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ABSTRACT: The overall earthquake response of Hakka Tulous, traditional earth 
constructions of the Fujian Province (China) and listed among the UNESCO World 
Heritage buildings, is investigated. Non-linear static analysis (pushover) with the 
equivalent frame approach is used. Although some rough approximations are assumed, this 
approach is well suited to model complex masonry structures, like Tulous. In fact, non-
linear analysis implemented by finite elements or by discrete elements would involve 
complex models hard to converge and needing long computational time. After carrying out 
seismic analysis of a Tulou prototype, its failure modes and overall seismic response were 
evaluated. The Tulou has shown to have good earthquake resistance with respect to the 
maximum seismic action that can be expected in the Fujian Province. 

KEY WORDS: Hakka Tulou; Fujian; earth; earthquake analysis; macroelements; 
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1 Introduction 
Hakka Tulous are house-fortresses situated in 

the Fujian Province of China and inhabited by 

Hakka clan people. For their heritage and 

architectural value, are inscribed in the 

UNESCO World Heritage list.  

A Tulou consists of a circular or square 

perimetral earth wall internally stiffened by 3D 

wooden frames supporting wooden floors, 

subdivided by partition walls delimiting the 
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Hakka people dwellings.  

They are large-sized earth constructions, with 

a unique large entrance and small windows 

mainly located at high elevation in the earth 

wall (Figure 1Error! Reference source not 

found.). 

Notwithstanding their relevance, few studies 

are available in the scientific literature on their 

structural behaviour. In particular, there are 

only few studies on their seismic response, 

although in some areas of the Fujian Province, 

where the Tulous are traditionally built, the 

seismic hazard is not negligible (Briseghella et 

al., 2017, 2019b; Liang, Stanislawski, & Hota, 

2011). 

Despite the few studies available on Tulous, 

earth constructions are increasingly studied 

both because all over the world there are many 

monuments and historical buildings made of 

earth, and because of their sustainability, 

thermal comfort performance and energy 

efficiency (Houben & Guillaud, 1994).  

Regarding the recent studies on the behaviour 

of the earthen material and of earth structural 

elements, significant work have been carried 

out on the fracture behaviour of earth 

considered as a quasi-brittle material 

(Aymerich, Fenu, Francesconi, & Meloni, 

2016; Aymerich, Fenu, & Meloni, 2012), as 

well as on its influence on the structural 

response of adobe bricks and panels (Blondet 

& Vargas, 1978; Parisi, Asprone, Fenu, & Prota, 

2015; Vargas & Ottazzi, 1981; Varum et al., 

2007).  

With reference to the seismic response of earth 

constructions (Varum et al., 2014), the 

damages caused by earthquakes have been 

studied by many authors (Blondet, Vargas, & 

Tarque, 2008; Webster & Tolles, 2000). The 

influence of  brittleness and low tensile 

strength on the seismic vulnerability of the 

adobe structures has been investigated by 

Blondet et al. (Blondet, Vargas, Velásquez, & 

Tarque, 2006). Their vulnerability was 

observed in recent earthquakes, as in Peru 

(1970, 1996, 2001 and 2007), El Salvador 

(2001), Iran (2003), Pakistan (2005) and China 

(2008 and 2009) (Varum et al., 2014). 

The seismic response of earthen structures has 

been experimentally investigated through 

shaking table tests on reduced masonry section 

walls (Antunes, Lima, Varum, & André, 2012; 

Figueiredo, Varum, Costa, Silveira, & Oliveira, 

2013; Tareco, Grangeia, Varum, & Matias, 

2009) and on scale models of entire buildings 

(Webster & Tolles, 2000). Unfortunately, 

shaking table tests are expensive and need long 

time especially for constructing the model. For 

all these reasons, shaking table tests are not the 

first choice to investigate the seismic response 

of masonry structures including earth 

constructions, even if they can provide reliable 

and qualitatively valid results. 

The numerical modelling techniques are 

instead a more advantageous and less 

expensive way of studying earth buildings. The 

main methods of numerical analysis to model 

masonry structures are the Finite Element 

Modelling (FEM), the Distinct Element 

Modelling (DEM), and the analysis by 

macroelements with the Equivalent Frame 

Method (EFM). Unfortunately, nonlinear 

analysis with FEM and DEM of complex 

masonry structures usually lead to encounter 

convergence problems hard to solve, as well as 

to high computational costs (Briseghella et al., 

2019a).  

On the contrary, the analysis by macroelements 

with the EFM well apply in nonlinear analysis 

Figure 1. Hakka Tulou in the Fujian Province. 
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of complex masonry structures because, 

despite some approximations in defining the 

macroelement geometry and its structural 

response, the equivalent frame approach 

allows to obtain reliable results.  

As a matter of fact, schematization of the wall 

with openings as a frame where piers and 

spandrels are deformable linear elements 

connected by indeformable rigid nodes, allows 

to facilitate convergence and reduce the 

computational costs.    

Among the different codes using the macro-

element approach, considerable diffusion have 

RAN (Augenti, 2004; Augenti & Parisi, 2010; 

Raithel & Augenti, 1984), SAM (Magenes, 

2000; Magenes & Fontana, 1998) and 

TREMURI (Lagomarsino, Penna, Galasco, & 

Cattari, 2013) codes. In particular, in this study 

TREMURI code has been used to carry out 

non-linear static analysis (pushover) of a Tulou 

prototype with the EFM.   

Regarding numerical modelling of earth 

constructions, a first study in this field was 

made by Tarque (Tarque, 2011), who tested the 

validity of different modelling strategies using 

the results obtained by FEM.  

The EFM was first applied to earth structures 

as part of a research project funded by the 

Region of Sardinia (Asprone, Parisi, Prota, 

Fenu, & Colasanti, 2016), an Italian region 

where earth constructions are still built and 

where there is an important heritage of 

traditional ones, too. The validity of the use of 

the EFM in earth buildings was first assessed 

through comparing the results obtained from 

simple earth buildings and similar tuff 

buildings. Moreover, the validity of the macro-

element approach in modelling earth structures 

was also evaluated through comparing the 

results obtained by shaking table tests with 

those obtained by numerical models using the 

EFM. The results of shaking table tests funded 

within the Getty Seismic Adobe Project 

(GSAP) (Gavrilovic et al., 1996; Tolles, 

Kimbro, Webster, & Ginell, 2000) and carried 

out with increased acceleration values on small 

scale models of adobe constructions were 

compared with those obtained from nonlinear 

static analysis (pushover) performed by 

macroelements on real scale prototypes.   

Based on these validation tests, in this article 

the macroelement approach with the EFM has 

been applied to the prototype of a Hakka Tulou. 

Their typical cylindrical wall has been 

discretized and shaped as a 24-sided polygonal 

wall.  

The geometry of the Tulou prototype as well as 

the mechanical properties of the earthen 

material have been extracted from some 

studies on Huanji Tulou available in the 

scientific literature (Liang et al., 2013, 2011). 

This research has provided a first significant 

contribution to the study of the seismic 

response of Tulous. 

2 Building technology and 

structure of a Fujian Hakka 

TulouAbout Author and abstract 

 Tulous are distributed in small villages in the 

mountainous area of west-south of the Fujian 

Province (China) (Figure 2) (Zhang, Luo, & 

Liao, 2011). They are circular buildings made 

of a cylindrical earth wall about 2m thick at its 

base whose typical diameter and height are 50 

Figure 2. Bird’s eye view of a Tulou cluster. 
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and 20 m, respectively. For defensive reasons, 

a single door guarantees the access to the 

internal courtyard. For the same reason, Tulous 

have only two or three rows of small windows 

starting at up to 10 m elevation. Inside the 

Tulou, the floors hosting the Hakka People 

dwellings are supported by wooden frames 

whose radial beams are in turn supported by 

the circular earth wall at one end and by 

wooden columns at the opposite end. The 

wooden floor system is likely to be only 

partially rigid, because rafters and wooden 

planks are not firmly connected one to the other. 

Similar considerations can be done for the two-

pitch roof, supported by an A-frame truss 

system.  

Few information is available on the 

mechanical properties of the materials and on 

the structural features of the construction 

elements. About the Tulou geometry, in this 

study we refer to a Tulou prototype whose 

dimensions are obtained from a FEM model of 

the Huanji Tulou (Liang et al., 2013, 2011), 

differing from it just for having regularized the 

window opening spacing, that in Huanji Tulou 

is not uniform.  

2.1 Equivalent frame approach 

The Tulou prototype has been modelled by 

macroelements through the EFM using 

TREMURI code. 

Despite some rough approximations, this 

method has proved to be particularly suited to 

model masonry constructions (Braga & Dolce, 

1982; Marques & Lourenço, 2014), and 

successfully applied to earth constructions, too 

(Asprone et al., 2016). 

In accordance with dynamic test data and post-

earthquake survey of damages caused by the 

seismic action, in the EFM method each wall 

is modelled as an equivalent frame where 

deformable piers and spandrels correspond, 

respectively, to columns and beams, connected 

by non-deformable rigid nodes.  

The spandrel length corresponds to the 

opening width. The dimension of the nodes 

defines the pier length and depends on the 

opening size and position. Membrane elements 

are used to model stiff or partially-stiff floors, 

depending on the membrane stiffness. Stiffness 

and geometry of walls and diaphragms highly 

affect the box-behaviour and structural 

efficiency of the masonry construction 

(Lagomarsino et al., 2013). Each 

macroelement (piers and spandrels) is divided 

into three parts: a central one, almost 

coinciding with the whole masonry panel, 

where shear deformations are addressed with 

nonlinear contribution of the frictional force 

opposing to the sliding mechanisms, and two 

thin end ones, where the axial and bending 

deformations are instead addressed and where 

the inelastic contributions are obtained from 

the unilateral perfectly elastic contact 

condition (Brencich, Gambarotta, & 

Lagomarsino, 1998). 

The 3D frame is obtained through connecting 

the nodes of the lateral piers of the 2D 

equivalent frames (Lagomarsino et al., 2013). 

The Equivalent Frame Model of the circular 

Tulou (Figure 3Error! Reference source not 

found.), has been obtained by approximating 

the cylindrical wall to a 24-side polygonal wall.  

Having assumed constant horizontal spacing 

and vertical alignment of the window openings, 

in each wall side there are two small windows, 

one for each of the two upper levels.    

Wooden floors and roof sections stiffness have 
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been modelled with diaphragms of appropriate 

rigidity accounting for their orthotropic 

behaviour, too. Figure 3b shows the Equivalent 

Frame implemented to analyse the Tulou 

through the EFM. 

The mechanical characteristics of the Tulou 

construction materials (earth and wood) have 

been assumed by literature-based data (Liang 

et al., 2013). In particular, the earth mechanical 

properties used to model the Tulou prototype 

herein considered are shown in Table I. 

 

Table I. Mechanical properties of earth material 

3  Seismic analysis of a Tulou 

prototype modelled through the 

EFM  

With reference to performance-based 

earthquake engineering concepts 

(Lagomarsino et al., 2013; Liu, Zordan, Zhang, 

& Briseghella, 2015) in the last decades the 

nonlinear static analyses (pushover) have 

shown to be the most reliable analysis method 

for seismic assessment. 

To analyse Tulou seismic response, pushover 

analysis implemented in TREMURI has been 

herein performed with mass-proportional 

horizontal forces plotted as a function of the 

consequent displacements of a suitably chosen 

control node. The displacement demand 

obtained from the ADRS spectrum at the Life 

Safety Limit State (475 years return period) 

has been then compared with the capacity 

displacement obtained from the capacity curve 

of the structure, thus evaluating the Tulou 

safety under the seismic risk of the Fujian 

Province. The peak ground acceleration (PGA) 

ag = 0.16g, as well as F0 = 2.45 and TC* = 0.32 

were assumed to draw the ADRS spectrum 

referred to the Tulou site. Since the Tulous are 

probably constructed on a rocky subsoil in the 

mountain area of the Fujian Province, in this 

first study on the Tulou seismic response, the 

stratigraphic and topographic amplification is 

not considered. 

The capacity curves obtained assuming 

earthquake direction and control node reported 

in the legend are shown in Figure 4Error! 

Reference source not found.. Unfortunately, 

while the most appropriate position of the 

control node should coincide with the centre of 

mass of the structure, this is not allowed by 

Tulou geometry. In fact, its  centre of mass is 
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Figure 3. Tulou numerical model: 3D view (a); 

detail of the Equivalent Frame (b). 
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practically coincident with the centre of the 

Tulou court, where no node can be assumed as 

a control node because in the centre of the 

court there is no Tulou structure.   

The two capacity curves shown in Figure 4, are 

obtained for same direction but opposite 

orientation of the seismic action (±Y). The 

ultimate displacement corresponds to the 

Tulou displacement capacity, where failure is 

attained for a loss of shear load bearing 

capacity at the base of at least 20% of the 

maximum shear resistance recorded during the 

pushover analysis. The displacement demand 

obtained from the ADRS response spectrum is 

also indicated. Since the displacement demand 

results far lower than the capacity 

displacement, then the Tulou structure is 

shown to well resist to the Fujian seismic 

action without losing its stability. 

The Tulou seismic response is better described 

in the damage sequence of Figure 5 where, for 

increasing displacement values of the control 

node, the increasing damage in the Tulou wall 

is mapped as described in the following:.   

-The 1-st point (Figure 5b) corresponds to 

flexural yielding in the wall over the Tulou 

entrance and parallel to the loading direction. 

Yielding of some spandrels also occurs in the 

upper level. In Tremuri, yielding of a 

macroelement is shown to occur when it 

reaches its flexural capacity but with still a 

residual ductility reserve before failure.   

-At the 2-nd point (Figure 5c), shear yielding 

of the other macroelements above the opening 

occurs. Moreover, both the lateral piers of the 

Tulou entrance yields in flexural-compression.  

Also in this case, failure is not yet attained 

because both in flexure and in shear some 

residual ductility is still available.   

-At the 3-rd point (Figure 5d) many piers 

almost parallel to the loading direction yield in 

shear at the first level, but still without any 

reduction of the overall loading capacity in 

shear of the Tulou structure. The yielded piers 

are those close to the Tulou entrance together 

with the corresponding ones at the Tulou 

opposite side.    

Figure 4. Nonlinear static analysis of the Tulou 

numerical model for Y loading direction of the 

seismic action. 
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 -Finally, at the 4-th point (Figure 5e), shear 

failure occurs in the already yielded piers of the 

first level close to the Tulou entrance, as well 

as in the corresponding piers at the Tulou 

opposite side. Also other piers parallel to the 

loading direction but located at higher level fail 

in shear. Failure of all these piers cause a 

sudden drop, higher than 20%, of the shear 

overall load-bearing capacity of the Tulou 

structure, meaning that the capacity 

displacement is attained. 

Finally, sensitivity analysis to the elastic 

modulus has been carried out (Figure 6). In fact 

there are some uncertainties on the actual value 

of the earth elastic modulus. It was then 

considered as a parameter varying between 150 

and 1000 MPa, thus allowing to obtain a 

parametric representation of the capacity 

curves, that is shown in Figure 6 for control 

node 25 and +X direction of the loading action. 

Figure 6 shows that the capacity curves are 

only slightly affected by the elastic modulus 

value when it ranges between 650 and 1000 

MPa. Only very low values of the elastic 

modulus (close to 150 MPa) affect the shape of 

the capacity curve, with an elasto-rigid 

response of the Tulou structure.  

Therefore, an elastic modulus of 1000MPa has 

been assumed in the pushover analyses herein 

reported. 

4 Conclusions 
Few studies are available in the literature on 

the structural behaviour of Fujian Tulous, 

Figure 6. Sensitivity analyses to the elastic 

modulus. 

Figure 5. Capacity curve (a) and sequence damage 

at different displacement levels: 0.77cm 

(b);1.81cm (c); 2.46cm (d); 3.47cm (e). 
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massive earth house-fortresses of the Fujian 

Province (China).  

The study presented in this paper represents the 

first investigation on the seismic response of 

Tulous using nonlinear static analysis and is 

one of the first studies on their structural 

behaviour. 

The Tulou seismic response has been 

investigated by macroelements through the 

EFM, that has proved to be very efficient in 

modelling the structural behaviour of complex 

masonry constructions.  

The model of a Tulou prototype has been 

implemented in TREMURI code using the data 

available in the literature. Even if the EFM is 

typically applied to masonry structures made 

of plane walls, in this study its use has been 

extended to curved walls. For this aim, the 

Tulou circular wall has been approximated 

with plane walls extruded from a 24-side 

polygon.   

Linear elements have been used to model the 

wooden structure, with flexible wooden floors 

and roof pitches modelled with diaphragms of 

appropriate stiffness. 

From the analysis by macro-elements carried 

out on the prototype of the Fujian Tulou, it has 

been proved that the equivalent frame 

approach can well simulate the in-plane 

response of the Tulou and lead to reliable 

results.    

Pushover analysis has allowed to show that the 

Tulous have good earthquake resistance 

compared to the maximum Fujian seismic 

action. This favorable response is mostly due 

to the circular form of the earth wall, that 

avoids out-of-plane local mechanisms and 

channels the horizontal forces in in-plane 

internal forces.  
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