the RapidMiner´s Decision tree algorithm within a Split Validation. 

2. Test the RapidMiner´s Decision tree algorithm within a Cross Validation. 

3. Test the W-J48 algorithm within a Split Validation operator. 

4. Test the W-J48 algorithm within a Cross Validation operator.   

The training of the Decision tree algorithm entailed its application on several groups of 

attributes with the variation of the parameters shown in Table 3 at each previously listed testing 

steps. These varied parameters were selected based on the guidelines explained in Bala 

Deshpande (2012). The variation of the model parameters involved the execution of 8664 tests 

per modeling step of the decision tree algorithm: in each modeling step, we have carried out 

2160 tests for the decision tree algorithm ran within a simple validation; 6480 tests for the 

decision tree algorithm ran within a cross validation; 6 tests for the W-J48 algorithm ran within 

a simple validation and 18 tests for the W-J48 algorithm ran within a cross validation. These 

tests were executed within the RapidMiner´s “Optimize Parameters” operator which returns the 

best model that we have at last validated. 

Table 3 

Parameters varied through decision tree training 
Related Operator Parameter Name Tested Values 

Decision tree Criterion Information_gain; Gain_ratio; Gini_index; Accuracy. 

Decision tree Minimal size for split 4; 5; 6. 

Decision tree Minimal gain 0.100; 0.140; 0.180; 0.220; 0.260; 0.300. 

Decision tree Minimal leaf size 2;3;4;5; 6. 

Decision tree & W-J48 Apply pruning Yes; No. 

Split & Cross Validation Sampling Type Linear sampling; Shuffled sampling; Stratified sampling. 

Cross Validation Number of folds 2;3;4. 

 

Evaluation measures called performance metrics or error rates, were used to elect the right and 

best model to tackle the goals of this study. Since we aim to predict the success of the varicocele 

embolization, we had more interest on the model´s success to classify positive classes; and 

hence, we have focused on assessing performance measures that not only indicates how 

accurate and worth the model is through the respective Accuracy and AUC measure, but also, 
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how capable the model is to classify positive classes. In this context, we have elected the 

performance measures that we below disclose: 

• Accuracy - The proportion of instances classified correctly among the total 

number of instances; 

• Precision - The proportion of instances classified correctly as positive among 

the number of instances classified/predicted as positively; 

• Recall - The proportion of instances classified correctly as positive among the 

number of instances with the label attribute set to positive (i.e. “Pregnancy 

outcome” = “Yes”); 

• F-Measure - The harmonic mean of Precision and Recall; 

• AUC - The probability that the classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative instance. 

However, the metrics that were in this study determinant in the choice of the right Data Mining 

model for the prediction of the embolization success were, in the following order: The F-

Measure, The AUC, the Recall and the Accuracy metric because the F-Measure is a complete 

performance measure to assess how well the positive classes are being classified in contrast to 

the Accuracy measure that does not tell us the percentage of positive classes that were correctly 

classified. However, we have seen that the Accuracy measure is in related works mostly 

considered as the determinant measure; and hence, our model selection criteria also entails its 

assessment. 

Concerning the work of Guh et al. (2011), these authors have used the following measures to 

assess its Decision tree model: Accuracy, Recall and Specificity. Hence, the AUC measure was 

not used, which we see as a drawback since the AUC measure allows to assess if a model is 

worth applying (i.e. if its prediction is not random).  

Since all studied related works that have applied data mining techniques to sperm parameters 

have obtain Accuracies above 73% during its training/testing, this study considers that an 

Accuracy above this value during its training/testing is also acceptable, as well as a fair AUC 

value above 0.70. However, we aim to also achieve these performance values during the 

model´s validation. 

2.2.4 K-Means 

K-Means is a commonly used Data Mining algorithm for the application of the clustering data 

mining technique (Han et al., 2012). Its aim is to partition a data set into k groups of similar 

instances (called clusters) to find a categorization for the studied object (e.g. embolized 

patients). Its partitioning is performed with an agglomerative technique and not a hierarchical 

one; and hence, its results are disclosed in a so called centroid table which records the mean 

point value of each cluster per attribute (i.e. centroid) that can be visually interpreted with a 

centroid series plot. The K-Means algorithm only mines filled numeric attributes that should be 

normalized and works as follows (Han et al., 2012): 

1. Arbitrarily choose k attribute values as initial cluster centers; 
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2. Assign each instance to the cluster to which the instance is the most similar with 

based on its shorter defined spatial distance to the centroid; 

3. Update the cluster means with the newly assign instance;  

4. Repeat step 2 and 3 until there is no change on the centroid value. 

The K-Means algorithm works well to find spherical-shaped clusters in small to medium-size 

data sets without outliers (Han et al., 2012). Since our data set is small and preprocessed, we 

have applied it to identify data patterns that could categorize/describe the most successful 

varicocele embolized patients. 

The training of the K-Means algorithm entailed its application on the group of attributes that 

delivered the largest number of filled instances with the variation of the number of clusters, that 

went from 2 to 4, and the type of spatial distance (i.e. Euclidean and Manhattan distance). We 

have at last validated the found insights into a separate data subset to formulate conclusions. 

Clustering results were assessed externally and internally as follows: externally, by analyzing 

the generated centroid table/plot, as previously said, and internally, by assessed the distance 

similarity index called Davies Bouldin which is indicated for crisp/hard clusters (i.e. clusters 

where each instance only falls within one cluster). In fact, we have used the Davies Bouldin 

index to identify the optimal number of clusters one should use. This index specifies the density 

and the separation between clusters; i.e., the closer the absolute index is to 0, the better, since 

it expresses that the generated clusters have a low intra-cluster distance and a high inter-cluster 

distance. However, this index does not inform if the generated clusters have interesting insights 

so we have then carefully checked if the generated centroid table had a clinically interesting 

patient classification that could fulfill the data mining goal set.  

2.2.5 FP-Growth 

During the data understanding phase, we have found that we were more successful at 

identifying the most correlated attributes with the label attribute with the Chi-square  statistical 

test than the Pearson correlation. Hence, our idea to apply a data mining algorithm that would 

identify frequent item sets has flourished and made us apply an algorithm from the association 

rule data mining technique to not only find data patterns, but also rules that could predict the 

success of the embolization treatment to complement the findings of the decision tree algorithm. 

In fact, as experienced, decision trees are “greedy” algorithms that hardly provide interesting 

results in small data sets. For this reason, we have sought which association rule algorithm can 

be applied to our data set, and have seen that the RapidMiner platform had the association rule 

algorithm called FP-Growth.  

The FP-Growth algorithm aims to find frequent patterns and interesting relationships among 

the data set attributes. This algorithm is an optimization of the APRIORI algorithm since it has 

the ability to only perform two scans of the data set to identify the most frequent item sets (i.e. 

the first scan is to detect the frequency of each attribute and the other one, is to build the FP-

Tree). 

The FP-Growth algorithm starts by scanning the data set to find the frequent single items. Then, 

it sorts them to construct a tree that presents the association between the frequent attributes with 
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the indication of their support in each node and at last, mines the generated conditional pattern-

base recursively to identify frequent patterns and then formulate association rules (Han et al., 

2012). 

The FP-Growth algorithm requires that all input attributes have to be binomial, and to better 

interpret the result it is a good practice to map the attribute values. In contrast to the K-Means 

algorithm that cannot accept data sets with empty values, this algorithm can. However, the 

algorithm does not consider the missing attributes values since this algorithm seeks to count 

frequencies (i.e. count attribute values set to TRUE). Nevertheless, this point is useful for our 

type of data set since it has a low number of instances with all attributes filled. Furthermore, 

this technique is widely used in the bioinformatics field which reinforced its selection to tackle 

the data mining goals set. 

As carried out in the healthcare work of Yildirim (2015), association rules were evaluated 

objectively (i.e. through the computed rules´ measures) and subjectively (i.e. through the 

evaluation of the clinical sense and interest of the rule for the studied domain).  

Objectively, the rules were assessed through their computed Support, Confidence, Lift and 

Conviction measure since a high Support indicates that the rule occurs frequently; if it has a 

high Confidence, it reveals that its conditional probability is high; if the Lift measure presents 

a different measure than 1, it means that the attributes covered in the rule are related with each 

other - which means that the generated rule can be considered as interesting - and if the 

Conviction measure is different than 1, it means that the rule direction has an implication; and 

hence, it also contributes for its interestingness.  

Subjectively, we have selected the rules that enabled to fulfill the prediction of the varicocele 

embolization success.  

Consequently, the selection of the most objectively and subjectively interesting association 

rules entailed the assessment of each computed association rule by the following conditions 

which can be seen as our pruning conditions based on Yildirim (2015) work: 

• Objectively interesting: 

o Support > = 0.1 

o Confidence > = 0.4 

o Lift and Conviction > = 1.1 

• Subjectively interesting: 

o The Antecedent occurred before, or at the same time of the Consequent. 

o Support > = 0.15 which means that the rule encompasses at least 35 

patients. 

Rule pruning is recommended in the mining of health care data sets since this type of data tend 

to generate a large number of rules with low Support. In fact, in Shukla, Patel and Sen (2014) 

– a study that performs a review on the application of data mining techniques in the health care 

domain – the authors state that in the health care domain we tend to have a significant fraction 

of association rules that are irrelevant and that the most relevant rules often appear with high 

quality metrics but with a low Support. We believe that this is the reason why in Yildirim 
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(2015), the Support was set to 1% and the Confidence to 40%. Furthermore, after our first 

application of the FP-Growth algorithm, we have seen that a Support=0.1 and a 

Confidence=0.8, as we have initially thought, would not generate subjectively interesting rules 

so we have lowered this threshold to 0.0 and after that, have seen that a support equal to 0.1 and 

a confidence equal to 0.4 was in our case also enough to identify the most objectively and 

subjectively interesting rules as in Yildirim (2015) work.  

2.2.6 Modeling steps 

The designated findings disclosed in the next section 3 were achieved with the execution of the 

following 7 modeling steps in this specific order which encompassed our modeling strategy: 

1. Apply the Decision tree algorithms upon all collected attributes that have a good 

data quality, and afterwards, only upon the first group of selected attributes;  

2. Apply the K-Means algorithm upon the group of selected attributes that 

produces the largest data sample, seek for interesting data patterns through the 

assessment of its generated centroid tables and plots, and at last, validate the 

identified patterns in another subset of data; 

3. Apply the FP-Growth algorithm upon all groups of selected attributes, select the 

objectively and subjectively interesting rules based on the pruning criteria 

disclosed in the previous section 2.2.5 and then, select the ones with the highest 

Support and Confidence for each data mining goal set; 

4. Continue the Decision tree application by applying its models upon the 

remaining groups of selected attributes and afterwards, upon the data set 

prepared for the training of the K-Means algorithm; 

5. Select the decision tree model with the highest F-measure and clinical 

coherence; 

6. Analyze all interesting findings as a whole by checking their coherence; 

7. Formulate conclusions for the most relevant attributes and validate them with 

clinical experts to approve the built models. 

3. Results 

By analyzing the filled preprocessed dataset with descriptive statistics, we were able to see that 

81.65% of our embolized patients had the varicocele condition on their left testicle. 

Furthermore, out of the 293 assessed patients, we were able to retrieve the varicocele severity 

grade of 211 patients: 111 patients (52.61%) had a moderate severity grade (i.e. Severity grade 

= II), 67 patients (31.75%) had a mild severity grade (i.e. Severity grade = I) and 33 patients 

(15.64%) had a severe severity grade (i.e. Severity grade = III). Hence, in most cases, the 

varicocele condition was diagnosed with a severity grade of I or II. Male patients´ ages went 

from 23 to 54 years old with a mean of 34.43 and a standard deviation of ± 5.215 years old. 

Patient´s partners have a lower age mean (32.22), as well as a shorter standard deviation (± 

4,399) which indicates that, on average, the woman patient is younger than the male patient. 

On average, couples arrive to the medical infertility appointment with a 39-month (± 28.87) 

infertility time span and 80% of them, are related to the first pregnancy of the male patient´s 

partner. From the 293 assessed patients, we were able to know the pregnancy outcome of 230 
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of them. Out of these patients, 46.52% were successful (i.e. 107/230) and 53.47% (i.e. 123/230) 

were not. From these 107 successful couples, 61.7% (i.e. 66/107) got pregnant with an ART 

procedure and 45.8% (i.e. 49/107) got pregnant spontaneously. Before the embolization 

treatment, the most common semen classification was Oligoastenoteratozoospermia 

encompassing 26,89% of the 238 male patients that were possible to categorize. This shows 

that varicocele clearly reduces patients’ ability to achieve pregnancy, as they produce very few 

sperm (oligo), that are not very motile (astheno) and have abnormal morphology (terato). 

However, 3 months after the varicocele embolization, we see that the most common semen 

classification is Normozoospermia with 19.90% (41/206) by increasing in 14% which enabled 

us to fulfill the data mining goals set which aims to predict and describe the success of the 

varicocele embolization; and hence, this section begins by disclosing the attributes that were 

selected to tackle these data mining goals and in the following sections, showcase the best 

obtained results grouped by each applied data mining algorithm.  

3.1Selected attributes 

Based on the selection criteria exposed at the end of section 2.2.2, we have selected the 

attributes statistically described in the below Table 4. For predictive purposes, we have used 

the “Pregnancy outcome” attribute as the label attribute due to its quite balance characteristic 

(i.e. 46.52% “Yes” vs 53.47% “No”).   

Table 4 

Selected attributes for data mining applications 

Selection ID Attribute Name Significance (p) Correlation (r) Stability  Missing  

1 Woman age ANOVA 0.018 0.156 11.27% 3.07% 

2 Severity grade Chi-square 0.049  52.61% 27.99% 

3 Concentration at 6 months ANOVA 0.015 -0.161 11.45% 55.29% 

4 Progressive motility before treatment ANOVA 0.018 -0.155 12.35% 14.33% 

5 Morphology at 3 months ANOVA 0.004 -0.186 16.11% 38.57% 

6 Hazardous Occupation Chi-square 0.023  63.86% 31.06% 

7 Semen classification before treatment Chi-square 0.017  26.89% 18.77% 

8 Semen classification at 3 months Chi-square 0.018  19.90% 29.69% 

9 Concentration category at 3 months Chi-square 0.017  54.69% 16.38% 

10 Progressive motility category before 

treatment 

Chi-square 0.027  62.55% 14.33% 

11 Progressive motility category at 3 

months 

Chi-square 0.022  53.46% 25.94% 

 

If we analyze the selected attributes, we see that the production of derived attributes during the 

data preparation CRISP-DM phase was worthwhile since almost half of the identified attributes 

were from the 25 subsequently generated attributes. Furthermore, we have seen that the 

ANOVA statistical test was helpful to select numerical continuous relevant attributes since their 

corresponding Pearson correlation values were seen despicable with the “Pregnancy outcome” 

label attribute. Moreover, the Missing criteria unveiled that our modeling data mining process 

would not be facilitated which guided us to the application of different techniques such as the 

association data mining technique that can manage missing values. Additionally, due to the 
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attribute correlation between some of the selected attributes, we have defined the following 

groups of attributes to separately test our models: 

A.Severity grade, Concentration at 6 months, Progressive motility before treatment, 

Morphology at 3 months, Hazardous Occupation, Pregnancy outcome. 

B.Severity grade, Concentration category at 3 months, Progressive Motility category 

before treatment, Progressive Motility category at 3 months, Hazardous Occupation, 

Pregnancy outcome. 

C.Severity grade, Semen classification before treatment, Semen classification at 3 

months, Hazardous Occupation, Pregnancy outcome.  

Hence, all these data specificities guided us on the construction of the modeling steps disclosed 

in section 2.2.6.  

If we analyze the defined groups of attributes, we see that these groups of attributes focus on 

seeking interesting findings only upon relevant male patient attributes but to potentiate 

knowledge discovery, we have extended our assessment to the remaining identified attribute. 

This step was seen helpful to tackle the predictive modeling task. In fact, the most efficient and 

interesting computed decision tree model encompassed the “woman age” attribute. Regarding 

the group of attributes that has generated the most interesting results, we have found that it was 

the group B; and hence, next sections mainly disclose its related results. 

3.2 Classification 

The performance measures of the best result obtained at each decision tree testing step described 

in section 2.2.3 and applied upon different groups of attributes specified under the column 

named “Attribute” of Table 5 are in this last table disclosed. During the first testing steps 

showcased in Table 5 (i.e. 1.1 to 1.4), we aimed to identify relevant attributes to complement 

the attributes listed in Table 4 by applying the 4 decision tree testing steps (i.e. apply the 

RapidMiner´s decision tree within a simple validation, then, a cross validation etc.) upon the 

collected attributes that were seen with a good data quality by the RapidMiner platform (i.e. the 

ones checked in Table 1); the following testing steps showcased in Table 5 (i.e. 2.1 to 4.4) 

sought to apply these same 4 decision tree testing steps upon the defined groups of attributes 

disclosed previously in section 3.1; and at last (i.e. steps 5.1 to 5.4), aimed to apply these 

decision tree testing steps upon the data subset that had delivered the most interesting insights 

during the K-Means training; i.e. the attribute group B preprocessed as follows: filtered by non-

missing values; binominal attributes parsed into numerical and the “Severity grade” attribute 

manually dichotomized to end up with a normalized and numerical subset of 0 and 1 that 

encompassed 85 instances.  

The step ID 1.1 to 1.4 has not identified new interesting attributes, which left us with the ones 

listed in Table 4. If we analyze the following tests and focus on the computed F-measures, we 

see that the Step ID 5.1 disclosed in Table 5 has computed the highest value (i.e. 75%) which 

made us validate it upon the remaining 20% of the dataset. This validation has computed the 

performance measures disclosed in the next Table 6 under the corresponding test ID 5.1 where 

we can see an F_Measure=70.59% and AUC=0.750.  
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Table 5 

Performance measures of the best decision tree testing steps 

 

Table 6 

Performance measures of the validation of the best decision tree testing steps 

 

In spite of the acceptable generated performance measures in the 5.1 test, it was seen that the 

decision tree had a clinically incoherent leaf that made us prune it to diminish the seen data 

overfit; and hence, its performance validation measures were seen increased; i.e., 

Accuracy=76.47% , Precision=70.00% , Recall= 87.50%, F-Measure to 77.78%, and AUC = 

0.771 which surpassed the Accuracy threshold initially established of 73%. The validated 

decision tree can be seen in Fig. 1 with its confusion matrix depicted in Table 7 which can be 

described as: 

• Woman age  >    33:  Pregnancy outcome =No   { No=25, Yes=12} 

ID Attribute  Accuracy Precision Recall F-Measure AUC 

1.1 Good quality  67.27% 60.71% 70.83% 65.38% 0.680 

1.2 58.14%  57.38% 40.23%  47.62% 0.575   

1.3 60.00% unknown 0.00% unknown 0.500 

1.4 54.35%  58.33% 7.95%  14.29% 0.498  

2.1 A 67.27% 68.18% 57.69% 62.50% 0.701 

2.2 60.33%  65.84%  38.57%  45.88%  0.638  

2.3 61.82% 58.82% 41.67% 48.78% 0.603 

2.4 58.70%  57.88%  48.16%  49.60%  0.570  

3.1 B 74.55% 73.08% 73.08% 73.08% 0.747 

3.2 62.50%   60.28%  58.12%  59.16%  0.613  

3.3 63.64% 57.14% 36.36% 44.44% 0.606 

3.4 63.59%  61.63%  58.28%  59.85%  0.621  

4.1 C 67.27% 57.89% 52.38% 55.00% 0.616 

4.2 61.92%  59.72%  54.61%  56.88%  0.569  

4.3 70.91% 70.00% 58.33% 63.64% 0.739 

4.4 66.30%  66.11%  58.12%  60.95%  0.684  

5.1 B preprocessed 80.00% 85.71% 66.67% 75.00% 0.717 

5.2 64.71%  64.58%  47.50%  53.20%  0.589 

5.3 55.00% 50.00% 44.44% 47.06% 0.439 

5.4 60.29%  56.25%  52.23%  53.72%  0.644  

ID Accuracy Precision Recall F-Measure AUC 

1.1 54.35% unknown 0.00% unknown 0.500 

2.1 56.52% 52.38% 52.38% 52.38% 0.509 

3.1 47.83% 44.00% 52.38% 47.83% 0.554 

4.3 56.52% 53.33% 38.10% 44.44% 0.604 

5.1 70.59% 66.67% 75.00% 70.59% 0.750 
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• Woman age  <=  33:  Pregnancy outcome =Yes { No=12, Yes=19} 

 

 

 

 

 

 

 

 

Fig. 1. Best computed decision tree 

 

Table 7 

Definition of the confusion matrix during the decision tree´s validation 

 

 

 

 

Its identified optimized parameter values were: 

Splitting criterion: accuracy; 

Minimal size for split: 4; 

Minimal gain: 0.1; 

Minimal leaf size: 2; 

Pruning: True; 

 

The generated decision tree, in spite of not elaborated, enables us to conclude that most women 

below and equal to 33 years old are able to get pregnant (i.e. 61.29% (19/(12+19)) ) in contrast 

to women above 33 (i.e. 32.43% (12/(25+12)) ) which indicates that the male patient´s partner 

age prevails upon the varicocele condition since the male patient´s partner age was selected for 

the tree root to the detriment of all other assessed male patients features. This situation was also 

seen in the unpruned decision tree of test 5.1 and this clinical finding goes along with the male 

infertility-related work (Williams & Alderman, 2001); and hence, its result served as a validator 

of what we already expected. 

3.3Clustering 

Since the group of attributes B generates the largest sample of filled data (i.e. 85 instances), we 

have applied the K-Means algorithm upon this set of attributes. The most interesting identified 

patient´s categorization was retrieved from the series plot depicted in Fig. 2, which was 

generated from the centroid table showcased in Table 8. Please note that the centroids depicted 

Actual 

 

Predicted 

Yes No 

Yes 7 1 

No 3 6 

Woman age 

 

No=25 

 >33 <=33 

Yes =19 
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in Table 8 can be consider as relative frequencies for the value 1 since all values of the data set 

were for the K-Means application normalized between the value 0 to 1. 

The choice of the number of clusters was based on the lowest Davies Bouldin index computed 

by the RapidMiner during the optimization of the K-Means model parameters which as 

computed a value of  -1.330 for 4 clusters generated with the Manhattan distance. This 

partitioning lead us to the following cluster distribution: Cluster 1: 21 instances; Cluster2: 38 

instances; Cluster 3: 14 instances; Cluster 4: 12 instances.  

In this case, this high Davies Bouldin index can be explained by the high number of assessed 

attributes which difficult the formation of completely separated clusters as Fig. 2 illustrates. 

Hence, this K-Mean result was seen as a starter to further on individually assess the subset of 

attributes that constitutes the identified interesting insights. In this case, we have identified these 

2 interesting insights: 

• The varicocele severity grade vs the pregnancy outcome; 

• The pregnancy outcome vs the hazardous occupation, the concentration category 

at 3 months and the progressive motility category before and at 3 months after 

treatment. 

The attributes related with the first insight encompass 174 filled instances which enabled us to 

validate the found insight upon the remaining 89 instances (i.e. 174 total instances - 85 training 

instances). During this validation, we have seen that the relative frequency of successful 

patients is higher on patients with a moderate to mild varicocele severity grades (i.e. 58,3% and 

46,4% respectively) in contrast to the ones with a severe severity grade. However, the 

pregnancy rate related with this last severity grade was seen during the model ´s validation not 

as low as during the model´s training (i.e. validation = 38.5% vs training = 8.3%). 

Regarding the second insight, we had 126 filled instances under its attributes which enabled us 

to validate it upon a subset of 41 instances (i.e. 126 total instances - 85 training instances). This 

validation enabled us to say that the relative frequency of patients with normal sperm 

progressive motility before the varicocele embolization is higher in clusters where fewer male 

patients work in putative hazardous environments and 68.20% of them, were able to get 

pregnant after the treatment in contrast to the other ones where only 10,5% were able to be 

successful.  
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Fig. 2. K-Means computed series plot 

Table 8 

Centroid table 

 

3.4Association 

After applying the FP-Growth algorithm upon all groups of attributes, we have identified the 

following association rules as the ones with the highest Support and Confidence value for the 

“Pregnancy outcome” attribute:  

• Morphology at 3 months > 0% -> Pregnancy outcome=Yes (n=230) 

            support=0.322, confidence=0.544, lift=1.170, Conviction=1.173 

• Concentration category at 3 months = Normal, Progressive motility 

category at 3 months = Normal -> Pregnancy outcome=Yes (n=230) 

            support=0.157, confidence=0.667, lift=1.433, Conviction=1.604 

These association rules indicate that: 

• The conditional probability of a woman getting pregnant given a partner with a 

sperm morphology 3 months after the treatment greater than 0% is of 54.4% (i.e. 

74/136) and both situations occur 32.2% of the times. 

• The conditional probability of a woman getting pregnant given a partner with a 

normal sperm concentration and progressive motility 3 months after the 

treatment is of 67% (i.e. 36/54) and these events occur 15.7% of the time. 

Moreover, to seek for more data patterns, we have identified the association rules with the 

highest Support and Confidence value for all attributes. The following rules were identified: 

• Progressive Motility before treatment>0% -> Morphology at 3 months > 

0% (n=230) 

support=0.517, confidence=0.654, lift=1.106, Conviction=1.181 

• Severity grade=I -> Progressive Motility before treatment>0% (n=293) 

support=0.198, confidence=0.866, lift=1.153, conviction=1.855 

These association rules can be interpreted as: 

• The conditional probability of observing 3 months after the embolization 

treatment a sperm morphology greater than 0% given a sperm progressive 

motility before the embolization treatment also greater than 0% is of 65.4% (i.e. 

119/182) and both situations occur 51.7% of the times; 

 Cluster 1 n=21 Cluster 2 n=38 Cluster 3 n=14 Cluster 4 n=12 

Severity grade I 1 0 0.786 0 

Severity grade II 0 1 0 0 

Severity grade III 0 0 0.214 1 

Pregnancy outcome 0.476 0.526 0.571 0.083 

Hazardous occupation 0.429 0.158 0.071 0.500 

Concentration category at 3 months 0.238 0.605 1 0.333 

Progressive Motility category before treatment 0.048 0.342 0.929 0.167 

Progressive Motility category at 3 months 0.286 0.342 0.786 0.417 
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• The conditional probability of observing a sperm progressive motility before the 

embolization treatment greater than 0% given a low severity grade of the 

varicocele condition is of 86.6% (i.e.  58/67) and both situations occur 19.8% of 

the times. 

4. Discussion 

From the last KDnuggets poll that inquires the main methodology used in Data Mining projects 

(Piatetsky, 2014), the CRISP-DM methodology was seen as the mostly used (43%), followed 

by the data scientist´s own methodology (27.5%). Based on these results, we have selected the 

CRISP-DM methodology and have seen that it has guided us to a greater knowledge discovery. 

Regarding the data understanding and the modeling phases, they were carried out with the 

RapidMiner platform version 8.1.001. In fact, from the last KDnuggets poll (Piatetsky, 2018a), 

that has inquired 2025 participants on which Data Science tools they were using, the 

RapidMiner platform was seen the mostly used rising from 33% in 2017 to 52,7% in 2018. 

Furthermore, the application fields of the data mining techniques have also been inquired in 

this same site (Piatetsky, 2018b) and the healthcare domain was in the last poll back in 2017 

seen as gaining popularity by moving to the fourth position with a 13% share from the 2016 

fifth position with a 12% share which supports the usefulness of this practical guideline for a 

rising number of data scientists.  

The first step that we have done after understanding the research aims, was the assessment of 

the possibility of applying Data Mining techniques upon the provided data set. To do so, the 

volume and quality of the data set were assessed. 

Regarding data volume, the initial data set had 320 instances and 32 attributes which was at 

first sight seen as small on the matter of its number of instances. However, after analyzing the 

literature review in Makris et al. (2018) which studies 30 clinical investigations on the 

varicocele embolization domain, we have seen that the provided data set had an interesting 

volume of data since related works were in average of 117 patients (± 102 patients). Hence, 

even the 230 preprocessed instances with non-missing values under the pregnancy outcome 

attribute - that were the instances mostly analyzed during this study - remained a good volume 

of data. Regarding the application of data mining techniques, we have seen that it was possible 

since reviewed related works described in the next section 5 managed similar volume of data 

and we were able to identify interesting findings. 

Data quality was assessed with key data quality dimensions to check if the provided attributes 

were directly usable to tackle the data mining goals set (i.e. completeness), as well as coherent 

(i.e. consistency), rightly formatted (i.e. conformity), correct (i.e. accurate with the available 

information systems) and correctly linked (i.e. integrity) as suggested in (Arkady Maydanchik, 

2007). Most attributes were validated/filled/corrected with the available information systems 

of the CHUC which enabled us to increase it completeness by going in average from a 55.86% 

to a 70.40% filled dataset. Moreover, during this process we have also looked up for other 

patient´s information that we could collect, based on the ones studied in related works, which 

also helped us to potentiate knowledge discovery. In fact, the male patient´s occupation was 
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one of these attributes that was at last seen encompassed by one of our most interesting findings 

(i.e. second insight identified during the application of the K-Means algorithm).  

After preprocessing the provided data set, our main concern was to statistically analyze the 

preprocessed dataset. Statistical results helped us to overcome some encountered difficulties. 

In fact, it enabled us to elect a balanced label attribute, as well as select the attributes that were 

more related with it since the Pearson correlations were all seen as low with the selected label 

attribute.  

Regarding the label attribute, we have selected the pregnancy outcome attribute as in Guh et al. 

(2011)  since it delivered the most balanced data set. Concerning the identification of the most 

statistically significant attributes, we have seen with the ANOVA and the Chi-square  test that 

the following attributes were the most related with the pregnancy outcome: Woman age 

(ANOVA p=0.018); Severity grade (Chi-square p=0.049); Concentration at 6 months (ANOVA 

p=0.015); Progressive motility before treatment (ANOVA p=0.018); Morphology at 3 months 

(ANOVA p=0.004); Concentration category at 3 months (Chi-square p=0.017); Progressive 

Motility category before treatment (Chi-square p=0.027); Progressive Motility category at 3 

months (Chi-square p=0.022); Semen classification before treatment (Chi-square p=0.017); 

Semen classification at 3 months (Chi-square p=0.018) and Hazardous Occupation (Chi-square 

p=0.023). As these attributes reveal, several data transformations were carried out upon the 

provided and preprocessed data set which showed to potentiate knowledge discovery. These 

data transformations were: dichotomization of the severity grade, normalization of the numeric 

attributes and transformation of the numerical attributes into different nominal attributes. 

To maximize knowledge discovery, we have selected the most commonly applied data mining 

techniques in the healthcare industry (i.e. classification, clustering and association) with their 

well tested algorithm based on (Tekieh & Raahemi, 2015), (Ahmad et al., 2015) and (Tomar & 

Agarwal, 2013). Thereby, these data mining techniques were applied with the following 

algorithms: classification, with the RapidMiner´s Decision tree algorithm and the W-J48 java 

implementation of the C4.5 algorithm; clustering, with the K-Means algorithm and association 

rule, with the FP-Growth algorithm.  

All these algorithms were mainly trained upon the identified attributes that were seen related 

with the pregnancy outcome by varying its main parameters. This task was achieved with the 

“optimized parameter” operator that helped us to automatically loop the several model 

parameters in order to select the better ones based on its performance measures (i.e. mainly the 

F-measure along with the Accuracy and the AUC measure). This “optimized parameter” 

operator was very useful since during our first modeling phase (i.e. modeling step 1 disclosed 

in section 2.2.6) we struggled to find a decision tree with even 1 level. Hence, when we have 

sought a solution that could optimize the training process by exhaustively train/test the 

algorithms, we have found this operator which enabled us to also maximize knowledge 

discovery. 

Since knowledge discovery was difficult with the decision tree algorithm, we have applied the 

clustering and the association rule technique in an early modeling stage to bring another 

understanding of the data that could help us on our search for the predictive model. This is the 
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reason behind the order of the exposed modeling step disclosed in 2.2.6, where we see that we 

have interrupt the decision tree application at its first stage to try other data mining techniques 

in the modeling step 2 and 3 to further on continue with its training in the modeling step 4.  

This modeling strategy was seen successful since the most interesting knowledge discovery 

was achieved during the K-Means application which gave us the idea to train the decision tree 

algorithm on this same preprocessed dataset during the modeling step 4 which in turn, also gave 

us the predictive model we have sought (decision tree of Fig. 1) since it surpassed the threshold 

defined of 73% based on related works and its findings, in spite of modest, were coherent with 

clinical expertise. This outcome makes us say that even if the aim of a data mining project is 

only to predict an outcome, it is always useful to also use descriptive data mining techniques 

(i.e. clustering and association) to better understand the mined data; and hence, better guide us 

through a greater modeling strategy.  

Furthermore, through this data mining experiment we have seen that due to the small and 

missing data that we had, it is understandable that it is more achievable to extract interesting 

knowledge with a K-Means algorithm, that is less influenced by missing data since it seeks to 

group the data through similarities between data points, than with a decision tree algorithm, that 

tries to train/test upon missing values; and hence, struggles to select the attribute that promotes 

the highest gain of information for its decision tree. Hence, due to this experience, we can say 

that it is important to first identify the most commonly applied data mining techniques in a 

research domain and then, apply them as a whole, since the different techniques can 

complement each other and potentiate interesting knowledge discovery. 

Regarding the association rule technique, we have found that it is a good technique to identify 

attributes or relations that are interesting (i.e. mainly with the highest support and/or 

confidence). This technique clearly depicts one of the advantages of Data Mining, which is to 

be an inductive technique and not an hypothetic-deductive technique as statistical analysis is. 

Therefore, it is, in our point of view, an interesting technique to begin with during the data 

understanding modeling phase, even before inferential statistics, to identify relations or 

attributes that we might want to assess statistically later on - when we are not able to formulate 

a hypothesis – or detect interesting data patterns. Furthermore, we have also seen that the 

generated association rules were useful to complement predictive decision tree findings since 

we have identified clinically more interesting conclusions with the FP-growth than with the 

decision tree algorithms.  

Regarding the testing of the decision tree algorithms, we have followed a 3-part test design (i.e. 

80% for training/testing and 20% for validation). However, most related works as Guh et al. 

(2011) only implement a 2-part test design; i.e. without validation. Based on the performance 

measures computed at the model´s testing and validation recorded in the previous Table 5 and 

Table 6, respectively, we can discuss the benefit of the followed test design: Through the several 

generated decision tree models, we have seen that the only model that has computed an 

acceptable AUC during the validation was the one computed during the decision tree testing 

steps 5.1 that had an AUC = 0.750. Nevertheless, we believe that its non-missing values 

characteristic has also contributed to its acceptable result. In contrast, all other models, which 
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had some missing values, have failed with an AUC going from 0.500 to 0.604 during validation. 

Moreover, if we would not have tested the models with a 3-part test design, we would not have 

been able to say that the elected model was stable, but more importantly, that we were not 

misled by the performance measures obtained during its training/testing. In fact, we had models 

that had computed acceptable AUC and F-measures during training, but failed during validation 

(e.g. the decision tree testing step 3.1 had a training/testing AUC=0.747 and a corresponding 

validation AUC=0.554). Additionally, to further on compare these two test designs, we have 

run the best-found model (i.e. model corresponding to the 5.1 test) within a 2-part test design 

of 70% training and 30% testing and seen that its performance measures were slightly increased 

in comparison to the ones computed at the model´s validation. In fact, its computed performance 

values were at the 2-part test design the following: Accuracy=80.77%, Precision= 70.00%, 

Recall=77,78%, F-measure=73.68% and AUC=0.801. Consequently, based on all these 

aspects, we consider that the 3-part test design is in fact better to follow as suggested by the 

CRISP-DM methodology (Chapman et al., 2000), as well as other data scientists (Deshpande, 

2012; Mierswa, 2012) to overcome the seen test overfitting.  

 5. Related Work 

The varicocele condition has been widely covered and assessed with statistical techniques 

which not only helped us through the election of the information we could collect to potentiate 

domain related and clinically coherent findings, but also supported the assessment of the 

interestingness of the computed results. Unfortunately, we were not able to find a study with 

the application of data mining techniques in the field of the varicocele embolization, nor the 

varicocele itself, which lead us to seek for works which applies data mining techniques to sperm 

parameters or infertility data in general. In this section, we disclose the context in which this 

work was carried out. 

By analyzing the identified data mining applications carried out in the infertility domain; i.e. 

(Sahoo & Kumar, 2014; Bidgoli, Komleh, & Mousavirad, 2015; Gil et al., 2012; Guh et al., 

2011; Chen, Hsu, Cheng, & Li, 2009), we have seen that most of them have used a feature 

selection technique to potentiate the performance of their models. In fact, some of them have 

applied several feature selection techniques (Sahoo & Kumar, 2014) such as Support Vector 

machine (SVM), neural network (NN), evolutionary logic regression (LR), Support Vector 

machine with particle swarm optimization (SVM+PSO), principal component analysis (PCA), 

Chi-square  test, Student´s T test and correlation or a genetic algorithm (GA) (Guh et al., 2011), 

and others, only have used one technique such as a decision tree algorithm (DT) (Gil et al., 

2012) or clinical expertise (Chen et al., 2009) to select their patient features to mine. Similarly 

to Sahoo & Kumar (2014) and Guh et al. (2011), we have used several feature selection 

techniques but have focused our choice on the ones mostly used in the healthcare domain; i.e., 

the statistical ones such as the Pearson correlation, the Chi-square  test and the ANOVA test, 

as well as the decision tree algorithm. In contrast to Guh et al. (2011) work, we have not initialy 

used clinical expertise to pre-select the attributes before the application of the feature selection 

techniques since it could discard an eventual unexpected interesting patient feature. However, 

we have pre-selected our collected attributes based on the fulfillment of the requirements of the 

key data dimensions to ensure that we have a trustworthy data set and result.  
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Regarding the modeling tasks, we have seen that only two out of the five identified studies have 

balanced its data set, four out of the five studies have applied the MLP algorithm and three of 

them, have also applied the SVM algorithm. Although several algorithms were used, the ones 

that gave the best accuracy were: Support Vector machine (SVM); Particle Swarm Optimization 

(PSO), Multilayer perceptron (MLP) and Decision Tree (DT). However, they have only used 

the data mining classification technique which is the biggest difference from our modeling 

process that has applied several data mining technique; i.e., the classification, the clustering and 

the association rule technique which has formulated our modeling strategy.   

The study that has applied data mining algorithms upon sperm parameter values to predict a 

treatment outcome - similarly to what we have done - was the work carried out by Guh et al. 

(2011). This work aims to predict IVF success based on couple´s features by following a 

knowledge discovery process that significantly draws from the CRISP-DM methodology and 

applying the C4.5 decision tree algorithm, which is similar to ours. However, what mainly 

differentiates our work from this one is that we have exhaustively trained our decision tree 

models by varying its main parameters, tested it within a 3-part test design and evaluated it also 

with the AUC performance measure to potentiate the election of a more stable and useful model.   

6. Conclusion 

This study has analyzed a data set of 293 varicocele embolized infertile male patients in the 

CHUC described with 64 patients features (e.g., male patient age, male patient partner age, 

varicocele severity grade, male patient occupation and sperm parameter values collected before 

and after the treatment) by using data mining techniques. More precisely, it has predicted its 

success through the pregnancy outcome with the RapidMiner´s decision tree algorithm and the 

W-J48 Java implementation of the C4.5 algorithm; and then, identified interesting data patterns 

with the K-Means and FP-Growth algorithms which guided us through the election of the best 

models, as well as the discovery of interesting results that suggest that the success of the 

varicocele embolization could be positively influenced by: a younger male patient partner, a 

moderate to low varicocele severity grade, a male patient occupation that is not in contact with 

putative toxic environments or products and a normal sperm progressive motility before the 

treatment. Furthermore, we have seen that the other assessed male patient´s lifestyle habits such 

as the drinking and smoking habit or a previous disease or surgery, does not influence the 

success of the treatment. These findings were seen relevant by clinical experts and contributed 

to on-going research. However, these results require a greater clinical assessment and 

discussion with the measurement of their statistical significance which we aim to further on 

carry out but was not the aim of this present paper which focused on identifying measures that 

can leverage knowledge discovery on healthcare data sets. In this context, we have shared how 

the knowledge discovery process was in this work carried out and at last, have identified 

through its discussion that the following measures had leverage our knowledge discovery 

process: 

• Follow the CRISP-DM methodology; 

• Fill/validate the provided data; 

• Collect more data; 
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• Use feature selection techniques that are mostly use in the studied domain; 

• Apply the most commonly applied data mining techniques in the studied domain 

even if the aim is to only predict an outcome; 

• Optimize the training of the models when possible; 

• Follow a 3-parts test design; 

• Not only focus on the performance of the models but also on its interestingness.  

All these measures are in our point of view important contributions for further data mining 

projects in the healthcare field, since healthcare data sets are commonly known to be difficult 

to mine due to their characteristics. 

As future work, we would like to further on explore these identified measures by applying them 

in other healthcare data sets to at last being able to formulate a practical guideline for the 

modeling of healthcare data sets, as well as apply other data mining algorithms such as the 

DBSCAN clustering technique, that is not influenced by outliers, the SVM, PSO and MLP 

algorithm, that have shown in related works to provide good performance measures, as well as 

deep learning algorithms to see if we could achieve more interesting findings. 
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