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Abstract

Semantic role labeling is the natural language processing task of determining "Who
did what to whom", "when", "where", "how", etc. In this thesis, we explored
state of the art techniques for this task in English and applied them to Portuguese.
Using a model architecture with only a pre-trained BERT-based model (a language
model), a linear layer, softmax and Viterbi decoding, we improved the state of the art
performance in Portuguese by over 15F1, using their methodology. Moreover, using
a robust methodology designed by us, we compared the usage of monolingual and
multilingual pre-trained models for this task, and applied techniques such as cross-
lingual transfer learning and transfer learning from dependency parsing to improve our
results. We provide an evaluation of the models obtained and a heuristic to choose
the most appropriate one for different applications based on the obtained results. We
find that using the state of the art techniques in multilingual models, these surpass
the Portuguese models for the semantic role labeling task in this language, possibly
relieving the need to train monolingual models when the data for a specific language
is not abundant.
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Resumo

A anotação de papéis semânticos é a tarefa de processamento de linguagem natural que
determina "Quem fez o quê a quem", "quando", "onde", "como", etc. Nesta disser-
tação, explorámos técnicas do estado da arte para esta tarefa em Inglês e aplicámo-las
a Português. Usando uma arquitectura com apenas um modelo baseado em BERT pré-
treinado (um modelo de linguagem), uma camada linear, softmax e descodificação com
o algoritmo Viterbi, melhorámos o estado da arte em Português por mais de 15F1, a
usar a metodologia existente. Adicionalmente, usando uma metodologia robusta criada
por nós, comparámos o uso de modelos pré-treinados monolingues e multilingues para
esta tarefa, e aplicámos técnicas como aprendizagem por transferência entre línguas
e aprendizagem por transferência de um analisador sintático de dependências para
melhorar os nossos resultados. É fornecida uma avaliação dos modelos obtidos e uma
heurística para escolher o modelo mais apropriado para diferentes aplicações baseada
nos resultados obtidos. Descobrimos que, usando técnicas do estado da arte em
modelos multilingues, estes superam os modelos em Português na anotação de papéis
semânticos, deixando possivelmente de ser necessário o treino de modelos monolingues
quando os dados anotados para uma língua específica não são abundantes.

4



Contents

Abstract 3

Resumo 4

List of Tables 10

List of Figures 12

Acronyms 13

1 Introduction 14

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background Knowledge 17

2.1 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Base NLP Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 POS tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Semantic Role Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5



2.3.1 Types of Semantic Role Labeling . . . . . . . . . . . . . . . . . 20

2.3.2 Semantic Role Labeling Systems . . . . . . . . . . . . . . . . . . 21

2.4 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Sequence Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 The Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.1 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.2 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.3 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Semantic Role Labeling 27

3.1 English Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 FrameNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 PropBank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Other resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Non-Neural Methods . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Neural Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Semantic Role Labeling in Portuguese . . . . . . . . . . . . . . . . . . . 34

3.5.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Model and Methodology 37

4.1 The Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6



4.1.1 Network Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 The Transformer Encoder . . . . . . . . . . . . . . . . . . . . . 39

4.1.2.1 The Attention Mechanism . . . . . . . . . . . . . . . . 40

4.1.2.2 Multi-Head Attention . . . . . . . . . . . . . . . . . . 40

4.1.2.3 Fully Connected Feed Forward Network . . . . . . . . 41

4.1.3 Pre-trained Models Specifications . . . . . . . . . . . . . . . . . 41

4.1.4 Linear Layer, Softmax and Viterbi . . . . . . . . . . . . . . . . 42

4.2 Methodology for Comparison with Portuguese State of the Art . . . . . 43

4.3 Methodology for Comparing our Models . . . . . . . . . . . . . . . . . 43

5 Experiments and Results 46

5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Comparison with Portuguese state of the art . . . . . . . . . . . . . . . 47

5.3 Comparing our Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 Motivation and Implementation Details . . . . . . . . . . . . . . 48

5.3.2 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.3 Argument Identification and Classification . . . . . . . . . . . . 51

5.3.4 Comparing the Models Trained Only in Portuguese Data . . . . 52

5.3.5 Cross-Lingual Transfer Learning . . . . . . . . . . . . . . . . . . 54

5.3.6 Zero-shot Cross-lingual Transfer Learning . . . . . . . . . . . . 56

5.3.7 Transfer Learning from Syntax . . . . . . . . . . . . . . . . . . 58

5.3.8 Statistical Significance . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.9 Choosing the Best Model . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusion 64

References 66

7



A Definitions of PropBank.Br Roles 77

B Detailed results 78

8



List of Tables

2.1 Semantic role annotation of "A solução foi negociar diretamente com
os jogadores" for the verb "foi" in IOB encoding. . . . . . . . . . . . . 24

4.1 The number of encoding layers (L), the hidden size (H), the number of
attention heads per layer (A), the total number of parameters for the
transformer encoder (#Parameters), the corpus used for pre-training
the models, and the tokenizer each model uses for each pre-trained
model used in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Number of appearances of each semantic role in the pre-processed data
sets to be used to compare with previous results in Portuguese (Met.
1) and among our own models (Met. 2). . . . . . . . . . . . . . . . . . 45

5.1 Comparison of our proposed BERT-based model with the bi-LSTM-
based baseline on 20-fold cross-validation. The results for the baseline
were taken from Falci et al. [20]. . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Average of results of each model in the test set and Buscapé set. . . . . 50

5.3 Average of argument identification of each model in the test set and
Buscapé set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Results for zero-shot cross-lingual transfer learning. The three models
were trained on the pre-processed CoNLL-2012. The results are the
average of the 10 folds and the result in the Buscapé corpus. . . . . . . 57

5.5 Average of results of the best models from the previous section in the
test set and Buscapé set when using double fine-tuning. . . . . . . . . . 59

A.1 Role definition for all roles in PropBankBr. . . . . . . . . . . . . . . . . 77

9



B.1 Averaged results per role for model BERTbase. . . . . . . . . . . . . . . 79

B.2 Averaged results per role for model BERTlarge. . . . . . . . . . . . . . . 80

B.3 Averaged results per role for model XLM-Rbase. . . . . . . . . . . . . . 81

B.4 Averaged results per role for model XLM-R+En
base. . . . . . . . . . . . . . 82

B.5 Averaged results per role for model XLM-Rlarge. . . . . . . . . . . . . . 83

B.6 Averaged results per role for model XLM-R+En
large. . . . . . . . . . . . . . 84

B.7 Averaged results per role for model mBERT. . . . . . . . . . . . . . . . 85

B.8 Averaged results per role for model mBERT+En. . . . . . . . . . . . . . 86

B.9 Results per role for zero-shot cross-lingual transfer learning for model
XLM-Rbase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.10 Results per role for zero-shot cross-lingual transfer learning for model
XLM-Rlarge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.11 Results per role for zero-shot cross-lingual transfer learning for model
mBERT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.12 Averaged results per role for model BERT+UD
large. . . . . . . . . . . . . . . 90

B.13 Averaged results per role for model XLM-R+UD
large. . . . . . . . . . . . . . 91

B.14 Averaged results per role for model XLM-R+En+UD
large . . . . . . . . . . . . . 92

10



List of Figures

2.1 Constituency-based (left) and Dependency-based (right) parse trees of
the sentence "A solução foi negociar diretamente com os jogadores". . . 19

2.2 Representation of a neural network unit. . . . . . . . . . . . . . . . . . 21

2.3 Representation of a feed-forward neural network with five inputs, one
hidden layer with four units and one output unit. . . . . . . . . . . . . 22

2.4 Representation of a (simple) recurrent neural network. . . . . . . . . . 22

4.1 Architecture of the models used in this thesis. The model is shown here
predicting the argument structure for the verb "ganhar" in the sentence
"Só precisa ganhar experiência." . . . . . . . . . . . . . . . . . . . . . . 38

4.2 A layer from a Transformer encoder, drawn after Vaswani et al. [74]. . 39

5.1 Average error in F1 from argument identification ("Arg Id") and argu-
ment classification ("Arg Class") for each model. . . . . . . . . . . . . 52

5.2 Bars – Average SRL (opaque) and argument identification (more trans-
parent) results for the base models in both the test sets and the Buscapé
set. Horizontal black lines – Contribution of each role to the overall score. 53

5.3 Bars – Average SRL (opaque) and argument identification (more trans-
parent) results for the large models in both the PropBank CV test sets
and the Buscapé set. Horizontal black lines – Contribution of each role
to the overall score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11



5.4 Comparison between average F1 measures of the SRL task for the
multilingual models trained only in Portuguese and trained both in
English and Portuguese. The line between the models is green if the
training with English brought an improvement and red otherwise. . . . 55

5.5 Bars – Average SRL (opaque) and argument identification (more trans-
parent) results for brBERTbase, XLM-R+En

base and mBERT+En in both the
test sets and the Buscapé set. Horizontal black lines – Contribution of
each role to the overall score. . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 Bars – Average SRL (opaque) and argument identification (more trans-
parent) results for brBERTlarge and XLM-R+En

large in both the test sets
and the Buscapé set. Horizontal black lines – Contribution of each role
to the overall score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7 Bars – Results of BERTlarge, XLM-R+UD
large and XLM-R+En+UD

large in the
Buscapé data set. Horizontal black lines – Contribution of each role
to the overall score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.8 Comparison of the models using the Nemenyi post-hoc test with all
obtained results. Models that are not statistically different (with α =

0.05) are connected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.9 Comparison of the models using the Nemenyi post-hoc test in each set
of results (PropBank.Br CV test folds – left; Buscapé – right). Models
that are not statistically different (with α = 0.05) are connected. . . . . 61

5.10 Heuristic for choosing the most appropriate model in different situations. 61

12



Acronyms

NLP Natural Language Processing
SRL Semantic Role Labeling
POS Part-of-Speech
NN Neural Network
FNN Feedforward Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
MLM Masked Language Model
NSP Next Sentence Prediction
UD Universal Dependencies
CV Cross-Validation
SIGNLL Special Interest Group on Natural Language Learning of the

Association for Computational Linguistics
CoNLL SIGNLL Conference on Computational Natural Language Learning

13



Chapter 1

Introduction

1.1 Motivation

Natural Language Processing (NLP) is a field of Artificial Intelligence that has seen an
increased importance in recent years. It is a challenging field: natural languages, i.e.
human languages, unlike computer languages, are very ambiguous, owing to polysemy
or simply ambiguous phrase construction. Moreover, some natural languages suffer
from a lack of annotated resources which complicates the development of automatic
computational tools.

Due to its challenges, NLP is an important field of study. In fact, NLP applications
are an integral part of our lives, e.g., providing quick translations of sentences (Google
Translate) or correcting spelling mistakes in documents and text messages, to name a
few.

Semantic role labeling (SRL) is a NLP task that, roughly, attempts to automatically
discover "Who did what to whom" and "where", "when", "how", etc. It is usually
viewed as an intermediate task and can be useful for applications that perform, for
example, question answering [66], information extraction [13] and summarization [36],
by providing valuable information about the text’s meaning to these systems.

A lot of research has been done in SRL, encouraged by several shared tasks from
the SIGNLL Conference on Computational Natural Language Learning (the CoNLL
shared tasks), but up until now most of this research has focused on English. It has
proved difficult to apply the proposed models to a language that has less annotated
resources, such as Portuguese: previous attempts led to a large drop in performance

14



CHAPTER 1. INTRODUCTION 15

when applying the models to Portuguese due to the reduced size of the labeled data
set.

Pre-trained contextualized language models, such as BERT, RoBERTa, etc., may offer
a way to improve results without the expensive labeling of more data. By pretraining in
unlabeled data, the mentioned models learn the language structure before attempting
a specific task using the small amount of labeled data available. The work developed
in this thesis revolves around the state-of-the-art pre-trained BERT-based models. We
will apply a monolingual model, BERTimbau [68], to improve the current state of the
art in semantic role labeling.

Additionally, we will investigate a few different approaches for reaching better perfor-
mance in this task in Portuguese, namely by using multilingual models, using cross-
lingual transfer learning and transfer learning from a model fine-tuned in a syntax-
related task. We use syntax in our transfer learning approach due to its known close
relation with semantics [26]; in fact, a lot of SRL models proposed for English use
syntax.

1.2 Research questions

The thesis’s research questions are the following:

1. Do new developments in models for semantic role labeling in English bring
improvements to the task in Portuguese?

2. How do the state of the art multilingual language models compare to existing
monolingual models for the semantic role labeling task in Portuguese?

3. Does cross-lingual transfer learning from English help the multilingual models’
performance in semantic role labeling in Portuguese?

4. Can we improve the results of the SRL task by training the language model on
another task first?

1.3 Contributions

Our main contributions with this thesis include:
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1. A new state of the art model for Portuguese SRL based on pre-trained BERT
models.

2. A new methodology for the evaluation of Portuguese SRL models, based on
stratified 10-fold cross validation on journalistic text and evaluation on an out-
of-domain opinion data set.

3. A comparison of the performance of multilingual and monolingual models for
this task.

4. We show that using data from high-resource languages improves the scores
of multilingual models in low-resource languages (when both are annotated
similarly).

5. We show that pre-training with dependency parsing can help models identify
argument span boundaries in situations where the text has mistakes.

6. We provide an heuristic to help future users of our models choosing the best one
for their application.

7. We have made available models based on all the tested pre-trained models and
trained with the complete set of available data (PropBank.Br + Buscapé), as
well as the code used in this work1.

1.4 Thesis Layout

In this section, we describe the organization of the rest of the thesis. In Chapter 2,
we provide a brief introduction of topics related to semantic role labeling that may
be useful for understanding the discussion of this task. In Chapter 3, we summarize
the work developed in semantic role labeling, both in English and in Portuguese, and
describe the data sets and methodology used in this task. The proposed architecture
and methodology are described in detail in Chapter 4 followed by Chapter 5 where we
describe the experiments performed and present results and their analysis. Finally, in
Chapter 6, we present the conclusions of this work and mention some paths of future
work.

1https://github.com/asofiaoliveira/srl_bert_pt.

https://github.com/asofiaoliveira/srl_bert_pt


Chapter 2

Background Knowledge

This chapter provides an introduction to some concepts related to semantic role
labeling, useful for understanding its discussion.

2.1 Natural Language Processing

Natural Language Processing (NLP) is the area of Artificial Intelligence that deals
with the computational processing of human languages and attempts to perform useful
tasks with them [27]. In this context, "natural" means naturally evolved, such as all
languages spoken by humans, as opposed to formal languages, which have strict syntax
and semantics, such as Python. The lack of rigorous rules and the ambiguity in natural
languages makes NLP a challenging field.

Natural Language Processing is a broad field that encompasses many tasks, from
Part-of-Speech (POS) tagging to Machine Translation, Information Extraction and
Semantic Role Labeling.

2.2 Base NLP Tasks

In this section, we describe some of the most relevant tasks for semantic role labeling.
These are tasks that are frequently used with SRL models, providing valuable input.
We will also use dependency parsing as a pre-training task in our experiments.

17



CHAPTER 2. BACKGROUND KNOWLEDGE 18

2.2.1 POS tagging

Part-Of-Speech (POS) tagging is a NLP task that aims to label each token in a sentence
with its POS tag. The tags define the token’s syntactic and morphological function
in a sentence, for example, noun, verb, pronoun, etc. There are various POS tagsets,
each defining a different list of possible POS tags [35].

2.2.2 Parsing

Parsing is the task of finding the syntactic structure of a sentence [35]. Below,
constituency parsing, dependency parsing and shallow parsing are briefly presented.

Constituency parsing is based on context free grammars, that specify how sentences
can be divided into increasingly smaller blocks of words, called constituents [27].
Constituency parse information is usually represented as a constituency-based parse
tree, like the one on the left of Figure 2.1. Note that each node in the tree represents
a constituent.

Dependency parsing is based on dependency grammars, where sentences are rep-
resented as words and binary relations between them [35]. Information is also usually
represented as a tree – dependency-based parse tree – where each node is a word and
child nodes are dependent on their parent node. An example tree is presented on the
right of Figure 2.1. This example is simplified and does not include the grammatical
relations between words.

Shallow parsing provides only partial syntactic information instead of a full tree. An
example of shallow parsing is chunking, the task of dividing text into non-overlapping
sentence segments (chunks) such that syntactically related words end up in the same
phrases (e.g. the noun phrase (NP) "A solução" in Figure 2.1) [63].

2.3 Semantic Role Labeling

Semantic Role Labeling (SRL) is a NLP task that consists of determining "Who did
What to Whom, How, When and Where", i.e., identifying in sentences events, their
participants and properties of the events [35, 47]. In practice, this translates to finding
arguments that bear a semantic role in relation to a predicate. Consider sentence 1.
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Figure 2.1: Constituency-based (left) and Dependency-based (right) parse trees of the
sentence "A solução foi negociar diretamente com os jogadores".

(1) [Agent John] [Predicate broke] [Theme the window].

The predicate determines the event. It says "what" happened [47]. Predicates can be
verbs (decide), nouns (decision), light verbs (make_decision) or adjectives (nice). In
sentence 1, the predicate is "broke"; the event is that something broke.

The participants are expressed by arguments, which are groups of words, contiguous
or not, that add information to the predicate and take on a semantic role in relation to
it. Semantic roles are, thus, the role an argument takes in an event, e.g., the agent of
the action (for argument "John"). The semantic representation provided by semantic
roles can be useful in other tasks, such as information extraction, question answering
and machine translation [73].

A proposition is the set of a predicate and its arguments [12], therefore, each sentence
has as many propositions as predicates. Note that semantic roles are defined relative
to a predicate, so a word can take on different roles for different predicates, but only
one role per predicate.

Semantic roles are useful for generalizing across different expressions of the same
event [35]. There are many ways to communicate something and while the syntactic
structure may change depending on the sentence construction, the semantic meaning
stays the same. Consider sentences 1, 2 and 3, an example taken from Gildea and
Jurafsky [35].

(2) [Theme The window] [Predicate broke].

(3) [Instrument The rock] [Predicate broke] [Theme the window].

In sentences 1 and 3, "the window" is the object of the sentence, while in 2, it is
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the subject. Nonetheless, in all sentences, "the window" is the thing that broke, the
theme of the sentence. As can be seen, arguments can switch positions and become
different syntactically, but they always have the same meaning (they are the same
semantically).

On the other hand, the subject in sentences 1 and 3 have different roles: "John" is
the person who broke the window, the agent, while "the rock" is the instrument used
to break the window. Syntactically, however, both are the same.

For machine learning, there needs to be a gold standard data set, i.e., a manually
annotated (or automatically annotated and manually revised) data set, so models can
learn to make predictions. However, there is no list of agreed upon semantic roles and
definitions [47]. Thus, projects aiming to create a SRL data set must define the set of
roles to be used (refer to Section 3.1 for examples of such annotation projects).

2.3.1 Types of Semantic Role Labeling

The semantic role labeling task can be formulated in two ways. One is based on
constituency-based parsing (span-based SRL) and the other on dependency-based
parsing (dependency-based SRL).

In span-based SRL, the objective is to find the word spans, i.e., groups of contiguous
words, that constitute arguments of a verb and label them correctly. The spans may
or may not be constituents in the parse tree, but due to the close relationship between
syntax and semantics, constituents are good argument candidates.

On the other hand, in dependency-based SRL, the objective is to find only the head
word of the argument, instead of the whole argument. The difference between these
two formulations for the predicate "foi" in sentence "A solução foi negociar diretamente
com os jogadores" can be seen in sentences 4 and 5.

(4) [A1 A solução] [Rel foi] [A2 negociar diretamente com os jogadores]

(5) A [A1 solução] [Rel foi] [A2 negociar] diretamente com os jogadores

In this dissertation, we focus on span-based semantic role labeling, but in Chapter 3
we give an overview of proposed models for both types.
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2.3.2 Semantic Role Labeling Systems

A semantic role labeling system is a set of models (including the SRL model) that
takes as input raw text only and outputs the roles for the predicates in the sentence.
There can be end-to-end SRL models, where the one model does everything needed.
More commonly, several models performing different tasks are combined sequentially
to produce the results. We define model as a machine learning algorithm or neural
network architecture that has been trained on some data.

In order to deploy a semantic role labeling system, one might need a predicate iden-
tification model to give the SRL model the predicates for which to identify roles.
Sometimes, systems also have predicate sense disambiguation models. Here, the goal
is to discover the appropriate sense for the sentence in a polysemous verb (a verb
that can take on different meanings). Both these tasks are sometimes overlooked, and
researchers only focus on producing models for the SRL task itself.

2.4 Neural Networks

Neural networks (NNs) are machine learning models of great importance for modern
NLP [27].

Neural networks are composed of neural units, such as the one represented in Figure
2.2, which take a set of inputs (xi) and perform a computation to produce an output
(a). In the computation they use a set of weights Wi, a bias term b and a non-linear
function f , called the activation function.

Figure 2.2: Representation of a neural network unit.

Groups of units are called layers and layers combine to form networks.

The simplest type of neural network is the feed-forward (FNN, Figure 2.3). In this
network, there is an input layer, an output layer and a varying number of hidden
layers between them. The hidden layers learn a representation of the input and the
output layer, using this representation, computes an output [35]. In the standard
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configuration, the units in one layer connect to all units in the following layer. Every
connection in the network has its own set of weights.

Figure 2.3: Representation of a feed-forward neural network with five inputs, one
hidden layer with four units and one output unit.

Neural networks are trainable – once they produce an output, a loss function computes
how different the predicted output is from the gold standard output; the network then
updates all its parameters W , b in order to achieve a better output.

Another network type, widely used in NLP, is the recurrent neural network (RNN),
which includes any neural network that has cycles in its architecture [35]. In this type
of network, there can be inputs to a unit from the same layer or from subsequent
layers. An example network is presented in Figure 2.4.

Figure 2.4: Representation of a (simple) recurrent neural network.

RNNs are designed to handle sequences by taking into account the temporal aspect of
them: input elements are handled sequentially. Due to the lack of a fixed input layer
size, this type of network can handle input sequences of varying length.

Despite being able to handle sequences, standard RNNs have vanishing/exploding
gradient problems. The long short-term memory network (LSTM) is a more complex
type of RNN that solves the mentioned problem [35], among other advantages. The
LSTM is the type of RNN most used in SRL.
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2.5 Word Embeddings

Word embeddings are a way to represent words as real-valued vectors. They also
bring important semantic information to the NLP tasks that use them [35]. They
are based on the distributional hypothesis which states that words that appear in a
similar context have a similar meaning. These word representations are, therefore,
built based on word occurrences in text and mapped to points in a multidimensional
semantic space.

Word embeddings can be learned using unlabeled text in a self-supervised manner and
then used in other NLP tasks (transfer learning) [27]. Embeddings can also be learned
for sub-words, i.e., parts of words.

The rest of this section briefly introduces some models to obtain word embeddings,
namely Word2Vec, GloVe and ELMo. The discussion of BERT is deferred to Section
2.7.2, after the introduction of the attention mechanism.

Word2vec is a class of simple models to learn word embeddings proposed by Mikolov
et al. [49]. The idea is to train a classifier to predict how likely a word is to appear
in another word’s context [35]. There are two model architectures: the Continuous
Bag of Words attempts to predict a target word from its context and the Skip-gram
attempts to predict the context words from a given target word.

GloVe, introduced by Pennington et al. [55], is a model that uses global counts of
word co-occurrence to build word embeddings, i.e., how many times a word appears in
the context of the target word in the whole text. This contrasts with word2vec which
goes through the text word by word making predictions [27].

ELMo, from Peters et al. [56], is a neural model that finds contextualized word
embeddings, i.e. the word representations found by this model are dependent on the
entire sentence it appears in. The other models described in this section learn one
embedding per word, but polysemous words such as "bat" (which can be an animal or
an object) can benefit from context by learning different embeddings for their different
meanings.
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2.6 Sequence Labeling

Sequence labeling is a type of NLP task where a model receives an input sequence
and outputs a label for each element of the input [27]. The usual architecture consists
of a word encoder (outputs word representations, such as word embeddings) passed
to a sequence encoder (outputs a representation of the sequence), followed by a
classification layer. Sequence encoders are typically either based on recurrent neural
networks or, more recently, attention-based networks (see Section 2.7).

Span-recognition tasks, e.g. span-based SRL, whose objective is to identify and classify
spans of text, can be formulated as a sequence labeling problem using IOB encoding
to produce labels for each input word.

IOB encoding is a tagging format introduced by Ramshaw and Marcus [62] that allows
the representation of span labels as individual labels for each word. IOB stands for the
three base tags, B for the beginning of a span, I for inside a span, and O for outside
any span. In SRL, the IOB tags are B-x, I-x and O, where x is a semantic role, i.e.,
there is a B and an I tag for each possible role. The example from Section 2.3.1 can
be seen in Table 2.1 in IOB encoding.

A solução foi negociar diretamente com os jogadores .
B-A1 I-A1 B-V B-A2 I-A2 I-A2 I-A2 I-A2 O

Table 2.1: Semantic role annotation of "A solução foi negociar diretamente com os
jogadores" for the verb "foi" in IOB encoding.

2.7 The Attention Mechanism

In the area of machine translation, models initially used RNNs to encode an input
sentence into a single vector and predict the whole translation from that vector. This
compression led to loss of information in longer sentences. On the other hand, the
attention mechanism, first proposed by Bahdanau et al. [4], outputs representation
vectors for each input element. This allows the model to focus on different parts of
the input sentence for each word being predicted [43]. This mechanism is based on
the way a human would translate a sentence, by looking at all of the relevant original
words for each word to be translated.

Self-attention is a type of attention mechanism that computes a representation of a
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sequence by relating its different elements [74].

The rest of this section presents some attention-based models for Natural Language
Processing.

2.7.1 Transformer

The Transformer, proposed by Vaswani et al. [74], is a neural network architecture
that relies on attention and feed-forward networks.

Unlike RNNs, which are sequential by nature, the Transformer is more parallelizable,
allowing faster training. The architecture also captures long-range dependencies more
easily. RNNs have difficulty capturing long-range dependencies between tokens, due to
the information having to travel a long path (several units) between distant tokens. In
contrast, the Transformer architecture has a constant number of operations connecting
all inputs.

The Transformer is composed of a stack of N encoders and N decoders. The network
does not model token position directly. Hence, positional encoders, indicating the
token’s position in the sentence, are added to its representation.

This architecture achieved state-of-the-art performance in machine translation tasks
[74] and many improvements have since been proposed, among which BERT, intro-
duced below.

2.7.2 BERT

BERT (Bidirectional Encoder Representations from Transformers), proposed by De-
vlin et al. [16], is a technique for training models for an architecture based on the
encoders from the Transformer. A BERT model is a model trained with the BERT
technique. The idea is to first pre-train a language model in an unlabeled corpus
that can then be applied to multiple tasks. The language structure learned during
pre-training helps the model generalize the examples seen in specific tasks.

The model’s parameters are, thus, first trained in an unlabeled corpus using two
tasks: Masked Language Model (MLM), which aims to predict a masked token using
its context (the rest of the sentence), and Next Sentence prediction (NSP), where
the model receives as input two sentences and it needs to predict whether or not the
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second occurs after the first in the corpus. This results in a model that can then
be fine-tuned to each specific task using a labeled set or used as features for another
model, becoming context-aware word representations.

A BERT model is a deep bidirectional model, since in the MLM objective the model
fuses the left and right context to predict the masked words [16].

2.7.3 Other models

RoBERTa (Robustly optimized BERT approach) [42] builds on the BERT technique,
changing a few of its design choices. More specifically, the authors investigate the
importance of hyperparameter choices and training data size and remove the next
sentence prediction pre-training task.

Multilingual BERT1 and XLM-R [15] are multilingual models trained on monolingual
data. They are the multilingual versions of the BERT and RoBERTa models, respec-
tively. Multiligual BERT is trained on the Wikipedia corpora for 104 languages, while
XLM-R is trained on a CommonCrawl Corpus in 100 languages.

Multilingual models encode sentences in an embedding space shared by all languages.
This allows them to perform zero-shot cross-lingual training, i.e., training in one
language and applying the model in another. This is useful for languages with few
annotated resources, as it presents an alternative to the expensive data annotation.

1https://github.com/google-research/bert/blob/master/multilingual.md



Chapter 3

Semantic Role Labeling

The identification of events and their participants has been studied for a long time.
The first known attempt to understand this was by the Indian Panini in his Sanskrit
grammar sometime between the 7th and the 4th century BCE. He defined semantic
relationships between verb and noun arguments as part of this grammar in a set of
rules known as the Karakas [35].

Semantic roles were re-introduced into modern linguistics by Fillmore and Gruber [35].
Since then, many sets of semantic roles have been proposed but there hasn’t been one
that was well accepted by all linguists [52].

Nevertheless, there are some projects worth mentioning for they resulted in annotated
data sets that influenced the surge of automatic approaches to semantic role labeling.
The work later developed by Fillmore in case semantics led to the development of the
FrameNet data set. The work carried out by Beth Levin in case frame dictionaries
led to the development of the VerbNet data set and the PropBank annotation project
which was developed by Martha Palmer and colleagues [35].

This chapter focuses on automatic and supervised approaches for semantic role label-
ing. We begin by describing some relevant projects for the task in Section 3.1. In
Section 3.2, we give an overview of proposed models for SRL since the appearance
of annotated data sets and in Section 3.3 we discuss the use of syntax in this task.
The next section describes the evaluation for the task and mentions some shared tasks
that provided a consistent methodology for the comparison of systems. Finally, in
Section 3.5, we give an overview of the work developed for this task in the Portuguese
language: the data sets available and proposed models.

27
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3.1 English Resources

In this section, we describe PropBank and FrameNet, the two most important projects
that built annotated data sets for semantic role labeling, as well as two related projects:
NomBank and VerbNet.

3.1.1 FrameNet

FrameNet, introduced in Baker et al. [5], is a project that produced a hand-labeled
SRL data set based on the theory of Frame Semantics by Charles J. Fillmore and his
colleagues [21]. Verbs, nouns and adjectives are linked to a frame according to shared
meaning.

Each frame defines specific semantic roles, called frame elements, and predicates
related to the frame, called lexical units. For each lexical unit, there is a set of
annotated sentences taken from the British National Corpus, meant to exemplify the
possible appearances of frame elements. For example, sentence 6 is an example for the
lexical unit "awareness", part of the frame Awareness.

(6) The way you move, sit and stand will show [Cognizer you] [have]
Supp a [Degree greater]

[Topic body] AWARENESSTarget and pride .

Frame elements can be core roles, specific to that frame, or non-core roles, which are
more general and can be present in all frames. In our Awareness example, there are
the core roles Cognizer and Topic and the non-core role Degree (Supp indicates a
support verb1). Besides linking related words through frames, the project also links
related frames. For example, the frame Awareness is linked to Mental_activity and
Expectation.

The FrameNet database has been developed in other languages such as Portuguese,
French and Chinese.

3.1.2 PropBank

The Proposition Bank [53], or PropBank, is another project for creating a hand-
labeled SRL corpus, originally based on journalistic text from the Penn Treebank [46]

1Defined in https://framenet.icsi.berkeley.edu/fndrupal/glossary
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– a repository of hand-labeled constituency trees. Initially annotating only verbal
predicates, PropBank currently also has annotations for nominal and adjectival pred-
icates as well as complex predicates such as light verbs [8]. It currently also includes
other types of text, such as broadcast news and webtext. The most popular data set
is the Ontonotes v5.0 [76] that includes different types of text in English, Chinese and
Arabic.

There are two types of semantic roles in PropBank: numbered roles A0-A5 and
non-numbered roles that represent modifiers or adjuncts, e.g., AM-TMP (temporal
modifier) and AM-LOC (location modifier). The AM’s are defined globally across
predicates, i.e., they have the same meaning for every predicate in the repository. On
the other hand, the numbered roles’ meaning is specific to each predicate sense and
it is defined in the predicate’s frame file, even though, in general, A0 and A1 are the
Agent and the Patient (the participant who undergoes a change of state) or Theme
(the participant most affected by the event), respectively [52, 35].

(7) [A2 This can opener] [Rel opens] [A1 bottles], [AM-DIS too]!

In sentence 7, we show an example of a sentence taken from the "open" frame file2. In
this example, the predicate is the verb "open" and it has sense "01", which signifies
"(cause to) become open; change of state, free for passage/entry". In the frame file,
we can see that A1 means "thing opening" and "A2" instrument. This sentence also
includes an AM-DIS – a discourse marker. The meaning of each AM is explained in
the current PropBank Annotation Guidelines [7].

PropBank corpora for other languages have been developed. We introduce the Por-
tuguese version of this project in Section 3.5.1

PropBank is more widely used than FrameNet to train semantic role labeling sys-
tems, because the latter consists of illustrative sentences for each predicate instead of
language-representative annotated text [47]. Furthermore, PropBank is based on the
Penn Treebank corpus and therefore has hand-annotated syntactic trees which were
fundamental for the development of the first automatic semantic role labelers.

2http://verbs.colorado.edu/propbank/framesets-english-aliases/open.html

http://verbs.colorado.edu/propbank/framesets-english-aliases/open.html
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3.1.3 Other resources

VerbNet [37] organizes verbs into classes according to which semantic roles the verbs
allow. It was not used in supervised semantic role labeling due to the lack of an
associated annotated corpus [47].

NomBank [48] is an annotation project, similar to PropBank, that annotates the
nouns of the Penn TreeBank corpus with semantic roles. Many of the new PropBank
noun frame files are taken from the NomBank frame files [8].

3.2 Models

In this section, we present some of the most common algorithms and architectures
for the semantic role labeling task. The SRL task can be formulated either as a
classification task or a sequence labeling task.

As a classification task, models receive as input information about an argument
candidate and a predicate and must decide whether or not the former has a semantic
role relative to the latter and which role that is. This is the way SRL is usually
formulated in non-neural approaches, which will be described in Section 3.2.1.

As a sequence labeling task, models receive as input the whole sentence and a target
predicate and output a IOB label for each word, so that all arguments for a predicate
are labeled at the same time. This is in general the way neural approaches treat SRL
and we will discuss such approaches in Section 3.2.2.

3.2.1 Non-Neural Methods

Non-neural approaches to SRL follow, in general, an architecture based on three steps:
syntactic parsing, argument identification and argument classification.

Argument identification is a binary classification task to distinguishing arguments
from non-arguments in a list of candidates. Argument classification is a multi-class
classification task which aims to label the identified arguments with a semantic role.
The classification algorithms used for these steps vary from work to work. Both these
classifiers receive as input discrete features generated with the help of a syntactic parse
tree.
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The syntactic parsers used can be constituency-based, dependency-based or shallow.
Constituency parsers have the advantage of reducing the argument candidate list –
only constituents are considered as candidate arguments. Nonetheless, Johansson and
Nugues [34] showed that dependency parse-based systems, popularized by the CoNLL-
2008 shared task, could perform comparably to the constituency parse-based state of
the art. On the other hand, producing full syntactic parses is time consuming [52].
For this reason, shallow parses were used as a source of partial syntactic information.
However, Punyakanok et al. [59] showed that SRL systems based on shallow parsers
yielded results inferior to those based on constituency parsers.

Next, we describe some improvements made to this base system.

Pruning. To deal with the imbalance between non-arguments and arguments in the
candidate list, many constituency-based systems introduced a pruning step, specif-
ically the pruning algorithm proposed by Xue and Palmer [79], before argument
identification, that discards very unlikely constituents from the argument candidate
list [52].

Global Inference. The predictions made by the argument classifier are local, thus
there is no certainty that they will make sense when considering the whole sentence.
The global inference step combines the local predictions into the most probable global
argument structure. There are many ways to combine the predicted roles, for example,
Punyakanok et al. [60] used an Integer Linear Program to enforce linguistic and
structural constraints. Systems that make global inference are referred to as global,
while systems that do not are referred to as local.

System or Model Combination. Another common aspect of non-neural systems is
system or model combination, for example, by combining the output of SRL systems
based on different syntactic parsers to mitigate errors associated with parsers [52].

The model’s use of discrete features has the disadvantage of requiring extensive fea-
ture engineering and vast linguistics knowledge to choose an optimal set. Moreover,
argument identification and classification require different sets of features and those
that help one step may hurt the other [47], doubling the amount of feature engineering
needed.

These drawbacks motivated the use of neural networks in SRL, since they can implic-
itly learn features [14]. The focus, therefore, shifted from coming up with optimal sets
of features to designing better networks.
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3.2.2 Neural Methods

Nowadays, most NLP tasks use systems based on neural networks [27] and semantic
role labeling is no different.

In general, systems using neural networks treat SRL as a sequence labeling task, using
word encoders, a sentence encoder and a classifier. They usually perform argument
identification and classification at the same time. Some researchers also add a syntax-
encoding layer to the architecture, but overall there is an effort to eschew the discrete
syntactic features that were popular in non-neural methods.

Word Encoders. Common word encoders for neural networks are pre-trained word
embeddings, like GloVe ([73, 32, 40]). Using pre-trained word embeddings helps the
system use information from words never seen during training [14]. Some researchers
added ELMo word representations, leading to an increase in performance when com-
pared to using only non-contextual word embeddings ([56, 70]). Other forms of word
representations are sometimes used, such as character-based representations ([31, 33])
or POS tags embeddings ([44]).

Sentence Encoders. Sentence encoders are neural network architectures, like CNNs,
LSTMs or FNNs with attention. Collobert et al. [14] were among the first to apply
neural networks to the SRL task. They used a CNN, which allowed them to learn
dependencies between words, but only within a fixed-sized window. To achieve a
performance comparable to the state of the art, they had to add discrete syntactic
features to the model. When comparing a CNN-based SRL system with a LSTM-based
one, Zhou and Xu [80] found LSTMs yielded better results.

For this reason, systems based on deep bidirectional LSTMs are more common ([80,
32, 44, 45, 33, 51, 39]). Their ability to preserve both past and future context through
many time steps proves useful in SRL due to the long range dependencies commonly
found in this task.

Despite their success, LSTMs prove to still have some difficulties in learning long range
dependencies between a predicate and its arguments. The model must have a large
vector to encode longer sentences, translating to a big memory usage, and it ends up
losing information in the longest sentences while wasting memory in the shorter ones
[73]. In addition, training LSTM networks is very time consuming, since, due to their
sequential nature, no parallelization of computations can be performed [74].

To deal with these problems, researchers started using attention mechanisms in their
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models ([73, 70, 67, 38]). Attention is highly parallelizable and can model long-range
dependencies with a constant number of operations [73].

Recent attention-based models proposed for SRL include the BERT-LSTM model of
Shi and Lin [67], the AllenNLP BERT-based model and Li et al. [38]’s RoBERTa
model.

Global inference and model combination, described in the previous section, are also
widely used with neural methods to improve results.

3.3 Syntax

Non-neural approaches relied heavily on syntax, using a syntactic parser to process a
sentence to extract features. The use of syntactic features in SRL models stemmed
from the close relation between semantic roles and syntax [26].

However, parsing is time-consuming [52] and, in real-world applications, automatic
parsers introduce an error which propagates to the semantic role labeling system and
limits its performance.

Due to this setback and the difficulty of encoding parse trees in neural networks,
many researchers attempted to develop syntax-agnostic models ([14, 80, 32, 44, 51]),
achieving state of the art results. The improvements of syntax-agnostic neural SRL
models over traditional models were larger in out-of-domain data where traditional
models were more conditioned by the errors of parsers [44, 31]. Interestingly, using deep
bi-LSTMs, some found that their models seemed to be implicitly learning syntactic
structure from the input sentences [80, 44].

The work developed in this setting showed that syntax is not a necessary pre-requisite
for good performance in semantic role labeling, contrary to the belief at the time [39].
Nonetheless, syntax can still bring improvements to SRL models and therefore some
researchers still choose to include it in their (neural) models ([45, 78, 33]).

3.4 Evaluation

Semantic role labeling systems are evaluated using three measures: precision, recall
and F1 measure. The precision (p) is the proportion of predicted arguments that are
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correct. Recall (r) is the proportion of true arguments predicted by the system. The
F1 measure is the harmonic mean of precision and recall:

F1 =
2pr

p+ r
. (3.1)

These metrics are calculated for each role being predicted, as well as for the total
predictions from a model or system (these are called the overall scores).

For span-based SRL, an argument is correct if both its boundaries and its semantic
role are correct. Common data sets to evaluate span-based SRL are the data sets
from CoNLL-2004 [11], CoNLL-2005 [12] and CoNLL-2012 [57] shared tasks. The
first has shallow syntactic information as part of the input and the others have full
constituency-based parsing information.

In dependency-based SRL, an argument is correct if the system identified its head
word and the correct semantic role. Common data sets are the CoNLL-2008 [71] and
CoNLL-2009 [28]. These include dependency-parse trees as part of the input.

All the mentioned data set are based on data sets from the PropBank project. For
CoNLL-2004, CoNLL-2005 and CoNLL-2008, only verbal predicates required anno-
tation. CoNLL-2009 and CoNLL-2012 include data sets for languages other than
English.

3.5 Semantic Role Labeling in Portuguese

Having reviewed the state of the art in the English language, we now present the work
developed in Portuguese for the SRL task. We first describe the resources available
in Portuguese for training SRL models and then the models proposed so far, both
supervised and semi-supervised.

3.5.1 Resources

Propbank.Br3 [18] is the (Brazilian) Portuguese version of PropBank and it follows
the same annotation style as the original, having a similar role set (the roles existent
in Portuguese and their definitions are provided in Appendix A). Unlike the recent

3http://143.107.183.175:21380/portlex/index.php/pt/downloads

http://143.107.183.175:21380/portlex/index.php/pt/downloads
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versions of PropBank, PropBank.Br only annotates arguments related to verbal pred-
icates and is much smaller in size.

There are two versions of this data set from two different data sources. The first version
of the data set is based on the Brazilian Portuguese portion of the Bosque corpus, which
is a part of the treebank "Floresta Sintá(c)tica" [1]. It contains sentences extracted
from the newspaper "Folha de São Paulo" of 1994 which have been hand parsed. We
use version 1.1 in our work, which includes predicate and sense annotations that allow
us to link verbs to their frame files.

The second version of the data set contains sentences extracted from the PLN-Br
corpus [9], also a journalistic corpus based on "Folha de São Paulo". The sentences in
this version were automatically parsed by PALAVRAS [6]. The annotation project of
this second version produced also a smaller annotated corpus, named Buscapé, which
is based on a corpus of product reviews of the same name [29].

The first version is available both in the CoNLL format (format from the CoNLL
shared tasks) and in XML, while the second version is available only in XML.

The frame files for PropBank.Br are called Verbo-Brasil4 [17, 19] and were based on
PropBank’s frame files.

There is also a Brazilian Portuguese version of FrameNet called FrameNet Brasil5 and
CINTIL-PropBank, also a Portuguese version of PropBank. Since all previous work
in Portuguese SRL used PropBank.Br and since annotation differs somewhat for both
FrameNet and CINTIL-PropBank, we will use PropBank.Br in this thesis.

3.5.2 Models

In the Portuguese language, few models have been proposed for (automatic) semantic
role labeling. Here, we present some of the most important work in this area. We first
describe supervised learning methods for Portuguese SRL.

Sequeira et al. [65] propose a SRL model that uses machine learning methods to
predict verbs, A0 and A1. They also introduce a data set, BosqueUE, based on the
European Portuguese portion of Bosque 8.0, of Floresta Sintá(c)tica [1]. However, we
could not find this data set.

4Available at http://143.107.183.175:12680/verbobrasil/sobre.php?lang=pt-br
5https://www.ufjf.br/framenetbr/

http://143.107.183.175:12680/verbobrasil/sobre.php?lang=pt-br
https://www.ufjf.br/framenetbr/
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Fonseca et al. [22] describe a system based on that of Collobert et al. [14] to perform
several NLP tasks but they do not present any results.

Alva-Manchego and Rosa [2] proposed a benchmark for SRL in Brazilian Portuguese.
Their model was based on traditional methods: they used machine learning models
with features extracted from the gold parse trees of PropBank version 1 to predict
arguments. Furthermore, they created a CoNLL formatted version of this data set, so
that future work could use it to make comparable systems.

Fonseca and Rosa [23] built a system similar to that of Collobert et al. [14], but
divided the task into two steps – argument identification and classification. Their
system did not use parsing information, only word representations of the input.

Hartmann et al. [30] compared the Alva-Manchego and Rosa [2] and Fonseca and
Rosa [23] systems using PropBank.Br versions 1.1 and 2. To make a fairer comparison,
in the former model, they used automatically parsed trees instead of gold-standard.
They found that even using automatically generated syntactic trees, the model of
Alva-Manchego and Rosa performed better than that of Fonseca and Rosa.

The most recent model (we could find) for supervised Portuguese SRL is by Falci et al.
[20] and follows the architecture of He et al. [32]. It is a 2-layer bi-LSTM model that
uses word embeddings and a global inference step with IOB and PropBank constraints.

In terms of semi-supervised work, some work has been done in the Portuguese lan-
guage, due to the scarcity of annotated data [10]. Alva-Manchego and Rosa [3] describe
a proposal for a system using maximum entropy models, without presenting results.
Carneiro et al. [10] compare several semi-supervised models for SRL, but only for three
verbs: "give", "do" and "say", obtaining results better than the supervised methods
of that time.



Chapter 4

Model and Methodology

In the previous chapter, we presented an overview of the work done for semantic role
labeling both in English and in Portuguese. It can be noted that there is much less
work done in the Portuguese language and that the most recent model proposed ([20])
is based on an a model for English that has been since surpassed. In this chapter,
we describe an approach for Portuguese based on the state of the art developments in
English.

Our architecture is a pre-trained BERT-based model, with a classifier on top which
uses Viterbi decoding. We call pre-trained BERT-based model to any model pre-
trained using either BERT or techniques built upon BERT, e.g., RoBERTa or XLM-R.

We first detail our proposed architecture in Section 4.1, followed by an outline of
the evaluation procedure to compare to a previous model for Portuguese in Section
4.2. Finally, in Section 4.3, we describe a methodology for a systematic empirical
evaluation that enables the comparison between approaches. This methodology will
be helpful in the appraisal of the several state of the art techniques we will employ in
an attempt to improve the performance of our model.

4.1 The Architecture

The SRL architecture we will use in the experiments is based on AllenNLP ’s, imple-
mented in their package with the same name [25], which they claim achieves state of
the art performance among single models (as opposed to ensembles) for English SRL1.

1https://demo.allennlp.org/semantic-role-labeling
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The model architecture is presented in Figure 4.1. It includes a pre-trained BERT-
based model on top of which a linear layer, a softmax function and Viterbi decoding
are applied. In this section, we will explain each of these components more in depth.

Figure 4.1: Architecture of the models used in this thesis. The model is shown here
predicting the argument structure for the verb "ganhar" in the sentence "Só precisa
ganhar experiência."

We detail in Section 4.1.1 the way input propositions are processed to be passed to
the pre-trained model. In Section 4.1.2, we explain the architecture of a transformer
encoder, the basis of a BERT model, and in Section 4.1.3 give a few details about
the pre-trained BERT-based models we use in this thesis. Finally in Section 4.1.4, we
explain the linear layer, softmax and Viterbi decoding applied to the representations
output by the pre-trained model.

4.1.1 Network Inputs

Each input proposition is first tokenized, resulting in sub-words we will refer to simply
as tokens, and special tokens are added to the start and end of it.

The inputs to the pre-trained BERT-based model are the sum of three vectors:

• token embeddings – learned embeddings for each token of the input sentence;
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• position embeddings – the Transformer does not model token position directly,
so learned embeddings representing the positions of each token in the sentence
are added to the inputs;

• token type embeddings – this is used as a way to pass the proposition’s predicate
position to the model.

4.1.2 The Transformer Encoder

The Transformer encoder consists of a stack of L encoder layers, each comprised of
two sub-layers. In Figure 4.2 we present one encoder layer. As can be seen in the
representation, the inputs to the layer, of size H, (which can either be the inputs
to the system or the output of the previous layer) passes first through a multi-head
attention sub-layer and then through a fully connected feed forward network sub-layer
and outputs a vector of size H.

All sub-layers have a residual connection around them (the input to the sub-layer is
summed to its output) and layer normalization after, so the input to the following sub-
layer is LayerNorm(x+SubLayer(x)). Additionally, dropout [69] and label smoothing
[72] are applied for regularization.

Figure 4.2: A layer from a Transformer encoder, drawn after Vaswani et al. [74].
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4.1.2.1 The Attention Mechanism

Transformers use an attention mechanism called scaled dot-product attention. There
are three inputs: a query (q) that represents the target token, and a set of key (K)-
value (V) pairs associated with all input tokens. The calculation is summarized in Eq.
4.1

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (4.1)

First, we compute the compatibility between query and keys by calculating the dot-
products between these vectors and dividing them by

√
dK (the dimensionality of

the query and of each key). Next, we apply a softmax function and obtain weights
(the bigger the weights, the more important the associated key-value pair for a target
token) and finally multiply the weights with the values.

In practice, the representations for all tokens are calculated at the same time, using a
matrix Q containing the queries for all inputs.

4.1.2.2 Multi-Head Attention

Multi-head attention is a technique that allows the model to learn different represen-
tations of the same input concurrently without increasing the computational cost.

This technique runs A attention heads, i.e., scaled dot product attention functions,
in parallel, each with a smaller projected version of the original Q, K and V vectors.
The outputs of the A functions are then concatenated and passed through a linear
layer (a NN layer with no activation function).

The calculations are summarised in Eq. 4.2.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

whereheadi = Attention(QWQ
i , KW

K
i , V W

V
i )

(4.2)

In practice, Q, K and V are all the same vector, the input to the encoder layer.
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4.1.2.3 Fully Connected Feed Forward Network

Another component in the encoder layer is a fully connected feed forward network
with one hidden layer with dff units and a ReLU activation function (in all our models
dff = 4H, where H is the size of both the FNN’s input and output). This network is
independently applied to each representation returned by the previous sub-layer.

4.1.3 Pre-trained Models Specifications

A BERT-based model is a transformer encoder pre-trained in a specific set of tasks.
Having described its underlying architecture, we now give some details about each
model’s pre-training parameters. The models presented here are the pre-trained
models we will use in our experiments.

The BERTimbau models (henceforth brBERT), by Souza et al. [68], are Portuguese
models pre-trained with the BERT technique in the brWac corpus [75] with a vocab-
ulary size of 30k tokens and the usual training objectives – MLM and NSP.

The multilingual cased BERT model, henceforth mBERT2 is a multilingual version
of the Devlin et al. [16]’s BERT. It is trained in monolingual Wikipedia data for
104 languages, including Portuguese. The model is pre-trained using the two usual
training objectives, MLM and NSP, with no indication of the languages being pro-
cessed. A shared vocabulary with a size of 110k tokens is created with a sampling of
the Wikipedia data set that makes high-resource languages under-sampled and low-
resource languages over-sampled.

XLM-R are multilingual versions of the RoBERTa model introduced in Conneau
et al. [15]. They are pre-trained in monolingual, clean CommonCrawl data for 100
languages, one of which being Portuguese. The pre-training data for these models is
larger than for the others. The only training objective used is the MLM objective
using the monolingual data, with no indication about the languages of each training
sentence and no cross-lingual data. A shared vocabulary with a size of 250k tokens is
created in a similar manner to mBERT’s vocabulary.

In Table 4.1, we present an overview of the pre-trained model’s parameters by order of
increasing number of parameters. Multilingual models naturally have more parameters
than their monolingual counterparts due to their larger vocabulary. For more details

2https://github.com/google-research/bert/blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md
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about the models and their pre-training, the reader is referred to Souza et al. [68],
the mBERT github2 and Conneau et al. [15].

Model L H A #Parameters Corpus Tokenizer

BERTbase 12 768 12 110M brWaC WordPiece
mBERT 12 768 12 172M Wikipedia WordPiece

XLM-Rbase 12 768 12 270M CommonCrawl SentencePiece
BERTlarge 24 1024 24 340M brWaC WordPiece
XLM-Rlarge 24 1024 16 550M CommonCrawl SentencePiece

Table 4.1: The number of encoding layers (L), the hidden size (H), the number
of attention heads per layer (A), the total number of parameters for the transformer
encoder (#Parameters), the corpus used for pre-training the models, and the tokenizer
each model uses for each pre-trained model used in this thesis.

4.1.4 Linear Layer, Softmax and Viterbi

In our architecture, Figure 4.1, after obtaining representations from the pre-trained
BERT-based model, the representation vectors corresponding to each input token are
independently passed to the same randomly initialized linear layer and softmax.

Softmax is a function that normalizes a vector and turns it into a probability distri-
bution [35]. The function is in Eq. 4.3 for a vector v of dimensionality d.

softmax(v) =
evi∑d
j=1 e

vj
. (4.3)

The result is a set of probabilities for all possible labels for each input token. The
probabilities for the whole sentence are given to a Viterbi decoding algorithm, a
decoding algorithm that finds the most likely tag sequence [35]; it is a form of global
inference, described in Section 3.2.1. This algorithm is conditioned on the output
having to be a valid IOB sequence, i.e., "I-x" tags must be preceded either by "B-x"
or "I-x", where x is any semantic role label.
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4.2 Methodology for Comparison with Portuguese State
of the Art

We compare the described architecture using the Portuguese pre-trained models with
the model proposed by Falci et al. [20], which we will refer to as our baseline. We
compare only to this work because it is the only one that details their methodology.
We first pre-process the PropBank.Br v1.1 CoNLL-format data set3 using the same
steps as the baseline, described below, and then perform 20-fold cross-validation with
the same data set divisions. The pre-processing steps were the following:

1. Eliminated all propositions that had words with more than one label. Each word
in a sentence can only have one semantic role relating to each predicate, so these
were considered annotation mistakes.

2. Re-joined all words formed by prepositional contractions which were separated
by the annotators, since word contractions such as "do" ("de" + "o") are always
used in Portuguese, even in formal writing.

3. Separated groups of words such as "em_termos_de" into individual words.
These words were concatenated by the annotators of the corpus due to being
either expressions or proper names. In a real setting, such words would not be
concatenated and so the model needs to know how to use them separately.

4. Removed all propositions that had a continuation role, e.g. "C-A0".

The first column of Table 4.2 has the number of times each role appears in the pre-
processed data set. After training, the models were evaluated with the script provided
in the CoNLL-2005 Shared Task srl-eval.pl4. The results are the precision, recall and
F1 measure for each role and the overall scores for these metrics.

4.3 Methodology for Comparing our Models

To compare our own models with each other, we chose to perform 10-fold cross-
validation (CV). Hence, we used stratified sampling for multi-label data [64] to create

3Available at http://143.107.183.175:21380/portlex/index.php/en/downloadsingl
4Available at https://www.cs.upc.edu/ srlconll/soft.html and through the allennlp_models pack-

age.

http://143.107.183.175:21380/portlex/index.php/en/downloadsingl
https://www.cs.upc.edu/~srlconll/soft.html
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the folds from the complete PropBank.Br data set (versions 1.1 and 2), using the
iterative-stratification5 package. Each fold produced is used as a test set once and
the remaining folds are again sampled to obtain a validation set of approximately the
same size of the test set. The division of data in each model run is, therefore, 80% for
the training set, 10% for validation set and 10% for the test set. In addition to these,
the out-of-domain Buscapé corpus is used to test all model runs. In other words, each
fold’s model is evaluated in the appropriate test set from the PropBank.Br CV folds
and in the Buscapé set.

Buscapé constitutes a more difficult and yet at times more adequate data set. Looking
at the sentences it includes, there are plenty of misspelled words, poorly constructed
sentences, verbs conjugated in the wrong tense and accents missing or in excess. This,
however, is very common in texts written on the internet in more casual settings.
Thus, it may be an important benchmark to have if we want a model to be used in
these situations.

In regards to data pre-processing, we used the XML files of all three data sets (Prop-
Bank.Br v1.1, PropBank.Br v2 and Buscapé)6 in order to pre-process them in the
same way. As in the previous methodology, we eliminated propositions with more
than one label for a word, we separated expressions joined with "_" and re-joined
words formed by prepositional contractions. Additionally, we removed arguments
labeled as "AM-MED" or "AM-PIN" because there is no mention of these labels in
the annotation guides7 and for the corpora PropBank v2 and Buscapé, we removed
any propositions with flags "WRONGSUBCORPUS", "LATER" or "REEXAMINE",
since, according to the guide, these indicate something wrong with the sentence that
prevents its annotation.

The way continuation arguments were annotated differed from previous works. In
our pre-processing, we only annotated an argument with a "C-" role if the words
that constituted it were non-contiguous to the original argument, whereas the CoNLL
file for PropBank v1.1 separates arguments if they are not in the same node in the
constituency-based syntactic tree, even if they are contiguous.

After pre-processing, the data sets to be used had the role counts presented in the

5Available at https://github.com/trent-b/iterative-stratification
6Available at http://143.107.183.175:21380/portlex/index.php/en/downloadsingl
7The annotation guide for PropBank v1.1 is available at

http://143.107.183.175:21380/portlex/images/arquivos/propbank-br/propbank.br%20tutorial.pdf
and for PropBank v2 at http://www.nilc.icmc.usp.br/semanticnlp/includes/projects/propbankbr-
/files/MANUAL%20DE%20ANOTACAO%20DO%20PROPBANK%20v5.pdf

https://github.com/trent-b/iterative-stratification
http://143.107.183.175:21380/portlex/index.php/en/downloadsingl
http://143.107.183.175:21380/portlex/images/arquivos/propbank-br/propbank.br%20tutorial.pdf
http://www.nilc.icmc.usp.br/semanticnlp/includes/projects/propbankbr/files/MANUAL%20DE%20ANOTACAO%20DO%20PROPBANK%20v5.pdf
http://www.nilc.icmc.usp.br/semanticnlp/includes/projects/propbankbr/files/MANUAL%20DE%20ANOTACAO%20DO%20PROPBANK%20v5.pdf
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columns "Met. 2" of Table 4.2.

As in the previous methodology, the models were evaluated with the official script
from the CoNLL 2005 Shared Task.

Semantic role
Met. 1 Met. 2

PropBank v1.1 PropBank Buscapé

A0 2891 6274 258
A1 5061 11680 452
A2 1290 2991 142
A3 139 296 6
A4 111 165 11
A5 1 1 0

AM-ADV 346 675 38
AM-ASP 0 179 38
AM-CAU 141 293 28
AM-COM 0 27 1
AM-DIR 13 26 0
AM-DIS 288 662 37
AM-EXP 0 2 1
AM-EXT 74 206 19
AM-GOL 0 30 3
AM-LOC 672 1444 39
AM-MNR 384 969 64
AM-MOD 0 251 23
AM-NEG 322 769 77
AM-NSE 0 39 14
AM-PAS 0 285 7
AM-PRD 169 360 9
AM-PRP 143 373 19
AM-REC 8 9 0
AM-TML 0 12 14
AM-TMP 1082 2441 64

V 5600 13665 709

Table 4.2: Number of appearances of each semantic role in the pre-processed data sets
to be used to compare with previous results in Portuguese (Met. 1) and among our
own models (Met. 2).



Chapter 5

Experiments and Results

In this chapter, we describe the experiments run in the project, specify the implemen-
tation details and present the results. We will run several experiments, to answer the
following questions:

1. Do new developments in models for semantic role labeling in English bring
improvements to the task in Portuguese? (Section 5.2)

2. How do the state of the art multilingual language models compare to existing
monolingual models for the semantic role labeling task in Portuguese? (Section
5.3.4)

3. Does cross-lingual transfer learning from English help the multilingual models’
performance in semantic role labeling in Portuguese? (Section 5.3.5)

4. Is it useful at all to use the Portuguese data or can we rely on models trained
with English data only? (Section 5.3.6)

5. Can we improve the results of the SRL task by training the language model on
another task first? (Section 5.3.7)

In Section 5.3.8, we present the results of a statistical significance test of the models
from Section 5.3. In Section 5.3.9, we detail the process of choosing an appropriate
model for an application.

46
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5.1 Implementation Details

The architecture was implemented in Python using the package AllenNLP [25], the
mBERT and XLM-R models trained by Hugginface Transformers [77] and the Por-
tuguese BERT model trained by neuralmind-ai [68] and built on PyTorch [54].

In each experiment, all models are trained with the same hyperparameters, since the
focus of this work is to compare different approaches in the same settings. With
the exception of number of epochs, batch size and learning rate, all hyperparameters
used followed the values set for AllenNLP ’s English BERT SRL system1: embedding
dropout of 0.1, optimizer huggingface_adamw without bias correction and a slanted
triangular learning rate scheduler.

The code used for these experiments, the tool to choose the best model for a specific ap-
plication and the models trained on all the data are available in https://github.com/asofiaoliveira/srl_bert_pt.

5.2 Comparison with Portuguese state of the art

We ran both brBERTbase and brBERTlarge on the PropBank.Br v1.1 corpus pre-
processed as described in Section 4.2 with a batch size of 16 and a learning rate
of 4×10−5 for up to one hundred epochs with early stopping after ten epochs without
improvement. The parameters are based on AllenNLP ’s model configuration, but due
to memory constraints, the batch size had to be lowered (from 32 to 16); the learning
rate was then lowered as well (from 5 × 10−5 to 4 × 10−5) due to the fact that some
folds’ models were getting stuck on predicting no arguments.

In Table 5.1, we present the results for the best model out of all folds and the average
F1 across folds2, since these were the metrics reported by our baseline. The values for
the baseline are taken from Falci et al. [20].

The BERT models give better results than the bi-LSTM model of the baseline. The
improvements are of 15.85F1 and 16.91F1 for the brBERTbase and brBERTlarge models,
respectively. This was expected due to the superior performance of BERT models in
the English language. The difference is larger than the one observed in English,

1Parameters detailed in https://github.com/allenai/allennlp-models/blob/v1.0.0rc3/training_config/
syntax/bert_base_srl.jsonnet

2Note that throughout the text, whenever average results are mentioned, we mean averaged across
folds.

https://github.com/asofiaoliveira/srl_bert_pt
https://github.com/allenai/allennlp-models/blob/v1.0.0rc3/training_config/syntax/bert_base_srl.jsonnet
https://github.com/allenai/allennlp-models/blob/v1.0.0rc3/training_config/syntax/bert_base_srl.jsonnet
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Model
Best Model

Average F1
p (%) r (%) F1

Baseline 67.62 68.75 68.18 65.63
brBERTbase 84.24 85.37 84.80 81.48
brBERTlarge 85.98 84.53 85.25 82.54

Table 5.1: Comparison of our proposed BERT-based model with the bi-LSTM-based
baseline on 20-fold cross-validation. The results for the baseline were taken from Falci
et al. [20].

however, likely due to the fewer resources used in Portuguese, which hindered the
LSTM-based model.

5.3 Comparing our Models

In the previous section, we compared our proposed architecture to an existing model
proposed for Portuguese following its own evaluation methodology. The resulting
models are simple (just a language model with a FFN on top) and follow the state of
the art of the English language: a single monolingual BERT-based model, trained in
the available data for our language.

In this section, we perform a more robust evaluation of the different pre-trained BERT-
based models by following a different methodology, described in Section 4.3, which
uses more data and different pre-processing steps. We also apply some state of the art
techniques, such as cross-lingual transfer learning.

5.3.1 Motivation and Implementation Details

The advantage of multilingual models is that they can learn the task in other languages
and boost performance in Portuguese. Compared to English, Portuguese has much
less SRL annotated data, i.e. Portuguese is a low-resource language, while English
is a high-resource language. Li et al. [38] showed that less data leads to poorer
performance of models, even with powerful models as the ones being tested – a drop
from 86.47F1 to 75.96F1 with the RoBERTa model when using only 3% of the CoNLL-
2012 data. Since the annotation of more data is expensive, one way to attempt to
mitigate this impact is to train a SRL multilingual model in other languages and use
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the trained model parameters as a starting point for training in Portuguese. This type
of cross-lingual transfer learning, where information from high-resource languages is
used in a low-resource language, has already been proven useful for other tasks [41].

We ran all of the models in this section with a batch size of 4 (due to memory
constraints) and a learning rate of 1 × 10−5 for up to one hundred epochs with an
early stopping after ten epochs without improvement. The proposed architecture
with the different pre-trained models was run in two scenarios:

1. Fine-tuning only with Portuguese data;

2. Fine-tuning first with pre-processed CoNLL-2012 data for five epochs, followed
by fine-tuning with Portuguese data (only for multilingual models, represented
by a superscript "+En", e.g., brBERT+En

base).

The CoNLL-2012 [57] data had to be pre-processed to match Portuguese data: some
instances of the data set were removed, due to their size and to keep the batch size
at 4; all roles that do not exist in the Portuguese data set were removed from the
data and reference numbered arguments (denoted with "R-Ax" where x is a number)
were replaced with the non-reference role label ("Ax") and the original argument
annotations for these roles (the annotations of arguments that had the respective
"Ax") were eliminated.

In the following subsections, we describe the obtained results, first looking at their
overall performance (Section 5.3.2) and then analysing more detailed results. We first
compare the models using only training scenario number 1 (Section 5.3.4), then we
present the differences brought by training with English data and compare models
from both scenarios (Section 5.3.5). In Section 5.3.6, we present the results of fine-
tuning the multilingual models in English and testing it in Portuguese. In Section
5.3.7, we analyze the impact on fine-tuning first in dependency parsing for the best
pre-trained models in previous sections. In Section 5.3.8, we present the results of a
statistical significance test for the models in the section. Finally, in Section 5.3.9, we
give some concluding remarks and advice on choosing the best model.

5.3.2 Overall Results

Table 5.2 presents the average overall precision, recall and F1 measure of the 10 models
(one for each fold) in their respective test sets and in the Buscapé set. The average
results for each semantic role for all models can be found in Appendix B.
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Model
Average of Test Folds Average of Buscapé

p (%) r (%) F1 δF1 p (%) r (%) F1 δF1

brBERTbase 75.78 76.83 76.30 74.00 72.68 73.33
brBERTlarge 76.65 78.20 77.42 75.58 74.14 74.85
XLM-Rbase 74.42 76.04 75.22 73.12 72.54 72.82
XLM-R+En

base 76.09 76.93 76.50 1.28 74.29 73.22 73.74 0.92
XLM-Rlarge 76.74 78.47 77.59 74.36 73.34 73.84
XLM-R+En

large 77.71 78.75 78.22 0.63 75.36 73.77 74.55 0.71
mBERT 72.34 73.20 72.76 67.10 66.70 66.89

mBERT+En 74.22 75.56 74.88 2.12 69.41 68.98 69.19 2.3

Table 5.2: Average of results of each model in the test set and Buscapé set.

Note that the values of the monolingual brBERT models are smaller than the ones
reported in the Section 5.2 because the previous results are from validation sets and
these are from test sets. Moreover, these are evaluated in more data, with more
"difficult" roles (roles with few appearances) and include continuation arguments,
which were removed for the previous section (see all the differences in Sections 4.2 and
4.3).

As expected, large models have a superior performance with respect to their base
counterparts. XLM-R performs better than mBERT, which had already been reported
for other tasks ([15]). Moreover, all models have a drop in all measures in the out-of-
domain Buscapé set when compared to the test folds of the PropBank data set. This
is likely due to this data set being more difficult, as discussed in Section 4.3. The
performance drop is larger in recall than in precision, meaning the model is having
more difficulty in predicting the correct arguments.

When training only with Portuguese data, brBERTlarge and XLM-Rlarge have similar
scores in the test sets, but the monolingual model outperforms the multilingual by
approximately 1F1 in the out-of-domain data set. We believe that the monolingual
model, having been pre-trained only in Portuguese data, has learned a better language
structure, compared to XLM-R, and, therefore, can better understand the Buscapé
data, despite the errors it contains. As for the base models, there is a larger difference
between brBERTbase and XLM-Rbase in the test set than in the Buscapé set, but the
difference is still relatively small (approximately 1F1). The mBERT model performs
the worst: over 3F1 points below the monolingual base model.
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When including cross-lingual transfer learning, all multilingual models get an increase
in their scores. The less powerful the model, the larger is this increase. In this scenario,
XLM-Rlarge achieves the best score in the average of the test folds, but is still slightly
behind brBERTlarge in Buscapé. On the other hand, XLM-Rbase improves enough to
become on par with brBERTbase in both data sets. As before, mBERT underperforms
compared to all other models.

5.3.3 Argument Identification and Classification

The SRL task can be seen as two sub-tasks: argument identification and argument
classification. The performance in the classification, and, therefore, the scores obtained
in SRL, are constrained by argument identification, since only correctly identified spans
can be checked for the correct label. Table 5.3 reports the average precision, recall
and F1 measure for argument identification.

Model
Average of Test Folds Average of Buscapé
p (%) r (%) F1 p (%) r (%) F1

brBERTbase 83.29 84.4 83.84 82.55 81.33 81.93
brBERTlarge 83.53 85.22 84.36 83.2 81.88 82.53
XLM-Rbase 82.19 83.91 83.04 82.32 81.86 82.08

+CoNLL-2012 83.35 84.21 83.78 82.69 81.61 82.14
XLM-Rlarge 83.68 85.56 84.6 82.55 81.66 82.1

+CoNLL-2012 84.34 85.45 84.89 83.26 81.76 82.5
mBERT 81.72 82.67 82.19 79.68 79.32 79.49
+CoNLL-2012 82.44 83.88 83.15 80.24 79.88 80.05

Table 5.3: Average of argument identification of each model in the test set and Buscapé
set.

Additionally, the total error of the model can be decomposed in the error in identifying
argument spans and the error in classifying the correctly identified spans. In Figure
5.1, we report the average error for each model in each data set decomposed into
error from argument identification ("Arg Id") and from argument classification ("Arg
Class").

Several things are noticeable in this figure. Firstly, the error from the non-identification
of arguments is much larger than the error from the mislabeling of arguments for all
models and both data sets. Hence, our models are better at attributing semantic roles
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Figure 5.1: Average error in F1 from argument identification ("Arg Id") and argument
classification ("Arg Class") for each model.

than at identifying argument spans. Secondly, all errors are larger in Buscapé, so we
cannot attribute the drop in performance to one of these sub-tasks – both are worse.
Lastly, the difference in F1 measure between models is due both to differences in the
identification and the classification of arguments.

The results reported so far refer to the overall measures, i.e., the compound scores from
all semantic roles. We now look at the results for each semantic role, to understand
if the differences in the overall measures come from a difference in the types of roles
identified or just poorer general performance. Additionally, it is important to know
if the models can identify some roles which may be more important for applications;
for example, for information extraction, temporal and location modifiers as well as
numbered roles will be more important than auxiliary verbs.

5.3.4 Comparing the Models Trained Only in Portuguese Data

How do the state of the art multilingual language models compare to existing monolin-
gual models for the semantic role labeling task in Portuguese?

In Figures 5.2 and 5.3, we present the results of SRL (argument identification +
argument classification) and of argument identification for base and large models,
respectively. Performance is similar for each role, so less powerful models are not
losing performance because they do not predict certain classes, but because they are



CHAPTER 5. EXPERIMENTS AND RESULTS 53

worse in most of them.

Figure 5.2: Bars – Average SRL (opaque) and argument identification (more
transparent) results for the base models in both the test sets and the Buscapé set.
Horizontal black lines – Contribution of each role to the overall score.

Figure 5.3: Bars – Average SRL (opaque) and argument identification (more
transparent) results for the large models in both the PropBank CV test sets and
the Buscapé set. Horizontal black lines – Contribution of each role to the overall
score.
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It is interesting to observe in both figures the low performance of numbered roles A3
and A4. The arguments are being identified ("Arg Id" is high) but most are mislabeled.
Looking at the confusion matrices (not displayed), we see these arguments are mostly
labeled either with another numbered role or with a modifier whose definition may
appear in a numbered role (e.g., for the verb "vir" (come), A3 and A4 are the place
where (something) comes from and the place (something) goes; these could be confused
with AM-LOC, the location modifier, since they both indicate locations). The low
performance is very likely due to the definitions of these semantic roles being flexible,
i.e., different for each verb, combined with the low number of appearances. The model
can determine the presence of an argument but not which role it corresponds to for
that verb.

Recall that the overall performance is computed using all argument occurrences. Thus,
for example, in Figure 5.2, we have the XLM-Rbase model outperforming brBERTbase

in Buscapé in several roles (AM-COM, AM-PRD, A4, A2, AM-CAU, AM-ASP, etc.)
but these roles count little to the overall performance, since they have relatively few
appearances.

To illustrate this, we include in the figures, as black horizontal lines, the SRL results
weighted by the proportion of appearances of each role in each corpus. This represents
an approximate contribution of each role to the overall score. Evidently, the model’s
scores are mostly determined by the numbered roles A0, A1 and A2, which explains
why they have such high scores – they are seen the most and they count the most, so
the model learns them best. This is an important information. If we are interested
in roles other than these three, the overall metrics may not be the best to distinguish
between these models.

5.3.5 Cross-Lingual Transfer Learning

Does cross-lingual transfer learning help the multilingual models’ performance in se-
mantic role labeling in Portuguese?

Let us now examine the effect that using the additional English data has on the results
per role. In Figure 5.4 we can see the changes in F1 measure of the additional training
for each model.

Evidently, the extra data improves the models’ performance in some semantic roles
and hurts it in others. Nonetheless, the overall score increases because it performs
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(a) XLM-Rbase

(b) XLM-Rlarge

(c) mBERT

Figure 5.4: Comparison between average F1 measures of the SRL task for the
multilingual models trained only in Portuguese and trained both in English and
Portuguese. The line between the models is green if the training with English brought
an improvement and red otherwise.
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better in the roles with more appearances. Interestingly, all models are better in the
mentioned difficult numbered roles, A3 and A4. This is probably due to the models
seeing more data and, therefore, seeing more verbs and learning which numbered roles
they take (since the Portuguese frame files are based on those of PropBank, verbs with
the same meaning have the same set of numbered roles).

Comparing the "augmented" multilingual models to the monolingual models (Figures
5.5 and 5.6), we see that the improvement in the difficult numbered roles makes the
multilingual XLM-R models better in these roles than their monolingual counter-
parts. As noted when referring to the overall results in Table 5.2, the model pairs
brBERTbase/XLM-Rbase and brBERTlarge/XLM-Rlarge have very similar performance.

Figure 5.5: Bars – Average SRL (opaque) and argument identification (more
transparent) results for brBERTbase, XLM-R+En

base and mBERT+En in both the test sets
and the Buscapé set. Horizontal black lines – Contribution of each role to the overall
score.

5.3.6 Zero-shot Cross-lingual Transfer Learning

Is it useful at all to use the Portuguese data or can we rely on models trained with
English data only?

We provide in Table 5.4 the zero-shot transfer learning results from the three multi-
lingual models trained in the CoNLL-2012 data, i.e., the models were fine-tuned in
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Figure 5.6: Bars – Average SRL (opaque) and argument identification (more
transparent) results for brBERTlarge and XLM-R+En

large in both the test sets and the
Buscapé set. Horizontal black lines – Contribution of each role to the overall score.

English and tested in Portuguese.

Model
Average of Test Folds Buscapé
p (%) r (%) F1 p (%) r (%) F1

mBERT 60.73 65.59 63.07 57.83 59.31 58.56
XLM-Rbase 63.58 69.90 66.59 63.56 67.01 65.24
XLM-Rlarge 64.64 70.85 67.60 63.05 66.94 64.94

Table 5.4: Results for zero-shot cross-lingual transfer learning. The three models were
trained on the pre-processed CoNLL-2012. The results are the average of the 10 folds
and the result in the Buscapé corpus.

Despite the large drop in F1 measure between zero-shot cross-lingual transfer learning
(Table 5.4) and training only with Portuguese data – between 9 and 10 F1 points –, it
is encouraging to see that the former still performs reasonably well in the Portuguese
data. It means languages with no annotated SRL data can use multilingual models
trained for this task in English and obtain acceptable results. However, the gains of
having own language resources are evident.
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5.3.7 Transfer Learning from Syntax

Can we improve the results of the SRL task by training the language model on another
task first?

In this section, we study the impact of pre-training with syntax on the best models
from Table 5.2.

In Chapter 3, we saw that syntax has often been used to boost SRL performance
in proposed architectures. It would therefore be interesting to see if it can also help
BERT-based architectures, particularly in low-resource languages where performance
is worse.

To that end, we perform intermediate task fine-tuning in dependency parsing before
fine-tuning in SRL. In other words, we will fine-tune a pre-trained BERT-based model
in a dependency parsing task, and then further fine-tune it in SRL (note that only
"pre-trained BERT-based model"’s weights are fine-tuned in the intermediate task;
the model’s linear layer is still randomly initialized). This type of transfer learning
from different tasks has at times led to improvements in models’ scores for other tasks
[58].

We use the Universal Dependencies3 (UD) Portuguese data set, UD-Portuguese_Bosque
[61], based on the Bosque data set, from Floresta Sintá(c)tica. The UD project
provides a consistent treebank annotation across languages. The data set includes
the annotation of syntactic dependencies, POS tags and morphological features. We
train a model that receives as input the tokenized sentence and predicts the syntactic
dependencies between the words. This data set was chosen because there was already a
data set reader and model architecture implemented for UD in the AllenNLP package,
facilitating our work.

Table 5.5 reports the results obtained with this double fine-tuning. The fine-tuning
in UD was run for 10 epochs with a learning rate of 1 × 10−5 and a batch size of 4.
The SRL models were run in the same conditions and in the same data as the models
from the previous section. We will refer to these models using a superscript "+UD".

From the table, we can infer that double fine-tuning using the UD data set did not
have a positive impact in the performance of the monolingual BERTlarge model. For
the multilingual XLM-Rlarge and XLM-R+En

large models, fine-tuning first with UD boosts
the performance in the Buscapé data set. In fact, with the UD data, we improve the

3https://universaldependencies.org

https://universaldependencies.org
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Model
Average of Test Folds Average of Buscapé

p (%) r (%) F1 δF1 p (%) r (%) F1 δF1

brBERTlarge 76.65 78.20 77.42 75.58 74.14 74.85
brBERT+UD

large 76.90 78.19 77.53 0.11 75.25 73.75 74.49 -0.36
XLM-Rlarge 76.74 78.47 77.59 74.36 73.34 73.84
XLM-R+UD

large 77.00 78.40 77.69 0.10 75.77 74.08 74.91 1.07
XLM-R+En

large 77.71 78.75 78.22 75.36 73.77 74.55
XLM-R+En+UD

large 77.38 78.57 77.97 -0.25 75.69 74.44 75.05 0.50

Table 5.5: Average of results of the best models from the previous section in the test
set and Buscapé set when using double fine-tuning.

best results obtained before on Buscapé.

In Figure 5.7, we show the F1 measure of XLM-R+UD
large and XLM-R+En+UD

large in the Buscapé
set and the results obtained by the best model in this data set in the previous section,
BERTlarge.

Figure 5.7: Bars – Results of BERTlarge, XLM-R+UD
large and XLM-R+En+UD

large in the Buscapé
data set. Horizontal black lines – Contribution of each role to the overall score.

Again, using English data for SRL training increases the scores of roles A3 and A4.
The overall performance of the three models ends up being quite similar, but we can see
that BERTlarge is better in A0 and A1, the most common roles, while XLM-R+En+UD

large is
better in the more uncommon numbered roles and in some important modifiers, such
as temporal and negation.

Additionally, both represented models that were fine-tuned in UD are in general better
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at argument identification than BERTlarge, leading us to believe that the use of syntax
may help identify spans in more difficult data. This agrees with previous work, such as
Strubell et al. [70], which found that syntax helped with span boundary identification.
However, the differences are small, so we cannot be certain such differences are not
just accidental and based on the little test data available for this task.

5.3.8 Statistical Significance

To study the statistical significance of these results, we have conducted a Friedman
test [24] with all models (except the zero-shot cross-lingual models) for

• the total 20 F1 scores (10 test folds, 10 Buscapé results);

• the scores of the test folds;

• the scores in the Buscapé set.

We reject the null hypothesis of the results being from the same distribution for all
tests run, so there are differences in the obtained models.

We show in Figures 5.8 and 5.9 the results of the post-hoc Nemenyi test [50]. We can
see in Figure 5.9 that XLM-R+En+UD

large achieves the best scores on average, but it is not
statistically different from all other large models. Looking separately at the results
for each data set (Figure 5.9), we see that the best model is not statistically different
from even the best base models.

Figure 5.8: Comparison of the models using the Nemenyi post-hoc test with all
obtained results. Models that are not statistically different (with α = 0.05) are
connected.
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(a) Test Folds (b) Buscapé

Figure 5.9: Comparison of the models using the Nemenyi post-hoc test in each set
of results (PropBank.Br CV test folds – left; Buscapé – right). Models that are not
statistically different (with α = 0.05) are connected.

Note that since we are using 10-fold cross-validation, the assumption of independence
of the samples for the Friedman test is not guaranteed, so we must take this analysis
of statistical significance with caution.

5.3.9 Choosing the Best Model

All things considered, choosing the best model is not an easy task. It depends on many
factors regarding the intended application. In this section, we provide an heuristic for
choosing a model for an application, based on the obtained results. The decision
diagram in Figure 5.10 summarises our heuristic.

Figure 5.10: Heuristic for choosing the most appropriate model in different situations.
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First of all, it is important to determine the type of data involved. If the model is to be
applied to text of a more formal variety, where there is some certainty that sentences
will be properly structured and words properly spelled ("clean" data, e.g. journalistic
text), it is better to look at the scores achieved in the PropBank CV test sets. On the
other hand, if one is dealing with text from online sources where there is no guarantee
of the mentioned constraints, or it is certain they are not met ("unclean" data), it is
better to look at the scores from the Buscapé set.

As mentioned, the overall scores of the models may not be the most appropriate
to distinguish between them in all situations. However, the distribution of roles in
these data sets is likely to be representative of that found in the Portuguese language.
Therefore, if one is interested in the best model for the language in general, they can
choose the one with the highest F1 in the relevant data set. Recall that in the previous
section we showed that there is no statistical difference between many models, so one
may choose any of the similar models for an application (similar models for each set
are reported in Figure 5.9).

If, on the other hand, one is interested instead only in a subset of roles, it is best
to choose the best model in those roles by evaluating the presented figures (or the
results tables in Appendix B). For example, if we are interested in the best model for
A0, A1, AM-LOC, AM-TMP and AM-NEG, the best models will be XLM-R+En

large and
BERTlarge for properly written data and not, respectively. We will make available a
tool that automatically determines the best model for a scenario (an implementation
of the heuristic) and computes the F1 measure for a subset of roles, when necessary.

The results obtained allow us to compare the models, as intended. However, these
scores may not correspond to the model’s actual performance for two reasons. Firstly,
there are semantic roles that were only annotated in the second version of PropBank,
therefore the results for these are not reliable, as the data is inconsistent.

On the other hand, upon inspecting the resulting predictions and gold labels, there
seem to be some poorly annotated sentences. For example, when predicting the
arguments for the verb "retirar" (withdraw) in the sentence "Os EUA devem retirar
suas tropas da Somália até março." (The USA should withdraw their troops from
Somalia until March.), the gold labels say that "suas tropas da Somália" (their troops
from Somalia) corresponds to A1 – "entidade ou coisa sendo retirada" (entity or thing
being withdrawn). However, we believe that A1 should be "suas tropas" (their troops)
and A2 – "local de onde foram retiradas" (place from where they were withdrawn) –
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should be "da Somália" (from Somalia)4.

This is just one example, and without a complete revision of the data, it is hard to
determine many such mistakes. This is merely a caveat to warn possible users not to
take the obtained scores as ground truth.

4The sentence could also be translated as "The USA should withdraw their Somalian troops until
March", and this ambiguity is likely where the confusion comes from, but this sentence makes less
sense.
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Conclusion

This thesis aimed to apply state of the art research in English to the task of semantic
role labeling in Portuguese. To this end, we used an architecture that has achieved
state of the art performance in English, comprised of a pre-trained BERT-based model
and a classifier with Viterbi decoding.

We first showed that this architecture achieves better results than the previous state
of the art in Portuguese SRL on an existing benchmark, using monolingual pre-
trained models in this language. We then systematically compared models based
on monolingual and on multilingual pre-trained models, using the data available in
Portuguese. We studied the effects of training with English data on multilingual
models. Finally, we investigated the use of dependency parsing for language model
pre-training.

The used architecture achieves a new state of the art for SRL in Portuguese, im-
proving previous results by over 15F1 points. Regarding the comparison, we found
that, with the techniques employed, the multilingual model XLM-Rlarge could achieve
better results than the monolingual BERTlarge, despite having less attention heads per
encoding layer (refer to Table 4.1), and, therefore, less power to learn the language
structure. This suggests that monolingual models may become unnecessary when
powerful multilingual models are available, at least for low-resource languages, such as
Portuguese. Additionally, we presented an heuristic for choosing the most appropriate
model for different applications that may be useful for practitioners and researchers.

We found that the largest percentage of errors in all models comes from the non-
identification of arguments, instead of their misclassification. Thus, we suggest that
future research focus on this sub-task. We showed that dependency parsing helped

64
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in span identification. However, it is possible that constituency parsing would yield
even better results, since arguments for a predicate are commonly constituents in the
constituency parse tree.

Another interesting possibility for future work would be to apply the constraints from
Li et al. [38], which were reported to help their RoBERTa model when trained with
less data.

We consider the most important line of future work, however, to be the improvement
of the Portuguese data sets, by harmonising the role set across versions and by having
all of the data sets manually revised once again to eliminate any annotation errors
that may exist.
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Appendix A

Definitions of PropBank.Br Roles

Role Label Definition
A0 agent or causer
A1 patient, experiencer or theme
A2 / A3 / A4 / A5 defined in the frame files of each verb
AM-ADV adverbial
AM-ASP1 aspect auxiliary verb
AM-CAU cause
AM-COM1 comitative
AM-DIR direction
AM-DIS discourse
AM-EXT extension
AM-EXP1 expletive
AM-GOL1 goal
AM-LOC locative
AM-MNR manner
AM-MOD1 modal auxiliary verb
AM-NEG negation
AM-NSE1 non-argumental reflexive pronoun
AM-PAS1 passive voice auxiliary verb
AM-PRP2 purpose
AM-PRD secondary predication
AM-REC reciprocal
AM-TML1 temporal auxiliary verb
AM-TMP time

Table A.1: Role definition for all roles in PropBankBr.

1Only exists in PropBank v2 and Buscapé
2In PropBank v1.1 this argument has the label "AM-PNC" meaning "purpose not cause". The

notation was changed to "AM-PRP" in PropBank v2 and we adopt this label in this dissertation.
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Appendix B

Detailed results

This appendix contains the results per role for the average of scores in the PropBank
CV test folds and in the Buscapé set for all models mentioned in Section 5.3.
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Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 86.69 87.77 87.21 86.40 93.26 89.68
A1 79.85 81.90 80.86 77.83 82.57 80.12
A2 65.19 66.22 65.66 65.96 63.80 64.81
A3 38.40 33.16 35.07 26.22 45.00 32.74
A4 58.80 59.15 58.41 27.83 20.91 23.75
A5 0.00 0.00 0.00 - - -

AM-ADV 57.19 64.77 60.67 58.78 65.00 61.55
AM-ASP 50.98 31.93 38.47 78.90 13.16 21.78
AM-CAU 58.21 62.61 60.05 45.37 57.50 50.59
AM-COM 39.00 38.33 36.94 25.00 30.00 26.67
AM-DIR 15.83 16.67 16.19 0.00 0.00 0.00
AM-DIS 65.09 64.19 64.43 71.49 41.89 52.39
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 69.37 64.95 66.82 49.73 65.26 56.32
AM-GOL 19.00 13.33 14.00 50.00 20.00 28.00
AM-LOC 68.88 69.07 68.91 69.05 70.26 69.49
AM-MNR 59.72 61.22 60.39 65.39 66.09 65.72
AM-MOD 64.03 43.40 50.53 41.67 3.04 5.61
AM-NEG 91.24 92.86 92.02 91.48 88.83 90.11
AM-NSE 46.07 45.83 42.06 33.81 7.14 10.95
AM-PAS 62.10 45.97 51.47 21.67 8.57 12.08
AM-PRD 22.40 22.36 22.15 7.72 10.00 8.55
AM-PRP 60.28 61.20 60.14 69.51 70.00 69.20
AM-REC 0.00 0.00 0.00 0.00 0.00 0.00
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 79.67 83.07 81.31 69.49 82.34 75.36

overall 75.78 76.83 76.30 74.00 72.68 73.33

Table B.1: Averaged results per role for model BERTbase.
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Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 87.03 88.12 87.55 86.06 93.60 89.66
A1 81.18 82.64 81.91 79.13 83.50 81.25
A2 68.80 68.53 68.64 73.39 65.42 69.13
A3 42.66 38.55 39.73 24.33 55.00 33.27
A4 64.74 65.92 64.30 28.92 21.82 24.72
A5 0.00 0.00 0.00 - - -

AM-ADV 57.09 68.07 61.95 60.58 65.26 62.56
AM-ASP 40.04 36.50 35.80 85.05 15.26 24.82
AM-CAU 62.87 62.99 62.56 46.24 57.14 51.00
AM-COM 57.33 48.33 49.10 33.33 40.00 35.00
AM-DIR 30.00 28.33 27.33 0.00 0.00 0.00
AM-DIS 62.17 66.61 64.09 72.43 45.68 55.87
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 66.45 66.98 66.42 57.37 67.89 62.08
AM-GOL 7.83 10.00 8.69 5.00 3.33 4.00
AM-LOC 67.92 72.05 69.84 73.98 79.23 76.49
AM-MNR 64.15 63.47 63.73 68.46 74.06 71.02
AM-MOD 56.88 53.75 54.77 37.50 4.35 7.64
AM-NEG 91.72 94.68 93.15 90.84 89.09 89.93
AM-NSE 46.50 43.33 40.97 41.81 10.00 15.16
AM-PAS 57.21 53.79 54.56 29.88 15.71 19.61
AM-PRD 24.68 23.36 23.78 5.06 5.56 5.28
AM-PRP 61.25 64.09 62.06 64.33 64.21 63.64
AM-REC 11.11 11.11 11.11 - - -
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 80.73 83.73 82.18 71.59 84.06 77.32

overall 76.65 78.21 77.42 75.58 74.14 74.85

Table B.2: Averaged results per role for model BERTlarge.
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Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 85.74 86.72 86.22 83.53 92.71 87.85
A1 79.26 80.53 79.89 76.29 80.15 78.17
A2 64.87 65.42 65.11 70.05 67.25 68.55
A3 29.52 33.48 30.66 17.53 45.00 24.59
A4 56.15 61.58 58.41 27.61 23.64 25.33
A5 0.00 0.00 0.00 - - -

AM-ADV 54.16 61.94 57.56 59.75 65.79 62.31
AM-ASP 48.05 33.17 36.52 89.84 18.16 29.03
AM-CAU 59.96 63.69 61.41 50.22 58.93 54.09
AM-COM 46.83 40.00 39.17 90.00 90.00 90.00
AM-DIR 19.50 15.00 15.36 0.00 0.00 0.00
AM-DIS 62.89 66.33 64.42 63.43 44.05 51.21
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 64.09 66.07 64.79 58.93 70.00 63.73
AM-GOL 6.85 13.33 8.90 20.00 10.00 13.00
AM-LOC 67.13 69.62 68.30 70.29 68.46 69.25
AM-MNR 57.45 60.27 58.38 63.04 70.00 66.19
AM-MOD 56.85 48.94 49.90 66.83 11.74 19.24
AM-NEG 91.34 93.63 92.44 91.62 90.00 90.78
AM-NSE 50.50 40.83 42.25 40.00 5.71 9.61
AM-PAS 61.78 46.23 50.82 16.83 10.00 12.45
AM-PRD 22.50 23.28 22.63 12.29 16.67 13.72
AM-PRP 58.86 60.09 59.13 66.22 54.21 59.27
AM-REC 0.00 0.00 0.00 0.00 0.00 0.00
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 78.60 82.42 80.45 69.68 79.84 74.36

overall 74.42 76.04 75.22 73.12 72.54 72.82

Table B.3: Averaged results per role for model XLM-Rbase.
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Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 86.42 87.79 87.08 82.84 93.41 87.78
A1 80.22 81.71 80.95 77.03 82.77 79.79
A2 68.84 66.86 67.73 73.85 60.99 66.71
A3 43.26 41.30 41.86 34.41 61.67 43.70
A4 66.32 69.56 67.36 34.56 32.73 33.57
A5 0.00 0.00 0.00 - - -

AM-ADV 58.12 64.93 61.01 64.24 65.79 64.91
AM-ASP 34.31 24.22 25.48 50.24 8.42 13.58
AM-CAU 60.93 61.29 60.68 42.23 52.14 46.62
AM-COM 48.33 40.00 42.43 61.67 90.00 70.00
AM-DIR 27.83 26.67 24.83 - - -
AM-DIS 62.32 65.39 63.48 72.88 45.41 55.54
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 69.08 65.45 66.89 62.37 81.58 70.34
AM-GOL 14.72 20.00 15.90 0.00 0.00 0.00
AM-LOC 65.75 71.56 68.43 68.88 76.41 72.21
AM-MNR 59.80 62.36 60.94 62.19 66.87 64.37
AM-MOD 48.86 33.80 36.60 71.57 13.04 21.44
AM-NEG 91.35 94.03 92.61 94.10 90.78 92.40
AM-NSE 37.50 31.67 31.50 56.50 13.57 20.72
AM-PAS 52.12 37.08 39.62 32.21 22.86 26.47
AM-PRD 27.98 25.17 26.06 16.61 14.44 14.69
AM-PRP 57.85 62.22 59.69 57.82 68.42 62.63
AM-REC 0.00 0.00 0.00 0.00 0.00 0.00
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 80.85 82.21 81.51 73.52 78.75 76.01

overall 76.09 76.93 76.50 74.29 73.22 73.74

Table B.4: Averaged results per role for model XLM-R+En
base.



APPENDIX B. DETAILED RESULTS 83

Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 86.98 87.98 87.47 83.08 93.18 87.82
A1 81.35 83.25 82.29 77.00 82.79 79.78
A2 69.24 68.26 68.68 75.74 65.70 70.24
A3 43.63 41.24 41.54 20.65 46.67 28.28
A4 59.67 65.33 61.28 31.02 24.55 27.21
A5 0.00 0.00 0.00 - - -

AM-ADV 57.86 66.70 61.71 62.48 65.79 63.99
AM-ASP 52.78 38.37 39.76 70.78 11.84 19.78
AM-CAU 62.15 64.03 62.36 46.39 54.64 49.97
AM-COM 32.39 46.67 37.40 65.00 70.00 66.67
AM-DIR 31.00 30.00 26.07 0.00 0.00 0.00
AM-DIS 65.10 64.81 64.79 67.50 36.49 47.10
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 70.29 66.55 68.14 57.85 72.63 64.25
AM-GOL 14.50 16.67 14.91 0.00 0.00 0.00
AM-LOC 68.37 72.95 70.55 68.87 71.03 69.73
AM-MNR 60.62 61.73 61.04 63.37 71.72 67.18
AM-MOD 58.72 56.20 55.56 58.28 14.78 22.49
AM-NEG 91.41 95.06 93.18 92.08 90.00 91.00
AM-NSE 66.83 54.17 52.55 38.24 11.43 17.06
AM-PAS 63.21 58.57 59.34 16.67 8.57 11.27
AM-PRD 28.35 26.08 26.69 7.54 6.67 6.95
AM-PRP 63.40 68.13 65.29 67.20 63.68 64.68
AM-REC 10.00 10.00 10.00 0.00 0.00 0.00
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 80.03 83.15 81.54 72.75 82.81 77.40

overall 76.74 78.47 77.59 74.36 73.34 73.85

Table B.5: Averaged results per role for model XLM-Rlarge.
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Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 86.85 88.94 87.87 83.90 93.18 88.28
A1 81.75 83.19 82.46 76.89 83.76 80.18
A2 71.18 70.10 70.62 76.66 65.28 70.46
A3 48.06 47.70 47.43 29.11 56.67 38.17
A4 64.43 65.44 64.67 45.95 39.09 41.86
A5 0.00 0.00 0.00 - - -

AM-ADV 58.23 66.73 62.08 64.10 69.74 66.59
AM-ASP 46.75 33.07 38.03 66.01 13.16 21.18
AM-CAU 63.34 66.43 64.45 48.08 57.50 52.28
AM-COM 40.00 40.00 36.10 50.00 50.00 50.00
AM-DIR 21.19 30.00 20.16 - - -
AM-DIS 67.30 63.09 64.88 78.65 38.92 51.53
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 72.73 65.55 68.61 58.33 71.05 63.87
AM-GOL 11.00 13.33 11.50 20.00 6.67 10.00
AM-LOC 67.97 72.72 70.22 71.49 72.31 71.55
AM-MNR 62.93 64.83 63.83 63.60 68.91 66.06
AM-MOD 59.96 49.02 53.09 88.33 13.91 23.39
AM-NEG 91.85 94.55 93.16 92.52 89.74 91.10
AM-NSE 70.83 51.67 58.28 46.33 8.57 13.81
AM-PAS 62.60 46.64 51.65 25.79 18.57 21.33
AM-PRD 30.05 27.17 28.13 5.30 6.67 5.77
AM-PRP 63.81 65.46 64.46 69.92 64.74 67.13
AM-REC 11.11 11.11 11.11 - - -
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 80.93 83.61 82.22 75.15 79.06 77.03

overall 77.71 78.75 78.22 75.36 73.77 74.55

Table B.6: Averaged results per role for model XLM-R+En
large.
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Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 83.78 85.00 84.38 78.85 90.93 84.41
A1 76.58 77.97 77.27 68.43 75.84 71.93
A2 59.80 57.06 58.27 53.66 49.86 51.48
A3 24.87 17.98 20.14 21.82 26.67 21.91
A4 52.49 44.04 46.43 15.11 6.36 8.77
A5 0.00 0.00 0.00 - - -

AM-ADV 54.13 60.94 57.17 57.29 67.11 61.35
AM-ASP 44.36 43.17 43.05 58.12 11.84 19.32
AM-CAU 57.17 55.83 55.75 44.60 48.57 46.30
AM-COM 35.00 31.67 31.43 30.00 30.00 30.00
AM-DIR 10.00 11.67 10.71 0.00 0.00 0.00
AM-DIS 64.77 62.99 63.71 67.70 33.78 44.79
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 59.17 59.71 59.13 50.13 60.53 54.39
AM-GOL 3.33 3.33 3.33 0.00 0.00 0.00
AM-LOC 62.02 66.84 64.25 54.10 53.85 53.52
AM-MNR 55.33 55.55 55.29 54.80 55.16 54.79
AM-MOD 63.36 54.58 56.54 93.57 26.52 40.93
AM-NEG 91.01 94.94 92.89 93.19 91.69 92.41
AM-NSE 45.83 38.33 40.52 21.67 5.00 7.51
AM-PAS 60.78 59.42 59.13 67.83 44.29 52.23
AM-PRD 24.56 20.84 22.18 11.39 14.44 12.64
AM-PRP 53.71 59.52 55.94 55.00 44.21 47.89
AM-REC 0.00 0.00 0.00 0.00 0.00 0.00
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 77.76 80.69 79.15 69.71 70.16 69.82

overall 72.34 73.21 72.76 67.10 66.70 66.89

Table B.7: Averaged results per role for model mBERT.
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Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 84.88 86.62 85.73 78.31 91.47 84.34
A1 78.61 79.80 79.20 71.00 78.63 74.61
A2 65.34 63.11 64.17 62.00 56.62 59.15
A3 39.62 38.23 38.53 32.31 43.33 35.35
A4 63.66 59.30 60.71 17.67 10.00 12.62
A5 0.00 0.00 0.00 - - -

AM-ADV 57.03 61.64 59.07 62.75 68.16 65.23
AM-ASP 55.70 37.52 41.11 68.50 13.16 21.46
AM-CAU 62.30 59.28 60.14 45.84 52.14 48.61
AM-COM 19.17 21.67 20.24 0.00 0.00 0.00
AM-DIR 12.83 16.67 14.05 - - -
AM-DIS 60.89 64.05 62.35 70.54 34.59 46.03
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 64.75 62.26 62.86 56.85 65.79 60.78
AM-GOL 8.33 10.00 8.89 13.33 6.67 8.33
AM-LOC 64.53 69.53 66.86 55.69 54.36 54.92
AM-MNR 55.73 60.41 57.82 58.18 64.69 61.21
AM-MOD 60.75 52.57 55.30 78.48 20.00 31.59
AM-NEG 91.83 94.16 92.94 93.32 90.26 91.75
AM-NSE 45.95 45.83 44.85 10.00 0.71 1.33
AM-PAS 61.14 54.42 57.30 53.17 27.14 34.25
AM-PRD 22.22 24.72 23.11 7.23 7.78 7.31
AM-PRP 61.94 64.42 62.46 54.31 51.05 52.35
AM-REC 0.00 0.00 0.00 0.00 0.00 0.00
AM-TML 10.00 10.00 10.00 0.00 0.00 0.00
AM-TMP 77.90 81.51 79.61 70.90 70.78 70.80

overall 74.23 75.56 74.88 69.41 68.98 69.19

Table B.8: Averaged results per role for model mBERT+En.
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Semantic Average of Test Folds Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 64.27 83.26 72.54 70.69 90.70 79.46
A1 72.16 77.33 74.65 66.03 76.99 71.09
A2 62.11 53.31 57.36 64.71 46.48 54.10
A3 33.45 26.44 29.25 50.00 50.00 50.00
A4 59.61 53.12 55.87 50.00 45.45 47.62
A5 0.00 0.00 0.00 - - -

AM-ADV 27.62 52.88 36.24 29.63 42.11 34.78
AM-ASP 0.00 0.00 0.00 0.00 0.00 0.00
AM-CAU 63.50 43.47 51.30 46.43 46.43 46.43
AM-COM 45.00 26.67 31.33 100.00 100.00 100.00
AM-DIR 9.62 35.00 14.84 0.00 0.00 0.00
AM-DIS 48.57 38.66 42.93 72.73 21.62 33.33
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 71.14 56.81 61.97 56.00 73.68 63.64
AM-GOL 0.00 0.00 0.00 0.00 0.00 0.00
AM-LOC 58.68 57.08 57.81 63.64 71.79 67.47
AM-MNR 53.99 61.54 57.41 58.33 65.62 61.76
AM-MOD 18.56 78.91 30.00 62.07 78.26 69.23
AM-NEG 88.02 84.80 86.35 90.00 81.82 85.71
AM-NSE 0.00 0.00 0.00 0.00 0.00 0.00
AM-PAS 0.00 0.00 0.00 0.00 0.00 0.00
AM-PRD 15.44 6.71 9.31 11.11 11.11 11.11
AM-PRP 58.46 59.80 59.00 42.11 42.11 42.11
AM-REC 0.00 0.00 0.00 - - -
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 69.88 77.28 73.38 47.92 71.87 57.50

overall 63.58 69.90 66.59 63.56 67.01 65.24

Table B.9: Results per role for zero-shot cross-lingual transfer learning for model
XLM-Rbase.
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Semantic Average of Test Folds Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 64.00 83.45 72.44 68.75 89.53 77.78
A1 73.58 78.27 75.85 67.16 80.09 73.06
A2 64.37 56.49 60.15 63.06 49.30 55.34
A3 35.58 33.90 34.40 27.27 50.00 35.29
A4 65.81 54.37 59.27 22.22 18.18 20.00
A5 0.00 0.00 0.00 - - -

AM-ADV 26.84 51.07 35.15 27.27 39.47 32.26
AM-ASP 0.00 0.00 0.00 0.00 0.00 0.00
AM-CAU 64.28 49.26 55.11 41.67 35.71 38.46
AM-COM 23.33 21.67 22.33 100.00 100.00 100.00
AM-DIR 9.57 30.00 14.00 0.00 0.00 0.00
AM-DIS 50.28 38.39 43.46 50.00 21.62 30.19
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 75.73 54.81 63.27 76.47 68.42 72.22
AM-GOL 0.00 0.00 0.00 0.00 0.00 0.00
AM-LOC 61.41 57.08 59.11 64.10 64.10 64.10
AM-MNR 56.61 63.49 59.80 58.46 59.37 58.91
AM-MOD 19.38 78.91 31.07 61.54 69.57 65.31
AM-NEG 88.94 84.67 86.72 92.54 80.52 86.11
AM-NSE 0.00 0.00 0.00 0.00 0.00 0.00
AM-PAS 0.00 0.00 0.00 0.00 0.00 0.00
AM-PRD 21.00 10.26 13.75 0.00 0.00 0.00
AM-PRP 58.06 54.70 56.12 52.94 47.37 50.00
AM-REC 0.00 0.00 0.00 - - -
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 70.80 78.89 74.61 49.48 75.00 59.63

overall 64.64 70.85 67.60 63.05 66.94 64.94

Table B.10: Results per role for zero-shot cross-lingual transfer learning for model
XLM-Rlarge.
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Semantic Average of Test Folds Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 61.86 80.96 70.13 63.25 86.05 72.91
A1 70.06 74.20 72.07 59.77 69.03 64.07
A2 56.73 48.13 52.05 47.06 28.17 35.24
A3 34.21 15.24 20.72 0.00 0.00 0.00
A4 56.42 38.64 44.83 0.00 0.00 0.00
A5 0.00 0.00 0.00 - - -

AM-ADV 23.79 50.16 32.23 34.09 39.47 36.59
AM-ASP 0.00 0.00 0.00 0.00 0.00 0.00
AM-CAU 66.58 37.00 47.06 46.15 42.86 44.44
AM-COM 40.00 28.33 32.33 0.00 0.00 0.00
AM-DIR 5.41 15.00 7.49 0.00 0.00 0.00
AM-DIS 39.32 40.36 39.78 50.00 32.43 39.34
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 61.14 40.24 47.36 47.62 52.63 50.00
AM-GOL 0.00 0.00 0.00 0.00 0.00 0.00
AM-LOC 53.41 51.40 52.33 63.64 53.85 58.33
AM-MNR 50.11 54.40 52.10 52.05 59.37 55.47
AM-MOD 18.90 70.54 29.76 61.90 56.52 59.09
AM-NEG 88.22 81.29 84.58 88.73 81.82 85.14
AM-NSE 0.00 0.00 0.00 0.00 0.00 0.00
AM-PAS 0.00 0.00 0.00 0.00 0.00 0.00
AM-PRD 16.68 6.11 8.89 11.11 11.11 11.11
AM-PRP 52.05 56.86 54.13 31.03 47.37 37.50
AM-REC 0.00 0.00 0.00 - - -
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 67.59 64.48 65.95 51.90 64.06 57.34

overall 60.73 65.59 63.07 57.83 59.31 58.56

Table B.11: Results per role for zero-shot cross-lingual transfer learning for model
mBERT.
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Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 87.40 88.30 87.84 85.75 94.11 89.72
A1 81.46 82.80 82.12 77.76 83.14 80.35
A2 67.60 68.73 68.10 72.15 62.04 66.64
A3 37.64 36.90 36.56 19.12 48.33 27.06
A4 62.95 65.26 63.10 32.03 23.64 26.64
A5 0.00 0.00 0.00 - - -

AM-ADV 56.53 64.24 60.03 62.11 67.63 64.68
AM-ASP 44.89 42.09 41.98 64.74 16.32 24.22
AM-CAU 62.94 66.77 64.41 51.18 58.21 54.21
AM-COM 48.69 48.33 46.86 70.00 80.00 73.33
AM-DIR 17.33 15.00 14.00 0.00 0.00 0.00
AM-DIS 63.30 67.22 65.08 71.91 40.27 51.36
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 67.42 67.52 67.30 60.16 68.95 64.00
AM-GOL 11.67 10.00 10.67 10.00 3.33 5.00
AM-LOC 69.10 73.09 70.92 71.00 81.79 75.92
AM-MNR 64.29 61.64 62.75 66.95 69.69 68.21
AM-MOD 56.51 47.82 50.25 57.11 13.04 20.65
AM-NEG 91.91 94.81 93.29 93.09 88.96 90.97
AM-NSE 50.36 50.83 46.91 60.00 14.29 22.00
AM-PAS 59.17 52.68 55.02 25.00 11.43 15.49
AM-PRD 26.24 26.03 25.90 4.83 7.78 5.91
AM-PRP 59.52 62.20 60.30 60.97 62.63 61.35
AM-REC 20.00 20.00 20.00 0.00 0.00 0.00
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 81.40 82.99 82.14 74.26 83.12 78.42

overall 76.90 78.19 77.53 75.25 73.75 74.49

Table B.12: Averaged results per role for model BERT+UD
large.
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Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 86.70 87.77 87.22 84.45 92.98 88.50
A1 81.70 82.54 82.12 78.53 82.68 80.54
A2 68.37 68.90 68.59 74.35 67.32 70.60
A3 49.63 37.20 41.87 22.01 41.67 28.07
A4 59.39 65.18 61.20 35.56 28.18 31.24
A5 0.00 0.00 0.00 - - -

AM-ADV 57.59 63.02 59.96 67.00 69.74 68.03
AM-ASP 48.43 48.20 46.11 72.53 13.95 22.19
AM-CAU 64.44 64.03 63.84 47.02 53.57 50.01
AM-COM 19.00 25.00 21.43 35.00 40.00 36.67
AM-DIR 30.00 11.67 16.67 - - -
AM-DIS 66.05 68.61 67.19 74.24 38.65 50.25
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 68.04 63.57 65.36 56.29 73.16 63.36
AM-GOL 18.17 20.00 18.08 53.33 20.00 28.33
AM-LOC 68.76 73.02 70.70 73.62 77.18 74.93
AM-MNR 62.14 63.41 62.59 67.81 70.94 69.16
AM-MOD 64.23 62.15 60.90 72.82 19.13 29.33
AM-NEG 91.60 94.03 92.76 90.27 88.96 89.60
AM-NSE 51.19 51.67 47.47 69.53 26.43 36.26
AM-PAS 59.16 69.14 62.92 38.50 20.00 25.42
AM-PRD 29.42 25.62 26.82 8.71 7.78 7.88
AM-PRP 59.73 66.00 62.51 67.15 64.21 65.18
AM-REC 10.00 10.00 10.00 0.00 0.00 0.00
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 81.66 83.98 82.79 73.10 83.12 77.73

overall 77.00 78.40 77.69 75.77 74.08 74.91

Table B.13: Averaged results per role for model XLM-R+UD
large.
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Semantic Average of Test Folds Average of Buscapé
Role P (%) R (%) F1 P (%) R (%) F1

A0 87.02 88.52 87.75 83.67 93.18 88.14
A1 81.38 83.03 82.19 77.05 84.38 80.54
A2 70.22 70.97 70.51 72.96 65.00 68.57
A3 47.98 43.99 45.57 34.59 51.67 41.06
A4 62.42 63.53 62.50 44.33 40.00 42.00
A5 0.00 0.00 0.00 - - -

AM-ADV 57.98 64.90 61.02 64.36 70.53 67.11
AM-ASP 49.05 34.22 39.39 75.65 13.42 21.78
AM-CAU 60.45 60.95 60.32 47.46 53.93 50.43
AM-COM 30.17 33.33 29.86 40.00 40.00 40.00
AM-DIR 25.83 26.67 24.52 - - -
AM-DIS 63.88 64.17 63.76 81.84 38.65 51.90
AM-EXP 0.00 0.00 0.00 0.00 0.00 0.00
AM-EXT 69.43 65.05 66.95 65.66 80.53 72.19
AM-GOL 15.25 16.67 14.82 18.33 10.00 12.33
AM-LOC 67.99 72.09 69.87 77.00 74.87 75.54
AM-MNR 64.38 65.43 64.76 65.46 69.84 67.51
AM-MOD 57.86 47.75 50.50 61.53 14.35 22.27
AM-NEG 92.49 93.38 92.89 93.82 90.26 91.99
AM-NSE 66.42 43.33 47.05 72.67 18.57 27.33
AM-PAS 61.88 55.49 57.44 19.17 8.57 11.68
AM-PRD 31.32 25.90 27.73 5.95 5.56 4.85
AM-PRP 62.31 64.39 63.04 67.38 71.05 68.90
AM-REC 0.00 0.00 0.00 0.00 0.00 0.00
AM-TML 0.00 0.00 0.00 0.00 0.00 0.00
AM-TMP 82.04 83.81 82.89 75.85 82.03 78.77

overall 77.38 78.57 77.97 75.69 74.44 75.05

Table B.14: Averaged results per role for model XLM-R+En+UD
large .
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