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Abstract: The existence of diagnostic features in the visible and infrared regions makes it possible
to use reflectance spectra not only to identify mineral assemblages but also for calibration and
classification of satellite images, considering lithological and/or mineral mapping. For this purpose,
a consistent spectral library with the target spectra of minerals and rocks is needed. Currently, there
is big market pressure for raw materials including lithium (Li) that has driven new satellite image
applications for Li exploration. However, there are no reference spectra for petalite (a Li mineral) in
large, open spectral datasets. In this work, a spectral library was built exclusively dedicated to Li
minerals and Li pegmatite exploration through satellite remote sensing. The database includes field
and laboratory spectra collected in the Fregeneda–Almendra region (Spain–Portugal) from (i) distinct
Li minerals (spodumene, petalite, lepidolite); (ii) several Li pegmatites and other outcropping
lithologies to allow satellite-based lithological mapping; (iii) areas previously misclassified as Li
pegmatites using machine learning algorithms to allow comparisons between these regions and
the target areas. Ancillary data include (i) sample location and coordinates, (ii) sample conditions,
(iii) sample color, (iv) type of face measured, (v) equipment used, and for the laboratory spectra,
(vi) sample photographs, (vii) continuum removed spectra files, and (viii) statistics on the main
absorption features automatically extracted. The potential future uses of this spectral library are
reinforced by its major advantages: (i) data is provided in a universal file format; (ii) it allows
users to compare field and laboratory spectra; (iii) a large number of complementary data allow the
comparison of shape, asymmetry, and depth of the absorption features of the distinct Li minerals.

Dataset: : http://doi.org/10.5281/zenodo.4575375.

Dataset License: : CC-BY.

Keywords: reflectance spectroscopy; spectrometer; geological exploration; remote sensing; peg-
matite; lithium

1. Summary

The use of reflectance spectroscopy to identify minerals through diagnostic absorption
features in the visible and infrared regions has been described by several authors in recent
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decades [1–4]. Due to these diagnostic features, the acquired mineral spectra can be
employed in several knowledge-based satellite image classification approaches to delineate
target areas for mineral occurrences [5,6]. Moreover, field spectra allows ground-checking
of the remotely sensed data (e.g., [7–9]) and validation of the atmospheric corrections made
to satellite images.

The recent growing economic importance of lithium (Li), mainly due to its application
in batteries for electric cars, has triggered several attempts to use satellite images to target
the occurrence of Li minerals and Li pegmatites [10–14]. Reference spectra for some of the
most important Li minerals, such as spodumene and lepidolite, can be found in the United
States Geological Survey (USGS) [15] and ECOSTRESS [16] spectral libraries. Nonetheless,
there are no reference spectra for petalite in these open domain spectral libraries. The
Geological Survey of Brazil (CPRM) has been trying to address this issue by compiling a
spectral database with a Li minerals’ dedicated section, but so far the petalite diagnostic
features have not been identified [17].

To fill in this gap and to complement the development of image classification algo-
rithms for Li exploration, a spectral database was built in this work based on samples
collected in the Fregeneda–Almendra aplite–pegmatite field (Figure 1). In this region, spo-
dumene, petalite, and lepidolite minerals occur in evolved pegmatites [18,19] that intruded
metasedimentary rocks belonging to the “Complexo Xisto–Grauváquico” (CXG) [20].
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Figure 1. Location of the Fregeneda–Almendra pegmatite field in the Iberian Peninsula. Diamonds represent pegmatites
containing Li minerals: green–petalite; blue–spodumene; red–lepidolite; orange–spodumene + lepidolite [18,19]. The map
projection is Universal Transverse Mercator zone 29N from the WGS84 datum.

The spectral library is composed of field and laboratory spectra not only of Li minerals
(spodumene, petalite, lepidolite) but also from the main outcropping lithologies of the
Fregeneda–Almendra area (granitoid rocks, CXG metasediments, Li pegmatite). These rock
spectra were mainly acquired in areas of good exposition so they could be used as training
areas for satellite-based lithological mapping. Additionally, to allow further investigation
on the ability to discriminate Li minerals and Li pegmatites from other lithologies, the
spectra from areas misclassified as Li pegmatites using machine learning algorithms [13]
are also provided. The comparison of the aforementioned data can allow users to evaluate
the degree of spectral similarity between the target minerals/rocks and the remaining
within-scene elements.

Complementary data such as (i) the sample location and coordinates (when available),
(ii) degree of alteration of the sample, (iii) sample color, (iv) type of face measured, and
(v) equipment used, are provided for each spectrum. Spectra acquisition and curation are
described thoroughly. For the laboratory spectra, also available are (i) sample photographs,
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(ii) respective continuum removed spectra files, and (iii) details on the main absorption
features automatically extracted.

This spectral database was established in the ambit of the “Lightweight Integrated
Ground and Airborne Hyperspectral Topological Solution” (LIGHTS) project, whose goal
is to develop a tool that combines remote sensing data acquired at different scales with
geological and geochemical data to rapidly identify target areas for Li exploration [21,22].
However, such a database could be useful for other ongoing research projects, namely:
(i) the fiber laser plasma spectroscopy system for real-time element analysis (FLaPsys)
project, which aims at developing an advanced spectroscopy system capable of real-time
element identification and quantification mainly applied to Li mineralizations [23], and
in which laser-induced breakdown spectroscopy (LIBS) will be correlated with the visible
and infrared data acquired; (ii) new exploration tools for a European pegmatite green-
tech resources (GREENPEG) project which aims at improving responsible exploration in
Europe for pegmatites through the development of integrated, multi-method exploration
toolsets that include satellite image processing and airborne and ground-based geophysics
and geochemical approaches [24]. Part of this spectral database was already the basis for
some publications [25,26], but more works are expected in the future since there is great
potential in this dataset whose main advantages include: (i) that the data are provided in a
universal text file format that is not dependent on software; (ii) the ability to compare field
and laboratory spectra for 52 coincident spots; (iii) finally, the details and statistics of the
extracted features provided allow the user to compare the shape, asymmetry, and depth of
the absorption features of the distinct Li minerals, including petalite.

2. Data Description

The spectral database is divided into two subsets; the first concerning the spectra
collected in the laboratory and the second corresponding to the spectra acquired in the
field. The spectra were organized into categories within each subset according to their
application purpose (Table 1). To allow a rapid and easy identification of the spectra, the
spectrum naming was made considering logical codes embedded in the spectrum title
(Table 1). Consequently, information such as the location of the sample and analyzed
lithology/mineralogy can be readily extracted based just on the spectrum name. Besides
the codes of Table 1, each spectrum has its associated measurement number.

Table 1. String, numerical, and alphanumerical codes used for spectrum naming and identification.

Code Observation

Purpose of the sample
L Li mineral database

TA Training areas
SC Spectral confusion (represents false positive areas)

Lithology
G Granitoid rock
LP Li pegmatite
M Metasedimentary rock

Mineralogy
Lep Lepidolite
Pet Petalite
Spd Spodumene

Location

AL Almendra
ALB Alberto open pit mine

BJ Bajoca open pit mine
FE Feli open pit mine
FG Fregeneda
HD Hinojosa de Duero
999 3-digit numbers represent the GPS point number

Multiple samples A1 to An Code given to distinct hand samples collected at the
same location (where n = number of samples)

Equipment used sr SR-6500 (Spectral Evolution, Inc., Haverhill, MA, USA)
asd FieldSpec 4 (ASD, Inc., untsville, AL, USA)

Other f Spectra collected in the field under real conditions
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All spectra are provided in a universal UTF-8 text file format that can be read in any
proprietary or open-source software, representing measurements made in the visible and
near-infrared (VNIR) and shortwave infrared (SWIR) regions. From a total of 340 spectra
collected in the laboratory, 84 represent Li minerals, 196 correspond to the outcropping
lithologies of the Fregeneda–Almendra area that can be used as training areas for satellite
image classification, and 60 spectra were collected from samples in Li pegmatite false-
positive areas identified in previous satellite image classification attempts [13]. Additionally,
75 field spectra are presented in the spectral database (35 measurements of Li minerals and
40 measurements of distinct Li pegmatites). As mentioned in Table 1, two spectrometers
were used for spectral measurements. For the data acquired with the SR-6500 equipment,
the UTF-8 text files are composed of a 28 line-header containing information about the
equipment and acquisition settings and two columns, the first with the wavelength (in
nanometers or nm) and the second with the measured reflectance (in percentage). In the
case of the spectra acquired with the ASD FieldSpec 4, there are just two columns, one with
the wavelength (in nm) and the other with absolute reflectance values. For each subset
(field and laboratory spectra) there is a *.xlsx table containing important ancillary data:

• Spectrum name
• Acquisition equipment
• Sample type
• Sample conditions
• Sample face type
• Sample color
• Location
• Coordinates (Universal Transverse Mercator zone 29N from the WGS84 datum).

The coordinates are only available for samples collected in situ and, therefore, samples
collected in ore stockpiles (for example) do not have this kind of information registered.
For the spectra acquired in the laboratory, additional information is also provided, namely:
(i) sample photographs with the analyzed spots highlighted, (ii) a UTF-8 text file with the
respective continuum removed spectra (with absolute reflectance values); (iii) PNG files
showing for each spectrum the main absorption features and a CSV file summarizing the
main statistics of each feature (Section 3.2).

3. Methods
3.1. Spectra Acquisition

Two field campaigns were carried out in February and July of 2020 to collect the
data to build the spectral library. At the time of the first campaign, there was no portable
spectrometer available in the University of Porto to collect spectra in situ, therefore repre-
sentative samples from 25 locations were taken to the GeoRessources laboratory (University
of Lorraine). The spectral measurements were performed with the SR-6500 equipment.
Due to difficulties in accessing pegmatites containing spodumene on the field, samples
from an existing Li mineral collection at the University of Porto were also analyzed. In
the second field survey, favorable weather conditions (absence of clouds) allowed collec-
tion of spectra from several Li pegmatites and the different Li minerals in 35 locations
dispersed along the Fregeneda–Almendra pegmatite field. In this case, the ASD FieldSpec
4 spectrometer was used. Samples were retrieved in 28 of these 35 locations to collect
further spectra under a controlled environment at the University of Porto, using the same
equipment. Either in the field or the laboratory, the two spectrometers were calibrated
using a Spectralon (Labsphere) plate with a maximum reflectance higher than 95% for
the 250–2500 nm region, and higher than 99% for 400–1500 nm interval. In the field, the
calibration was repeated every time the solar lighting conditions changed (about each
30′). Regarding the acquisition settings, to improve the signal-to-noise ratio, each of the
spectra acquired in the laboratory represented the average of 40 scans. To expedite spectra
acquisition in the field, this value was lowered to 30 scans. However, when using the
ASD FieldSpec 4 equipment, five spectra were acquired in each analyzed spot. These five
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spectra were averaged afterward (Section 3.2) and only the final spectrum was provided
in the spectral library. The characteristics of each spectrometer are compared in Table 2.
The major differences are observed in terms of the spectral resolution with the SR-6500
outperforming the ASD FieldSpec 4.

Table 2. Comparison of the main characteristics of the employed spectrometers [27,28].

Spectral Evolution SR-6500 ASD FieldSpec 4

Spectral Range 350–2500 nm 350–2500 nm

Spectral Resolution

Ultra-High Resolution Standard resolution
1.5 nm @ 700 nm 3 nm @ 700 nm
3.0 nm @ 1500 nm 10 nm @ 1400 nm
3.8 nm @ 2100 nm 10 nm @ 2100 nm

Spectral sampling (bandwidth) 1 nm increments 1.4 nm @ 350–1000 nm
1.1 nm @ 1001–2500 nm

Wavelength reproducibility 0.1 nm 0.1 nm
Wavelength accuracy 0.5 nm 0.5 nm
Channels 2151 2151

Detectors

1024 element TE-cooled silicon photodiode
array detector (VNIR) VNIR detector: 512 element silicon array

512 element TE-cooled InGaAs photodiode
array detector (SWIR 1)

SWIR 1 detector: Graded Index InGaAs
Photodiode, Two-Stage TE Cooled

512 element TE-cooled extended InGaAs
photodiode array detector (SWIR 2)

SWIR 2 detector: Graded Index InGaAs
Photodiode, Two-Stage TE Cooled

Noise Equivalent Radiance
(NEdL)

0.8 × 10−9 W/cm2/nm/sr @ 400 nm 1.0 × 10−9 W/cm2/nm/sr @ 700 nm
0.3 × 10−9 W/cm2/nm/sr @ 1500 nm 1.2 × 10−9 W/cm2/nm/sr @ 1400 nm
5.8 × 10−9 W/cm2/nm/sr @ 2100 nm 1.9 × 10−9 W/cm2/nm/sr @ 2100 nm

Weight 4.99 kg (11 pounds) 5.44 kg (12 lbs)

Contact probe

Internal light source: Internal light source:
Halogen bulb: 4.25 V, 1.06 A Halogen bulb: 12–18 V, 6.5 W
Spot size: Spot size:
10 mm 10 mm

Field pistol grip —
Natural lighting
Spot size as a function of distance to the
sample

3.2. Spectra Curation and Treatment

The spectra acquired with ASD FieldSpec 4 were post-processed using the ASD
ViewSpec Pro™ software [29]. The first step included averaging each of the five spectra
collected for each spot. To the averaged spectrum, a splice correction was applied to remove
the offset between detectors that is caused by differences in their sensibility [29] (Figure 2).
Finally, the final spectra were exported to UTF-8 text files. In the case of the spectra collected
using the SR-6500, a simple conversion from SED to the UTF-8 text file was necessary. The
SpectraGryph software [30] was used to analyze each spectrum individually to exclude
the ones with measurement errors or with noticeable noise caused by the presence of
vegetation, for example.
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Figure 2. Splice correction process: (a) before and (b) after applying the correction. The VNIR and SWIR2 ranges are
adjusted using the endpoints (~1000 to 1800 nm) and shape of the curve of the SWIR1 range since this detector is more
stable to temperature changes [29].

To allow a more detailed analysis of each spectrum, a hull quotient procedure was
applied to remove the continuum and normalize the spectra (Figure 3). This was accom-
plished in a Python environment using the pysptools library [31] based on the technique
proposed by Clark and Roush [2]. First, a convex hull was fitted to the spectrum (Figure 3a)
connecting the hull points (corresponding to local maxima) [32]. Afterwards, the convex
hull (continuum) was removed through a hull-quotient process and the measured re-
flectance values were divided by the convex hull [2,33,34]. The continuum removal process
is of great importance because it not only allows the comparison of the data obtained with
different spectrometers but also allows the enhancement and correct determination of the
absorption features [32–34]. The pysptools library was used to automatically extract the
main absorption features (Figure 3b–d) and to calculate their associated statistics according
to the work of Kokaly [35]. To avoid the extraction of non-significant features, a baseline
value of 0.93 was employed: all features below the baseline were kept and the ones above
it were rejected [31] (Figure 3). For each spectrum, a CSV file was automatically created
summarizing the statistics of each absorption feature. Table 3 shows a list of the extracted
statistics and the respective abbreviation used in the CSV files. The Supplementary Materi-
als provided shows the adaptation of the pysptools functions to batch process this particular
spectral library.

Table 3. List of the statistics automatically extracted for each spectrum and respective abbreviations
used in the resultant CSV file.

Abbreviation Extracted Statistics

id feature number
area area

cstart_wvl continuum start wavelength
cstop_wvl continuum stop wavelength

cslope continuum slope
abs_wvl center wavelength

abs_depth absorption depth
FWHM_delta full-width at half maximum
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4. User Notes

This spectral database has the advantage of presenting field and laboratory spectra for
52 analyzed spots, allowing comparisons and evaluation of the influence of the acquisition
conditions on the final spectra. Additionally, field spectra are expected to better match the
spectral signatures acquired by airborne sensors. However, as can be seen in Figure 4, field
spectra present additional sharp bands around 1400 and 1800 nm caused by atmospheric
water that should be removed before additional processing.

A final note on the usage of the automatically extracted features that are available
for all spectra acquired in the laboratory. As aforementioned, a baseline value was set to
determine which absorption features to extract. Therefore, setting a different baseline may
produce different results and change the features’ statistics. Additionally, different results
can be obtained if the features are extracted considering the whole spectrum or spectra
subset matching a given region of interest [34]. According to the user’s objectives, one of
the two methods may be more appropriate.
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Figure 4. Comparison of laboratory and field spectra obtained for the same petalite sample. Notice
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Abbreviations
The following abbreviations are used in this manuscript:

CPRM Geological Survey of Brazil
crs continuum removed spectra
CSV comma-separated values
CXG Complexo Xisto–Grauváquico (Schist–graywacke complex)
FWHM full-width at half maximum
Lab laboratory
LIBS laser-induced breakdown spectroscopy
Li lithium
NEdL noise equivalent radiance
PNG portable network graphics
pts points
SWIR shortwave infrared
TE thermoelectrically
USGS United States Geological Survey
UTF unicode transformation format
VNIR visible and near-infrared
WGS World Geodetic System
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