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1. Introduction 

Platelets play vital roles in the physiological process of haemostasis and further 

regulate vascular inflammation, immunity, and atherogenesis (Gawaz, 2004; 

Sonmez and Sonmez, 2017; Borst et al., 2012a). Platelets are distinct from most 

mammalian cells because they do not have a nucleus. Accordingly, they were 

previously called “cellular fragments”. However, this outdated definition has 

been abandoned since platelets are proposed to participate in the 

pathophysiology of type II diabetes, atherosclerosis, cancer cell metastasis, and 

immune responses (Morrell et al., 2014; Garraud et al., 2013; Lannan et al., 

2015) 

1.1 Platelet generation 

Platelets do not have genomic DNA because they are non-nucleated. 

Megakaryocytes (MKs) are the precursors of platelets and can produce a total of 

1000 to 3000 platelets (George, 2000). Approximately 100 × 109 platelets are 

produced by MKs every day. In human cells, the proportion of MKs is 

approximately 0.05–0.1% of all nucleated cells residing in the bone marrow. The 

platelet number changes depending on the need for different platelet functions 

(Lebois and Josefsson, 2016). Although platelets are anucleated, they possess 

many cytoplasmic messenger RNAs inherited from MKs, which maintain survival 

and physiological platelet functions (Rowley et al., 2012; Harrison and Goodall, 

2008). The mechanism by which platelets are formed has become increasingly 

apparent (Yamada, 1957). 

Two hypotheses have been proposed to explain platelet formation, and these 

hypotheses have been incorporated into a complete model of platelet formation. 

https://fanyi.baidu.com/#en/zh/nuclei
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The first and primary model for platelet formation has been described as follows: 

MKs produce pseudopodia in the bone marrow by a demarcation membrane 

system that is highly redundant (Radley and Haller, 1982; Behnke, 1968) The 

sinusoids of the bone marrow have thin endothelial cells, which bind firmly to 

others and might also overlap (Becker and De Bruyn, 1976). Platelets, as well as 

proplatelets (which are elongated chains of MK cytoplasm that are larger than 

normal platelets and subsequently divided into many platelets) (Becker and De 

Bruyn, 1976; Tong et al., 1987), later germinate due to the localized activation of 

caspases (De Botton et al., 2002). The MK pseudopodia infiltrate the endothelial 

cells, probably due to their role in regulatory processes (Becker and De Bruyn, 

1976). 

The second model claims that the production site of platelets is located in the 

lung but not in the bone marrow, which further contributes to the model 

described above. MKs or proplatelets are first released from the marrow and 

then enter the lung, where they are converted into platelets (Lefrançais et al., 

2017; Pedersen, 1978; Trowbridge et al., 1982). MKs or large fragments of MKs 

are cleaved into platelets in the circulation. However, the extent of pulmonary 

platelet production is difficult to measure with current methods (Trowbridge et al., 

1982; Pedersen, 1978; Levine et al., 1993). Evidence for this mechanism 

includes the finding that MKs can pass through the bone marrow of the 

endotheliocyte barrier and analyses of MKs or their nuclei in pulmonary vessels 

and circulation (Poujol et al., 1998; Kaufman et al., 1965; Pedersen, 1978). 

Initially, MKs that escaped from the bone marrow and were trapped in the lung 

were thought to be aberrant. However, this process is now considered a 

significant route of cell trafficking (Kuter, 2016). 
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1.2 Specific platelet granules 

Granules of platelets contain many agonists, such as serotonin, ADP and 

perhaps tachykinins, which mediate the function of platelets, such as forming 

aggregates (Graham et al., 2004). Another critical factor discovered in the 

granules of platelets is called insulin-like growth factor-1 (IGF-1) (Chan and 

Spencer, 1998), which is a growth factor related to cell differentiation and 

proliferation (Delafontaine et al., 2004). 

Secretory granules of platelets that are important for the physiological functions 

of these non-nucleated cells have been classified into three types: 1) α-granules, 

2) dense granules and 3) lysosomes. Among these granules, α-granules and 

dense granules occupy a large proportion and have critical functions (George, 

2000). The membranes of the α-granules and dense granules are composed of 

MKs (Rendu and Brohard-Bohn, 2001). α-granules of platelets contain various 

factors and proteins (Rendu and Brohard-Bohn, 2001). The granule body forms 

in the early development of MKs. Some of the granule contents, such as platelet 

factor 4 (PF4), transforming growth factor-β and von Willebrand factor (vWF), 

are transferred into the α-granules and assembled in the MKs (Greenberg et al., 

1987; Nurden, 2011). PF4 is abundant in the α-granules of platelets (Kowalska 

et al., 2010), and the concentration was estimated to be approximately 7–

17 µg/109 platelets (Peterson et al., 2010). A PF4 variant, which differs in only 

three amino acids and is encoded by a second non-allelic gene, inhibits vascular 

generation (Hagedorn et al., 2002; Vandercappellen et al., 2011). PF4 inhibits 

the binding between different growth factors and cells (Bikfalvi, 2004a; Bikfalvi, 

2004b; Perollet et al., 1998). Other proteins are transported from the plasma to 

the α-granules of both MKs and platelets (Handagama et al., 1989; Handagama 

et al., 1995). 
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1.3 Primary haemostasis 

Haemostasis is a highly conserved process that has an intricate physiological 

function. After vascular injury, the underlying subendothelial matrix is exposed 

during endothelial layer disruption. Then, the haemostatic mechanism is 

triggered to form a thrombus (Baz and Mekhail., 2013). 

In short, coagulation involves two major processes: primary haemostasis 

(characterized by three overlapping steps: platelet adhesion, activation and 

aggregation) (Hoffman and Monroe 2001; Monroe 2002) and secondary 

haemostasis (followed by fibrin network deposition and maturation) (Palta et al., 

2014; Xu et al., 2016). Figure 1 illustrates a toolkit of primary haemostasis. 

During primary haemostasis, the matrix of the procoagulant subendothelium, 

which includes vWF, collagen, and fibrinogen (FBG), is exposed. In addition, 

subendothelial matrix proteins bind to their receptors, such as glycoprotein (GP) 

receptors (e.g., collagen-GPVI, vWF-GPIb/IX/V complex and collagen-α2β1), 

and immediately trigger primary haemostasis (Figure 1). Following the 

stimulation of injured vessels, rapid increases in intracellular Ca2+ induce the 

release of dense granule contents from platelets (Jones et al., 2011). Platelets 

are activated in parallel by the combination of agonists such as thromboxane A2 

(TXA2, Reed, 2004), thrombin (Ivanciu and Stalker, 2015) and ADP (Morimoto et 

al., 1990) to their G-protein-coupled receptors (GPCRs). Polyphosphates from 

the dense granules can promote the cofactor activity of factor V and facilitate the 

formation of dense fibrin and fibrils to prevent fibrinolysis. Platelet clots and fibrin 

further form as a result. The α-granules play a crucial role during platelet 

activation. For example, vWF and the coagulation factors FXIII, FV and FBG are 

all produced from platelet α-granules (Repetto and De Re, 2017). 
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Figure 1: Mechanism of primary haemostasis (from Repetto and De Re, 2017) 

Figure shows the formation of primary haemostasis which consists of platelet (a) 

adhesion, (b) activation, and (c) aggregation, is triggered by the exposure of 

procoagulant subendothelial matrix (consisting of proteins including fibronectin, 

collagen, vWF, laminin, and FBG), which afterwards binds to GP receptors. GP: 

glycoprotein; vWF: von Willebrand factor; TXA2: thromboxane A2; PSGL-1: P-selectin 

glycoprotein ligand 1; PDGF: platelet-derived growth factor; TGF-β: transforming growth 

factor β; PF4: platelet factor 4. 

In addition, adhesion molecules, such as P-selectin (Orkin et al., 2008; Coleman 

and Tsongalis, 2009), which are located at the platelet surface, can bind to their 

ligands in vivo on leukocytes (offering scaffolds for the formation of fibrin) and 

endothelial cells. Furthermore, platelet aggregation can be activated by platelet 

integrin αIIbβ3 via the FBG/vWF complex (Repetto and De Re, 2017). 
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The process of haemostasis can be summarized as a spatiotemporal regulation 

of platelet adhesion, activation, and aggregation, followed by the generation of 

coagulation cascades and thrombin (Golebiewska and Poole, 2015; Ivanciu and 

Stalker, 2015; Xu et al., 2016). 

1.4 Calcium regulation 

1.4.1 Platelet Ca2+ store and Ca2+ release 

The physiological function of platelets depends on the increase in intracellular 

Ca2+ concentration ([Ca2+]i), which can be induced via endogenous release from 

Ca2+ stores and extracellular Ca2+ influx (Figure 2). Two types of independent 

intracellular stores have been identified in the cytoplasm of platelets. The first 

one, which is termed the dense tubular system (DTS), is a membrane system of 

the endoplasmic reticulum (ER) harbouring several kinds of enzymes that are 

essential for proper protein folding (Gresele et al., 2017) and is one of the major 

internal Ca2+ stores. Following a stimulus, inositol 1,4,5-trisphosphate (IP3) 

moves to the surface of the DTS to bind to IP3R, which subsequently triggers the 

release of Ca2+ through the DTS and ultimately activates the related Ca2+ 

channels to accomplish these reactions (Jardin et al., 2008). 

Another store involving secretory granules and mitochondria is lysosome-related 

acidic organelles (Jardin et al., 2008). The ER plays pivotal roles in intracellular 

calcium storage, as well as these organelles, and is responsible for protein 

assembly and modification (Soboloff and Berger, 2002). Recent discoveries 

have shown that ER stress at sublethal levels can contribute to protecting cells. 

However, sustained ER stress will lead to prolonged inhibition of protein 

synthesis, which eventually results in cell death (Isaacs, 2005; Zhang and 

Berger, 2004). Figure 2 shows platelet activation via Ca2+ influx.  
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 Figure 2: Ca2+-mediated platelet activation (from Braun et al., 2011) 

 

The release of Ca2+ is mainly dependent on two signaling pathways. PLC (β and γ2) 

hydrolyze PIP2 into IP3 and DAG following agonists activation. 1) Soluble ligands such 

as thrombin and TXA2 translocate to their receptors GPCRs, initiating PLCβ. 2) Agonists 

such as collagen or CRP bind with their receptor GPVI, activating PLCγ2. Intracellular 

Ca2+ pools are discharged by the binding between IP3 and its receptor IP3R, in turn 

triggering SOCE which depends on STIM1/2 and Orai1. SERCA (SR Ca2+-ATPase) 

pumps Ca2+ from ER to cytosol, which further induces Ca2+ influx through SOCs. TRP, 

Cav and NCX indicate Ca2+ channels of transient receptor potential, voltage-dependent 

Ca2+ channels and Na+/Ca2+ exchanger, consecutively. Thapsigargin: SERCA inhibitor. 

DAG: diacylglycerol. 

The inhibition of sarco-ER Ca2+-ATPase (SERCA) usually results in ER Ca2+ 

depletion, thus inducing Ca2+ entry through store-operated channels (SOCs), 

further resulting in platelet apoptotic events. Several SERCA inhibitors, such as 

thapsigargin, have been extensively used to determine the role of Ca2+ stores in 

Ca2+ signalling (Hakii et al., 1986). SERCA, which can carry cytosolic Ca2+ into 
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the DTS via ATP consumption, has been shown to be an important Ca2+ pump 

family member in platelets (Flaumenhaft, 2016). Moreover, various inhibitors 

have been developed as potential anticancer agents (Michelangeli and East, 

2011). 

1.4.2. Ca2+ pathways 

Intracellular Ca2+ release plays a vital role in the initial period of platelet reactions. 

Moreover, steady and continuous platelet function depends on the entry of high 

extracellular Ca2+ levels, which could immediately fill the depleted store again. 

Intracellular Ca2+ activity is modulated via Ca2+ entry and Ca2+ discharge 

mechanisms. A range of Ca2+ signaling pathways have been identified, including 

ryanodine receptor (RyR); transient receptor potential (TRP); Na+/Ca2+-K+ 

exchanger (NCKX); plasma membrane Ca2+ ATPases (PMCAs); Ca2+ 

release-activated Ca2+ current (CRAC); voltage-dependent Ca2+ channels (Cav); 

SR Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX) (Mahaut-Smith et al., 

2011; Sage et al., 2002; Shumilina et al., 2011; Harper and Sage, 2007).  

1.5 Platelet activation 

In non-excitable cells such as platelets, receptor-agonist reactions result in the 

stimulation of phospholipase C (PLC) through the tyrosine kinase signalling 

pathway or G-protein-coupled signalling pathway. IP3 generation is followed by 

PIP2 hydrolysis via PLC, which can bind with the DTS receptors and thus finally 

deplete Ca2+ stores. This mechanism was originally detected in neutrophils in 

1986 (Putney, 1986) and suggested that the Ca2+ entry is store-regulated 

(Sargeant et al., 1992), which has recently been termed store-operated calcium 

entry (SOCE) (Lang et al., 2013a; Parekh et al., 2005). 

https://fanyi.baidu.com/#en/zh/substantial
https://fanyi.baidu.com/#en/zh/dislodgment
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1.5.1 Platelet agonists and receptor pathways 

Physiological platelet agonists induce distinct signalling pathways. The binding 

between agonists and receptors could trigger platelet activation as well as the 

downstream cascades of “inside-outside” signalling (Goggs and Poole, 2012). 

The elevated [Ca2+]i, which is widely related to cellular interactions, e.g., shape 

change and adhesion receptor activation, plays many roles during the activation 

of platelets (Hathaway et al., 1979; Offermanns et al., 1997; Rink et al., 1982). 

Two types of signalling pathways have been extensively investigated in platelets. 

One is called the tyrosine kinase pathway; platelet activation depends on 

tyrosine phosphorylation (Stegner and Nieswandt, 2011; Bergmeier and 

Stefanini, 2009). 

Agonists like collagen, convulxin and collagen-related peptide (CRP) mainly 

activate platelets through a mechanism dependent on the glycoprotein (GP) VI 

and downstream signalling pathways, such as the Fc-receptor γ-chain (FcRγ) 

and diverse tyrosine kinases (Varga-Szabo et al., 2008; Nieswandt and Watson, 

2003). The phosphorylation of the immunoreceptor tyrosine-based activation 

motif (ITAM) and Syk may trigger the activation of these cascades. Downstream 

phosphoinositide 3-kinase (PI3K) is further activated upon phospholipase Cγ2 

(PLCγ2) activation, which ultimately triggers platelet Ca2+ mobilization and 

aggregation (Stegner and Nieswandt, 2011). In addition, integrin αIIbβ3 (which 

binds to FBG) and GPIb-V-IX (which binds to vWF) also rely on the tyrosine 

kinase pathway to activate platelets (Watson et al., 2005; Jackson et al., 2003).  

The other pathway is called the GPCR signalling pathway. PLCβ isoforms and 

numerous enzymes are activated following the binding of agonists to their 

respective receptors. The reactions of ligand-receptors trigger various 
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downstream cascades through various G proteins and therefore modulate shape 

change, Ca2+ mobilization, and aggregation of platelets (Offermanns, 2006; 

Gachet, 2001; Devanathan et al., 2015).   

1.5.2 Orai/STIM-mediated SOCE 

Recent studies upon the interactions of stromal interaction molecule (STIM) and 

Orai have uncovered the mechanisms of activation and regulation of 

store-operated Ca2+ channels (SOCE). The pore-forming subunits are called 

Orai (mammalian cells express three isoforms termed Orai1, Orai2 and Orai3) 

and STIM (mammalian cells express two isoforms termed STIM1 and STIM2) 

(Oh-hora and Rao, 2008). Orai proteins contribute to Ca2+-selective channels 

that are located on the plasma membrane (PM; Lewis, 2007; Motiani et al., 

2013). Every Orai protein consists of one cytosolic C-terminus, 

four-transmembrane (TM) sections linked through three rings (intracellular 1 and 

extracellular 2), and one cytosolic N-terminus (Prakriya, 2013). 

Two types of molecules, namely, STIM1 and Orai1, have attracted the attention 

of researchers in the last two decades (Lang et al., 2013a). STIM1, which is 

localized in the ER, has been proven to be a Ca2+ sensor (Hyser et al., 2013; 

Maschalidi et al., 2017). Orai1, which is found in the PM, has been suggested to 

be the major SOCs transmembrane protein (Ong et al., 2007). Orai1 is the major 

subtype among the three subtypes. STIM1 translocates to the PM, where it 

activates Orai1, the pore-forming unit of Ca2+ release-activated Ca2+ (CRAC) 

channels, during ER Ca2+ depletion (Smyth et al., 2006; Berna-Erro et al., 2012). 

SOCE, which is essential for the regulation of numerous physiological reactions 

in almost all kinds of cells (Parekh and Putney, 2005), has been proposed as the 

most important Ca2+ influx mechanism in platelets (Alonso et al., 1991; Sage et 
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al., 1992). However, the precise mechanism and the role of the involved 

molecules have not been fully elucidated. 

1.6 Platelet apoptosis 

Platelets have a brief life in the blood circulation before they are cleared by the 

reticuloendothelial system. The platelet lifespan ranges from 8 to 10 days in 

humans (Leeksma and Cohen, 1955) and approximately 4 to 5 days in mice 

(Ault and Knowles, 1995). The short life span of platelets is not due to the lack of 

nuclei, because the lifespan of circulating erythrocytes is up to 3 months in 

humans (Shemin and Rittenberg, 1946; McArthur et al., 2018). Platelets may 

enter apoptosis, which is also known as programmed cell death. The normal 

platelet count ranges from 150 × 103 to 450 × 103 platelets/μl in the bloodstream 

in human and typically remains within a narrow range for individuals (Johnson et 

al., 2016; George, 2000). In addition, mitochondria might play essential roles in 

regulating apoptosis of platelets (Leytin et al., 2009). Elevated platelet apoptosis 

has been discovered in various processes, such as malaria, bacterial infection, 

type II diabetes, and uraemia (Leytin, 2012). 

1.6.1 Apoptosis pathways 

Various factors trigger platelet apoptosis through multiple mechanisms. 

Apoptotic platelet pathways can also be defined as the intrinsic pathway and 

extrinsic pathway, similar to nucleated cells (Kile, 2014). Furthermore, inhibitors 

of actin polymerization, PKC and caspase activation in platelets can lead to 

downregulated apoptosis as well as treatment with cyclosporin A (CsA) and 

αIIbβ3 integrin (Leytin, 2012). 

https://www.sciencedirect.com/topics/medicine-and-dentistry/cyclosporine
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Intrinsic pathway 

In general, the apoptosis of ageing platelets is mediated through the intrinsic 

pathway. A molecular model has been established based on previous studies 

(Kile, 2009; McArthur et al., 2018). In brief, prosurvival proteins, e.g., Bcl-2 family 

proteins, maintain platelet survival by changing the Bak/Bax ratio according to 

the apoptotic signalling. For instance, BH3-only proteins can be activated by 

apoptotic signalling factors, such as DNA injury, hypoxia and radiation. The 

Bak/Bax proteins can be released by activating BH3-only protein through binding 

to prosurvival proteins. The Bak/Bax complex produces a pore at the surface of 

the mitochondrial membrane, and then, cytochrome c is released. This 

complicated process finally induces caspase 9 activation, as well as the rest of 

the apoptotic caspase cascades (Green and Reed, 1998), phosphatidylserine 

(PS) externalization and platelet decomposition (Vogler et al., 2011; Zhu et al., 

2018). 

 

Extrinsic pathway 

The process of platelet apoptosis, which depends on the intrinsic pathway, has 

been intensively studied. However, whether apoptosis in platelets can be 

triggered via the extrinsic pathway remains controversial. Although evidence has 

indicated the existence of an extrinsic apoptotic pathway in platelets, this 

pathway has not been definitively confirmed. Some researchers believe that 

mitochondria act as the hub in platelet apoptosis induced via external stimulation 

(Lien et al., 2013). Besides, circulating apoptotic platelets can be eventually 

cleared through the exposure of circulating platelets to high pathological shear 

pressure from apoptogenic stimulation (Gyulkhandanyan et al., 2017). 

In addition to triggering the intrinsic apoptosis pathway, mechanical stimuli and 

chemical forces decrease extra-mitochondrial apoptotic responses, such as 
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segmentation of gelsolin and other cytoskeleton proteins, caspase-3 activation, 

membrane blebbing, expansion of filopodia and platelet microparticle (MP) 

shedding, PS exposure and platelet shrinkage (Lang et al., 2013b; 

Gyulkhandanyan et al., 2017). 

 

 

 

Figure 3: The mechanism of platelet apoptosis (from Thushara et al., 2013) 

Figure represents general signalling pathways of platelet apoptosis via intrinsic stimuli 

and extrinsic stimuli. The extrinsic pathway (triggered by the death ligand), and the 

intrinsic pathway (induced by intracellular signals) come together in the execution 

period, resulting in a series of reactions, such as the opening of the MPTP 

(mitochondrial permeability transition pore), the increase of [Ca2+]i and ROS, the 

discharge of Cyt C (cytochrome c), a decrease of Δψm (mitochondrial inner membrane 

potential), and the activation of caspase cascades, etc. These changes finally lead to 

apoptotic events in platelets. 
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Thushara’s report (Figure 3) showed that depolarization of the mitochondrial 

inner membrane (Δψm) could activate caspase cascades and induce apoptosis 

of human platelets (Thushara et al., 2013). A high level of [Ca2+]i can directly 

lead to loss of Δψm by activating the mitochondrial permeability transition pore 

(MPTP) (Towhid et al., 2011; Sveshinkova et al., 2015). In addition, the potential 

mediator calpain binding with a high level of [Ca2+]i can elicit Δψm loss, which 

can induce platelet apoptosis in a Ca2+-mediated manner (Zhang et al., 2011). 

Reactive oxygen species (ROS) can regulate the release of cytochrome c, 

SOCE and [Ca2+] (Rosado et al., 2004), as well as caspase-3 activation (Lopez 

et al., 2007). Moreover, ROS treatment triggers activation of Bid and Bax, which 

was proven by previous experiments, and accordingly mediates apoptosis of 

platelets (Lopez et al., 2008). Furthermore, caspase-8 can be activated by TPEN 

(Lopez et al., 2009) and resveratrol (Lin et al., 2009b). Figure 3 depicts platelet 

apoptosis depending on different signalling pathways. 

1.6.2 Thrombin-induced platelet apoptosis 

Agonist stimulation can induce platelet activation as well as platelet apoptotic 

events (Leytin, 2012). Thrombin, a natural platelet agonist, has been identified 

as a coagulation factor that can convert FBG to fibrin to generate blood plugs 

(Thushara et al., 2013) and is dependent on G-protein-coupled 

protease-activated receptors as a potent inducer of platelet activation (Coughlin, 

2005; Lundblad and White, 2005). 

Platelet apoptosis triggered by thrombin is not as sensitive as platelet activation. 

Thrombin at low concentrations can evoke high-level expression of P-selectin 

and integrin. The loss of Δψm, as well as caspase-3 activation and PS 

externalization, via a thrombin-mediated mechanism, however, is induced in a 

dose-dependent manner (Leytin et al., 2007). Thrombin activates PAR-1 at the 
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nucleated cell surface and further modulates apoptosis (Flynn and Buret, 2004). 

Similarly, PAR-1 signalling pathways are involved in thrombin-initiated 

stimulating responses and proapoptotic reactions in platelets, which consist of 

the activation of protein kinase C (PKC), intracellular calcium mobilization, PLC 

and stimulation of Rho/RhoA kinase, leading to a reorganization of actin 

cytoskeleton and myosin light-chain kinase activation (Coughlin, 2005; Flynn 

and Buret, 2004). 

1.6.3 Platelet PS exposure 

In many mammalian cells, PS is one of the phospholipids in the PM. In intact 

platelets, PS is situated in the inner leaflet of the phospholipid bilayer and forms 

asymmetrical distributions with other phospholipids, such as sphingomyelin and 

phosphatidylcholine (Zwaal, 1978). The asymmetry of membrane phospholipids 

is regulated by scramblases, floppases and flippases (Hankins et al., 2015). 

Platelet activation via tissue damage or other factors leads to the externalization 

of PS via transport from the inner membrane layer to the cell membrane surface 

(Perrotta et al., 2003). Then, exposed PS binds to its receptor Tim 4 at the 

surface of macrophages, which can clear the senescent platelets by a 

combination with several proteins (Dransfield et al., 2015; Toda et al., 2012). In 

nucleated cells, PS exposure is one of the essential apoptotic events. The level 

of PS exposure can reflect the proportion of apoptosis in total stored platelets. 

The percentage of PS externalization increases in apoptosis, which is driven by 

different mechanisms (Kile, 2014; Arachiche et al., 2009). Furthermore, platelet 

function can be directly affected by the proportion of apoptotic platelets (Rinder 

and Smith, 2003; Shapira et al., 2000) 
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The platelet PS externalization, which appears after the decrease or loss of Δψm, 

is a contributor to blood coagulation (Lentz, 2003). PS exposure is an indicator 

of mid-stage apoptosis (Mourdjeva et al., 2005). 

1.7 STIM1 and STIM2 (STIM1/2) 

The store-operated Ca2+ entry across the platelet plasma membrane (SOCE) 

(Prakriya and Lewis, 2015) has been converted into a real mechanical model by 

the discovery of STIM1. The highly homologous protein STIM was detected in 

many species, including Caenorhabditis and Drosophila (Roos et al., 2005; 

Strange et al., 2007; Liou et al., 2005). The STIM family members contain STIM1 

and STIM2, which are both expressed in human platelet ER (Berna-Erro et al., 

2012). Except for the end of the C-termini and N-termini, the molecular 

structures of STIM1 and STIM2 are similar. In lymphocytes, STIM1 is a 

significant activator in antigen-receptor-regulated Orai1 reactions. In contrast, 

STIM2 manages the level of cytoplasmic Ca2+ in resting conditions (Feske et al., 

2006; Vig et al., 2006). 

 

STIM protein domain structures 

Activation of STIM typically begins with Ca2+ discharging from the EF-hand 

domain, which is located at the ER lumen (Manji et al., 2000), (Soboloff et al., 

2006). Usually, STIM1 is distributed extensively throughout the ER (Wu et al., 

2006), (Liou et al., 2007) but transfers to PM junctions within a few seconds after 

store depletion (Liou et al., 2005). Although STIM1 is also present in the PM 

(Hewavitharana et al., 2008; Spassova et al., 2006), it functions mainly in the ER 

to stimulate SOCs by moving to the ER-PM junctional region (Lewis, 2007). A 

decrease in the stimuli initiated by ER Ca2+ then improves its discharge from 

STIM to initiate conformational changes. The resulting physical reactions with 
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Orai channels trigger Ca2+ influx as well as their activation through the PM (Berry 

et al., 2018). The N-terminal Ca2+-sensing region of STIM1 consists of the 

EF-hand and SAM domains. The EF-SAM domain in the presence of Ca2+ 

shows high α-helical structures, whereas EF-SAM without Ca2+ loading shows a 

much looser structure (Stathopulos et al., 2006). The C-terminal region in the 

cytoplasm includes broad helical regions that bind with PM Orai channels, which 

can cover most ER-PM junctional gaps (Luik et al., 2008). The depletion of 

stores is proposed to enhance STIM1 in the PM (Zhang et al., 2005; Hauser and 

Tsien, 2007); however, the activation of SOCs does not require the PM to embed 

STIM1 (Hewavitharana et al., 2008; Baba et al., 2006). 

STIM1-deficient platelets and STIM2-deficient platelets were documented very 

well in previous studies. However, to the best of our knowledge, the effect of 

STIM1/2 double conditional deletion on platelet function remained elusive.   

1.8 Ceritinib 

Ceritinib (Figure 4), an ATP-competitive inhibitor of anaplastic lymphoma 

tyrosine kinase (ALK) and IGF-1R (Gabay et al., 2015), has been used to treat 

advanced cancer patients such as non-small cell lung cancer (NSCLC), 

particularly those who harbor ALK genetic alterations (Shaw et al., 2013; Seto et 

al., 2013; Solomon et al., 2014).  

Further kinases and other targets reported to be sensitive to ceritinib include 

IGF1R, FAK1, RSK1/2, CAMKK2, FER and ERK1/2 (Kuenzi et al., 2017). The 

drug is approved for the following indications: ROS1/ALK overexpressed 

advanced carcinoma, ALK-positive crizotinib naive metastatic NSCLC, 

ALK-positive NSCLC along with central nervous system metastasis, etc (El-Osta 

and Shackelford, 2015). Published side effects of ceritinib treatment include 



 

18 

 

diarrhea, vomiting, nausea, and decreased appetite (Califano et al., 2017). 

Pharmacokinetic studies revealed that ceritinib is taken up by cytochrome P450 

(CYP) 3A (Mok et al., 2017), and eliminated by the CYP3A enzyme (Morcos et 

al., 2017). The IC50 of ceritinib is 0.2 nM (Selleck Chemicals, USA) and around 

97% of the drug is bound to plasma proteins (Mok et al., 2017). 

 

 

Figure 4: Chemical structure of ceritinib (from Bedi et al., 2018) 

 

Changes of platelet activation biomarkers such as platelet count and the mean 

platelet volume (MPV) have been reported in many studies on NSCLC (Aoe et 

al., 2004; Kumagai et al., 2015; Maráz et al., 2013). Ceritinib has previously 

been shown to trigger apoptosis of tumour cells (Van Erp et al., 2017) and 

suicidal death or eryptosis of anucleated erythrocytes (Al Mamun Bhuyan et al., 

2016). Whether ceritinib treatment affects platelet apoptosis, has not been 

determined. 
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1.9 Aim of the study 

To the best of our knowledge, there is no report about the effect of combined 

STIM1/2 deletion on platelet activation and apoptosis. Moreover, nothing is 

known about the effect of ceritinib on platelets. Thus the current investigation 

addresses the following objectives: 

To explore the impact of STIM1/2 on platelet activation and apoptosis and to 

investigate whether ceritinib modifies platelet Ca2+ signalling, activation and 

apoptosis, measurements were made without and with exposure of the platelets 

to collagen-related peptide, a stimulator of platelets mimicking in vivo activation 

by collagen (Nieswandt and Watson, 2003) and being effective by stimulation of 

STIM/Orai (Zhang and Trebak, 2011). Moreover, some experiments were 

performed without and with exposure of the platelets to thrombin, which is 

effective by stimulation of STIM/Orai (Zhang and Trebak, 2011). 
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2. Materials and Methods 

 

2.1 Materials 

2.1.1 Chemicals or antibodies 

 

The used concentrations and manufacturers of chemicals or antibodies in the 

present studies are listed as follows: 

Name concentration Manufacturer 

Thrombin 0.01 U/ml Roche, Switzerland 

CRP 2-5 μg/ml R. Farndale, University of 

Cambridge 

Orai1 rabbit anti-mouse antibody 1:200 diluted Abcam, Germany 

Anti-rabbit secondary antibody 1:250 diluted CFTM 488A; Sigma, USA 

Fluo-3 3 μM Biotinium, USA 

Thapsigargin 1 μM Invitrogen, Germany 

P-selectin antibody 1:10 diluted Emfret, Germany 

Integrin αIIbβ3 antibody 1:10 diluted Emfret, Germany 

Annexin-V FITC 1:20 diluted Mabtag, Germany 

Caspase-3 Staining Kit 3:100 diluted BioVision, CA, USA 

CD9-APC antibody 1:100 diluted Abcam, Germany 
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CD9-PE antibody 1:100 diluted Abcam, Germany 

DCFDA 10 μM Sigma-Aldrich, Germany 

Praformaldehyde 0.5% Germany Carl Roth 

 

2.1.2 Mice  

Mice with double conditional deficiency of STIM1/2 and mice of C57BL/6 of 

either gender were used in the present studies. The mice with STIM1 conditional 

deficiency in PF4 expressing platelets have been described previously (Ahmad 

et al., 2011). The STIM1/2 double deficient mice of Stim1/2fl/fl Pf4-Cre+ 

(Stim1/2fl/fl Pf4-Cre) and the corresponding control mice of Stim1/2fl/fl Pf4-Cre- 

(Stim1/2fl/fl) were generated and genotyped in the laboratory of Prof. Harald 

Langer (previously: University of Tübingen; current affiliation: Medical Clinic II, 

University of Lübeck). Briefly, Pf4-Cre mice were hybridized with Stim1/2fl/fl mice 

to remove the gene of STIM1/2 in platelets. The generation of Pf4-Cre mice 

(Tiedt et al., 2007) and Stim1/2fl/fl mice (Oh-hora et al., 2008; Mancarella et al., 

2013) have been explained in detail previously. The C57BL/6 wild-type mice 

(from Physiology Institute I, University of Tübingen) were used for the 

ceritinib-related experiments. All assays complied with German animal welfare 

law. Free access to water and control chow was provided before taking blood 

(Ssniff, Soest, Germany).  

2.2 Preparation of platelets 

Platelets were isolated from STIM1/2 mice (including Stim1/2fl/fl mice and 

Stim1/2fl/fl Pf4-Cre mice, 6-8 weeks old, n = 4-6 pairs) and C57BL/6 mice (2-3 

months old, n = 4-5) of the whole blood. Before isolation of platelets, the mice 
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were killed by cervical dislocation (Carbone et al., 2012), approximately 700 µl of 

blood was taken from the retro-orbital plexus after the mouse was anaesthetized 

properly using diethylether (Roth, Germany) (Pelzl et al., 2013). All operations 

(including anaesthetization and sacrifice) on mice before platelet isolation were 

kindly done by my colleagues (Anja Umbach and Hong Chen, University of 

Tübingen). Then, the blood was mixed with 200 µl acid-citrate-dextrose (ACD) 

buffer in a 2 ml tube (tube 1) (Honisch et al., 2015). Modified Tyrode buffer (200 

µl) was gently added into ACD-mixed blood in tube 1. Afterwards, the tube was 

centrifuged at 260 × g for 5 min, and the supernatant was transferred to tube 2 to 

obtain platelet-rich plasma (PRP). Then, platelets were pelleted after 640 × g for 

5 min centrifugation and moved into tube 3 (Cao et al., 2018a).  

Platelets isolated from C57BL/6 mice were partially preincubated with ceritinib 

(Medchem Express, Germany) diluted with Dimethyl sulfoxide (Sigma, Germany) 

for 0.5 h at 37°C before stimulation.  

 

Tube 1 700 µl blood+ 200 µl ACD+ 200 µl 

Modified Tyrode buffer 

Tube 2 PRP 

Tube 3 Platelets 

 

Experiments were performed with ACD buffer consisting of (in mM), D-glucose 

180, citrate 80, citric acid 50 (pH 4.6) and Modified Tyrode buffer consisting of (in 

mM): NaCl 133, Ca2+ 1, D-glucose 5, HEPES 10, NaHCO3 12, KCl 2.8 and BSA 

0.1% (pH 7.4). 
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Automated hematology analyzer (KX21-N, Sysmex, Germany) was used to 

measure the concentration of washed platelets. Besides, fresh 

heparin-anticoagulated whole blood 70 µl was obtained from Stim1/2fl/fl Pf4-Cre 

mice and corresponding littermates Stim1/2fl/fl mice to measure blood 

parameters such as platelet count and MPV. 

2.3 Ceritinib concentrations used 

According to Kuenzi’s dose-response curves data, ceritinib inhibited the viability 

of the most sensitive NSCLC cells (including H650, H23, H1155 and A549 cells) 

with the IC50 ranging from 1 to 2 μM (Kuenzi et al., 2017). Another report showed 

that ceritinib higher than 1.3 µM could trigger erypotosis (Al Mamun Bhuyan et 

al., 2016). In the present research, ceritinib has been used at concentrations of 

0.9, 1.8 and 2.6 µM, values similar to total plasma concentration in patients 

under treatment (Nishio et al., 2015). 

2.4 FACS analysis 

In our work, FACS-Calibur (BD Biosciences, USA) which consists of 4 LASER 

channels (FL-1, FL-2, FL-3, and FL-4) was utilized for data analysis. All the 

channels are wavelength-specific: 

Name of the LASER channel         wavelength (nm) 

FL-1                               533/530 

FL-2                               585/540 

FL-3                               670 

FL-4                               675/625 
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The platelets were stimulated with thrombin of 1 × 10-2 U/ml (5 × 10-3 U/ml in 

aggregation) or CRP of 2 µg/ml in all detections (except for PS exposure and 

Caspase-3 activation where 5 µg/ml of CRP was employed) (Liu et al., 2015). 

 

Detection of PS exposure and forward scatter (FSC) 

Quantification of apoptotic cells was determined by a FACS Calibur using the 

Annexin-V-FITC apoptosis kit. Briefly, the indicated agonists (thrombin or CRP) 

were used to treat platelets (1 × 108/ml) with modified Tyrode buffer at 37°C for 

10 min. Afterwards, the samples were stained utilizing an Annexin-V FITC kit 

containing 1 mM extracellular Ca2+ followed by a one-time wash. After a 20 min 

incubation at 37°C, the samples were immediately analysed at 

excitation/emission wavelengths of 488/530 nm (FL-1 channel). Then, platelet 

volume was estimated from forward scatter (Gilio et al., 2010). 

 

Caspase-3 activity 

To evaluate the effect of STIM1/2 on platelet caspase-3 activity, we treated 

platelets (1 × 107/ml) with the indicated agonists in modified Tyrode buffer at 

37°C for 10 min. Afterwards, the samples were incubated with a Caspase-3 

Staining Kit at 37°C for half an hour. After incubation, all samples were 

measured with a FACS Calibur in the FL-1 channel (Rukoyatkina et al., 2017). 

 

Ca2+ response 

Fluo-3 was utilized to detect the Ca2+ flux in FACS measurements. The platelets 

(1 × 106/ml) were first labelled with Fluo-3 dye in a 37°C incubator for 0.5 h. The 

loaded calcium molecule is a fluorescence-enhanced indicator bound to Ca2+. 

Then, the samples were stimulated with thrombin for 100 seconds or CRP for 

150 seconds and analyzed with the FL-1 channel (Liu, 2018). 
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Platelet Orai1 protein expression 

Platelets (1 × 108/ml) were treated with the indicated agonists for 15 min. 

Afterwards, Tyrode buffer was used to stop the reaction, followed by a 660 × g 

centrifugation for 5 min. After the samples were washed, they were treated with 

the Orai1 rabbit anti-mouse antibody for 1.5 h. After removal of the antibody and 

another wash, the anti-rabbit secondary antibody was employed to incubate 

platelets for 60 min. During the process, 1% paraformaldehyde was used to fix 

the platelets within 10 min before the samples were treated with the anti-rabbit 

secondary antibody. After incubation, platelet samples were analyzed in the 

FL-1 channel (Liu, 2018). 

 

SOCE  

SOCE detection was based on the extracellular Ca2+ discharge, and Ca2+ was 

then added in the presence of thapsigargin (1 µM). Platelets were resuspended 

in 150 µl Ca2+-free buffer to measure this parameter. Subsequently, Fluo-3 was 

used to stain the platelets for 0.5 h at 37°C. After the samples were rewashed, 

thapsigargin was utilized to treat the loaded platelets in Ca2+-free Tyrode buffer 

for 10 min. Finally, 1 mM CaCl2 was added to the treated samples containing 

thapsigargin. The final concentration of platelets was adjusted to 1 × 106/ml. The 

sample fluorescence was determined by utilizing FACS after 5 min in the FL-1 

channel (Liu, 2018). 

 

ROS abundance 

DCFDA fluorescence was utilized to evaluate ROS abundance. Platelets (1 × 

108/ml) were preincubated with DCFDA for 0.5 h at 37°C. Afterwards, CRP was 

employed to treat the DCFDA-labelled platelets for 10 min. The intensity of 

DCFDA fluorescence was measured with the FL-1 channel (Liu, 2018). 
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P-selectin and integrin abundance 

Platelets (1 × 106/ml) were suspended in the mixture, which consisted of the 

indicated agonists and fluorophore-loaded antibodies (integrin αIIbβ3 conjugated 

PE antibody and P-selectin conjugated FITC antibody) at RT for 15 min. Before 

measurements, the reaction was stopped by supplementing the volume to 200 µl. 

The two-colour loaded samples were measured by FACS (FL-1 channel and 

FL-2 channel) (Liu et al., 2016). 

 

Aggregation 

Platelet aggregation induced by agonists was investigated according to a 

previous report (De Cuyper et al., 2013). Briefly, aggregation was evaluated 

from the proportion of double-labelled cells to total-coloured events. The events 

in the Q2 region symbolized the double-labelled cells with treatment of the 

indicated agonists (thrombin or CRP), and the total-coloured events were 

counted as the sum for the three regions Q1, Q2 and Q4. CD9 antibodies were 

utilized to stain cells (5 × 107/ml) at RT for 15 min. Subsequently, 200 µl of 

modified Tyrode buffer was used to suspend the platelet pellet after discharging 

the redundant antibodies. The CD9 APC-labelled platelets were mixed with CD9 

PE-loaded cells in a 1:1 ratio, followed by shaking at 600 rpm for 10 min in a 

37°C incubator. Next, platelets were activated with agonists upon shaking at 

1000 rpm for 4 min. During activation, stained cells were fixed by 

paraformaldehyde. After incubation, the samples were measured in the FL-1 

channel and FL-4 channel, respectively. 
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2.5 Statistical analysis 

GraphPad Prism 5.1 software was employed to analyse the statistical difference 

between the collected data by unpaired t-test or ANOVA (one-way) with a Tukey 

test as appropriate. The results are presented as arithmetic means ± SD, n 

represents the number of independent experiments and p < 0.05 denotes 

statistical significance.  
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3. Results 

3.1 The role of STIM1/2 in platelet function 

The present study examined whether STIM1/2 affects blood platelet 

physiological parameters. To achieve this objective, platelets were isolated from 

the indicated Stim1/2fl/fl Pf4-Cre mice and the corresponding Stim1/2fl/fl 

littermates. The platelet count in Stim1/2fl/fl Pf4-Cre mice was considerably 

higher (p-value < 0.05) than that of Stim1/2fl/fl mice. However, other platelet 

parameters, including MPV, erythrocyte number and platelet distribution width, 

showed no significant difference between Stim1/2fl/fl Pf4-Cre mice (n = 5, 3 

females) and Stim1/2fl/fl mice (n = 5, 3 females) (Table1). 

 

Table 1: Blood parameters of Stim1/2fl/fl Pf4-Cre mice and corresponding Stim1/2fl/fl 

mice. 

 

Arithmetic means ± SD are shown (unpaired t-test), (n = 5), * (p < 0.05) denotes 

statistical difference. 
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The role of STIM1/2 in platelet apoptosis 

To investigate the impact of the transmembrane molecule STIM1/2 on platelet 

apoptosis, we used annexin-V-binding FITC analysis to quantify platelet PS 

abundance by flow cytometry. FSC was utilized to analyse platelet size. As 

shown in Figure 5, the percentage of annexin-V binding, which is shown by the 

marked area, was similarly low between Stim1/2fl/fl and Stim1/2fl/fl Pf4-Cre 

platelets in resting groups. After treatment with thrombin or CRP, the proportion 

of annexin-V-positive cells was markedly enhanced in both genotypes. However, 

the impact of the agonists was significantly attenuated in Stim1/2fl/fl Pf4-Cre 

platelets compared to Stim1/2fl/fl platelets. 

 

The volume of the two types of untreated platelets was similarly high in vitro. 

Treatment with thrombin was followed by marked cell shrinkage, which was 

determined from FSC in both groups. However, the impact of thrombin was 

significantly blunted in STIM1/2-deficient platelets. Moreover, FSC markedly 

decreased in the presence of CRP in both genotypes. Again, defective STIM1/2 

considerably reduced the impact of CRP in platelets (Figure 6). 
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Figure 5: STIM1/2 sensitivity of thrombin- or CRP-induced PS exposure in 

platelets 

A-C. Representative histograms (M1 areas, annexin-V fluos) showing PS exposure at 

the platelet surface in the absence (A) and presence of (B) thrombin or (C) CRP for 10 

min. Black patterns show Stim1/2fl/fl Pf4-Cre platelets and grey parts represent 

Stim1/2fl/fl platelets. Thrombin: 1 × 10-2 U/ml, CRP: 5 µg/ml. 

D. Bar charts indicate Stim1/2fl/fl platelets (grey-filled bars) and Stim1/2fl/fl Pf4-Cre 

platelets (black-filled areas) binding to annexin-V-Fluos without and with a 10 min 

stimulation in the presence of CRP or thrombin. Arithmetic means ± SD are shown, n = 

4 independent experiments. ** (p < 0.01) and *** (p < 0.001) represent statistically 

significant differences from double conditionally defective STIM1/2, ### (p < 0.001) 

denotes statistically significant differences in the presence of CRP or thrombin 

(ANOVA). 
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Figure 6: STIM1/2 sensitivity of thrombin- or CRP-induced platelet shrinkage 

 

A-C. Typical histograms of cell shrinkage volume represented from FSC without (A) and 

with (B) thrombin or (C) CRP in Stim1/2fl/fl platelets and Stim1/2fl/fl Pf4-Cre platelets for 10 

min. Black patterns show Stim1/2fl/fl Pf4-Cre platelets and grey parts represent Stim1/2fl/fl 

platelets. Thrombin: 1 × 10-2 U/ml, CRP: 5 µg/ml. 

D. Bar charts representative of FSC from the light intensity units after stimulation for 10 

min with thrombin or CRP between Stim1/2fl/fl (grey-filled bars) and Stim1/2fl/fl Pf4-Cre 

(black-filled areas) platelets. Arithmetic means ± SD are shown, n = 4. ### (p < 0.001) 

represents statistically significant differences with the treatment of CRP or thrombin, * 

(p< 0.05), ** (p < 0.01) show statistically significant differences from double conditionally 

deficient STIM1/2 (ANOVA).  
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Further experiments examined whether double conditional deficiency of STIM1/2 

could affect caspase activity, which was quantified with CaspGlow Fluorescein. 

As depicted in Figure 7, the proportion of caspase-3-positive platelets (M1 area) 

was similarly low in the resting groups (Figure 7A, D). With the stimulation of 

thrombin or CRP, caspase-3-positive platelets significantly increased in both 

groups. The effect of the agonists, however, was blunted considerably in 

Stim1/2fl/fl Pf4-Cre platelets compared with Stim1/2fl/fl platelets (Figure 7B-D). 

 

 

The role of STIM1/2 in the platelet Ca2+ response 

To further determine whether the decrease in platelet apoptotic events induced 

by STIM1/2 is related to [Ca2+]i, we used Fluo-3 to investigate cytosolic Ca2+ 

activity (Figure 8). Resting Stim1/2fl/fl and Stim1/2fl/fl Pf4-Cre platelets showed 

similar [Ca2+]i values (Figure 8A, D). In the presence of thrombin, [Ca2+]i was 

sharply enhanced in both Stim1/2fl/fl and Stim1/2fl/fl Pf4-Cre platelets (Figure 8B, 

D). The increased [Ca2+]i, however, was substantially less pronounced in double 

conditionally deficient STIM1/2 platelets than Stim1/2fl/fl platelets. After CRP 

treatment for 150 s, [Ca2+]i was strongly enhanced in both the Stim1/2fl/fl Pf4-Cre 

and Stim1/2fl/fl groups. Similar to apoptotic events, the [Ca2+]i was again 

significantly decreased in double conditionally deficient STIM1/2 platelets 

(Figure 8C, D). 
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Figure 7: STIM1/2 sensitivity of thrombin- or CRP-induced platelet caspase-3 

activity 

 

A-C. Representative histograms (M1 areas) indicate caspase-3 activity in the absence 

(A) and presence of (B) thrombin or (C) CRP in platelets for 10 min. Black patterns show 

Stim1/2fl/fl Pf4-Cre platelets and grey parts represent Stim1/2fl/fl platelets. Thrombin: 1 × 

10-2 U/ml, CRP: 5 µg/ml. 

D. Bars representative of the proportional activity of caspase-3 in Stim1/2fl/fl platelets 

(grey-filled bars) and Stim1/2fl/fl Pf4-Cre platelets (black-filled areas). Arithmetic means ± 

SD are shown, n = 4. ** (p < 0.01) denotes significant differences from double 

conditionally defective STIM1/2, ### (p < 0.001) denotes significant differences with the 

stimulation of thrombin or CRP (ANOVA). 
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Figure 8: STIM1/2 sensitivity of thrombin- or CRP-induced increase of platelet 

intracellular Ca2+ release  

 

A-C. Original histograms represent cytosolic Ca2+ influx utilizing Fluo-3 abundance 

without (A) and with stimulation by (B) thrombin for 100 s or (C) CRP for 150 s. Grey 

parts denote Stim1/2fl/fl platelets, black lines: Stim1/2fl/fl Pf4-Cre platelets. Thrombin: 1 × 

10-2 U/ml, CRP: 2 µg/ml. 

D. Bar charts show the Fluo-3 fluorescence in Stim1/2fl/fl samples (grey-filled bars) and 

Stim1/2fl/fl Pf4-Cre samples (black-filled areas). Arithmetic means ± SD are shown, n = 4. 

*** (p < 0.001) shows significant differences from double conditionally defective 

STIM1/2, ### (p < 0.001) indicates statistical differences from the treatment of CRP or 

thrombin (ANOVA).  
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The alterations in [Ca2+]i were quantified from Fluo-3 abundance. The SOCE 

was evident from the increase in [Ca2+]i following an extracellular Ca2+ 

re-addition after the Ca2+ pool was depleted in the presence of the 

sarco/endoplasmic reticulum Ca2+ ATPase inhibitor thapsigargin. 

As shown in Stim1/2fl/fl platelets in Figure 9, [Ca2+]i determined from Fluo-3 

fluorescence moderately increased after a 10 min treatment in the presence of 1 

µM thapsigargin and markedly rose following the subsequent addition of 1 mM 

extracellular Ca2+ (5 min). In contrast, [Ca2+]i was almost abolished in Stim1/2fl/fl 

Pf4-Cre platelets compared to Stim1/2fl/fl platelets after the treatment of both 

thapsigargin and re-addition of 1 mM extracellular calcium (Figure 9). 

For further determination of whether the Orai1 channel is involved in the process, 

the alterations of Orai1 protein in defective STIM1/2 platelets were measured 

utilizing FACS analysis. As shown in Figure 10, Orai1 protein abundance at the 

platelet surface was not significantly altered in resting platelets but was markedly 

enhanced in the presence of thrombin or CRP for 15 min. Again, Orai1 

abundance was significantly decreased in Stim1/2fl/fl Pf4-Cre platelets compared 

to the corresponding control Stim1/2fl/fl platelets in the presence of both agonists 

(Figure 10). 
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Figure 9: STIM1/2 sensitivity of thapsigargin-induced platelet SOCE 

 

A-C. Representative histograms of Fluo-3 in fluorescence spectrometry before (A), 

during and after the depletion of Ca2+ through the addition of 1 µM thapsigargin in the 

absence (B, 10 min) and presence (C, 5 min) of 1 mM CaCl2 in control (grey parts) and 

Stim1/2fl/fl Pf4-Cre (black patterns) 

D. Bar charts show Fluo-3 fluorescence in control (grey-filled bars) and Stim1/2fl/fl 

Pf4-Cre platelets (black-filled areas). Arithmetic means ± SD are shown, n = 4. ### (p < 

0.001) denotes significant differences from the exposure of CRP or thrombin, *** (p < 

0.001) denotes statistical differences from double conditionally defective STIM1/2 

(ANOVA).  
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Figure 10: STIM1/2 sensitivity of thrombin- or CRP-induced increase of platelet 

Orai1 expression 

 

A-C. Original histograms of anti-Orai1 abundance determined by FACS in the absence 

(A) and presence of (B) thrombin or (C) CRP in platelets for a 15 min treatment. Black 

patterns show Stim1/2fl/fl Pf4-Cre platelets and grey parts represent Stim1/2fl/fl platelets. 

Thrombin: 1 × 10-2 U/ml, CRP: 2 µg/ml. 

D. Charts showing anti-Orai1 fluorescence in Stim1/2fl/fl platelets (grey-filled bars) and 

Stim1/2fl/fl Pf4-Cre samples (black-filled areas) in response to thrombin or CRP. 

Arithmetic means ± SD are shown, n = 4. ### (p < 0.001) indicates statistical differences 

from the treatment of CRP or thrombin, * (p < 0.05) shows statistically significant 

differences from double conditionally defective STIM1/2 (ANOVA). 
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The role of STIM1/2 in platelet activation 

The role of STIM1/2 in platelet degranulation was explored in further 

experiments and was assessed using FACS analysis of platelet P-selectin. The 

degranulation was negligible at the surface in control platelets that were 

obtained from Stim1/2fl/fl and Stim1/2fl/fl Pf4-Cre mice, respectively (Figure 11A, 

D). Following exposure to thrombin or CRP, P-selectin abundance was 

significantly enhanced in both control and STIM1/2-deficient platelets, and the 

increase was markedly decreased in Stim1/2fl/fl Pf4-Cre groups (Figure 11C, D). 

 

To test the effect of STIM1/2 on integrin αIIbβ3, we treated platelets with the 

fluorescent-labelled specific antibody. Again, the activated integrin αIIbβ3 

fluorescence at the platelet surface was negligible in resting cells of both the 

control and Stim1/2fl/fl Pf4-Cre groups (Figure 12A, D). The expression of integrin 

αIIbβ3 was markedly enhanced following thrombin and CRP treatment for 15 

min for both genotypes. The impact of thrombin and CRP was again significantly 

attenuated in Stim1/2fl/fl Pf4-Cre platelets compared to Stim1/2fl/fl platelets. 

 

The role of STIM1/2 on platelet aggregation 

For analysis of the impact of STIM1/2 on the aggregation of platelets in the 

presence of agonists, CD9 PE- and CD9 APC-specific antibodies were 

employed to treat the samples for 15 min at RT. Double-colour detection was 

performed with a FACS machine. As depicted in Figure 13, the proportion of 

two-coloured events indicating aggregation was negligible in both genotypes of 

resting platelets and was strongly enhanced after 4 min of stimulation with 

thrombin or CRP. However, the effect of the indicated agonists on platelet 

aggregation was not affected by the STIM1/2 deficiency. 
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Figure 11: STIM1/2 sensitivity of thrombin- or CRP-induced platelet degranulation 

 

A-C. Typical histograms showed platelet degranulation determined from P-selectin in 

the absence (A) and presence of (B) thrombin or (C) CRP for a 15 min treatment. Black 

patterns show Stim1/2fl/fl Pf4-Cre cells and grey parts represent Stim1/2fl/fl samples. 

Thrombin: 1 × 10-2 U/ml, CRP: 2 µg/ml. 

D. Bars represent P-selectin expression in the control (grey-filled bars) and Stim1/2fl/fl 

Pf4-Cre (black-filled areas) cells. Arithmetic means ± SD are shown, n = 4. ** (p < 0.01) 

and *** (p < 0.001) show statistically significant differences from double conditionally 

deficient STIM1/2, ### (p < 0.001) denotes statistically significant differences from the 

exposure of CRP or thrombin (ANOVA).  
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Figure 12: STIM1/2 sensitivity of thrombin- or CRP-induced platelet integrin 

αIIbβ3 activation 

 

A-C. Typical histograms indicate the αIIbβ3 abundance of platelet αIIbβ3 activation 

before (A) and after treatment with (B) thrombin or (C) CRP for 15 min. Black patterns 

show Stim1/2fl/fl Pf4-Cre platelets and grey parts represent Stim1/2fl/fl platelets. Thrombin: 1 

× 10-2 U/ml, CRP: 2 µg/ml. 

D. Bar charts represent the abundance of activated integrin between Stim1/2fl/fl 

(grey-filled bars) and Stim1/2fl/fl Pf4-Cre (black-filled areas) cells after 15 min of 

treatment at RT. Arithmetic means ± SD are shown, n = 4. ### (p < 0.001) shows 

statistically significant differences from the treatment of CRP or thrombin, ** (p < 0.01) 

and *** (p < 0.001) represent statistically significant differences from double 

conditionally defective STIM1/2 (ANOVA). 
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Figure 13: STIM1/2 insensitivity of thrombin- or CRP-induced platelet aggregation  
 
A. Original dot traces show platelet aggregation in Stim1/2fl/fl (a, c, e) and Stim1/2fl/fl 
Pf4-Cre samples (b, d, f) in the presence of thrombin (c, d) or CRP (c, d) from 0 min (a, 
b) to 4 min of treatment. Thrombin: 5 × 10-3 U/ml, CRP: 2 µg/ml. 
B. Two-coloured dot areas (Q2) denote aggregation of platelets in the presence of (a) 
thrombin and (b) CRP at the indicated time points (0, 1, 2, 4 min). Grey-filled circles: 
Stim1/2fl/fl platelets, black-filled circles: Stim1/2fl/fl Pf4-Cre platelets. Arithmetic means ± 
SD are shown, n = 4. No significant difference was found from double conditionally 
defective STIM1/2 (ANOVA). 
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3.2 Ceritinib-sensitive platelet activation and apoptosis 

Ceritinib, an ATP-competitive inhibitor of ALK and IGF-1R (Gabay et al., 2015), 

has been reported to be useful for patients who harbour ALK genetic alterations 

(Seto et al., 2013; Solomon et al., 2014). ALK mutations have been documented 

in various malignancies (Shackelford et al., 2014). The present work focused on 

the effects of ceritinib on platelet function, including apoptosis activation and 

Ca2+ signalling.  

 

CRP-induced effects of ceritinib on platelet apoptosis 

Ca2+-regulated phospholipid scrambling also contributes to platelet apoptosis. 

Hence, further experiments were designed to explore the effect of ceritinib on 

membrane scrambling of platelets and cell size using FACS analysis. As 

depicted in Figure 14A and C, the proportion of annexin-V (M1 area) was 

similarly low in vehicle platelets, regardless of treatment with (0-2.6 µM) ceritinib. 

Following treatment with CRP, platelet PS exposure was significantly enhanced. 

There was no statistical difference for ceritinib treatment at 0.9 µM, which was 

consistent with the previous report of annexin-V-binding in erythrocyte (Al 

Mamun Bhuyan et al., 2016). However, ceritinib (1.8 and 2.6 µM) treatment 

significantly blunted annexin-V-binding FITC (Figure 14B, C). 

 

The volume of platelets was examined from FSC. As indicated in Figure 14D and 

F, platelet FSC was similar before and after ceritinib treatment. After a 10 min 

exposure to CRP, platelet volume was significantly reduced, and again, the 

decrease in platelet volume was markedly attenuated by ceritinib at 2.6 rather 

than 0.9 or 1.8 µM (Figure 14E, F). 
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Figure 14: Ceritinib-sensitive of CRP-induced PS exposure and shrinkage in platelets 

 

A, B. Representative histograms (M1 areas) indicate the annexin-V abundance of platelets 

after a 10 min exposure in the absence (A) and presence (B) of CRP. Grey parts denote 

vehicle platelets and black patterns represent 2.6 µM ceritinib incubated cells, CRP: 5 µg/ml. 

C. Bar charts denote annexin-V staining of platelets treated with vehicle (grey-filled bars) and 

(0-2.6 µM) ceritinib after 10 min of stimulation in the absence (resting bars) and presence 

(CRP bars) of the indicated agonist. Arithmetic means ± SD are shown, n = 4. 

D, E. Typical histograms showed platelet size without (D) and with (E) a 10 min CRP 

treatment. Grey parts denote vehicle cells and black patterns represent 2.6 µM ceritinib 

incubated platelets, CRP: 5 µg/ml. 

F. Bars reflect platelet FSC with (right bars) and without (left bars) a 10 min CRP treatment 

in the vehicle (grey-filled bars) and (0-2.6 µM) ceritinib-incubated cells. Arithmetic means ± 

SD are shown, n = 4. ** (p < 0.01) denotes statistical differences from ceritinib treatment, 

### (p < 0.001) denotes statistical distinctions from agonist treatment (ANOVA) (from Cao et 

al., 2018a).  
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Platelet caspase-3 was detected using a staining kit. As depicted in Figure 15A 

and C, the proportion of activated caspase-3 platelets was low prior to CRP 

treatment, regardless of the presence or absence of ceritinib. Moreover, 

caspase-3-positive cells strongly increased in both groups after treatment with the 

indicated agonist; again, ceritinib treatment strongly interfered with this increase 

(Fig. 15B, C).  

 

The effect of ceritinib on the platelet Ca2+ response  

Further experiments were performed using Fluo-3 abundance and FACS 

analysis to explore whether ceritinib affects CRP-induced platelet Ca2+ signalling 

(Figure 16). As shown in Figure 16A and C, ceritinib substantially decreased 

[Ca2+]I prior to CRP treatment. Following exposure to the indicated agonist, 

platelet [Ca2+]i was markedly enhanced. Again, the stimulatory effect of CRP 

was attenuated by ceritinib (Figure 16B, C). 

 

Orai1 protein alterations in platelets were measured with a fluorescence-related 

antibody by FACS analysis. As depicted in Figure 17A and D, no alteration in 

surface Orai1 abundance was detected before and after the ceritinib treatment. 

After CRP treatment, Orai1 abundance significantly increased in both groups. 

However, the increased Orai1 surface abundance was markedly blunted in 

ceritinib-incubated samples (Figure 17C, D). 
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Figure 15: Ceritinib-sensitive of CRP-induced caspase-3 activity 

A, B. Typical histograms (M1 areas) reflect caspase-3 fluorescence in platelets in the 

absence (A) and presence (B) of a CRP exposure for 10 min. Grey parts denote control 

platelets and black patterns represent 2.6 µM ceritinib treated platelets, CRP 5 µg/ml. 

C. Bar charts indicate caspase-3-positive cells of the vehicle and ceritinib-treated 

samples before and after exposure to the indicated agonist for 10 min. Arithmetic means 

± SD are shown, n = 4. ### (p < 0.001) points out significant distinctions from the lack of 

CRP, ** (p < 0.01) denotes statistical differences from ceritinib treatment (ANOVA) (from 

Cao et al., 2018a). 
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Figure 16: Ceritinib sensitivity of CRP-induced increase of platelet Ca2+ 

concentration  

A, B. Typical histograms represent intracellular Ca2+ activity from Fluo-3 abundance in 

platelets in the absence (A) and presence (B) of a 150 s exposure to CRP. Grey parts 

denote vehicle-treated cells and black patterns represent 2.6 µM ceritinib treated 

platelets, CRP: 2 µg/ml. 

C. Representative bar charts of Fluo-3 abundance in platelets. Grey-filled bars: control 

cells, black-filled areas: ceritinib treated platelets. Arithmetic means ± SD are shown, n 

= 4. ### (p < 0.001) denotes statistical differences from agonist stimulation, * (p < 0.05) 

and *** (p < 0.001) denote significant differences from the lack of ceritinib (ANOVA) 

(from Cao et al., 2018a). 
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Figure 17: Ceritinib-sensitive of CRP-induced increase of Orai1 protein 

abundance at the platelet surface 

 

A, B. Representative histograms reflecting Orai1 fluorescence in platelets in the 

absence (A) and presence (B) of CRP for 15 min exposure. Grey parts denote vehicle 

cells and black patterns represent 2.6 µM ceritinib incubated platelets, CRP: 2 µg/ml. 

C., Bar charts represent Orai1 fluorescence without and with CRP treatment for 15 min. 

Grey-filled bars: vehicle samples, black-filled areas: ceritinib treated platelets. 

Arithmetic means ± SD are shown, n = 4. ## (p < 0.01) and ### (p < 0.001) indicate 

statistical differences from indicated agonist stimulation, * (p < 0.05) represents 

statistical differences from ceritinib treatment (ANOVA) (from Cao et al., 2018a). 
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Figure 18: Ceritinib sensitivity of CRP-induced ROS formation  

A, B. Typical histograms indicate ROS from DCFDA abundance in the absence (A) and 

presence (B) of a 10 min exposure to CRP in murine platelets. Grey parts denote control 

platelets and black patterns represent 2.6 µM ceritinib treated platelets, CRP: 2 µg/ml. 

C. DCFDA abundance-related ROS in the control (grey-filled bars) and ceritinib 

(black-filled areas)-treated platelets in the presence and absence of a 10 min exposure to 

CRP. Arithmetic means ± SD are shown, n = 4. # (p < 0.05) and ### (p < 0.001) indicate 

significant differences from agonist stimulation, * (p < 0.05) represents significant 

differences from ceritinib treatment (ANOVA) (from Cao et al., 2018a). 
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CRP-induced effects of ceritinib on platelet oxidative stress 

DCFDA fluorescence was used to explore the impact of ceritinib on platelet ROS 

abundance in further experiments. As shown in Figure 18, the DCFDA 

fluorescence was similarly high in resting platelets, regardless of treatment with 

or without 2.6 µM ceritinib. Platelet ROS abundance was significantly enhanced 

by exposure to CRP. However, ceritinib considerably blunted DCFDA 

fluorescence (Figure 18B, C). 

 

Effect of ceritinib on CRP-induced platelet activation 

As shown in Figure 19A and C, platelet P-selectin abundance was negligible 

without or with exposure to ceritinib. P-selectin abundance was sharply and 

markedly enhanced in both types of platelets in the presence of CRP. However, 

the impact of CRP markedly decreased with ceritinib treatment (Figure 19B, C). 

In addition, the impact of ceritinib on platelet activation was determined from the 

integrin αIIbβ3 antibody. Integrin αIIbβ3 abundance was the same as that of 

P-selectin (Figure 19D-F). 

 

CRP-induced effects of ceritinib on platelet aggregation 

The experiment was designed to further explore the effect of ceritinib on platelet 

aggregation. For this goal, CD9-PE and CD9-APC were employed to label the 

resuspended samples. As shown in Figure 20, CRP quickly enhanced platelet 

aggregation. However, ceritinib treatment significantly blunted the 

double-coloured events in the presence of the agonist. 
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Figure 19: Ceritinib-sensitive of CRP-induced platelet degranulation and integrin 

activation 

 

A, B. Typical histograms indicating P-selectin fluorescence prior to (A) and after (B) 

CRP stimulation for 15 min in platelets. Grey parts denote control platelets and black 

patterns represent 2.6 µM ceritinib incubated samples, CRP: 2 µg/ml. 

C. Bar charts reflect P-selectin abundance from the FITC antibody at the platelet 

surface. Grey-filled bars: vehicle platelets, black-filled areas: 2.6 µM ceritinib incubated 

platelets. Arithmetic means ± SD are shown, n = 4. 

D, E. Representative histograms indicating the activated αIIbβ3 cells in the absence (D) 

and presence (E) of a 15 min exposure to CRP. Grey parts denote vehicle cells and 

black patterns represent 2.6 µM ceritinib treated samples, CRP: 2 µg/ml 

F. Bars denote integrin αIIbβ3 activation at the platelet surface. Grey-filled bars: vehicle 

cells, black-filled areas: ceritinib treated platelets. Arithmetic means ± SD are shown, n 

= 4. # (p < 0.05) and ### (p < 0.001) point out significant differences from agonist 

stimulation, *** (p < 0.001) represents statistical differences from ceritinib treatment 

(ANOVA) (from Cao et al., 2018a). 
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Figure 20: Ceritinib sensitivity of CRP-induced platelet aggregation  

 

A. Typical dot blots denote aggregation from double-coloured samples in the vehicle 

platelets (a, c) and ceritinib-treated (2.6 µM) platelets (b, d) before (a, b) and after a 4 

min (c, d) stimulation with 2 µg/ml CRP. 

B. Two-coloured dot areas (Q2) represent platelet aggregation in the absence and 

presence of agonist treatment at the indicated time points. Grey circles: vehicle cells, 

black circles: ceritinib incubated samples. Arithmetic means ± SD are shown, n = 4. * (p 

< 0.05) denotes statistically significant differences from the lack of ceritinib (ANOVA) 

(from Cao et al., 2018a). 
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4. Discussion 

Platelets play significant roles in haemostasis and are involved in various 

pathophysiologic processes, such as vascular occlusion and inflammation (De 

Gaetano, 2001; Harrison, 2005). In platelets, Ca2+ influx is in large part 

accomplished by SOCE, which is mediated via Orai/STIM (Lang et al., 2013a). 

Intracellular Ca2+ concentration has a strong influence during the complex 

activation process in platelets, which involves platelet degranulation, 

aggregation, integrin activation, platelet oxidative stress (Rakesh et al., 2014) 

and PS exposure (Bergmeier and Stefanini, 2009). Currently, platelets are 

proposed to support cancer cell metastasis, atherosclerosis, and type II diabetes 

(Lannan et al., 2015). 

The present study uncovered the roles of STIM1/2 and the influence of ceritinib 

in the regulation of platelet Ca2+ signalling and activation as well as apoptosis, 

which were realized using conditional deletion of STIM1/2 in a platelet model 

and analysis of the ceritinib effects. 

4.1 The effect of double conditionally deficient STIM1/2 on 

platelet function 

STIM1 and STIM2 belong to the STIM family and are both found in human 

platelet ER (Berna-Erro et al., 2012). STIM2 has been suggested as a weaker 

activator than STIM1 during the interaction with Orai1 (Bird et al., 2009), partially 

due to the different time courses of STIM2 activation (Zhou et al., 2009; Parvez 

et al., 2008). Moreover, STIM1 exhibits higher Ca2+ sensitivity than STIM2 

(Brandman et al., 2007), leading to a constitutive Ca2+ influx in several cell types, 

probably owing to high resting Ca2+ levels in the ER (Parvez et al., 2008; 
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Soboloff et al., 2006). In particular, STIM1 is considered to be the major isoform 

in SOCE via STIM induction (Berna-Erro et al., 2012). However, the roles that 

STIM1/2 play in platelets have not been fully elucidated. 

Either STIM1-deficient cells or STIM2-deficient cells were used in previous 

studies. STIM1 KO in C57/BL6 mice was perinatally lethal, while STIM2 KO mice 

survived several weeks after delivery (Oh-Hora et al., 2008). The double 

STIM1/2 KO mice have not been described, probably due to early embryonic 

lethality (Varga-Szabo et al., 2008). Because of these potential limitations, the 

conditional knockout of both STIM1 and STIM2 in platelets has become one of 

the most effective approaches to understand the effect of STIM on platelet 

function. Double conditional knockout of STIM1 and STIM2 was reported before 

in mouse thymocytes (Cheng et al., 2012; Oh-Hora et al., 2008), in which the 

T-cell function was pronouncedly declined, and the mice showed severe 

self-immune-like symptoms (Mancarella et al., 2013). 

Prior to activation, PS exposure, caspase-3 activation, [Ca2+]i, Orai1, P-selectin, 

αIIbβ3 integrin activation, and FSC were similar in platelets isolated from mice 

with conditional deletion of STIM1/2 and their corresponding littermates. 

Treatment with thrombin or CRP significantly enhanced platelet PS exposure, 

caspase-3 activation, [Ca2+]i, surface Orai1 abundance, degranulation, and 

integrin αIIbβ3 activation and markedly decreased cell volume. The effect of the 

indicated agonists was significantly less in Stim1/2fl/fl Pf4-Cre platelets than in 

Stim1/2fl/fl platelets. However, thrombin or CRP still significantly enhanced 

platelet PS exposure, caspase-3 activation, [Ca2+]i, surface Orai1 abundance, 

degranulation, and integrin αIIbβ3 activation and still decreased cell volume in 

Stim1/2fl/fl platelets. In contrast, thapsigargin-induced SOCE was virtually 

abolished in double conditionally deficient STIM1/2 platelets. Thus, it appears 
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that thrombin- or CRP-induced platelet activation and apoptosis only partially 

depends on SOCE and STIM1/2.  

STIM has been proposed to participate in platelet SOCE (Prakriya and Lewis, 

2015). Our studies demonstrated that STIM1/2 plays an essential role in platelet 

activation and apoptosis, especially in platelet SOCE. However, STIM1/2 is not 

critical for the aggregation of platelets under flow conditions. 

STIM1/2 is an important molecule in the SOCE of platelets based on the present 

results. When comparing the platelet activation and apoptosis of STIM-deficient 

platelets, we detected both differences and similarities to prior work. In 

accordance with a previous report (Varga-Szabo et al., 2008), the most 

important impairments were platelet activation of P-selectin and integrin αIIbβ3 

in STIM1 KO platelets by GPVI induction. As shown by our data, 

GPVI-dependent P-selectin and αIIbβ3 activation in Stim1/2fl/fl Pf4-Cre platelets 

were impaired by nearly half compared to those of Stim1/2fl/fl platelets. However, 

platelet aggregation had no noticeable difference in Stim1/2fl/fl Pf4-Cre platelets 

and control platelets. This impairment in activation, however, did not affect 

platelet aggregation in vitro. A similar conclusion was reached in Ahmad’s 

research (Ahmad et al., 2011). 

Contrary to recent findings (Gilio et al., 2010; Varga-Szabo et al., 2008) (Table 

2), our data suggested that STIM1/2 is not necessary for platelet aggregation. 

One explanation for these results is methodological diversity. Another more 

critical difference among these investigations comes from the use of different 

kinds of platelet models. Notably, both Gilio and Varga-Szabo performed studies 

utilizing chimeric mice with a total STIM1 KO in hematopoietic cells and the 

present work used a conditional deletion of STIM1/2 in PF4 mice, which may be 

the reason why different findings were achieved. As mentioned above, the 
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STIM1/2 double knockout of whole cells can lead to early embryonic lethality. 

Also, deficient STIM1 in every cell results in possible restrictions in experiments 

assessing thrombosis of whole blood in the chimeric mice (Ahmad et al., 2011). 

Various inflammatory factors are systemically released due to lethal 

radiotherapy, which is required to generate chimeric mice (Van der Meeren et al., 

2001). The inflammatory factors might have a negative effect on circulating 

platelets (Oleksowicz et al., 1994). Thus, chimeric mice should recover for some 

time before they are used for experiments. In the present study, the 

aforementioned complications were minimized in STIM1/2 conditional KO 

platelets. STIM1/2 double conditionally deficient models were also generated 

and analysed as in T cells (Stim1fl/flStim2fl/fl CD4-Cre) (Oh-Hora et al., 2008) 

and smooth muscle cells (SM22α-CreKI+/−/Stim1/2loxP/loxP) (Mancarella et al., 

2013) before. 

Different results were obtained using different types of agonists and varying 

concentrations, which uncovered the complex mechanism of platelet 

aggregation. These discoveries suggest that platelet aggregation is not 

influenced by SOCE directly via STIM1/2. Ahmad suggested that intracellular 

Ca2+ stores might activate P2Y12 signalling, further triggering the Rap1/integrin 

reaction (Ahmad et al., 2011). According to his results, platelet P-selectin and 

integrin activation were mediated via a dose-dependent mechanism in the 

presence of thrombin receptor PAR4-activating peptide. The present data 

indicated that thrombin could trigger significant and stable activation at the 

platelet surface. One likely explanation is that STIM2 plays a compensatory role 

in the absence of STIM1, driven by thrombin at specific concentrations. In 

STIM1/2 double conditional knockout platelets, the feasible effect of this 

compensation is eliminated. The compensatory effect between STIM1 and 

STIM2 may have led to different results in different cells when the function of a 
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single gene was inhibited. Further efforts need to be made to explore the 

interaction between STIM1/2-mediated SOCE and agonist-induced platelet 

aggregation. 

PS exposure regulates the structure and physiological function of platelets in 

several ways. For example, PS located at the platelet surface first combines with 

macrophages and is subsequently cleared by engulfment (Badlou et al., 2006), 

triggering thrombin release and platelet pro-coagulant activity (Wolfs et al., 2005; 

Harper and Poole, 2011; Mahaut-Smith, 2013). Moreover, PS exposure can 

activate blood coagulation and consequently contribute to haemostasis 

(Lhermusier et al., 2011). 

A similarity was investigated in platelets with PS exposure that were isolated 

from mice with a mutated, inactive form of Orai mediated via STIM1 (Bergmeier 

et al., 2009), and this finding was stated by a previous report in Stim1−/− platelets 

(Gilio et al., 2010). The data showed that in the presence of the GP 

(VI)-dependent agonist convulxin, PS exposure was considerably enhanced. 

With the cotreatment of thrombin, PS exposure was regularly observed in 

platelets of Stim1−/− chimeric mice (Table 2). 

Accordingly, it was argued that SOCE of platelets might be useless for thrombi 

formation at injured vessels where thrombin is expressed as a coagonist (Gilio et 

al., 2010). There are reasons to doubt this speculation. As shown in our data, 

platelet PS exposure was substantially attenuated by thrombin in the Stim1/2fl/fl 

Pf4-Cre model, which was consistent with previous research by Ahmad (Ahmad 

et al., 2011). In addition, in Stim1/2fl/fl Pf4-Cre platelets, caspase-3 activation was 

significantly decreased in the presence of thrombin or CRP. Thus, we suggest 

that STIM1/2-mediated SOCE is essential in regulating platelet apoptosis. 
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Table 2: The effect of STIM1 or STIM2 on platelet [Ca2+]i, activation and apoptosis 

(Modified from Gilio et al., 2010 and Varga-Szabo et al., 2008) 

 

The arrows or ns indicate statistical decrease (p < 0.05) or no statistical difference from 

WT mice respectively 

 

 

 

These data suggest that thrombin and CRP trigger Ca2+ entry into blood 

platelets by at least two mechanisms, e.g., STIM1/2-dependent SOCE and a 

second mechanism that does not require the Ca2+ sensor STIM1/2. In 

conclusion, our data reveal that a lack of STIM1/2 in blood platelets virtually 

abolishes SOCE but only moderately attenuates thrombin/CRP-induced Ca2+ 

entry, integrin activation, degranulation and apoptosis. 
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4.2 Ceritinib may modify platelet activation and apoptosis 

Platelet dysfunction and thrombotic disorders have been shown to be important 

manifestations of cancer progression (Li, 2016). Therefore, patients who are 

diagnosed with cancers have an increased risk of suffering hyper-reactions 

(Blann et al., 2001) and thrombotic events (Schulman and Lindmarker, 2000) in 

platelets. 

Ceritinib is an ATP-competitive inhibitor of ALK and IGF-1R (Gabay et al., 2015) 

that has been widely used to treat patients who harbour ALK genetic alterations 

(Seto et al., 2013; Solomon et al., 2014). The present research revealed that 

ceritinib inhibits activity and apoptosis in platelets. Notably, ceritinib strongly 

attenuated the effect of CRP on FSC, PS, [Ca2+]i, Orai1 protein abundance, ROS, 

integrin activation, platelet degranulation, caspase-3 activity and aggregation.  

The narrow range of ceritinib concentrations tested precludes safe conclusions 

as to the target responsible for the drug effect on platelets. Ceritinib 

concentrations required for significant inhibition of apoptotic cell membrane 

scrambling (≥ 1.8 µM) and apoptotic cell shrinkage (≥ 2.6 µM) are similar to 

concentrations previously used in vitro to trigger apoptosis of tumour cells (Hu et 

al., 2015; Wang et al., 2018), but several orders of magnitude higher than the 

IC50 of ALK (0.2 nM, Selleck Chemicals, USA) or the IGF-1 receptor (8 nM, 

Sullivan and Planchard, 2016) and the inhibitory effect of ceritinib on platelet 

apoptosis is thus unlikely due to inhibition of ALK or IGF-1R. The effective 

ceritinib concentrations are in the range of concentrations observed in the total 

plasma of ceritinib-treated patients (Nishio et al., 2015). However, as 97% 

ceritinib is bound to plasma proteins (Mok et al., 2017), the free ceritinib 

concentration in plasma of ceritinib-treated patients is substantially lower. Thus, 
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the presently observed inhibition of platelet activation and apoptosis may occur 

in vivo follow ceritinib intoxication. Whatever the primary target, the inhibition of 

enhanced [Ca2+]i is expected to be an important reason for ceritinib-mediated 

inhibition of platelet activation and apoptosis. CRP triggers Ca2+ influx, which is 

mainly dependent on Orai1/STIM-mediated SOCE in platelets (Tanwar and 

Motiani, 2018; Zhu et al., 2011). 

The decline of CRP-induced apoptosis was caused by the decreased Ca2+ influx 

in ceritinib-treated platelets. PS exposure of platelets promotes the activation of 

coagulation and consequently accelerates the haemostasis reaction 

(Lhermusier et al., 2011). However, the impact of ceritinib on platelets 

contrasted that on erythrocytes, in which it increased [Ca2+]i, an effect explaining 

the activation of eryptosis (Al Mamun Bhuyan et al., 2016). The contrary 

influences of ceritinib in platelets and erythrocytes are reminiscent of that of 

cholestasis, bilirubin or bile acids on platelet activation and eryptosis (Kile, 2009; 

Gowert et al., 2017; Lang et al., 2015; Shiao et al., 1993). The mechanism of 

Ca2+ entry into blood platelets and of that in erythrocytes remains unclear.  

In view of the inhibitory effect of ceritinib on platelet activation and apoptosis, 

one possibility is that this substance may countervail thrombosis. The different 

effects of ceritinib on apoptosis may be due to the preferential selection of 

different signalling pathways in different cell types. Regardless, the hypothesis of 

ceritinib-sensitive signalling pathways requires additional experimental evidence. 

Despite the preliminary findings, ceritinib could, at least in theory, further prolong 

the life of platelets, which is related to apoptosis (Cao et al., 2018b; Lang et al., 

2016). 
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Figure 21: Ceritinib-sensitive CRP-induced platelet activation and apoptosis 

Figure indicates the effect of ceritinib on platelet function via CRP stimulation. Ceritinib 

significantly inhibits CRP-triggered platelet activation and apoptosis which are related to 

PS exposure, cell volume, [Ca2+]i, P-selectin abundance, ROS abundance, integrin 

αIIbβ3 activity, caspase-3 activity, and aggregation.  

In conclusion, ceritinib treatment blunted the effect of CRP on cell membrane 

scrambling, cell shrinkage, [Ca2+]i, P-selectin abundance, ROS abundance, 

integrin αIIbβ3 activity, caspase-3 activity, and aggregation in platelets (Figure 

21). Those effects require, however, ceritinib concentrations by far higher than 

those required for ALK and IGF-1R inhibition and higher than the free drug 

concentration in patient blood. 
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5. Summary 

Change of intracellular Ca2+ concentration is involved in many physiological 

processes, including platelet activation and apoptosis. The majority of Ca2+ entry 

into activated platelets, which probably comes from Orai/STIM-regulated SOCE. 

The present work investigated the impacts of STIM1-STIM2 and of ceritinib on 

platelet Ca2+ signalling, activation and apoptosis. 

STIM1/2 is described as a Ca2+ sensor that plays decisive roles in 

Orai/STIM-mediated SOCE. The current work showed that the number of 

platelets from the blood was significantly lower in Stim1/2fl/fl mice than Stim1/2fl/fl 

Pf4-Cre mice. No significant difference was found in platelet aggregation between 

the two genotypes. Besides, without thrombin and CRP stimulation, platelet 

degranulation, Orai1, PS exposure, integrin αIIbβ3 activation, SOCE and [Ca2+]i 

were similar in Stim1/2fl/fl mice and Stim1/2fl/fl Pf4-Cre mice. CRP or thrombin 

treatment led to a sharp increase in degranulation, Orai1, PS exposure, integrin 

αIIbβ3 activation, SOCE and [Ca2+]i in both genotypes. All effects, however, were 

markedly attenuated in Stim1/2fl/fl Pf4-Cre platelets compared to Stim1/2fl/fl 

platelets. These data suggest that thrombin and CRP trigger Ca2+ entry into blood 

platelets by at least two mechanisms, e.g., STIM1/2-dependent SOCE and a 

second mechanism that does not require the Ca2+ sensor STIM1/2. In conclusion, 

our data revealed that the lack of STIM1/2 in blood platelets virtually abolishes 

SOCE but only moderately blunts thrombin- and CRP-induced Ca2+ entry, 

integrin activation, degranulation and apoptosis. 

Ceritinib is effective in ALK-positive non-small cell lung carcinoma treatment and 

triggers apoptosis of tumour cells. The present work indicated that platelet [Ca2+]i 

was strongly decreased by treatment with very high concentrations of ceritinib. 
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Furthermore, cell shrinkage, annexin-V-binding, [Ca2+]i, Orai1 abundance, 

integrin activation, platelet degranulation, ROS formation and aggregation were 

remarkedly increased following stimulation with CRP. At very high concentrations 

ceritinib blunted those effects of CRP. In conclusion, at excessive concentrations 

ceritinib counteracted CRP-induced platelet activation, apoptosis and 

aggregation. 
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Zusammenfassung 

Die Veränderung der intrazellulären Ca2+-Konzentration ist an vielen 

physiologischen Prozessen wie an der Thrombozytenaktivierung und Apoptose 

beteiligt. Der überwiegende Anteil am Ca2+ Einstrom in aktivierte Thrombozyten 

beruht wahrscheinlich auf dem von Orai/STIM regulierten, speicherabhängigen 

Ca2+-Einstrom (SOCE). Die Auswirkungen von STIM1-STIM2 (STIM1/2) sowie 

von Ceritinib auf den Thrombozyten-Ca2+-Signalweg, Aktivierung und Apoptose 

wurden in dieser Studie untersucht. 

STIM1/2 wurde als Ca2+-Sensor beschrieben, der in Orai/STIM-vermittelter 

SOCE eine entscheidende Rolle spielte. Die vorliegende Studie ergab, dass die 

Anzahl der Thrombozyten von Stim1/2fl/fl-Mäusen auffallend niedriger als die von 

Stim1/2fl/fl Pf4-Cre-Mäusen war. Ohne Aktivierung mit Thrombin oder CRP war 

kein statistisch signifikanter Unterschied der Thrombozytenaggregation 

zwischen beiden Genotypen erkennbar. Außerdem waren vor der Thrombin- 

und CRP-Stimulation die Thrombozyten-Degranulation, Orai1, 

Phosphatidylserin (PS)-Exposition, Integrin-αIIbβ3-Aktivierung, SOCE und 

intrazelluläre Ca2+-Konzentration ([Ca2+]i) in Thrombozyten von 

Stim1/2fl/fl-Mäusen und Stim1/2fl/fl Pf4-Cre-Mäusen ähnlich. Die Behandlung von 

CRP oder Thrombin führte zu einem signifikanten Anstieg der Degranulation, 

Orai1, PS-Exposition, Integrin-αIIbβ3-Aktivierung, SOCE und [Ca2+] in beiden 

Genotypen. Alle Effekte waren in Stim1/2fl/fl Pf4-Cre-Plättchen deutlich 

schwächer als in Stim1/2fl/fl-Plättchen. Diese Daten weisen darauf hin, dass der 

durch CRP oder Thrombin induzierte Einstrom von Ca2+ in Blutplättchen von 

mindestens zwei Mechanismen reguliert wird, d.h. STIM1/2-abhängige SOCE 

und durch einen zweiten Mechanismus, der den Ca2+-Sensor STIM1/2 nicht 

erfordert. Unsere Daten zeigen, dass das Fehlen von STIM1/2 in Blutplättchen 
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den SOCE tatsächlich aufhebt, aber Thrombin- und CRP-induzierten 

Ca2+-Einstrom, die Integrinaktivierung, -degranulation und -apoptose nur mäßig 

mindert. 

Ceritinib ist bei der Behandlung des ALK-positiven nicht-kleinzelligen 

Lungenkarzinoms wirksam. Die Substanz löst Apoptose von Tumorzellen aus. 

Die vorliegende Arbeit hat ergeben, dass thrombozytäres [Ca2+]i in Anwesenheit 

von sehr hohen Ceritinib-Konzentrationen eine signifikante Abnahme zur Folge 

hat. Außerdem führte die Exposition der Thrombozyten mit CRP zu einem 

beachtlichen Anstieg von [Ca2+]i, Orai1-Abundanz, Integrin-αIIbβ3-Aktivierung, 

Thrombozytengranulation, Zellschrumpfung, Annexin-V-Bindung und 

ROS-Bildung und –aggregation. Diese Wirkungen von CRP wurden durch 

Ceritinib gehemmt. Zusammenfassend wirken hohe Konzentrationen an 

Ceritinib der CRP-induzierten Thrombozytenaktivierung, -apoptose und 

-aggression entgegen. 
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