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INTRODUCTION

Many marine top predators, including sea turtles,
are in decline globally due to direct exploitation, by -
catch and other indirect anthropogenic threats (e.g.
Worm & Tittensor 2011). Top predators can provide
top-down control of food webs, and when these spe-
cies are removed or displaced, resulting trophic cas-
cades can alter the stability of marine ecosystems
(Myers et al. 2007, Estes et al. 2011, 2016). For effec-

tive mitigation of the direct and indirect threats fac-
ing these species, there is an acute need to under-
stand their movements and behavioral ecology.

Most sea turtle species spend part of, or their entire
development stage in pelagic habitats (Bolten 2003).
A key question is how pelagic turtles exploit their en-
vironment to optimize prey intake and maximize fit-
ness. The pelagic habitat is generally oligotrophic,
with food resources often patchily distributed in space
and time (Fauchald 1999). It is generally as sumed that
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ABSTRACT: Most sea turtle species spend part of, or their entire juvenile stage in pelagic habitats.
A key question is how pelagic turtles exploit their environment to optimize prey intake and max-
imize fitness. This study combined animal telemetry with remote-sensed environmental data to
quantify the drivers and patterns of foraging behavior of juvenile loggerhead sea turtles in the
pelagic eastern North Atlantic. Juveniles ranged in size from 34 to 58 cm straight carapace length.
First-passage time (FPT) analysis, used to quantify search effort, indicated that turtles performed
area-restricted searches at nested spatial scales of 10 and 50 to 200 km. High-usage areas, as
quantified by FPT, were associated with increased dive activity and weak surface currents, as well
as with oceanographic features (high chlorophyll a and shallower bathymetry) thought to stimu-
late prey availability. Conversely, low-usage areas (i.e. transit areas) were associated with deep,
probably exploratory dives, typical from Lévy movement patterns. Further interpretation of dive
data indicates greater dive activity in shallow depths (0 to 10 m) during the night and during tran-
sit. Conversely, greater activity at intermediate depths (10 to 50 m) was observed during daytime,
under strong lunar illumination and in high-usage areas, suggesting these depths are major day-
time foraging layers. This study clarifies the foraging ecology of sea turtles during their develop-
ment phase in the open sea, providing evidence that these pelagic predators can adjust their for-
aging strategies and effort in response to the local conditions of their dynamic environment.
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foraging animals should spend more time in areas
where resources are relatively plentiful (Fauchald &
Tveraa 2003). Accordingly, individuals are expected
to adjust their travelling behavior in response to prey
density and maximize their prey encounters by in-
creasing turning rates and reducing travel speed. This
adaptive response to prey is generally referred to as
area-restricted search (ARS) be havior (Kareiva &
Odell 1987). However, ARS trajectories may not al-
ways directly reflect foraging effort, as these may be
biased by non-foraging activities such as resting or
 reproduction (Sommerfeld et al. 2013, Bestley et al.
2015). For aquatic species, diving patterns may pro-
vide added valuable information on foraging effort
and strategies. It has been documented, for example,
that diverse marine predators such as fish, jellyfish
and sea turtles may show diving patterns that are
mathematically described as Lévy flights (Sims et al.
2008, Humphries et al. 2010, Hays et al. 2012). Lévy
flights are characterized by a pattern of short move-
ment steps, interspersed with a few much longer relo-
cation steps. Optimal search theory predicts that Lévy
search strategies optimize prey encounters in areas
where prey is sparse and distributed unpredictably
(Bartumeus et al. 2002). Conversely, when prey are
more uniformly distributed it is expected that Brown-
ian (random) movement may optimize prey encounter
rates (Bartumeus et al. 2002). Understanding the link
between horizontal movement patterns, such as ARS
behavior, and vertical movement patterns is a priority
for a better understanding of the foraging ecology of
marine predators in their 3-dimensional environment
(Carter et al. 2016).

Loggerhead sea turtles Caretta caretta nest on trop-
ical and temperate coastal beaches. Soon after hatch-
ing, juveniles enter the ocean and swim offshore,
transiting to pelagic habitats (Carr 1987, Bolten 2003,
Mansfield & Putman 2013, Scott et al. 2014). They can
remain in the oceanic realm for years to decades,
moving back to coastal neritic waters as large juve-
niles (Bjorndal et al. 2003, Bolten 2003, Cardona et al.
2009, Mansfield et al. 2009). Recruitment to neritic
habitat starts when juveniles are around 45 to 65 cm
straight carapace length (SCL) (Mansfield & Putman
2013). However, a number of studies indicate that
there is a plasticity in habitat selection among larger
juveniles, with many returning to offshore habitats
(McClellan & Read 2007, Mansfield et al. 2009, Mans-
field & Putman 2013). Advances in telemetric methods
have provided valuable information on movements
and behavior of juvenile loggerhead turtles during
the pelagic stage, from neonates and young juveniles
under 30 cm SCL (Mansfield et al. 2014, 2017, Scott et

al. 2014) to larger juveniles in the 30 to 90 cm range
(e.g. Polo vina et al. 2000, 2003, 2004, Eckert et al.
2008, Kobayashi et al. 2008, McCarthy et al. 2010,
Briscoe et al. 2016, Varo-Cruz et al. 2016, Cardona &
Hays 2018). There is evidence that pelagic juvenile
loggerheads are often associated with eddies and
other productive oceanographic features (e.g. Polov-
ina et al. 2000, Mansfield et al. 2009, 2017, Gaube et
al. 2017). Juveniles seem to undergo ontogenetic
changes in diving behavior, from remaining mainly at
the sea surface during their first year (Mansfield et al.
2014), to diving to depth once they are older (Polovina
et al. 2003, Howell et al. 2010, Àlvarez de Quevedo et
al. 2013, Mansfield & Putman 2013, Varo-Cruz et al.
2016). Their foraging behavior, in particular the link
between horizontal and vertical search strategies, is
still not well understood.

In this study, we combined animal telemetry with
remote-sensed environmental data to quantify the
drivers and patterns of foraging behavior of juvenile
loggerhead sea turtles (34 to 58 cm SCL) in the
pelagic eastern North Atlantic. First-passage time
(FPT) analysis was used to quantify horizontal search
effort and ARS scales. By combining FPT with envi-
ronmental and diving data, we tested how these
pelagic turtles adjusted their foraging effort and
strategies in response to the local conditions of their
dynamic environment. Specifically, we tested the
hypotheses that (1) foraging patterns and effort were
linked to selected environmental features indicative
of prey availability; (2) increased horizontal search
effort, as quantified by FPT, was associated with
either increased vertical search effort (dive activity)
or increased resting bouts; and (3) the turtles’ dive
activity at specific depth layers, including the pres-
ence of Lévy diving patterns, was linked to horizontal
search activity and was adjusted as a response to
local conditions of their habitat.

MATERIALS AND METHODS

Satellite telemetry

A total of 10 loggerhead sea turtles were equipped
with Argos satellite transmitters (Wildlife Computers
SDR-T10; 360 g in air) at Madeira Island, Portugal,
during spring and fall 1998 (see Fig. 1, Table 1). Tur-
tles were caught while basking off the south coast of
Madeira. Turtles were approached from behind by
boat at slow speed and captured by hand (see Dell -
inger et al. 1997). Animals were brought into captiv-
ity for tagging and were released offshore 4 to 13 d
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later. Turtles ranged in size from 33.9 to 57.5 SCL and
weighed 7.5 to 29.5 kg. Satellite transmitters were
attached to the carapace using a ‘backpack’ attach-
ment method adapted from (Balazs et al. 1996).

Satellite transmitters provided location and diving
data (range 0 to 251 m; 1 m resolution) via Service
Argos. Data transmission limitations required diving
data to be compressed into four 6 h histograms d−1:
night (21:00 to 03:00 h local time [GMT]), dawn
(03:00 to 09:00 h), day (09:00 to 15:00 h) and dusk
(15:00 to 21:00 h). Three types of histograms were ob -
tained: the number of dives to maximum depth layers
(maximum depth histograms), number of dives to
dive duration categories (duration histograms) and
the proportional time within each depth layer (time-
at-depth histograms). See Fig. 2 for depth and dura-
tion bins defined for each type of histogram. While
maximum depth and duration histograms provide the
number of dives in each depth or duration bin, time-
at-depth histograms provide a number between 0
and 255 for each depth bin. The proportion of time at
each depth bin can be posteriorly estimated by divid-
ing each bin value by the sum of all bins.

Location data obtained from Argos were filtered
using an algorithm based on speed of movement and
turning angles (Freitas et al. 2008b). Filtering aimed
to eliminate unlikely locations requiring unrealistic
swimming speeds (>2 m s−1) and turning angles, and
was performed using the library ‘argosfilter’ in R soft-
ware (R Core Team 2015). Dive histogram locations
(at 00:00, 06:00, 12:00 and 18:00 h for night, dawn,
day and dusk histograms, respectively) were later
estimated by linear interpolation of the filtered track.

Environmental data

The following physical variables were obtained for
all filtered locations and dive-histogram locations: sea
bottom depth (Depth), sea surface temperature (SST),
wind speed (Wind), chlorophyll a concentration (Chl)
and ocean surface current speed (Curr). Depth data
were extracted from GEBCO 2014 grid data, with 30”
resolution. SST and Wind data were extracted from
climate reanalysis data (ERA-Interim) from the Euro-
pean Center for Medium-Range Weather Forecasts
(ECMWF), with daily time resolution and 14 km
(0.125°) horizontal resolution. Chl a was obtained
from weekly, 9 km (0.08°) resolution satellite meas-
urements from Sea-viewing Wide Field-of-view Sen-
sor (SeaWiFS) of the National Aero nautics and Space
Administration (NASA). Ocean surface current speed
was extracted from daily, 0.33° horizontal resolution

data from NASA’s Ocean Surface Current Analysis
Real-time (OSCAR).

FPT analysis

FPT was used in this study to (1) obtain a measure
of the time sea turtles spent in different sections of
their track and (2) investigate the spatial scales of
ARS. FPT is defined as the time required for a tracked
animal to cross a circle of a given radius (Fau chald &
Tveraa 2003). In order to calculate FPT, we generated
a location each 10 km by linear interpolation of the fil-
tered track, and calculated the FPT at these locations
for radii ranging from 5 to 300 km by 5 km increments
using the R library ‘adehabitatLT’ (Calenge 2006).
The variances of the log-transformed FPTs were then
plotted for each individual in order to identify the
radius of maximum variance (see Fig. S1 in the
 Supplement at www. int-res. com/ articles/ suppl/  m 595
p203_ supp. pdf). This radius corresponds to the spatial
scale at which the animal concentrated its time, i.e.
the size of the ARS zones (Fauchald & Tveraa 2003,
2006). Because habitat selection is often a hierarchi-
cal process (Johnson 1980), nested spatial scales may
occur. In our study, most animals used a ARS scale of
approximately 10 km (Fig. S1), where they spent a
few hours to days (1.5 h to 13 d) nested within a
broader ARS scale ranging from 50 to 200 km (Fig. S1),
where animals spent several hours to months (50 km:
0.4 to 41 d; 100 km: 2 to 102 d; 200 km: 6 to 162 d).
Note that 4 hierarchical orders of selection may be
considered when studying habitat selection (Johnson
1980, Senft et al. 1987). FPT at the finer spatial scale
in our study (10 km radius) quantifies habitat use at
Johnson’s third-order of selection (within-home-
range selection), while FPT at the broader spatial
scale (50 to 200 km radius) likely quantifies selection
at the second-order selection (home range selection
within the geographic range of the population).

In order to investigate the relationship between
hori zontal and vertical movements, FPTs (at the small-
est ARS scale, i.e. 10 km) were calculated for dive
 histogram locations. This scale was chosen as its tem-
poral scale suited dive histogram duration (6 h). Fur-
ther, habitat selection at this scale (within-home-
range scale) is expected to be linked to the animal’s
daily foraging and resting rhythms, which are of
interest here, in contrast to selection of home ranges
at broader scales, which is often linked to dispersal
processes or seasonal migrations (Morris 1987).

Cox proportional hazards (CPH) models were used
to investigate the relationship between search effort
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(i.e. FPT) and oceanographic conditions, following
Freitas et al. (2008a). CPH models the time until an
event occurs, in this case, time until a turtle leaves an
area of radius r. Two CPH models were fitted, one
using FPT at the smaller ARS spatial scale (r = 10 km)
and another at a broader ARS scale (r = 100 km).
Models took the following form:

hi(t) = exp(β1 Depthi + β2 Chli + β3 Curri + ai) h0(t) (1)

where h(t) is the hazard function for the i th individual
(i.e. the risk that turtle i will leave an area) at time t.
Depthi is sea bottom depth, Chli is chl a concentra-
tion, and Curri is ocean surface current speed at
 turtle i’s location. β1 to β3 are the coefficients that de -
scribe the contribution of these explanatory vari-
ables. The term ai is the per-subject random ef fect,
which is assumed to be normally distributed with
mean 0 (see Pankratz et al. 2005), and h0(t) is the
baseline hazard function at time t, i.e. the risk of leav-
ing an area where all explanatory variables are equal
to zero.

Diving behavior analysis

Time-at-depth histograms were used to investigate
the proportion of time spent diving relative to hori-
zontal search behavior (FPT 10 km radius). Turtles
were considered to be diving when they were at
depths >1 m, and at the surface when at 0 to 1 m
depth. We hypothesized that turtles invested more
time diving in areas where FPT was high. Alterna-
tively, a negative relationship between time spent
diving and FPT would indicate that ARS was re -
lated to in creased resting time at the surface, rather
than in creased dive investment. Using a generalized
linear mixed model (GLMM) with a binomial link, we
modelled the proportion of time diving (i.e. proportion
of time at depths >1 m) as a function of FPT. Turtle
carapace length (i.e. SCL) was also entered as an ex-
planatory variable to test eventual size-related differ-
ences in diving intensity. The model took the follow-
ing form:

Logit(pij) = α + β1FPTij + β2Sizei + aij + εij (2)

The term pij denotes the proportion of time spent div-
ing by individual i at the 6 h sampling period j, FPTij is
FPT of individual i at sampling period j and Sizei is
the carapace size (SCL) of turtle i. The random inter-
cept aij allows for a random variation around the in-
tercept α, and is assumed to be normally distributed
with mean 0 and variance δ2

individual. The term εij is in-
dependent normally distributed noise. Models were

fitted using the R package ‘lme4’, ‘glmer’ function.
Be cause we used a vector of proportions as the re-
sponse variable (total number of observations >1 m
depth / total number of observations), we set the total
number of observations that led to each proportion
using the weights argument in ‘glmer’.

A further detailed analysis of the proportion of time
spent diving at specific depth layers was performed
using binomial GLMMs. We tested whether the pro-
portion of time spent diving at layer d was affected
by time of the day, lunar illumination, turtle carapace
size (SCL) or turtle’s horizontal search intensity
(FPT). We fitted one model for each of the following
depth layers (d): 1 to 10, 10 to 25, 25 to 50 and >50 m.
Models took the following form:

Logit(pdij) = α + β1 Dielj + β2 Moonj + β3 Sizei

                           + β4 FPTij + aij + εij
(3)

The term pdij denotes the proportion of time spent at
depth layer d by individual i during the 6 h sampling
period j, Dielj is the time of the day at sampling
period j and Moonj is moon illumination at period j.
Sizei is SCL of turtle i and FPTij is FPT of individual i
at sampling period j.

Maximum depth histograms were subject to a
quantitative analysis of the frequency of distribution
of movement steps, in order to test whether the
turtles’ diving patterns followed a Lévy or Brownian
motion probability. First, the total number of dives to
each depth layer (i.e. move-step frequencies) were
calculated for each turtle. Power law (Lévy) and ex -
ponential models were then fitted to log-transformed
move-step frequency distribution data. Support of the
power-law fit of the observed data would indicate
that move-steps are best described by Lévy-like pro-
cesses, whereas strong support of an exponential fit
suggests that a Brownian (random) motion probability
dominates (Sims et al. 2008, Humphries et al. 2010).
To determine the relative support of the power-law
model versus an exponential model, we fitted a linear
model to log10N(x) ~ log10x (power) and to log10N(x) ~
x (exponential), where x represents depth bins (step-
length bins) and N(x) are move-step frequencies,
 following Sims et al. (2008). Akaike’s information cri-
teria (AIC) weights were calculated for model com-
parisons, with the weight of any model varying from 0
(no support) to 1 (complete support) relative to the
entire model set. Models were run for the entire track
of each individual, using a linear model (‘lm’ function
in R). A model was also fitted to all individuals
pooled, using a linear mixed model, with individual
as random factor (R library ‘lme4’, function ‘lmer’). R2

values were calculated for model fit evaluation. For
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the mixed model, R2 was calculated as conditional R2,
following Nakagawa & Schiel  zeth (2013).

Lévy-like movements are characterized by a pat-
tern of movement step lengths in which short move-
ment steps are interspersed by a few much longer
relocation steps. Optimal search theory predicts that
predators should adopt search strategies known as
Lévy flights where prey is sparse and distributed
unpredictably, but that Brownian movement is suffi-
cient for locating abundant prey (Bartumeus et al.
2002). We therefore hypothesized that extreme deep
exploratory dives will be more likely in transit areas
(where prey density is probably lower) and less fre-
quent in ARS areas, where prey availability is proba-
bly more predictable. To test the hypothesis, maxi-
mum depth histogram data were used to model the
probability of diving deeper than d m, as a function of
movement, individual and temporal variables. The
following binomial GLMM was used, using a vector
of 0 (did not dive deeper than d) and 1 (dived deeper
than d) in the response variable:

Logit(pdij) = α + β1 Dielj + β2 Moonj + β3 Sizei

                           + β4 FPTij + aij + εij
(4)

where the term pdij denotes the probability of diving
deeper than d m by individual i during the 6 h sam-
pling period j, Dielj is the time of the day at sampling
period j and Moonj is moon illumination at period j.
Sizei is SCL of turtle i and FPTij is FPT of individual i
at sampling period j.

Previous studies have associated extreme long dive
durations in sea turtles with cold sea water conditions
(Southwood et al. 2003, Hochscheid et al. 2005, 2007)
or storm events (Sakamoto et al. 1990, Storch et al.
2006). Using dive duration histogram data, we mod-
elled whether the probability of diving longer than
m min was affected by SST and wind speed. We also

tested if there was an association between dive dura-
tion and FPT, as well as for eventual size-related dif-
ferences in dive duration. The following binomial
GLMM was used:

Logit(pdij) = α + β1SSTj + β2Windj + β3 Sizei

                           + β4 FPTij + aij + εij
(5)

where pdij denotes the probability of diving longer
than m min by individual i during the 6 h sampling
period j, SSTj is sea surface temperature and Windj is
wind speed at period j. Sizei is SCL of turtle i and
FPTij is FPT of individual i at sampling period j.

Because model covariates used in this study were
from widely different scales, all covariates were cen-
tered and scaled (centered to mean 0 and variance of
1), by subtracting the mean from each value and
dividing by the sample standard deviation (function
‘scale’ in R). This standardization aimed to improve
model computation and make comparison between
model coefficients possible (Zuur et al. 2007).

RESULTS

Horizontal movements

Sea turtles were monitored for 57 to 342 d (mean =
227 d; Table 1). Turtles travelled up to 2800 km away
from their tagging site, and were found in waters
ranging in depth up to 5644 m (average 3372 m;
Table 1, Fig. 1). Only a few locations (6%) were in ar-
eas shallower than 1000 m (Fig. 1). During the study
period, turtles used waters with SST be tween 14.3
and 25.4°C and chl a concentration be tween 0.05 and
0.28 mg m−3. Wind speed in those areas ranged be-
tween 0.2 and 22 m s−1. Ocean surface current speed
was relatively low, ranging from 0.007 to 0.16 m s−1

FPT analysis indicated that most
turtles performed ARS at a spatial
scale of 10 km, nested within
broader ARS scales of 50 to 200 km
(see Fig. S1 in the Supplement). At
the broader spatial scale (100 km),
turtles showed a significantly
lower probability of leaving (i.e.
spent more time in) areas of shal-
lower bathymetry and high chl a
concentration (Table 2, Fig. 1).
Conversely, turtles spent less time
in areas of higher current speed.
At the finer spatial scale (10 km),
turtles also spent more time in ar-
eas of decreased bathymetry and
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Turtle    Name      CCL  SCL  Released  No. days       Average        Max dive 
ID                           (cm)   (cm)     (1998)      tracked   bathimetry (m)   depth (m)

97-946    Lidia        45.7   41.3      1 Apr          274                3716               40−60
97-947    Delia        63.1   57.6    18 May        278                3908               60−80
97-948    Magda    50.5   46.1    18 May        109                3969             100−150
97-949    Maria      51.2   46.2    27 May        342                2969             100−150
97-950    Carla       37.9   33.9    27 May        158                3501             100−150
98-291    Isabel      57.7   52.3     10 Sep         311                3769                >150
98-292    Helena    51.2   48.3     10 Sep         341                2724             100−150
98-293    Sofia        48.6   44.5     10 Sep         123                4110             80−100
98-294    Tamia      44.9   39.9     10 Sep          57                 4294             100−150
98-295    Samina    44.0   40.0     10 Sep         280                2062             80−100

Table 1. Tracking records of 10 juvenile loggerhead sea turtles tagged in
Madeira in the spring and fall 1998. CCL: curved carapace length; SCL: straight 

carapace length
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weaker surface currents, but no significant associa-
tion with chl a concentration was found (Table 2).

Time spent at depth

Turtles spent on average two-thirds of their time
diving (>1 m) and one-third of their time at the sur-
face (0 to 1 m; Fig. 2A). The proportion of time spent
diving increased with FPT, independent of turtle size

(Table 3), indicating that ARS was associated with
increased diving activity, rather than increased rest-
ing at the surface.

Diving activity was concentrated in the first 50 m of
the water column, with less than 5% of the time
being spent in deeper waters (Fig. 2A). The propor-
tion of time spent at different depths was signifi-
cantly associated with diel and lunar patterns. The
proportion of time spent in shallow depths (1 to 10 m)
was higher during the night, while the proportion of
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Fig. 1. Tracks of 10 loggerhead sea turtles tagged off Madeira colored by (A) turtle ID (see Table 1), (B) first-passage time (FPT) at
100 km radius and (C) weekly chl a concentration. For increased readability, locations in (B) and (C) are shown at 40 km intervals
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time spent in deeper depths was higher during day-
time and under strong lunar illumination (Table 4). A
significant association was also found between div-
ing patterns and horizontal movements. Turtles spent
significantly more time diving in shallow depths (1 to
10 m) or in deep areas (>50 m) when in transit, while
spending more time in intermediate depths (10 to
50 m) in ARS zones where FPT was high (Table 4).
Turtle SCL did not have a significant effect on the
proportion of time spent at any depth (Table 4).
Detailed time-at-depth plots for each individual tur-
tle are presented in Fig. S2 in the Supplement.

Vertical movement steps

Vertical movements of tracked sea turtles were
characterized by many shallow dives (2 to 6 m) and a
few much deeper movement steps (Fig. 2B). Many of
the tracked individuals, including turtles with
<40 cm SCL, showed the capacity to dive to at least
100 m depth (Table 1). The analysis of step-length
frequency distribution showed support for the Power
law (Lévy) model for most individuals and for all indi-
viduals pooled (see Table S1 in the Supplement). The
calculated exponents (μ) for these individuals varied
between 1.5 and 1.9, indicating specialized random-
walk movement patterns close to the theoretical opti-
mum (1 < μ ≤ 3) (Bartumeus et al. 2002, Viswanathan
et al. 2008). Exponential model best fit was supported
for a single individual (Samina), indicating move-
ments consistent with normal random walks that
approximate Brownian motion.

GLMMs showed that the probability of performing
large movement steps (>60 and >80 m depth) de -
creased with FPT (see Table S2 in the Supplement),
demonstrating that such deep dives were more fre-
quent in transit areas than in ARS zones. Further, the

probability of performing such deep, probably ex -
ploratory dives was higher during daytime. No asso-
ciation with moon illumination or SCL was found
(Table S2).
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Response      Covariate     β       Exp(β)    SE(β)       Z            p

FPT 10 km         Chl     0.003    1.003     0.019   0.140   0.890
                        Depth   0.130    1.139     0.021   6.150  <0.001
                          Curr    0.057    1.058     0.019   3.040   0.002

FPT 100 km       Chl     −0.068    0.934     0.021  −3.320   0.001
                        Depth   0.444    1.559     0.023   19.380  <0.001
                          Curr    0.163    1.177     0.020   8.070  <0.001

Table 2. Cox proportional hazard models, modelling the effect of
oceanographic conditions (chl a concentration, depth and ocean
surface current speed) on the probability of juvenile loggerhead
sea turtles leaving a 10 and 100 km radius area. Note: A β coeffi-
cient >0 (eβ > 1) indicates an increased risk of leaving, while a β < 0
(eβ < 1) is interpreted in the opposite way. FPT: first-passage time
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Fig. 2. Juvenile loggerhead sea turtles off Madeira showing
(A) mean percentage time at depth, (B) mean number of
dives (per 6 h period) as a function of maximum depth and
(C) mean number of dives (per 6 h period) as a function of 

dive duration. Error bars: SE (n = 10 ind.)

A
ut

ho
r c

op
y



Mar Ecol Prog Ser 595: 203–215, 2018210

Dive duration

Most dives performed by sea turtles were not only
shallow, but also of short duration, lasting less than
5 min (Fig. 2C). However, turtles performed at least
one dive lasting 10 to 90 min in most 6 h sampling
periods (Figs. 2C & S3 in the Supplement). Con-

versely, dives lasting more than 2 h were rare
(Figs. 2C & S3). These occurred in association with
lower SST conditions (Table S2). Curiously, dives
lasting over 3 h, in association with low SST, were
relatively shallow (<30 m depth) and occurred in
both coastal and offshore areas (42 to 3752 m sea
 bottom depth), during winter and spring (January to
April; Table S3). Contrary to our hypothesis, pro-
longed dives (>120 min) were not associated with
strong wind conditions (Table S2).

DISCUSSION

In this study, tracking and diving data were inte-
grated to elucidate the foraging behavior of pelagic
juvenile loggerhead turtles in the eastern North At-
lantic. ARS behavior was detected at nested spatial
scales, and high-usage areas (quantified by FPT)
were associated with increased dive activity rather
than larger resting activity at the surface. As ex -
pected, these areas of high horizontal and vertical
search activity were associated with oceanographic
features known to stimulate prey availability. Con-
versely, low-usage areas (i.e. transit areas) were asso-
ciated with deep, likely exploratory dives, typical of
Lévy movement patterns. Interpretation of dive data
indicates greater dive activity in shallow waters (0 to
10 m) during the night and during transit and con-
versely, greater activity in intermediate waters (10 to
50 m) during daytime and in high-usage areas, sug-
gesting the latter are major daytime foraging  layers.

It is widely recognized that habitat selection and
use are hierarchical processes, in which 4 orders of
selection can be identified based on the spatial scale
at which habitat selection is measured (Johnson
1980). First-order selection refers to selection of the
physical or geographical range of a species; second-
order selection is selection of the home range of an
individual or social group; third-order selection
refers to selection of feeding or resting sites within a
home range; and fourth-order selection refers to the
actual food items, for example, from those available
at that site (Johnson 1980). The temporal and geo-
graphical span of this study enabled us to identify 2
of these scales. At the second-order scale, individuals
concentrated their time at broad ARS areas of 50 to
200 km radius. At this broad scale, high-usage areas
were associated with increased chl a concentration,
shallower bathymetry and weaker surface currents.
At finer spatial scales (third-order selection), individ-
uals concentrated their time at ARS areas of 10 km,
also associated with low bathymetry features and

                           β                  SE                z                  p

Intercept        0.887           0.140           6.3           <0.001
FPT                0.042           0.001           33.9           <0.001
Size                −0.078           0.139           −0.6           0.576

Table 3. Estimated coefficients (β) and corresponding stan-
dard errors (SE), z-values and significance levels (p), de-
scribing how the proportion of time juvenile loggerhead sea
turtles spent diving (>1 m) was affected by first-passage 

time (FPT) and turtle carapace size (Size)

Depth       Model                  β           SE           z           p
(m)            component

1−10         Intercept           0.648     0.131         5.0   <0.001
                 Diel (dawn)      0.285     0.004       73.5   <0.001
                 Diel (day)       −1.165     0.004  −296.7  <0.001
                 Diel (dusk)     −0.849     0.004  −233.9  <0.001
                 Moon              −0.017     0.001    −12.8  <0.001
                 FPT                 −0.011     0.001      −8.0   <0.001
                 Size                 −0.093     0.130      −0.7     0.474

10−25       Intercept         −0.909     0.094      −9.6  <0.001
                 Diel (dawn)    −0.262     0.004    −65.1  <0.001
                 Diel (day)          0.534     0.004     136.2  <0.001
                 Diel (dusk)        0.379     0.004     101.9  <0.001
                 Moon              −0.009     0.001      −6.5   <0.001
                 FPT                   0.007     0.001         5.1   <0.001
                 Size                   0.019     0.094         0.2     0.837

25−50       Intercept         −3.448     0.367      −9.4  <0.001
                 Diel (dawn)    −0.090     0.009      −9.5  <0.001
                 Diel (day)          1.697     0.008     225.2  <0.001
                 Diel (dusk)        1.477     0.007     198.4  <0.001
                 Moon                0.053     0.002       24.0   <0.001
                 FPT                   0.030     0.002       13.9   <0.001
                 Size                   0.294     0.361         0.8     0.417

>50           Intercept         −5.119     0.665      −7.7  <0.001
                 Diel (dawn)    −0.572     0.019    −29.6  <0.001
                 Diel (day)          0.928     0.014       64.3   <0.001
                 Diel (dusk)        0.651     0.014       45.4   <0.001
                 Moon                0.077     0.005       15.6   <0.001
                 FPT                 −0.088     0.005    −16.5  <0.001
                 Size                   0.770     0.662         1.2     0.245

Table 4. Estimated coefficients (β) and corresponding stan-
dard errors (SE), z-values and significance levels (p), describ-
ing how the proportion of time juvenile loggerhead sea tur-
tles spent diving to specific depth layers was affected by time
of the day (Diel), moon illumination (Moon), first-passage 

time (FPT) and turtle carapace size (Size)
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weaker currents, but not directly associated with
chl a concentration. It is likely that different environ-
mental features influence animal movements at dif-
ferent spatial scales. While these environmental
parameters appear to correlate with turtle move-
ments at the scales of 10 and 50 to 200 km, other fac-
tors such as the Earth’s magnetic field, SST and
major ocean currents may play more of a role at
larger spatial scales (Coles et al. 2000, Lohmann
2007, Putman et al. 2015, Cardona & Hays 2018).

The positive relationship between time spent in an
area and chl a is likely due to increased prey avail-
ability in those areas. Similar associations have been
observed in various pelagic areas (Polovina et al.
2000, 2004, Kobayashi et al. 2008, Mansfield et al.
2009, McCarthy et al. 2010, Barceló et al. 2013,
Scales et al. 2015). No significant relationship with
chl a was detected at the finest scale (10 km), per-
haps due to the spatial and temporal scale of chl a
measurements (i.e. weekly, 9 km data). Note also that
there is likely a time lag between a chl a bloom and
when larger predators may benefit from that bloom.
Therefore, chl a measurements may not necessarily
correlate with animal movements at fine temporal
scales. At both fine and broad ARS scales, habitat use
intensity was associated with bathymetry, as animals
spent significantly more time in the vicinity of shal-
lower bathymetry areas. Such areas included off-
shore seamounts and the continental shelf break of
Africa. Curiously, loggerhead sea turtles tagged in
the Canary Islands also foraged largely in this area
off the African coast (Varo-Cruz et al. 2016). Bathy-
metric features such as oceanic seamounts and conti-
nental shelf breaks are known to promote biodiver-
sity (e.g. Morato et al. 2010, Christensen Dalsgaard
et al. 2018). High-relief bathymetric areas function as
natural obstacles to marine currents, dragging deep,
nutrient-rich waters over the shallow bottom, which
can result in increased marine productivity (White et
al. 2008). Such bathymetric features may also gen -
erate mesoscale oceanographic features, such as
eddies and meanders, which may affect juvenile log-
gerhead movements (Polovina et al. 2000, Mansfield
et al. 2009, 2014, Gaube et al. 2017). High primary
productivity and energetic physical features (eddies,
meanders and fronts) that rouse and concentrate this
productivity are likely to allow food webs to develop,
resulting in high prey availability. Using the same
tracks as in this study, McCarthy et al. (2010) ana-
lyzed the track sinuosity of the animals relative to
oceanographic features. In addition to an association
with bathymetry and chl a, turtles showed more
 sinuous tracks in areas of lower SST. Further analysis

of the oceanographic conditions experienced by the
study animals, performed in this study, showed a
negative correlation between chl a and SST (i.e.
areas of increased chl a were generally colder, possi-
bly due to upwelling events). As we were interested
in testing the effect of chl a on habitat use at different
spatial scales, SST was not included as covariate to
avoid collinearity during model fit. Recent studies
suggest that juvenile loggerhead movements can be
affected both by ocean currents and by active move-
ments (Mansfield et al. 2014, 2017, Scott et al. 2014,
Putman & Mansfield 2015, Briscoe et al. 2016, Put-
man et al. 2016, Cardona & Hays 2018). This study
provides evidence for both. Turtles spent less time in
areas with stronger surface currents, indicating an
effect of ocean currents on turtle movements. On the
other hand, the relationship between turtle move-
ments and oceanographic features such as bottom
depth and chl a concentration suggests an active
selection of productive habitat, rather than random
use of the open ocean.

Turtles in this study exhibited a variety of migra-
tory paths. Juvenile loggerheads found in the eastern
North Atlantic, namely around the Azores, Madeira
and Canary Islands, mainly originate from the west-
ern North Atlantic, with little genetic contributions
from the Mediterranean, Cape Verde and South
Atlantic rookeries (Bolten et al. 1998, Carreras et al.
2006, Monzón-Argüello et al. 2009, LaCasella et al.
2013). Some animals in this study travelled north,
apparently against the prevailing currents, while
others travelled south and west towards the African
coast, overlapping with the main foraging areas of
turtles tagged in the Canary Islands (Varo-Cruz et al.
2016). It is possible that differences in migratory
paths could relate to differences in genetic origin
(e.g. distinct western Atlantic origins), but no genetic
origin data are available to test this hypothesis. Alter-
natively, it is possible that local oceanographic condi-
tions, such as the presence of mesoscale features
(Tew Kai et al. 2009), may have affected the move-
ments of the tracked animals. A deeper analysis of
turtle movements in relation to ocean currents is
needed to test this hypothesis.

This study highlights the relationship between hor-
izontal movement patterns and diving activity. For-
aging behavior models based exclusively on hori -
zontal movements may not directly translate into
the vertical dimension in dynamic marine environ-
ments (Sommerfeld et al. 2013, Bestley et al. 2015).
For sea turtles that may spend large amounts of time
resting at the surface, diving information provides
valuable information for interpreting foraging be -
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havior.  Turtles in this study spent on average one-
third of their time at the surface. However, as hypoth-
esized, high-usage areas were associated with aug-
mented dive activity rather than increased time at
the surface, suggesting increased foraging effort in
those areas. Conversely, transit areas with low FPT
were associated with decreased dive activity, i.e.
with in creased time spent at the surface, probably as
a result of de creased prey availability. Interestingly,
adult leatherback turtles travelling in pelagic habi-
tats also showed similar patterns, having increased
dive activity during the foraging phase compared to
the migratory phase (Shillinger et al. 2011).

Time spent at different depth layers was also asso-
ciated with movement patterns. Though sea turtles
were mostly located over deep oceanic areas (aver-
age bottom depth >3000 m), their diving activity
there was much shallower, since over 95% of their
diving time was spent in water depths less than 50 m.
Most dives were very shallow (<6 m depth) and of
short duration (<5 min). This pattern is similar to the
behavior observed in juvenile loggerheads of similar
size range tracked off the Canary Islands (Varo-Cruz
et al. 2016) and other regions (Polovina et al. 2003,
Howell et al. 2010, Àlvarez de Quevedo et al. 2013).
The observations are also consistent with what is
known about their feeding ecology. Pelagic logger-
heads feed on a variety of pelagic cnidaria (e.g. Cari-
naria cithara, Velella velella), pelagic mollusca (e.g.
Glaucus atlanticus, Janthina spp.), as well as on flot-
sam-associated barnacles and crabs (Parker et al.
2005, Frick et al. 2009). Some of these prey items are
strictly associated with the surface, but some gelati-
nous zooplankton are known to perform diel vertical
movements (e.g. Nogueira Júnior et al. 2015). Turtles
in our study tended to dive deeper during the day
and shallower at night. Similar patterns have been
reported for larger juveniles in the Pacific (Polovina
et al. 2003, 2004), as well as for adult loggerhead and
leatherback turtles in pelagic areas (Shillinger et al.
2011, Scales et al. 2015). Diel and lunar patterns in
dive activity, reported here, consisting of deeper dive
activity during the day and under strong lunar illumi-
nation are likely to reflect diel vertical movements of
their prey. The use of intermediate depth layers (10
to 50 m) during daytime, particularly in ARS zones
where FPT was high, indicate that these depth layers
are major daytime foraging layers for pelagic logger-
heads. It is possible that, in addition to prey availabil-
ity, temperature in the water column affected the
time spent by the study animals at different depths
(see Mansfield 2006). Unfortunately, no temperature-
at-depth data were available here to verify this possi-

bility. Time spent at depth was independent of turtle
body size. All turtles showed the capacity to dive to
depth, including the smallest juveniles (34 to 40 cm
SCL), which dived to at least 100 m depth. Diving
data for juvenile loggerheads in the 30 to 40 cm
range are rare (Varo-Cruz et al. 2016). It is generally
assumed that loggerheads shift their diet once they
recruit to nearshore habitats and become benthic for-
agers; however, perhaps an earlier shift in diet occurs
at around 30 cm SCL (Mansfield & Putman 2013).
This study supports the hypothesis that juvenile log-
gerheads undergo ontogenetic changes in foraging
be havior, from remaining exclusively at the surface
during the first year (Mansfield et al. 2014) to diving
to depth when they are over 30 cm SCL.

Most sea turtles in this study showed Lévy-like
dive patterns. These consist of many shallow dis-
placement steps, interceded by few much longer
steps (dives), which in theory optimizes prey encoun-
ters in areas where prey availability is scarce and
unpredictable (Bartumeus et al. 2002). Curiously,
most deep, probably exploratory dives (deeper than
60 m) were more likely to occur in transit areas com-
pared to ARS zones, likely due to scarcer and more
unpredictable prey availability. Again, adult leather-
back turtles inhabiting pelagic areas also showed a
similar behavior, performing seldom very deep dives
(>800 m) during the migration phase (Shillinger et al.
2011). These observations support recent empirical
evidence that Lévy movements are more likely to
occur in areas of scarce prey availability (Humphries
et al. 2010, Sims et al. 2012) and result in increased
foraging success in such habitats (Humphries et al.
2012). Note, however, that Lévy patterns may not
necessarily result from fundamental search strategies
adopted by foraging animals. Perhaps Lévy-like
movements result from environmental forcing or
from complex search behavior based on sensory or
memory-based information. Movement patterns re -
quiring many turns, such as Lévy flights and ARS,
incur additional energetic costs compared to more
straight-line movements (Wilson et al. 2013). How-
ever, they are often observed in nature, suggesting
that energetic gains compensate for the cost.

Temperature within the water column can affect
the diving behavior of sea turtles, including dive du-
ration (Mansfield 2006). The metabolic rates of sea
turtles vary with water temperature, and as temper-
ature decreases, dive capacity increases because of
lowered use of stored oxygen (e.g. Hochscheid et al.
2005, Thomson et al. 2012). Because temperature-at-
depth was not available in this study for a detailed
analysis of diving duration relative to ambient tem-
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perature, SST was used instead as a proxy for ambi-
ent temperature. As expected, we found a negative
relationship between dive duration and SST, i.e. tur-
tles showed a larger probability to perform long
dives (>120 min) when SST decreased. Turtles in
this study used waters with surface temperatures
down to 14.3°C. It is unknown whether the turtles’
body temperatures decreased this low, since sea tur-
tles have some ability to thermoregulate by basking
at the surface (Sapsford & van der Riet 1979, Mans-
field et al. 2014). It has been suggested in the past
that water temperatures below 15°C provoke hiber-
nation in sea turtles that become dormant on the sea
floor and do not re-emerge for as long as the low wa-
ter temperatures persist, even for months (Felger et
al. 1976). Modern telemetry techniques have demon-
strated that when sea temperature decreases, rather
than hibernating, sea turtles may perform long aero-
bic dives which allow them to rest in a dormant state
for hours and keep energetic costs at a minimum
(Southwood et al. 2003, Hochscheid et al. 2005,
2007). This is probably the case of the prolonged
dives observed in this study in association with sig-
nificant decreased SST. Increased dive duration dur-
ing storms has been observed in previous studies of
sea turtles in coastal habitats (Sakamoto et al. 1990,
Storch et al. 2006). Our study did not detect an asso-
ciation between dive duration and wind speed. We
also tested whether the probability of performing
prolonged dives was associated with FPT, but no re-
lationship was found, suggesting that ARS patterns
were not biased by prolonged resting dives.

This study discloses new aspects of the foraging
behavior of juvenile loggerhead sea turtles in the
open ocean, in particular the relationship between
horizontal and vertical movement patterns and the
effect of physical and circadian variables on their
spatial movements and diving behavior. This infor-
mation is valuable for a better understanding of the
ecology of this species, namely the strategies used to
fulfil their requirements for food and other vital
needs. This information may also be crucial for im -
ple menting adequate conservation measures aimed
at minimizing eventual interactions with fisheries
and other anthropogenic activities.
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