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Abstract

The Portuguese power system is characterized by having around 70% of installed capacity
coming from renewable sources where hydro power plants represent 34% distributed by several
hydro cascades. Currently, these hydro power stations can generate between 9% of the demand in
a dry year and 37% in a wet year. On the other hand, the electricity sector restructuring originated
the unbundling of the traditional vertically integrated companies and the creation of a disaggre-
gated structure, that operates in the scope of the Iberian Electricity Market. This means that
generation companies having hydro power plants in their portfolio have to identify the most ad-
equate operation strategies in order to maximize their profits. Additionally, given the uncertainty
associated to the hydro conditions, the optimization of the operation of hydro power plants is a
very complex problem. Because of all these aspects, the operation planning of generation assets
is now carried out in a very different way when compared with the past.

In order to overcome these issues and to help generation companies in selecting the most ad-
equate strategies this thesis proposes a new simulation model with special focus on hydro power
plants, in a market environment, using an Agent-Based Model. It presents a market oriented frame-
work based on the concept of hydro agents, that bid their energy in a day ahead electricity market.
In a competitive environment, they have to build selling bids (and buying bids when they have
pumping) and send them to the day-ahead Market Operator. In the proposed Agent-Based Model,
generation companies with hydro stations prepare their bids depending on the type of each hy-
dro unit (run-of-river, storage, pumping storage or pure pumping), on the level of their reservoirs,
on the period of the year, which is related with their water inflows, and on the market electricity
price dynamics. Their goal is to maximize the market revenues. For a better representation of
the bidding strategies, the model uses a Machine Learning procedure, the Q-Learning, to provide
adaptation capabilities to the agents so that they can select the most adequate actions in order to
maximize their revenues. The simulations used real data from the Iberian power system embracing
a real simulation year (2018) and a comparison with a commercial model. In this scope, more than
80 hydro power plants were simulated representing 27 GW of installed capacity in Portugal and
Spain.

The obtained results confirm that modelling the agents with learning capabilities leads to more
realistic results when compared with the real ones and also that these agents adopt strategies to
maximize their profit using the proposed model. For that reason we consider that the developed
Agent-Based Model can be used as a valuable simulation tool namely for complex systems when
compared with other traditional optimization models.

Keywords: Hydro Power Plants, Electricity Markets, Agent-Based Models, Q-Learning.
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Resumo

O Sistema Elétrico Português caracteriza-se por possuir cerca de 70% da sua capacidade in-
stalada proveniente de fontes renováveis em que as centrais hidroelétricas representam cerca de
34% dessa capacidade. Atualmente, estas centrais podem gerar entre 9% da procura num ano seco
e 37% num ano húmido dependendo do regime hidrológico. Por outro lado, a reestruturação do
sector elétrico originou a desagregação das empresas verticalmente integradas e a criação de uma
estrutura desagregada, que opera no Mercado Ibérico de Eletricidade. Isto significa que as empre-
sas de produção com centrais hídricas no seu portfólio têm de planear e identificar as estratégias de
operação mais adequadas para maximizar as suas receitas. Além disso, dada a incerteza associada
à variação dos regimes hidrológicos, a otimização da operação das centrais hídricas é um prob-
lema muito complexo. Desta maneira, o planeamento da operação de ativos de geração é agora
realizado de uma forma muito diferente quando comparado com o passado.

De modo a ajudar a ultrapassar estas questões a presente tese propõe um novo modelo de
simulação para a operação das centrais hidroelétricas, em ambiente de mercado, baseado em
agentes (Agent-Based Model), com especial foco nos ativos hídricos. Estes agentes, em ambi-
ente competitivo, têm de construir as ofertas de venda para o mercado spot (e de compra quando
têm bombagem) e enviá-las para o Operador de Mercado. No modelo proposto, as empresas de
produção com centrais hídricas preparam as suas ofertas em função do tipo de central hídrica (fio-
de-água, armazenamento, armazenamento com bombagem e bombagem pura), do nível das suas
albufeiras, do período do ano (que está relacionado com as afluências) e da dinâmica dos preços
da eletricidade no mercado. O seu objetivo é maximizar as receitas do mercado. Para uma melhor
representação das estratégias referidas, o modelo utiliza um procedimento de aprendizagem, Q-
Learning, para que os agentes possam selecionar as ações mais adequadas de modo a maximizar
as suas receitas com capacidade de adaptação. As simulações utilizaram dados reais do Sistema
Ibérico que incluem um ano de simulação real (2018) e uma comparação com um modelo comer-
cial. Neste âmbito, foram simuladas mais de 80 centrais hidroelétricas que representam cerca de
27 GW da capacidade instalada em Portugal e Espanha.

Os resultados obtidos confirmam que a utilização deste modelo de agentes com capacidades
de aprendizagem conduz a resultados realistas e também que estes agentes conseguem adotar
estratégias para maximizar o seu lucro utilizando o modelo proposto. Por isso, consideramos que
o modelo desenvolvido baseado em agentes pode ser usado como uma ferramenta de simulação
valiosa, nomeadamente para sistemas complexos, quando comparada com os outros modelos de
otimização mais tradicionais.

Keywords: Centrais Hídricas, Mercados de Eletricidade, Agent-Based Models, Q-Learning.
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Q(sm,an) Q-Learning matrix for state-action (sm,an) pair
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A Set of all actions

S Set of all states
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ℜ Set of state runs to calculate the utility function





Chapter 1

Introduction

1.1 The Evolution of the Electric Sector and Optimization in Power
Systems

The optimization of power systems is an area that was, and still continues to be, a constant

concern for electrical companies associated to the energy sector, as well as for researchers dedi-

cated to this topic. Their particularities and complexity, as well as the importance of electricity

in our day-to-day, turns power systems widely studied and disseminated in the specialized liter-

ature. In the last decades, new paradigms have emerged regarding the planning and operation of

power systems justifying the development of new models and solution approaches. Additionally

in the computation area, recent years brought the discussion around Artificial Intelligence (AI)

to a new upper level to complement traditional optimization models. The world digital transfor-

mation with new hardware computer capabilities and the new developments on Machine Learning

(ML) are being used to help researchers, engineers, medical staff and others doing their work more

efficiently.

Over the last decades power systems around the world were restructured and, in many coun-

tries, electricity is now traded under competitive rules [1]. At the same time, there has been a

change on the priorities regarding policies on environmental sustainability and competitiveness.

The current public debate about renewable energies, new technologies, energy efficiency, green-

house gas emissions and climate change also puts the energy at the top of the political agenda at

the global level, and especially in Europe. Self-generation, self-consumption and storage will be

also important elements in the transition process.

One of the milestones in this area was defined in January 2007 when the European Commis-

sion (EU) proposed an integrated package on energy and climate changes to reduce emissions of

greenhouse gases. The energy package intended to establish a new energy policy for European

countries adopting measures against climate change and increasing energy security and competi-

1
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tiveness. This package was based on three main pillars identified by the European Commission as

follows:

• an appropriate Internal Energy Market (IEM), seeking to provide real alternatives to energy

users. In this scope, since July 1, 2007, Portuguese citizens have the opportunity to choose

their electricity and gas supplier. The EU wanted to ensure fair competition in all Member

States;

• accelerate the transition to a low carbon energy society and to ensure the security of supply.

This aimed at maintaining the European Union’s position as a world leader in renewable

energy, proposing that at least 20% of the EU’s energy requirements were met through

renewable energy sources in 2020;

• energy efficiency, setting the goal of saving 20% of primary energy consumption in 2020,

reiterating a previous target of the Commission. It also proposed the increase of the efficient

use of energy in vehicles for transportation; stricter rules and better labelling of energy

appliances as well as a better energy performance of existing buildings in the EU and greater

efficiency of the generation, transmission and distribution of electricity and heat.

The Internal Energy Market (IEM) developed at the Community level has the main goal of

ensuring that all consumers have the opportunity to choose their supplier, at a fair and competitive

price. However, as highlighted by the EU in communications on various prospects for the IEM,

there are obstacles which continue to put off both the economy and European consumers from

benefiting from the advantages of fully opening up the gas and electricity markets. Ensuring the

effective implementation of the IEM remains crucial. The Internal Energy Market is basically

dependent on the trade of energy over border countries. However, such trade is frequently difficult

because of the disparity between national technical standards and differences in network capac-

ities. Effective regulation at a Community level is therefore required. The responsibilities and

independence of energy regulators need to be harmonized, their collaboration must be reinforced

and they must be obliged to take into account the Community objective of implementing the IEM

and defining regulatory and technical aspects and common security standards required for border

trading at a Community level.

Regarding the second pillar, minimizing the EU’s exposure concerning imports, shortfalls in

supply, possible energy crises and uncertainty with respect to future supply is a clear priority. This

uncertainty is, among all of them, the most problematic for the Member States that are usually

dependent on a few suppliers. The new energy policy emphasizes the importance of taking actions

to ensure solidarity between member states and the diversification of supply sources and trans-

portation channels. This objective is at the heart of the EU’s strategy to mitigate climate change.

In general, reducing greenhouse gas emissions involves using less energy, using cleaner energy

and using energy in a more efficient way. The use of renewable energies and innovative equip-

ments (as for example wind power, thermal solar and photovoltaic energy, biomass and biofuels,

geothermal energy and heat-pump systems) contributes to prevent climate change. In addition, it
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plays a significant role in securing the energy supply and creating employment in Europe, while

increasing the generation and consumption of local energy.

However, renewable energies remain being discussed regarding the European energy mix be-

cause they bring some operation difficulties to the power systems when compared to traditional

energy sources. On the other hand the cost of renewable sources are now falling so fast that

they should be consistently cheaper sources of electricity generation than traditional fossil fuels,

according to a recent report [2] from the International Renewable Energy Agency (IRENA). To

increase the use of renewable energy sources, the EU set itself the objective of increasing the pro-

portion of renewable energies in its energy mix to 20% by 2020. This objective required progress

to be made in the three main areas where renewable energies are used: electricity (increasing the

production of electricity from renewable sources and allowing the sustainable production of elec-

tricity from fossil fuels, mainly through the implementation of CO2 capture and storage systems),

biofuels, (which should represent 10% of vehicle fuels by 2020), and finally heating and cooling

systems.

More recently, in 2014, the EU agreed on a more ambitious commitment to reduce greenhouse

gas emissions by the 2030, and updated its climate and energy policy framework for the European

Union [3]. The Commission proposed adopting a greenhouse gas emission reduction target for

internal EU emissions of 40% in 2030 (relative to the emissions level in 1990), at least 32% share

for renewable energy and at least 32.5% improvement in energy efficiency. This will require a

continued effort and it is underlined in the mentioned report that the proposed target for 2030 is

achievable. This shows the continuous effort that the EU is doing regarding the climate change

and descabonization objectives.

The use of renewable energies, as well as the increase of energy efficiency, are the main tasks

to be addressed by any energy policy. Therefore, new challenges are continuing to be expected in

the coming years. The large penetration of renewable energies in power systems, and the transi-

tion to a more decentralized generation system, require more complex tools and new methods to

plan the operation of power systems. Additionally, in recent years, at the distribution level, the

consumption is becoming more elastic in its load pattern and consumers also produce electricity

now behaving like a producer-consumer, due to the advances on distributed and micro generation,

electrical vehicles and also regarding smart grids.

Other major change in power systems is associated to the regulation model. The activities

of generation, transmission and distribution of electricity began in the late of XIX century. They

started with the supply of small load clusters by small networks with limited geographic extension.

As the electricity demand and the number of consumers increased, together with the evolution of

technology, the electricity networks also started to expand. After World War II, several countries

experienced a nationalization process in the electricity sector. The intention was, among others,

to complete the electrification of their economies. This process led to the vertical integration of
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the electricity sector although there were differences between public models like what happened

in Portugal (after 1975) and private ones, such as in Spain [4].

In Portugal, after the nationalization in 1975, the National Electricity System (SEN – Sistema

Elétrico Nacional) has been suffering several changes over the past years. One of the most sig-

nificant changes occurred in 1995, when it was established the coexistence of a public service

power system and an independent system operated in a market environment. In 2006, national

Portuguese legislation transposed the European Electricity Directive n.o 2003/54/CE [5] and de-

fined the legal framework for the Portuguese electricity sector with the Law 29/2006, February

15 [6]. This law established the rules for the activities to be developed in the electricity sector as

well as the organization of the system. Among other issues, the SEN was organized according to

market mechanisms and the activities of generation and supply of electricity are now fully open to

competition, subject to necessary approvals and licenses. However, the transmission and distribu-

tion network activities continue to be developed through regulated concessions. Nowadays, it is

possible to separate the SEN in five key activities, developed independently, which are:

• Generation;

• Transmission and System Operation;

• Distribution;

• Retailing;

• Organized Markets.

Generation and Retailing activities are carried out under free competition, by the assignment of

a license, and the Transmission and Distribution activities correspond to public service concessions

assigned by the state to specific companies. The Entidade Reguladora dos Serviços Energéticos

(ERSE) is the Portuguese regulatory agency for the energy sector, including both the electricity,

gas and fuels. Figure 1.1 illustrates the organization of the Portuguese electricity sector [4].

The Generation activity is organized in two systems:

• generation in a market regime, that is associated to the generation of electricity in large

conventional thermal power plants and in large hydro stations. These stations should bid in

the market or get bilateral contracts;

• generation under feed-in regime, that is related to cogeneration systems and renewable

sources (such as wind, solar and small hydro units), and has special remuneration schemes

paid typically under a feed-in tariff scheme.

According to this model, the logic of centralized planning is replaced by competitive market

logic and private initiative. The development of the generation system should be monitored by the

state or regulatory agents namely in order to ensure the security of supply on the long term. The

transmission of electricity is carried out through the National Transmission Grid, through a con-
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Figure 1.1: SEN organization according to Law 29/2006.

cession awarded by the Portuguese State, under a public service format. This activity is currently

under the responsibility of the Redes Energéticas Nacionais (REN) and it is a regulated activity.

The distribution of electricity is carried out by the National Distribution Grid, which operates at

the medium and high voltage levels. It is operated through a public concession awarded by the

State and it is currently under responsibility of the E-REDES. The low-voltage networks are owned

by the municipalities and the corresponding concessions are currently being renewed. The retail-

ing activity is open to competition. Retailing companies can purchase and sell electricity freely

on the market and have the right to access to the transmission and distribution grids, by paying

the corresponding access tariffs. These tariffs are defined by the Regulatory Agency (ERSE). The

consumers can choose freely their retailing company. Organized electricity markets operate in a

free regime and are subject to authorizations granted by the State. Generation companies under

the ordinary regime and retailing companies, among others, can become market agents. The SEN

admits the coexistence of a liberalized market and a regulated market in retailing that, however,

tends to be eliminated in the future. Economic agents can establish contracts with the regulated re-

tailer, or to negotiate directly with the retailers operating on the liberalized market. These aspects

will be described in more detail in the next chapters of this document.

In Spain, new legislation was passed in 1995 aiming at promoting the restructuring of the

Spanish electricity sector. This sector had a mixed structure with State and private interests, and

the transmission and central dispatch activities are conducted by the same entity. The approved

legislation had its focus on the separation between the generation and distribution and also on

the progressive promotion of the separation between distribution and retailing. In 1995, it was

also created the Comissíon Nacional del Sistema Eléctrico (CNE), the regulator of the sector

(today Comisión Nacional de los Mercados y la Competencia (CNMC)). Later on, in 1997 it

was passed the Ley 54/1997 del Sector Eléctrico [7], that introduced major changes in the sector.
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This Law established the separation between regulated and liberalized activities, as well as the

beginning of the electricity market [1] that in fact started in the 1st of January 1998. This market

integrates a set of trading mechanisms in terms of the intraday and day-ahead markets. As in

Portugal, the generation sector was separated in a market regime and in a feed-in regime. The only

difference was that some feed-in producers could also offer their energy in the Pool market, with

a premium feed-in tariff. In July 2007, the Spanish Market gave place to the Iberian Electricity

Market (MIBEL), so that both Portuguese and Spanish agents bid on the same market platform.

As mentioned in the last paragraphs, power systems have experienced continuous growth in all

the sectors, generation, transmission and distribution. The allocation of customer demand among

the available power generating units in an economic, secure and reliable way has been a subject of

interest since 1920 or even earlier. However, in real operation, generating units have input-output

characteristics that lead to equality and inequality constraints, (typically included in optimization

problems) which originate problems that can be very difficult to solve by mathematical methods,

and for this reason, this field has been an area of continuous study. Over the past decade, many ap-

proaches from non-traditional methods have been developed to help solving these problems, such

as hierarchical numerical methods, tabu-search, neural network approaches, genetic algorithms,

evolutionary programming, swarm optimisation, differential evolution and hybrid search methods

[8]. Some of these methods come from Artificial Intelligence area and are usually included in the

class of meta-heuristics.

Artificial Intelligence (AI) is becoming more and more important for the society and for this

reason there is a lot of research going on in this field. AI is a field of research that tries to emulate

some kind of "intelligence" and decision making processes through a computer [9, 10]. Machine

Learning methods as Neural Networks or Genetic Algorithms are some of the most popular tech-

niques used in order to implement AI in real world systems to solve real problems, specially in

situations where traditional models have difficulties in dealing with large and complex systems.

In today’s world, huge amounts of data are created every day from many different sources and,

without smart and big data analytic techniques, it would be very difficult to use and take advantage

of this amount of available information. These intelligent models can be used in real applications

in all researches fields, as for instance, in Biology, Engineering, Economics or Medicine.

Regarding the economics research field, the 2008 crisis has led to a review of economic mod-

elling. Agent-Based Models (ABM) and AI have been identified as a possible way forward [10].

The development of computational social simulation modelling started in the early 1960s with

microsimulation [11]. Microsimulation takes a set of data from a population (of people, house-

holds or firms) and applies rules to reflect changes, enabling the modeller to look at the overall

impact [11]. Such approach is particularly useful for modelling policy changes, for example to

identify who is performing better or worse due to tax changes. However, although allowing for

heterogeneity, microsimulation does not allow interaction. Only with the development of Agent-

Based Modelling did modelling interaction between agents become possible [10]. Agent-Based
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Modelling research on non-linear dynamics was facilitated by the huge evolution on computers. It

is one of the research field more used in real applications.

Accordingly, this document presents the work developed to implement a new simulation model

based on Agent-Based Modelling using Artificial Intelligence to help generation companies se-

lecting their operation planning decisions with more information, and with special focus on hydro

power plants simulation in a competitive environment.

1.2 Motivation and Research Questions

As mentioned in the last section, the optimization of power generation systems is an area that

was and still remains a continuous concern for many researchers. However, the emergence of

electricity markets in an industry as traditional as it was the electricity sector, and the opportuni-

ties created by these markets, have radically modified the operation planning activities of Power

Systems. As a direct result, there is a need to develop new approaches to answer in an efficient

way to the requirements of generation companies, so that they respond adequately to these new

challenges, namely competition. For this reason, the importance of optimization and simulation

tools is increasing for power companies, by the economic value that they can add, and because this

can represent enormous savings for companies. Additionally, the Portuguese and Spanish power

system have very particular characteristics. They have a large share of renewable energy sources,

they can both have a huge variation in hydro generation conditions (along the year and from one

year to the next one) and they have some limitations on the interconnection capacity with France,

namely the construction of power lines in the border region. These facts turn the Iberian power

system into a difficult system to model.

One of the main motivations to the development of this work is the fact the author works in

an utility, EDP Produção, and uses intensively optimization and simulations models. Despite the

company owns several and different types of models, having several years of experience on this

area, including an Agent-Based Model, the increasing use of renewable energy like hydro, wind

and solar, in a marginal price market type, brings some difficulties in its modelling, specially in

countries like Portugal and Spain that have a mixed power system. The other main motivation was

the further development of hydro models in a market environment that the author started with his

Master Degree Thesis [12] in the same company. In that work, an hourly optimization model for

hydro power plant cascades was implemented and it is being used at EDP Produção. This model

will be also used in this PhD work and it will be detailed in Chapter 5.

For all these reasons, the present research aims at developing a new formulation and solution

approach for the operation and planning of generation systems, having an important share of hydro

plants, using an Agent-Based Model and specially focused on the power system of the Iberian

countries.
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Regarding electricity markets simulation, it is necessary to understand their behaviour and all

its participants, and also the impacts coming from the increasing presence of renewable sources.

This means that the main research questions to be addressed in this work are as follows:

i. Are the Agent-Based Models capable of simulating Electricity Markets with a large share of

hydro units?

ii. Is the current Electricity Market framework suitable for a large share of renewable sources?

iii. How should operation strategies for hydro power plants be built in order to respond to this

new reality?

1.3 Thesis Objectives

The main goal of this work is to develop a computational tool, using an Agent-Based Model,

to help generation companies to build their short-medium term operation decisions in a more in-

formed and robust way, taking into account competition. In order to achieve this general objective,

it is necessary to study the behaviour of the electricity markets, the evolution of the generation mix,

the energy policies in force and to use adequate simulation tools taking into account competition.

The developed model will be applied to the Portuguese and Spanish electricity market, the MIBEL,

and will focus mainly on hydro power plants, in a competitive environment. The time horizon to

be addressed will be the short-medium term, which means the day-ahead simulation taking into

account the allocation of resources for the next months.

Based on the above general goal and in the mentioned research questions, this Doctoral Thesis

addresses the following objectives:

Research objective 1: To develop a new hydro modelization to use in an Agent-Based Model,

in order to build a new tool that will allow generation companies with hydro assets get different

simulation results in this field;

Research objective 2: To analyse the impact of the continuous increase of renewable energies

in the market, with focus on hydro sources, by comparison with recent historical data and future

scenarios;

Research objective 3: Test the developed model in a real case, corresponding to the MI-

BEL electricity market and compare the results with the ones provided by a commercial market

simulator, that will be EMCAS model.



1.4 Structure of the Thesis 9

1.4 Structure of the Thesis

The present document resulted from the research developed in recent years and it is organized

in eight chapters as follows.

Chapter 1 is a general introduction to the research topics. The evolution of the electricity

sector and optimization in power systems are discussed in Section 1.1. The thesis motivations and

research questions are detailed in Section 1.2. Next, the thesis objectives are presented in Section

1.3 and the structure of this document is detailed in the present section. Finally, Section 1.5

provides the list of publications of the author that are directly or indirectly related to this research

as well as how these publications are related with the chapters of this document.

Chapter 2 details the electricity markets evolution. Section 2.1 presents the general consid-

erations of the chapter. Section 2.2 describes the restructuring of the power sector and Section

2.3 addresses the evolution on the electricity markets in Europe. Finally Section 2.4 details the

MIBEL organization and Section 2.5 provides an overview of the renewable energies paradigm in

power systems.

Chapter 3 details the state of the art and literature review regarding Market Simulation Models.

Section 3.1 presents a general classification of market models. Sections 3.2, 3.3 and 3.4 detail

the main types of models that were reviewed, namely Single Generation Optimization Models,

Equilibrium Models and Agent-Based Models. Finally, Section 3.5 presents a brief explanation of

Machine Learning techniques.

Chapter 4 details the description and the main formulation of the problem addressed in this

thesis. Section 4.1 presents a brief description of the problem. In Section 4.2, the general formu-

lation of an Agent-Based Model is detailed, and Section 4.3 draws the full details of the proposed

Agent-Based Model.

Chapter 5 describes the other models that are integrated in the developed Agent-Based Model.

Section 5.1 presents a brief description of these models, while Section 5.2 details the Q-Learning

procedure proposed in this work. In Section 5.3, the Hydro Scheduling Problem is detailed and

Section 5.4 presents the Neural Network used to obtain the market price forecast. Finally, Section

5.5 provides a global view of the developed model considering all sub-models detailed in Chapters

4 and 5.

Chapter 6 presents the results for the model application to a set of simplified illustrative Tests

Cases. Section 6.1 presents a general consideration about the Chapter while Section 6.2 details a

set of simulations to illustrate the Q-Learning procedure with different agents. Section 6.3 presents

some results for the Hydro Scheduling Problem, short and medium-term models using simple Test

Cases. Finally, Section 6.4 provides the results of the implemented Neural Network.

Chapter 7 presents the main results from our work. Section 7.1 introduces some general con-

siderations and Section 7.2 details the main data used for the Iberian Market simulation. Section
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7.3 presents the results of the Agent-Based Model applied to the Iberian Electricity Market and

Section 7.4 compares the proposed model with the commercial software EMCAS.

Finally, Chapter 8 summarizes the contributions of this research and presents the most relevant

conclusions. This document ends with a discussion and an outlook about future work and other

related research opportunities.

1.5 List of Publications

The next paragraphs present the published papers that are related to this work. The first one

was published in the scope of the Master Thesis of the author, and it addresses to the Hydro

Scheduling Problem for a set of hydro stations in a cascade, considering fixed market prices as an

input. The second paper considers the same model but it uses Genetic Algorithms in order to get

a solution with an higher number of variables. These works are associated to the model presented

in Section 5.3. The third paper is related to the Section 5.3.3, and it presents a modification

of the previous model, now considering the impact of the bids on the electricity market prices,

through an iterative procedure that is considering hydro units as price-makers. The fourth and fifth

papers present the developments of the Agent-Based Model detailed in Chapter 4. The sixth paper

presents the Q-Learning procedure detailed in Section 5.2 and finally, the seventh and ninth paper

presents some results for the Iberian Test Case, detailed in Chapter 7. The eighth paper presents

improvements introduced in the Hydro Scheduling Problem with impact in prices, detailed in

Section 5.3.3.
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Chapter 2

Electricity Markets Evolution

2.1 General Considerations

The optimization in power systems has gained new interest with the restructuring operated in

several countries. The complexity of the electricity markets, as well as the need for companies

to operate at maximum efficiency in order to be competitive, contributed to the emergence of

new problems, as well as the need for new computer applications that meet these requirements.

Studies regarding the decision making and optimization of power systems have been developed

for several decades due to their complexity and diversity, and to the resulting economic benefits.

Before the oil crisis of 1973, the electricity generation industry was very reliable due to its great

redundancy and low generation cost resulting from low oil prices. With the oil shocks, it became

more difficult to maintain this level of redundancy due to the strong growth of the construction and

operation costs of power plants. In this way, the minimization of the operation costs of the power

systems, while maintaining a high standard of quality of service, became a top priority.

With the development of the electricity markets and the introduction of competition in the

90s, power companies have to take decisions regarding their investments in a more cautious way

namely aiming at maximizing their revenues knowing that these revenues will be dependent on

the decisions taken by other agents and on the market price. Therefore, the use of computational

tools to help selecting the most adequate decisions increased in recent years, because the level of

complexity of the problems is far beyond the human capacity to address them using empiric tools.

In the last years, there were large investments in renewable energy sources worldwide. The

use of renewable energies not only allows a slower rising or even a decline of CO2 emissions to

the atmosphere, but it also allows a larger independence on fossil fuels such as oil and coal. Nev-

ertheless, due to the variability of several of these primary resources, the use of renewable energies

also create several problems for the operation of power systems including the management of the

remaining power stations and the operation of transmission and distribution grids.

13
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Nowadays, Artificial Intelligence is becoming the next big development in our society. The

research and innovation led by the top technology companies are influencing industries including

healthcare, automotive, finance, manufacturing, or energy. The technology has always been an

important factor for these domains, but AI is making technology the core of the business. In the

energy sector storage, smart grids and renewable electricity generation are areas under accelera-

tion. In economics research, the complexity of competitive markets is increasing. The uncertainty

and unpredictability affecting these markets and the dynamic interaction between different agents

create major difficulties in the development of models that can be adapted to real-world contexts.

In all these areas, AI can play an important role and, as mentioned in Chapter 1, Agent-Based

Modelling is one of the tools widely used in the literature.

2.2 Restructuring of the Power Sector

2.2.1 The Past

Since the beginning of its activity, generation systems, as well as transmission and distribu-

tion, have suffered several transformations. In the beginning of the XX century, the demand values

were very reduced and the generation technologies were poorly developed so that electricity sys-

tems were initially characterized by small isolated networks with low installed capacities. As the

consumption started to increase, the need for new generation centers rose (most frequently located

far from the consumption centers), as well as the development of integrated transmission grids.

This process was followed by a gradual interconnection of the individual national electricity sys-

tems, in order to increase the security and stability of the operation of electric power systems

[4].

Regarding the ownership of the assets in the electricity sector, there were clear differences

between different countries. In some cases, the power sector was owned by private entities while

in others there were public service structures. In Portugal and until 1975, the electricity sector

was organized in terms of concessions granted to private entities. In 1975 the nationalization and

vertical integration occurred in this sector with the creation of the EDP (Energias de Portugal). In

other countries such as Spain, the electricity sector remained organized into several private compa-

nies operating in the generation, transmission and distribution in different concession regions [4].

A particular case occurred in the Soviet Union, where the sector was administered by a Ministry

itself and characterized by the non-existence of tariffs and meters, because the electricity was dis-

tributed freely. However and despite the differences among countries, we can say that the existing

structures were characterized by vertically integrated monopolies that operated all the segments of

the value chain from generation through the final consumer. In some countries there were several

companies but in fact each of them operated in a specific geographical area which indicated that

there was no competition, because each company had its set of captive customers. Figure 2.1 illus-
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trates the monopolistic and vertically integrated structure that characterized the electricity sector

till the late 1980’s in most of the countries [4].

Consumers

Energy Services

Distribution

Transmission

Generation Self GenerationIndependent Producers

Figure 2.1: Vertical structure of electricity sector (source [4]).

This structure was considered the most adequate to organize the electricity sector at the time

and it remained unchanged for many years. However, this form of corporate structure had several

implications:

• consumers had no possibility of choosing their suppliers;

• electricity prices were the result of regulatory processes often unclear;

• there was little emphasis on cost control;

• this typically low risk environment often originated over investments in some areas.

All these factors, combined with the economic crisis of 1973, became the main drivers in-

ducing the restructuring of electricity sector in recent years, and consequently, the emergence of

electricity markets in most European countries, in several countries in South America, in several

states of United States and in Australia.

A first set of changes was introduced in several countries to create conditions to develop self

generation namely at the industry level and the emergence of independent generation, as repre-

sented in Figure 2.1.
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2.2.2 Electricity Markets

2.2.2.1 Reasons for Restructuring

Until the 1973 oil crisis, the economic environment was very stable and so there were few

risk factors affecting various economic activities, particularly the electricity sector. The growth

of electricity consumption was also stable, and the low investment costs justified the frequent

existence of large economies of scale.

During the 70’s, the economic environment started to change very quickly, as well as the

general framework of the electricity sector. The 1973 oil crisis, the rise of interest and inflation

rates, less predictable trends regarding the electricity demand and the growing environmental con-

cerns were the main factors responsible for these changes in economic conditions. Related with

these aspects, the monopolistic and vertically integrated model of the electricity sector began to

be questioned. This discussion can be explained by the following factors [4]:

• large consumers argued that they were often paying electricity prices excessively high re-

garding the costs of generation;

• several other economic activities were liberalized such as telephones, gas and aviation;

• there was a general trend to liberalize world trade;

• technological progresses created the conditions and made possible the development of the

restructuring process. In this scope, advances in telecommunications and computers con-

tributed to allow treating larger amounts of data in a more close to real time operation, the

interconnection of multiple systems through more efficient transmission networks became

possible and the emergence of natural gas power plants with lower investment and operation

costs induced new investments in the sector and attracted new players;

• the emergence of new tools and models that allowed larger efficiency in restructuring pro-

cesses, in particular to support the operation of electricity markets.

Given all these factors, a new way to organize the electricity sector began to be developed,

and the first liberalization experiences in the electricity sector started to be implemented in order

to minimize the dissatisfaction of those involved, and to promote competition and cost reduction.

The first experience of liberalization was conducted in Chile in 1973, but only a few years later in

the 90’s this process began to accelerate with new experiences that took place in England & Wales

in 1990, in Norway and Sweden with the development of the Nord Pool in 1996 that was later

on extended to Denmark and Finland, and more recently with the development of the MIBEL,

involving Portugal and Spain in 2007.
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2.2.2.2 New Structures and the Unbundling Model

To allow a suitable implementation of the electricity sector liberalization, significant modifi-

cations were needed in the traditional systems. In this context, electricity shall be regarded as a

product whose seller or retailer may be chosen, within certain rules. It should be noted that the

electricity product has distinctive features given that its transmission is governed by the Kirchhoff

laws regardless of the market rules. These technical aspects shall however be considered in the

market design because they influence the operation of power systems.

In this new framework, companies are seen as service providers and the grid corresponds to

the physical location where the electricity market is established. On the other hand, in order to

ensure that the whole system operates properly, independent entities, both at a technical and at

a regulatory level are required. The electricity sector restructuring originated the unbundling of

the traditional vertically integrated companies and the creation of a disaggregated structure where

multiple agents are involved. Figure 2.2 introduces the new model of the electricity sector (adapted

from [4]).

G FI ISO

BC OM

AS TN

DN R

Figure 2.2: The new desegregated model of electricity sector (source [4]).

In this figure it is possible to identify some competitive activities: Generation (G), Financial

Intermediation (FI) and Retailing (R). On the other hand, the Distribution Network (DN) operates

as a regulated monopoly because it is not economically feasible to duplicate distribution networks

in the same geographical area. The central part of this scheme corresponds to a set of functions

that were usually assigned to the transmission system. These activities include the establishment of

Bilateral Contracts (BC), Organized Markets (OM), the System Operator (ISO), the Transmission

Network (TN) and the provision of Ancillary Services (AS). This organization corresponds to the

most disaggregated design with various activities associated with the generation, transmission,

distribution and electricity trading. However, in recent years, several countries are moving to a

larger integration of the procurement and contracting of some reserve services, namely to allow a

more efficient and less costly provision of some of these reserves.

The Bilateral Contracts are characterized by the establishment of bilateral financial or physical

relations between generation entities, on one side, and eligible customers or retailing entities on

the other. These contracts involve several aspects as the price and energy to be produced/supplied

and consumed over a period of time, as well as the payment and activation conditions.
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Organized Markets (OM) typically correspond to a set of activities organized along time and

usually starting the day before operation and continuing along the operation day. These activities

are typically associated with the day-ahead markets and the intraday markets. In case they coexist

with bilateral contracts, there is what we can term as a mixed model [13].

Organized Markets receive bids to buy and sell electricity, typically for every hour or half

hour for the next day (Day-Ahead Markets). These bids normally include energy and price values

(minimum amount to receive in the case of selling bids and maximum value to pay in the case of

buying bids). These markets build aggregated demand and supply curves for each trading period,

that are used to obtain a purely economic dispatch for each time step of the next day [4]. At the

same time, with this simple bids, it is also possible to include in the market complex bids with

more constraints like minimum hours of operation, minimum profit, and others. There are also

forward markets that include transactions of electricity blocks with subsequent delivery after day-

ahead markets (futures), of physical liquidation or by differences. These markets are, in practice,

derivative product markets in which the underlying asset is electricity [13].

The Independent System Operator (ISO) is the entity that has the technical coordination func-

tions of the power system operation. For this purpose, the ISO should receive information on the

economic activity resulting from the bids accepted in the Organized Markets, as well as informa-

tion related to the physical Bilateral Contracts in terms of network nodes and powers involved.

The ISO should therefore evaluate the technical feasibility of the dispatch for each time step of

the next day taking into attention the network constraints. If congestion exists given the received

dispatch information, the dispatch is not feasible and it is necessary to adopt a correction mecha-

nism. If there are no limitations, the system operation is feasible from a technical point of view. In

this case, the ISO sets and contracts the amounts of Ancillary Services and procures them, given

that some of them are typically mandatory while some others are contracted in specific markets.

In some cases, the ISO and the Transmission Network (TN) functions are under the responsibil-

ity of the same entity, taking the name of Transmission System Operator (TSO). This is the case

of Redes Energéticas de Portugal (REN), in Portugal and of Red Eléctrica de España (REE) in

Spain. In some other countries there are separate entities acting as ISO, as it is the case of Oper-

ador Nacional do Sistema Elétrico in Brazil together with different entities that own transmission

assets.

The Transmission Network (TN) represents an entity that owns or has the concession of the

assets of the transmission network and that, for economic reasons, operates in terms of a natural

monopoly in the geographical area in which it is implemented. These companies, like the distri-

bution network companies, are remunerated through network usage charges and their activities are

regulated by the Regulatory Agencies.

For the correct operation of the electricity system it is necessary to contract several Ancil-

lary Services (AS), e.g. primary, secondary and tertiary reserves, frequency control and reactive

power/voltage control. The entities that provide these services aren’t necessarily generators. For
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example, network companies which have capacitor banks or tap load changer transformers can

also be Ancillary Service providers. Ancillary Services can be mandatory or can be contracted

in specific markets in which the System Operator determines the amount to be contracted and

accepts bids for their provision. This is typically a highly technical area, regarding which, there

are in Europe some common rules issued by the ENTSOE (European Network of Transmission

System Operators Electricity) at the European level [14]. The primary reserve, called Frequency

Containment Reserve (FCR), corresponds to the operation of necessary reserves for permanent

containment of frequency deviations from the standard value in order to maintain in continuous

the power balance in the whole synchronously interconnected system. The secondary reserve,

denominated Frequency Restoration Reserve (FRR), includes the reserves that can run with an ac-

tivation time typically between 30 seconds up to 15 minutes and replace the FCR if the frequency

deviation lasts longer than 30 seconds. FRR can be divided in reserves with automatic activation

(aFRR) and reserves with semi-automatic and manual activation (mFRR). The aFRR is activated

automatically and continuously controlled by the Automatic Generation Control (AGC), while the

mFRR is activated manually in both a discrete and “close to” continuous manner by TSOs. In

Portugal and Spain the aFRR is contracted by the corresponding TSO’s in the afternoon before

the operation day, in terms of a power up and down band and mobilized reserve energy. Finally,

the tertiary reserve, called Replacement Reserve (RR), includes operating reserves with activation

time from 15 minutes up to some hours in order to replace secondary reserve generators if that

becomes necessary [14].

2.2.2.3 Market Types

Taking into account the organization detailed above, markets can be classified according to the

type of good/service that is traded and according to their temporal bases [15]. Taking into account

the traded good:

• Electricity Markets, where electricity is traded between sellers and buyers, through a cen-

tralized mechanism, operating as a spot market, and/or through contracts established directly

between buyers and sellers (Bilateral Contracts);

• Ancillary Services Markets, where some Ancillary Services must be provided, given that

they are required for the secure operation of power systems with adequate standards of

quality, safety and reliability. Such services include primary, secondary and tertiary reserves

for the frequency control, reactive power/voltage control, congestions resolution and black

start. In some countries, some of these services are contracted by ISO’s or TSO’s in specific

markets while others are considered mandatory;

• Transmission Markets, where transmission rights are negotiated. These rights grant the

holder special conditions in using some paths of the transmission networks. The transmis-

sion rights holder may exercise these rights or can sell them to a third party.
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Taking into account the temporal aspects, they can be classified as:

• Spot market, that is a market that operates on a daily basis and which aims at negotiating

energy for each hour or half an hour of the next day (also known as Day-Ahead Market);

• Intraday Markets, this type of market is intended to address possible imbalances between

supply and demand and can be used by market agents to contract (buy or sell) electricity,

typically in smaller quantities than in the day-ahead market and closer to the operation

moment;

• Derivatives/Forward Markets, they deal with future contracts and options, which in essence

are financial instruments intended to minimize the risk associated with the volatility of the

price in short-term markets as the spot markets;

• Long-term Investment Market, associated with long-term investments, particularly address-

ing tenders to build new infrastructures namely in generation, transmission and distribution,

as for instance it is common in Brazil regarding the construction of new power plants or new

transmission system assets.

2.2.2.4 Pool Based Electricity Markets Models

One of the approaches to relate generation agents, on one hand, and the eligible customers

and retailers, on the other hand, corresponds to the centralized spot markets, usually known as

Pool markets. This kind of market integrates short-term mechanisms in which it is intended to

balance the generation and the demand through bids submitted by generation agents and demand

agents. These markets typically work for the next day and so they are normally known as Day-

Ahead Markets or Electricity Spot Markets. These markets can be symmetrical or asymmetrical,

voluntary or mandatory [4]. The most frequent type of electricity spot markets refers to symmet-

rical mechanisms, in the sense that there is the possibility to make buying/selling bids. Once the

bids are received, the Market Operator organizes aggregated curves sorting the selling bids by the

increasing order of the bid price and the buying bids by the decreasing order of the bid price. The

intersection of the two curves leads to the market price and the traded quantity. In their simpler

format, these bids include the price and available quantity. In some cases, the bids can also include

extra information as generator ramps and other conditions leading to complex bids. Usually these

markets correspond to Uniform Price Auctions which means that once this mechanism ends, the

Market Clearing Price is used to pay the generator accepted bids and it is also the price paid by

the accepted demand. The generators that bid above that price and the loads that bid below that

price will not be cleared by the market. The mathematical formulation of this model is detailed in

Chapter 4, Section 4.3.6. Figure 2.3 illustrates this market mechanism for an hour or half an hour

period of the next day (adapted from [4]).

Another possibility of organizing the day-ahead market is the asymmetric model. In this case,

only the generation agents bid in the market and the demand is normally modelled by forecasts
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Figure 2.3: Symmetrical Pool Spot Market (source [4]).

for each trading period. In practice, it is assumed that the demand is completely inelastic meaning

that it is ready to pay the price required to be supplied. This model resembles the traditional

monopolistic model and the final prices are heavily determined by the selling bids, by the level of

demand, and by eventual generator failures. Figure 2.4 shows a graphic illustration translating the

implementation of this kind of market. This figure includes the aggregated selling curve in which

selling bids are organized in ascending order of the bid price together with three demand levels

(Q1, Q2 and Q3) determining three distinct levels for the market price (MP1, MP2 and MP3) [4].
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Figure 2.4: Asymmetrical Pool Spot Market (source [4]).

Electricity markets can also be classified as mandatory or volunteer. This terminology comes

from the existence or not of legal requirements which make it compulsory the participation in the

market of generation and demand agents. For example, until the year 2000, in England and Wales

the electricity market was organized as an asymmetric and mandatory market. The existence of

this requirement turns the Pool as a financial intermediary between the global generation and total

demand. This structure is typically designated as Single Buyer.

The Pool market performs more efficiently if the number of participants is large. If each

agent owns or represents small amounts of generation or demand, then the aggregated selling and
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buying curves will display less discontinuities and each agent will control a small amount of the

demand/supply. This contributes to increase competition and to reduce the steps that can determine

price variations as it is illustrated in Figure 2.5.
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Figure 2.5: Ideal Symmetrical Pool Spot Market.

One particularly of this kind of markets is related to the integration of hydro stations. This type

of plants can bid as any other station, trying to replace the most expensive thermal technologies.

This means that hydro stations will in general have large revenues with very low operation costs,

especially if they have already been paid. This situation is even more critical considering the plants

that were built in the past under concession schemes and that will now receive the market price

determined by the last accepted bid in the market namely if it comes from thermal units. This type

of market design can thus originate Stranded Benefits [4].

2.2.2.5 Bilateral Contracts

Admitting a symmetric Pool model, it is possible to obtain an economic dispatch reflecting the

submitted selling/buying bids. In this case, the purchasers are unable to identify the generating

entities they are buying from and, in the same way, the generators do not know who are the

consumers they are supplying. This means that the Pool market, together with the interconnected

nature of the transmission system, originates an anonymous structure in which, in fact, the right of

choice is not truly implemented. On the other hand, all market players are subjected to the market

price volatility.

In the Bilateral Contracts model, generation companies, retailing companies and eligible con-

sumers are free to establish between themselves contracts to sell and buy electricity. These con-

tracts are negotiated freely and include elements regarding their duration, amount to generate/to

consume as well as the price agreed by the involved agents.

In this case, if there is an independent set of bilateral agreements established in an uncoordi-

nated way, it is possible that there may occur violations of operation or security constraints of the
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system. For this reason, it is the responsibility of the System Operator to evaluate the set of estab-

lished contracts, namely to validate them from a technical point of view. If congestion arises, the

set of bilateral contracts is not feasible and the ISO/TSO has to activate mechanisms to introduce

changes in order to regain system feasibility.

The Bilateral Contracts mentioned above correspond to physical contracts in the sense they

affect the power flows in the system. However, there are also financial contracts which are intended

to deal with the risk associated with the volatility of market prices. These are pure financial

arrangements that originate changes on the flow of money between generation and demand agents

without changing the power flows.

2.2.2.6 Mixed Models

The main tendency in terms of organizational market structures corresponds to the existence of

mixed structures. In these models, there is coexistence between a volunteer Pool market with the

possibility of establishing Bilateral Contracts, both physical and financial. This structure adopts

the basic philosophy of the Pool model allowing agents to submit their bids to the Market Operator

but it is also possible to establish bilateral agreements directly between generation agents and

retailers or consumers.

For each period of the next day, the technical validation of the dispatch will be conducted by

the ISO/TSO. In this case, the ISO/TSO should have information on all the bilateral agreements

and on the bids cleared by the Market Operator. Figure 2.6 illustrates this type of mixed structure

[4].
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Figure 2.6: Mixed Model including a Spot Market and Bilateral Contracts (source [4]).
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2.2.2.7 Ancillary Services Markets

Ancillary Services are a set of operational services used by the System Operator to control

the power system and to balance the supply and demand, in order to stabilize the system and to

maintain the power quality, in any competitive electricity market environment, ensuring always

the most economical operation. These services are one of the main parts of power system op-

eration that can be unbundled under the liberalization process. Reference [16] enumerates a set

of Ancillary Services that the ISO can contract and deliver in the scope of a competitive power

market which are:

• frequency control;

• voltage control;

• spinning reserve;

• standing reserve;

• black start capability;

• remote automatic generation control;

• grid loss compensation;

• emergency control actions.

The frequency control service corresponds to the maintenance of the system frequency within a

given interval by controlling the active power output in order to balance the supply and the demand.

The voltage control service is needed in order to maintain the voltage within specified operation

levels by managing the reactive power so that the system operates in a secure way and the active

power that can be transferred is increased. Spinning and standing reserves are reserve services

usually used when there are large unpredictable deficits caused by outages of generators and tie-

lines, or excesses caused by renewable sources like wind or solar. Spinning reserve is typically an

on-line quick source that can be fully available within less than a few minutes. Standing reserve

is an off-line service and, for that reason, it starts slower than spinning reserve, and it is also

considered as a backup for the spinning reserve. The black start service is a restoration capability

of a generating unit to start up without external power supply when large blackouts take place in

the power system. Remote automatic generation control, grid loss compensation and emergency

control actions are other services that can be procured by the ISO and that are detailed in [16].

Ancillary Services can be procured by three main approaches that can be chosen depending on

the nature of the power system and also on the type of services and country applied [16]. The first

one is a compulsory provision usually set by the TSO. The second approach involves contracts

signed between buyer and sellers of Ancillary Services. In long-term contracts, in which the

amount of services are less likely to change over the time, usually includes black start capability

service, emergency control actions service and remote automatic generation control service. The
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third approach corresponds to short-term markets, which are based on immediate demand and

supply market. Some reserve services are an example of Ancillary Services in the market that can

be contracted this way.

The increased penetration of renewable energy sources in existing power systems has been

pressing the electricity market mechanisms regarding the Ancillary Services [17]. Renewable

energy generation can contribute to increase the deviations between scheduled and actual energy

generation, so the provision of Ancillary Services will likely have to be reshaped [17, 18, 19]. In

this scope, the demand response namely using electrical vehicles and distributed resources will

have an important role [20, 21, 22], as well as the presence of fast service providers [23].

In a recent report [14], ENTSOE gives an overview of the European electricity balancing mar-

ket and its guidelines for the future. An efficient balancing market shall ensure security of supply

at the lowest cost and can deliver environmental benefits by reducing the need for backup gener-

ation. European TSOs use different processes and mechanisms to balance the system and restore

the frequency, based on historic developments in each country and different balancing philoso-

phies. ENTSOE describes in this report the energy balancing mechanisms in Europe organised in

up to five steps:

• Frequency Containment Reserve, FCR;

• Imbalance Netting;

• Frequency Restoration Reserves with automatic activation, aFRR;

• Frequency Restoration Reserves with manual activation, mFRR;

• Replacement Reserves, RR.

ENTSOE also presents the imbalance settlement as a core element of the balancing markets in

Europe. It is a financial settlement mechanism aiming at charging or paying market participants

for their imbalances. All these steps and mechanisms are detailed by ENTSOE in [14].

2.2.2.8 Intraday Markets

Intraday markets are an important tool for market participants to adjust their program resulting

from the day-ahead market according to the needs they expect closer to real time. As in other

markets, it involves the submission of buying or selling bids. There are several different intraday

market designs, but what they all have in common is that they operate on a timescale after the

closing of the day-ahead market and before the operating hour, corresponding to a multi-actor

market, to trade electricity. The intraday markets may be centrally cleared, or work as continuous

double auctions [24].

Similarly to the Ancillary Service markets, with the increase of renewable sources, the fu-

ture short-term market design is being reshaped, in particular regarding the possible integration
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of currently separated short-term market platforms [24]. The rise of renewables and the develop-

ment of smart grids will have a significant impact on intraday power trading where trade signals

can occur rapidly and the volume and velocity of information available to traders can be almost

overwhelming.

In Europe, the European Commission has established some of its objectives for intraday trad-

ing and these are based on continuous energy trading where cross-zonal transmission capacity

is allocated through implicit and continuous allocation. Additionally, the main European power

markets, such as Nord Pool, EPEX SPOT, GME, and OMIE as NEMOs (Nominated Electricity

Market Operator), have responded by setting up continuous intraday trading environments to fa-

cilitate the trade out of intraday positions. Furthermore, the power exchanges, together with the

TSOs from 12 European countries, launched the XBID Market Project (European Cross-Border

Intraday) to create an integrated intraday cross-zonal market to allow continuous cross-zonal and

intraday trading on the single cross-zonal intraday market across Europe. XBID was successfully

launched on 12th June of 2018 [25].

2.3 Market Organization in Europe

The restructuring process for the European electricity systems that began in the 90s was in-

tended to allow the introduction of competition in vertical market structures, but nowadays the EU

faces major challenges regarding the physical interconnectivity between its constituent markets,

and also in terms of concentration levels which are a major area of concern for policy makers and

energy regulators [26]. Over the past two decades, the framework of European electricity markets

went through major reforms with a view to move towards the Internal Energy Market (IEM). How-

ever, this process is very complex due to technological, environmental and geo-political factors in

addition with the different models existing in countries and regions, as they add extra barriers to

the unified approach that the EU has adopted regarding its energy policy [26].

In 2011 the EU recognised the importance of having an Internal Energy Market (IEM) in place

and set a clear deadline for its completion by 2014, underlining that no EU Member State should

remain isolated from the European gas and electricity networks after 2015 [27]. The main goal of

the IEM was to create [28]:

• a single Day-Ahead Market coupling mechanism;

• a single Intraday Market coupling platform;

• a single European platform for the allocation of long term Transmission Rights;

• a flow based capacity allocation method;

• a model based on a Common Merit Order list for cross-border exchanges of balancing en-

ergy.
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The Day-Ahead Market is the most used among wholesale electricity market models, hosting

transactions for the delivery of electricity for the next day. European day-ahead markets are orga-

nized as Pool models, which means an open trade market where agents can either trade standard

long term contracts and submit bids to the day-ahead market trading platform. They are usually

organized as implicit auction mechanisms where participants submit their bids. A bid has to in-

clude at least information about the energy quantity (named volume, MWh), min/max energy price

(e /MWh) to sell/purchase and the reference delivery period of the day [28]. But their character-

istics are not yet totally standardized despite the convergence that has been implemented in recent

years, specially regarding price caps (for example, the current price caps of MIBEL are about to

change). Table 2.1 presents a brief overview of the most important European electricity market

characteristics [29, 30, 31].

Table 2.1: Characteristics of most important European day-ahead markets.

Markets Participants Trading Closure Price caps (e /MWh)

Nord Pool Denmark, Norway, Sweden, 12:00 -500/+3000
Latvia, Estonia, Finland

Lithuania
EPEX Germany, France, Austria, 12:00 -500/+3000

Switzerland, Netherlands
Belgium, Great Britain

GME Italy 12:00 0/+3000
OMIE Portugal, Spain 12:00 0/+180

The most important step of European market integration took place on February 4 of 2014,

when price coupling in North Western Europe went on-line. It was the first initiative to use the

European Price Coupling of Regions (PCR) solution for the calculation of prices and flows, the

starting point for all other regions to join. At the time of the launching, North Western Europe

stretched from France to Finland and from Great Britain to Germany and Austria, covering the

region of Central Western Europe, Great Britain, the Nordics and the Baltics [30]. Since the

launch of North Western Europe, two extensions of the PCR area have been put in place. In May

2014, Spain and Portugal (OMIE) joined and in February 2015, Italy (GME) coupled with France,

Austria and Slovenia. As a result, the now coupled area is called Multi-Regional Coupling and

covers 19 countries, standing for about 85% of European power demand [30].

Traditionally, electricity markets in Europe follow an energy-only design. However, the last

years have seen a rising discussion and implementation of different kinds of capacity mechanisms,

for instance, in France (2015), Germany (2016) and Great Britain (2015) [28]. In [28], the authors

indicate that, among others, there is a need for additional research regarding different price zone

configurations, the flow-based market coupling and other capacity mechanisms.
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2.4 Market Organization in the MIBEL

Electricity markets have been implemented in several countries and regions. The Iberian Elec-

tricity Market, MIBEL, was the result of an agreement between the Portuguese and Spanish Gov-

ernments for the establishment of a regional electricity market in the Iberian Peninsula, having

in view the future European electricity market. The conversations between the two governments

started in July 1998 and a first memorandum was signed in 2001 [4]. After several intermedi-

ate steps, the common day-ahead Market Operator started in July 2007. The Iberian Electricity

Market can be considered as the second regional market at the European level to be set up [29].

The MIBEL adopted most of the features of the previously market model operating in Spain

since 1998. The market model is a mixed hourly day-ahead market, given that it includes a Pool

based market plus Bilateral Contracts, and it comprises two distinct geographical areas for the

Ancillary Services market procurement and mobilization, Portugal and Spain, each one under the

responsibility of the respective TSO.

Regarding the entities in charge of the market management, two entities were created as fol-

lows: the Operador del Mercado Ibérico de Energía, Spanish side, (OMIE), responsible for the

day-ahead and intraday markets, and the Operador do Mercado Ibérico de Energia, Portuguese

side (OMIP), responsible for the forward markets.

The transmission network companies, REN and REE, are also the System Operators for the

Portuguese area and for the Spanish area. These operators are responsible for the technical vali-

dation of the market plus bilateral contracts dispatches, for the security of the power system, for

contracting the Ancillary Services in each area, some of them using market procedures, and for

the on line operation and monitoring. Concerning operation, after clearing the day-ahead market

for each hour of the next day using complex bids, it is evaluated the flow in the interconnections.

If this flow is larger then the available Net Trading Capacity (NTC) for each hour, the market

splitting mechanism is activated to obtain different prices for the two market areas. In the first

operation years of the common day-ahead market, the market splitting was widely used, up to

90% of yearly hours in 2008 and 2009. Since then, the prices have converged and the market

splitting is now reduce to 5 to 10% of the hours in 2015 to 2019. This reduction is due to the more

comparable generation mix in the two countries (apart from nuclear units in Spain), to the larger

interconnection capacity, to the stagnation of the demand in recent years, and to the development

of generation units connected to distribution grids.

Regarding the regulatory entities, ERSE is the Portuguese Regulatory Agency for the Energy

Services and CNMC is the corresponding Spanish entity. Although they were created according to

the legislation passed in both countries in 1995, they act according to different legal frameworks in

the sense that, for instance, ERSE is entirely responsible for the preparation and approval of regu-

lated tariffs while the regulated tariffs in Spain are approved by the government under a proposal

of CNMC.
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The OMIE is one of Europe’s more liquid markets and, at present, prices caps are fixed at 0

and 180e /MWh (under review at present moment), while most of European counterparts oscillate

within a wider price range, from -500 to +3000 e /MWh [29].

2.5 Renewable Energies and Market Impact

Electricity from renewable energy can be generated from a large variety of primary sources

including wind, solar, hydro, tidal, geothermal, or biomass. According to the International Energy

Agency (IEA) 2018 report [32], 2017 was a record year for renewable energy in the power sector.

For the first time, renewable capacity additions of 178 GW accounted for more than two thirds

of global net electricity capacity growth. Solar photovoltaic (PV) capacity was the one that ex-

panded the most, at 97 GW, and over half of which occurred in China. Meanwhile, onshore wind

additions declined for the second year in a row with a lower capacity growth both in China and in

the United States. Hydropower additions also declined as large hydropower growth continued to

decelerate in major markets around the world. In the IEA report main case forecast, which takes

into account market and policy frameworks, renewable capacity is expected to grow by over 1 TW,

which represents a 46% growth over the period 2018 to 2023. PV accounts for more than half of

this expansion, driven by supportive government policies and market improvements across most

regions. Figure 2.7 presents the world net renewable capacity additions from 2006 to the 2023

forecast.
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Figure 2.7: World net renewable capacity additions, 2006-2023 (source [32]).

In Europe, the primary renewable energy increased by two thirds in the period 2007 to 2017

(EU-28 level) [33]. The renewable energy produced within the EU-28 increased overall by 64%

between 2007 and 2017, equivalent to an average increase of 5.1% per year. Looking at the
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electricity sector, in 2017 the electricity generated by renewable sources contributed with 31% of

total EU-28 gross electricity consumption. The growth in electricity generated from renewable

energy sources during the period 2007 to 2017 is reflecting the European expansion plan in three

main sources, namely wind power, solar and solid biofuels (including renewable wastes). In 2017,

for the first time, hydropower has been replaced by wind energy as the largest source for renewable

electricity generation in the EU-28. Taking solar also into account, generated electricity in the EU-

28 from solar and wind was 32 and 4 times, respectively, higher in 2017 regarding the value of

2007. As a result, the shares of wind and solar energy rose to 37% and 12% in 2017, respectively.

The growth in electricity from solar power has been massive, rising from just 4 TWh in 2007 and

reaching a level of 120 TWh in 2017. Over this 10 year period, the contribution of solar energy

to all electricity generated in the EU-28 from renewable energy sources rose from 1% to 12%.

Figure 2.8 shows the electricity generation increase from renewable sources from 2007 to 2017 in

the EU-28 [33].
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Figure 2.8: Gross electricity generation from renewable sources EU-28, 1990-2017 (source [33]).

Regarding the hydropower, the world installed capacity is expected to increase 125 GW until

2023, which represents 40% less than in 2012-2017 [32]. This is mainly due to the reduction

of large project developments in Europe, Brazil and China, where concerns over social and en-

vironmental impacts have restricted project pipelines. But at the same time, projects in India,

Africa, and South Asia accelerate in response to new demand, unexplored resource potential, and

attractive economic conditions to turn electricity access more affordable. Additionally, 20% of the

overall growth (26 GW) is from Pumped Storage Hydropower (PSH). This type of projects help

the integration of variable renewable sources. China leads the PSH growth, with some contribu-

tions from Asia Pacific and Europe. Figure 2.9 presents the hydropower capacity installed from
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2012 and the forecast until 2023.
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Figure 2.9: World hydropower capacity additions, 2012-2023 (source [32]).

Generating electricity from renewable sources presents a large number of environmental, eco-

nomical and social benefits, such as the diversification of energy provision and security of supply,

the creation of a national industry and regional economic development, the creation of jobs, the

reduction of gas emissions, among others. However, since a large part of the renewable generators

is still being paid by subsidized schemes, it is sometimes stated that the energy from renewable

sources, due to its subsidies and time-variable characteristics, is expensive. This fact turns the

influence of a growing share of renewable generation on the electricity mix in the consumers bills

less obvious and difficult to estimate, as there are other effects to be considered [34]. Despite

this discussion, it is clear that the integration of renewable energy in wholesale markets decreases

the day-ahead electricity price. In this scope, [34] reports that, in the Spanish Electricity Market

(2008-2012), for every GWh of renewable energy introduced in the market the hourly clearing

price is reduced by an average of 2 e /MWh. On the contrary, for every GWh of renewable energy

removed from the wholesale market the clearing price increases by an average of 3.8 e /MWh. On

the other hand, [35] shows that on the United States electricity markets the need for more flexible

generation is a clear trend, not only to incorporate more variable renewable energy generation, but

also to replace older fossil fuel resources that are being decommissioned. In MIBEL, the increase

in installed renewable power has forced conventional thermal generators to modify their bids and

so their generation schedules in order to account for the variations of wind generation. This fact

has been translated into a reduction in their operation hours which along with more reduced market

prices has dramatically reduced their profitability [36].

In a similar way, the amount of hydro generation also has a clear correlation with the mar-

ket prices as it is suggested in Figure 2.10 for the period 2008-2018 in Portugal (www.ren.pt and

www.omie.es). In Figure 2.10, the vertical axis represents the average monthly price of a specific
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Figure 2.10: Market price vs hydro generation, 2008-2018 for Portugal.

year, divided by the correspondent average annual price. The horizontal axis represents the av-

erage monthly hydro generation of a specific year, divided by the correspondent average annual

generation. The source data is from 2008 to 2018 for Portuguese market prices and Figure 2.10

shows that as hydro generation increases the cleared market price tends to get reduced.



Chapter 3

Literature Review on Electricity
Market Simulation

3.1 General Classification of Market Models

Since the 80’s, the electricity sector has been progressively evolving from a natural monopoly

into a liberalized market in order to improve efficiency and increase competition. To encourage

competition and to get higher efficiency, several countries all over the globe changed their elec-

tricity industry from monopolies to competition models. The aim of this reform was to change the

economics of electricity, to increase competition, to induce the development of new technologies

in electricity generation, to improve quality service and to obtain cost reductions for consumers.

The main assumption of markets is that competition provides a better allocation of the re-

sources, a cost minimization and holding price down, theoretically, to marginal cost. For price-

taker utilities, to get profit maximization and to decrease the risks in an energy market, the bids

should be very close to their marginal cost [37]. However, the energy market is not perfectly

competitive and utilities are not always price-takers. Therefore, power companies can bid prices

slightly higher than the marginal production cost. When an agent bids other value different from

the marginal cost, to take the advantage of its market power, this behaviour can be called strategic

bidding [37]. Bidding strategies are extremely important to the profit maximization objective of

power utilities. This development creates opportunities for electricity companies to make larger

profits, but also at the same time they embrace more risks due to competition. For this reason, new

simulation models have been developed in the recent years to investigate and address this issue.

The related literature has been growing rapidly in recent years, and many different modelling

approaches have been investigated and used under the liberalized market environment such as

mathematical programming, Game Theory, and Agent-Based Models [37, 38]. With the recent

growing of renewable energy sources, electricity markets are facing more complex problems and

increased risks namely due to the volatile nature of several renewable sources. The intermittence

33
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of some of these renewable sources motivates the players to optimize their bidding strategies by

considering these new challenges [38]. This chapter presents a literature analysis on the state of

the art of modelling and simulation methodologies related to electricity markets.

In the traditional vertical and integrated power systems, power companies focused in minimiz-

ing the generation cost, while maintaining the system security and adequate reliability levels [4].

A liberalized environment, characterized by open competitive energy markets and by unbundling

processes, allows the participants to game in the market, because they have to take decisions by

themselves under complex situations having no or incomplete information about the behaviour of

their competitors. On the other hand, on the decision process they also have to internalize uncer-

tainties from different sources such as related to the intermittence of some renewable sources, load

variations, competitor’s behaviour, and others.

In terms of market simulation, liberalized electricity markets behave more like an imperfect

competition or an oligopoly market due to the special characteristics of the current electricity

markets, such as the limited number of participants, long construction periods of power plants,

large capital investment, transmission constraints, and transmission losses [39]. This means that,

in some cases, market agents can influence and manipulate the market price using strategic bid-

ding behaviours. On the other hand, it is also important to consider the different type of agents

that usually exist in these markets. As an example, there are generation companies with very

different generation mixes, namely including or not technologies as hydro stations, conventional

thermal stations, nuclear or wind power plants. For these agents, the most typical bid structure

includes several blocks of energy price together with the corresponding quantity of electricity. It

is also important to consider agents in charge of the management or coordination issues as the

Market Operator and the System Operator, agents providing network services as transmission and

distribution companies and finally retailing companies that have a portfolio of supply contracts

with the consumers. This variety of agents of different types and having different characteristics

and objectives within each type, turns the electricity markets very complex and very specific to

simulate.

In addition, when bidding in the electricity markets, generators are usually penalized for en-

ergy generation deviations that result from outages or forecasting errors regarding the initial oper-

ation programs. Power systems have to be operated with high levels of security and reliability, and

Ancillary Services play an import role on this issue. For all these reasons, market simulation has

been widely studied in the recent years, and still continues to be a challenge both at the academic

and at power company levels.

A large number of research works have been dedicated to model and simulate liberalized

electricity power systems. They use different methodologies and models in order to get the most

adequate and realistic simulation results of electricity market. From an organization point of view

and according to the literature review that was developed, electricity markets modelling can be

classified in four main areas summarized in [38]:
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• Optimization problems, addressing a single company assuming no market reaction;

• Equilibrium Models from Game Theory economics, considering a larger number of com-

petitors;

• Agent-Based Models that simulate the behaviour of the companies and the interactions be-

tween autonomous agents;

• Hybrid solutions.

Optimization models are centered on maximization problems for a single firm competing in

the market, often considered as a price-taker, while Equilibrium Models address the market be-

haviour taking into consideration the competition between all participants. Agent-Based Models

are increasingly becoming an alternative to Equilibrium Models when the problem is too com-

plex to be addressed within a traditional Equilibrium framework. Figure 3.1 presents a complete

classification of the solution approaches available in the literature [38].
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Figure 3.1: Modelling methods to simulate electricity markets [38].

Single GenCo Optimization models include different formulations that use mathematical pro-

gramming methods such as Mixed-Integer Programming (MIP), Nonlinear Programming (NLP),

Markov Decision Process (MDP) and Dynamic Programming (DP). Game Theory models adopt

competition rules: Bertrand competition, Cournot competition and Supply Function Equilibrium

(SFE), as well as some other competition rules proposed more recently. Agent-Based Models can

be categorized in terms of different learning algorithms such as Model-Based Adaptation algo-

rithms (MA), Genetic Algorithms (GA), Q-Learning (QL), Computational Learning (CL) and Ant

Colonies Optimization (ACO) [38].

It is important to notice that this classification is not static. In [40] the authors present a dif-

ferent classification but considering that the Agent-Based Models and Equilibrium Models are

subsets of Simulation Models. They present a survey of the most relevant publications regard-

ing electricity market modelling, identifying three major trends, which are Optimization models,

Equilibrium Models and Simulation Models. They introduce a classification according to the mod-

els most relevant attributes of the models, namely the degree of competition, the time scope, the
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uncertainty modelling, the inter-period links, transmission constraints and market representation.

This classification is illustrated in Figure 3.2.
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Figure 3.2: Some trends in electricity market models [40].

The previously mentioned differences in mathematical structure, market modelling and com-

putational flexibility provide useful information in order to identify the major uses of each mod-

elling approach. For example, the higher computational flexibility of Optimization models enable

them to deal with difficult and complex problems, such as building daily bid curves in the short-

term. On the contrary, Equilibrium Models are more suitable for long-term planning and market

power analysis since they consider all participants. The modelling flexibility of simulation models

allows for a wide range of applications although there is still some controversy as to the appropri-

ate uses of Agent-Based Models [40].

Despite all these considerations, electricity market models can be gathered in the three main

sets (plus a set with hybrid solutions) mentioned in Figure 3.1, depending always on the com-

plexity and market dynamics, on the number of entities included in the model and on the market

type. In the next sections we will detail the characteristics of these three main sets while men-

tioning publications in each of them. Additionally we will briefly address the Machine Learning

methodologies.

3.2 Single Generation Company Optimization Models

Initially, the optimization of the bidding strategy of a generation company was usually ad-

dressed as a cost minimization problem and solved via traditional cost based techniques [41, 42].

The minimum revenue condition and the use of indivisible bids are useful ways to fit thermal plant

requirements into simple quantity-price Pool designs, preserving independent hourly markets and

price calculation. The minimum income condition can be implemented as a search problem, based
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on cost minimization [42]. More recently, several mathematical programming approaches have

been used to address this problem in terms of profit maximization. The typical Optimization

methods adopted in the literature include Linear Programming (LP) and Mixed-Integer Program-

ming (MIP) [43, 44, 45, 46, 47, 48], Non-Linear Programming (NLP) [49, 50, 51], Dynamic

Programming (DP) [52] and Markov Decision Process models [53, 54].

As mentioned in last Section, the literature regarding this kind of models usually optimizes

the bidding strategy for a single-market participant while ignoring or simplifying the behaviour

aspects of other players. Some of these formulations include stochastic probabilistic elements,

either in the problem data (e.g., the objective function and the constraints), or in the algorithm

(through random parameter values, random choices, etc.), or in both [38]. A discussion on the

application of stochastic programming methods to the energy markets can be found in [55], in

which the authors address energy Optimization models that explicitly deal with uncertainty.

All these methodologies use Optimization models for the electricity markets with the objective

of finding an optimal solution, and are characterized by [38]:

• well-established and solid mathematical foundations;

• generally focusing on one specific player in the system by simplifying the rest of the system

as a set of exogenous inputs;

• usually modelling no aspects regarding the intelligent behaviour of the other players;

• difficulty to model large, complex, uncertain and dynamic systems in the deregulated elec-

tricity markets.

This kind of models has also two different challenges. First, they are tackling the problem

of converting the bid curve of a generation company into a robust hedging mechanism against

the short-term uncertainties due to changes in demand and competitors behaviour. On the other

hand, these models have also addressed the development of risk management framework that

help generation companies to decide their optimal position in the day-ahead, the future and the

over-the-counter markets with an acceptable level of risk [40]. Table 3.1 shows a brief resume of

publications using traditional Optimization techniques presented in previous paragraphs.

Table 3.1: Representative Optimization based modelling publications for bidding strategy
analysis.

Reference Model Market Applications

F. A. Campos MIP two-zone dual market power analysis

et al. [43] pricing computation

S. de la Torre MILP Pool based self-scheduling in a Pool

et al. [44]

Continue on the next page
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Table 3.1: Representative Optimization based modelling publications for bidding strategy
analysis (cont.)

Reference Model Market Applications

J. M. Angarita MIP Pool based self-scheduling in a Pool;

et al. [45] hydro and wind coordination

J. Alemany MILP Pool based price and market

et al. [46] power analysis

S.-E. Fleten SMILP Pool based self-scheduling in a Pool;

et al. [47] hydro scheduling

J. C. Sousa LP Pool based self-scheduling in a Pool;

et al. [48] hydro scheduling

D. NZhang NLP Pool based optimization bidding and

et al. [49] self-scheduling

J. P. S. Catalão MINLP Pool based self-scheduling in a Pool;

et al. [50] hydro scheduling

X. Ma NLP Pool based building optimal

et al. [51] bidding strategies

G. Díaz DP Pool based optimal bidding by

et al. [52] a wind power producer

H. Song Marcov Pool based self-scheduling in a Pool

et al. [53]

G.N. Bathurst Marcov Pool based self-scheduling in a Pool

et al. [54] for wind farms

E. Akbari Stochastic Pool based optimal bidding of a

et al. [55] Programming GenCo including storage

3.3 Equilibrium Models

Models that evaluate the interaction between companies in electricity markets have emerged

from the Game Theory concept of equilibrium. Some of these models represent the equilibrium

in terms of a set of algebraic equations or, alternatively, under the form of a complementarity

problem, providing a framework to analyse realistic problems that include a significant detailed

representation of the generation system [40]. As in the case of the Optimization models men-
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tioned above, the research community continues to try to develop a new generation of Equilibrium

Models capable of selecting risk management decisions under imperfect competition [40].

Equilibrium Models, from Game Theory economic models, optimize the bidding strategies

by investigating the interactions among players and analysing the economic equilibrium of the

system. Usually, in a game, each player chooses one strategy from its own strategy set; then a

pay-off will be assigned to each player by the pay-off function. As a result, the optimal solution

can be reached via Nash equilibrium. Nash equilibrium corresponds to a strategy combining the

decisions of all players in which no player can increase its pay-off by changing its own strategy

alone being the others ones at equilibrium. This means that, at the end, every player will finally

choose its strategy exactly as the one in the equilibrium strategy combination [38].

This unifying principle to understand the interaction among decision-makers has been devel-

oped in economics. As mentioned in Section 3.1, it is natural that it is also applied to analyse

electricity markets, due to the characteristics of these markets, particularly given the relatively

well-defined cost structure for electricity power generation and the prevalence in restructured

electricity markets of a relatively small number of market participants, that reasonably aim at

maximizing their profits.

Considering the competition level in the liberalized electricity markets, it is possible to con-

sider three main general groups of Equilibrium Models under imperfect competition, namely,

Bertrand, Cournot, and Supply Function Equilibrium (SFE). As the most competitive model, a

Bertrand competition model corresponds to an oligopolistic structure where the generation com-

panies compete with the other ones using prices as the strategic variables and ignoring their ca-

pacity constraints. However, in classic Cournot models the players compete by using quantities

as strategic choices, under a set of assumptions associated with the homogeneous nature of the

product being traded, with the price-responsive nature of the demand, and finally assuming that

the market price is obtained in the intersection of the aggregated supply and the market demand

curves [56]. In SFE models, the generation companies compete through the simultaneous choice

of their supply functions [57].

In a Bertrand competition it is implicit that all competitors choose their price bids in the market

simultaneously in a repeated game with unlimited capacities. Each participant will maximize its

profit assuming that the price bids from the other competitors remain unchanged [56]. However,

electricity markets deviate from the standard assumptions of the Bertrand price game. This kind of

market is clearly an oligopoly capacity resource constrained market and the marginal cost prices

are not likely to correspond to an optimal bidding approach. Other critical assumption for the

Bertrand based models is that all firms have identical cost curves, otherwise the one which faces

lower marginal costs will always end up supplying the entire market [56]. Despite these problems,

it is possible to identify some works that use this approach. In [58], the authors mention that the

liberalized electricity markets haven’t developed truly competitive mechanisms in most cases, and

present a Bertrand based model to analyse the potential for market power. On the other hand, in
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[59] the authors describe a market design in which power producers bid not only on the electricity

market but also to get transmission rights. The market is cleared at each stage by minimizing the

sum of the generation costs and the transmission costs.

The Cournot model corresponds to an economic framework that is used to describe an indus-

try structure in which companies compete on the amount of the output they will produce. The

participants decide on these amounts independently of each other and at the same time. This is an

approach similar to the Bertrand model, except that the Bertrand model assumes that each com-

pany chooses the price rather than the quantities [56]. Compared with the Bertrand price-setting

strategies, the Cournot quantity equilibrium is more practical for the electricity markets, because

generation companies supply a homogeneous product.

Cournot equilibrium is simple to compute because the mathematical structure of Cournot mod-

els corresponds to a set of algebraic equations. As a direct result, most equilibrium based models

stem from the Cournot solution concept. The publications using this type of models are essen-

tially in the areas of market power analysis, hydrothermal coordination, analysis of the influence

of the transmission network and risk assessment [40]. In [60] it is presented a formulation of the

classical Cournot model in a discrete-time linear system framework that allows a close study of

the dynamic decisions of generation companies as well as their impacts on wholesale electricity

markets. In [61], the authors illustrate experiments based on the Cournot model of oligopolistic

electricity markets. In this scope, a set of experiments were conducted using an oligopolistic mar-

ket including three generation companies. The results showed that market competition will lead

to a result that lies between perfect competition equilibrium and Nash equilibrium in oligopolis-

tic electricity markets with asymmetric production cost functions and using a repeated gaming

among the generation companies. In [62], an iterative technique is presented that allows finding

the market clearing prices within a hydrothermal power system while incorporating network con-

straints. The developed model is applied to the main Chilean interconnected power system, which

has large hydro generation resources together with frequent network bottlenecks. According to the

authors, the results obtained for Pool based and bilateral contract markets highlight the strength

of the method and show the relevance of the transmission system and of the hydro constraints.

Reference [63] describes a Cournot based model for equilibrium pricing of futures electricity con-

tracts. In this game, each generation company optimizes a generation asset allocation problem that

considers the possibilities of establishing monthly futures contracts and bidding in the day-ahead

market, with consideration of market power in futures market, price risk in the day-ahead market,

as well as operation costs and capacity constraints of generating units. This work applies an iter-

ative procedure to obtain the Cournot-Nash equilibrium for the futures contract prices. Due their

characteristics, Cournot models are widely mentioned in the literature and we can find additional

applications in [64, 65, 66, 67, 68], where wind generation, unit outages and fuel costs uncertainty

are also addressed.

Supply Function Equilibrium models are also widely used in this area. Originally introduced

in [69], SFE models are a way to describe how competitors can maximize profits in competitive
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markets of a single product with uncertain demand levels. In a such market, the participants pre-

fer to set supply functions rather than competing in prices (Bertrand competition) or quantities

(Cournot competition) [69]. The authors of this publication showed that when a firm faces a series

of possible residual demand curves, it expects a larger profit if its decisions are expressed in terms

of a supply function that indicates the price at which it bids for different quantities to the market.

Using a SFE model requires solving a group of differential equations, while traditional Equilib-

rium Models are usually formulated by a set of algebraic equations using either the quantities or

the prices as strategic variables. For this reason, SFE models have some limitations in terms of

the numerical treatment that are associated to them and so typically it is very difficult to consider

a detailed representation of the real generation systems.

In [70], the authors tested the German system and suggested using Cournot models for short-

term analysis, since these models can accommodate additional market details, such as network

constraints. They also used a SFE based model for long-term analysis (e.g., to study merging of

companies) since it is less sensitive to several parameters that have to be calibrated. Reference

[71] details a model to get the electricity market equilibrium based on a Linear Supply Function

Equilibrium model (LSFE). This model considers transmission constraints and the consumers bid-

ding behaviour. The simulation results showed that this approach converges rapidly to the pure

strategy Nash Equilibrium. In [72], a hybrid co-evolutionary programming method based in Nash

equilibrium is used to maximize the revenues of six generation companies that compete to supply

the system demand. Reference [73] presents an interior point algorithm based on network model

to determine the Nash Supply Function Equilibrium of bid-based electricity markets, and in [74],

the competition among supplier agents in a uniform price electricity market is modelled as a Sup-

ply Function Equilibrium game, where the players decide on a function of price versus quantity.

The game problem is studied in two situations. In the first one, the players determine the intercept

of the linear supply function with the demand and in the second one, they choose the decisions by

the slope of the linear supply function. The learning and estimation dynamics of the players were

studied in these two separate game problems where either the slope or the intercept of the linear

supply function were considered as the strategy of the players, respectively. In each case, the Nash

equilibrium point of the game was derived and it was shown that there exists a corresponding

equilibrium point in estimation and learning dynamics in both approaches.

Reference [75] investigates different formulations of electricity market models and the mod-

elling assumptions to market rules, and discusses the uses of such Equilibrium Models. Several

examples of qualitative sensitivity analysis were described by the authors.

All these Equilibrium Models applied to the electricity market analysis are characterized as a

game that captures mathematically the behaviour of the players. In these models the choices of

each player typically depend on the choices of the others. In brief, we can summarize the main

characteristics of these models as [38]:

• they usually are mathematically well-defined, involving a set of game players, a set of bid-
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ding strategies, and a specification of pay-offs for each possible combination of bidding

strategies;

• they aim at analysing the economic equilibrium of the electricity market by focusing on the

players interactions;

• they are capable of providing analytical rationale and explanation on how strategic bidding

behaviours affect the generation companies market power and profits;

• all players are assumed to be rational, which does not generally hold in the reality;

• typically, all these models face difficulties when solving complex and realistic cases.

Table 3.2 condenses the information of several publications using Equilibrium Models men-

tioned in previous paragraphs.

Table 3.2: Representative Equilibrium modelling publications.

Reference Model Market Applications

S. Soleymani SFE Pool based modeling a unit’s bidding

et al. [57] strategy

M. M. Belsnes Bertrand Pool based and zonal market power analysis

et al. [58] pricing computation

D. Ernst Bertrand two-zone dual power producers and

et al. [59] pricing computation transmission owners bidding

O. E.-Cruz Cournot Pool based generation decisions

et al. [60]

H. Chen Cournot Pool based generation decision support

et al. [61]

J. P. Molina Nash-Cournot Pool based hydrothermal bids

et al. [62]

J. Wu Cournot Futures market pricing of futures of electricity

et al. [63] contracts

E. Bompard Cournot Pool based strategic behaviour of the

et al. [64] electricity producers

H. Zhang Cournot Pool based bidding strategies for wind

et al. [65] power producers

P. Siriruk Nash-Cournot Pool based strategic competition

et al. [66]

Continue on the next page
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Table 3.2: Representative Equilibrium modelling publications (cont.)

Reference Model Market Applications

R. Wang Cournot Pool Based strategic forward contracting

et al. [67] and spot market competition

S. de la Torre Cournot Pool Based market power analysis

et al. [68]

B. Willems SFE/Cournot Pool based compares Cournot and SFE in

et al. [70] German electricity market

B. Willems LSFE Pool based electricity market equilibrium

et al. [71] with transmission constraint

F. A. Campos SFE Pool based considers transmission constraint

et al. [43]

Y. S. Son Genetic Algorithm Pool Based test of hybrid coevolutionary

et al. [72] Nash equilibrium algorithms for electricity market

S. G. Petoussis SFE Pool Based determining the Nash equilibrium

et al. [73] of bid-based electricity markets

H. Kebriaei SFE Pool Based bidding strategies for

et al. [74] generating companies

R. Baldick Bertrand, Pool Based discuss equilibrium formulations

et al. [75] Cournot, SFE for electricity markets

3.4 Agent-Based Models

The concept of an intelligent agent became important in both Artificial Intelligence and in

mainstream computer science in the scope of Agent-Based Models [76]. There have been im-

portant applications of AI technology, such as the widespread deployment of practical speech and

image recognition, machine translation, autonomous vehicles, and household robotics. There have

also been algorithmic landmarks, such as the solution of games, like chess and more recently, in

2015, the alphaGo (first computer program to beat a human professional player in Go game), that

is related with the theoretical progress that occurred particularly in areas such as Machine Learning

and Deep Learning.

In the Artificial Intelligence framework, an agent can be viewed as perceiving its environment

through sensors and acting autonomously upon that environment through actuators. For example,
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Figure 3.3: Agents interact with environments through sensors and actuators.

an human agent has eyes, ears, and other organs as sensors and hands, legs, vocal tract, and so

on as actuators. A robotic agent might have cameras and infrared range finders for sensors and

various motors for actuators. A software agent receives keystrokes, file contents, and network

packets as sensory inputs and acts on the environment by displaying on the screen, writing files,

and sending network packets [9]. Figure 3.3 presents a generic scheme of an agent and its relation

with the environment.

After understanding the concept of agent, the obvious question, then, is as follows: What is

the right way to make an agent good or bad, intelligent or dummy? At this point it is necessary

to be careful to distinguish the definition between intelligence in the AI domain and omniscience

or self-awareness. An omniscient "agent" knows the current outcome of its actions and can act

accordingly. But omniscience is impossible in reality when we are considering software [9]. For

this reason it is necessary to clarify some definitions regarding AI applications.

An intelligent agent is a system that has a set of components working together to engage in

goal-driven activities. In general, an intelligent system is able to sense and respond to the changing

environment; gather and store information in its memory; learn from earlier experiences; adapt its

behaviour to meet new challenges; and achieve its pre-determined or evolving objectives. The

system may start with a set of predefined stimulus-response rules. Those rules may be revised and

improved through learning. Whenever the system encounters a situation, it evaluates it and selects

the most appropriate rules from its memory to act upon [76].

Despite the definition above, there is no universal agreement on the precise definition of the

term "agent" in the context of agent simulation. This is subject of much discussion and debate that

is embarrassing the computing community in just the same way that the question regarding what is

"intelligence" itself can be embarrassing for the mainstream AI community [77, 78]. In this work,

for practical modelling purposes, we are admitting intelligent agents to have certain properties and

attributes [9, 76, 77, 78], namely:

• act rationally, not in the sense of omniscience, but in a way that for each possible percepted
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sequence, a rational agent should select an action that is expected to maximize a specified

performance measure, given the evidence provided by the percepted sequence and whatever

built-in knowledge the agent has;

• autonomy, meaning that an agent can function independently in its environment and in its

interactions with other agents, generally for a limited range of situations that are of interest,

while having some kind of control over its actions and internal state;

• interaction with its environment and other agents. An agent is situated in an environment,

in the sense that its behaviour is environment dependent, which means that its behaviour is

based on the current state of its interactions with other agents and with the environment;

• learning capability. An agent shall have the ability to learn and adapt its behaviour based

on its experiences. Individual learning and adaptation requires an agent to have memory,

usually in the form of a dynamic agent attribute.

If an agent has these capabilities it is considered as an intelligent agent. Another point of clar-

ification is related with the term "simulation". Agent-Based simulation, or Agent-Based Model,

ABM, refers to a model in which the dynamic processes of agent interaction are simulated repeat-

edly over time aiming at achieving a desired end-state [77]. ABM is being used in many areas such

as air traffic control, biomedical, crime analysis, biology, and others [77]. One of these approaches

is the Agent-Based Computational Economics (ACE) from economics [79].

Economies are complex dynamic systems having large number of micro agents that are re-

peatedly experimenting local interactions, giving rise to global economic frameworks. The ACE

methodology is a research approach to study economies viewed as Complex Adaptive Systems

(CAS) and modelled as systems of autonomous interacting agents [80]. A CAS is a complex

system that includes agents that are goal-directed and that attempt to exert some degree of con-

trol over their environment to facilitate achieving these goals, in which a perfect understanding

of the individual agents does not automatically means a perfect understanding of the whole sys-

tem behaviour [79]. For the main reasons mentioned above, this approach can also be applied to

electricity markets.

The electricity sector is characterized by multiple and interconnected markets: day-ahead

scheduling and intraday markets, bilateral trading, Ancillary Services markets, emission allowances

and fuel markets. Many electricity companies operate on several markets simultaneously, and this

consequently turns the identification of their most adequate trading strategies more complex. In

addition, and given the oligopolistic structure of almost all electricity markets, participants have

the potential to apply market power in many of these markets.

Considering also the complexity of the electricity sector and its importance for economy, re-

searchers are increasingly trying to develop new modelling methods in order to gain insight into

various aspects of power markets [81, 82]. Agent-Based Models are a new research paradigm in

this area that allows developing models to represent in a more realistic way electricity markets, and
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that help to overcome some disadvantages of the approaches discussed previously. In ABM, each

agent can build its optimal bidding strategy taking into account past experiences obtained from the

direct interaction with the environment and with other agents. In practice, these agents can learn

from past decisions, improving their new decisions and adapt their strategies. The Equilibrium

Models do not consider strategic bidding behaviour and assume that players have all relevant in-

formation about the characteristics and behaviour of the other players [81]. In ABM, the players

usually have imperfect and local information that is updated as the simulation evolves.

During the last years, more and more research was developed using adaptive software agents

to model electricity markets, and this research field is still growing and maturing. Normally, the

Agent-Based Modelling procedure can be described as including the next steps [81]:

• definition of the research topic to be addressed;

• building a model comprising an initial population of agents;

• specification of the initial model state by defining the attributes of the agents and the struc-

tural and institutional framework of the electricity market within which the agents operate;

• evolution of the model over time without further intervention;

• analysis of the simulation results and evaluation the input data.

There are several modelling tools that use ABM to study restructured wholesale power mar-

kets. Agent-Based Modelling of Electricity Systems (AMES) is an open source Agent-Based

computational laboratory designed for the systematic study of restructured wholesale power mar-

kets operating over AC transmission grids subject to congestion. The AMES traders have learning

capabilities permitting them to refine their trading strategies over time [83]. This model incor-

porates, in a simplified form, core features of the wholesale power market in the United States,

namely a central administration by an independent Market Operator, a two-settlement system con-

sisting of a bid/offer-based day-ahead market supported by a parallel real-time market to ensure

continuous balancing of supply and demand and management of the transmission grid congestion

by means of locational marginal pricing [83].

Another model using ABM is the Electricity Market Complex Adaptive System (EMCAS),

a commercial software developed by Argonne National Laboratory [84]. In EMCAS, different

agents are used to capture the heterogeneity of restructured markets, including generation com-

panies, retailer companies, transmission companies, distribution companies, Independent System

Operators, consumers, and regulators. The agents are specialized and perform diverse tasks using

their own decision rules. A special feature of the agents is that they can learn and adapt based

on past performance and changing condition [84]. Despite being a commercial model well es-

tablished in the market, and used by many companies along the world as in EDP Produção, the

EMCAS model doesn’t consider strategies for hydro stations. In fact, we cannot find in the liter-

ature any ABM model that is specific and with full detail for these type of power plants, and as

mentioned in Chapter 1, this is one of the main objectives of this PhD work.
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Reference [85] details another approach in which the authors developed a simulation platform

based on a multi-agent framework, MASCEM. The MASCEM multi-agent model includes agents

with strategies for bid definition, acting in forward, day-ahead, and balancing markets and con-

sidering both simple and complex bids. These characteristics turn the MASCEM both a short and

a medium-term simulation platform. This platform uses learning algorithms to let agents recog-

nize changes in the environment, thus helping them to react to the dynamic environment and to

adapt their bids accordingly. Similar approaches are discussed in [86, 87, 88]. These Agent-Based

approaches have been used to analyse gaming, learning, and to provide decision support to the

market agents.

The work detailed in [89] presents a new approach to the Brazilian electricity market simula-

tion. The proposed methodology is based on the concept of energy rights as virtual reservoirs and

aims at inducing the market participants to comply with their long term contracts, while still ensur-

ing the efficient use of the energy resources and maintaining the current security supply level. In

order to simulate the behaviour of the market participants in this new framework, an Agent-Based

Model where agents use Q-Learning is presented. The results show that this new market design is

suitable to be applied to hydrothermal systems having a large share of hydros [89].

As mentioned in Section 3.1, Agent-Based Models typically require the use of learning meth-

ods, as the ones described in the next Section, to allow agents to acquire knowledge to frame their

future behaviour. In this scope, reference [90] mentions and describes some learning methods,

namely the Q-Learning approach. It is shown that a supplier using the Q-Learning algorithm is

able to find the optimal bidding strategy similar to the one obtained by the model-based approach,

which is a method used in complex systems based on a model of the physical world. Addition-

ally, to analyse a more realistic situation, the behaviour of the suppliers are modelled using a

multi-agent system. In [91], the authors developed a fuzzy Q-Learning approach to model the

power supplier’s bidding behaviour in an electricity market. In their simulation framework, the Q-

Learning algorithm selects the power supplier’s bidding strategy according to the past experiences

and the values selected for a number of parameters, which emulates the human’s risk aversion

characteristic. The application of the proposed methodology shows the performance improvement

in comparison to the Q-Learning having fixed parameters.

Agent-Based approaches using evolutionary techniques are also found in the literature. In [92],

the authors combine a traditional Particle Swarm Optimization (PSO) with coding techniques and

genetics-based mutation operators to simulate a hydro system that includes pumped storage . In the

conclusions they mention that the simulation results for different operating cycles of the storage

plant show the attractive properties of their approach in terms of the identification of the optimal

solution and the robustness of the convergence behaviour. Agent-Based simulation models using

Ant Colony Optimization (ACO) are also described in the literature. In [93], an ACO algorithm

is proposed in order to compare three available strategies to clear wholesale electricity markets,

namely uniform, pay-as-bid, and generalized Vickrey rules. The agents of the power market are

modelled as adaptive entities that learn how to bid strategically to optimize their profit through
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indirect interaction with other market agents. The three mentioned price clearing rules are com-

pared using different economic criteria such as average cleared price, efficiency of allocation, and

price volatility. Reference [94] suggests the use of evolutionary games and the concept of near

Nash equilibrium to simulate an electricity market in the presence of more than two generation

companies. In this case, this approach uses a Genetic Algorithm (GA) to consider income func-

tions that can be non-differentiable and non-concave. Regarding Ancillary Services, reference [95]

presents a multi-agent based simulator to model specific markets to trade some of these services.

The authors use the MASCEM platform already mentioned and simulate the dispatch of Ancillary

Services using two different solution methods, Linear Programming and Genetic Algorithms.

Nevertheless, hydro generation, specially reservoirs and pumping hydro stations, are not ade-

quately characterized in any ABM model detailed in the literature. For instance, EMCAS is linked

to the VALORAGUA model [84] that provides long term operation planning strategies for hy-

dro plants. With this information, EMCAS uses the price forecasts and weekly hydro schedules

provided by VALORAGUA to do intra-week hydro plant optimization for hourly supply offers.

In this model all hydro generation bids at 0 e /MWh, or at one constant value, and this means

that EMCAS does not allow complex bidding strategies to hydro power plants. In power systems

like the Portuguese and Spanish ones this situation can be an issue since hydro generation has an

important contribution to the energetic mix. In this scope, the model described in [89] simulates

hydro units with virtual reservoirs having long term contracts. However, this model didn’t con-

sider the day-ahead MIBEL characteristics, as for example pumping strategies, because in Brazil

hydro companies usually participate in national public auctions to sign long-term contracts (usu-

ally up to 35 years) to build and operate power plants. In the other reviewed works, none of them

mentioned the use of specific hydro strategies. As mentioned in Chapter 1, the development of

strategies specific to these power plants is one of the main objectives of the research developed in

the scope of this PhD thesis.

Finally, Agent-Based Models can reproduce human behaviours and simulate optimal bidding

procedures. In this kind of approaches, market participants are handled as complex adaptive agents

with different bidding preferences and strategies, and their bidding decisions are influenced by

competitors. These models are typically more flexible compared with the Optimization and Equi-

librium based models detailed in previous sections, and therefore the use of Agent-Based Models

opens up a new type of modelling analysis to deal with the complexity of electricity trading,

namely taking advantage of their adaptation and learning capabilities.

Following [96], it is important to notice that Agent-Based Models should be considered as

simulation platforms in which the agents progressively acquire information to adapt and to identify

their most adequate behaviours. This implicitly means that if a new simulation is run, different

results can be obtained reflecting the previous learned knowledge and the fact that the agents adapt

their behaviour according to this knowledge and the interaction with other agents.
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The Table 3.3 includes the most relevant characteristics of several approaches using Agent-

Based Models described in several papers mentioned in previous paragraphs.

Table 3.3: Representative Agent-Based Modelling methods.

Reference Model Market Applications

H. Li ABM Pool based model of Agent-Based simulation

et al. [83] for electricity market

S. Koritarov ABM Pool based model of Agent-Based simulation

et al. [84] for electricity market

Z. Vale ABM Pool based strategies for bid definition

et al. [85] for day-ahead and balancing

F. Calabria ABM Long Term model of Agent-Based simulation

et al. [89] Contracts for long term contracts

M. Rahimiyan ABM Pay as bid comparison of the Q-Learning

et al. [90] and a model-based approach

M. Rahimiyan ABM Pool based strategic bidding behaviour

et al. [91] with fuzzy Q-Learning

G. Conzelmann ABM Pool based discuss implementations of Agent-Based

et al. [86] Models in several European countries

J. Qiu ABM Pool based study of power market

et al. [87] based on distributed agents

J. Wang ABM Pool based model of the German wholesale

et al. [88] electricity market

P. Kanakasabapathy ABM Pool based pumped-storage power plant in

et al. [92] a day-ahead electricity market

A. Azadeh ABM Pool based model of Agent-Based simulation

et al. [93] based on Ant Colony Optimization

D. Menniti ABM Pool based model of Agent-Based simulation

et al. [94] based on Genetic Algorithm

Z. Vale ABM Ancillary Services model of Agent-Based simulation

et al. [95] for Ancillary Services
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3.5 Machine Learning Methodologies

As mentioned in the previous Section, an intelligent agent must have learning capabilities.

The field of Machine Learning addresses the problem of building computer programs that auto-

matically improve their performance with experience [97], learning from data rather than through

explicit programming. As data is constantly added, Machine Learning models ensure that the solu-

tion is constantly updated [98]. At present time, there have been important advances in the theory

and algorithms that form the foundations of this field and this is an area that is extensively studied

nowadays [99]. Despite that, AI and ML algorithms aren’t new. The field of AI dates back to the

1950s [9, 98]. The new powerful computers, the reduction in data storage cost and the extremely

large volumes of data available nowadays brought new possibilities to this area.

Learning is a very wide domain. Consequently, the field of Machine Learning has branched

into several sub fields dealing with different types of learning tasks depending on the problem

complexity, the need for adaptivity and on the type and volume of data [98, 99]. There are several

ways to look at the different types of learning approaches. Depending on the nature of the problem

being addressed, these approaches can be classified as [9, 98, 100]:

• Supervised Learning;

• Semi-Supervised Learning;

• Unsupervised Learning;

• Reinforcement Learning;

• Deep Learning.

In Supervised Learning the agent observes some example input–output pairs and learns a func-

tion that maps from input to output [9]. Supervised Learning is intended to find patterns in data

that can be applied to an analytic process. This information has labelled features that define the

meaning of data [98]. Supervised Learning is typically used for classification and regression tasks

[98]. One example is related with forecasting studies. By using regression analysis, forecasting

takes into account known historical patterns and the current conditions to provide a prediction.

Image classification, medical diagnostics or process optimization are also some problems that use

Supervised Learning. Semi-Supervised Learning is similar to Supervised, but the agent has only

access to a few labelled examples and a large collection of unlabelled examples should also be

used [9].

On the other hand, Unsupervised Learning is best suited for problems requiring a massive

amount of data that is unlabelled. In this case, the agent learns patterns in the input even though

no explicit feedback is supplied. The most common Unsupervised Learning task is clustering in

terms of detecting potentially useful clusters of input examples [9]. Therefore, the Unsupervised

Learning conducts to an iterative process of analysing data without any output [98]. It is used, for

example, in email spam-detecting technology.
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Reinforcement Learning is a behavioural learning model, different from the previous three. In

Reinforcement Learning the agent learns from a series of reinforcements/rewards or punishments

[9]. The algorithm receives feedback from the analysis of the data in order to guide the agent to the

best outcome. Reinforcement Learning differs from other types of learning approaches because

the system isn’t trained with the sample data set. Rather, the system learns through trial and error.

Therefore, a sequence of successful decisions will result in the process being reinforced because

it best solves the problem at hand [98]. Some common applications are in robotics, game playing

and self-driving cars.

Deep Learning is a specific area of Machine Learning that incorporates complex neural net-

works in successive hidden layers in order to learn from data in an iterative manner (different from

neural networks used in Supervised Learning that have only one hidden layer). Deep Learning is

especially useful when it is necessary to learn patterns from unstructured data [98]. It is designed

to emulate how the human brain works so that computers can be trained to deal with abstractions

and problems that are poorly defined [98]. Deep Learning allows computer models to learn repre-

sentations of data with multiple levels of abstraction. These methods have dramatically improved

the state of the art in speech recognition, visual object recognition, object detection and many

other domains such as genomic and health [101].

Figure 3.4 resumes the Machine Learning approaches detailed in the previous paragraphs.

Machine Learning Field 

Classic Machine Learning Deep Learning

Supervised 

Learning

Unsupervised 

Learning

Reinforcement 

Learning

Semi-Supervised 

Learning

Figure 3.4: Organization of Machine Learning areas.

Related with the learning techniques used in ABM for electricity market applications, there

are several works addressing this problem. Due to the characteristics presented above, one of

the most popular used approach is the Reinforcement Learning [102]. References [90, 91] as

well as [103] already mentioned, discuss the use of Q-Learning methodology, that is one of the

reinforcement approaches that has been most applied to electricity markets. In [104], the authors
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propose a Simulated Annealing based algorithm to accelerate the Q-Learning convergence process

and in [105] it is used Q-Learning in a repetitive trading process, where generator agents learn the

market characteristics and seek to maximise their revenue by exploring bidding strategies. In [106,

107, 108] the authors also used Reinforcement Learning applied to electricity markets. A Nash

equilibria analysis and Agent-Based Modelling for a Pool market was compared in [109, 110] as a

repeatedly played game. These two works highlight the similarities that exist between the results

they generate, and that there is high likelihood for the Q-Learning algorithm to converge to this

equilibrium in the performed tests. In [111] the effect of market power mitigation strategies is

analysed through an agent-based study with Q-learning. The simulation results in the unmitigated

scenarios show that, even in a rapidly changing market environment, major generation owners who

interact with each other in similar scenarios easily learn to implicitly collude even without having

to know other’s historical bidding data.

The work presented in this thesis uses an Agent-Based Model with a reinforcement Q-Learning

approach to simulate hydro power plants in a short-term competitive environment as it will be

detailed in Chapter 4 and Chapter 5. The use of this Machine Learning technique is justified

because, in the first place, it is widely used in the electricity market simulation field with ABM,

and secondly, because it allows dealing with Markov Decisions Processes where the probabilities

and rewards of Markov transition matrix are unknown. These issues will be detailed in Section

4.2.4 and Section 5.2.



Chapter 4

Problem Description and Proposed
Model

4.1 Problem Formulation

As mentioned in Chapter 1, this PhD work is directed to the electricity market simulation,

with special focus on hydro power plants modelling. The main objective is to develop an Agent-

Based Model to help generation agents operating in an electricity day-ahead market. In this model,

autonomous agents will interact in a competitive environment and it is our objective to apply the

developed simulation tool to the MIBEL. Such platform will help generation companies to prepare

their bids for the next day an it will also allow generation companies to study possible behaviours

of the other competitors, by running several scenarios. In this Chapter we will fully describe the

developed ABM model.

The Agent-Based Models typically include two main steps. The first one consists of a training

task using historical data, in order to create the most realistic parametrization of the agent’s be-

haviours. Then, we can use the trained agents to make predictions of the future behaviour for the

next day. In this case, the agents will also learn by the experience during the biding processes. If

there is no historical data available, the agents will adapt their behaviour considering a pre defined

strategy and will learning with future experiences.

As reviewed in Chapter 3, in Agent-Based Modelling the system under analysis is modelled

using a set of autonomous decision-making entities called agents. Each agent takes decisions on

the basis of a set of rules, and can interact with other agents. Agents can emulate the behaviour

of different entities as, for instance, generation, demand, or retailing entities. For this reason, the

problem cannot be translated in a single mathematical global formulation, because there are several

agents in an electricity market, with different goals and various behaviours, and also with different

constraints determining their behaviour. The next sections will address the agents definition used

in the scope of the electricity market considered in this work.

53
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4.2 Agents Model Definition

As mentioned in Section 3.4, an agent is an entity that can be viewed as perceiving its envi-

ronment through sensors and acting upon that environment through actuators. The use of the term

percept refers to the agent’s perceptual inputs at any given instant. An agent percept sequence

is the complete history of everything the agent has ever been exposed to. In general, an agent’s

choice of an action at any given instant can depend on the entire percept sequence observed to date

[9]. An agent is basically a computer system which is situated in some environment, and that is

capable of selecting autonomous actions in this environment in order to meet its design objectives.

The agents are built in order to carry out tasks and have to take decisions so that they can fulfil

that task. One way of doing this consists of defining the task of an agent in an indirect way, using

for instance a performance measure, as for example a utility function as detailed in [112]. A utility

function can be defined as a numeric valued function that represents how "good" the state of the

agent is, so that in general the larger value of the utility, the better. The task of the agent is then to

pass to states that progressively increase the utility value used to measure how the specified task is

accomplished. It is also important to clarify that the user does not indicate to the agent how this is

to be done, given that each agent will have to decide how to evolve using the rules that are inherent

to itself and the interactions with the other agents [112].

In [9, 76, 77, 78] the authors distinguish between an agent and an intelligent agent, which is

required to be rational and having learning capabilities. There is no universally accepted definition

of the term agent, and indeed there is a good deal of ongoing debate and controversy on this very

subject [78]. The agent concept considered in this work was detailed in Section 3.4.

A simple formalization of the abstract view of agents is presented in [78, 113] and it is used in

this PhD work. This formulation uses a simple and systematic decision-making approach, based on

the simulation environment as a Markov Decision Process (MDP). MDPs have been widely used

and studied in several fields, from Artificial Intelligence to Operational Research and Economics

[113]. Let us assume that the state of the agent’s environment can be characterized as a set S =

[s1,s2,...] of environment states. At any given instant, the environment is assumed to be in one of

these states. The "taking decisions" capability of an agent is assumed to be represented by a set A

= [a1,a2,...] of actions. Then in an abstracted way, an agent can be viewed as a function [78]:

action : S∗ −→ A (4.1)

which maps sequences of environment states to actions. This generic equation refers to an agent

modelled by a function of a generic type. The intuition is that an agent decides what action to

perform on the basis of its history experiences to date. These experiences are represented as a

sequence of environment states, that the agent has thus far encountered. The behaviour of an
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environment ϕ(S) can be modelled as a function [78]:

env : S×A−→ ϕ(S) (4.2)

which takes the current state of the environment s ∈ S and an action a ∈ A performed by the agent,

and maps them to a set of environment states env(s, a) that could result from performing action a

in state s.

It is possible to represent the interaction between an agent and its environment as an history.

An history h is a sequence of a set of actions given by:

h : s0
a0−−→ s1

a1−−→ s2
a2−−→ s3

a3−−→ ...
an−1−−→ sm

an−−→ ... (4.3)

where s0 is the initial state of the environment (agent’s state when the agent starts performing), an

is the nth action that the agent chose to perform, and sm is the mth environment state which is one

of the possible results of executing action an−1 in state sm−1.

The characteristic of an agent action : S∗ −→ A in an environment env : S×A−→ ϕ(S) is the

set of all histories that satisfy the properties (4.4) and (4.5).

∀n ∈ N, an = action(s0,s1, ...,sm) (4.4)

∀m ∈ N such that m > 0, sm ∈ env(an−1,sm−1) (4.5)

Considering as hist(agent, environment) the set of all histories of an agent in its environment, it

is possible to say that agents ag1 and ag2 are behaviourally equivalent with respect to environment

env if condition (4.6) holds.

hist(ag1, env) = hist(ag2, env). (4.6)

In a real operational world, the most complex agents are the ones whose interaction with their

environment does not end and, in these cases, the histories can be considered infinite [78]. An

example is a taxi driver agent, with infinite histories due to its complex car driving environment

versus an agent playing Tic-Tac-Toe, which has a finite set of histories related to its limited set of

plays.

4.2.1 Agents and Objects

When we talk about agents, it is important to clarify some aspects, and an important one is the

difference between agents and objects. Software agents comprise two basic properties. They are
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autonomous and are situated in an environment. Objects from object-oriented programming are

defined as computational entities that encapsulate some state, are able to perform actions, or meth-

ods on this state, and communicate by message passing [78, 112]. In [114], the authors support

the idea that agents in a multi-agent system are surrounded by objects (tools or instruments) and

services that affect their policy selection by shaping their surrounding environment. For this rea-

son they propose a unifying abstraction that can be used to model and engineer the world around

agents of an Agent-Based Model. They introduce these objects as Artefacts.

According to this new perspective, Agent-Based Models are built and engineered based on two

fundamental computational abstractions, agents and artefacts. Agents are autonomous, proactive

entities that encapsulate control capabilities, and are in charge of the goals/tasks that altogether

define and determine the whole model behaviour. Instead, artefacts are passive, reactive entities

in charge of the services and functions that make individual agents work together in a multi-agent

system, and shape agents environment according to the agent needs [114]. In [112] the authors

nicely summarized objects and agents using the following slogan: "Objects do it for free; agents

do it because they want to" or as presented in [78] "...agents do it for money".

4.2.2 Utility Function

In order to get the agent to do a task, it is necessary somehow to communicate the desired

task to the agent. This implies that the task to be carried out must be specified by the user in

some way. An obvious question is how to specify these tasks or, how to tell the agent what to do

[112]. But because we are talking about Agent-Based Models, we want to tell agents what to do

without telling it how to do it. One way of doing this is to define tasks indirectly, via some kind of

performance measure for instance associating utilities to the states of the environment [9, 112].

A utility, or a utility function (also called an objective function or pay-off function [9]), is a

numeric representation of how good the state is. The higher the utility, the better for the agent.

The task of the agent is then to find the states that maximize the utility, without being specified to

the agent how this is to be done. According to [112], in this approach a task specification would

simply be a function as (4.7):

u : S−→ R (4.7)

This function associates a numeric real value with every environment state. Given such a

performance measure, it can be then defined the overall utility of an agent in several ways. One

way is to define the utility of the agent as the utility of the best state that might be encountered

by the agent. Another way might be to define the overall utility as the average utility of all states

encountered. There is no right or wrong way and the measure depends on the type of task you

want your agent to do.

One of the main disadvantages of this approach is that utilities are only assigned to local states.

It is difficult to specify a long-term view when assigning utilities to individual states. To get around
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this problem, it is possible to specify a task as a function u which assigns a utility not to individual

states, but to a set of state runs [112], leading to (4.8).

u : ℜ−→ R (4.8)

Assuming that the utility function u has some upper bound, then it is possible to define the

concept of optimal agents. The optimal agent is the one that maximizes the expected utility [112].

Let us consider that P(h | Ag, env) represents the probability that history h occurs when agent Ag

is placed in environment env. The optimal agent Agopt in an environment env is defined as the one

that maximizes the expected utility [112] as indicated in (4.9).

Agopt = argmax ∑
hist(Ag, env)

u(h) P(h | Ag,env) (4.9)

This representation is identical to the notion of maximizing an expected utility in decision

theory as presented in [9].

4.2.3 Agents Environment

As mentioned in Section 4.2, agents are autonomous and are situated in an environment. The

complexity of the decision-making process can be affected by a number of different environmental

properties. In [9] the authors suggest the following classification of the environment properties:

• Observable vs partially observable. An observable environment is one in which the agent

can obtain complete, accurate, up-to-date information about the environment’s state. Most

moderately complex environments (including, for example, the everyday physical world and

the Internet) are partially observable. The more accessible an environment is, the simpler it

is to build agents to operate in it;

• Single-agent vs. multi-agent. The distinction between single-agent and multi-agent environ-

ments is more or less simple enough. For example, an agent solving a crossword puzzle by

itself is clearly in a single-agent environment, whereas an agent playing chess corresponds

to a two agent environment and in general to a multi-agent environment;

• Deterministic vs stochastic. A deterministic environment is one in which any action has a

single guaranteed effect. There is no uncertainty about the state that will result from per-

forming any specific action. However the physical world can be to all intents and purposes

regarded as stochastic. A stochastic or non-deterministic environment has always some level

of randomness in the actions results. These environments present larger problems for the

agent designer;
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• Episodic vs sequential. In an episodic environment, the performance of an agent is depen-

dent on a number of discrete episodes, with no link between the performance of an agent

in different scenarios. The next episode does not depend on the previous one. An exam-

ple of an episodic environment would be a mail sorting system. Episodic environments are

simpler from the agent developer’s perspective because the agent can decide what action

to perform based only on the current episode. Differently, in sequential environments, the

agent’s current decision could affect all future decisions. An example is a chess game;

• Static vs dynamic. A static environment is one that can be assumed to remain unchanged

except by the performance of actions by the agent. A dynamic environment is one that

has other processes operating on it, and which hence changes in ways beyond the agent’s

control. The physical world is an highly dynamic environment;

• Discrete vs continuous. An environment is discrete if there are a fixed finite number of

actions and percepts in it. The authors in [9] give a chess game as an example of a discrete

environment, and taxi driving as an example of a continuous one.

The most complex general class of environments are those that are partially observable, multi-

agent, non-deterministic, sequential, dynamic, and continuous [9]. Table 4.1 presents some typical

classifications of environments.

Table 4.1: Examples of task environments and their characteristics.

Task Environment Observable Agents Deterministic Episodic Static Discrete
Crossword puzzle Fully Single Deterministic Sequential Static Discrete
Chess with a clock Fully Multi Deterministic Sequential Semi Discrete
Poker Partially Multi Stochastic Sequential Static Discrete
Backgammon Fully Multi Stochastic Sequential Static Discrete
Taxi driving Partially Multi Stochastic Sequential Dynam. Continu.
Medical diagnosis Partially Single Stochastic Sequential Dynam. Continu.
Image analysis Fully Single Deterministic Episodic Semi Continu.
Part-picking robot Partially Single Stochastic Episodic Dynam. Continu.
Refinery controller Partially Single Stochastic Sequential Dynam. Continu.
English tutor Partially Multi Stochastic Sequential Dynam. Discrete

It is important to note that these classifications are not always "black and white". For example,

medical diagnosis is episodic if the task is only to select a diagnosis given a list of symptoms. The

problem is sequential if the task can include proposing a series of tests, evaluating the progress of

the patient over the course of treatment, and so on.

4.2.4 Agents Decision Making

In Decision Making, a sequential decision problem for a fully observable, stochastic environ-

ment with a Markovian transition model and additive rewards is called a Markov Decision Process
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(MDP) which consists of a set of states (with an initial state s0), a set of feasible actions associated

to each state, a transition model and a reward R from utility function. The solution of the prob-

lem consists of choosing the optimal action, taking into account the current state, according to a

specific utility function. But in this situation, it is assumed that the environment is fully observ-

able. With this assumption, the agent always knows which state it is in. This, combined with the

Markov assumption for the transition model, means that the optimal policy depends only on the

current state [9, 113].

When the environment is only partially observable, the model definition is not so clear. The

agent does not necessarily know which state it is, so eventually it cannot execute the recommended

action for that state. In practise it does not have all information about the states and the environ-

ment. For this reason, partially observable MDPs (POMDPs) are usually much more difficult to

deal with than ordinary MDPs [9]. For the agent, the utility of a state s and the optimal action a in

s depend not just on state s, but also on how much the agent knows when it is in s.

In the MDPs decisions making we deal with uncertain environments. But in a multi-agent sys-

tems the uncertainty can also came from other agents decisions. In these cases, Game Theory can

also be used to design intelligent multi-agent systems that solve complex problems. In general, a

set of strategies from the agents leads to an equilibrium if no player can benefit by changing strate-

gies, given that every other player maintains the same strategy. An equilibrium can be interpreted

as a local optimum in the space of agents sequential solutions [9].

In this work the agents decision making will be based on MDPs, and for that reason Game

Theory is out of this scope. In practise, we considered that the other agents uncertain decisions

will be part of the environment uncertainty. We will return to the MDPs environment modelization

in Section 5.2, when we describe the Reinforcement Learning technique used in this work. Rein-

forcement Learning is used when the probabilities or rewards in MDPs are unknown and allows

an agent to improve its behaviour and its decisions from experience in sequential and uncertain

environments [115].

4.3 Proposed Agent-Based Model

One important question to note at this point in the proposed model is the difference between

agents and artefacts as detailed in 4.2.1. The first ones are autonomous and proactive while arte-

facts are passive and only execute functions. In this work, and from now on, we will refer to the

set of agents and artefacts as agents and we will distinguish the artefacts as agents with artefact

behaviour.

In order to simulate an electricity market in general, and the MIBEL in particular, using an

Agent-Based platform it is necessary to define the structure of the model and the type of agents

to be used. Having in view the application to the MIBEL and given that each electricity market
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has it own peculiarities and rules, it is important to tune this definition considering the MIBEL

arrangements and the players that operate in this market.

In the restructuring process, power systems were divided into multiple components including

generation, transmission, distribution, retailing, System and Market Operators, which are the ma-

jor participants on an electricity market. In Chapter 2 it was presented the market restructuring

that led to the MIBEL organization. In the next sections it will be presented the characterization of

the agents used in this PhD thesis in order to accommodate the mentioned MIBEL organization.

4.3.1 Generic Agent Definition

In this work the following types of agents or artefacts were considered: Hydro Agents orga-

nized in four classes depending on the type of hydro unit, Thermal power plant Agents, Renewable

unit Agents, Market Operator Agent, regulated Demand Agents, free consumer Demand Agents

and Regulatory Agent. The Transmission System Operator was not simulated because the trans-

mission network or Ancillary Services markets were not considered. Not considering the transmis-

sion network does not compromise the application of the model to the MIBEL day-ahead market

since currently the level of congestion between Portuguese and Spanish areas is very reduced, as

well as the internal congestion in each country. The retailers were also not simulated since their

treatment was not objective of this work. However, retailers can be represented as an aggregation

of regulated and free consumer agents.

Hydro Agents will bid their energy in the day-ahead market and their strategy will depend on

the type of hydro reservoir. The bidding price strategy will be determined by the water value in

the reservoir, by a learning procedure and by a decision supporting optimization tool.

Regarding the Thermal power plant Agents, the variable generation cost will be used as the

bid price offered in the market. This cost is dependent on the technology and the fuel. A learning

procedure will be also considered.

Renewable Agents will bid at 0 e /MWh in order to be accepted in the market, and to ensure

their dispatch has priority according to the legislation in force to the majority of these generators in

Portugal and Spain. They will represent wind, solar and other feed-in tariff technologies. Although

there are some of these generators already operating in the market regime, it was considered in

this work that their bid strategy is similar to the feed-in generators.

The Market Operator Agent will be an artefact agent, given that it has not associated to any

decision making process. It performs the market clearing operations determining the market price

and communicating the market results to all market agents. The clearing procedure will be pre-

sented in Section 4.3.6.

The presented model incorporates two types of Demand Agents. It considers inelastic Demand

Agents to supply regulated consumers. These agents bid at a constant price coinciding with the
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maximum administrative price admitted in the MIBEL (180 e /MWh) in force until date. The

model also considers elastic Demand Agents that are designed to buy energy to supply clients that

already migrated to the free market, or pumping hydro units. Elastic consumers will be responsible

for some demand response regarding price variations in their buying curves.

Finally, the Regulatory Agent overlooks the behaviour of generation agents namely checking

if bidding prices differ beyond a specified tolerance from the marginal price of thermal stations or

the water value for hydro stations. If that happens it can impose a penalization to these units or

limit the bidding price so that, as the simulation evolves, the bid prices more closely follow the

marginal prices that are typical for each technology.

4.3.2 Hydro Agent Definition

4.3.2.1 General Hydro Model

Hydropower is one of the leading renewable sources for electricity generation globally. It uses

water resources from rivers to generate electricity. It is a very flexible and reliable renewable en-

ergy source, capable of meeting base load electricity requirements as well as, with large reservoir

and pumped storage technology, store energy and meeting peak and unexpected demand variations

due to shortages or to cope with intermittent power sources.

In a simple way, we can consider three basic types of hydropower stations:

• Run-of-river, where the electricity is generated through the water flow of a river, in units

having small reservoirs;

• Reservoir, where electricity is generated through the release of the water stored in large

reservoirs;

• Pumped-storage, where stored water is recycled by pumping it back up to a upstream reser-

voir in order to be released again later.

In economic terms, the key question in hydro generation is the time usage of the water in the

reservoir, or its water value, because hydro units have a marginal generation cost near zero. If

there are enough storage capacity, the water can be used immediately or alternatively be used in

the future. The decision analysis of when to operate hydro units is therefore a dynamic one, in

contrast with a fossil fuel generator. The question then is how to utilize the available generation

capacity in each time period.

In the developed model, Hydro station Agents will bid their energy in the market and their

strategy is very dependent on the type of reservoir and inflows. These bids have two components,

the quantity and the price. In terms of the bidding quantity, the agents will offer always the

maximum available power. This assumption is justified for two reasons. The first one is to simplify

the model, due to the increasing number of combinations of possible decisions taken by the agents
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if more bid quantities were used. The second one is because these power plants are typically

operated in the day-ahead market at nominal power for efficiency reasons. Depending on the

hydro station type, the bidding price strategy can be determined by [116]:

• the water value in the reservoir;

• by a learning bid up/down(z) function;

• by a set of decision support tools.

The water value function f(water value) provides each plant with a reference bid price that

changes every day depending on the reservoir level, as illustrated in Figure 4.1. This means that,

for example, if the storage level is higher, then the value of the water stored is lower and for that

reason a lower biding price can be used. In practice, a general Hydro Agent will have a bid price

strategy modelled by (4.10) and illustrated in Figure 4.1.

Bid price = f(water value) + bid up/down(z) (4.10)

Reservoir Level

Water 

Value

Min Max

Figure 4.1: Base bidding taking into account the water value and reservoir level.

The water value function (4.10) is an external input to the ABM model and it is calculated

for each weak. For each period under analysis the value of the water corresponds to the shadow

price of the water balance equation established for that unit and for that period and included in the

optimization Hydro Scheduling Problem presented in [48]. This model aims at maximizing the

profit of a set of hydro power plants operating in an electricity market environment, taking into

account as input a set of fixed market prices. By running this model for a period of one year, it is

possible to obtain the shadow price of the water balance equations established for each week, and

by consequence the information of the water value. This model will be detailed in Section 5.3.4.

The bid up/down(z) function in (4.10) models the strategy of each agent by increasing or

decreasing its bid price in an attempt to increase the profit. This function is given by a learning

procedure modelled using a sigmoid function that reflects the risk profile of each agent. If an agent

has an higher risk profile, the bid range will be larger (chart on the left side of Figure 4.2). On the
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other hand, a low risk profile leads to a narrower bid range as illustrated by the chart on the right

side of Figure 4.2.

Action (z)

Max bid down1

Max bid up1

Action (z)Max bid down2

Max bid up2

a) b)

Figure 4.2: Bidding strategy taking into account the risk profile of each agent (chart a) for large
risk profile and chart b) for lower risk profile).

This strategy is an adaptation of the derivative-following strategy discussed in [117]. A deriva-

tive follower does incremental increases (or decreases) in price, continuing to move its price in the

same direction until the observed profitability level falls. At this point, the direction of the move-

ment is reversed. This strategy is combined with a learning methodology, that in this work will be

a Reinforcement Learning algorithm, namely the Q-Learning as detailed in Chapter 5.

Finally, some decision support tools are used to help Hydro stations Agents to build their bids.

For that, an optimization model for the Hydro Scheduling Problem will be used to compute the

water values in reservoirs, but also for scheduling the energy for the day-ahead market. Addition-

ally, a market price forecast model based on Neural Networks is used. All these models referred

above will be detailed in Chapter 5.

As mentioned in Section 4.3.1, the Hydro Agents bidding price will depend on the type of

hydro station. The developed ABM model organizes the hydro units in four types having different

bidding strategies, namely Run-of-river, Storage, Storage Pumping and Pure Pumping that will be

detailed in the next sub-sections.

4.3.2.2 Run-of-river Hydro Agent

Run-of-river units are modelled by agents that typically have a water value function constant

and close to 0. Since storage capacity is reduced, these units will bid on quantities, that is, the

selling bid quantity depends on the inflows. In order to maximize their revenues, these agents

will use the Hydro Scheduling model and the price forecast model to be detailed in Section 5.3.3

and Section 5.4, trying to schedule their bids in the higher prices hours. The bid price will be 0
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e /MWh, to avoid spills. The learning procedure will not be used in this case because the bid price

is 0 e /MWh. Figure 4.3 represents the Run-of-river Hydro Agent bidding strategy.

Reservoir Water Value

Learning Procedure

Decision Support Tools
Run-of-river Agent

Figure 4.3: Bidding strategy for a Run-of-river Hydro Agent.

4.3.2.3 Storage Hydro Agent

Storage Hydro Agents will have a bidding price directly related with their water value function

as well as to their bid up/down learning strategy. This value will depend on their reservoir capacity

and their inflows. For instance, if the reservoir is totally full, the bidding price will be 0 e /MWh,

to avoid spills and because the water stored has a very low value. On the other hand, if the

reservoir is near the lower bound, the bidding will be 180 e /MWh, because the agent doesn’t

want to generate, and this is the maximum value allowed in day-ahead market. The bidding price

strategy is combined with a learning methodology in order to maximize the profits according to

the market dynamics. The bid quantity in this case will always correspond to the maximum power

capacity. These agents don’t use the Hydro Scheduling model and the price forecast model to bid

the energy in higher prices for the next day. Instead, they bid in the market a value coming from

the water value of the reservoir as illustrated in Figure 4.2 and adapted by the bid up/down strategy

in expression 4.10. These units generate only if the market price in each hour is equal or larger

than the water value. If not, the water is stored to be used in other periods. Figure 4.4 represents

the Storage Hydro Agent bidding strategy in a schematic way.

For simplification purposes, this bidding price strategy remains equal for the 24 hours of each

day, which means that the bidding price only changes when going from one day to the next one.
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Reservoir Water Value

Learning Procedure

Decision Support Tools
Storage Agent

Figure 4.4: Bidding strategy for a Storage Hydro Agent.

4.3.2.4 Storage Pumping Hydro Agent

Storage Pumping Agents will have the same strategy as the Storage Agents. In addition, they

will also have the possibility of buying energy to pump water to their reservoirs, taking advantage

of low prices. This buying strategy will depend on the reservoir water value. Basically, this agent

will bid in the market a buying offer corresponding to the water value in reservoir plus the global

turbine/pumping efficiency. For instance, if the water value is 50.0 e /MWh in a given period, and

the global turbine/pumping efficiency is 75%, the buying price will be set at 37.5 e /MWh. This

strategy allows compensating the energy loss in the pumping process. Figure 4.5 represents the

Storage Pumping Hydro Agent bidding strategy in a schematic way.

Reservoir Water Value

Learning Procedure

Decision Support Tools
Storage Pumping Agent

Buy energy to pump

Figure 4.5: Bidding strategy for a Storage Pumping Hydro Agent.
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As for the Storage Hydro Agents, this bidding price strategy remains unchanged for the 24

hours of each day, which means that the bid price only changes with different days.

4.3.2.5 Pure Pumping Hydro Agent

Pure Pumping Agents are assigned a zero water value because these are usually small reservoir

units. They adopt an arbitrage bidding strategy taking advantage of the estimated price difference

between peak and off-peak periods and considering a global turbine/pumping efficiency of 80%.

In order to maximize their revenues, these agents will use the Hydro Scheduling model and the

price forecast model to be detailed in Section 5.3.3 and Section 5.4, trying to schedule their bids

on the higher prices hours for generation, and on the lower prices hours for pumping. The buying

bid price will be the maximum value allow in the market, and the selling bid will be at 0 e /MWh.

This guarantees that any energy bought is always also sold in the market. It is clear that the buying

price will at the end not be the bided one but a lower value corresponding to the clearing market

price. Similarly, the selling price will not be 0 e /MWh but it will also correspond to the market

clearing price in that periods.

Taking into account that there will be always a difference between day-ahead forecasted prices

and real ones, and given that the operation decisions of these agents will also impact on the final

market prices, the buying energy for pumping purposes will be limited by a learning function ϑ ,

in order to reflect the difference between the forecasted prices and real prices. In fact, if the energy

to pump is increased, then the demand to supply will increase, the market price will also increase

and the profit of the pumping unit will be decreased thus turning more risky the operation of these

units. The mentioned limiting parameter is updated along the simulation and it reflects the relation

between the forecasted prices and the real market prices. Furthermore, the Hydro Scheduling

model, to be detailed in Section 5.3.3, will have an additional feature. It will consider the price

maker effect of the agents in the day-ahead market as detailed in [118] to contribute to take this

situation into account. Figure 4.6 represents the Pure Pumping Hydro Agent bidding strategy in a

schematic way.

4.3.3 Thermal Power Plants Agents

A thermal power plant is a power station in which energy from heat is converted into electric

power. These power stations can have different configurations, depending on the primary energy

or on the technology used. In a simple classification we can have:

• Conventional thermal power plants: they operate by using steam to activate a turbine, and

use a fossil fuel, such as coal, gas and oil, to heat the water;
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Reservoir Water Value

Learning Procedure

Decision Support Tools
Pure Pumping Agent

Figure 4.6: Bidding strategy for a Pure Pumping Hydro Agent.

• Nuclear power plants: this type of power station uses a nuclear reactor to heat water and

operate a steam turbine. They typically are base load runners because they cannot easily

change their output;

• Gas turbines: they use a gas turbine to generate electricity and are typically used to comple-

ment the electricity generation of other thermal plants because they can start running very

rapidly in the event of a failure of other power plants or of unexpected demand peaks;

• Combined cycle gas power plants: these stations combine a gas turbine and a traditional

steam turbine to generate electricity. Unlike conventional thermal power plants, the residual

energy of the gases of the gas turbine is used in a steam turbine for a combined cycle turning

these plants more efficient than conventional ones;

• Co-generation power plants: these facilities produce heat as their principal role (typically

for industrial purposes) and simultaneously electricity as their secondary role in a single

installation and employing a single fuel. They are typically formed in industrial units in

which the production of steam is the primary goal;

• Renewable energy thermal power plants: some examples are biomass fuelled power plants

that may use municipal solid waste, landfill methane, or other forms of biomass, geothermal

power plants that use steam extracted from hot underground soil or solar thermal electric

power plants that use solar energy to heat water to run the generator.

The economics of a thermal power plant is basically a matter of costs. As any other generation

technology, a thermal station depends on fixed costs and variable costs. While the fixed costs are

relatively known and largely correspond to investment costs, the variable cost of a thermal power

plant is very complex to deal with due to the number of variables that have a great impact on them

like start-up costs, minimum run time, ramps or the different efficiency for different load levels.
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In the developed ABM model, Thermal power plant Agents are modelled in a similar way as

Storage Hydro Agents, but where the water value function used by hydro units is substituted by the

marginal cost of thermal units that is dependent on the technology and the fuel. The start-up costs,

minimum run time, ramps and variable efficiency for different load levels will not be considered

in order to simplify the modelization. In terms of the bidding quantity, the agents will always

offer the maximum available power, in the same way as the Hydro Agents. The bidding price

will correspond to the marginal cost and, as for hydro units, these agents will also have a learning

procedure. This marginal cost will be determinate mostly by the fuel type. In the special case of

nuclear power plants, the bidding price is set at 0 e /MWh, because these power plants cannot be

dispatched in an hourly or daily schedule. Figure 4.7 represents the Thermal Agent environment

considered in the proposed model in a schematic way.

Fuel Type

Learning Procedure

Decision Support Tool Thermal power plant Agent

Figure 4.7: Bidding strategy for a Thermal Agent.

This bidding price strategy is equal for the 24 hours of each day, which means that the bid

price will only change when going from one day to another.

4.3.4 Demand Agents

The developed model incorporates two types of Demand Agents. In the first place, we con-

sidered inelastic Demand Agents, that basically have the function of supply regulated consumers.

These agents bid at a constant price coinciding with the maximum administrative price admitted

in the MIBEL (180 e /MWh). The model also considers elastic Demand Agents that are designed

to buy energy to supply clients that already migrated to the free market or pumping hydro units.

In our work we will only consider the pumping units. Elastic consumers will be responsible for

some demand response regarding price variations in their buying curves.

In terms of the energy quantity for inelastic demand, the developed model uses the demand

patterns obtained from real data to represent the energy quantity offered in the day-ahead market.
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The hydro power plants with pumping capability will act like Demand Agents as detailed in

Sections 4.3.2.4 and 4.3.2.5.

4.3.5 Renewable Power Plants Agents

The widespread adoption of renewable energy technologies in modern power systems is cre-

ating a great number of challenges, and one of them is the impact on the current design of the spot

markets. The transition to a global renewable energy system based on variable renewable energy

challenges the cost structures, as renewable technologies have very low, near zero, marginal cost

because they typically don’t have fuel consumption.

In the present work, Renewable Agents (that are mainly wind, solar and co-generation) will

bid at 0 e /MWh in order to ensure their dispatch priority according to the legislation that is still

in force for most of them, and also because this is a reasonable strategy for the remain Renewable

Agents that have to participate in the market. In fact, for these agents, although bidding at 0

e /MWh, they will be paid by the system marginal price that is determined by the last cleared unit,

in several cases associated to thermal ones. In practice, these agents will have no decision to take,

and will behave like an artefact, despite having a structure of an decision agent.

In terms of the energy quantity, the developed model uses the generation patterns obtained

from real data to represent the energy quantity offered in the day-ahead market.

4.3.6 Market Operator Agent

In the present work, the Market Operator is responsible for the Pool electricity market clearing.

Its function is purely economic, and once the market is cleared it sends the results to the other

agents. This agent will not adapt its behaviour, and has no utility function, so that it is considered

as an artefact agent. Its main goal is to clear the market in terms of obtaining the market clearing

price and the market clearing quantity. In order to simplify the model, complex bids coupling for

the different trading periods will not be considered. In order to obtain the market clearing price and

cleared bids, the Social Welfare Function (4.11) is maximized subject to a number of constraints

(4.12) to (4.14).

max
DN

∑
d=1

C o f
Dd ×PDd −

GN

∑
g=1

C o f
Gg ×PGg (4.11)

0 6 PDd 6 P o f
Dd (4.12)

0 6 PGg 6 P o f
Gg (4.13)
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DN

∑
d=1

PDd =
GN

∑
g=1

PGg (4.14)

In this formulation we have:

C o f
Dd represents the maximum price at which buying agent Dd is available to pay;

C o f
Gg represents the minimum price at which the generation agent Gg is available to sell;

P o f
di is the energy in the buying offer Dd ;

P o f
Gg is the energy in the selling offer Gg;

PDd is the cleared energy in the buying offer Dd ;

PGg is the cleared energy in the selling offer Gg;

DN is the total number of buying offers;

GN is the total number of selling offers.

In this formulation we are maximizing the difference between the amount that buyers admit to

pay and the amount that sellers admit to receive. This objective function can also be interpreted as

the sum of the excess of buyers and the excess of the sellers. The excess of the buyers represents

the difference between the amount they admitted to pay and the amount they will actually pay

given they will pay the market price. On the other hand, the excess of the sellers represents the

difference between the amount they will be paid using the market price and the amount they admit

to receive using their bids. Figure 4.8 gives a visual representation of this formulation.

Price

(€/MWh)

Quantity

(MWh)

Market 

Clearing Quantity

Market 

Clearing Price

Selling Offers

Buying Offers

Excess of buyers

Excess of sellers

Figure 4.8: Social Welfare Function visual representation.
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This is a linear optimization problem to be solved for each trading hour. Given that we are not

using complex bids, the optimization problem for one hour is independent from the ones on other

periods. The market price corresponds to the dual variable of the equality constraint (4.14) and it

is interpreted as the impact on the objective function from increasing the demand by one unit.

4.3.7 Regulator Agent

The Regulator Agent will set the rules for the market management, and it will observe the

behaviour of all the agents. The mentioned rules are related with the Pool market structure (uni-

form bid, pay as bid, with bilateral contracts or not), price caps, tariffs and fees. This agent can

have access to all information of other agents, as for example, fuel costs, water values or biddings

strategies.

Regarding the monitoring of the agents, it is possible to apply penalties as a way to avoid

market power. The Regulator Agent can have a learning parameter in order to adapt this behaviour.

Its utility function will correspond to guarantee that all the market rules previously specified are

accomplished and it can penalize agents in case irregular actions are detected.

In our work, The Regulator Agent will have a very small field of actuation due to a very spe-

cific characteristic of MIBEL at date. The installed overcapacity will lead to an "auto-regulation"

regarding market power, analysed in Chapter 7 when presenting and discussing the results. There-

fore, its only function will be to define the market rules (in our case mainly the price caps) and

compare the historical bids from Thermal and Hydro Agents to their marginal costs and water

vales, respectively. This means that the Regulator Agent will act like an artefact.

4.3.8 Agents Environment in the Implemented Model

As mentioned in Section 4.2.3, the complexity of an Agent-Based Model can be driven by its

environment. In the present work, only the day-ahead spot market is simulated, in line with the

main goal of this PhD thesis. This means that Bilateral Contracts, the Intraday and the Ancillary

Service markets of MIBEL are not considered. This fact leads to an important simplification on

environment definition, and we can consider that the agents environment basically corresponds to

the day-ahead spot market.

In this environment, the Hydro, Thermal, Renewable and Demand Agents will bid their energy

and price in the day-ahead market and receive only information on the clearing price and if their

bids were cleared or not.

The Market Operator will get the market clearing price for each trading day and the Regulator

Agent will check if the bidding prices differ beyond a specified tolerance from the marginal price

of thermal stations or the water value for hydro stations. The detailed function of Regulator will

be detailed in Section 7.2.5.
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The interconnection capacity between Portugal and Spain was not considered which means

that Portugal and Spain are taken as single market. This assumption is close to reality since

from 2015 to 2019 congestion occurred in less than 6% of the hours of these years, that is, market

splitting was rarely used and there was in fact a common Iberian electricity price in more than 94%

of the hours. This is clearly very different from the situation from 2007 to 2010 when different

prices existed in the two countries for 70% to 80% of the hours in these years. The strong decline

of congestion hours from 2010 to 2019 turns this assumption a robust one.

For the interconnection between MIBEL and the other power systems (France and Morocco)

it is used the real data patterns for import and exports, considering an import price of 0 e /MWh

and an export price of 180 e /MWh, in order to give the flows priority in the dispatch.

Figure 4.9 represents in summary the agents environment adopted in the developed model.

Regulator Agent

€/MWh

GWh

Market Operator

Sellers Buyers

Interconnections

H1, H2, … H24 H1, H2, … H24 …H1, H2, … H24 H1, H2, … H24

Day 1 Day 2 Day 3 Day 365

Figure 4.9: Agents environment in proposed model.

In terms of classification oh this environment considering the items detailed in Section 4.2.3,

it can be considered as:

• partially observable, as the agent cannot obtain complete information about the environ-

ment’s state, such as the bids from other agents, and the only information they get is the

market clearing price for each trading period;

• multi-agent, because there are several and different agents interacting with the environment;

• stochastic, because there is no certainty about the state that will result from performing

an action. In fact, the agents don’t know if taking a pre-determinate action will lead to a

clearing in the market;

• sequential, as the performance of an agent is dependent on a number of discrete episodes,

which are the several trading hours and days of the day-ahead market;
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• static, as the environment can be assumed to remain unchanged except due to the actions

selected by the agents;

• continuous, because there is an infinite number of actions and percepts on the environment

which are represented by the hourly decisions of the agents through the environment.

Finally, when we use a Markov Decision Processes to model an Agent-Based Model, one of

the most important consideration of the environment is the definition of the states and actions for

each agent. This definition will be detailed in Chapter 5 at the same time that the Q-Learning

procedure is explained.

4.3.9 Utility Function

As mentioned in Section 4.2.2, utility functions are the main drivers for decision making crite-

ria and allow each agent to rank their decisions and make a choice. Each agent seeks to maximize

its own utility function derived from their rewards and can combining multiple objectives. The

Agent-Based modelization allows each agent to have a set of personal objectives, such as profit,

risk exposure, market share, etc.

In the proposed model the utility function will be the difference between the day-ahead market

revenues in current period compared with the revenues obtained in the period before. The revenues

in each period will be given by the difference between the sales in the market and the "cost" of

energy (in the case of hydro reservoirs the water value is used). If the agents doesn’t clear in the

market, its revenues will be zero. As a consequence, the utility function for agent ag in period t

should be given by 4.15.

utilityag
t = Market_Revenuest −Market_Revenuest−1 (4.15)

The higher this difference is, the higher its utility will be and more likely the correspond-

ing action will be selected by the corresponding agent. This formulation using the variation of

profit between two consecutive periods is related with the states definition of the Markov Decision

Process and with the Q-Learning procedure that will be detailed in Section 5.2.2.

Additionally in the Q-Learning procedure, we propose to add two different states that consider

the loss of opportunity in case of the agent is not being cleared in all profitable hours in the day.

As mentioned in Section 4.3.2.3, in this work the bidding price strategy will be the same for the

24 hours of each day, and the utility will be calculated for the entire simulation day. This means

that, for example, a price-taker Thermal Agent having 30 e /MWh of marginal cost, bidding 40

e /MWh, in a day-ahead market with hourly prices of 35 to 60e /MWh has a loss of opportunity of

being cleared at 35 e /MWh when it is not cleared, despite getting revenues in other hours. Taking

this into account we introduce a new parameter to penalize the utility function if this situation
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occurs. This penalty factor is directly the loss of opportunity revenues that the agent had. Having

these ideas in mind, the complete utility function is given by (4.16).

utilityag
t = Market_Revenuest −Market_Revenuest−1−Opportunity_Losst (4.16)



Chapter 5

Additional Models included in the
developed ABM

5.1 General Considerations

As detailed in Section 4.3.1, depending on its type, the Hydro Agents price strategy will be

determined by the water value on the reservoir, by a learning procedure and by a decision support-

ing optimization tool. These models will provide the agents with a strategy adaptation capability

(Machine Learning procedure), and also will give them a decision supporting tool to the day-ahead

market price biding. These models and techniques are as follows:

• Q-Learning procedure. This Reinforcement Learning technique will give the agents a learn-

ing and adaptation capability through a trial and error methodology;

• Hydro Scheduling Problem (HSP) optimization model. This model was initially presented

by the author in [48] and it was continuously enhanced during this PhD work as reported

in [118, 119, 120]. It will help Hydro Agents in the definition of the water value, using a

medium-term version, and in the energy scheduling to the day-ahead market using a short-

term version;

• market price forecast tool, based on a Neural Network, to help Hydro Agents in the defini-

tion of the energy scheduling in the day-ahead market.

In the next sections these methodologies used in the scope of the electricity market ABM

presented in this work will be detailed.

75
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5.2 Q-Learning Procedure

5.2.1 General Description

As mentioned in Chapter 1, the work presented in this thesis uses an Agent-Based Model incor-

porating a Reinforcement Learning approach, namely the Q-Learning procedure. Reinforcement

Learning is used when the probabilities or rewards in Markov Decisions Processes are unknown

and allows an agent to improve its behaviour and its decisions from experience in sequential and

uncertain environments, focusing on the effect of rewards (positive pay-offs) and punishments

(negative pay-offs) in their attempt to achieve a goal [115, 121]. In this methodology agents can

learn the most adequate action by interacting with the environment through a trial and error search.

Reinforcement Learning problems are a sub set of Machine Learning and involve learning

"what to do", in order to maximize a reward. The agent is not told which actions to take, as in

other forms of Machine Learning. Instead, the agent must discover which are the actions that lead

to the higher reward by trying and explore them. In the most complex cases, the actions that can be

taken may affect not only the current reward but also the next one and all subsequent rewards. This

characteristic of not having direct instructions as to what actions to follow, including not having

information of future rewards, demands an extended simulation period, which is one of the main

characteristics of Reinforcement Learning problems [115].

As mentioned in Section 3.5, Reinforcement Learning is different from Supervised Learn-

ing that is currently the learning methodology most studied in Machine Learning. In Supervised

Learning it is used a training set of labelled examples provided by a external supervisor. The

objective of this type of learning is to extrapolate, or generalize, the system responses so that the

same system should act correctly in situations not present in the training set. This is largely used

and it corresponds to a very important type of learning, but by itself it is not the most adequate to

learn from interactive problems. In this kind of problems, it is very difficult to obtain examples

of the desired behaviour that are representative of all the situations with which the agent has to

interact.

Reinforcement Learning is also different from Unsupervised Learning. In Unsupervised Learn-

ing, the problems are typically about finding patterns hidden in collections of unlabelled data. Al-

though it might appear that Reinforcement Learning is a type of Unsupervised Learning because

it does not rely on examples of exact behaviour, Reinforcement Learning tries to maximize a re-

ward signal instead of trying to find hidden structures. Identifying hidden structures in an agent’s

experience using Unsupervised Learning can certainly be useful in Reinforcement Learning, but

by itself it does not address the Reinforcement Learning problem of maximizing a reward signal.

Therefore, Reinforcement Learning is considered to be a specific Machine Learning methodology,

as Supervised Learning, Unsupervised Learning, Deep Learning and others [115].
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One of the main and very specific challenges in Reinforcement Learning is the trade-off be-

tween exploration and exploitation. In order to find the best rewards, the agent has to "exploit"

what it already knows, but it also has to "explore" other situations in order to be able to select

better decisions in the future.

The three main basic classes of methods that use Reinforcement Learning principles are Dy-

namic Programming Methods, Monte Carlo Techniques and Temporal Difference Learning Meth-

ods [121]. The term Dynamic Programming Learning models refers to a collection of algorithms

that can be used to compute optimal policies given a perfect model of the environment as a Markov

Decision Process. Monte Carlo methods aim at solving the Reinforcement Learning problem

based on averaging sample returns (experience) and Temporal Difference Learning Methods is a

combination of the Monte Carlo and Dynamic Programming frameworks. Like Monte Carlo meth-

ods, Temporal Difference methods can learn directly from a set of experiences without a model

of the environment dynamics. Like Dynamic Programming, Temporal Difference methods update

estimates based in part on other learned estimates [115]. Figure 5.1 presents a simplified scheme

of the Reinforcement Learning approaches.

Agent

Environment

action an

state sm

reward rm

Figure 5.1: The Reinforcement Learning process of the agent through its interaction with the
environment.

In Figure 5.1, a scalar reward rm corresponds to each pair state-action (sm,an) and this value

is a function of the state perceived by the agent and the action that was chosen. In the Q-Learning

methodology, the value function is represented by a two dimensional table indexed by state-action

(sm,an) pairs, whose elements are defined as Q-values, or Q(sm,an) [102, 115, 121].

As mentioned in Section 3.5, one of the Reinforcement Learning procedures mostly used

to simulate electricity markets is the Q-Learning algorithm. Q-Learning is a model-free, which

means that it does not need an explicit model of the environment. Instead, the knowledge regarding

the optimal strategy improves while the historic interaction with the environment is being built by

a trial and error simulation. It is a state-dependent algorithm that was originally reported in [122],

to be used with a Markov Decision Process. This is done by evaluating the pay-off that can

be obtained for a given state-action pair Q(sm,an), independent of the policy being followed. It

belongs to Temporal Difference Learning Methods and the main advantage of this algorithm is
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its simplicity: it is easily understood and implemented [121]. For this reason it is an attractive

approach to be used in decision problems as reported in [102, 115, 121].

The agent’s interaction with the environment consists of a sequence of different stages. Let us

consider S = s1,s2, . . . be the set of possible states of the environment and A = a1,a2, . . . be the

set of actions that the agent can take. In the nth episode, the agent procedure using the Q-Learning

methodology can be defined as illustrated in Figure 5.2 [115, 121].

Observe the current state sm ∈ S 

Select and perform an action an ∈ A using a policy 

(example a greedy policy using max Q-value)

Observe the subsequent state sm+1 ∈ S 

Receive an immediate reward rm

n = n +1

Calculate the Q-value of pair the state-action 

Q(sm,an)

Figure 5.2: Steps of the Q-Learning algorithm.

As the Q-Learning focuses on the impacts of rewards on the choices of actions in each state,

the Q-values are obtained by a function that provides the utility that is expected from taking a

given action in a given state. According to [115, 121], the Q(sm,an) function is typically given by

(5.1).

Q(sm,an)
new = (1−λ ) ·Q(sm,an)+λ ·

[
R(sm,an)+ γ ·max Q(sm+1,an)

]
(5.1)

Expression (5.1) gives the Q-value for the pair (sm,an), that is the utility that the agent has from

state s. According to (5.1), only Q-values corresponding to the current state and the last chosen

action are updated. λ is a learning rate ∈ (0,1), that reflects the degree to which estimated Q-values

are updated by new data and can be different in each episode. If λ equals 0 then the agent does

not learn, while if it equals to 1 it induces the agent to consider only the most recent information.

γ is a discount factor ∈ (0,1) that represents the weight given to future reinforcements. A value

of γ equal to 0 makes the agent myopic by only considering current rewards, while values closer
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to 1 turn distant rewards more important [122]. The expression max Q(sm+1,an) represents the

best the agent thinks it can do in state sm+1. In an initial phase, the agents will randomly explore

state to state until they learn and reach the end of simulation period. Then, using these Q-values,

the agents start their biddings taking into account the learned experience. Typically, the learning

process converges when the Q-values do not change more than a pre-determinate convergence

value regarding the values in the Q-matrix that was built in the previous iteration. Then, using

these Q-values, the agents start their biddings taking into account the learned experience. In our

work, these Q-values will be constant updated as we will detailed in Chapter 6.

In the developed model, the Q-Learning procedure is used to model the bid up/bid down

strategy of Hydro Agents and Thermal Agents. During the market operation each agent needs

to meet with success its objective, namely maximizing its utility and each supplier will bid his

maximum capacity as already mentioned in Section 4.3.9. Therefore, the bidding strategy will

result in a bidding price decision problem with incomplete environment information, as each agent

has only information of his own generation cost and the market clearing price.

The Q-Learning algorithm outlined above requires the definition of the states of the agent’s

environment, the possible actions, the reward of each state and the choice of the policy for the

next decision. Each agents needs to meet with success its main objective during the operation

in the market, that is the maximization of its profit. Taking this under consideration, and the

assumption that each supplier bids its maximum available capacity (Section 4.3), the optimization

of the bidding strategy results in a bidding price decision problem. As mentioned in Section 4.3.8,

the environment is partially observable as the agent cannot obtain complete information about the

environment’s state, such as the bids from other agents, and the only information they get is the

results from market clearing price. Taking this in consideration, the states, actions, rewards and

policy that were adopted in this work are detailed in the next subsections.

5.2.2 Definition of the Q-Learning States

As mentioned in Section 4.2, agents are autonomous entities and interact in an environment. In

this work, only the day-ahead market is simulated. This means that Bilateral Contracts, Intraday

and Ancillary Service markets of MIBEL are not considered in this research. This simplifies

the definition of the environment, since we can now consider that the agent’s environment just

corresponds to the day-ahead market. In this environment, the Hydro, Thermal, Renewable and

Demand Agents bid their energy and price and receive information on the clearing price and if

they are cleared or not in this market in each trading period.

When using a Markov Decision Process to model an Agent-Based Model, one of the most

important aspects to define are the states in which each agent can be. In this work we considered

the following 5 possible states:
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• State 1 – the agent has obtained more profit, compared to the previous episode, and all its

energy that could be dispatched in all the 24 trading hours was cleared in the market;

• State 2 – the agent has obtained more profit, compared to the previous episode, but not all

its energy that could be dispatched in all the 24 trading hours was cleared in the market;

• State 3 – the agent hasn’t obtained any profit or loss, compared to the previous episode;

• State 4 – the agent has gained less profit, compared to the previous episode, but not all its

energy that could be dispatched in all the 24 trading hours was cleared in the market;

• State 5 – the agent has gained less profit, compared to the previous episode, and all its energy

that could be dispatched in all the 24 trading hours was cleared in the market.

This is an adaptation of the state’s definition used in [121] and in line with the derivative-

following strategy presented in [117] as already mentioned in Section 4.3.2. A derivative follower

does incremental increases (or decreases) in price, continuing to move its price in the same di-

rection until the observed profitability level falls. At this point, the direction of the movement is

reversed. In addition, it was also considered the situation in which all the energy of an agent that

could be dispatched in all the 24 trading hours was cleared or not in the in the day-market. This

situation allows the agent to percept if the actual state represents the maximum profit possible

or not, despite it has increased/decreased its profit compared to the previous episode. Table 5.1

summarizes these states.

Table 5.1: Definition of the Q-Learning States.

State Reward (related with previous episode) Clearing all possible energy
s1 Increased Not possible to get more profit
s2 Increased Possible to get more profit
s3 Equal Indifferent
s4 Decreased Possible to get more profit
s5 Decreased Not possible to get more profit

5.2.3 Q-Learning Actions Definition

In Q-Learning algorithms, agents can learn the best action by interacting with the environment

through a trial and error search and this approach doesn’t require having an explicit knowledge

about the environment. Instead, the knowledge regarding the optimal strategy improves while

the historic interaction with the environment is being built by a trial and error process. For this

reason, Q-Learning is a very useful algorithm to solve Markov decision based problems, especially

when the probabilities or rewards are unknown. This is done by evaluating the pay-off that can be

obtained for a given state-action pair Q(sm,an).
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In the developed model the actions will be the bid up/bid down values applied to the agent

current bid price. In order to simplify the problem, we used 7 actions (a1 to a7) indicated in Figure

5.3 to discretize the sigmoid function already presented in Figure 4.2.

actions

a1 a2 a3 a4 a5 a6 a7

Max Bid up

Max bid down

0

Figure 5.3: Actions (a1 to a7) used in the Q-Learning procedure.

For example, action a1 corresponds to a maximum bid down, a4 means that neither a bid up

nor a bid down is used and a7 represents a maximum bid up. Actions a2, a3, a5 and a6 represent

intermediate values. The reward function corresponds to the profit that each agent obtains in

the market if an action a is adopted or selected for a given state. So, the Q-Learning matrix is

composed by a table with the Q-values for each pair of state s and action a. The computation of

this matrix is done by the procedure detailed in Figure 5.2.

As presented in Section 4.3.2, this sigmoid function reflects the risk profile of each agent. If

an agent has an higher risk profile, the bid range will be larger (left chart of Figure 4.2). On the

other hand, a low risk profile leads to a narrower bid range as illustrated in the right chart of Figure

4.2.

The main goal of choosing this type of functions is that it is possible to do a easy parametriza-

tion in the values of the bid up/bid down actions by changing 2 parameters, and at the same time

have different gradients between the actions, where the actions near 0 bid up/down have higher

gradient, and actions near maximum values have lower gradient. The definition of this function is

detailed in Section 7.2.5 when presenting the results of the simulation.

In Q-Learning, it is typical to use only one Q-matrix. However, in this work, we enriched the

model by introducing 3 different sets of Q-values according to the monthly inflows (wet, average

and dry). This means that in a dry month an agent will use a Q-matrix built for smaller inflows and

that will be different from the Q-matrices associated to the average and wet inflow months. This

means that each agent will have learning information in a different way taking into account the

hydro inflows. This procedure is similar to the one used in [89] applied to the Brazilian generation

system. With this consideration, the Hydro Agents will have different behaviours according to
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the different hydro conditions, with different bid up/down strategies, enabling the ABM model to

output more realistic results.

5.2.4 Q-Learning Utility Function and Policy Definition

In the developed model the utility function corresponds to the increase or decrease in revenues

obtained by each action in the day-ahead market by each generation agent added of a loss of

opportunity revenues as shown in (4.16) from Section 4.3.9. The increase or decrease in revenues

is given by the difference between the sales in the market and the "cost" of energy (in the case of

hydro reservoirs the water value) compared with the value that occurred in the previous episode.

As mentioned in Section 5.2.1, one of the main challenges in Reinforcement Learning is the

trade-off between exploration and exploitation, because the agents will use past information from

exploitation, but they have to explore other actions. By following a greedy policy constantly

(choosing always the action with the higher Q-value), the agents may not explore some states that

could be more profitable. On the other hand, if the agent explores too much the environment,

without exploiting its knowledge, he is not actually learning. Thus, it is necessary to achieve a

good balance between exploration and exploitation, to ensure that the learning process evolves

towards optimal solutions [121].

In this work, an ε-greedy variation is applied. Instead of always taking the best action, that is

the one having the highest Q-value as in greedy policies, there is a small probability ε for the agent

to select randomly another action. This is similar to the strategies that exist in meta-heuristics to

avoid local optimal by increasing the diversity of the search procedure.

5.3 Hydro Scheduling Problem

5.3.1 General Overview

As mentioned in Section 4.3, the Hydro Agents will use an Hydro Scheduling Problem (HSP)

optimization model to help them to define the water value function, and in the energy scheduling

to the day-ahead market. This model was initially presented by the author in [48] and has been

continuously enhanced during this PhD work in the scope of the co-orientations of three MSc

thesis [118, 119, 120] where several functionalities were tested namely considering the impact of

bids on the electricity market prices (price-makers), the possibility of adjusting the tailwater level

for the net head calculation, generation and pumping efficiency variations and using optimization

techniques such as Linear Programming and Genetic Algorithms. This model corresponds to a

Single Generation Company Optimization Model as clarified in Figure 3.1 and detailed in Section

3.2.
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One of the main challenges that hydro generation companies are facing every day corresponds

to build the most adequate bids to send to the day-ahead markets, maximizing their profit and

taking into account the expected inflows, market prices and the interdependency between hydro

plants in cascades.

Considering the interdependency of hydro power plants in a cascade, as well as the stochastic

nature of inflows, the management of a generation mix with a large hydro component is extremely

complex, specially because of the coordination between linked power plants and because water

has a almost zero direct generation cost. Additionally, the development of electricity markets, the

non-linear nature of the HSP problem and the possibility of pumping contribute to increase the

complexity of the problem. This is specially important in view of the fact that hydro resource

allocation corresponds to one of the most relevant decisions that should be taken by generation

companies [48].

Dealing with hydro generation problems typically requires solving a non-linear optimization

problem in the most of the cases and for that reason, the objective function and several constraints

have non-linear characteristics. Some published papers mention the successful application of non-

linear techniques to solve the HSP as detailed in Section 3.2. However, the effect of dimensionality

occurs in this problem, because as the size and complexity increase, these techniques become very

computational heavy. Dynamic programming is also used to deal with the non-linear and non-

convex characteristics of the HSP, but again, the major disadvantage of these technique resides in

the "curse of dimensionality" which means that problems with many states and variables become

increasingly difficult to solve, in case of dynamic programming. Regarding meta-heuristics, for

real sized problems it is in general difficult to identify good quality solutions. To help overcoming

these issues, we adopted in [48] an HSP optimization model based on linear programming where

the non-linearity of the objective function and of several constraints was addressed by using an

under-relaxation iterative procedure initially reported in [123]. This model was further developed

in [118, 119, 120]. The next sections detail these enhancements.

5.3.2 Hydro Scheduling Problem Mathematical Formulation

The main objective of the Hydro Scheduling Problem (HSP) can be stated as follows - find a

feasible operation schedule for a set of hydro stations (that can be installed in cascades), eventually

some of them having pumping capability, that maximizes the profit while enforcing a number

of constraints. One of the main difficulties when solving this problem corresponds to the non-

linear relationship between the discharge/pumping volume q, the head h, and the power P(q,h).

This non-linear relationship is illustrated in (5.2) for hydro generation, and in (5.3) for pumping

consumption.

Pg(qg,h) = 9.8 ·ηg ·qg · (h−β ·qg2) (5.2)
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Pp(qp,h) = 9.8 · 1
ηp
·qp · (h+β ·qp2) (5.3)

In this expression:

Pg - is the generated power;

Pp - is the pumped power;

qg - is the discharge volume;

qp - is the pumping volume;

h - is the head;

ηg - is generation efficiency;

ηp - is pumping efficiency.

β represents the head loss coefficient given by β = ∆hn
qn2 , where ∆hn is the nominal head loss

and qn is the nominal flow. By multiplying this coefficient β by the discharge volume squared qg,

or with the pumping volume squared qp it is obtained the total head loss ∆h for generation (∆hg)

and for pumping (∆hp).

Figure 5.4 illustrates, the non-linear relationship between the power output of an hydro power

station in function of the discharge flow and the head, thus reflecting 5.2.
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Figure 5.4: Generated power by an hydro power plant.

Depending on the main characteristics of the hydro system under analysis, this non-linear

relation can be neglected or not. For instance, the Portuguese system has several hydro chains

with small reservoirs in which the net head variations can be large. In this case, the consideration
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of this non-linear characteristic is extremely important because, if not, that would correspond to

an unrealistic representation of the reality. In fact, this kind of reservoirs can display large net

head changes and for consequence, large power output variations. Figure 5.5 represents a family

of curves of the hydropower generation depending on the discharge volume, for different values

of the net head.

Power
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Flow

qg

h1

h2

hn

qgmax

Figure 5.5: Generated power by an hydro power plant for each level of the head.

As mentioned in Section 4.3, we use an Hydro Scheduling Problem optimization model based

on linear programming, where the non-linearity was addressed by using an under-relaxation itera-

tive procedure. This approach solves the non-linear problem using an iterative procedure in which

the net head is considered constant in each iteration and its value is successively updated so that the

next iteration uses an updated value for the net head. As the net head of each hydro station is one

of the two variables of the problem, depending on the reservoir levels at each scheduling period,

it is impossible to determinate a priori their optimal values [48]. For this reason, the approach

follows an iterative procedure, initially presented in [123] and adapted in [48], as illustrated in

Figure 5.6.

Let us consider the reservoir i and the scheduling period k. Then the variables for iteration it
are as follows:

h it
ik represents the net head of reservoir i, in period k;

qik represents the discharge volume of reservoir i, in period k;

Pik represents the power output of reservoir i, in period k;

φ it
ik (q

it
ik) represents the linear function relating to the power output and the discharge volume

for a specific value of the net head.

A detailed description of the four steps included in the algorithm of Figure 5.6 is provided in

the next paragraphs.

Step 1- the head is initialized. Let us assume that the tailwater level ξi of the downstream

reservoir is constant (for now) and vik is the water volume in the reservoir. Under this condition,
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Figure 5.6: Iterative procedure to solve the Hydro Scheduling non-linear Problem.

the net head hik can be calculated as a function of the reservoir storage ρ(vik) using (5.4). The

ρ(vik) function gives the reservoir level taking into account the volume stored in reservoir.

hik = ρ(vik)−ξi (5.4)

In Section 5.3.3, we will present an algorithm adaptation admitting variations of tailwater level

ξi. In order initialize the iterative process, it is necessary to select a value of the net head to use in

the first iteration. This value can be selected using the average level of reservoir.

Step 2 - the simplified HSP linear formulation using the current values of the net heads for

each reservoir i and each time step k is built. However, as indicated in (5.2) and (5.3) and in Figure

5.5, considering that the head is constant is not enough in order to obtain a linear formulation. The

relation between the power output and the discharge volume is also non-linear because of the head

loss term β ·q2. To overcome this problem, we consider that the head loss is constant, and that it

corresponds to the maximum value of the discharge volume, that is, we assume that ∆h0 = β ·q2
max.

This means that the power output of the hydro station i in the scheduling period k is now given by

(5.5).

Pgik = 9.8 ·ηg ·qgik · (hik−∆h0) (5.5)
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Given the characteristics of hydro power stations power output, this approximation is valid

because the units are typically operating close to their maximum discharge flow qmax as illustrated

in Figure 5.7. As we can observe in this figure, using the maximum value for the flow ensures a

good approximation of the real curve (in blue) by the curve in green.

Power
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h = 0

h = max
real
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Figure 5.7: Power output approximation for a given net head.

Step 3 - after obtaining the linear function on (5.5) and a similar one for pumping, the sim-

plified HSP problem is solved for a constant value net head, for iteration it, using a linear pro-

gramming method. One advantage of using this iterative procedure comes from the fact that it is

possible to include non-linear constraints, given that the problem is solved successively in each

iteration with a constant net head so that the mentioned non-linear constraints are in each iteration

replaced by linearized versions.

Step 4 - the value of the net head can now be updated. The value of the volume obtained in the

last optimization could provide new values to the reservoir levels to be used in the next iteration.

However, to avoid undesirable non convergence of the algorithm the authors in [123] proposed to

update the net head hit
ik also taking into account information from the previous iteration. In order

to implement this strategy, it was used a relaxation parameter α > 0 and the new value for the

updated net head can be obtained using (5.6).

hit+1
ik = ρi

(
vit+1

ik

)
= ρi

(
vit

ik +α ·
[
vit−1

ik − vit
ik
])

(5.6)

The α parameter gives the percentage of information from the previous iteration that we want

to use. Unfortunately, the definition of the value of the parameter α depends on the characteristics

of the hydro power plants reservoirs. This means that the use of this parameter becomes strongly

case-dependent.

Step 5 - finally, it is necessary to check if convergence has been reached or not. To do this, we

calculate the relative error of the reservoir levels of each hydro station in each scheduling period,



88 Additional Models included in the developed ABM

using (5.7).

E =

(
hit−1

ik −hit
ik

)
hit

ik
(5.7)

The iterative procedure stops if the largest relative error E, between two consecutive iterations,

is smaller than a given tolerance.

Let us consider the mathematical formulation of the HSP problem to be solved in Step 3. The

objective function is given by (5.8) for an hydro system with I units and for a planning horizon

with K periods. This problem maximizes the revenue obtained by the generation company along

the K periods as a result of selling in the market the generated electricity Pgik in period k at the

price πk subtracted from the amount paid to buy electricity to pump, Ppik. These prices are input

data, which means that the hydro stations are price takers. In the next section, we will present

an iterative procedure that takes into account the impact of the hydro generation and pumping

strategy in the prices. The third term in (5.8) is a penalty factor ps applied to spills sik in order to

accelerate the convergence, as showed [48]. The mathematical formulation of HSP [48] is given

by (5.8) to (5.16).

max
I

∑
i=1

K

∑
k=1

(πk ·Pgik)− (πk ·Ppik)− (ps · spik) (5.8)

subject to:

vik = vi(k−1)+a fik−qgik + spik +qpik +

L

∑
l∈MUi

(
qgl(k−dgl)+ spl(k−dsl)−qpl(k−dgl)

) (5.9)

vollac min
ik ≤ qgik + spik−qpik ≤ vollac max

ik (5.10)

vmin
i ≤ vik ≤ vmax

i (5.11)

qgmin
i ≤ qgik ≤ min

(
qgmax

i ,qgni ·

√
hik

hgni

)
(5.12)

qpmin
i ≤ qpik ≤ min(qpmax

i ,qpni−δi · (hik−hpni)) (5.13)

0≤ spik ≤ ∞ (5.14)
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vik = voliK (5.15)

i = 1, . . . , I; k = 1, . . . ,K; l = 1, . . . ,L (5.16)

In this formulation:

I - number of reservoirs;

K - number of scheduling periods;

L - number of upstream reservoirs;

πk - market price in hour k;

Pgik - power output in reservoir i, hour k;

Ppik - pumping power in reservoir i, hour k;

ps - penalty factor for spills;

spik - spill of reservoir i, in hour k;

vik - volume of reservoir i, in hour k;

a fik - inflow of reservoir i, in hour k;

qgik - discharge volume of reservoir i, in hour k;

qpik - pumping volume of reservoir i, in hour k;

MUi - set of upstream reservoirs of reservoir i;

dgl - delay of turbine discharge volumes;

dsl - delay of spill volumes;

d pl - delay of pumping volumes;

vollac min
ik ,vollac max

ik - minimum and maximum launched volumes of reservoir i:

volmin
i ,volmax

i - level volume limits of reservoir i;

qgmin
i ,qgmax

i - turbine discharge limits of reservoir i;

qpmin
i ,qpmax

i - pumping volumes limits of reservoir i;

qgni - nominal turbine discharge volume of reservoir i;

qpni - nominal pumping volume of reservoir i;

hgni - nominal turbine head of reservoir i;

hpni - nominal pumping head of reservoir i;

δi - pumping coefficient of reservoir i;

voliK- volume level of reservoir i in the last scheduling period, K.
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The objective function (5.8) is subjected to a set of constraints that includes the water bal-

ance equation (5.9) established for each unit i and for each period k, and operational and technical

constraints for each unit i and for each period k. The water balance equations are established con-

sidering the hydro connections between the units as well as the time delay that the water flows take

to arrive from an upstream unit to a downstream one. The problem also includes maximum and

minimum flow and volumes constraints ((5.10) to (5.14)). For each unit it is also established a con-

straint imposing the volume at the end of the final scheduling period, given by (5.15). This value

can be obtained from medium or long-term planning problems to define longer term strategies for

the use of the water. This medium-term planning problem is detailed in Section 5.3.4.

5.3.3 Hydro Scheduling Problem Short-Term model Considering the Impact on
Market Prices and in Tailwater Level

The HSP short-term model detailed in previous Section will be used for the Run-of-river Agent

(Section 4.3.2.2) and Pure Pumping Agent (Section 4.3.2.5) to schedule their bids in the higher

price hours. This means that this should be an hourly optimization with an horizon of one week.

Figure 5.8 shows, as illustration, an HSP result for two hydros in a cascade, Hydro 1 and Hydro 2,

in which the Hydro 1 is the upstream unit and it has pumping capacity.

Energy

(MWh)

hour
0 06 12 18 23

Market 

prices

(€/MWh)

Market prices Hydro 1 Gen. Hydro 1 Pump. Hydro 2 Gen.

Figure 5.8: Illustration of HSP example for two consecutive hydro stations on a day.

In Figure 5.8, the market prices are an example of a forecast for one day, and the HSP outputs

the best predictable hours to bid the energy available in the day-ahead market, either in pump-

ing, either in generation, and considering the hydraulic interconnections between the units in the

cascade.

The HSP optimization model presented in the previous section maximizes the hydro revenues

in an electricity market with forecasted prices, but as mentioned, these hydros are considered as

price takers, which means that their generation/pumping values don’t impact the market prices.
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Additionally it was considered that the tailwater level is constant in the reservoir head calculation,

as detailed in (5.4). These two considerations can have a particular impact, namely in pumping

decisions and in the power output of the reservoirs with large flows in tight rivers. In the first case,

the pumping revenues can be affected by the variations in the market prices between forecasted

ones and real ones, due to the self impact of the hydro bids in the market, specially in power plants

with large power output (which means that these hydros are price makers). In the case of the

tailwater level in reservoirs with large discharge flows and installed in tight rivers, this level can

rise very rapidly, and as a consequence the net head and the power output get reduced from the

one that we forecasted.

In order to accommodate these two impacts, it was developed an iterative procedure to consider

the impact of operation decisions on the market prices and the possibility of adjusting the tailwater

level and the generation as a function of the flow [118]. Reference [118] corresponds to a MSc

thesis co-supervised by the author of this PhD thesis.

In first place let us analyse the impact of hydro self bids on the market prices. To consider

this, we admitted that the hydro generation company has an estimates of the market prices curves

for each hour of the period under analyses, which means having the aggregated buying and selling

curves of the other market agents, as for example based on historical data. The estimates of these

market price curves are used as input values for the first iteration of the HSP problem detailed in

the previous Section, resulting in an initial scheduling for the hydro generation power and hydro

pumping power outputs. Then, with these outputs, it is added to the initial market price curves

the new hydro scheduling as illustrated in Figure 5.9 for hydro generation and in Figure 5.10 for

hydro pumping, for each hour of the period under analyses.

Market Price

(€/MWh)

Quantity

(MWh)

Selling Offers

Buying Offers

Generation Added

New Selling Offers
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Figure 5.9: Market prices updating with a new generation decision.

Taking a generation period as an example in Figure 5.9, the aggregated selling curve is shifted

to the right side considering that the new selling power output bids at 0 e /MWh to ensure that

the scheduled new generation is cleared. This results in a price reduction in this hour. Regarding

a pumping period, Figure 5.10, the aggregated buying curve is shifted to the right considering
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Figure 5.10: Market prices updating algorithm with a new pumping decision.

that the new buying power output bids at the maximum market price. As a result, in that hour

the price increases. Finally, it is used the Social Welfare Function (4.11) detailed in Section 4.3.6

to obtain the new market prices, and the corresponding variations. With the new market prices

already affected by the hydro generation and pumping bids, it is used again the HSP model to get

the new scheduled powers. This iterative process continues until convergence is achieved.

This process corresponds to an outer cycle that in each iteration itt calls the HSP. In order to

smooth the impact of the operation decisions coming from the HSP problem in the market prices,

we used an expression similar to (5.6) to update the prices. This means that the price in hour k to

be used in the next iteration itt+1 of the outer cycle is given by (5.17) [118].

πk
itt+1 = πk

itt−1 +θ · (πk
itt −πk

itt−1) (5.17)

In this expression for a given hour k we have:

πk
itt+1 - market price in iteration itt+1;

πk
itt - market price used in iteration itt of the HSP;

πk
itt−1 - market price used in iteration itt-1 of the HSP;

θ - smoothing parameter.

Figure 5.11 presents the algorithm to be used to model the impact of the hydro scheduling in

the market prices [118].

The algorithm continues updating the prices and calling the HSP problem to update the op-

eration decisions until the convergence is reached. In this case, the convergence of the external

cycle is checked based on the Mean Absolute Percentage Error (MAPE) for the prices in two con-
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Figure 5.11: Market prices updating algorithm.

secutive iterations, itt+1 and itt as presented in (5.18). If the calculated MAPE is smaller than a

specified limit, then the external iterative cycle stops and the results for the final HSP are reached.

MAPE =
1
K

∑
K
k=1

∣∣π itt+1
k −π itt

k

∣∣
∑

K
k=1

∣∣π itt+1
k

∣∣ (5.18)

The second topic also developed in [118] addressed the fact that the downstream water level of

some units can display large elevations when a unit is operating thus reducing the net head and the

generated power. Not considering this effect can originate large errors for smaller or run of river

units, as these type of hydro power plants have typically low values for the net head. To consider

this effect, the tailwater of unit i in hour k will be updated in each iteration of the HSP presented

in Figure 5.6 at the same time that the net head is computed. In practice, we will substitute the

net head equation (5.4) in which the tailwater level ξi was constant by equation (5.19) in which it

depends on the generation period.

hik = ρ(vik)−ξik(qgik) (5.19)

The computed tailwater level is then used to reduce the net head leading to a direct reduction

of the generated energy. The tailwater functions ξik(qgik) are not easy to obtain, as they depend on

the river characteristics and on the downstream hydraulic structure. Once again, usually generation
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companies have this type of models based on historical data and river characteristics. In Chapter

6 when describing the case study we will detail the ξik(qgik) function that was considered in the

developed ABM model.

5.3.4 Hydro Scheduling Problem Medium-Term Model to Calculate the Water Value

The hydro scheduling problem for a medium-term horizon will be used by Storage Hydro

Agents (Section 4.3.2.3) and Storage Pumping Hydro Agents (Section 4.3.2.4) in order to calculate

the water value function, as these agents will have a bidding price directed related to this function.

The time step in this case will be a week with an horizon of one year because in this model, the

main goal is to get the allocation of the water in each week for one year.

As mentioned in Section 4.3, hydro stations can use the water resource with a cost near zero.

However, the availability of this resource is limited by the inflows and storage capacity. This fact

introduces an interdependence between the operational decisions taken at a given moment and

the future consequences of these decisions. The problem of how to manage water, taking into

account its future use, is largely studied and usually involves medium and long-term coordination

studies and it is often associated with the determination of the value of the water [124]. Figure

5.12 illustrates the above mentioned problem.
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Figure 5.12: Medium-term water management.

The short-term HSP, presented in the previous section, receives as input information of the final

volume in each week, because its methodology by itself does not allow to process information of

the amount of water that should be stored in the final week hour, as detailed in (5.15). Therefore,

and as any short-term model, the HSP short-term model needs to chain its algorithm with an

external medium-term process in order to get information about the future water management.

This chaining procedure is illustrated in Figure 5.13.

As in the short-term model, the objective of a company that has a set of hydro stations is to

maximize the revenues of the assets in the future. For this reason, the methodology for medium-
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Figure 5.13: Medium-term and short-term coordination.

term developed in this section has some similarities with the HSP, with some simplifications ex-

plained in the next paragraphs, because the dimension of the temporal horizon does not allow to

perform an hourly coordination for a complete year, for instance.

Since the time horizon is larger, the risk and uncertainty associated with the inflows and market

prices are also larger. This implies that the treatment of uncertainty in the case of medium-term

coordination should not be neglected.

To solve the medium-term HSP problem, we will use a simplified version of the model pre-

sented in the previous section. It will have a similar formulation regarding the one adopted for

the short-term, but the time discretization corresponds now to a week, instead of an hour, and it

runs for a complete year. In this case, it aims at obtaining the allocation of the water resources to

each week, according to the expected input market prices along the year. This is done in order to

obtain potentially optimal trajectories for water management over the several weeks of a year, by

calculating the water value functions along the horizon. In this version of the optimization model

the constraints of the water balance (similar to constraints (5.9)) are formulated on a week basis

and the dual variable of each of them corresponds to value of stored water in that week and for that

volume of stored water. This value represents the impact on the objective function when it is used

one more unit of water in the reservoir [48]. The water value function, for one specific reservoir,

for one year is illustrated in Figure 5.14.

Based on the output of the medium-term HSP problem, this type of chart only provides infor-

mation for one water value per week for one specific water inflow scenario. In order to build the

function presented in Figure 4.1, and also to deal with the uncertainty of medium-term coordina-

tion, the model is run for a large number of inflow and storage conditions in order to allocate the

use of the water resources of each hydro station along each week of the year. This model uses the

expected market prices along the year and from each run, that is for each inflow and water level

scenario, it uses the dual variables of the water balance equations established for each week and

for each hydro station in the system to build the curves as the ones in Figure 5.15.
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Figure 5.14: Water value of one hydro station of a cascade.
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Figure 5.15: Several water value functions of one hydro station of a cascade for different hydro
conditions.
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These dual variables correspond to sensitivities over the profit, that is how the profit of the

generation company will change if an extra unit of water of a specific station is used. This means

that the value of the water displays a geographic dispersion reflecting the different hydro stations

in the system and their eventual interconnection in the same river.

The family of curves in Figure 5.15 can now be used to build the water value function men-

tioned in Section 4.3.2. For a particular week and hydro unit, each of the curves in Figure 5.15 is

intersected with a vertical line as displayed in this figure for week w. Each of the values coming

from this intersection is associated to a particular reservoir level and inflow and so this set of val-

ues is used to build the water value function for the week in analysis. As a result, a curve as the

one in Figure 5.16 is obtained for each week and for each hydro unit. When preparing the bids

for a particular week, the Hydro Agents that use this water value function get the current reservoir

level and using this curve they read the corresponding water value. Then, if the expected market

price is above the value of the water they will bid in the day-ahead market in order to generate and

sell electricity.
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Figure 5.16: Water value depending on the stored energy for a specific week.

Finally, it should be mentioned that pumping is usually not considered in the medium-term

scheduling models because the focus of this problem is on the allocation of the water resources to

each week and not to detail the hourly operation of the stations.

5.4 Short-Term Price Forecasting Tool

As already mentioned in Chapter 4, in this work the Hydro Agents can use a market price

forecast in order to bid their energy in the day-ahead market. For the players that participate in

electricity markets, price forecast is becoming a critical input to decision making, and for that

reason, these forecasts from a few hours to a few months ahead are of special interest to them.

The electricity prices in competitive markets react rapidly to variations in supply and demand, as
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well as other factor as generator outages, assuming a significant influence on the optimisation of

use of energy resources. A computational tool that provides a reliable forecast of electricity prices

represents a competitive advantage specially for generation companies.

The electricity market price profile presents a larger complexity when compared with the pro-

file of electricity demand, given the particularities associated with the price dynamics. In most

competitive electricity markets, the market price series present the following main characteristics

[125]:

• high frequency variation;

• non-constant mean and variance;

• multiple seasonality (corresponding to a daily and weekly periodicity, respectively);

• calendar effect (such as weekends and holidays);

• high volatility;

• high percentage of unusual prices (mainly in periods of high demand) and the possibility of

occurrence of price spikes.

Several methods and models have been used for electricity price forecasting over the last

two decades, with varying degrees of success. Electricity is a very special commodity as power

systems stability requires a constant balance between generation and demand. At the same time,

electricity demand and generation depend on weather conditions like the temperature, wind speed,

precipitation, etc. and also on temporal time (on-peak vs. off-peak hours, weekdays vs. weekends,

holidays and near-holidays, etc.) [125].

Considering the time horizons, electricity price forecasting can address short, medium and

long-term horizons. Although these boundaries are not simple to be established, in [126] the au-

thors indicate that short-term generally involves forecasts from a few minutes up to a few days

ahead, being important to day-ahead market operations. Medium-term time horizons, from a few

days to a few months ahead, are generally used for risk management price hedging and profit

and loss balance calculations. In most of the situations, this forecasting is based not on the price

forecast itself, but on probability distributions of prices for future time periods. Finally, the main

objective of long-term forecasts, addressing years, is related with planning and investment analy-

sis, by the estimation of future marginal costs or equilibrium prices to evaluate investments in new

power plants. In this chapter, the focus will be the short-term price forecast.

Electricity market price forecast is widely described in the literature. Reference [127] de-

tails the main methodologies of price forecasting techniques divided in game theory models, time

series, and production costs models. In [128] the authors classified these techniques into six

types namely production-cost models, equilibrium/game theory approaches, fundamental/struc-

tural methods, quantitative/stochastic/econometric models, statistical/technical analysis approaches

and artificial intelligence based techniques like artificial neural networks or data mining models. A
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more detailed review on this topic is presented in [126]. This reference proposes a more complete

taxonomy for the price forecast models that is reproduced in Figure 5.17.
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Figure 5.17: Taxonomy of electricity price forecast models [126].

Despite all these models, Neural Networks have been widely used for the short-term fore-

casting [128, 129, 130, 131, 132, 133] with success. One of the main advantages is that Neu-

ral Networks can deal with the particularities associated with the price dynamics detailed above

[128, 129, 132]. For this reason, the Neural Networks will be used for the day-ahead price forecast

exercise required in this work.

5.4.1 Artificial Neural Networks

Artificial Neural Networks (ANN), or simply neural networks, are a learning methodology

from Supervised Machine Learning as detailed in Section 3.5. These networks result from the

complex interconnection of simple processing units, called perceptrons (network nodes "equiva-

lent" to human neurons), designed to replicate the functioning of the human brain. Using literature

definitions, a neural network is a massively parallel distributed processing unit that can store ex-

perimental knowledge and making it available for later use. It simulates the human brain where

knowledge is acquired by the network from its environment through a learning process [134].

A perceptron is an information processing unit that is fundamental to the operation of a neural

network. Each of these units forms a weighted sum of its inputs and synaptic weights, to which a

externally constant term is added (bias). This sum is then passed through an activation function.

Figure 5.18 shows the perceptron structure [134].
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Figure 5.18: Representation of the artificial neural network perceptron model.

The ANN models can be classified in terms of its architecture and learning algorithm [134].

The architecture describes the neural network connections set and the learning algorithm is the

method that provides information on how the ANN trains and adapts its weights considering the

training data. In a ANN, the perceptrons are normally arranged in a small number of layers that

are connected between the neural network inputs and outputs. These outputs are linear or non-

linear functions of the inputs and the inputs can also be outputs for other network nodes, as well as

current network inputs. The layer between input and output is the hidden layer. Considering the

architecture, ANNs can be classified into two main categories which are feed-forward networks,

which have no feedback (or recurrent loops) and recurrent networks in which loops are used be-

cause of feedback connections. The feed-forward networks are the ones preferred for forecasting

techniques, and recurrent networks are usually used in pattern recognition and classification prob-

lems [135]. Figure 5.19 details the main neural network architectures.

The input nodes (or perceptrons) are represented by black circles, the output nodes by empty

circles, and nodes in the hidden layer by empty circles with a dashed outline. In the case of

the activation functions used in feed-forward networks, radial basis function neural networks use

radial functions, like for example a Gaussian function, while multi-layer perceptrons networks

typically use step linear or sigmoid activation functions.

Feed-forward neural networks with multilayer perceptrons are the best known and most widely

used type of neural network [132]. The selection of neural network topology is an important

and complex decision. Choosing a too simple topology can result in an inefficient process to

correctly reproduce the training data. On the other hand, a too complex topology can result in a

reduced generalisation capacity as a result of the susceptibility to noise and also in over-tuning

of data. For this reason, the selection of the topology of the network should be guided according

to a compromise between simplicity and flexibility, aiming at building networks with acceptable

generalization capacity [132]. In our work, a multi-layer feed-forward neural network is used for
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Figure 5.19: Artificial neural network architectures representation.

the short-term day-ahead price forecast.

5.4.2 Feed-forward Neural Networks

As presented in Figure 5.19, the simplest feed-forward neural network, a single-layer per-

ceptron, contains no hidden layers and is equivalent to a linear regression model meaning that

forecasts are obtained by a linear combination of the inputs. The weights correspond to the re-

gression coefficients and they are selected using a learning algorithm that minimizes some cost

function, as for example, the mean squared error [135]. By adding an intermediate layer with hid-

den nodes, we obtain the multi-layer neural network. This most common family of feed-forward

networks has perceptrons organized into layers that have unidirectional connections between them,

that is, the outputs of the nodes in one layer are inputs to the next layer. The activation functions

of multi-layer perceptrons are typically step linear or sigmoid. Figure 5.20 shows an example of a

multi-layer feed-forward neural network with three input nodes, one hidden layer with four nodes

and three output nodes.

Typically, the selection of the topology of the network that allows obtaining the best results for

forecasting exercises with neural networks requires testing several combinations. These combina-

tions include networks with different numbers nodes in hidden layers, different numbers of units

in each input and output layer and different types of activation functions.
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Figure 5.20: Example of a multi-layer feed-forward neural network.

5.4.3 Neural Networks Training

The information needed for forecasting with neural networks involves a process of training and

learning. This process is carried out in a supervised way, and it is assumed that a representative

training set is available, obtained through historical data, containing the desired inputs and corre-

sponding outputs. Appropriate data collection for neural network training assumes a significant

influence on training success.

The learning process is an optimization process. In the Supervised Learning, the neural net-

work learns from the training set consisting of input-output data pairs, adjusting its weights and

bias in each iteration in order to minimize the error between the output produced and the desired

output. This process is repeated until a stop criterion is reached.

The knowledge acquired by the neural network through the learning process is tested with a

different test set from the training set. The network should be able to generalize and reproduce

data never before considered. In addition to the importance of correct selecting the neural network

topology as well as the data to be collected, training should not be too extended in data quantity,

since it can result in over-training and in the deterioration of the forecast results. Typically, a too

long training set in data quantity causes the network to memorize the training set, so the training

error continues to decrease, but the network has no generalization capacity.

Back-propagation, which may be regarded as a gradient steepest descent method, is by far the

most popular training algorithm for the multi-layer neural networks [132, 135]. In this case, the

input is through the layers until the final output is calculated, and it is compared to the real output

to obtain the error. The error is then propagated back to the input adjusting the weights and biases

in each layer. However, the standard back-propagation learning algorithm may not be efficient

numerically and tends to converge slowly [132].

The Levenberg–Marquardt algorithm is the second most popular training procedure [132, 135].

According to the authors, this algorithm trains a neural network 10-100 times faster than the
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usual back-propagation algorithm [136, 137, 138]. While back-propagation is a steepest descent

algorithm, the Levenberg-Marquardt algorithm is a variation of Newton’s method [132, 135]. In

our work, the Levenberg–Marquardt algorithm from MatLab software will be used to train the

neural network used to the day-ahead price forecast.

5.5 Global Overview of all Used Models

At this point we presented in Chapter 4 the problem description and the proposed Agent-Based

Model. We also presented in this chapter the additional models that will provide the agents with

a strategy adaptation capability (Machine Learning procedure), and also will give them a set of

decision supporting tools to the day-ahead market price biding. In order to get an overview of

the complete model, Figure 5.21 presents a schematic picture of the interaction between all the

models that we detailed previously.
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Chapter 6

Results for Simplified Illustrative Test
Cases

6.1 General Considerations

This Chapter focuses on testing and validating the implemented methodologies considering a

set of small and simplified test cases that will go from 1 single agent to 30 agents. It will be focused

on analysing the models presented in Chapter 5, namely the Q-Learning procedure (Section 6.2),

the Hydro Scheduling Problem (Section 6.3) and the Neural Network model (Section 6.4) with

small and simplified test cases. The main goal of running these Test Cases is because it is easier

to understand the results and analyse the behaviour of the models, something that would be much

more difficult to do considering the complete model of the MIBEL simulation detailed in Chapter

7.

6.2 Testing the Q-Learning Procedure

In order to test and validate the Q-Learning algorithm three case studies were built.

The two first case studies will consider only one generation agent that bids in a virtual market.

This agent will be a generic one having a marginal cost and a power capacity with infinite energy

stock. The virtual market will run daily, with only 3 times steps: peak hours, base hours and

off-peak hours, grouped into 8, 12 and 4 hours respectively. In a first approach (Section 6.2.1)

the agent will be a price-taker, which means that its bids will not impact on the market prices. In

the second approach (Section 6.2.2), the agent bids will affect the peak hour prices of the virtual

market, so acting as a price-maker. Figure 6.1 presents a scheme of the first and the second Test

Cases.

105
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Figure 6.1: Test Cases for Q-Leaning with one agent in a virtual market.

The third Test Case (Section 6.2.3) is performed considering 30 generation agents in a simu-

lated competitive market, based on the Portuguese power system. In this Test Case, the agents will

bid against other agents. This simulation will run daily, for the 24 hours of each day, and will run

for one complete year. As mentioned in Section 5.2.3 the bid price value will be the same for each

24 hours of each day. Figure 6.2 presents a scheme of the third Test Case.
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Action: Bid

Hourly Market
365 days

24 hours

Daily Bid for 24 h

24 Clearing Prices

€/MWh

Quantity  (MWh)

nth hourAgent 2
Power

Marginal cost 

No energy limit 

Action: Bid

Agent 30
Power

Marginal cost 

No energy limit 

Action: Bid

…

24 Clearing Prices

24 Clearing Prices

Market 

Clearing Price

Daily Bid for 24 h

Daily Bid for 24 h

Figure 6.2: Test Case for Q-Leaning with 30 agent in a simulated market.

In the next sections we will detail the three Test Cases and present some results and the corre-

spondent discussions.

6.2.1 Test Case 1 - Single Agent: Price-Taker Agent

In this first case study the agent, Agent A, and the environment, Market M, will have the

characteristics presented in Table 6.1.
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Table 6.1: Characteristics for the Test Case with one agent in a virtual market.

Agent A Market M Prices
Power (MW) 100 Off-peak (e /MWh) 12
Marginal Cost (e /MWh) 45 Base (e /MWh) 36
Type price-taker Peak (e /MWh) 50

As a first example, the market prices will remain constant along the simulation days and the

agent, as a price-taker, has no impact in the market prices. Then the agent will apply the Q-

Learning procedure to create a bidding strategy in order to maximize its revenues. The agent has

no information of the market, meaning that it doesn’t know that it is a price-taker. It will only have

the results of the market clearing. This Test Case will be referred as Test Case 1.

As mentioned in Section 5.2, the definition of the Q-Leaning procedure is based on a pair

state-action Q(sm,an). Let us take into account the states definition (Section 5.2.2), the actions

definition (Section 5.2.3) and the rewards definition (Section 5.2.4). The Q-Matrix Q(sm,an) for

this specific Test Case, as well as the parameters λ , γ and ε to obtain the Q-values computation

(Section 5.2.1), are presented in Table 6.2. Note that in this test we will use only 3 actions.

Table 6.2: Q-matrix for Test Case with one price-taker agent in a virtual market.

State\Action a1 a2 a3 Parameter
s1 Q1,1 Q1,2 Q1,3 λ 0.8
s2 Q2,1 Q2,2 Q2,3 γ 0.8
s3 Q3,1 Q3,2 Q3,3 ε 0.1
s4 Q4,1 Q4,2 Q4,3
s5 Q5,1 Q5,2 Q5,3

In Table 6.2:

• s1 to s5 represent the states as defined in Section 5.2.2;

• a1 represents the Action 1 corresponding to a bid down of -1 e /MWh related to the last bid;

• a2 represents the Action 2 corresponding to no bid up or bid down related to the last bid (0

e /MWh);

• a3 represents the Action 3 corresponding to a bid up of +1 e /MWh related to the last bid;

• λ is the learning rate (5.1);

• γ is the discount factor (5.1);

• ε is the probability of not choosing the max Q-value for the next decision.

The choice of λ , γ and ε values will be discussed along this section. The Q-values are calcu-

lated during the simulation using the function (5.1) and the reward is the profit variation obtained
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by the generation agent as detailed in Section 5.2.4. The agent will never bid bellow its marginal

cost because we will not consider that as an acceptable solution.

Now let’s analyse this first simulation test. Figure 6.3 presents the result of 500 days simulation

of the Test Case 1.
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Figure 6.3: Bidding results for the Test Case 1 considering one price-taker agent in a virtual
market.

In Figure 6.3, the blue line corresponds to the peak market price, the green line represents the

base price, the grey line is the off-peak price and the orange line represents the bid strategy of the

agent.

During an initial phase, the agent was exploring the environment by doing bid up/downs below

50 e /MWh (until day 113). As these days went on, it didn’t have any impact on its profits

variation, and as a consequence no impact on its Q-Learning table. It was always cleared in peak

hours with the same revenue because the market price was always 50 e /MWh in this period and

its bid was always below. In the base and off-peak hours the agent is not cleared because the

prices in these periods are below its marginal cost (45 e /MWh ). As the agent didn’t increase or

decrease its profit, it remained in s3 (from day 1 to 113). Table 6.3 shows its Q-matrix that didn’t

change during this initial period (from day 1 to 113).

Table 6.3: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market from
day 1 to 113.

State\Action a1 a2 a3

s1
s2
s3 0.0000 0.0000 0.0000
s4
s5
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At day 114, the agent that was in s3 doing its exploration, chose randomly the action a3 mean-

ing that it increased 1 e /MWh its bid (corresponding to a bid of 51 e /MWh). Because of that,

it wasn’t cleared in the market since the market prices kept constant in the 50 e /MWh. This ac-

tion gave immediately a negative reward when compared with the previous state as now the agent

revenues went to 0. Table 6.4 shows the Q-matrix after this action.

Table 6.4: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market at
the end of the day 114.

State\Action a1 a2 a3

s1
s2
s3 0.0000 0.0000 -3.0400
s4
s5

As a consequence of the negative reward the agent changed from s3 to s4 because it had a neg-

ative reward, and lost the opportunity of being cleared (not all its energy that could be dispatched

in all the hours was cleared as detailed in Section 5.2.2). In s4, as it was the first time in this state

and all the columns of the Q-matrix are empty (it has no past experiences), the agent will choose a

random action. In this particular simulation test the action chosen was a2, that represented, again,

a bid of 51e /MWh and because of that it wasn’t cleared in the market. The update of the Q-matrix

is presented in Table 6.5.

Table 6.5: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market at
the end of the day 115.

State\Action a1 a2 a3

s1
s2
s3 0.0000 0.0000 -3.0400
s4 -0.640
s5

Due to the last action, once again, the agent received a negative reward and it remained in s4.

It is important to note that this reward was a negative value lower than the previous one. This is

because the only loss that agent had at day 115 was due to the loss of opportunity (as the loss of

market revenues compared with the previous episode was 0). Now, with 90% of probability (ε

= 0.1), the agent will choose between a1 or a3 (maximum value of Q-matrix). In this particular

simulation test the action chosen was a3, that represented a bid of 52 e /MWh. Once again it

wasn’t cleared in the market. The update of the Q-matrix is presented in Table 6.6.
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Table 6.6: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market at
the end of the day 116.

State\Action a1 a2 a3

s1
s2
s3 0.0000 0.0000 -3.0400
s4 -0.6400 -1.2800
s5

The previous action led the agent to continue in s4 and for the next action (with 90% of prob-

ability) it chose a1, that is the action with maximum Q-value. This action represented a bid of 51

e /MWh and the market price remained in 50 e /MWh. Once again it wasn’t cleared in the market

and the update of the Q-matrix is presented in Table 6.7.

Table 6.7: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market at
the end of the day 117.

State\Action a1 a2 a3

s1
s2
s3 0.0000 0.0000 -3.0400
s4 -0.6400 -0.6400 -1.2800
s5

The agent continues in s4, with no market revenues, but losing the opportunity of being cleared

in the last 4 days. For the next day, this agent had to choose between a1 and a2 (with 90% of

probability) because they have the higher Q-value. It chose a2 representing a bid of 51 e /MWh.

Again, it wasn’t cleared in the market and the update of the Q-matrix is presented in Table 6.8.

Table 6.8: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market at
the end of the day 118.

State\Action a1 a2 a3

s1
s2
s3 0.0000 0.0000 -3.0400
s4 -0.6400 -1.178 -1.2800
s5

As it continues to lose the opportunity of getting revenues (the agent is in s4) now the agent

chose a1 (it was the maximum value in the Q-matrix) representing a bid of 50 e /MWh. With

this action, the agent was cleared in the peak hours (market price of peak hours remained in 50

e /MWh) and obtained a positive reward (revenues of market clearing). Table 6.9 represents the

Q-matrix after this action.
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Table 6.9: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market at
the end of the day 119.

State\Action a1 a2 a3

s1
s2
s3 0.0000 0.0000 -3.0400
s4 1.8620 -1.178 -1.2800
s5

As a consequence, the agent moved to the state s1 as it increase the profit comparing to the

previous episode. In s1, there are no past information of previous experiences, so the agent chose a

random action. It chose a1 and the bid was 49 e /MWh. Because of this bid the agent was cleared

in the market with the same revenue of the previous episode. It was a lucky guess. For example

if the agent had chosen to increase the price, it would not be cleared in the market as the reward

would be negative. Table 6.10 represents the Q-matrix after this action.

Table 6.10: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market at
the end of the day 120.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 -3.0400
s4 1.8620 -1.178 -1.2800
s5

Due to the last action the agent changed to s3 (because the difference between revenues was

0) and as we can observe, in this state the agent will avoid the a3 action, that means it will avoid

increasing the price. It will choose (with 90% of probability) maintaining or decreasing its bid.

As a consequence of continuing in s3, and because this market is very inelastic and the market

prices are constant in each time period, the agent will have no feedback of its actions (no increase

or decrease of its profit) and it will converge to its marginal cost from day 135 until day 190, as

we can observe in Figure 6.3. Note that the agent will never bid below its marginal cost as this is

not a feasible strategy.

Meanwhile, since the agent has 10% of probability of choosing a3 (worst action), when it did,

the Q3,3-value (that was -3.0400 at day 119) is now being updated with revenue of 0, since the

difference between the revenues of consecutive days or the loss of opportunity is 0. Tables 6.11,

6.12 and 6.13 represent the Q-matrix at days 140, 150 and 190.
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Table 6.11: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market at
the end of the day 140.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 -0.608
s4 1.8620 -1.178 -1.2800
s5

Table 6.12: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market at
the end of the day 150.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 -0.1220
s4 1.8620 -1.178 -1.2800
s5

Table 6.13: Q-matrix for the Test Case 1 considering one price-taker agent in a virtual market at
the end of the day 190.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 0.0000
s4 1.8620 -1.178 -1.2800
s5

At day 190, in s3, the agent "forgot" its bad episode in day 114 (when it was not cleared in the

market) because the bid up actions of the last days (due to 10% of probability of accepting a worst

action) are given a reward of 0. As a consequence the Q3,3-value (that was -3.0400 in day 119) is

now 0 at the end of day 190. This means a restart in exploration and learning in s3 and sooner or

later the agent will hit again the bid of 51 e /MWh as we can see at day 275 of Figure 6.3.

The situation explained in the last paragraph happens because of the choice of the parameters

λ , γ and ε presented in Table 6.2. As mentioned in Section 5.2.1, λ is the learning rate ∈ (0,1),

that reflects the degree to which estimated Q-values are updated by new data. If λ is equal to 0

then the agent does not learn, while if it is equal to 1 it induces the agent to consider only the

most recent information. γ is a discount factor ∈ (0,1) that represents the weight given to future

reinforcements. A value of γ equal to 0 makes the agent only considering current rewards, while

values closer to 1 turn distant rewards more important. As mentioned in Section 5.2.4, ε is the
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probability for the agent to select another action that is not the best one, that is, the one associated

with the largest Q-value.

Let us now analyse the parameters choice in the last Test Case and let us do it by reverse

order starting with the last one, parameter ε . Figure 6.4 represents the same simulation presented

in Figure 6.3, but changing the ε parameter to 0, meaning that the agent will always choose the

action with higher Q-value (greedy selection).
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Figure 6.4: Bidding results for the Test Case 1 considering ε equal to 0.

As we can observe now, after the episode when the agent bid at 51 e /MWh in day 105, above

the market price, in this case it converged to the marginal cost, as in previous Test Case, but it

remained in its marginal cost until the end of the simulation. This situation happened because

since the agent always chooses the action with the highest Q-value (with 0 probability of choosing

a worse one), its decisions will always be a1 and a2, without the opportunity of choosing a3 and

changing the negative value of a3, as it did in Table 6.13. Table 6.14 shows the Q-matrix in this

situation where the agent, when in s3 always choose a1 or a2 and will never increase the price

again because it has a greedy selection.

Table 6.14: Q-matrix for Test Case 1 with one price-taker agent in a virtual market, considering ε

equal to 0, at the end of the day 105.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 -3.0400
s4 1.8620 -1.2800 -1.2800
s5

In order to avoid the "greedy" convergence to the marginal cost, in our work we will adopt a
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value to the parameter ε equal to 0.1. It appears to be a value too high, but as we already illustrated

in the first example the agents have an high "capability" of running out of worse situations, and

this high value allows the exploration process to be more effective by experimenting all actions

(even the worst ones).

The γ parameter, that represents the weight given to future reinforcements, seems to have the

less impact in our modelization. Figure 6.5 shows the same simulation of Test Case 1 but now

changing only γ from 0.8 to 0.1 keep all the other parameters the same.

Marg. Cost

45

Market Clearing day

€/MWh

0

10

20

30

40

50

60

1

2
0

3
9

5
8

7
7

9
6

1
1
5

1
3
4

1
5
3

1
7
2

1
9
1

2
1
0

2
2
9

2
4
8

2
6
7

2
8
6

3
0
5

3
2
4

3
4
3

3
6
2

3
8
1

4
0
0

4
1
9

4
3
8

4
5
7

4
7
6

4
9
5

Peak Market Price

Base Market Price

Off-peak Market Price

Bid

Revenues obtained = 976 k€

Maximum possible revenues = 1000 k€

Performance of 98% 

Figure 6.5: Bidding results for the Test Case 1 considering γ equal to 0.1.

The simulation results are similar to the ones in the Figure 6.3. This is because the agent

continues to learn and update the Q-matrix with new information (learning parameter λ remains

in 0.8), but the learning is done by using to a larger extent the current rewards than possible future

rewards. Table 6.15 shows the Q-matrix in last day of the simulation.

Table 6.15: Q-matrix for Test Case 1 with one price-taker agent in a virtual market, considering γ

equal to 0.1, at the end of the day 500.

State\Action a1 a2 a3

s1 0.0000 -3.0400
s2
s3 0.0000 0.0000 0.0000
s4 3.007 -1.4590 -2.042
s5

As we can see, the s3 is already "reset" (as shown in the first example) and the agent is finding

new strategies. Due to this consideration we choose to use an high value of γ in our model to

give importance to the possible future rewards. The value will be 0.8. Even so, lower values also

allowed good results.
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Let us now analyse the most important parameter, the learning rate λ , that reflects the degree

in which estimated Q-values are updated by new data. Using the same Test Case of Table 6.1 and

Figure 6.3, but changing only the learning rate from 0.8 to 0.1, the simulation result is presented

in Figure 6.6.
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Figure 6.6: Bidding results for the Test Case 1 considering λ equal to 0.1.

As it is possible to observe in Figure 6.6, the bid chart appears to be less volatile than the

result in Figure 6.3. When the agent had the "bad experience" of not being cleared in the market

in day 60 (bid of 51 e /MWh) it rapidly sets its bid strategy down until it reaches the marginal cost

value. This strategy remained until the end of the 500 day of the simulation, despite having an high

probability of choosing worse decisions. It "looks like" the agent doesn’t forget the bad episode

of day 60 and doesn’t "want to learn" with fresh data. This situation happens because of the low

value of the learning rate. In this case, the Q-values are updated with very small increments of

new information and for that reason the new information is not valued, meaning that the agent has

a very slow rate of learning. That is why the "bad episode" of increasing the bid to 51 e /MWh in

day 60 continues to have influence for a long time and the agent "avoids" to do the +1 e /MWh

(Action 3) until the end of simulation period. Tables 6.16, 6.17 and 6.18 represent the Q-matrix at

days 65, 250 and 500.

Table 6.16: Q-matrix for Test Case 1 with one price-taker agent in a virtual market, considering λ

equal to 0.1, at the end of the day 65.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 -0.308
s4 0.2222 -0.0800 -0.1600
s5
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Table 6.17: Q-matrix for Test Case 1 with one price-taker agent in a virtual market, considering λ

equal to 0.1, at the end of the day 250.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 -0.0700
s4 0.2222 -0.0800 -0.1600
s5

Table 6.18: Q-matrix for Test Case 1 with one price-taker agent in a virtual market, considering λ

equal to 0.1, at the end of the day 500.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 -0.0070
s4 0.2222 -0.0800 -0.1600
s5

As it is possible to observe, after 500 days of simulation, the s3 still has negative information

in Q3,3-value from the +1 e /MWh experience of the day 60. This situation doesn’t mean it was a

bad strategy. In fact, the total revenues were higher than the simulation with λ equal to 0.8 because

in this last case with λ equal to 0.1, the agent, by not exploring the bid up, was always cleared in

the market. But this occurred in this particular case study where the market has fixed prices. In a

real situation, where the market dynamics are continuously changing, we want an agent that can

rapidly adapt and with very high capability of learning. For that reason we chose to use in our

work a high value of the learning rate of 0.8. There can be different approaches for the learning

rate modelization, like for example dynamic ones that evolve during the simulation although this

was not the option in this work.

Of course this Test Case 1 is very simple. In normal conditions the agent will have more

interactions and more feedback from the market outputs and will adapt its behaviour according to

the market price variations. In the Test Case presented above the agent didn’t have much feedback

from the environment since this market is very inelastic (always gave the same markets prices

along the days). The only experience that made the agent to react was when it bid above the

market price and immediately lost revenue. Nevertheless, with this simple Test Case 1 it is easy to

understand the dynamic behaviour of the implemented Q-Learning procedure.

Although this example is a very simple one, it is possible to conclude that this agent had a good

behaviour during its 500 days of market experience in all the tests that were performed. The total

revenues obtained in the 500 days were in average 98% of the maximum possible as it didn’t clear

in the market only in a few days of the 500 possible (the maximum possible revenues corresponds

to bid its marginal cost always in the market and being cleared in all 500 days in peak hours). It is
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important to note that the agent doesn’t know the market behaviour or the future prices, it doesn’t

know that the prices will always be constant, it doesn’t know that it has no market power and it

doesn’t have information on the number of simulation days. So it is impossible for the agent to

know the optimal solution. The only constraint for the agent is not bidding below its marginal cost

and its decisions are only based in its Q-matrix provided by the feedback of the markets prices

output during the simulation that it experienced, which means based in what it learned from its try

an error decisions.

In the next example we will introduce some variations in the market prices output (the market

prices will change in some days) but keeping the agent as a price-taker. We will refer this simu-

lation as Test Case 1.1. Its characteristics are presented in Table 6.19 and Figure 6.7 presents the

simulation results.

Table 6.19: Characteristics for Test Case 1.1 with one price-taker agent in a virtual market with
variable market prices.

Agent A Market N days 0-100 101-200 201-300 301-500
Power Off-peak
(MW) 100 (e /MWh) 12 7 17 12
Marginal Cost Base
(e /MWh) 45 (e /MWh) 36 31 41 36

Peak
Type price-taker (e /MWh) 50 45 55 50
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Figure 6.7: Bidding results for the Test Case 1.1.

In the first 100 days the agent has a behaviour similar to the one in the Test Case 1. It had

some "no-clearing" days (between days 32 and 36) but immediately reduces its bid and it stayed

in s3. But when it arrived at the day 101 its current bid was 47 e /MWh (corresponding to a3),

and the market, that changed in that day, had a price of 45 e /MWh. For this reason, the agent
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wasn’t cleared in the market, something that it didn’t expect. In day 100 the agent was in s3 and

its Q-matrix was the one presented in Table 6.20.

Table 6.20: Q-matrix for Test Case 1.1 with one price-taker agent in a virtual market with
variable market prices at the end of the day 100.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 0.0000
s4 1.8624 -1.1776 -1.2800
s5

At day 101, with a loss of revenues because the agent was not cleared, the Q-matrix was

updated with this negative reward as presented in Table 6.21 and the agent changed to the state s4.

Table 6.21: Q-matrix for Test Case 1.1 with one price-taker agent in a virtual market with
variable market prices at the end of the day 101.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 -4.3200
s4 1.8624 -1.1776 -1.2800
s5

From this moment, its Q-matrix gave the agent the information to decrease the bid until 45

e /MWh, that is its marginal cost and the current market price. After reaching the 45 e /MWh bid,

the agent kept it until the day 242 in s3 state. This situation happened because between day 101

and day 200, the market price remained at 45 e /MWh (equal to the marginal cost of the agent),

and any action by the agent to bid up different of its marginal cost gave it a negative reward (during

this period the agent only did a +1 e /MWh by choosing a worst action with 10% of probability).

As the agent uses past information to take a decision, it kept the information to "no bid up" until

day 242 even after the market price increased at day 200. As from the day 200, the decision to

increase the bid stopped giving negative rewards, the Q3,3-value began to tend to 0 (reached on

day 242). From here the agent returned to its "normal" exploration. Tables 6.22, 6.23 and 6.24

represent the Q-matrix at days 150, 200 and 242.
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Table 6.22: Q-matrix for Test Case 1.1 with one price-taker agent in a virtual market with
variable market prices at the end of the day 150.

State\Action a1 a2 a3

s1 0.0000
s2
s3 0.0000 0.0000 -1.5040
s4 -0.2830 -1.1776 -1.2800
s5

Table 6.23: Q-matrix for Test Case 1.1 with one price-taker agent in a virtual market with
variable market prices at the end of the day 200.

State\Action a1 a2 a3

s1 0.0000 0.0000 -0.6400
s2
s3 0.0000 0.0000 -0.8057
s4 -0.1676 -1.1776 -1.2800
s5

Table 6.24: Q-matrix for Test Case 1.1 with one price-taker agent in a virtual market with
variable market prices at the end of the day 242.

State\Action a1 a2 a3

s1 0.0000 0.0000 -0.6400
s2
s3 0.0000 0.0000 0.0000
s4 4.6592 -1.1776 -1.2800
s5

Looking at the results of this Test Case it is possible to observe that the agent can react to

changes in its environment. It is important to note, once again, that the agent doesn’t have any

information about the market dynamics. It only knows its marginal cost, the output of the market

clearing price and its Q-matrix that it is updated along the simulation.

Appendix A contains several simulations results of the Test Case 1 and 1.1, some of them

repeating simulations with the same parameters presented above (to test the robustness of the

approach), and some of them with different parameters and different marginal costs. In the charts

we present the value of the revenue obtained in each simulation to show the robustness of the

results.

Finally, let us discuss the computational performance of this model. In our case, using Mat-

lab code in a computer with 16 GB of RAM and with a processor of 3.0 GHz, this Q-Learning

procedure took less than 5 seconds simulate for the 500 day period.
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6.2.2 Test Case 2 - Single Agent: Price-Maker Agent

In this second case study, referred as Test Case 2, the agent, Agent B, and the environment,

Market M, will have the characteristics presented in Table 6.25.

Table 6.25: Characteristics for Test Case 2 with one price-maker agent in a virtual market.

Agent B Market M
Power (MW) 100 Off-peak (e /MWh) 12
Marginal Cost (e /MWh) 45 Base (e /MWh) 36
Type price-maker Peak (e /MWh) 50

In this case, it will be considered that the agent has market power in the peak hours in some

specific days, which means that it can influence the clearing price. Let’s consider that the agent

has market power from day 100 to day 200, but only if the price is below or equal to 55 e /MWh.

Above this value we will consider that there are other players that can set the price at 55 e /MWh,

meaning that the agent loses its market power above this value. Note that the agent doesn’t know

this market dynamics. Figure 6.8 shows the simulation results for this example.
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Figure 6.8: Bidding results for the Test Case 2 - example 1.

As we can observe (in this random simulation) the agent only "discovered" its market power at

day 180, but once it did, it increased its bid to get more revenues and exercising its market power.

At day 201, since the agent lost the market power and the market prices returned to 50 e /MWh,

the agent started to decrease its bid in order to be cleared in the market again.

Let us now analyse a more dynamic situation for this Test Case, the Agent B in a Market N

having variable prices. In this case, the market prices will change 4 times along the simulation

period as presented in Table 6.26.
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Table 6.26: Characteristics for Test Case 2 with one price-maker agent in a virtual market with
variable market prices.

Agent B Market N days 0-50 51-100 101-200 201-300 301-500
Power Off-peak
(MW) 100 (e /MWh) 12 22 15 12 22
Marginal Cost Base
(e /MWh) 45 (e /MWh) 36 46 39 36 46

Peak
Type price-maker (e /MWh) 50 60 53 50 60

In this case, let us consider that the agent has market power between days 100 and 300 in peak

hours. Figure 6.9 presents the results for one random simulation of this example.
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Figure 6.9: Bidding results for the Test Case 2 - example 2.

As it is possible to observe in Figure 6.9 the agent can react to market prices variation. Until

day 46, the agent stayed in s3 as it doesn’t get any reward increase or decrease from its bid up and

bid down. In this period, its Q-matrix was the one presented in Table 6.27.

Table 6.27: Q-matrix for Test Case 2 with one price-maker agent in a virtual market with variable
market prices at the end of the day 46.

State\Action a1 a2 a3

s1
s2
s3 0.0000 0.0000 0.0000
s4
s5
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On day 47, the agent increased the bid to 51 e /MWh and for that reason it was cleared off

from the market, getting a negative reward. But at the same time, as the market prices of base

hours increased to 46 e /MWh and the agent marginal cost is 45 e /MWh, so that it also lost the

opportunity to be cleared in base hours. For this reason the agent move to s4 and started to bid

down until being cleared at base hours (at day 73). Table 6.28 presents the Q-matrix at day 60,

when the agent was in its path to bid the marginal cost.

Table 6.28: Q-matrix for Test Case 2 with one price-maker agent in a virtual market with variable
market prices at the end of the day 60.

State\Action a1 a2 a3

s1
s2
s3 0.0000 0.0000 -3.0400
s4 -2.2300 -3.4380 -4.4360
s5

As we can observe in Table 6.28, the best action for the agent, which is in s4, is a1 (bid down)

until it is cleared in base hours and move again to s3.

Next, at day 100, the market prices decreased 5 e /MWh and the agent was cleared off again

from base hours. At the same time, this agent gained the market power at peak hours as explained

before. But the recent information the agent has is that the best solution was bid its marginal cost,

so the agent will take some days until it starts to explore the bid ups again (only at day 156),

meaning that it doesn’t "discover" that it has market power and remained in s3. The Q-matrix of

the agent at day 150 is presented in Table 6.29.

Table 6.29: Q-matrix for Test Case 2 with one price-maker agent in a virtual market with variable
market prices at the end of the day 150.

State\Action a1 a2 a3

s1 0.0000 0.0000
s2 -3.2000
s3 0.0000 0.0000 -0.0005
s4 -3.2800 -4.1680 -4.4360
s5 0.0000

At day 156, the agent is in s3, and when it bids up (a3) and its utility was 0, the Q3,3-value

went to 0. From this day, as the best action in s3 is either a1, a2 or a3, the agent started again to

explore the bids randomly. But at this day, the agent didn’t find that it has market power yet.

After day 200, the market prices decreased again 5 e /MWh, and by fortune the agent was

doing a bid up trajectory. At day 203, the agent bid 51 e /MWh and the market price in peak

hours increase to 51 e /MWh because it has market power from day 100 to day 300 thus leading
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to an increase in its utility. The agent realized that it had market power. Table 6.30 presents the

Q-matrix at day 203.

Table 6.30: Q-matrix for Test Case 2 with one price-maker agent in a virtual market with variable
market prices at the end of the day 203.

State\Action a1 a2 a3

s1 0.0000 0.0000 0.4800
s2 -3.2000
s3 0.0000 0.0000 -2.4000
s4 -3.2800 -4.1680 -4.4360
s5 0.4800

The agent is now on s1. In s1 it chooses a3 (with 90% of probability). The bid is now 52

e /MWh and, as the agent has market power, the peak hour cleared at 52 e /MWh. Again the

agent had a positive reward and its Q-matrix is represented in Table 6.31.

Table 6.31: Q-matrix for Test Case 2 with one price-maker agent in a virtual market with variable
market prices at the end of the day 204.

State\Action a1 a2 a3

s1 0.0000 0.0000 0.8832
s2 -3.2000
s3 0.0000 0.0000 -2.4000
s4 -3.2800 -4.1680 -4.4360
s5 0.4800

Continuing in s1, the agent will increase its bid until it reached at 56 e /MWh at day 209. As

mentioned, the agent looses its market power above 55 e /MWh and for this reason it didn’t clear

in the market, had a negative reward and changed to s4. Its Q-matrix is now represented in Table

6.32.

Table 6.32: Q-matrix for Test Case 2 with one price-maker agent in a virtual market with variable
market prices at the end of the day 209.

State\Action a1 a2 a3

s1 0.4841 0.0000 -4.1746
s2 -3.2000
s3 0.0000 0.0000 -2.4000
s4 -3.2800 -4.1680 -4.4360
s5 0.8832

In s4, at day 210, the agent chooses a1 (decrease the bid to 55 e /MWh) and it is clear in the

market (positive reward and change to s1). Its Q-matrix is represented in Table 6.33.
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Table 6.33: Q-matrix for Test Case 2 with one price-maker agent in a virtual market with variable
market prices at the end of the day 210.

State\Action a1 a2 a3

s1 0.4841 0.0000 -4.1746
s2 -3.2000
s3 0.0000 0.0000 -2.4000
s4 2.0398 -4.1680 -4.4360
s5 0.8832

At day 211, in s1, it chose a1 (decrease the bid to 54 e /MWh), loosing utility as the market

price also decreased to 54 e /MWh. It changed to s5 and its Q-matrix update is represented in

Table 6.34.

Table 6.34: Q-matrix for Test Case 2 with one price-maker agent in a virtual market with variable
market prices at the end of the day 211.

State\Action a1 a2 a3

s1 -0.0734 0.0000 -4.1746
s2 -3.2000
s3 0.0000 0.0000 -2.4000
s4 2.0398 -4.1680 -4.4360
s5 0.8832

In s5, the agent uses its Q-matrix and choose a3 (increase the bid to 55 e /MWh) and increase

it utility again. This biding strategy between 54 and 56 e /MWh is now used by the agent to apply

its market power until day 300.

At day 300, the agent loses the market power, and at the same time, it has the possibility of

being cleared in base hours, as we can observe in Figure 6.9. Because of that, it decreases its bid

until 45 e /MWh and maintained this value until the end of simulation. With this strategy, the

agent was cleared in base and in peak hours, maximizing its revenues.

In Appendix A we present several simulation results for the Test Case 2, some of them repeat-

ing simulations with the same parameters presented above (to test the robustness of the approach),

and others with different parameters and different marginal costs.

In terms of the computational performance, using Matlab code in a computer with 16 GB of

RAM and with a processor of 3.0 GHz, this Q-Learning procedure took less than 5 seconds to

simulate a 500 day period.

6.2.3 Test Case 3 - Testing the Q-Learning Procedure in a Competitive Market

As mentioned in Section 6.2, the third Test Case (Test Case 3) is performed considering 30

generation agents in a simulated competitive day-ahead market. This simulation will run daily, for
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the 24 hours of each day, and will run for one complete year (365 days). The generation agents in

this example will have the same power capacity, but different marginal costs. Table 6.35 presents

the characteristics of the 30 generation agents.

Table 6.35: Generation agent characteristics for the Test Case 3 for all the 365 days.

Agent Capacity (MW) Marginal Cost (e /MWh )

Agent 1 300 20

Agent 2 300 20

Agent 3 300 20

Agent 4 300 20

Agent 5 300 20

Agent 6 300 20

Agent 7 300 35

Agent 8 300 35

Agent 9 300 35

Agent 10 300 35

Agent 11 300 35

Agent 12 300 40

Agent 13 300 40

Agent 14 300 40

Agent 15 300 40

Agent 16 300 40

Agent 17 300 45

Agent 18 300 45

Agent 19 300 45

Agent 20 300 45

Agent 21 300 45

Agent 22 300 50

Agent 23 300 50

Agent 24 300 50

Agent 25 300 50

Agent 26 300 50

Agent 27 300 55

Agent 28 300 55

Agent 29 300 55

Agent 30 3300 60

For simplification, these characteristics will be the same for the 365 days of the simulation.

Regarding the demand agents, we will consider in this Test Case the real demand pattern in Portu-
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gal for 2018, obtained in Portuguese TSO website. As in generation agents, we will also consider

30 demand agents with different bid prices and power consumptions. Table 6.36 presents part of

the demand power consumption (only as example) and Table 6.37 presents part of the demand bid

price.

Table 6.36: Demand agents power consumption for the Test Case 3 in MWh.

Hour Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 to 30
Hour 1 3189 500 200 100 25
Hour 2 3050 500 200 100 25
Hour 3 2804 500 200 100 25

...
Hour 8760 3580 500 200 100 25
Minimum 2111 500 200 100 25
Maximum 7271 500 200 100 25

Table 6.37: Demand agents bid price for the Test Case 3 in e /MWh.

Hour Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 to 30
Hour 1 180 150 145 140 135 to 10 (5 in 5)
Hour 2 180 150 145 140 135 to 10 (5 in 5)
Hour 3 180 150 145 140 135 to 10 (5 in 5)

...
Hour 8760 180 150 145 140 135 to 10 (5 in 5)

As we can see in Table 6.36, the power consumption for Agents 2 to 30 remains unchanged

during all simulation period, and the Agent 1 demand will be the difference to the 2018 Portuguese

total demand hourly pattern, representing the larger consumption. In terms of the bidding price it

will remain unchanged for all 8760 hours for all demand agents as we can observe in Table 6.37.

As an illustrative example, Figure 6.10 represents the market clearing curve for hour 1 of day 1

considering the Test Case 3 and considering that all agents bid their marginal cost as an illustrative

example.
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Figure 6.10: Market Clearing Curve for hour 1 for the Test Case 3.
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In order to verify the impact of the Q-Learning procedure, we ran 2 simulations. In the first

one, the generation agents bid their marginal cost and, in the second simulation, generation agents

use the Q-Learning strategy already detailed. Figure 6.11 presents the average market price results,

the minimum and maximum value for each day of the Test Case 3 simulation considering no

bidding strategies and Figure 6.12 presents the results of the same Test Case considering the Q-

Learning strategy.
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Figure 6.11: Daily market prices for 30 generation agents in a competitive market without
Q-Learning.
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Figure 6.12: Daily market prices for 30 generation agents in a competitive market with
Q-Learning.

As we can observe, the daily average prices increased 2.15 e /MWh by adding the learning

strategy to the generation agents. This happened essentially due to the increase in off-peak prices

(minimum daily value increased from 40.07 to 44.13 e /MWh). In terms of the peak values, it

is not observed a significant increase (only 0.50 e /MWh). This situation happened because the

balance between the generation and the demand and because of the slope of the bidding curves.
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The agents with marginal cost of 50, 55 and 60 e /MWh have less load to supply, and for that

reason, they have less market power. On the other hand, the agents with marginal cost between

35 and 45 e /MWh are, in this specific case, the generators that are more often setting the market

clearing price and they "learn" that they can apply market power. Figure 6.13 presents the bidding

strategy for Agent 13, that has 40 e /MWh as marginal cost.
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Figure 6.13: Daily market prices for 30 generation agents in a competitive market with
Q-Learning and the bid of Agent 13.

As it is possible to observe, the bid up strategy of this agent is impacting the market price. For

instance, from day 200 to 250 the agent’s bid is increasing the off-peak prices. But this situation

only happens because this agent has market power in this specific Test Case. This strategy led

to an increment on the revenues by 15%. Let us now analyse the bid of Agent 29. Figure 6.14

presents the bidding strategy for Agent 29 that has 55 e /MWh as marginal cost.
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Figure 6.14: Daily market prices for 30 generation agents in a competitive market with
Q-Learning and the bid of Agent 29.
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As we can observe, the few attempts that this agent did to increase the price (as for example

in day 275) resulted in a clearing off of the market and, almost immediately, the agent returned to

the bid equal to its marginal cost (55 e /MWh).

Now let us analyse with more detail the hourly price results of this Test Case. Figure 6.15

presents the results of the hourly prices for the first month of the simulation with and without the

Q-Learning procedure.
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Figure 6.15: Hourly market prices for the first month with and without Q-Learning strategy.

As we can observe, the off-peak prices in the simulation with the Q-Learning have a continuous

increase along the first month, in line with the results of Figure 6.12. This continuous increase

reflects the learning capability that the agents with market power have. But when these agents

(agents with marginal cost between 35 and 45 e /MWh) start biding above 50 e /MWh, they lose

the market power as there are other agents that offer this price. At this point, the agents with

marginal cost between 35 and 45 e /MWh converge to biding a value near 50 e /MWh as it is

possible to observe in Figure 6.16. This Figure presents the results of the hourly prices for the

second month of the simulation with and without the Q-Learning procedure.

Appendix A.3 contains the hourly results for the other 10 months of the simulation year.

As we observed, the generation agents were able to increase their revenues by applying the

proposed Q-Learning strategy, namely the agents with marginal cost between 35 and 45 e /MWh

that have succeeded in applying market power. This happened due to the combination of the

supply curve and the demand curve and the lack of competition for this marginal costs level that

caused these agents to have market power in off-peak hours. But one question that can be asked is

what would be the results if we increase the competition in the range of 35 to 45e /MWh marginal

cost. Figure 6.17 shows the results of the same Test Case, but considering 5 more agents with 35

e /MWh of marginal cost, 5 more agents with 40 e /MWh and 5 more agents with 45 e /MWh.
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Figure 6.16: Hourly market prices for the second month with and without Q-Learning strategy.
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Figure 6.17: Daily market prices for 45 generation agents in a competitive market with
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Analysing the charts in Figure 6.17, we note that with more competition in the marginal

cost range between 35 and 45 e /MWh, the maximum daily market prices are now limited to

40 e /MWh in most of the days, despite the demand curve being the same. This situation happens

because every time an agent with 35 or 40 e /MWh marginal cost tries to increase its bid, there

are always other agents that are not doing a bid up, and the agent that does the bid up is cleared

off of the market. In practice the increased competition presses the prices down.

Finally let us analyse the robustness of the proposed Q-Learning methodology. As it can

be easily understand, this methodology has a stochastic nature because there are probabilities

associated with state transitions, namely the choice of the next action. In order to validate this

model, it is important that several repetitions of the simulations present similar results. Table

6.38 presents the minimum, the average and the maximum daily market prices for 10 consecutive

simulations, as well as the standard deviation of the 10 simulations of Test Case 3 with the Q-

Learning procedure.

Table 6.38: Average daily market prices for 10 simulations of Test Case 3 with Q-Learning.

Sim Min. price (e /MWh ) Average price (e /MWh ) Max. price (e /MWh )
1 44.13 49.06 53.59
2 43.55 48.82 53.34
3 44.24 49.06 53.55
4 43.66 48.83 53.56
5 44.23 49.51 53.87
6 44.90 49.84 53.96
7 44.85 49.92 53.88
8 45.57 50.26 53.91
9 44.33 49.34 53.67

10 44.55 49.34 53.56
Average 44.33 49.34 53.67

St. deviation 0.64 0.51 0.22

As we can observe, all the 10 simulations converged to similar results suggesting that the

developed Q-Learning procedure is very robust in terms of displaying similar results for a set of

consecutive simulations.

In terms of the computational performance, using Matlab code in a computer with 16 GB of

RAM and with a processor of 3.0 GHz, these simulations took around 143 seconds to run, in

average, for the 500 day period.

6.2.4 Discussion of Results of Q-Learning tests

Analysing all the results of Section 6.2, we can conclude that the proposed model presents very

good results. In Section 6.2.1 we showed that the agent, without knowing the market behaviour,

had the capability of exploring the environment by doing bid ups and bid downs and had the
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capability of reacting to a clear off in the market. We also showed that, by the correct selection

of the parameters λ , γ and ε , the agent demonstrated learning capabilities and it was possible to

avoid "greedy" convergence to the marginal cost. In Section 6.2.2 we showed that the agent was

able to "discover" situations where it had market power and increased its bid to get more revenues

thus exercising its market power and increasing the market price. In Section 6.2.3 we showed the

impact of increasing the competition by decreasing the market power of some agents. We also

showed that all the simulations converged to similar results showing a great robustness in their

outputs, and as a consequence, of this Q-Learning procedure.

In summary, we can conclude that the Q-Learning proposed in this work (the state and the

action definitions and the parameters chosen) showed that they can give the agents a very good

capability of applying strategies in the electricity market with very effective results. With the

proposed methodology we can state that the agents can apply "intelligent" strategies, by only

knowing the outputs of the market clearing, by updating their Q-matrix with knowledge obtained

by their trial and error strategies and without any knowledge of the environment.

6.3 Testing the Hydro Scheduling Problem

The HSP model developed in this work will be tested in three different Test Cases. In the

first one, referred as Test Case 4 and detailed in Section 6.3.2, we will present the results of

the HSP short-term model in its simple version where the hydros are price-takers and have the

tailwater level constant. Next, Section 6.3.3, presents some results of the HSP short-term model

considering the impact on market prices and in the tailwater level as mentioned in Section 5.3.3. It

will be referred as Test Case 5. Finally, Section 6.3.4 details the results of the HSP medium-term

model that is used to calculate the water value function as mentioned in Section 5.3.4. It will be

referred as Test Case 6.

6.3.1 Test Cases Characterization and Input Data

For Test Case 4, 5 and 6 it will be used data from a Portuguese cascade, Douro Nacional,

that goes from Pocinho until Crestuma power plant, including power plants in Tâmega, Sabor and

Tua rivers. Additionally for Test Case 6 we will also simulate a very large reservoir, that will

be Alqueva power plant in Guadiana river in order to get the water value curve for this kind of

reservoirs. The main characteristics of these hydro units are presented in Table 6.39 (full data

detailed in Appendix B).

The Douro Nacional cascade is one of the most important hydroelectric subsystems of Portugal

representing about 50% of the total hydro generation in an average year. It has a set of run-of-river

hydro units, with large head variation, and it has also several reservoirs with pumping capability.

The illustration of this cascade is shown in the Figure 6.18.
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Table 6.39: Main characteristics of the hydro power plants simulated in the Test Cases 4, 5 and 6.

Hydro Volume (hm3) Discharge Vol. (m3/s) Pump Vol. (m3/s) Head (m)
Pocinho 12 1077 - 21

Baixo Sabor 450 170 135 94
Feiticeiro 13 120 85 30

Valeira 12 900 - 31
Foz Tua 12 240 238 94
Régua 12 744 - 27

Carrapatelo 16 705 - 33
Torrão 22 320 279 52

Crestuma 16 1350 - 12
Alqueva 2571 800 640 66
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Figure 6.18: Douro Nacional cascade in Douro river.
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Alqueva power plant is located in the Guadiana river and it is the biggest reservoir in Iberia.

It has also pumping capability.

As detailed in Section 5.3, the HSP uses as external input the hourly inflows and the hourly

market prices. This data can be forecasted data or a time series data. For the HSP demonstration

results for Test Cases 4 and 5 we will use data for 2018 provided by EDP Produção. For the

Test Case 6, to estimate the water value curves, we used a data set built by EDP Produção, where

the VALORAGUA model was used to generate a set of 40 years of hourly price scenarios, taking

into account several hydro conditions. The VALORAGUA model estimates the impact on market

prices by varying the hydro inflows, wind generation, thermal dispatch and energy demand. With

this model it is possible to simulate several scenarios of hydro inflows and get its correspondent

market prices taking into account a base scenario. The base scenario will correspond to the 2018

data in order to be used in the MIBEL simulation that will be presented in Section 7.3. This was

an hydrologic average year, meaning it had an Hydro Capability Factor (HFC) near 1. This factor

corresponds to hydro generation in a specific year, divided by the average generation for a specific

time series. The results of the annual average prices of the VALORAGUA simulation (for the

2018 data scenario with different hydro conditions) are presented in Figure 6.19.
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Figure 6.19: Correlation between the annual hydro capability factor and the annual market prices
from VALORAGUA simulation.

As we can observe, the simulation of 2018 for a dry scenario gave a market price increase of

4.50 e /MWh and a decrease of 8.90 e /MWh in a wet year simulation. This asymmetry happens

because in a wet year there are several hours at 0 e /MWh that pushes the average market price

down, while in a dry year the market price has a strong correlation with the variable cost of

thermal power plants. One important issue to note is the result obtained for the annual average

price, that was 48.35 e /MWh that compares with 57.40 e /MWh from real 2018 MIBEL market.

This difference between the simulation and the real market price will be discussed in Section 7.3.

As mentioned in the paragraph above, the VALORAGUA simulation data will be just an input to

our work and in fact improving the VALORAGUA model is out of the scope of this research.
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6.3.2 Test Case 4 - Hydro Scheduling Short-Term Base Problem

The results for Test Case 4 are presented in this section and they will be used in order to show

the different behaviours of the HSP for different situations. It will be simulated the first week

of 2018 for Douro Nacional using real data. In this Test Case the final volume of the week will

be always equal to the initial volume of that week. This means that the water value coordination

it is not considered in this Test Case. We will only analyse the performance of the optimization

procedure. The relaxation parameter α was set at 0.7 in this Test Case. Values of α between 0.6

and 0.8 presented good results and required less iterations to get convergence of the simulation.

Let us first analyse the results for Baixo Sabor power plant, that is a large reservoir with

pumping capability. Figure 6.20 presents the generation energy and the pumping consumption of

Baixo Sabor, considering the week 1 of 2018, and considering that the initial and the final volume

are equal to the maximum value, 1095 hm3.
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Figure 6.20: Results of the Hydro Scheduling Problem for Baixo Sabor - generation energy and
pumping consumption.

Analysing the Figure 6.20 it is possible to observe that, at first glance, the results do not seem

correct. This unit didn’t produce energy at hour 78, but produced at hour 5, that has a lower price

than hour 78. Additionally, it didn’t consume energy at hour 10, but consumed at hour 50 that has

an higher price. However the results are correct because of the volume constraint. As mentioned

in the paragraph above, the simulation started with the maximum volume and at same time there

are some inflows. Figure 6.21 details the volume results and inflows for the same simulation.

As we can observe, Baixo Sabor had to generate in hour 5 to avoid spillages. It couldn’t pump

in hour 10 for the same reason. This situation happened because the simulation started with the

maximum volume. Let us now repeat the simulation but with the initial volume starting below

the maximum volume (with 1045 hm3). Figures 6.22 and 6.23 present the results of this new

simulation.
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Figure 6.21: Results of the Hydro Scheduling Problem for Baixo Sabor - volumes and inflows.
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Figure 6.22: Results of the Hydro Scheduling Problem for Baixo Sabor - generation energy and
pumping consumption with a lower initial volume.
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Figure 6.23: Results of the Hydro Scheduling Problem for Baixo Sabor - volumes and inflows
with a lower initial volume.
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As it is possible to observe, the generation is now placed in the highest market price hours and

the pumping consumption is used in the lowest prices hours.

These two small examples show a very good performance of the HSP model in optimizing

hydropower plants taking into account a set of market prices and considering all the constraints.

However, the use of the HSP and its sub-relaxation methodology is essentially due to the non-

linearity relation between the head and the discharge flow in this type of problems. This non-linear

relationship is particularly important in run-of-river hydros with small heads and large variation in

its volumes. In order to analyse the performance of the HSP in this type of situation, Figure 6.24

and Figure 6.25 present the results of the simulation for Crestuma power plant.

Energy

(MWh)

M. Price

(€/MWh)

hours

0

10

20

30

40

50

60

70

0

20

40

60

80

100

120

140

1 8
1

5
2

2
2

9
3

6
4

3
5

0
5

7
6

4
7

1
7

8
8

5
9

2
9

9
1
0
6

1
1

3
1
2

0
1
2

7
1
3
4

1
4
1

1
4

8
1
5

5
1
6

2
Generation Market Price

Figure 6.24: Results of the Hydro Scheduling Problem for Crestuma power plant - generated
energy.
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Figure 6.25: Results of the Hydro Scheduling Problem for Crestuma power plant - head.

As it is possible to observe, the value of the maximum power in the generation pattern is largely

affected by the head in this case, since the maximum power value decreases with the head. These

results are only possible to get using a non-linear model. However, given the size of the problem

of this Test Case (more than 6000 variables for one week) it is very difficult to solve it using
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traditional non-linear methods. Regarding the HSP performance, solving this problem with the

iterative under-relaxation approach detailed in Section 5.3, using MATLAB, takes approximately

2 seconds on a standard personal computer, while using a traditional non-linear tool in MATLAB

would require several hours in the same conditions.

In terms of convergence of the under-relaxation iterative procedure, in the presented Test Case,

it was achieve in 5 iterations with a maximum error for all heads less than 0.2 %. The maximum

error for convergence was set at 0.5% for all 1512 head variables (168 hours multiplied by 9

reservoirs) as presented in (5.7). Figure 6.26 shows the evolution of the error along the under-

relaxation iterative procedure.
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Figure 6.26: Evolution of the maximum error over the iterations for the Case Study 4.

By running this same cascade hourly for 40 years, the convergence was not achieve only in

4 weeks (4 of 2080 simulated weeks). In these 4 weeks there were only 7 hours in Crestuma

reservoir in which the convergence criterion did not comply. This means 7 hourly heads did not

converge in a total of 3144960 head variables simulated for all the 40 years. For these 7 hours the

maximum error was of 11%.

Given these results, the HSP used in this work is extremely effective in solving the scheduling

problem of hydro power plants taking into account the non-linear relationship between the head

and the discharge flow.

6.3.3 Test Case 5 - Hydro Scheduling Short-Term Problem Considering the Impact
on Market Prices and in the Tailwater Level

As detailed in Section 5.3.3, the model presented in this Section will be used for the Run-of-

river Agent (Section 4.3.2.2) and Pure Pumping Agent (Section 4.3.2.5). It will be added to the

HSP used in the previous Section a new procedure of market price curve updating, taking into

account the generation and the pumping decisions given from the HSP output, and it will also

update the tailwater level due to the increase of this level when the hydro power plants discharge.

In order to analyse these two impacts, the Test Case 5 will be simplified. Instead of doing

a full week simulation as it was done in the previous Test Case, this one will be conducted only
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for the first 2 days of the first week of 2018. The main objective of this simplification is to more

easily illustrate the operation results of the model. At the same time, we will consider all Douro

Nacional hydro units as one single selling offer in the market of 1483 MW in generation, and one

single buying offer of 573 MW of pumping. These values correspond to the total generation and

pumping powers of Douro Nacional. The volume of all hydros were also added, and the final

volume of day 2 is set to be equal to the initial volume of day 1 in one single reservoir with no

head variation.

The market curves used for this Test Case correspond to the real ones for these 2 days obtained

in the Iberian Market Operator website. In this case it is important to highlight one issue. In the

data available on the website, only the curves of the selling and buying offers are fully available.

The final cleared curves are just known until the clearing point. The differences between the

selling and buying offered curves and the selling and buying cleared curves are due to the complex

bids that are bids that can be cleared off if some conditions are not fulfilled. Figure 6.27 presents

one example of this situation for day 1, January 2018, hour 1.

Selling Cleared Buying Cleared Buying OfferedSelling Offered

Energy (GWh)

M. Price

(€/MWh)

Figure 6.27: Example of the market clearing curves for hour 1 of day 01/01/2018 in Iberian
Market, obtained from Iberian Market Operator website.

The final market price for this hour is obtained by the cleared curves (in thick blue and green)

that are not complete. As a consequence, the market prices that we will use in the Test Case 5 are

different from the ones used in the Test Case 4 because the procedure to consider the impact on

the price of generation/pumping decisions requires knowing the complete curves, that is, the thin

blue and green curves.

Finally, for the consideration of the increase of the tailwater level and its impact on the head

calculation in the iterative procedure, as indicated in (5.19), we will use information for the Douro

cascade provided by EDP Produção. In the Douro cascade this problem is relevant only for

Pocinho, Valeira, Régua, Carrapatelo and Crestuma units. For these power plants the tailwater

level variation will be calculated as presented in (6.1). This means that the pumping power plants
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will not have tailwater effect in this case.

ξ
it
ik(qgit

ik) =

[
1+0.10

qgit
ik

qmax
i

]
·ξ nominal

i (6.1)

In this expression:

ξ it
ik - tailwater level in reservoir i, hour k, for iteration it;

qgit
ik - discharge flow in reservoir i, hour k, for iteration it;

qmax
i - maximum discharge flow in reservoir i, hour k, for iteration it;

ξ nominal
i - nominal tailwater level in reservoir i, hour k, for iteration it.

In the first place, let us analyse the result assuming no pumping capability. Accordingly, we

will only have to locate the generation in the best hours. Figure 6.28 presents the HSP results

without the consideration of the impact on prices and the tailatwer level.
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Figure 6.28: Scheduling of the generation periods for the Test Case 5 using the HSP model.

As it is possible to observe, the energy of the hydro power plants is scheduled in the higher

prices as it was expected. Let us now do the same simulation, but considering the impact on the

prices and on the tailatwer level. We used a converge error of 1% and a smoothing parameter θ of

0.7. Figure 6.29 details these results.

Analysing the results in Figure 6.29 we can verify that the generation schedule changed in 2

hours. Before the iterative process (Figure 6.28), we had generation in hour 25 and hour 26. With

the application of the iterative process they moved to hours 1 and 2. This result happens because

of the impact on the market prices in hours 25 and 26 is larger than the impact in hours 1 and 2,

taking into account the market curves of these specific days. In this way, and taking into account

the data used, the best strategy is to offer the energy in hours 1 and 2, instead of hours 25 and 26

(although these have higher original prices). From hour 32 to 47 there were no changes.
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Figure 6.29: Scheduling of the generation periods for the Test Case 5 using the HSP considering
the impact on prices.

Another result that is important to note is that the variation between the initial and the final

prices is larger in the first 30 hours, when compared with the variation from hour 32 to 37. This

result is related with the market splitting. Between hour 1 and hour 30 of these 2 initial days

of 2018, there was in MIBEL a separation of the Portuguese and the Spanish Markets using the

market splitting mechanism. As the market in Portugal is about 5 times smaller than in Spain,

the variation of the generation in the Portuguese market curves leads to a higher variation in the

market prices when compared to the complete MIBEL market curves. Although this consideration

is valid in general, there may occur some specific situations in which the complete MIBEL market

prices have larger price variation due to changes in generation schedules depending on the shape

of the curves.

The convergence of the procedure considering the impact on market prices and in the tailwater

level was achieved in 4 iterations.

Analysing the impact of the tailwater level updating, it is possible to observe that it didn’t

impact the scheduling of the generation. The main consequence was a reduction of the maximum

power of approximately 14% in the considered individual power plants (11% in the total cascade).

In practice it represented a reduction of energy generated of 11% when compared with the simu-

lation having the tailwater constant. Another consequence, on a smaller scale, was the increase in

the number of hours of non-convergence of the HSP head updating of the under-relaxation iterative

procedure. As mentioned in Section 6.3.2, the HSP has a very good performance just considering

the head updating due to the reservoir level variation. With this new tailwater level updating pro-

cedure, we are introducing a new dimension in the head variation. By also updating the tailwater

level, the head calculation also varies with the tailwater level. This fact increased the number of

iterations to achieve convergence from 3 iterations in the simulation associated with Figure 6.28

to 5 iterations in the simulation associated with the results in Figure 6.29.
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Finally, let us analyse the pumping consumption. In this case we will only analyse the power

plants with pumping capability of Douro Nacional, with a total of 573 MW. We will not consider

inflows or volumes variation of those units. This means that these power plants will only generate

with water that they decide to pump. Additionally, as mentioned in the test above, for these power

plants the tailwater effect is not considered. Figures 6.30 and 6.31 present the HSP results without

and with the consideration of the impact on prices.
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Figure 6.30: Scheduling of the generation and pumping for Test Case 5 using the HSP model not
considering the impact on market prices.
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Figure 6.31: Scheduling of the generation and pumping for Test Case 5 using the HSP model
considering the impact on market prices.

As we can observe, without considering the impact on prices, the optimal solution includes

pumping in hours 29, 30 and 31 and generation in hours 25 and 26. After the prices update

procedure, pumping and generation in these hours were eliminated because the corresponding

bids will impact on the prices turning the operation in these hours not profitable. As in the case

before, in these hours there is market splitting so that large price variations occur.

Analysing these results, we can conclude that the add-in procedure associated with the prices
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and the tailwater level update to the HSP provides more realistic results, and can be used to esti-

mate more realistic values for the revenues of hydro companies.

6.3.4 Test Case 6 - Hydro Scheduling Medium-Term Problem to Calculate the Wa-
ter Value Functions

As detailed in Sections 4.3.2.3 and 4.3.2.4, the HSP problem for the medium-term model will

be used by Storage Hydro Agents and by Storage Pumping Hydro Agents in order to calculate

their water value functions, as these agents will have a bidding price directly related with these

functions (different from Run-of-river Agents and Pure Pumping Agents that will schedule their

energy using the HSP short-term model). This means that these agents will only be cleared in

the market if the market prices are higher than their water value, either in peak or off-peak hours.

To calculate these water value functions (as detailed in Section 5.3.4), the Test Case 6 will use

the same data as for the Test Case 5 regarding the hydro characterization, adding a very large

reservoir (Alqueva), 40 years of historical data of inflows and the market prices generated by

VALORAGUA, as mentioned in Section 6.3.1. With this Test Case, we will consider both small

and very large reservoirs as well as 40 years of inflows and market prices data to build the water

value function curves.

These water value curves will be built for each week using the 40 year HSP medium-term

simulation. This means that we will have 52 curves per reservoir, and for each week curve there

are 40 pair of points with the reservoir level and the water value, as detailed in Figure 5.16 of

Section 5.3.4.

Let us first analyse the results for a small reservoir (22 hm3 from Torrão hydro station). Figure

6.32 presents the results for the water value function for the first week of the year.
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Figure 6.32: Water value function results for a small reservoir for week 1.

As it is possible to observe, the water value for week 1 varies between 35 e /MWh in when the

reservoir level is low, and 0 e /MWh when the reservoir is full and spilling. As the reservoir gets
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less stored water, the water value increases. At the same time, the values of the water function are

low when compared with the annual average market prices for the 2018 simulation with VALOR-

AGUA (48.35 e /MWh). These results are related to the fact that week 1 is typically a wet week,

but specially to the small capacity of Torrão reservoir. Now let us analyse the results for week 35,

a dry week, for the Torrão reservoir. Figure 6.33 presents the results for the corresponding water

value function.
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Figure 6.33: Water value function results for a small reservoir for week 35.

As we can see, the water value in week 35 is slightly higher and virtually constant (regardless

of the volume level), when compared to week 1. This situation happens because week 35 has no

risk of spilling (given that it is located in Summer), and because of that, the water value is almost

indifferent to the reservoir level. Another important result is the average value itself (approxi-

mately 35 e /MWh). It corresponds more or less to the value of week 1 when the reservoir in

empty, but, again, it is below the average annual price of MIBEL for 2018 obtained with VALOR-

AGUA (48.35 e /MWh). This situation happens because this reservoir is very small (22 hm3) and

the possibility of profiting with the stored water is small.

Let us now analyse the results for a large reservoir (450 hm3 from Baixo Sabor hydro station).

Figure 6.34 and Figure 6.35 present the results for the water value function for week 1 and week

35 for this large reservoir.

As we can see, the water values are higher than the ones obtained for Torrão hydro station,

as the reservoir capacity of Baixo Sabor is 20 times larger. Therefore this reservoir has an higher

capability to store and manage the water and profit from that, without having the risk of spilling.

It is also possible to observe that in the Summer (week 35), the water value is nearly constant

independently of the level of the reservoir, as the risk of spilling is reduced. This shows an higher

capability of Baixo Sabor in using the reservoir to store water along the weeks of the year due to

its much larger capacity compared with Torrão.

Finally, Figure 6.36 and Figure 6.37 present the results obtained for week 1 and week 35 for

Alqueva hydro station, that has 5 times the reservoir capacity of Baixo Sabor.
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Figure 6.34: Water value function results for a large reservoir for week 1.
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Figure 6.35: Water value function results for a large reservoir for week 35.

Water Value (€/MWh)

Storage Level (hm3) MaxMin

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000

Figure 6.36: Water value function results for a very large reservoir for week 1.
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Figure 6.37: Water value function results for a very large reservoir for week 35.

In this case, the water value is almost constant regardless of the weeks being wet (week 1)

or dry (week 35). This situation happens because the Alqueva has no risk of spilling, and the

water value is only related with the value of the market price, being almost independent of the

reservoir level. Despite that, there are 2 situations to be analyse in this case. The first one is that

the water values are higher in Baixo Sabor in some points (low levels of the reservoirs) when

compared to Alqueva. This situation is not easy to understand, but it probably happens because

of the distribution of the inflows. In Baixo Sabor the variability of the inflows along the weeks is

very high, while in Alqueva the variation of the inflows is smaller as they are very constant along

the weeks. This situation may be influencing this difference between the results in Figure 6.35 for

Baixo Sabor and in Figure 6.37 for Alqueva. The second situation is the slope of some water value

curves of Alqueva (like for week 35), that has a positive value so that the water value increases

with the reservoir level. This is probably related to the weak correlation between the Portuguese

hydro regime and the Alqueva hydro regime, meaning that when Portugal has a wet regime, with

consequent lower market prices, Alqueva can have low inflows. This is a characteristic from

Alqueva hydrology that it can be captured by this model. In this type of reservoir we approximated

the curves to a constant value for each specific week.

6.3.5 Discussion of Results of Hydro Scheduling Model tests

Analysing all the results presented in Section 6.3, we can conclude that the HSP model presents

very good results. It solves the non-liner hydro scheduling problem with a good performance and

speed, when compared with traditional non-liner models, as we illustrated in Figure 6.26. Because

we are solving a linear problem in each iteration, it is possible to formulate HSP with a large

number of variables and deal with large problems, that are typical in this king of hydro systems.

When the procedure to consider the impact on market prices and in the tailwater level presented in

Section 6.3.3 was included, we were able to solve the HSP as a price-maker model, as detailed in

Figures 6.29 and 6.31. Finally, and as this model considers with full detail the water management
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of the reservoirs, it is also possible to build water value functions by using the dual variable of the

water balance equations as we illustrated in Section 6.3.4. Taking into account the non-linearity of

the Hydro Scheduling Problem and its dimension in terms of number of variables and constraints,

we can conclude that the model presents a very good performance.

6.4 Testing the Neural Network Forecasting

As mentioned in Section 5.4, in the developed model the Run-of-river and the Pure Pumping

Agents can use a market price forecast in order to bid their energy in the day-ahead market. It

should be mentioned that it is out of the scope of this work to present a very high performance

forecasting model. Our objective is that these agents have good information about the future day-

ahead market prices in order to schedule their generation in the higher prices periods. The results

presented in this Section were obtained using the 2018 MIBEL ABM simulation presented in

Chapter 7.

In order to implement the Artificial Neural Network (ANN) model, we used the Neural Net-

work toolbox from Matlab R2017a. This toolbox allows the creation of a two-layer feed-forward

network with sigmoid hidden neurons and linear output neurons. The network will be trained with

Levenberg-Marquardt Back-propagation algorithm. The number of hidden neurons was 10. This

was the default network from Matlab. The selection of the topology of the network that allows

obtaining the best results for forecasting exercises requires testing several combinations. In our

specific case, this default network presented satisfactory and similar results when compared with

other typologies.

The choice of the input variables to the network was also a simple exercise in our case. Typ-

ically this choice involves some statistical studies and testing several combinations of input vari-

ables. In our case we chose as input the following variables:

• the coal and natural gas international index prices;

• the week day;

• the hourly market price from the previous day;

• the hydro inflows;

• the Net Thermal Demand (NTD), that is he difference between the total demand and the

generation from all renewable sources except hydro units. This represents the demand to be

supplied by thermal and hydro generation.

These variables were chosen after running some simulation tests that, in the end, presented

good forecast results. One important consideration using this NTD, is that we have to consider

that the forecast of renewable energy generation (except hydro units), the demand and the hydro

inflows are input data for the next day. Of course this is not the real situation, but our goal is to
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simplify this forecasting model and give the agents some information on the day-ahead market

price forecast.

For the neural network training period we used data from a simulation of the last 5 months

of 2017. In that simulation, we considered the complete model and data in the same way that it

will be used in the simulations of Chapter 7 for the 2018 MIBEL complete Test Case. In fact, the

simulation of the last 5 months of 2017 will correspond to a pre-simulation of the 2018 MIBEL

Test Case. It is important to note one approximation that we considered. For the training period,

we have to provide to the neural network a set of inputs, as mentioned in the two paragraphs above,

but also the correspondent market prices output. But because we are using the ANN to forecast

the market prices in our ABM model environment, and because there are no historic data from the

model itself, we need a "first simplified" forecasting for Run-of-river an Pure Pumping Agents to

use in the ABM model. This means that, to create the neural network, we need price outputs, that

required themselves a neural network. To solve this issue, we performed a first simulation of last

5 months of 2017 MIBEL. Figure 6.38 presents the process of creating this forecasting tool.
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Figure 6.38: Process of generate the Neural Network.

In Figure 6.38, the blocks in Step 1 are associated to:

• (A) run the ABM model where the Run-of-rivers units bid their energy in the hours with

higher Net Thermal Demand because, in general, these hours will have higher prices;

• (B) from the previous simulation we obtain a set of market prices that will be used as the

output used to train the Neural Network 1;

• (C) get all the necessary input data used to train the Neural Network 1;

• (D) train the Neural Network 1 that will be used by all agents to simulated the historical

data from August to December of 2017.

Now, in Step 2, we ran again the ABM model for the last 5 months of 2017 but using now the

Neural Network 1 that was previously created. In the end of this simulation, we obtain 5 months
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of historical data with market prices simulated, that can be used to train the Final Neural Network.

The blocks in Step 2 represent:

• (E) run the ABM model where the Run-of-rivers and Pure Pumping Agents use the Neural

Network 1;

• (F) from the previous simulation we obtained a set of market prices that will be used as the

output used to train the Final Neural Network;

• (G) get all the necessary input data used to train the Final Neural Network (it is the same

data from (C));

• (H) train the Final Neural Network that will be used by all agents in the MIBEL Test Case

in Chapter 7.

In practise, with this process, we generate a virtual historical data of market prices (from

August to December 2017) to be used as output to the train of the Final Neural Network. This

ANN will be used in our 2018 MIBEL model that will be presented in Chapter 7. With the Final

Neural Network implemented, we used Matlab to generate a function code that will be added to

our Agent-Based Model to represent this Neural Network.

Let us now analyse the results of the network Neural Network. As mentioned in the paragraphs

above, we are anticipating the results to be used in Chapter 7, namely regarding the performance

of the Neural Network forecast when compared to the day-ahead ABM price results for the 2018

MIBEL simulation. Figures 6.39 and 6.40 present the comparison between the forecasted prices

and day-ahead prices for the 2018 MIBEL simulation, for week 1 and 35 respectively.
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Figure 6.39: Comparison between forecasted prices and day-ahead prices of ABM 2018
simulation for week 1.

Analysing these results, we can conclude that this Neural Network presents satisfactory results,

taking into account that we are using the network built with 2017 data to forecast the 2018 market

prices, without updating the Neural Network with new information. The trained Neural Network

was able to forecast the peak and off-peak hour prices but the forecasted daily curve is more flat.
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Figure 6.40: Comparison between forecasted prices and day-ahead prices of ABM 2018
simulation for week 35.

This means that it forecasted lower prices in peak periods, and higher prices in off-peak periods.

This was a characteristic that was present in a very large set of forecasted hours. The Mean

Absolute Error for the 8760 hours of 2018 was 2.1 e /MWh.

With these results, and since our objective was not to have a very high performance forecasting

model, but instead to give the agents information about the future day-ahead market prices in order

to schedule their energy, we will used this Neural Network in the Agent-Based Model simulation

of MIBEL to be detailed in Chapter 7.



Chapter 7

Results of the Application of the ABM
Model to the Iberian Electricity Market

7.1 General Considerations

Since one of the objectives of this thesis is to analyse the performance of the proposed Agent-

Based Model considering the Iberian Electricity Market, with special focus on the hydro simula-

tion, two simulations were performed:

• simulation using the real MIBEL data for the 2018 year;

• comparison with the results provided by the EMCAS model, which is used by the author in

EDP Produção.

In the case of the comparison with the EMCAS model, it will be used a specific Test Case of

the MIBEL market that was kindly provided by EDP Produção. The next sections will include the

data for these two simulations, the modelling aspects and finally the results and discussions.

7.2 Data for the Iberian Electricity Market Test Cases

For Iberian Electricity Market simulation it will be used data from the year 2018. The data are

divided in 4 main groups, namely:

• hydro and thermal power plants characterization as well as information for the hydro inflows

and reservoir levels;

• commodity prices from international indexes, namely coal, natural gas and CO2;

• profile patterns for inelastic demand, renewable generation in the feed-in regime (wind,

solar, small hydro, co-generation) and interconnections with Iberia;

151



152 Results of the Application of the ABM Model to the Iberian Electricity Market

• modelling parametrization for the Agent-Based Model and bidding strategy.

The first group of data corresponds to the full characterization of the hydro and thermal power

plants as for example power outputs, efficiencies, storage capabilities, inflows, etc. The com-

modity prices will be used to calculate the variable cost of thermal power plants. The profile

patterns are input data to calculate the Net Thermal Demand as explained in Section 6.4. This

data was kindly provided by EDP Produção. Finally, the modelling parametrization corresponds

to the parameters and model structure that will be considered in the complete Agent-Based Model

formulation.

7.2.1 Hydro Power Plants Data

The hydro data is divided in 2 parts. For the EMCAS Test Case it will be used detailed infor-

mation for the Portuguese hydro power plants, but for Spain we will consider only 3 equivalent

hydro power plants: an equivalent run-of-river, and equivalent storage and an equivalent pumping

storage. This happens because this is how EMCAS models the Spanish hydro system and these

equivalent hydro units are the sum of all individual power plants. This data (Portuguese individual

hydro units and the 3 equivalent hydro units) comes from EMCAS model kindly provided by EDP

Produção.

Additionally, and since the other Test Case corresponds to the simulation of 2018 MIBEL real

data, it was necessary to get more detailed information for the Spanish hydro power plants. All

this information is public and can be obtained from www.ree.es and www.transparency.entsoe.eu

with the exception of the efficiencies and the useful storage capacity. In this case, we considered

that the efficiencies are similar to the ones of the Portuguese hydro power plants and all reservoirs

in Spain (Store Agents and Pumping Storage Agents) are considered as large reservoirs in terms

of their water value functions. The inflows for all the hydro power plants in Spain will be obtained

converting the hourly energy generation and in the case of the individual reservoir levels, we will

consider the global hydro storage level in Spain in each week equal for all Spanish hydro units.

This means that the water value will be the same for all the reservoirs in Spain in all the weeks.

This consideration is necessary because we don’t have detailed information on the useful volume

of the Spanish reservoirs. Taking all these aspects in consideration, the hydro system considered

in these Test Cases is characterized in Table 7.1.

Table 7.1: Global characterization of the Hydro Agents considered in Iberia simulation tests.

Portugal Spain

Type Total
Capacity (MW)

No of
Power Plants

Total Capacity
(MW)

No of
Power Plants

Run-of-river 2137 9 2532 8
Storage 1555 13 12042 26

Pumping Storage 2656 10 4901 14
Pure Pumping Storage - - 820 1
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This corresponds to a set of 81 Hydro Agents with a total of 27 GW of installed capacity. The

individual characterization of these agents is presented in Appendix C.1.

7.2.2 Thermal Power Plants Data

The thermal power plant data for the Iberian Electricity Market simulation was kindly pro-

vided by EDP Produção, namely the data related with the power output, commissioning date and

fuel type. This data will be used in both the real MIBEL 2018 simulation and in the EMCAS

comparison simulation. Additionally, and because it is confidential information, the total variable

costs of each power plant had to be estimated using approximated values. The total variable cost

for the thermal power plants is given by (7.1).

Total Variable Cost = Fuel Cost +CO2 Cost +Variable Operation Cost (7.1)

In this expression:

Fuel Cost = Primary Energy Cost · Fuel Consumption
E f f iciency

·LHV (7.2)

CO2 Cost =CO2 Index price ·Speci f ic Emission (7.3)

In order to use (7.1), we considered a value for the efficiency of 36% for coal power plants in

the first year of operation (Low Heat Value, LHV), with a degradation factor of 0.12 percentage

points for each year of operation. For the Combined Cycle Gas Turbines (CCGTs) we considered

55% in the first year of operation (LHV), with a degradation factor of 0.3 percentage points for

each year of operation. This data was obtained in [139]. With these efficiencies, it is possible

to calculate the fuel consumption and the CO2 emissions. The heating power considered for the

coal is 6000 kcal/kg (LHV) and 9169 kcal/m3N for the natural gas. For the CO2 cost calculation

it was considered a specific emission of 92.0 (kg CO2)/GJ for the coal and 56.6 (kg CO2)/GJ

for the natural gas. In addition, it is necessary to have the commodity prices for 2018 in order

to calculate the total variable costs. In this case, we used the monthly values from international

indexes for 2018 namely the API#21 for coal, TTF2 for natural gas and the ETS3 for CO2. This

data was kindly provided by EDP Produção. Finally, for the Variable Operation Cost in (7.1), that

represents the operation and maintenance costs, we considered a fixed value of 2.5 e /MWh, a

typical value provided by EDP Produção. The total thermal system considered in these Test Cases

is characterized in Table 7.2.

1Rotterdam Coal Market
2The Title Transfer Facility is a virtual trading point for natural gas in the Netherlands
3EU Emissions Trading Scheme
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Table 7.2: Global characterization of the Thermal Agents considered in Iberian Electricity
Market simulation tests.

Portugal Spain

Type Total Capacity
(MW)

No of
Power Plants

Total Capacity
(MW)

No of
Power Plants

Coal 1764 6 9534 26
CCGTs 3869 10 24949 50
Nuclear - - 7117 7

Fuel - - - -

This represents a set of 99 Thermal Agents with a total installed capacity of 47 GW. The

individual characterization of these agents is presented in Appendix C.2.

7.2.3 Data for the Renewable Sources and Inelastic Demand Patterns

As mentioned in Section 4.3, the data for the hourly energy for the inelastic demand and

renewable sources was based on real data for 2018 to represent the energy quantity offered in the

day-ahead market. At the same time, it was also considered the hourly import and export patterns

in Iberia (France and Morocco) as an hourly input (discounted from the inelastic demand). In

practice, these values enable calculating the Net Thermal Demand, as detailed in Section 6.4, that

represents the Inelastic Demand Agent. This agent will bid its buying energy at 180 e /MWh and

will be an artefact agent.

7.2.4 Short-term and Medium-term Hydro Scheduling Problem

The HSP is used in two situations. The short-term model is used by Run-of-river Agents and

Pure Pumping Agents to schedule the bids for the next day, as illustrated in Section 6.3.3. The

medium-term model is used by Storage Hydro Agents and by Storage Pumping Hydro Agents

in order to calculate the water value function, and as a consequence, the bid for the next day, as

detailed in Section 6.3.4.

For the short-term model, the agents will have information on the inflows for the next day and

will have the forecast of the market prices (according to Section 6.4). In addition, and because this

short-model uses the iterative process of updating the market prices (detailed in Section 6.3.3),

the agents also need to have the market curves to perform this update. For this, and because the

developed model does not include a module to forecast market curves, the agents choose, among

the hourly curves of the 2 previous weeks, the curves that have a closer Net Thermal Demand to

the one that it is predicted for the next day. With this, we ensure that the agents are using market

curves for the updating process with similar characteristics to the ones that will occur in the next

day. Next, the agents run the iterative process as detailed in Section 6.3.3 by applying the price

update procedure. This process gives the Run-of-river Agents and the Pure Pumping Agents the
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schedule of the power to offer in the market to the next day. It is important to note that it is

considered that the agents know the inflows with accuracy, as well as the wind and the demand for

the next day. The only forecasted variable is the market price.

In the case of the water value functions used by Storage and Pumping Storage Agents, the

model uses for all agents the 3 sets of curves, built in Section 6.3.4. The first set is from Torrão

reservoir, illustrated in Figures 6.32 and 6.33, and will be used by the Portuguese reservoirs with

storage until 50 hm3 (small reservoir curve). The second one, is from Baixo Sabor reservoir,

illustrated in Figures 6.34 and 6.35, and will be used by the Portuguese reservoirs with storage

between 50 hm3 and 500 hm3. The last one is from Alqueva reservoir, illustrated in Figures 6.36

and 6.37, and will be used by the Portuguese reservoirs with storage above 500 hm3. For each type

of hydro unit it is possible to obtain water value functions for each week of the year. The ones in

Section 6.3.4 illustrate these curves for weeks 1 and 35. The Spanish reservoirs, will use the curve

for the large reservoirs, as we cannot have access to their storage information.

7.2.5 Agent-Based Model and Bidding Strategy for MIBEL Test Cases

The Agent-Based Model and the bidding strategy are the ones already detailed in Section 4.3

and in Chapter 5. For the agents modelling we considered:

• Run-of-river Hydro Agents. These agents will have a the bid price of 0 e /MWh and will

offer their power for the next day taking into account the optimization results of the HSP

short-term model as detailed in Section 6.3. For the HSP, the Portuguese agents will have

real inflow data and full characterization (cascades, efficiencies, reservoirs) and the Spanish

agents will be simplified, where the inflow data corresponds to the real data associated to

their energy generated in each day. Finally, for the HSP scheduling for the next day, the

prices will be forecasted with the Neural Network detailed in Section 5.4 and will be the

same for the Portuguese and the Spanish agents;

• Storage Hydro Agents. These agents will have a bid that corresponds to the water value

obtained using the corresponding curves as explained in Section 6.3.4. For this reason it is

not necessary to forecast prices for these agents because they will generate whenever the

market price is above their water value. The Portuguese agents will have real inflow data

and full characterization (cascades, efficiencies, reservoirs) and the Spanish agents will be

simplified, where the inflow data corresponds to the real data associated with the energy

generated in each day. In this case, the level of the reservoirs of the Spanish agents will be

the real storage level in Spain for 2018, and will be equal to all reservoirs;

• Pumping Storage Hydro Agents. These agents will have the same behaviour as the Storage

Hydro Agents but, in addition, they will buy energy to pump, whenever the market price is

bellow their water value multiplied by the pumping-turbine global efficiency, that we con-

sider 0.73 in our simulations. This means that, for example, if the water value is 50e /MWh,
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an agent of this type will buy energy whenever the market price is bellow 36.5e /MWh. The

mentioned 0.73 value represents the typical pumping-turbine global efficiency of 0.78 plus

a risk factor of 0.05 in order to guarantee a security margin in this operation;

• Pure Pumping Hydro Agents. These agents have no inflows and only use the pumping-

turbine process to generate revenues as detailed in Section 4.3.2.5. For that it will use the

HSP short-term model and the price forecast to generate the bids and to schedule the power

for the next day. The buying bids will be at 180e /MWh and the selling bids at 0e /MWh to

guarantee that the offers are accepted. In our work, only one hydro is a Pure Pumping Hydro

Agent (Table C.1 from Appendix C) and it is located in Spain. As we don’t have the full

characterization of this unit, we will consider that this power plant has a reservoir capacity

to pump up to a limit of 8 hours. As mentioned in Section 4.3.2.5, the pumping process

will be limited by a learning function ϑ(cr), in order to reflect the difference between the

forecasted prices and the real prices. This function will be detailed in the next paragraphs.

The pumping-turbine global efficiency considered for these power plants will be 0.80 as

this type of pumping units have a better efficiency when compared to the normal pumping

stations;

• Thermal Agents. In this case, these agents will have the characterization detailed in Table

C.2 from Appendix C. Their variable cost is calculated monthly and they will bid their

maximum power;

• Renewable and Demand Agents. In the case of Renewable Agents and of the Inelastic De-

mand Agents in Section 7.2.3 it was already provided information on their bidding process.

The Elastic Demand Agents will be the Hydro Agents with pumping capability;

• Market Operator Agent. This agent is responsible for the clearing of the pool electricity

market and once the market is cleared it sends the results to the other agents. It will act as

an artefact agent;

• Regulator Agent. In our work this agent defines the market rules (mainly the price caps

between 0 and 180 e /MWh) and compares the historical bids from Thermal and Hydro

Agents with their marginal costs and water vales, respectively. This means that Regulator

Agent will act like an artefact. This recorded data can be used to detect potential excessive

market power and for that, the Regulator Agent will deploy warnings if any agent has a set

of consecutive hours, with bid ups, above 744 hours (representing 1 month) and these bids

are near the market clearing price (1 e /MWh or less). This is an empiric modelling just to

illustrating the type of rules that can be considered in the model.

In terms of the bidding strategy the Q-Learning procedure will be the one already detailed in

Section 6.2 with one difference regarding the actions of the agents. While in Section 6.2 we used

3 actions in order to analyse the process in a simple way, in this complete model we introduce
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a sigmoid function, that in this case was the logistic function, as proposed in Section 5.2.3 and

explained in the next paragraphs. Accordingly, the Q-Learning procedure considers:

• parameters λ equal to 0.8, γ equal to 0.8 and ε equal to 0.1 as detailed in Section 6.2.1;

• the utility function corresponds to the increase or decrease in revenues obtained by each

action in the day-ahead market by each generation agent added with a loss of opportunity

revenue as detailed in Section 5.2.4;

• 5 states according to the structure proposed in Section 5.2.2;

• 7 bid up/down action strategies using, in this case, a logistic sigmoid function as proposed

in Section 5.2.3.

In terms of actions choice, as mentioned in Section 5.2.3, the main goal of choosing a sigmoid

function is that it is possible to parametrize the bid up/bid down actions in a easy way by changing

only 2 parameters, ω and ψ . In line with that, the values for the actions in the bid up/down

strategy are given by (7.4).

bid up/down(z) =
[

1
1+ e−ωz −0.5

]
·2ψ (7.4)

In (7.4) z takes values in the set [ -10, -3, -1, 0, 1, 3, 10 ] corresponding to the numeric values,

that when using (7.4), corresponds to the actions, respectively, from 1 to 7.

In (7.4) ω represents the shape factor of the sigmoid and it is associated with the gradient of

the curve. The higher the value of the ω , the higher the gradient is. The parameter ψ represents

the cap for the bid up/down value in e /MWh. By using these 2 parameters we can configure the

risk of the bidding strategy in an easy way. Higher values for ω and for ψ represent higher bid

up/downs, meaning higher risk. The domain of this function was chosen in order to have 2 points

near 0, and 2 other points far from 0 as it is displayed in Figure 7.1.

In this work we performed several tests using different values for these parameters in the

scope of the MIBEL Test Cases. By analysing the results, we didn’t find significant differences

among the results for different values of these parameters. This situation appears to be related

to the reduced market power that the agents have in the MIBEL simulations as it will be shown

in Section 7.3. Only when we ran the model with very high values for ψ (over 2 e /MWh), we

noticed that the agents had some difficulty in applying bid up strategies as large increments in

prices created instability situations in the Q-Learning process with consecutive changes in the

states of the agents.

In this way, the chosen parameters for the developed simulations were divided in two situations

representing two levels of risk. The first one was ω equal to 0.6 and ψ equal to 1.0, used for

Thermal Agents that are typically associated with the marginal technology, representing a lower
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risk profile. The other was ω equal to 0.6 and ψ equal to 2.0, used for Hydro Agents, representing

an higher risk profile. Figure 7.1 presents the 2 corresponding sigmoid curves.
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Figure 7.1: Logistic functions used in the MIBEL Test Cases representing the bid up/down
strategies for 2 different risk levels.

The numeric values of the logistic function for these 2 strategies are presented in Table 7.3.

Table 7.3: Numeric values for the logistic functions used in the MIBEL Test Cases.

Action z
Lower Risk Strategy

(e /MWh)
Higher Risk Strategy

(e /MWh)
a1 -10 -1.0 -2.0
a2 -3 -0.7 -1.4
a3 -1 -0.3 -0.6
a4 0 0.0 0.0
a5 1 0.3 0.6
a6 3 0.7 1.4
a7 10 1.0 2.0

As mentioned in Section 5.2.3, we use 3 different tables for the sets of Q-values according to

the monthly inflows (wet, average and dry). This means that in a dry month an agent will use a

Q-matrix built for smaller inflows and that will be different from the Q-matrices associated to the

average and wet inflow months. This means that each agent will have learning information in a

different way taking into account the hydro inflows. In this Test Case we used one Q-matrix for

December, January, February, March and April, representing wet inflows, one Q-matrix for May,

September, October and November, representing average inflows and other Q-matrix for June,

July and August representing the dry inflows.

Finally let us analyse the function ϑ(cr), that is the function that adjusts the number of hours

of the Pure Pumping Agents in order to reflect the difference between the forecasted prices and the

real prices. When these agents forecast the market prices for the next day, they have an expectation

for the relation between the off-peak hours and the peak hours and its corresponding revenues. This
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corresponding relation should be below 0.8 in order to compensate the global pumping-turbine

efficiency and it will give the number of pumping hours. But as the pumping and generation hours

are assigned using the forecasted prices, in real time the prices will be different, despite the HSP

considers the price maker effect of the agents in the day-ahead market as detailed in Section 5.3.3.

In order to consider this difference, in our work we used the function ϑ(cr) to reduce or increase

the number of pumping hours taking into account the difference between the forecasted prices,

and the real ones. This function will depend on the relation between the average buying price and

the average selling price. If this relation in near 0.8, this means that the schedule of the pumping

and the generation hours is in the limit of profitability because it is near the value of the global

efficiency (we considered 0.8 because it is the typical value for Pure Pumping hydros). If the

relation is above 0.8, it means that it was not a good operation and the agent is loosing revenues

because the cost of pumping is higher than the selling revenues. If it is much smaller than 0.8,

this means that the agent is getting good results. To deal with this situation, the agent will adapt

the number of pumping hours taking into account this relation (costs/revenues) and by using the

function defined by (7.5).

Pumping hours = Round (ϑ(cr) ·Number_Max_Pumping_Hours) (7.5)

In this expression:

ϑ(cr) =
1

1+ e(10.cr−7) (7.6)

cr =
Buying Price
Selling Price

(7.7)

In our work we will consider that the Number_Max_Pumping_Hours is equal to 8. The

Pumping hours will vary between 1 and 8. Figure 7.2 presents the function given by expression

(7.5) that depends on the relation between costs and revenues.
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Figure 7.2: Number of pumping hours in function of relation between the buying price and
selling price for the Pure Pumping Hydro Agents.
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Taking into account the values for relation between off-peak prices and peak prices in MIBEL,

this relation typically varies between 0.6 and 0.8.

Additionally for the price forecasting, we will use the Neural Network already presented in

Section 6.4, and for the Hydro Scheduling Problem market curves input required by the short-

term model (to the market price impact procedure), we will use the curves that were obtained

in the simulation of the last 5 months of 2017 as explained in Section 6.4 when detailing the

development of the Neural Network creation.

Having defined all the required parameters and characterised the required data, Sections 7.3

and 7.4 will detailed the results obtained for the 2018 using the developed ABM model and the

EMCAS model.

7.3 Results for the 2018 MIBEL Simulation

This Section presents the main results of the simulation of the MIBEL electricity market for

2018. In this case, the complexity of the power system is extremely high as we are simulating

180 generation agents, with hourly data, and with a bid up/down strategy. In this Section, we will

analyse the global results and not make individual analyses on the Q-Learning procedure neither

on the Hydro Scheduling Problem, since these analyses were presented in detail in Section 6 with

simpler Test Cases.

This Test Case is divide in 2 parts. In the first simulation, we didn’t introduce the bidding

strategies in the Hydro Agents. This means that all the Hydro generation Agents are bidding at

0 e /MWh. For that, we used the real generation pattern from these hydro acting as if they were

a Renewable Agent. Using these real generation patterns prevents these agents from using all

their available water in the first weeks since the bid is 0 e /MWh. Finally, in the second part, we

introduce the bid up/down procedure in the MIBEL 2018 simulation.

Figure 7.3 presents the results of the market price simulation (average daily results) for the

model without the bidding strategies in the Hydro Agents and the comparison with real the 2018

market prices.

Analysing the results from Figure 7.3, it is possible to observe that the simulated market prices

are always bellow the real values (annual average of 57.4 vs 41.3 e /MWh). This is a situation that

had already been noticed in the simulations with VALORAGUA model used by EDP Produção,

as discussed in Section 6.3.1, when the model was used to calculate the water value curves. This

difference can be due to the fact that some input data was simplified as for example the calculation

of the variable generation costs of thermal units as well as not considering the start-up and shut-

down costs for these units . Continuing the analyses, we can observe that in the period between

day 61 and day 121 (March and April), which was a wet period, there were several complete days,

and even weeks, with market prices always at 0 e /MWh or below 20 e /MWh. These results
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Figure 7.3: Results of the average daily market prices without hydro strategies for 2018 MIBEL
simulation.

were not found in the real data. In the last 2 months of the year, there was also an abnormal

behaviour of the simulated market prices with the prices having several peaks down, again in a

wet period. On the other hand in Summer the difference between the real prices and the simulated

ones gets larger. One of the main reason for this situation is that the Hydro Agents, specially the

reservoirs, are several times the marginal units in this simulation, and if any strategy is considered,

the price decreases to 0 e /MWh. Of course this is not a surprise, because these hydro power

plants are typically replacing the thermal power plants in the merit order and it is expected that the

increasing share of renewable sources, as wind and solar, will contribute to this price reduction.

Now let us analyse the impact of introducing in the proposed Agent-Based Model the bid

up/down mechanism and learning procedure in the MIBEL 2018 simulation. Figure 7.4 presents

the results of the market price simulation (average daily results) for the model with the bidding

strategies in the Hydro Agents and the comparison with the real 2018 market prices.

As we can observe in Figure 7.4, the results are now closer to the real ones. The average annual

gap regarding the real market data is now 5.9 e /MWh and with an higher fit to the market prices

profile along the year (we will discuss in the end of this Section this annual price gap). The market

prices increase 10.2 e /MWh from the situation without hydro strategies to this simulation in

which these strategies were considered. From that, 9.2e /MWh was due to the water value strategy

and 1.0 e /MWh resulted from the bid up/down Q-Learning procedure. Figure 7.5 presents the

simulation results only using the water value function (in black) and using both the water value

functions and the Q-Learning procedure (in green).

These results show that in MIBEL, the agents have limited market power as the increase of

the market price due to the Q-Learning procedure was limited. This situation happens essentially

due to the excess of generation capacity in Iberia. In our simulation, the coal power plants and the
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Figure 7.4: Results of the average daily market prices of the Agent-Based Model with hydro
strategies for the 2018 MIBEL simulation.
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Figure 7.5: Results of average daily market prices of the Agent-Based Model from the water
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hydro reservoirs had, in most of the situations, some capability of increasing the market price in

a non-consecutive periods. On the other hand, the CCGTs agents had no capability of increasing

the market price in 2018 as they had an higher marginal cost and were always been cleared in

the peak hours with an higher competition. There were no warnings from the Regulator Agent

because there were no agents with a large number of consecutive hours increasing the market

price. Figure 7.6 presents the hourly market price results for a specific week comparing the results

with Q-Learning and without Q-Learning.
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Figure 7.6: Hourly Market price results of one random week comparing the situation with
Q-Learning and without Q-Learning.

As mentioned in the paragraph above, in MIBEL generation companies have limited market

power. To better justify this assessment Figures 7.7, 7.8 and 7.9 present the comparison between

the marginal cost and the bidding strategy for a coal power plant, Sines, for an hydro storage

power plant, Alto Lindoso and for a CCGT, Lares. It is clear in all these cases that the bidding

prices closely follow the variable cost of each unit.

Let us now analyse some results for 5 types of Hydro Agents, namely:

• Alto Lindoso that is a large reservoir unit without pumping;

• Baixo Sabor that is a large reservoir unit with pumping;

• Alto Rabagão that is a very large unit reservoir with pumping;

• Crestuma that is a run-of-river unit;

• Muela BP that is a pure pumping storage unit.

For the Alto Lindoso unit we will analyse the evolution of the reservoir level along the year,

comparing it with the real value along 2018. We will also compare the total generation in order to

verify if the reservoir management obtained by the proposed ABM model was similar or not with
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Figure 7.7: Comparison between the marginal cost and the bidding strategy for a coal power
plant, Sines.
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Figure 7.8: Comparison between the marginal cost and the bidding strategy for a storage hydro,
Alto Lindoso.
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Figure 7.9: Comparison between the marginal cost and the bidding strategy for a CCGT power
plant, Lares.

the real values of 2018. Figure 7.10 compares the simulation level for the reservoir and the real

one along 2018.
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Figure 7.10: Comparison between reservoir simulation level and the real level for Alto Lindoso
large reservoir without pumping.

As it is possible to observe, the global behaviour of the simulation is similar to the real one

along 2018. But of course, the use of the water in the simulation is not easy to be compared with

the real one in 2018 because the simulated and the real market prices are different. Instead, we

have to compare the value of the water in the simulation with the market prices of the simulation.

Figure 7.11 compares the evolution of the water value in Alto Lindoso reservoir with the simulated

market prices.

In the first days of the simulation, the Alto Lindoso unit generated instead of just storing water
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Figure 7.11: Comparison between the evolution of the water value in Alto Lindoso reservoir with
the simulated market prices.

while maintaining the level of the reserve at a constant value. This occurred because market prices

were relatively high for a Winter month. In March, the market prices fell because the hydro regime

turned wet. Now, the reservoir level rose to its maximum value and the Alto Lindoso stored water

for the Summer as shown in Figure 7.10. From June, the water value starts to increase (following

the water value curves). In this period the Alto Lindoso used water in 4 main periods: in hours

3200, 4300, 5000 and 5900 indicated in Figure 7.10. These situations happened whenever the

market prices reach the water value, as it is possible to observe in Figure 7.11. These decisions

caused the reservoir to reduce its level and for that reason between hours 6000 and 7500, the Alto

Lindoso didn’t generate as the market prices were always bellow the water value. This was not the

optimal solution, because it was in this period that the highest market prices of the year happened.

But this fact could not be anticipated. The same way the agent selected a good decision in the

first days of the year, when it used water before the prices went down, now it lost the opportunity

to generate with the higher prices of the year. This is a feature of this type of simulation models.

This agent selected its decisions with the best information it has every moment and taking into

account the best expectation for the future. Finally, the annual generation of the Alto Lindoso was

901 GWh with a premium in the selling price, in monthly average, of 108% (meaning that in the

periods where this unit generated the prices were 8% above of the monthly average market price).

The real 2018 generation was 919 GWh. Taking all this into account, it is possible to conclude

that the proposed model gave a very good result for this reservoir.

Continuing the analysis of the Hydro Agents, let us now analyse the Baixo Sabor Hydro Agent

that is a large reservoir with pumping. Figures 7.12 and 7.13 present the results for the reservoir

level and for the water value results and market price.

Analysing these results, we can observe that as for Alto Lindoso, Baixo Sabor also generated in

the first days of the year given their storage capacity, their water values curves are the same. This
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Figure 7.12: Comparison between the reservoir simulation and the real level for Baixo Sabor
large reservoir with pumping.
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Figure 7.13: Comparison between the evolution of the water value in Baixo Sabor reservoir
compared with the simulated market prices.
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strategy allowed to generate at higher prices at the beginning of the year (compared to what would

have happened if it would generated in March), and also allowed to avoid possible spills (which

happened in real data). It is also possible to observe in Figures 7.12 and 7.13 that Baixo Sabor

generated in the higher prices of Summer. It is important to remember that the water value curve

used for large reservoirs is from Baixo Sabor and therefore it is more tuned for this power plant.

In the simulation, the total generation was 260 GWh (vs 201 GWh for real 2018 data) and the

pumping consumption was 59 GWh (vs 80 GWh for real 2018 data). The premium in the selling

price in this case was, in monthly average, of 109% (meaning a generation performance of 9%

above the monthly average market price). Taking all this into account, it is possible to conclude

that the proposed model gave a very good result for this reservoir.

Next, let us analyse the Alto Rabagão very large reservoir with pumping. Figure 7.14 and

Figure 7.15 present the results for the reservoir level and for the water value results.
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Figure 7.14: Comparison between the reservoir simulation level and the real level for Alto
Rabagão very large reservoir with pumping.

As it possible to observe in Figure 7.15, the Alto Rabagão unit generated most of its electricity

from day 240 onwards, meaning that it maximized the revenues generating in higher price periods.

Before that day, it only generate in a few hours of a few days with hourly price spikes above 55

or 60 e /MWh. As it was detailed in Section 6.3.4, this type of very large reservoirs have a water

value almost constant and independent of the reservoir level. The application of that strategy

to this unit originated very good results because, in the simulation, the Alto Rabagão generated

most of its electricity between hour 5800 and hour 8200, period that had the higher prices. In

the simulation the total generation was 98 GWh (vs 83 GWh for real 2018 data) and the pumping

consumption was 43 GWh (vs 29 GWh for real 2018 data). The premium in the selling price in

this case was, in monthly average, 106% (meaning a generation performance of 6% above the

monthly average market price). Taking all this into account, it is possible to conclude that the

proposed model gave a very good result for this reservoir.
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Figure 7.15: Comparison between the evolution of the water value in Alto Rabagão reservoir
compared with the simulated market prices.

Once the analysis of the reservoirs has been completed, let us now analyse the results for one

Run-of-river Agent and for the Pure Pumping Agent. First, let us analyse the results for Crestuma

that corresponds to a Run-of-river Agent. This agent used the forecast tool, presented in Section

6.4, to schedule its bid in the higher price forecasted hours. The results for week 1 are presented

in Figure 7.16.
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Figure 7.16: Results for Crestuma bidding for week 1.

Analysing the results in Figure 7.16, it is possible to conclude that Crestuma generated in the

higher price periods. It is important to remember that the allocation of the generations periods was

scheduled in the day before with the forecasted prices (Figure 7.16 presents the day-ahead market

prices). This good result is explained with the fact that the forecast presents satisfactory results in

terms of identifying the hours with higher prices, as it was illustrated in Figure 6.39 from Section
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6.4. Continuing the analysis for Crestuma Run-of-river Agent, Figure 7.17 displays the results

obtained for week 35 for this unit.
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Figure 7.17: Results for Crestuma bidding for week 35.

Once again, the schedule of the generation periods presented good results. The premium for

the selling monthly price was 103% (meaning a generation performance of 3% above average

market price). The monthly premium for the forecasted prices was also 103% (the difference was

103.0% for real time vs 103.3% for forecast). Taking account these results, we can conclude that

the model provided good results for this Run-of-river Agent.

Finally, let us now analyse the Muela BP Agent, that is the only Pure Pumping Storage Agent

considered in this work. This agent used the forecasted prices to schedule the buying and the

selling electricity, since it has no inflows and all generation comes from pumping water. This

means that this agent requires having a difference between the selling and the buying prices to

compensate the global efficiency of the pumping/turbine process. For that it will use the function

ϑ(cr), to adjust the number of hours of the pumping process as detailed in (7.5). The results for

week 1 are presented in Figure 7.18.

As we can observe, this agent only generate in 3 days of week 1. This situation happened be-

cause the forcasted relationship between off-peak prices and peak prices only compensates bidding

in these days. As in the case before with Crestuma, this schedule was obtained with forecasted

prices. But in the case of this agent, as it is a Pure Pump Storage, it will evaluate the performance

between the forecasted prices and the real time prices, by calculating the ϑ(cr) and the maximum

number of pumping hours, as detailed in (7.5), taking into account the simulated market prices. In

week 1, in the 3 days in which the agent pumped and generated, the ϑ(cr) was 0.57, 0.67 and 0.69

for the simulated market prices. These values are associated to a maximum number of pumping

hours of 6, 6 and 5 hours respectively. The number of pumping hours that were scheduled with

the forecasted prices were 5, 5 and 4. This means that, in week 1, the forecasted prices allowed
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Figure 7.18: Results for Muela BP bidding for week 1.

obtaining good results. Let us now analyse week 35. The results for week 35 are presented in

Figure 7.19.
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Figure 7.19: Results for Muela BP bidding for week 35.

According to Figure 7.19, in week 35 there was no pumping nor generation. This situation

happened for two main reasons. The first one is because there is no sufficient difference between

the off-peak and the peak prices to compensate the pumping-turbine efficiency. The second one is

related to the ϑ(cr) function. Although in the first days of the year this function typically varied

between 0.5 and 0.7, at the end of the first month, this value began to approach and even pass the

limit value of 0.8. This coincided with the beginning of the wet regime, where the neural network

worsened its performance, regarding the forecast of the prices and thus of the peak and off-peak

hours. It this situation, the Pure Pumping Agent limited its pumping hours between 1 and 2 hours.

Then, at day 100, the ϑ(cr) decreased to 0.7 leading to a new limit of 4 hours of pumping. Figures
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7.20 and 7.21 present the evolution of the ϑ(cr) function and the maximum number of pumping

hours for the Muela BP Agent.
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Figure 7.20: Evolution of the ϑ(cr) function for Muela BP Agent.
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Figure 7.21: Evolution of the number maximum of pumping hours for Muela BP Agent.

As mentioned in the paragraph before, at day 100 a new limit for the number of pumping hours

was obtained, 4 in this case. However, this new limit was useless because the forecast of the neural

network didn’t give, in any day after day 100 until the end of the year, any schedule possibility for

pumping. This situation happened because the relationship between the off-peak prices and the

peak prices didn’t compensate bidding in these days. In fact, even with the simulated prices this

relationship was low. But analysing the application of the proposed ϑ(cr) model, we concluded

that it presented good results. If this function had not limited the number of pumping hours, and

if the bids were applied only with the forecast prices, the revenue that this hydro unit would have

obtained would have been 299 kewithout using the ϑ(cr), compared with 481 ke using ϑ(cr).

Taking this into account, the modelling of the Pure Pumping Hydro presented a very good solution.
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At this point, after analysing the results for several hydro power plants we can conclude that

the proposed Agent-Based Model presented good results and it was able to simulate adequately

the different characteristics of these hydro. Nevertheless, when discussing Figure 7.4, despite the

results of the market prices with the proposed Agent-Based Model present a significant improve-

ment when we introduced the Agent-Based Model, the difference between the simulated market

prices and the real 2018 data, in terms of annual average, is still 5.9 e /MWh.

In a recent work presented in [140], the authors used the CEVESA model to simulate the MI-

BEL market considering the 2019 data. In that work, CEVESA was able to capture efficiently the

year price profile, although with a difference close to 10 e /MWh regarding the real average mar-

ket price. This difference was justified with the total start-up and shut-down costs of thermal units

that continuously increased in the last years due to the additional renewable generation installed

capacity.

In line with that, one of the justifications for the 5.9e /MWh difference between the simulation

market prices and the real 2018 data in our model is related with the calculation of the variable

costs for the thermal power plants, that are very probably underestimate. This fact will affect

both the water value curves when we run the VALORAGUA simulation (Figure 6.19) and the

thermal bidding itself. When analysing Figure 7.4, it is possible to note that there is a gap between

the simulated and the real 2018 prices in almost all the days of the year, with exception in the

second and third month because these were wet months. At the same time, when we analyse with

more detail the hourly results from our simulation and compare them with the real 2018 data, it

is possible to observe that the real 2018 data has larger spikes than in the simulation. Figure 7.22

shows this comparison for week 35 as an example.
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Figure 7.22: Comparison between hourly MIBEL simulation and real 2018 market prices for
week 35.

In fact there are three aspects that can explain the situation for the 5.9 e /MWh difference that

were not modelled for simplification reasons: the start-up and shut-down costs, the taxes on the

generation sector in Iberia and the lower efficiency of the CCGT units working with lower load



174 Results of the Application of the ABM Model to the Iberian Electricity Market

factors. These simplifications can have particular importance in 2018, since CCGTs operated in

MIBEL near 2000 hours. For example, if a start-up cost for a CCGT costs around 15 ke and, if this

power plant operates 10 hours in one day with one start-up per day, this start-up cost corresponds

approximately to 3.5 e /MWh. In fact, if we analyse the end of some weeks in real MIBEL data,

it is not unusual to observe an increase in the market price in the end of the last day of the week

that is related to the thermal power plants that were stopped during the weekend, and that start to

operate. The taxes on the generation sector in Iberia can also be an important factor to explain this

gap. One of the taxes represented a value of 7% of the generation (Tax on the Value of Electricity

Generation) in Spain but it was suspended between October 2018 and April 2019. In terms of

the operation at lower load factors, we can have a cost increase of 2.0 e /MWh due to a 2%

efficiency loss when CCGT units operate with lower load factors. These three aspects can justify

the difference between the results from the Agent-Based Model and the real 2018 market prices.

With these aspects in mind, we performed a last test with the developed ABM model, increas-

ing the variable costs of the thermal units 5.9 e /MWh as well as increasing the water value curves

by the same amount. The new results for the market prices are presented in Figure 7.23.
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Figure 7.23: Comparison between real 2018 MIBEL and new simulation results increasing by 5.9
e /MWh the thermal variable costs and the water value functions.

The average annual difference between the simulated and the real 2018 MIBEL prices was now

of 1.6 e /MWh, with a very good fit in terms of the annual pattern. Of course this was a backup

solution, and it cannot correspond to a correct simulation, because we increased the variable costs

of all thermal power plants and the water value functions by a constant value. But it shows that the

difference between the simulated market prices and the real 2018 data, in terms of annual average,

can in fact be related with the simplifications introduced in the calculation of the variable costs of

the thermal units.
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7.4 Comparison with the Results of the Comercial EMCAS Model

Finally, this Section presents a comparison between the results obtained with a commercial

Agent-Based market simulator, the EMCAS model, and with the developed Agent-Based Model.

As mentioned in Section 7.1, in order to compare with the EMCAS model, it will be used a specific

Test Case of the MIBEL market that was kindly provided by EDP Produção. This Test Case is a

prospective simulation for a near future year. It was used the same data that EMCAS used with

the exception of the interconnections with France and Morocco, regarding which we introduced in

the developed model the results obtained with EMCAS, as in our model the interconnections are

input data as a pattern profile. For confidential reasons we will not present the data used in this

simulation. We are only allowed to mention that it is a simulation for a near future year, for an

average hydro year, with coal power plants having an average variable cost of 64 e /MWh and the

CCGTs an average variable cost of 62 e /MWh. These variable costs are equal in each month of

the simulated year for each of these two types of units.

In terms of the results, we will only compare the market prices from both models. Figures

7.24 and Figure 7.25 present the comparison of the market price results in an hourly basis and in

daily averages, respectively.
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Figure 7.24: Comparison of the market price results between obtained with the EMCAS and with
the proposed model on hourly basis.

Analysing the results in Figures 7.24 and 7.25 it is possible to conclude that the results are not

very similar. In fact, the EMCAS model gave higher prices in Winter than in the Summer. These

results were not expected due to a typical higher contribution of hydro generation in Winter that

reduces the prices down. With the proposed Agent-Based Model, we obtained higher prices in

Summer with less variability, as it was expected, and lower prices in Winter with larger variations.

Regarding the variability of the hourly prices in Figure 7.24, EMCAS results presents an higher

variation along the year. Even in Summer, EMCAS presented prices as low as 20 e /MWh in

some of the off-peak periods. This situation happens because EMCAS has no specific strategy for
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Figure 7.25: Comparison of the market price results between obtained with the EMCAS and with
the proposed model on daily average basis.

hydro management and bids the energy from all hydro units at 0 e /MWh. However, it should be

noted that in this EMCAS simulation, there are no prices at 0 e /MWh. The main reason for this

behaviour has to do with a modelling aspect that is usually considered when we simulate hydro

systems with EMCAS, that is to apply several virtual fixed water values to the hydro generation. In

order to better illustrate this modelling aspect Figure 7.26 presents the hourly market price results,

sorted from the maximum value to minimum value, obtained using EMCAS and the proposed

model.
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Figure 7.26: Comparison of the market price results between EMCAS and the proposed model,
sorted from maximum to minimum.

As it is possible to observe in the EMCAS curve in Figure 7.26 the are three steps in the off-

peak prices, namely with 40e /MWh, 18e /MWh and 8e /MWh. These values are a consequence

of the application of using these three values as a water value for three sets of hydro units. For one

set it was specified 40 e /MWh, for a second set it was specified 18 e /MWh and finally for the
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third set it was specified 8 e /MWh. These values mimic some sort of water value management

that is in the fact absent from EMCAS thus preventing obtaining prices at 0 e /MWh in the off-

peak periods. This situation is overtaken with the proposed Agent-Based Model given that water

management is inherently considered in it.

Another question related with EMCAS is associated with the pumping units. In EMCAS, the

energy required to pump water is obtained with an external model, and it is imposed independently

on the market price relation between peak and off-peak periods. This can lead to non-economic

schedules in some situations. On the other hand, the price variations that result from EMCAS,

even in Summer, can add an extra profitability to the pumping power plants which may not corre-

spond to a real situation. In the developed model the pumping scheduling is a direct result of the

market price simulation as it was explained in Section 7.3. For example, in the Summer hours, the

developed Agent-Based Model obtained a flat price relation between peak and off-peak along sev-

eral days, with no possibility of obtaining profits to the hydro pumping power plants. This is not

an unusual situation in MIBEL. In order to illustrate this situation, Figure 7.27 shows 2 examples

of the real market prices in MIBEL for 2 days in Summer, one in 2018 and other in 2019.

Spain Market Price Portugal Market Price Market Energy Market Energy+BC

1             6                12             18             24 1             6                12             18             24
Hour Hour

0

70

10

60

50

40

30

20

€/MWh
TWh

42

6

36

30

24

18

12

0

04-06-2018 04-06-2019

Figure 7.27: Real market prices from MIBEL for 2 Summer days.

As it is possible to observe, typically the real peak/off-peak market price relation is very small

of in Summer days in the MIBEL electricity market.

In summary, the results obtained with the proposed Agent-Based Model present a very im-

portant contribution when compared with the results obtained by models as EMCAS, especially

in power systems with a very high contribution of hydro generation as it is the case of the power

systems of Portugal and Spain namely by representing hydro units in a more realistic way, de-

pending on their own characteristics and operational data as reservoirs level, inflows and water

management.
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7.5 Discussion of the Results

The results of Chapter 7 showed a very good performance of the proposed Agent-Based Model.

The results obtained with the simulation of the year 2018 of MIBEL presented a profile pattern of

the market prices very similar to the real 2018 data, despite the annual average difference being

considerable (5.9e /MWh). As mentioned in Section 7.3 this difference is related with the variable

cost calculation of the thermal units, that is a very difficult task and regarding which there is no

information on real costs. When we add artificially a price step of 5.9e /MWh to the variable costs

and to the water values functions, the results become significantly better, as presented in Figure

7.23, setting the difference at 1.6 e /MWh. Of course this situation is a post simulation correction,

but the daily pattern of the market prices showed that the simulation was able to capture the

market dynamics. When we analysed the individual behaviour of some Hydro Agents, the model

also displayed very realistic results. All of the analysed reservoirs presented a very realist water

management with generation similar to the real 2018 data. In the case of the Run-of-river Agent,

the premium in selling price was 103% in terms of monthly average prices, meaning that there

was some capability of concentrating generation in higher price periods, despite having a small

reservoir. The Pure Pumping Storage Agent was the agent with less revenues, due to the lower

relation between the peak and off-peak prices, but the proposed model allowed an increase of

revenues from 299 ke to 481 ke as mentioned in Section 7.3 for the unit that was analysed.

The second simulation, the comparison between EMCAS and the proposed model, also lead

to interesting conclusions given that the developed ABM model represents the hydro units in a

more realistic way. The EMCAS can provide very low prices in the Summer off-peak periods

because it does not include any water strategic management. The inclusion of fixed prices for

hydro units allows partially addressing this issue leading to a more realist price pattern. Differently,

the developed ABM model inherently considers the water management of hydro units, taking into

account their characteristics, thus obtaining more realistic results.

Finally, let us discuss the computational performance of the developed model. Using Matlab

code in a computer with 16 GB of RAM and with a processor of 3.0 GHz, the complete simulation

runs in approximately 3 hours (without considering the data preparation). This simulation time is

due to the fact that the model it is not fully automated as several sub models are run individually,

and not in an integrated way. One of the main advantages of using Agent-Based Models is the

possibility of simulating very large systems, with very large number of variables, that cannot

be tackled by traditional models. Taking into account our experience, if this model was fully

automated it would run in less than 1.5 hours. As comparison, EMCAS in its commercial version

runs in 1 hour, but as mentioned before, it does not include the strategic water management of

hydro units.



Chapter 8

Conclusions and Future Work

8.1 Main Conclusions

The power systems in European countries are changing rapidly to integrate more renewable

sources and decarbonizing the industry and, at the same time, to enable the consumers to play

a more central role in the electricity sector. In the case of the electricity markets, this transition

means that trading markets need to move closer to real time and closer to the demand keeping

high levels of system security. The national and regional markets are becoming more integrated

towards a common European Market. New players such as virtual power plants (aggregators),

storage agents and demand response providers are gradually entering in the market. As this trend

continues, more real-time automation and market integration are required to deal with the com-

plexity level on these systems. Big data and "robot" trading from Artificial Intelligence will play

an increasing role in intraday markets in the future. Indeed, it can be argued that markets that adopt

15 minute time steps can only operate efficiently using "robots" to help the market participants.

The present PhD Thesis addresses the Electricity Market Simulation problem by presenting

a new Agent-Based modelling with a special focus on the hydro agents. The literature review

presented in Chapter 3, allowed identifying a large number of research works that were dedicated

to model and simulate liberalized electricity power systems. They use different methodologies

and models in order to get the most adequate and realistic simulation results of electricity markets

depending on the market type and its characteristics. The electricity sector is characterized by

multiple and interconnected markets: day-ahead scheduling and intraday markets, bilateral trad-

ing, ancillary service markets, emission allowances and fuel markets. Many electricity companies

operate on several markets simultaneously, and this consequently turns the identification of their

most adequate trading strategies more complex. Considering the complexity of the electricity sec-

tor, and to complement the traditional methodologies, Agent-Based Models are being used as a

new research paradigm that allows developing models to represent in a more realistic way elec-

tricity markets, and that help to overcome some disadvantages of the traditional approaches. As

179
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showed in the literature review, hydro generation, specially reservoirs and pumping hydro stations,

are not adequately characterized and represented in any ABM model detailed in the literature.

In line with that, the main goal of this work was to develop a computational tool, using an

Agent-Based Model, to help generation companies to build their short/medium-term operation

decisions in a more sounded and robust way, taking into account competition. The developed

model was based on the Portuguese and Spanish common electricity market, the MIBEL, and

focused mainly on hydro power plants, in a competitive environment. The time horizon that was

addressed was the short/medium-term, which means the day-ahead simulation taking into account

the allocation of resources for the next months.

The results that were obtained in this work indicate that the proposed Agent-Based Model

can be a very important tool to help generation companies to deal with the complexity of the

electricity markets. The comparison between market data of MIBEL for 2018 and the performed

simulation showed a good approximation to the real data, specially when considering an increase

of 5.9 e /MWh in the variable costs of thermal generation units and on the water value of hydro

units. The simulation results for the individual Hydro Agents also showed a very realistic water

management and operation for these agents. When the results were compared with the ones from

the EMCAS commercial software, the proposed Agent-Based Model showed an improvement in

the results, presenting more realistic market prices and with more realistic results for the hydro

power plants.

In terms of generic Agent-Based Modelling, the most significant benefit is its flexibility. It is

easy to add more agents to an Agent-Based Model. ABM also provides a framework for tuning

the complexity of the agents: behaviour, degree of rationality, ability to learn and evolve, and rules

of interactions. Another dimension of flexibility is the ability to change levels of description and

aggregation: it can easily play with aggregated agents, subgroups of agents, and single agents,

with different levels of description, learning and cooperation coexisting in a given model. In very

complex systems, ABM is perhaps the most adequate and eventually possible way to deal with

such complex situations. On the other hand there are some challenges: For example, the extent to

which the model can be replicated, the ways the model might be verified, calibrated and validated,

the way that real dynamics are represented in terms of agent interactions and the extent to which

the model is operational. In our vision, the ABM models don’t substitute the classic ones, but they

can add an important contribute to complement the others models when the system become very

complex.

The main contributions of this work will be presented in Section 8.2. Then Section 8.3 aims

to answering to the Research Questions presented in Chapter 1 and finally, Section 8.4 includes

several suggestions for future work.
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8.2 Contributions

To facilitate the understanding of the contributions of this PhD Thesis they will be presented,

in the next paragraphs, organized by the chapter that they are associated to.

Chapter 4 presents the description of the developed Agent-Based Model. Accordingly, the

main contribution of this chapter is the new proposed Agent-Based Model, with special focus on

the hydro power plants, that is capable of simulating the day-ahead Iberian Electricity Market, and

similar ones. The developed ABM model organizes the hydro units in four types having different

bidding strategies, namely Run-of-river, Storage, Storage Pumping and Pure Pumping Agents. In

the developed model, Hydro station Agents bid their energy in the market and their strategy is

very dependent on the type of reservoir and on the inflows. Depending on the hydro station type,

the bidding price strategy can be determined by the water value of the reservoir, by a Q-Learning

procedure and by a set of decision support tools. Run-of-river Agents, since their storage capacity

is reduced, bid a quantity that depends on the hourly inflows. In order to maximize their revenues,

these agents use the HSP model and the price forecasting model scheduling their generation bids

in the higher prices hours. The bid price of these agents is 0 e /MWh, to avoid spills. The Q-

Learning procedure is not used in this case because the bid price is 0 e /MWh. Storage Hydro

Agents have a bidding price directly related with their water value function as well as to their bid

up/down learning strategy. This value depends on their reservoir capacity and on their inflows.

The bidding price strategy is combined with a Q-Learning methodology in order to maximize

the profits according to the market dynamics. The bid quantity in this case corresponds to the

maximum power capacity. These agent don’t use the HSP model nor the price forecasting model

to bid the energy in higher prices for the next day. Instead, they bid in the market a value coming

from the water value of the reservoir. These units generate only if the market price in each hour

is equal or larger than the water value. If not, the water is stored to be used in other periods.

Storage Pumping Agents have the same strategy as the Storage Agents, but in addition, they have

the possibility of buying energy to pump water to their reservoirs, taking advantage of low prices.

This buying strategy depends on the reservoir water value. Finally, the Pure Pumping Agents

adopt an arbitrage bidding strategy taking advantage of the estimated price difference between

peak and off peak periods. They use the HSP model and the price forecasting model to schedule

their bids on the higher price hours for generation, and on the lower price hours for pumping. The

electricity to be bought for pumping purposes is limited by a learning variable in order to reflect

the difference between the forecasted prices and the real prices.

Chapter 5 describes the models that the Hydro Agents use to help defining their the bidding

strategy. These models provide these agents with a strategy adaptation capability (Machine Learn-

ing procedure), and also will give them a decision support tool to the day-ahead market price bid-

ing. These models are a Q-Learning procedure, an Hydro Scheduling Problem optimization model

and a market price forecasting tool, based on Neural Networks. The two contributions in this case

are the definition and the parametrization of the Q-Learning methodology that is built, with good
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results, to bid in electricity markets, and the improvement of the original Hydro Scheduling Prob-

lem (that was developed by the author in his MSc Thesis). This model was enhanced with the

contribution of several MSc students during this PhD work. Regarding the Q-Learning procedure,

the definition of the 5 states, as well as the actions and the utility function showed to be very effec-

tive for the bidding simulation in electricity markets. The improvement of the Hydro Scheduling

Problem allowed the utilization of the model in two new procedures. The first one is the medium-

term model used to build the water value curves by simulation several hydro conditions and using

the dual variables of the water balance constraints for each hydro unit. The second one, is the

consideration of the impact of the bids on the market prices and in tailwater level, passing from a

price-taker model to a more realistic price-maker model and representing in a more accurate way

the water flow conditions.

Chapters 6 and 7 present the final three contributions. The first one is the illustration of the

use of the proposed model in a set of simple Test Cases. Chapter 6 detailed a set of simulations

to illustrate the use of the Q-Learning procedure with different agents, showing the capability of

adaptation of the agents in a competitive environment. It also detailed some results for the Hydro

Scheduling Problem, considering the short and the medium-term models, using simple Test Cases

and showing the good results of the application of this tool to solve a large non-linear optimization

problem. The second contribution, in Chapter 7, was the use of the developed model in a real

Test Case, the MIBEL simulation for 2018, with the results for the individual Hydro Agents also

showing a very realistic management of the water and operation conditions. The final contribution

was associated with the main objective of this work and it corresponded to model Hydro Agents

in a more realist way to deal with this kind of assets, allowing the improvement of the available

ABM models for electricity markets.

8.3 Answering the Research Questions

In this section, the research questions raised in Chapter 1 are answered. Although there is not

a global and final answer to these questions, the answers take into account the experience that was

acquired and the results that were obtained in the development of this PhD work.

Research Question 1:
Are the Agent-Based Models capable of simulating Electricity Markets with a large share of hydro

units?

To be competitive, electricity companies must ensure the maximum efficiency in the manage-

ment of their resources. At the same time, these companies must also understand their competitors

and how to react to changes in the industry, so that they can stay one step ahead. The decarboniza-

tion of the economy, for which the contribution of power systems is significant, is a growing trend

in Europe and in the world with a very important impact in the operation of the generation as-

sets. From the short-term to long-term operation of power systems, many different models have



8.3 Answering the Research Questions 183

been developed to deal with different challenges related to the electricity systems. The answer to

this research question may rely, among other issues, on the development of new computational

tools based on Artificial Intelligence to deal with the increase complexity of power systems. With

new computing technologies, companies can develop and use Artificial Intelligence models with

learning capabilities to solve more complex problems, and complement the traditional models. In

Chapter 3, we showed that Agent-Based Models are a new research paradigm that allows devel-

oping tools to represent and to model in a more realistic way the power systems and the electricity

markets. One of these type of approaches comes from Agent-Based Computational Economics

that is being increasingly used to deal with this type of problems.

Research Question 2:
Is the current Electricity Market framework suitable for a large share of renewable sources?

Traditionally, power systems were developed in strictly regulated frameworks, in which verti-

cally integrated utilities handled all or most of the activities from generation to retailing. Over the

past years, however, many countries in the world have gradually moved towards competitive mar-

kets as a way to generate and procure electricity in a more efficient and economical way. Despite

their imperfections, electricity markets succeeded in the objective of providing reliable electricity

at lower cost to the consumers. Nevertheless, some regional markets have come under stress in

recent years. Without policy measures to address these power system problems, there is a risk of

compromising the security of supply. Since 2010, some electricity markets have experienced a

decline in wholesale electricity prices due to stagnant demand, low natural gas prices but espe-

cially because of the higher generation share of renewable sources with very low marginal cost.

In Chapter 7, when we compared the results of the developed ABM model with the ones from the

EMCAS model, we showed that in Iberia in a near future, the prices will be pressed to 0 e /MWh

if hydro strategies are not considered. In our simulation, that situation was addressed by intro-

duction a new modelization for the hydro assets. But in the future, the increase of the renewable

sources like wind and particularly solar, will press more and more the wholesale market prices to

0 e /MWh. This situation clearly signals the need to re-evaluate market designs and their ability

to deliver investment and electricity security of supply, especially since the current conditions of

energy policies are likely to continue. With new flexible assets in power systems becoming more

available and with lower cots, future regulatory frameworks and market reforms should be put in

the first line of the agenda to ensure a sustainable framework for all system resources, including

power plants, energy storage systems and demand-side response. Additionally, electricity markets

are also responsible for non-energy services for instance related to the provision of a variety of

ancillary services. The provision of these services is essential for the adequacy of the system and

will be one of the key drivers for the hydro assets in the future.

Research Question 3:
How should operation strategies for hydro power plants be built in order to respond to this new

reality?
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The complexity of the electricity markets is increasing and will continue to increase towards

decisions closer to real-time operation. As this trend continues, new methodologies and simula-

tion models will be necessary especially models to simulate very large systems and, at the same

time, more types of markets and technologies. Artificial Intelligence will play an increasing role

in the future of the electricity markets as the complexity of models close to real time will rapidly

increase. In line with that, the operation strategies of hydro power plants in the future will be done

in a smarter way, more efficiently, and in coordination with other assets and services. Smarter

because more and more new computation capabilities and new models from Artificial Intelligence

area will be used. More efficient because with these new models, it will be possible to operate

these assets in an higher level of profitability, that is not possible to obtain with human traditional

management. And finally, this evolution will be done in coordination with other assets for instance

in the scope of virtual power plants implementation, and at the same time operating in different

types of markets. Digital transformation is allowing companies to quickly virtualize and auto-

mate their assets, products and services including new disruptive business models and redesigned

processes. Generation companies will also have to explore and to move in this direction.

8.4 Future Work and Research Opportunities

The optimization of power systems is an area that was, and will continue to be, a constant

concern for electrical companies associated to the energy sector, as well as for researchers dedi-

cated to this topic. In this Section, we identify further research areas related to the work developed

in this PhD Thesis. Finally, some general opportunities and research directions associated to the

developed ABM model are described at the end.

Chapter 4 detailed the proposed ABM model to the electricity market simulation, with special

focus on hydro power plants characterization and using an Agent-Based Model. In this model,

there are some improvements that can be considered and implemented. The first one is the com-

plete characterization of the Thermal Agents. As it was illustrated in Chapter 7, the impact of

the start-up/shut-down costs and the operation at low load levels can have a significant impact in

the market price results, meaning that these agents should have a strategy that take into account

these issues. Other research area to explore, and using the Agent-Based modelling, is the Demand

side characterization. Demand response will be an opportunity for consumers to play a more

significant role in the operation of the power systems by reducing or shifting their electricity con-

sumption during peak periods in response to price variations or other forms of financial incentives.

Demand response and self-consumption would also contribute to increase the price elasticity of

the load thus turning the electricity markets more symmetric.

At the same time, solar, wind, and storage are technologies that will certain play an important

role in the power system future. Solar and storage are a perfect partnership. Storage extends

solar power beyond the time the sun is available, allowing energy producers to use solar, in limit,
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24 hours a day, 365 days a year. This opens up a whole new world of opportunities for solar,

allowing solar technologies to be used to their full potential. If we join the wind energy, in a

hybrid generation concept, this virtual power plant can, use, for example, photovoltaic energy

when the sun shines and another source, such as wind, in cloudy weather, thus ensuring a more

stable and efficient supply. Hybrid installations may or may not always include storage systems.

All these topics can be addressed using Agent-Based Models creating new research opportunities

in the future.

Chapter 5 details the models that are used by the agents. In the Q-Learning procedure further

research should be continued. The Reinforcement Learning methods which have model-free mer-

its are indicated as efficient approaches to perform the optimal bidding for the electricity market

problem, as it was illustrated in our work. Nevertheless, because of the increasing complexity

of power systems, the Q-Learning based strategy can lead to a slow convergence of the Q-values

when used for more complex markets, with an higher number of real time decisions. At the same

time, the state variables of the Q-Learning algorithm are discrete, which means the number of the

state variables is limited. Once the number of pairs states/actions exceeds a threshold, it will cause

the "curse of dimensionality". For this reason, hybrid methodologies and techniques using Deep

Learning should be considered in future works. In the Hydro Scheduling Problem, a new method-

ology considering the technical minimums of the units should be addressed. Mixed-Integer Linear

Programming could be an obvious tool, but it is important to keep the simulation time as reduced

as possible, which may be compromised if using Integer Programming. Several meta-heuristics

were tested during this PhD work, like for example Genetic Algorithms and other Evolutionary

Strategies to solve the HSP problem. However, in general the results were not satisfactory, espe-

cially due to the possibility of obtaining local optimums in this type of problems.

Apart from the research opportunities related to the work developed in Chapters 4 and 5, we

identified other areas that were not addressed in this PhD Thesis but that can represent important

research opportunities, as follows:

i. introduction of social abilities in the hydro agents like negotiation, cooperation and port-

folio optimization. In the developed model, hydro agents are individual entities that try

to maximize their profit. But in the "real world", these assets belong to companies which

own several sets of plants. At the same time, they can negotiate bilateral contracts instead

of bidding in the spot markets. As the Agent-Based Models can be used to detect market

power, it is also important to implement portfolio optimization since these companies can

own several types of generation assets, and can try to increase the market prices by doing a

portfolio management. There are several models, like EMCAS, that already allow this type

of modelization, but again, we didn’t find in the literature review any model with specific

strategies to deal with hydro assets;

ii. co-optimization/simulation of several markets in which hydro assets can participate. The

increase in variable renewable sources on the power systems can create both challenges and
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opportunities. Many regions across the world are starting to approach penetration percent-

ages for these resources that were unprecedented during the initial introduction of organized

wholesale electricity markets and this evolution is motivating the discussion of new market

designs. For this reason, it is very important that operation strategies for hydro power plants

respond to this new reality. There are many uncertainties, including the continuing evo-

lution of technologies, and many players need to improve their decision support models

to help managing these units to ensure a reliable and economical operation in future. The

co-optimization/simulation of real-time Intraday markets, or/and the current and future An-

cillary Service and capacity markets are and will continue to be important challenges and

opportunities in near future for decision makers and researchers in this area.
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A.1 Results for a Single Agent: Price-Taker Agent

A.1.1 Repeating Test Case 1

Table A.1: Characteristics of the Test Case 1 with one agent in a virtual market.

Agent Market Parameter

Power (MW) 100 Off-peak (e /MWh) 12 λ 0.8
Marginal Cost (e /MWh) 45 Base (e /MWh) 36 γ 0.8
Type price-taker Peak (e /MWh) 50 ε 0.1
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Figure A.1: Bidding results for the Test Case 1.
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Figure A.2: Bidding results for the Test Case 1.

Marg. Cost

45

Market Clearing day

€/MWh

0

10

20

30

40

50

60

1

2
9

5
7

8
5

1
1

3

1
4

1

1
6

9

1
9

7

2
2

5

2
5

3

2
8

1

3
0

9

3
3

7

3
6

5

3
9

3

4
2

1

4
4

9

4
7

7

Peak Market Price

Base Market Price

Off-peak Market Price

Bid

Revenues obtained = 974 k€

Maximum possible revenues = 1000 k€

Performance of 97% 

Figure A.3: Bidding results for the Test Case 1.
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A.1.2 Repeating Test Case 1 with a Smaller Learning Rate λ

Table A.2: Characteristics for Test Case 1 with one agent in a virtual market - a smaller learning rate λ .

Agent Market Parameter

Power (MW) 100 Off-peak (e /MWh) 12 λ 0.1
Marginal Cost (e /MWh) 45 Base (e /MWh) 36 γ 0.8
Type price-taker Peak (e /MWh) 50 ε 0.1
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Figure A.4: Bidding results for the Test Case 1 with a smaller learning rate λ .
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Figure A.5: Bidding results for the Test Case 1 with a smaller learning rate λ .
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Figure A.6: Bidding results for the Test Case 1 with a smaller learning rate λ .
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A.1.3 Repeating Test Case 1 with a Different Marginal Cost - Version 1

Table A.3: Characteristics for Test Case 1 with one agent in a virtual market - different Marginal Cost.

Agent Market Parameter

Power (MW) 100 Off-peak (e /MWh) 12 λ 0.8
Marginal Cost (e /MWh) 37 Base (e /MWh) 36 γ 0.8
Type price-taker Peak (e /MWh) 50 ε 0.1
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Figure A.7: Bidding results for the Test Case 1 with a different Marginal Cost.
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Figure A.8: Bidding results for the Test Case 1 with a different Marginal Cost.
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Figure A.9: Bidding results for the Test Case 1 with a different Marginal Cost.
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A.1.4 Repeating Test Case 1 with a Different Marginal Cost - Version 2

Table A.4: Characteristics for Test Case 1 with one agent in a virtual market - different Marginal Cost.

Agent Market Parameter

Power (MW) 100 Off-peak (e /MWh) 12 λ 0.8
Marginal Cost (e /MWh) 25 Base (e /MWh) 36 γ 0.8
Type price-taker Peak (e /MWh) 50 ε 0.1
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Figure A.10: Bidding results for the Test Case 1 with a different Marginal Cost.
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Figure A.11: Bidding results for the Test Case 1 with a different Marginal Cost.
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Figure A.12: Bidding results for the Test Case 1 with a different Marginal Cost.
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A.1.5 Repeating Test Case 1.1

Table A.5: Characteristics for Test Case 1.1 with one price-taker agent in a virtual market with
variable market prices.

Agent A Market N days 0-100 101-200 201-300 301-500
Power Off-peak
(MW) 100 (e /MWh) 12 7 17 12
Marginal Cost Base
(e /MWh) 45 (e /MWh) 36 31 41 36

Peak
Type price-taker (e /MWh) 50 45 55 50
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Figure A.13: Bidding results for the Test Case 1.1.
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Figure A.14: Bidding results for the Test Case 1.1.
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Figure A.15: Bidding results for the Test Case 1.1.

A.1.6 Repeating Test Case 1.1 with a Different Marginal Cost

Table A.6: Characteristics for Test Case 1.1 with one price-taker agent in a virtual market with
variable market prices with a different marginal cost.

Agent A Market N days 0-100 101-200 201-300 301-500
Power Off-peak
(MW) 100 (e /MWh) 12 7 17 12
Marginal Cost Base
(e /MWh 32 (e /MWh) 36 31 41 36

Peak
Type price-taker (e /MWh) 50 45 55 50
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Figure A.16: Bidding results for the Test Case 1.1 with different marginal cost.
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Figure A.17: Bidding results for the Test Case 1.1 with different marginal cost.
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Figure A.18: Bidding results for the Test Case 1.1 with different marginal cost.

A.2 Results for a single Agent: Price-Maker Agent

A.2.1 Repeating Test Case 2

Table A.7: Characteristics for Test Case 2 with one price-maker agent in a virtual market with
variable market prices.

Agent B Market N days 0-50 51-100 101-200 201-300 301-500
Power Off-peak
(MW) 100 (e /MWh) 12 22 15 12 22
Marginal Cost Base
(e /MWh) 45 (e /MWh) 36 46 39 36 46

Peak
Type price-maker (e /MWh) 50 60 53 50 60
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Figure A.19: Bidding results for the Test Case 2.
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Figure A.20: Bidding results for the Test Case 2.
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Figure A.21: Bidding results for the Test Case 2.
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A.2.2 Repeating Test Case 2 with a Different Marginal Cost

Table A.8: Characteristics for Test Case 2 with one price-maker agent in a virtual market with a
variable market prices.

Agent B Market N days 0-50 51-100 101-200 201-300 301-500
Power Off-peak
(MW) 100 (e /MWh) 12 22 15 12 22
Marginal Cost Base
(e /MWh) 38 (e /MWh) 36 46 39 36 46

Peak
Type price-maker (e /MWh) 50 60 53 50 60
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Figure A.22: Bidding results for the Test Case 2 with a different marginal cost.
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Figure A.23: Bidding results for the Test Case 2 with a different marginal cost.
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Figure A.24: Bidding results for the Test Case 2 with a different marginal cost.

A.3 Results for a Competitive Market - Months 3 to 12
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Figure A.25: Hourly market prices for month 3 with and without Q-Learning strategy.
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Figure A.26: Hourly market prices for month 4 with and without Q-Learning strategy.
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Figure A.27: Hourly market prices for month 5 with and without Q-Learning strategy.
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Figure A.28: Hourly market prices for month 6 with and without Q-Learning strategy.
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Figure A.29: Hourly market prices for month 7 with and without Q-Learning strategy.
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Figure A.30: Hourly market prices for month 8 with and without Q-Learning strategy.
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Figure A.31: Hourly market prices the month 9 with and without Q-Learning strategy.
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Figure A.32: Hourly market prices the month 10 with and without Q-Learning strategy.
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Figure A.33: Hourly market prices the month 11 with and without Q-Learning strategy.
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Figure A.34: Hourly market prices the month 12 with and without Q-Learning strategy.
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B.1 Douro Nacional and Alqueva Full Data

The complete data for the HSP hydro simulation was provided by EDP Produção. Even so,

because of confidential reasons, the data presented in Table B.1 corresponds to approximated

values.
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Table B.1: Full characteristics of hydro power plants simulated in Test Cases 4, 5 and 6.

Hydro Pocinho Baixo Sabor Feiticeiro Valeira Foz Tua Régua Carrapatelo Torrão Crestuma Alqueva
Type RoR Reser. Reser. RoR Reser. RoR RoR Reser. RoR Reser.

Maximum Volume (hm3) 83 1095 31 97 100 95 148 106 110 4071
Minimum Volume (hm3) 71 645 18 85 88 83 84 90 94 2500
Available Volume (hm3) 12 450 13 12 12 12 22 16 16 1571

Maximum Storage Level (m) 126.0 234.0 138.1 105.0 170.0 73.5 46.5 62.0 13.2 152.0
Minimum Storage Level (m) 124.0 205.0 130.0 103.5 167.0 72.0 45.0 58.0 12.0 143.0

Nominal Discharge Flow (m3/s) 1077 170 120 900 310 744 705 320 1350 800
Nominal Pumping Flow (m3/s) - 135 85 - 238 - - 279 - 640

Maximum Discharge Flow (m3/s) 1077 170 120 900 310 744 705 320 1350 800
Maximum Pumping Flow (m3/s) - 135 85 - 238 - - 279 - 640
Nominal Discharge Head (m) 20.5 94.0 30.0 30.5 93.6 27.0 33.3 48.8 12.2 66.0
Nominal Pumping Head (m) - 94.0 30.0 - 93.6 - - 47.5 - 66.0

Discharge Efficiency 0.90 0.89 0.89 0.92 0.89 0.93 0.91 0.89 0.86 0.89
Pumping Efficiency - 0.91 0.91 - 0.92 - - 0.91 - 0.90

Pumping/Discharge Efficiency - 0.80 0.70 - 0.77 - - 0.79 - 0.78
Nominal Discharge Loss Head (m) 1.0 1.0 3.5 1.8 2.9 0.4 1.4 0.8 1.0 0.8
Nominal Pumping Loss Head (m) - 0.5 0.6 - 2.9 - - 0.8 - 0.8

Pumping Coefficient - 1 1 - 1 - - 5 - 1
Tail Water Level (m) 105.0 138.1 105.0 73.5 73.5 46.5 13.2 13.2 1.0 78.0

Maximum Power (MW) 186 141 31 240 253 180 201 134 117 490



Appendix C

Data for Iberian Market Simulation

C.1 Portuguese and Spanish Hydro Units - Full Data

Table C.1: Hydro agents characterization considered in the MIBEL simulation tests.

Hydro Agent Country Type Power (MW) Reservoir (hm3)

Alto Lindoso PT Storage 630 359

Touvedo PT Storage 22 15

Alto Rabagão PT Pump Storage 68 559

Paradela PT Storage 54 159

Frades PT Pump Storage 191 93

Frades II PT Pump Storage 740 93

Salamonde PT Pump Storage 266 56

Vilarinho PT Storage 125 118

Caniçada PT Storage 62 153

Miranda PT Run-of-river 369 7

Picote PT Run-of-river 390 10

Bemposta PT Run-of-river 430 12

Pocinho PT Run-of-river 186 12

Valeira PT Run-of-river 240 12

Baixo Sabor PT Pump Storage 141 450

Feiticeiro PT Pump Storage 31 13

Foz Tua PT Pump Storage 253 12

Tabuaço PT Storage 59 95

Régua PT Run-of-river 180 12

Carrapatelo PT Run-of-river 203 16

Continue on the next page
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Table C.1: Hydro agents characterization considered in the MIBEL simulation tests (cont.)

Hydro Agent Country Type Power (MW) Reservoir (hm3)

Torrão PT Pump Storage 140 22

Crestuma PT Run-of-river 117 16

Caldeirão PT Storage 40 4

Aguieira PT Pump Storage 336 304

Raiva PT Run-of-river 22 14

Cabril PT Storage 108 615

Bouçã PT Storage 51 15

Castelo do Bode PT Storage 159 900

Fratel PT Storage 132 21

Pracana PT Storage 41 69

Alqueva PT Pump Storage 490 1571

Ribeiradio PT Storage 72 136

AGUAYO B SP Pump Storage 360 ND

BOLARQUE B SP Pump Storage 208 ND

Villalcampo B SP Pump Storage 206 ND

Villarino B SP Pump Storage 810 ND

Aldeadávila B SP Pump Storage 421 ND

DUERO G SP Run-of-river 400 ND

Ricobayo SP Storage 191 ND

Castro SP Run-of-river 190 ND

Aldeadávila SP Run-of-river 718 ND

Saucelle SP Run-of-river 520 ND

EBRACC1 SP Storage 388.3 ND

EBRACC2 SP Storage 162 ND

EBRO ALTO SP Storage 212.6 ND

ENDPRB SP Storage 100 ND

ENH-FEC-GR SP Storage 1870.7 ND

GNF GALCOS SP Storage 385.8 ND

GNF MIÑO SP Storage 941.1 ND

GNF TAJO SP Storage 388.4 ND

GUADALQUIV SP Storage 423.9 ND

GUADIANA SP Storage 218.6 ND

GUILLENA B SP Pump Storage 225 ND

HC-HIDRAUL SP Storage 425.1 ND

HFERRAT SP Storage 107.7 ND

HFGASN SP Storage 110.4 ND

Continue on the next page
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Table C.1: Hydro agents characterization considered in the MIBEL simulation tests (cont.)

Hydro Agent Country Type Power (MW) Reservoir (hm3)

HFIBGES SP Storage 114.8 ND

HFNESXU SP Storage 104.7 ND

HTARIFA SP Storage 169.5 ND

JUCAR SP Storage 739 ND

MORALET B SP Pump Storage 219 ND

MUELA B SP Pump Storage 630 ND

MUELA BP SP Pure Pump Storage 820 ND

MUELA GPRU SP Storage 877.8 ND

SALLENT B SP Pump Storage 400 ND

SIL B SP Pump Storage 412 ND

SIL G SP Storage 1544.6 ND

SIL-BIB-EU SP Storage 625.9 ND

TAJO B SP Pump Storage 380 ND

C.H. CEDILLO SP Run-of-river 500 ND

C.H. GABRIEL Y GALAN SP Run-of-river 111.2 ND

C.H. GUIJO GRANADILLA SP Run-of-river 53 ND

C.H. JOSE MARIA ORIOL SP Storage 957 ND

C.H. TORREJON SP Storage 132 ND

C.H. VALDECAÑAS SP Storage 249 ND

C.H. VALDEOBISPO SP Run-of-river 40 ND

TAJOENC B SP Pump Storage 420 ND

TANES B SP Pump Storage 110 ND

TER SP Storage 150.8 ND

TERA-ESLA SP Storage 113.7 ND

UGH EON SP Storage 337.8 ND

ND - Not Defined: in the case of Storage and Pump Storage Agents it was used the weekly

value of the reservoir total storage in Spain to calculate the water value. All Spanish storage units

will be considered as large reservoirs for the water value definition.

C.2 Portuguese and Spanish Thermal Units - Full Data

This data was provided by EDP Produção. However, for confidentiality reasons, the data

presented in Table C.2 corresponds to approximated values.
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Table C.2: Thermal agents characterization considered in the MIBEL simulation tests.

Annual Average Monthly Variable Cost (e /MWh)

Thermal

Agent
Country Type

Power

(MW) Year

Var. Cost

(e /MWh) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dez

Sines1 PT Coal 295 1985 42.5 35.4 33.5 33.6 36.1 40.9 43.4 45.9 47.6 50.6 49.3 45.6 48.5

Sines2 PT Coal 295 1986 42.5 35.4 33.4 33.6 36.0 40.9 43.4 45.8 47.6 50.5 49.2 45.5 48.4

Sines3 PT Coal 295 1987 42.4 35.4 33.4 33.5 36.0 40.8 43.3 45.8 47.5 50.5 49.1 45.5 48.4

Sines4 PT Coal 295 1989 42.3 35.3 33.3 33.5 35.9 40.7 43.2 45.6 47.4 50.3 49.0 45.4 48.3

Pego1 PT Coal 292 1992 42.2 35.2 33.2 33.3 35.8 40.6 43.1 45.5 47.2 50.2 48.8 45.2 48.1

Pego2 PT Coal 292 1995 42.0 35.0 33.1 33.2 35.7 40.4 42.9 45.3 47.1 50.0 48.7 45.0 47.9

Turbogas1 PT CCGT 330 1999 55.4 43.2 50.2 55.2 47.4 52.1 53.0 54.2 58.7 68.1 62.5 60.4 59.7

Turbogas2 PT CCGT 330 1999 55.4 43.2 50.2 55.2 47.4 52.1 53.0 54.2 58.7 68.1 62.5 60.4 59.7

Turbogas3 PT CCGT 330 1999 55.4 43.2 50.2 55.2 47.4 52.1 53.0 54.2 58.7 68.1 62.5 60.4 59.7

LARES1 PT CCGT 431 2009 52.0 40.6 47.2 51.9 44.5 48.9 49.8 50.9 55.1 64.0 58.7 56.7 56

LARES2 PT CCGT 431 2009 52.0 40.6 47.2 51.9 44.5 48.9 49.8 50.9 55.1 64.0 58.7 56.7 56

CRJ1 PT CCGT 392 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

CRJ2 PT CCGT 392 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

CRJ3 PT CCGT 392 2006 53.0 41.3 48.1 52.8 45.3 49.8 50.7 51.8 56.1 65.2 59.8 57.8 57.1

ELECGAS1 PT CCGT 420 2010 51.7 40.3 46.9 51.6 44.2 48.6 49.5 50.6 54.8 63.6 58.3 56.4 55.7

ELECGAS2 PT CCGT 420 2010 51.7 40.3 46.9 51.6 44.2 48.6 49.5 50.6 54.8 63.6 58.3 56.4 55.7

Almaraz1 SP Nuc. 1011 1983 0 0 0 0 0 0 0 0 0 0 0 0 0

Almaraz2 SP Nuc. 1006 1984 0 0 0 0 0 0 0 0 0 0 0 0 0

Cofrentes SP Nuc. 1064 1985 0 0 0 0 0 0 0 0 0 0 0 0 0

Continue on the next page
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Table C.2: Thermal agents characterization considered in the MIBEL simulation tests (cont.)

Annual Average Monthly Variable Cost (e /MWh)

Thermal

Agent
Country Type

Power

(MW) Year

Var. Cost

(e /MWh) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dez

Trillo I SP Nuc. 1003 1988 0 0 0 0 0 0 0 0 0 0 0 0 0

Asco1 SP Nuc. 996 1983 0 0 0 0 0 0 0 0 0 0 0 0 0

Asco2 SP Nuc. 992 1985 0 0 0 0 0 0 0 0 0 0 0 0 0

Vandellos II SP Nuc. 1045 1987 0 0 0 0 0 0 0 0 0 0 0 0 0

Sotoribera3 SP Coal 346 1984 42.6 35.5 33.5 33.7 36.1 41.0 43.5 45.9 47.7 50.6 49.3 45.6 48.6

Abono2 SP Coal 536 1985 42.5 35.4 33.5 33.6 36.1 40.9 43.4 45.9 47.6 50.6 49.3 45.6 48.5

Abono1 SP Coal 342 1974 43.1 35.9 33.9 34.1 36.6 41.5 44.0 46.5 48.3 51.3 49.9 46.2 49.1

Lada4 SP Coal 348 1981 42.7 35.6 33.6 33.8 36.3 41.1 43.6 46.1 47.9 50.8 49.5 45.8 48.7

Narcea2 SP Coal 154 1969 43.4 36.1 34.1 34.3 36.8 41.7 44.3 46.8 48.6 51.6 50.2 46.5 49.4

Narcea3 SP Coal 347 1984 42.6 35.5 33.5 33.7 36.1 41.0 43.5 45.9 47.7 50.6 49.3 45.6 48.6

Anllares SP Coal 347 1982 42.7 35.6 33.6 33.7 36.2 41.1 43.6 46.0 47.8 50.8 49.4 45.7 48.7

Compostilla3 SP Coal 323 1972 43.2 36.0 34 34.2 36.7 41.6 44.1 46.6 48.4 51.4 50.0 46.3 49.3

Compostilla4 SP Coal 341 1981 42.7 35.6 33.6 33.8 36.3 41.1 43.6 46.1 47.9 50.8 49.5 45.8 48.7

Compostilla5 SP Coal 341 1984 42.6 35.5 33.5 33.7 36.1 41.0 43.5 45.9 47.7 50.6 49.3 45.6 48.6

La Robla1 SP Coal 264 1971 43.3 36.0 34 34.2 36.7 41.6 44.2 46.6 48.5 51.4 50.1 46.4 49.3

La Robla2 SP Coal 355 1984 42.6 35.5 33.5 33.7 36.1 41.0 43.5 45.9 47.7 50.6 49.3 45.6 48.6

Guardo1 SP Coal 143 1964 43.6 36.4 34.3 34.5 37.0 42.0 44.5 47.0 48.9 51.9 50.5 46.7 49.7

Guardo2 SP Coal 342 1984 42.6 35.5 33.5 33.7 36.1 41.0 43.5 45.9 47.7 50.6 49.3 45.6 48.6

Puente Nuevo SP Coal 300 1980 42.8 35.7 33.7 33.8 36.3 41.2 43.7 46.1 47.9 50.9 49.5 45.9 48.8

Continue on the next page
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Table C.2: Thermal agents characterization considered in the MIBEL simulation tests (cont.)

Annual Average Monthly Variable Cost (e /MWh)

Thermal

Agent
Country Type

Power

(MW) Year

Var. Cost

(e /MWh) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dez

Los Barrios SP Coal 570 1985 42.5 35.4 33.5 33.6 36.1 40.9 43.4 45.9 47.6 50.6 49.3 45.6 48.5

Litoral1 SP Coal 558 1984 42.6 35.5 33.5 33.7 36.1 41.0 43.5 45.9 47.7 50.6 49.3 45.6 48.6

Litoral2 SP Coal 562 1987 42.4 35.4 33.4 33.5 36.0 40.8 43.3 45.8 47.5 50.5 49.1 45.5 48.4

Teruel1 SP Coal 352 1979 42.9 35.7 33.7 33.9 36.4 41.2 43.8 46.2 48.0 51.0 49.6 45.9 48.9

Teruel2 SP Coal 352 1979 42.9 35.7 33.7 33.9 36.4 41.2 43.8 46.2 48.0 51.0 49.6 45.9 48.9

Teruel3 SP Coal 351 1980 42.8 35.7 33.7 33.8 36.3 41.2 43.7 46.1 47.9 50.9 49.5 45.9 48.8

Puentesoal1 SP Coal 351 2006 41.5 34.6 32.6 32.8 35.2 39.9 42.4 44.7 46.5 49.3 48.0 44.5 47.3

Puentesoal2 SP Coal 351 2007 41.4 34.5 32.6 32.7 35.2 39.9 42.3 44.7 46.4 49.3 48.0 44.4 47.2

Puentesoal3 SP Coal 350 2008 41.4 34.5 32.6 32.7 35.1 39.8 42.3 44.6 46.3 49.2 47.9 44.3 47.2

Puentesoal4 SP Coal 351 2009 41.3 34.4 32.5 32.7 35.1 39.8 42.2 44.6 46.3 49.2 47.9 44.3 47.1

Meirama SP Coal 557 1980 42.8 35.7 33.7 33.8 36.3 41.2 43.7 46.1 47.9 50.9 49.5 45.9 48.8

Castejon3 SP CCGT 418 2003 54.0 42.1 49.0 53.8 46.2 50.7 51.7 52.8 57.2 66.4 60.9 58.9 58.2

Castejon1 SP CCGT 425 2002 54.3 42.4 49.3 54.2 46.5 51.1 52.0 53.1 57.6 66.8 61.3 59.3 58.5

SotoRibera5 SP CCGT 428 2010 51.7 40.3 46.9 51.6 44.2 48.6 49.5 50.6 54.8 63.6 58.3 56.4 55.7

SotoRibera4 SP CCGT 426 2008 52.4 40.8 47.5 52.2 44.8 49.2 50.1 51.2 55.5 64.4 59.1 57.1 56.4

ArcosFrontera1 SP CCGT 389 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

ArcosFrontera2 SP CCGT 373 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

ArcosFrontera3 SP CCGT 823 2005 53.3 41.6 48.4 53.2 45.6 50.1 51.0 52.1 56.5 65.6 60.2 58.2 57.4

Castellon3 SP CCGT 782 2002 54.3 42.4 49.3 54.2 46.5 51.1 52.0 53.1 57.6 66.8 61.3 59.3 58.5

Continue on the next page
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Table C.2: Thermal agents characterization considered in the MIBEL simulation tests (cont.)

Annual Average Monthly Variable Cost (e /MWh)

Thermal

Agent
Country Type

Power

(MW) Year

Var. Cost

(e /MWh) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dez

Castellon4 SP CCGT 839 2007 52.7 41.1 47.8 52.5 45.1 49.5 50.4 51.5 55.8 64.8 59.4 57.4 56.7

Escombreras6 SP CCGT 816 2006 53.0 41.3 48.1 52.8 45.3 49.8 50.7 51.8 56.1 65.2 59.8 57.8 57.1

Aceca3 SP CCGT 386 2005 53.3 41.6 48.4 53.2 45.6 50.1 51.0 52.1 56.5 65.6 60.2 58.2 57.4

Castejon2 SP CCGT 379 2007 52.7 41.1 47.8 52.5 45.1 49.5 50.4 51.5 55.8 64.8 59.4 57.4 56.7

Santurce4 SP CCGT 396 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

TarragonaPower SP CCGT 417 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

Besos5 SP CCGT 859 2010 51.7 40.3 46.9 51.6 44.2 48.6 49.5 50.6 54.8 63.6 58.3 56.4 55.7

Besos3 SP CCGT 412 2002 54.3 42.4 49.3 54.2 46.5 51.1 52.0 53.1 57.6 66.8 61.3 59.3 58.5

Puentes SP CCGT 856 2007 52.7 41.1 47.8 52.5 45.1 49.5 50.4 51.5 55.8 64.8 59.4 57.4 56.7

Colon4 SP CCGT 391 2006 53.0 41.3 48.1 52.8 45.3 49.8 50.7 51.8 56.1 65.2 59.8 57.8 57.1

SanRoque1 SP CCGT 390 2002 54.3 42.4 49.3 54.2 46.5 51.1 52.0 53.1 57.6 66.8 61.3 59.3 58.5

Sagunto1 SP CCGT 410 2007 52.7 41.1 47.8 52.5 45.1 49.5 50.4 51.5 55.8 64.8 59.4 57.4 56.7

Sagunto2 SP CCGT 412 2007 52.7 41.1 47.8 52.5 45.1 49.5 50.4 51.5 55.8 64.8 59.4 57.4 56.7

Sagunto3 SP CCGT 411 2007 52.7 41.1 47.8 52.5 45.1 49.5 50.4 51.5 55.8 64.8 59.4 57.4 56.7

PalosFrontera1 SP CCGT 387 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

PalosFrontera2 SP CCGT 389 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

PalosFrontera3 SP CCGT 391 2005 53.3 41.6 48.4 53.2 45.6 50.1 51.0 52.1 56.5 65.6 60.2 58.2 57.4

Cartagena1 SP CCGT 418 2005 53.3 41.6 48.4 53.2 45.6 50.1 51.0 52.1 56.5 65.6 60.2 58.2 57.4

Cartagena2 SP CCGT 418 2005 53.3 41.6 48.4 53.2 45.6 50.1 51.0 52.1 56.5 65.6 60.2 58.2 57.4
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Table C.2: Thermal agents characterization considered in the MIBEL simulation tests (cont.)

Annual Average Monthly Variable Cost (e /MWh)

Thermal

Agent
Country Type

Power

(MW) Year

Var. Cost

(e /MWh) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dez

Cartagena3 SP CCGT 413 2005 53.3 41.6 48.4 53.2 45.6 50.1 51.0 52.1 56.5 65.6 60.2 58.2 57.4

PlanadelVent SP CCGT 834 2007 52.7 41.1 47.8 52.5 45.1 49.5 50.4 51.5 55.8 64.8 59.4 57.4 56.7

PuertoBar1 SP CCGT 410 2010 51.7 40.3 46.9 51.6 44.2 48.6 49.5 50.6 54.8 63.6 58.3 56.4 55.7

PuertoBar2 SP CCGT 410 2010 51.7 40.3 46.9 51.6 44.2 48.6 49.5 50.6 54.8 63.6 58.3 56.4 55.7

Besos4 SP CCGT 400 2002 54.3 42.4 49.3 54.2 46.5 51.1 52.0 53.1 57.6 66.8 61.3 59.3 58.5

SanRoque2 SP CCGT 402 2002 54.3 42.4 49.3 54.2 46.5 51.1 52.0 53.1 57.6 66.8 61.3 59.3 58.5

Sabon3 SP CCGT 391 2007 52.7 41.1 47.8 52.5 45.1 49.5 50.4 51.5 55.8 64.8 59.4 57.4 56.7

Aceca4 SP CCGT 373 2005 53.3 41.6 48.4 53.2 45.6 50.1 51.0 52.1 56.5 65.6 60.2 58.2 57.4

Malaga1 SP CCGT 416 2009 52.0 40.6 47.2 51.9 44.5 48.9 49.8 50.9 55.1 64.0 58.7 56.7 56

CampoGibraltar1 SP CCGT 393 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

Escatron3 SP CCGT 804 2007 52.7 41.1 47.8 52.5 45.1 49.5 50.4 51.5 55.8 64.8 59.4 57.4 56.7

Algeciras3 SP CCGT 866 2009 52.0 40.6 47.2 51.9 44.5 48.9 49.8 50.9 55.1 64.0 58.7 56.7 56

ElFangal1 SP CCGT 403 2006 53.0 41.3 48.1 52.8 45.3 49.8 50.7 51.8 56.1 65.2 59.8 57.8 57.1

ElFangal2 SP CCGT 401 2006 53.0 41.3 48.1 52.8 45.3 49.8 50.7 51.8 56.1 65.2 59.8 57.8 57.1

ElFangal3 SP CCGT 395 2006 53.0 41.3 48.1 52.8 45.3 49.8 50.7 51.8 56.1 65.2 59.8 57.8 57.1

Castelnou SP CCGT 791 2006 53.0 41.3 48.1 52.8 45.3 49.8 50.7 51.8 56.1 65.2 59.8 57.8 57.1

CampoGibraltar2 SP CCGT 388 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

Tarragona1 SP CCGT 386 2003 54.0 42.1 49.0 53.8 46.2 50.7 51.7 52.8 57.2 66.4 60.9 58.9 58.2

EscatronPeaker SP CCGT 275 2008 52.4 40.8 47.5 52.2 44.8 49.2 50.1 51.2 55.5 64.4 59.1 57.1 56.4
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Table C.2: Thermal agents characterization considered in the MIBEL simulation tests (cont.)

Annual Average Monthly Variable Cost (e /MWh)

Thermal

Agent
Country Type

Power

(MW) Year

Var. Cost

(e /MWh) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dez

Amorebieta SP CCGT 786 2005 53.3 41.6 48.4 53.2 45.6 50.1 51.0 52.1 56.5 65.6 60.2 58.2 57.4

Arrubal1 SP CCGT 395 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

Arruba2l SP CCGT 390 2004 53.6 41.8 48.7 53.5 45.9 50.4 51.3 52.5 56.8 66.0 60.5 58.5 57.8

BahiaBizkaia SP CCGT 785 2003 54.0 42.1 49.0 53.8 46.2 50.7 51.7 52.8 57.2 66.4 60.9 58.9 58.2
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