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Abstract—This paper studies the sensitivity analysis for the optimization of the multi-layered
composite axisymmetric shells subjected to arbitrary static loading and free vibrations. The
structural analysis is carried out using a two node frustum-cone finite element with 16 degrees of
freedom based on Love-Kirchhoff assumptions. The design variables are the angle of orientation
of the fibers and/or the vectorial distances from middle surface to upper surface of each ply. The
constraint functions are displacements, stresses (Tsai-Hill criterion) and the natural frequency of
a specified mode shape. Four types of objective functions can be used: maximum displacement
or natural frequency or elastic strain energy and material volume. The design sensitivities are
calculated analytically, semi-analytically and by global finite difference. The potentiality of the
proposed model and the accuracy of the sensitivities of response are discussed with reference to the
applications.

INTRODUCTION

The use of composite materials is having a great impact in the design process of structural
components encountered in engineering practice with great relevance in pressure vessel,
aerospace, automobile, naval and defense industries. These materials allow the designer
to tailor make the structure or component and therefore structural optimization tech-
niques are of great importance in the pre-design and design of these materials and
structures to improve the stiffness, reduce the weight, increase payload or to improve
the performance in general. For a successful optimization the requirements are a good
finite element model, adequate sensitivities, proper choice of objective functions, design
variables and constraints and a suitable method of solution of the non-linear mathe-
matical problem. The evaluation of sensitivities of structural response to changes in
design variables is a crucial stage in the optimal design representing a major factor with
respect to computing time required for the optimization process. Hence it is important to
have efficient techniques to calculate these derivatives.

In this work a discrete model for the optimal structural design of thin composite
laminated axisymmetric shell structures subject to symmetric and/or asymmetric loading
is presented. The structural analysis is carried out using a frustum-cone finite element with
16 degrees of freedom based on Love-Kirchhoff assumptions (Kraus, 1967). For thin
axisymmetric shell structures, which takes into consideration the coupling effect between
the symmetric and antisymmetric displacements of these anisotropic multilayered light
structures as described in Sheinman and Weissman (1987).

The sensitivities with respect to the design variables, namely angle of orientation
of the fibers and/or the vectorial distances from middle surface to upper surface of
each ply (indirectly the plies thicknesses) are evaluated analytically and alternatively
semianalytically or by global finite difference. The simplest technique of evaluating
sensitivities of response to changes in design variables is through the finite difference
approximation, called global finite difference, which is computationally expensive.

The use of a discrete model using analytical sensitivities (Haftka and Gurdal, 1993) or
alternatively with semi-analytical techniques as in Zienkiewicz and Campbell (1973) and
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Barthelemy et al. (1988) is very promising when the source code is available. The sensitivity
analysis algorithms are easily implemented inside the source code by its modification.

In the present work the discrete model! approach will be extended to carry out the
sensitivity analysis and optimization of thin axisymmetric shells made of symmetric
or asymmetric multi-layered composite lay-ups using the adjoint structure technique
(Haftka and Kamat, 1987) for static type situations.

Other numerically based solutions for isotropic axisymmetric structures were
presented by Marcelin and Trompette (1988) using a similar two node straight element
and/or a three node parabolic element based in Love-Kirchhoff shell theory associated to
the semi-analytical method to evaluate shape sensitivities. Barbosa et a/. (1991) and Mota
Soares et al. (1994) developed a similar discrete model, for isotropic axisymmetric shells,
where shape sensitivities were evaluated analytically using a symbolic manipulator. Other
authors, Plaut ef a/. (1984) and Chenais (1987), presented alternative theories and models
for the optimization of isotropic shell structures. Mehrez and Rousselet (1989), studied
the analysis and optimization of shells of revolution using Koiter’s model with the
implementation of B-splines for the middle surface and finite element for displacements.
Also, Bernadou ef al. (1991), using a general continuous formulation of the problems,
presented a methodology for optimizing the shape (middle surface and thickness) of an
elastic isotropic general thin shell under different criteria.

Very recently the optimal design of composite lightweight cylindrical rollers was
carried out by Bellendir and Eschenauer (1993) using closed form solutions for the
structural analysis based upon the cylindrical shell equations according to Fliigge in the
scope of the classical laminate theory. Also Zimmermann (1993) studied structural
optimization of thin walled fiber composite cylindrical structures which are endangered
by buckling and influenced by geometrical imperfections. All previous research, in design
sensitivity analysis of axisymmetric shells subjected to arbitrary loading, was mainly
concerned with isotropic or unilayered orthotropic thin structures or in very specific shell
applications such as cylinders and in pressure vessel components as in Muc (1992) and
Blachut (1993) among many others.

The increased use of these light axisymmetric structures made of multilayered
composite materials, the importance of the coupling effect between symmetric and
antisymmetric displacement components, which have been included in the structural
analysis by Sheinman and Weissman (1987), and the lack of sensitivity studies for these
structures are the motivations for the present work.

A comparative study of analytical versus semi-analyical and global finite difference
shows that, with regard to the accuracy, all techniques give similar sensitivity results for
the two types of design variables which were considered.

The formulation presented in this paper can be applied to the minimization of
maximum displacement or the minimization of the strain energy or the maximization of
the natural frequency of a chosen vibration mode of thin multi-laminated composite
axisymmetric shell structures. The minimization of the volume of the shell material
subjected to constraints on displacements, stresses (Tsai-Hill criterion) and natural
frequencies can also be accomplished.

The ADS (Automated Design Synthesis) program of Vanderplaats (1987) is used to
solve the nonlinear mathematical programming problem.

LAMINATE ANALYSIS

The constitutive relations, considering a thin ply & of fibers plus matrix, where the
principal orthogonal material axes are (x,, x,, £), and axis x, is parallel to the fibers (Fig. 1),
can be represented for a plane stress situation as in Vinson and Sienakowski (1986):

gk = O g* (1)
gk = [0, 0y ‘712]T§ g* =g &y )’12]T 2

where the components of normal and shearing stresses are, respectively, g,,, 65, and 5
and the components of normal and shear strains are &,,, &, and y,,, respectively.
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Fig. 1. Shell convention for orthotropic construction. Fiber orientation angle «, .

The nonzero material coefficient (Q;), (i,j = 1, 2, 6) for the kth ply are:

Qu = E/(1 —vpvy) (3)
O = Ey/(1 — vipvay) 4)
Q12 = Qo = Ey3vip/(1 — vipvy) (5)
Qs = Gy (6)

where E,, E,, G, nd v, are the independent material properties in terms of engineering
constants for orthotropic ply k. Relating eqn (1) with orthotropic properties in the shell
coordinate axes (S, 6, &), the constitutive relations become:

ok = Okt )]
or = [0ss Gy Ogpl” (8
£ =less €op Vsel 9

where ogg, 044, gy are the meridional, circumferential and shear stress components,
£gs, €99, V59 the corresponding strain components.

The coefficients of O, can be represented in an efficient and useful way (Tsai and
Hahn, 1980) as:

Oy = Uy + Uy cosQ2ay) + U cos(4ay) (10)
Q12 = Qa1 = Uy ~ U cos(day) (11
0, = U, — Uy cos2ay) + Us cos(day) (12
Qs = Q61 = 3U; sin(ay) + Us sin(day) (13)
Qa6 = Q2 = U, sin(ey) — Ussin(day) 14)
Qs = Us — Us cos(day) (15)
where the invariant U; are:
U, = 33Q: + 30x + 2015 + 4Q) (16)
U, = 3(Q1 — On) (17
Us = §(Qi1 + O — 201, ~ 4Q%6) (18)
Us = 5(Qui + Q2 + 6Q1; — 4Q46) (19)
Us = §(Qu1 + Q2 — 2Qy; + 4Qs66) (20)

and oy is the fiber orientation angle of the kth ply (Fig. 1).
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Fig. 2. Laminate nomenclature.

The strain vector ¢ at an arbitrary point of the kth ply is given for the Love-Kirchhoff
model as in Kraus (1967):

g€ =g +&x @1)
g’ =less epo ¥l (22)
X = [xss Xoo Xso]T (23)

where £° and y are the vectors of strain components for membrane and bending effects
in shell referential axes (S, 8, &). Substituting eqn (21) into the constitutive relation
eqn (7), the stresses for the kth layer are computed as:

or = Qi (€” + &) 24)

_ The internal membrane forces N = [Ngs Ngg Ng]" and the bending moments
M = [Mgs Mgy, Mg,]" are obtained by integrating layer by layer through the cross

section giving:
N A Bl &
~| = (25)
M B D|| x

NL

Ay = k; Qi (he — hye_y) (26a)
1 NL _

By =35 L Qalhi~Fic-) (26b)
1 NL

Dy=3 L @thi~ ki) (260)

where A, is the vectorial distance from the laminate middle surface to the upper surface
of the kth ply as represented in Fig. 2 and NL represents the total number of plies. The
cross-sectional rigidity constants of the laminate for membrane, membrane/bending
coupling and bending are 4;;, B;; and D;;, respectively.

SENSITIVITY ANALYSIS OF AXISYMMETRIC SHELLS
Analytical method

For the present frustum-conical element (Fig. 3) the strain components for membrane
and bending effects are given, as in Zienkiewicz (1977) and Kraus (1967), by:

£ =A
x=A

@7

mY
rY (28)
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Fig. 3. Frustum-cone finite element. Geometry and displacements.

where the operators A, and A; are:

a
— 0 0
as
cos¢ sing 19
A, = -—
m r r r a0 (29)
1a 9 cos¢
| r 36 as r /)|
_ 5 -
— 0
0 88?2
1 /8 d sing 9
Af= 0 —7<W+rcos¢a—s—> rz ﬁ (30)
0 2 cos ¢ 9 —r & 2Si—n(b<ri—cos¢
N 30  4Sa0 rr \ oS |

and ¢ is the angle between the normal and the shell surface and r is the radial coordinate.
The displacement vector u = [u, w, )7, with components u, w and v in the tangential,
normal and circumferential directions, in the element coordinate axes (S, 6, &) respectively,
are expanded in Fourier series of the type:

N
u= ) C,u, 31
n=0
cos nf 0 0 sin nd 0 0
C, = 0 cos n@ 0 0 sin nf 0 (32)
0 0 sin nd 0 0 cos nf

where n is the Fourier index and N is the number of terms in the truncated Fourier series
and u, = [u} w2]” is the vector of displacement components amplitudes, designating
superscript 1 and 2 the symmetric and antisymmetric displacement amplitudes.
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The meridional dependence of the displacements amplitudes can be written in a
product form as:

u, = Ng;’ 33)
gff = Lq; 34)
N 0
N = © _ (35)
0 N
o odw® o dwiE]T
fe _ ig g ig n ig g ig n . =1

g’l [ u'l v" w’l dS un v" w’l dS :I 3 (g ) 2) (36)

i i i dw, i i i we |7
q; = { Uy ug UG, o Un Mg UG ds} ;o =12 637

where q and q¢ are the vectors of the element nodal displacement amplitudes of order
16 X 1 in the local referential (S, 8, &) and system referential (r, 6, z), respectively, L a
transformation matrix of order 16 x 16 which relates shell displacements with degrees of
freedom of the element and system and () a matrix of shape functions of order 3 x 8
(Zienkiewicz, 1977).

Substituting eqns (31)-(34) into eqns (27) and (28) yields:

N
g =Y C.B, Lq; (38)

N
x= Y C,B;Lq; (39

Using the orthogonality properties of trigonometric functions, considering also the
applied loads expanded in terms of Fourier series and following a standard procedure via
the principle of virtual work, the element stiffness matrix K;, the element load vector p;
and mass matrix M;, for the nth harmonic can be represented as: .

1
K; = LTH (Bn,AB, + B! BB; + B] BB, + B[ ]_)Bf”)rt’dC} L (40)
1]
2z ("1
P = g j (M, L)"E;red( d6 (41)
- o Jo
NL 27 °t
M; = ¥ pelhy — l)j j (N, L) (I, Lyer dZ df (42)
k=1 0 V]
o 2w
[A; B;D] = S CIlA; B; DIC, d6 (43)
0
mn = Cnm’ E: = Cnmf f: (44)

where r is the radial coordinate, ¢ the length of generating line of the middle surface of
the element, f{ the vector of surface loads amplitudes, 9; is the matrix of linear shape
functions of order 6 x 16, p, the mass per unit of volume for the kth layer and { = S/¢
is the element local natural coordinate.

For simplified and symmetric ply configurations (Vinson and Sienakowski, 1986),
the membrane and bending effects are decoupled and therefore the second and third terms
of eqn (40) vanish.

The system equations for static and free vibrations are then obtained for the nth
harmonic as:

an_n = Qn (45)
Kng(n = w?nMn(_!i’n (46)
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where K,,, M,,, Q, and q, are, respectively, the system stiffness matrix, mass matrix,
load vector and displacement, for the nth harmonic. For free vibrations g, is the system
mode vector and w,, the natural frequency. After the introduction of boundary condi-
tions the system equations can be easily solved for each harmonic for static or eigenvalue
situations.

Equations (45) and (46) are uncoupled with respect to Fourier index, but for the
general case of anisotropy of the material, there is coupling between the symmetric and
anti-symmetric terms of the system displacement vector (Sheinman and Weissman, 1987).
This coupling, which acts via the constitutive matrix, derives from the coefficients A, Bq
and Dy (! = 1,2) in eqn (43). For structures made of isotropic or orthotropic material,
A, B and D are tridiagonal banded and coupling vanishes (Sheinman and Weissman,
1987).

When the independent design variables are the orientation of the fibers of the plies
or the vectorial distance from the middle surface to the upper surface of the kth ply
(Fig. 2), the vector of independent design variables b can be represented, respectively, as:

i=g
i

(o, ... ... an. )" 47)

=-n
il

hy...h;...hy, 1" (48)

The sensitivities of the element stiffness and mass matrices, eqns (40) and (42) with respect
to perturbations in the above design variables are evaluated, respectively, as:

K¢ (! dA 4B B aD

—r =7 Bl —B B —B, + Bl —B B —B, )rtd¢{L (49

ab, { , B, o B, ¥ Bu, o B, + Bi, o B, + B, G, Brrtde Lo (49)
aMf, NL a 27 1
— = Y pu (e — By ) \ (N, L)'(N,L)¢rd dé. (50)
abi k=1 abi JO0 0 JO

The differentiation of eqn (49) is accomplished by differentiating analytically eqn
(26) with respect to design variables b; defined by eqns (47) and (48), followed by matrix
multiplication and numerical integration. Because of simplicity, for the chosen design
variables, there is no need to use a symbolic manipulator.

For static problems the sensitivities of response:

N
w(g,b) = Y, w.q,b) (51)
0

n=

are evaluated through the technique of adjoint structure assuming that, for the nth
harmonic, the structure satisfies the equilibrium equation;

KII%‘" = ZII' (52)
Where z,, = dy,,/dq, is the vector of adjoint forces and A, the system adjoint degrees of

freedom.
The sensitivities of response can then be evaluated as:

dy (9 3Q, oK
v _ 5 .ﬂ+4”r<9¥ ,,q">
dbi n=140 ab, s abl ab’ 2
- [y ,<ap:', IKE
= _'l h&‘ ~ o "N 53
"gﬂ {abi ' CCZE b ab;  0b, (]n> (53)

where 0K, /db;, 9K /db; are the sensitivities of system and element stiffness matrix,
3Q,,/3b;, op;,/ab; the sensitivity of the system and element load vector, A the element
adjoint force and E is the set of elements e which are affected by the design variable b;.
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When the function y is the elastic strain energy:

N N 1
= E W, = Z 2_~ K Qn (54)
n=0

n=0

the sensitivity evaluated through eqgn (53) can be shown to become:

dy & 7o 1 73K
9B _1 e 55
db, ,,Eo E’E { ab, 29" 3, } (53)

For free vibrations considering a particular frequency w, , i.e. u/ @y, , COITe-
sponding to mode of vibration q,, normalized through the relation q, M,q,, = 1, the
sensitivities of natural frequency are given by:

v _ L (M,
ab; 2w, Y\3b, ~ “ap,
1 3Ke OME\
5
" 20, 2! <ab “’"ab) (%6)

where dM,,/0b; and M /3b; are the system and element sensitivity matrices. From
eqns (53), (55) and (56), one can see that the sensitivities of a function y can be efficiently
obtained at element level without the need of evaluating the system stiffness, mass and
load vector sensitivities.

It is assumed that the mass matrix M;,, eqn (42), and the element load vector p,
eqn (41), are independent of the ply orientation «;, yielding M, /da; = 0 and 8[32/ da; = 0.

Semi-analytical method

In this technique the vector of adjoint forces is obtained analytically and the
gradients of eqns (53), (55) and (56), with terms of the type dF/db;, are evaluated by
forward finite difference (FFD) through the approximation:

aF F(b + Ab) — F(b)

e db; o7

where Ab = [0, ..., db;, ..., 0] and db, is a small perturbation.

For shell elements and shape design variables the sensitivities are known to be highly
influenced by the perturbation used and wrong results can occur (Barthelemy ef al., 1988;
Barbosa et al., 1991; Mota Soares et al., 1994).

Finite difference technique

A giobal finite difference approach can be used as, for instance, forward finite
difference (FFD). In this case the sensitivity of a constraint with respect to a change db;
in a design variable is given by:

_d_l// — W(bl’ ---9bi + 6bi1 ---,bn) B W(b)
db,‘~ 6b1

(58)
which needs one extra structural analysis for each design variable.

CONSTRAINTS
Displacement and stress constraint

In a structural optimization problem the constraints are usually limits on displace-
ments and/or stresses such as Tsai-Hill failure criterion (Tsai and Hahn, 1980) on
multilayered composite materials or natural frequency constraints. The normalized form
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of an inequality optimization constraint is:

_ G,
Y=G,

J

1<0 (59)

where G(b); and Goj are the real and maximum admissible value of the jth constraint,
respectively. The adjoint forces for the jth static constraint are obtained by expanding
G(b); by Fourier series.

For example, for a displacement constraint, the adjoint load vector becomes:

=[6161%]:{0££o] (60)
dq, aq; aq, Go, Goj

Z,
where p is the total number of degrees of freedom and C, = (cos nf or sin nf) and
C, = (sin nf or cos nf) related to the corresponding degree of freedom.

For the Tsai-Hill failure criterion the constraint is:

N 2 2 2
D) {(&) + <%> + <%> - <%20'—22.u>} - 1=<0 (61)
n=0 (\011; G2, 022, Gy,

where g, and g,, are the tensile or compressive yield stresses of each ply in material
axes (x,, X, §), while gy, is the yielding shear stress. The stresses o = [ay,, G2, 3] r
for the nth harmonic are related with the element stresses g, through g} = 7, g,,, where
Ty is a rotation matrix (Vinson and Sienakowski, 1986) and g, = [g44, Oys, aso”]r is
the vector of stress components in shell axes (S, 8, &) for the nth harmonic, ply k£ and
Gaussian point (/) of element (e).

The vector of adjoint forces, as well as the term dy,,/db; of eqn (53), is evaluated for
nth harmonic, kth ply and element (e), by differentiating eqn (61) analytically.

Natural frequency constraint

A constraint in the natural frequency of mode f can be easily evaluated once the
eigenvalue problem is solved. Considering a normalized constraint of the type:

w=1-2<0. (62)
Wy

The sensitivity of eqn (62) is evaluated as:

o, 1 (K, OME
— == T - ¢ 63
b, ~  2wow, EE q"'<ab,~ “eap, ) W (63)

where w, is the limiting natural frequency for mode /.

OPTIMAL DESIGN

The objective is to find the fiber direction «; of each ply that minimizes a displace-
ment of a specified nodal point of the discrete finite element model or minimizes the
elastic strain energy or maximizes the natural frequency. The optimization can be stated
as:

min ¥(b) (64)
subjected to:
bl< b, < b¥ i=1,2,...,n4 (65)

where ¥’ is the objective function, bf and b¥ are the lower and upper limiting bounds of
the design variables and ny the total number of angle design variables. For the maximiza-
tion of a specified natural frequency ¥ = — Wy,

COE 5-5-F
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The above procedure can be followed by the minimization of the volume of the shell
material, using the vectorial distances as design variables, subject to constraints of
displacements, Tsai-Hill failure criterion and natural frequency of a chosen mode. The
optimization problem can be stated as:

min ¥¥(b) (66)

subjected to:
wilg, ) <0 j=1,...,m (67)
bi<b;<b* i=1,...n (68)

where WP¥ is the objective function (volume of the shell material), m the number of
constraint equations and »,, is total number of vectorial distances. The above procedures
are being implemented as a two stage iterative algorithm.

The nonlinear mathematical problems are solved by Davidson-Fletcher-Powel
variable method and modified feasible directions method for unconstrained (only side
constraints) and constrained problems, respectively (Vanderplaats, 1984, 1987).

APPLICATIONS

The discrete model developed has been applied to the structural and sensitivity
analyses and optimal design of two typical test cases of a conical and a cylindrical shell.

Conical shell

A three layered frustum-conical shell clamped at both ends, with stacking sequences
[a/0°/a] and [a/0°/—a] is analyzed with regard to dynamical behavior (natural frequen-
cies). The material data is:

E, = 206.9 GPa (Young’s modulus in the fibers directions)

E, = 18.8 GPa (Young’s modulus perpendicular to the fibers)

G,, = 4.48 GPa (Shear modulus); v,, = 0.28 (Poisson’s ratio)

h, = 0.000167 m (thickness of each layer) and p, = 2048 kg-m~3 (mass density).

The shell geometry is:

r, =0.1905m (upper radius); r; = 0.381 m (lower radius); L = 0.381 m (shell
height).

A discrete model with 26 ring elements has been used. The eigen frequencies analyses
are in close agreement with a similar study carried out by Sheinman and Weissman (1987),
as shown in Table 1, for the fundamental natural frequency.

Table 1. Conical shell. Natural frequencies (Hz)

Present Sheinman and Weissman
Orientation (1) ) (1) )
0°/0°/0° 180.0 (11) 180.0 (11) 179.8 (11) 179.8 (11)
15°/0°/15° 235.2 (12) 218.7 (12) 235.1 (12) 221.4 (12)
30°/0°/30° 278.7 (13) 263.8 (12) 281.8 (12) 262.1 (12)
45°/0°/45° 314.2 (11) 293.5 (11) 317.0 (11) 288.7 (11)
60°/0°/60° 344.5 (10) 291.3 (9) 366.8 (10) 288.6 (9)
75°/0°/75° 327.1 (9) 269.9 (8) 3259 (9) 268.4 (8)
90°/0°/90° 256.7 (7) 256.7 (7) 256.3 (7) 256.3 (7)
15°/0°/—15° 234.9 (13) 231.9 (13) 235.1 (12) 230.5 (13)
30°/0°/-30° 278.7 (13) 254.6 (13) 281.8 (12) 254.3 (13)
45°/0°/—-45° 314.2 (11) 255.2 (13) 317.1 (11) 260.5 (12)
60°/0°/—-60° 344.5 (10) 264.9 (12) 344.8 (10) 268.9 (12)
75°/0°/-75° 327.1(9) 275.0 (10) 325.9(9) 276.1 (10)

(1)—Coupling disregard: (2)—Coupling allowed.
( ) Number in parentheses indicates circumferential mode.
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Table 2. Conical shell. Sensitivities of fundamental frequency dw!,/dq;

a, = 15° a, = 0° a; = 15°
Analytical -0.10222 x 10* 0.56199 x 10° —0.22898 x 10°
SA da; = 0.001° ~0.10224 x 10* 0.56196 x 10° -0.22901 x 10°
GFD d¢; = 0.001° -0.10223 x 10* 0.56198 x 10 -0.22898 x 10°

Table 3. Conical shell. Sensitivities of fundamental frequency dw};/dc;

a, = 45° a, =0° ay = —45°
Analytical 0.425353 x 10 —0.458760 x 10° 0.226957 x 10°
SA da; = 0.001° 0.424878 x 10* ~0.458776 x 10° 0.226930 x 10°
GFD dq; = 0.001° 0.425327 x 107 —0.458764 x 10° 0.226950 x 10°

The coupling effects between the symmetric and anti-symmetric modes which take
place through the constitutive matrices A, B and D (eqn (43)) can be seen with regard to

alterations in the values of the natural frequencies and mode shape in the circumferential
direction.

In Tables 2 and 3 the natural frequencies sensitivities with respect to ply orientation
«;, for the lay-ups [a,/a,/as] = [15°/0°/15°] and [45°/0°/—45°], which correspond to
the fundamental natural frequencies f), = 235.2 Hz and f}; = 255.2 Hz, respectively, are
evaluated analytically, semi-analytically (SA) and by global finite diffrences (GFD) with
a good agreement between the results of the three techniques.

The shell structure is then optimized for the maximation of £, in accordance with
eqns (64) and (65), yielding for the optimal design

fi» = 370.37Hz, [a/0°/a] = [90°/0°/90°],
when coupling is allowed and
fi» = 399.87Hz, [a/0°/a] = [72.65°/0°/72.65°],

when coupling is disregarded. In Fig. 4 a distribution of lowest natural frequency versus
fiber orientation angle o shows an excellent agreement with the optimal solutions.

400 T . /+——+\+ . /+—+\+
+/ \+\ ,+/ \+
350 +
N
T
3 300 +
c
o
3
g
o
D 250 +
2
2
coupled —+— uncloupled
200 -+
1 +
150 +—~+—+—+—+——+—+—+—+—+—++—++ -+ttt
0 20 40 60 80 100 120 140 160 180

degrees

Fig. 4. Natural frequency versus ply angle « (lay-up [«/0°/«]).
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When the coupling between symmetric and antisymmetric modes is disregarded two
optimal solutions are obtained, o = 72.65° and « = 107.65° depending on the initial
guess. It is also observed that with coupling between symmetric and anti-symmetric modes
one obtains an absolute maximum and the solution as expected is more conservative.

Cylindrical shell

A cylinder shell with 12 plies presented in Fig. 5 is considered, with a radius R = 0.25 m
and length L = 2.5 m. The shell is assumed simply supported at both ends, i.e. u, v, w = 0.
The material properties are E, = 38.6 GPa, E, = 8.27 GPa, G|, = 4.14 GPa, v = 0.26.
The initial design thickness of each ply is e, = 0.1 x 1073 m.

The cylinder is assumed 25% filled, i.e. (¢ = 66.2°) with a liquid of density
p = 5700 kg/m>, hence the radial pressure loading is represented as:

Pr = —PR (cos 8 — cos ¢) ford < ¢
pr=0 for 8 > ¢
ps=p. =0 for all 4.

This loading is expanded considering seven harmonics of Fourier series. To compare the
structural analyses with an alternative closed-form solution (Tooth ef al., 1988) the
problem has been solved using the symmetric degrees of freedom only (uncoupled).

To study the influence of the fibers in the axial and circumferential directions the
shell has first been analyzed for the following ply lay-ups:

@) [90°];2;  (b) [(0°/90%)s]s; (¢ [0°],

using a discretization of 50 equal ring shell elements.

The radial and circumferential displacement distribution versus circumferential
coordinate # at Z = L/2 shown in Figs 6 and 7 have a very good agreement with the
results obtained by Tooth et al. (1988).

For lay-up (b), the sensitivities of maximum displacement and elastic strain energy,
with respect to design variables of ply angles (eqn (47)) and vectorial distances (eqn (48))
are evaluated analytically, semi-analytically and by global forward finite difference,
with a perturbation of o; = 0.0001° and Jh; = 107k (h = total thickness). It can be
demonstrated that for oy = 7j/2(j =0, 1, 2, ...) only terms (3Q¢)x /90, and (3Qs4)x /Dty
are different from zero. Hence the expected discrete analytical solution dw/da,, should be
zero because only symmetric degrees of freedom are considered. From Tables 4 and 5 it
can be observed that the semi-analytical solution and global finite difference results
compare very favorably with the analytical discrete model.

The objective of the design is the minimization of the volume of the cylinder material
in accordance with eqns (66)-(68), using the vectorial distances as design variables and
lay-up [(0°/90°),]5. The following constraints were imposed:

go=1.0x103m (maximum displacement)
0<e<0.11x10%m (thickness side constraints) where e; = h; + h;_,.

The volume of the material for the initial design is ¥ = 4.71239 x 10~ m® and the
maximum displacement for this initial design is ., = 0.783 X 107° m.

Fig. 5. Cylindrical shell.
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Fig. 6. Radial displacement versus circumferential angle 6.
Lay-ups (a) [90°];,; (b) [(0°/90°)];; (¢) [0°],;.

The optimal design, whose results are shown in Table 6, have been obtained in 10
functions evaluation and 2 gradients evaluation. This optimal design corresponds to a
volume ¥V = 3.723 x 107> m® and a maximum displacement gq,,,, = 0.966 X 10~> m. This
value has activated the constraint since it is within the interval g, — €, ¢ + ¢ defined by
the user (¢ = 0.035 x 1073 m) in program ADS. After the optimization process a 21%
volume reduction was achieved.

To validate the Tsai-Hill stress sensitivities and displacement sensitivities with a
concentrated load, a similar analysis has been carried out, assuming a 12 ply lay-up
[(0°/90°),]¢ with a total thickness of # = 0.01667 m. The yielding strengths considered
were g,y = 1430 MPa, 0,, = 230 MPa and o, = 40 MPa. The load P = 5 kN is applied
at Z = L/2 and 6 = 0. A discrete model with 50 ring elements was used for the analysis
and 50 harmonic terms of Fourier series were considered. The maximum displacement
(at Z =L/2, 0 =0) for the present model is 0.571 x 107> m, which compares very
favorably with the value of 0.572 x 10~® m obtained using a general discrete model, based
on discrete Kirchhoff theory, modeled with 1920 triangular elements (Correia, 1990).

03 —X—layup (@) —O—layup(d) —<— layup(©)

0.2

S
120 160
degrees

v (mm)

Fig. 7. Circumferential displacement versus circumferential angle 6.
Lay-ups (a) [90°],,; (b) [(0°/90°);]s; (¢) [0°],-
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Table 4. Cylindrical shell. Sensitivity of ply angle o;

Displacement Strain energy

Analytical 0.0 0.0

a, SA —~0.807158 x 10~° —-0.238530 x 107
GFD —-0.799429 x 10~° —0.237987 x 10~°¢
Analytical 0.0 0.0

a, SA —0.278742 x 1078 —0.349440 x 1076
GFD ~0.279634 x 107 —0.348830 x 1076
Analytical 0.0 0.0

a, SA -0.868701 x 10~° -0.244428 x 107°
GFD -0.856779 x 10~° ~0.243594 x 10°°
Analytical 0.0 0.0

a; SA ~0.278506 x 1078 -0.386839 x 10°¢
GFD —0.278048 x 1078 —0.388634 x 1076
Analytical 0.0 0.0

@, SA —~0.922573 x 107° —0.248399 x 1076
GFD ~0.914968 x 107° —0.247706 x 10°¢
Analytical 0.0 0.0

as  SA ~0.284476 x 107® —0.406602 x 107¢
GFD ~0.284227 x 107% ~0.406183 x 1076
Analytical 0.0 0.0

a SA ~0.289244 x 107# —0.408670 x 107°
GFD -0.288274 x 1078 —0.408008 x 107
Analytical 0.0 0.0

a, SA ~0.103660 x 10~% —0.253991 x 1076
GFD ~-0.103021 x 1078 —0.253270 x 107
Analytical 0.0 0.0

@3 SA -0.303718 x 1078 ~0.399126 x 10°¢
GFD —-0.303362 x 1078 -0.398679 x 10°¢
Analytical 0.0 0.0

ay  SA ~0.111683 x 1072 —0.256017 x 1076
GFD ~0.110683 x 1078 —0.255270 x 1076
Analytical 0.0 0.0

a, SA -0.323106 x 107% —0.369282 x 107¢
GFD ~0.322858 x 1072 -0.368966 x 10°¢
Analytical 0.0 0.0

@, SA -0.121288 x 107% —~0.257979 x 1076
GFD —0.120397 x 1078 —0.257342 x 10°¢

SA; GFD: da; = 0.001°,

Tables 7 and 8 show that the displacements and stress sensitivities evaluated using the
proposed analytical or semi-analytical procedure or using global finite differences with a
perturbation of o; = 0.001° and h; = 107°h give almost identical results.

On the above applications it has been found that the analytical sensitivities (A) are very
efficient with regard to CPU time when compared with semi-analytical (SA) and global
finite difference (GFD). These CPU ratios are about SA/A = 1.2 and GFD/A = 1.5.

Finally, the structural analyses results shown in this paper, and ¢lsewhere by
Sheinman and Weissman (1987), and the sensitivity results here presented for anisotropic
thin axisymmetric structures, and elsewhere by Barbosa ef al. (1991) and Mota Soares
et al. (1994), for isotropic structures, desmonstrate the simplicity and efficiency of the
proposed discrete model.

CONCLUSIONS

A discrete finite element model based on a two node frustum-cone finite element with
16 degrees of freedom formulated using the Love-Kirchhoff theory has been developed to
calculate the sensitivities of response with respect to changes in design variables for
arbitrary shells of revolution made of layered composite materials taking into considera-
tion the coupling effect, due to anisotropy, between symmetric and antisymmetric degrees
of freedom.
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Table 5. Cylindrical shell. Sensitivity of maximum displacement
dw/dh; and elastic strain energy dU/dh,

Displacement Strain energy
Analytical 0.91758 0.99228 x 10?
hy SA 0.91770 0.99237 x 10?
GFD 0.91772 0.99241 x 10?
Analytical —~0.56587 —0.27516 x 107
h,  SA —0.56590 —~0.27514 x 107
GFD —0.56591 —0.27512 x 10?
Analytical 0.55446 0.33710 x 10?
h, SA 0.55447 0.33709 x 10?
GFD 0.55446 0.33709 x 10?
Analytical —0.54643 —-0.38565 x 10%
hy  SA —0.54641 ~0.38562 x 10?
GFD —0.54639 —0.38561 x 107
Analytical 0.54177 0.42081 x 10
h, SA 0.54178 0.42086 x 10?
GFD 0.54183 0.42089 x 10?
Analytical —0.54049 ~0.44260 x 10?
hs SA -0.54044 —0.44258 x 10?
GFD —0.54043 —0.44255 x 10?
Analytical 0.0 0.0
hy SA 0.21786 x 107'° 0.65432 x 1073
GFD 0.83544 x 10710 0.52038 x 107
Analytical 0.54805 0.44600 x 10?
h, SA 0.54807 0.44603 x 10*
GFD 0.54812 0.44605 x 10?
Analytical —0.55689 —0.42763 x 10?
hy SA —0.55688 —0.42760 x 10*
GFD —0.55683 —0.42755 % 10*
Analytical 0.56910 0.39587 x 10?
hy SA 0.56911 0.39590 x 10?
GFD 0.56915 0.39591 x 10?
Analytical —0.58469 —0.35072 x 10?
hy SA ~0.58469 —0.35070 x 10
GFD —0.58468 —0.35062 x 107
Analytical 0.60365 0.29219 x 10?
h,, SA 0.60363 0.29223 x 10°
GFD 0.60362 0.29224 x 10
Analytical —-0.92754 —0.98635 x 107
h, SA —-0.92750 —0.98625 x 107
GFD —0.92740 —0.98622 x 107

SA; GFD: 8k, = 10°A.

Table 6. Cylindical shell. Optimal solution.
Vectorial distances (m)

Initial Final
hy ~0.60x 1073 —0.4740 x 107°
h, -0.50x 1073 —0.4740 x 107?
hy -0.40x 1073 —-0.3741 x 107}
hy -0.30% 107° -0.3713 x 107}
hy -0.20 x 1073 —0.2685 x 107°
h -0.10x 107? —0.6866 x 107*
he 0.0 0.3185 x 107*
h, 0.10x 1073 0.1319 x 107
hy 0.20 x 1073 0.2031 x 107*
hy 0.30 x 1073 0.2743 x 1073
hio 0.40 x 1073 0.3743 x 1073
by, 0.50 x 1073 0.3743 x 107°

hy, 0.60 x 1073 0.4740 x 107°
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Table 7. Cylindrical shell with concentrated load Pat Z = L/2 and
# = 0. Sensitivity of maximum displacement dw/da; and stress
failure criterion (SFC) dy/;/da; (eqn (61))

Displacement Strain energy
Analytical 0.0 0.235765 x 1072
@, SA —0.200889 x 10°* 0.235767 x 1072
GFD —0.200684 x 1078 0.235961 x 1072
Analytical 0.0 0.202077 x 1072
@, SA —0.363465 x 107° 0.202078 x 1072
GFD —0.324760 x 10°'° 0.202237 x 1072
Analytical 0.0 0.223009 x 1072
@, SA —0.155495 x 1078 0.223010 x 1072
GFD —0.155442 x 1078 0.223193 x 1072
Analytical 0.0 0.190968 x 1072
oy  SA ~0.989202 x 10~° 0.190969 x 1072
GFD —0.984649 x 197° 0.191119 x 1072
Analytical 0.0 0.211137 x 1072
@, SA —0.121165 x 1072 0.211138 x 1072
GFD —0.120810 x 1078 0.211312 x 1072
Analytical 0.0 0.180752 x 1072
as  SA —0.132478 x 1078 0.180753 x 1072
GFD —0.132052 x 10~ 0.180895 x 1072
Analytical 0.0 0.175979 x 1072
ag  SA ~0.126152 x 107® 0.175980 x 1072
GFD —0.125711 x 1078 0.176118 x 1072
Analytical 0.0 0.194988 x 1072
«; SA —0.925597 x 109 0.194989 x 1072
GFD -0.923728 % 10~° 0.195150 x 1072
Analytical 0.0 0.167103 x 1072
a;  SA —0.659862 x 107° 0.167104 x 1072
GFD —0.655347 x 107° 0.167236 x 1072
Analytical 0.0 0.185328 x 1072
oy SA —0.883283 x 109 0.185329 x 1072
GFD —0.880816 x 107° 0.185482 x 1072
Analytical 0.0 0.159121 x 1072
a, SA —0.559220 x 107° 0.159122 x 1072
GFD —0.563215 x 10~° 0.159247 x 1072
Analytical 0.0 0.176553 x 1072
a;; SA —~0.957605 x 107° 0.176554 x 1072
GFD —0.956086 x 10~° 0.176699 x 1072

SA; GFD: d¢; = 0.001°.

The coupling effects between the symmetric and antisymmetric degrees of freedom
induce alterations in the response of the axisymmetric structures as shown for the values
of the natural frequencies and mode shape in the circumferential direction of the conical
shell example.

The results show that the static and dynamic analyses and the corresponding
sensitivities of statical or dynamic functions (free vibrations) and/or constraints are
efficiently obtained using the present model.

From the observation of results one can conclude that analytical, semi-analytical and
global forward finite difference sensitivities are obtained with good accuracy when the
design variables are the angles of orientation of the plies and the vectorial distances from
middle surface to upper surface of each ply. The analytical discrete model is more
efficient with regard to CPU time.

The semi-analytical and global finite difference sensitivities are efficiently obtained
with the perturbations of a; = 0.001° and &k; = 10™>h. No numerical instabilities have
been recorded with the finite difference for the two types of design variables considered
in the present work.

The proposed discrete model, in association with the algorithms of Davidson-
Fletcher-Powel variable metric and modified feasible directions method, makes an
adequate tool to obtain the optimal design of multilayered axisymmetric shell structures.
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Table 8. Cylindrical shell with concentrated load Pat Z = L/2
and 6 = 0. Sensitivity of maximum displacement dw/dh; and
stress failure criterion (SFC) dy;/dh; (eqn (61))

Displacement Strain energy
Analytical 0.49991 x 10~ 0.89866 x 107!
hy SA 0.49993 x 107! 0.89875 % 1072
GFD 0.49994 x 107! 0.89889 x 1072
Analytical 0.44879 x 107" 0.10178 x 1072
h, SA 0.44880 x 107! 0.10182 x 102
GFD 0.44886 x 107! 0.10189 x 1072
Analytical -0.27112 % 107! —0.14817 x 1072
h, SA —-0.27108 x 107! —0.14812 x 107?
GFD —0.27094 x 107" —~0.14804 x 1072
Analytical 0.13159 x 107! —0.41698 x 1073
hy SA 0.13157 x 107! —-0.41686 x 107}
GFD 0.13156 x 107! —0.41674 x 1073
Analytical ~0.30181 x 1072 -0.71785 x 1073
hy, SA —-0.30168 x 1072 -0.71771 x 1073
GFD —-0.30114 x 1072 ~0.71765 x 1073
Analytical —~0.33098 x 1072 —0.46075 x 1073
hs SA —~0.30100 x 1072 —0.46060 x 1073
GFD —0.33115 % 1072 —0.46056 x 1073
Analytical 0.00 —0.55362 x 1073
hy SA 0.00 —~0.55361 x 1073
GFD 0.00 —-0.55360 x 1073
Analytical 0.45274 x 1072 —0.14514 x 1072
h, SA 0.45270 x 1072 —0.14516 x 1072
GFD 0.45268 x 1072 —~0.14517 x 1072
Analytical 0.58294 x 1073 0.85921 x 1073
hy SA 0.58250 x 10 0.85932 x 10*
GFD 0.58947 x 1073 0.85952 x 10°?
Analytical —-0.95061 x 1072 —0.24705 x 1072
hy SA -0.95070 x 1072 —0.24705 x 1072
GFD —0.95079 x 1072 ~0.24704 x 1072
Analytical 0.22242 % 107! 0.20186 x 1072
hy, SA 0.22250 x 107! 0.20180 x 1072
GFD 0.22260 % 107" 0.20193 x 1072
Analytical —-0.38791 x 107! —~0.34716 x 1072
h, SA —0.38786 x 107! -0.34717 x 1072
GFD —0.38783 x 107! ~0.34719 x 1072
Analytical —~0.52327 x 107! ~0.13021 x 1073
h,, SA -0.52325 x 107! -0.13021 x 107*
GFD —-0.52322 x 107" —0.13020 x 1073
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SA; GFD: dh; = 10™°h.

Acknowledgements—The authors wish to thank the financial support given by JNICT-Junta Nacional de
Investigagdo Cientifica e Tecnoldgica (Prj. STRD/A/TPR/592/92) and FLAD-Fundagio Luso Americana para
o Desenvolvimento.

REFERENCES

Barbosa, J. I., Mota Soares, C. M. and Mota Soares, C. A. (1991). Sensitivity analysis and shape optimal design
of axisymmetric shell structures. Computing Systems in Engineering 2(5/6), 525-533.

Barthelemy, B., Chon, C. T. and Haftka, R. T. (1988). Accuracy problems associated with semi-analytical
derivatives of static response. J. Finite Elements in Analysis and Design 4, 249-265.

Bellendir, K. and Eschenauer, H. A. (1993). Optimal design of composite lightweight rollers. In Advances in
Design Automation, Vol. 65-1 (Edited by B. J. Gilmore, D. A Hoeltzel, S. Azarm and E. A. Eschenauer),
pp. 139-147. ASME, New York.

Bernadou, M., Palma, F. J. and Rousselet, B. (1991). Shape optimization of an elastic thin shell under various
criteria. Structural Optimization 3(1), 7-21.

Blackut, J. (1993). On optimal end closures made from woven CFRP. In Optimal Design with Advanced
Materials (Edited by P, Pedersen), pp. 367-382. Elsevier, Amsterdam.

Chenais, D, (1987). Shape optimization in shell theory: Design sensitivity of the continuous problem.
Engineering Optimization 11, 289-303.

Correia, V. M. F. (1990). Método dos Elementos Finitos na Analise de Sensibilidades de Estruturas Construidas
de Materiais Compdsitos. MSc Thesis, Dep. Mechanical Eng., IST, Technical University of Lisbon, Portugal
(in Portuguese).



550 C. M. Mota Soares et al.

Haftka, R. T. and Kamat, M. P. (1987). Finite elements in structural design. In Computer Aided Optimal
Design: Structural and Mechanical Systems (Edited by C. A. Mota Soares), pp. 241-270. Springer-Verlag,
Berlin.

Haftka, R. and Gurdal, Z. (1993). Elements of Structural Optimization. 3rd edn. Kluwer Academic Press,
Dordrecht.

Kraus, H. (1967). Thin Elastic Shells. John Wiley, New York.

Marcelin, J. L. and Trompetta, Ph. (1988). Optimal shape design of thin axisymmetric shells. Engineering
Optimization 13, 108-117.

Mehrez, S. and Rousselet, B. (1989). Analysis and optimization of a shell of revolution. In Computer Aided
Optimum Design of Structures: Applications (Edited by C. A. Brebbia and S. Hernandez), pp. 123-133.
Computational Mechanics Publications, Springer-Verlag, Berlin.

Mota Soares, C. M., Mota Soares, C. A. and Barbosa, J. . (1994). Sensitivity analysis and optimal design of
thin shells of revolution. AIAA J. 32(5), 1034-1042.

Mugc, A. (1992). On the buckling of composite shells of revolution under external pressure. Compos. Struct.
21(2), 106-119.

Plaut, R. H., Johnson, L. W. and Parbery, R. (1984). Optimal form of shallow shells with circular boundary.
Transactions of the ASME 51, 526-538.

Sheinman, I. and Weissman, S. (1987). Coupling between symmetric and antisymmetric modes in shells of
revolution. J. Comp. Mater. 21, 988-1007.

Tsai, S. W. and Hahn, H. T. (1980). Introduction to Composite Materials. Technomic.

Tooth, A. S., Banks, W. M. and Rahman, D. H. (1988). The specially orthotropic GRP multi-layered
cylindrical shell—A theoretical approach for the general loading case. Compos. Struct. 9, 53-68.

Vanderplaats, G. N. (1984). Numerical Optimization Techniques for Engineering Design. McGraw-Hill,
New York.

Vanderplaats, G. N. (1987). ADS—A Fortram Program for Automated Design Synthesis. Version 2.01.
Engineering Design Optimization, Santa Barbara, CA, U.S.A.

Vinson, J. R. and Sienakowski, R. L. (1986). The Behavior of Structures Composed of Composite Materials.
Martinus Nijhoff Publishers, Dordrecht.

Zienkiewicz, O. C. (1977). The Finite Element Method in Engineering Science, 3rd edn. McGraw-Hill, London.

Zienkiewicz, O. C. and Campbell, J. S. (1973). Shape optimization and sequential linear programming.
In Optimum Structural Design (Edited by R. H. Gallagher and O. C. Zienkiewicz). Wiley, London.

Zimmerman, R. H. (1993). Multiobjective optimization of fiber composite shells for maximum buckling load
and imperfection tolerance. In Advances in Design Automation, Vol. 65-1 (Edited by G. J. Gilmore,
D. A. Hoeltzel, S. Azarm and E. A. Eschenauer), pp. 631-636. ASME, New York.



