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Abstract:

• How should an insurer price a risk for which there is no history? This work intends
to show, step by step, which main mechanisms are needed to capture the tariff model
of another insurance company minimizing the risk involved. The document gener-
ally deals with the price-making mechanisms in non-life insurance through the GLM
regression models — Generalized Linear Model, more precisely the Poisson, Gamma
and Tweedie models. Given the complexity of the application of these models in
experimental design, it is studied a simpler way to characterize the rate, namely con-
sidering the Box–Cox transformation with SUR — Seemingly Unrelated Regression.
An orthogonal experimental design to collect information is also presented as well as
an application of these methods in the motor industry considering different companies.
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1. INTRODUCTION

An insurance company bases its production model in the value of a com-

modity with unknown cost by the time of production. Furthermore, the company

“purchase” claims and “sell” safety, if a company buys the claims at a low price

then it makes money; if it buys the claims at an expensive price then it loses

money. In the value chain, a company can rely on the law of large numbers that

mitigates volatility and market uncertainty — provides security on average.

The bottom line of a company is then how to evaluate the purchase price

of claim: What is the cost of a risk (pure premium)? Usually an insurer has

historical data that allow to estimate this value: based on the behavior of their

customers it is reasonable to offer a premium, that is identical to the liabilities as-

sumed (adding administrative costs, distribution and shareholder remuneration).

But how should an insurer do to price a risk, for which there is no history? Should

a company to “pay to view” — risking prices and their future sustainability?

What should an insurer do if both — market and risk — are unknown?

From a practical point of view these questions are extremely important

once the market has a strong barrier to overcome — the knowledge of the cost

of raw materials. However there are solutions available in the literature. Some

companies:

• Hire experienced technicians that heuristically define a charging table.

Many investors are attracted to base their decisions on the information

“currently available in their minds”see (Nocetti [5] and [6]). Thus, many

times even when company has some historical data, experts opinions can

be more plausible than the detailed analysis.

• Adopt reinsurance for (almost) 100% of the costs, transferring the risk

for more experienced companies (which will draw a tariff) and that have

financial muscle (to support higher risks).

In both cases (hiring experienced technicians or reinsurance) there is risk,

and/or potential revenue loss. Are the companies locked to this reality? In any

case, the insurer will always bear the costs of administration and distribution.

The challenge assumes more interesting contours since it is known that

the player who first entered the market, or which has a higher market, has a

strong competitive advantage: its historical references provide knowledge, which

in this industry means the ability to determine more accurately the cost of the

raw material. The player with no experience, only will get an interesting share

if he gets a similar competitive advantage over the incumbent.

The aim of this work is thus to present a minimization method of pricing risk

by capturing the tariff model, enabling a comparative advantage in the market to
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smaller players (in terms of market share), with no relevant history and without

financial padding to buy knowledge in a significantly way that is assuming risk.

This capture method is based on the assumption that the smallest company can

access a reasonable number of simulations with surgically chosen risk profiles.

This collection can be performed, for example, by a mystery shopper or using

their own mediators.

The methodological approach for answering to this challenge, follows the

classic process of experimental design:

• Step 1: Identify the factors that define the product;

• Step 2: Identify levels that define the product;

• Step 3: Optimal Design;

• Step 4: Gathering information;

• Step 5: Analysis.

Considering the particular case of motor insurance an application will be

performed in the sequence.

This work is organized in the following chapters:

• General Linear Models. In chapter 2 attention is given to changing

pricing methodologies, particularly with regard to the GLM model as-

sociated to Tweedie distribution.

• Experimental design in context of a Tweedie population. The purpose

of chapter 3 is to build a sample design which minimizes the field of

endeavor, by using an Optimal Design and Box–Cox transformation.

This is a practical solution once considering Tweedie populations, the

variation component is not easily determined in an experimental design.

• Optimal Design. In chapter 4 the orthogonality concept is presented in

order to gather information and allows discussing their suitability to the

main objectives of the project: reducing the volume of information to be

collected in order to obtain a manageable model and efficient estimates

to facilitate the risk modeling. In this chapter special emphasis will

be given to Seemingly Unrelated Regression — SUR — in order to

maximize the predictability capacity.

• Applications. The methodologies explored in previous chapters are

applied in chapter 6. We are working on a confidential real database,

considering motor insurance data from a Portuguese insurance company

in 2011.

• Conclusion and remarks. In the last chapter 7 emphasis should be given

to the widespread conditions.
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2. GLM — GENERALIZED LINEAR MODELS

How does a company know that it is expensive or cheap to pay for a policy?

Going to market a company subscribes a policy and accept risks for which the

real cost is unknown.

The well known expression of what usually is known as pure premium,

which supports the rational of an insurance rate construction is:

(2.1) PurePremium = sinister frequency × averageclaimcost (+error) .

Usually an insurer apply statistical models to estimate the frequency of an acci-

dent and their average claim cost. This problem can be seen isolated (frequency

and average claim cost) or estimated jointly (Pure Premium). The concept of

regression tackles this problem successfully, whatever its formulation. It should

be noted that in a generalized regression model there are two components:

i) A random vector Y = (Y1, ..., Yn)′ is following a distribution with

unknown parameters vector µ = (µ1, ..., µn)′;

ii) A function relation between µ and the involved parameters’ vector

β = (β1, ..., βk)
′, such that µ = f(β), considering f(·) a continuous and

univocal function.

Following the terminology of Jørgensen ([15]), these two components are

referred respectively as the random component and the systematic component

of the model. The random vector Y is designated as the response, while the

random component can assume any stochastic process, including errors mea-

surement. The function f(·) is designated as the regression function and the

β parameters represent the regression parameters. This whole system of vectors

and distributions is defined though the average for each Yi on the conditions of µ,

E(Yi |µ). The variation associated with E(Yi |µ) provide a measure of the adjust-

ment quality.

An important class of regression models can be expressed as:

g(µi) = ηi , i = 1, ..., n ;

ηi =

k∑

j=1

xij βj , i = 1, ..., n .

The function g(·) is continuous and unequivocal and is designated as link function.

The matrix X = {xij} is the design matrix model and xij are the covariates or

explanatory variables. A model of this form is said to be linear.

When g(·) is an identity function and Y distribution is homoscedastic or

even normal, the simple linear regression model is considered. Usually in this



176 Filipe Charters de Azevedo, Teresa A. Oliveira and Amilcar Oliveira

simple case parameters are estimated by the least squares error minimization or

by the maximum likelihood.

In some cases it is possible to question the type of function g(·) assumes

as well as the distribution associated with Y , which is a very convenient way to

determine the heterogeneity of the data. It is typical to assume that Y distribu-

tion is defined by a Poisson probability function and that Gamma distribution

is used to compute the average cost. When a claim frequency is the goal, to

establish the terms in (2.1) together, the most traditional mechanism is through

GLM composite models. In this case, a very convenient way to determine the

heterogeneity of the data is assuming that the Y distribution is defined by an

exponential distribution model (ED):

p(y, θ, λ) = α(λ, y) e[λ{yθ−k(θ)}] , with y ∈ R .

Note that α(·) and k(·) represent functions, and λ > 0 and θ belongs to a real

domain.

Thus, let Y ∼ED(µ, σ2) where µ = k′(θ) represent the expected value of Y

and σ2 = 1
λ

represent the variance where ED refers to the family of exponential

distributions and in Jørgensen ([15]) there is a particular case of this family

distributions, characterized by V (Y ) = σ2 = φV (µ).

The particular cases of V (Y ) = σ2 = φµp, to diverse p assume an important

class usually associated to the Tweedie distribution model. This class can be:

• a normal data generator when p = 0;

• a Poisson data generator when p = 1;

• a Gamma data generator when p = 2;

• an Inverse Gaussian when p = 3.

Considering 1 < p < 2 the Tweedie exponential distribution assumes the

expression:

p(y, θ, λ) =
∞∑

n=1

{
(λω)1−α kα

(
− 1

y

)}n

Γ(−nα) n! y
e[λ{yθ−kα(θ)}] , to y > 0 .

Let P (Y =0) = e{λωkα(θ0)} where kα(θ) = α−1
α

(
θ

α−1

)α
, θ0 = θλ

1
(1−α) , and ω repre-

sents the weight associated to the observation exposition. As we can observe, for

the Tweedie distribution the density function depends on the parameter p which

relates to the variance V (Y ) = σ2 = φµp. This parameter p is thus defined ex-

ogenously before the estimation process, usually due to the analyst experience.

These GLM models are widely recognized in the industry. Anderson et al. ([1])

presents it as the standard method to define motor and other lines of commer-

cial branches tariffs. It is also indicate that these models are used by companies
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in the UK, Ireland, France, Italy, the Netherlands, Scandinavia, Spain, Portugal,

Belgium, Switzerland, South Africa, Israel and Australia. The referred paper also

states that this model has gained popularity in Canada, Japan, Korea, Brazil,

Singapore, Malaysia and Eastern European countries. More details on this dis-

tribution applied to the actuarial context can be obtained in Jørgensen and de

Souza ([17]).

The type of function g(·) follows some rationals, as the context of analysis

and distribution of Y .

3. EXPERIMENTAL DESIGN CONSIDERING TWEEDIE

POPULATIONS

It has been noted that insurance companies are usually using a way of

charging based on GLM that combine Poisson|Gamma model or on a composite

model (known as Tweedie model). For the sample design in Tweedie regression,

see Jørgensen and de Souza ([17]), it should be noted the following approaches,

which are well known in the literature:

(i) Sequential design: The sequential design for binary responses has

a rich history, which dates back to the 1940s, see Wald ([23]), on try-

ing to find designs which results lead to asymptotic properties, see

also Haines et al. ([12]), Ivanova and Wang ([14]) and Karvanen et al.

([18]). These authors concentrate their work on one factor designs

and the challenge in our work is to extend this research to multifac-

torial designs. In Woods et al. ([24]) and Dror and Steinberg ([8]),

solutions to this multifactoriality problematic are presented. How-

ever, such solutions are computationally complex, and the associated

methodology is based on “ebb and flow” and trial and error, making

the process complex and nonintuitive.

(ii) Design based on clusters: The Tweedie regression is based on the

estimation of three parameters vectors: ϕ, θ and p, where p conditions

affects the other two parameters computation. The design by clusters

seek to find homogeneous groups of observations in order to determine

p in an exogenously way. This idea is conceptually interesting, and is

computationally easy to perform.

In Dror and Steinberg ([7]) is suggested an approach based on K-means

cluster — since this process allows rapid exploration of various designs

outperform the existing alternatives. The authors mention “given the

set of location D-optimal designs, the core of the proposed method

is to combine them into the set of vectors location and use K-means

clustering to derive a robust design”.
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The possibility of finding an optimum location with this method has,

however, a serious problem with respect to the other model coeffi-

cients: how to evaluate the estimated degree of accuracy? The ques-

tion arises once the clusters were defined exogenously and a sample

experimental design is always reduced to allow“good”experiences per-

formance. As an avenue for improvement one can explore the use of

computational simulations to ensure the best model based on different

levels of p. Algorithms based on random forest may be an important

issue to consider. However this is not the main goal of this project.

3.1. Experimental design 1: A pragmatic solution in Tweedie popula-

tions

As the GLM models Tweedie are not easily applicable in the experimental

context it is necessary to find a pragmatic solution. The main problem is to have

an experimental model analysis under heterocedasticity conditions or dispersion

models, where Tweedie distribution fits well.

Trying to stabilize the variance, see Box and Cox ([4]), the usual method is

to determine empirically or theoretically the ratio between the variance and the

mean. The empirical relationship can be found by the logarithm and the average

graph, or to make a transformation in the dependent variable.

For positive expected value, the well-known Box–Cox Transformation is

frequently used:

(3.1) y(λ) =





xλ − 1

λ
to λ 6= 0 ,

log(x) to λ = 0 .

The choice of λ however, in our days, is usually done automatically, while

Osborne ([20]) and Harrison and McCabe ([13]) propose the following algorithm:

1. Splitting the key variable in 10 (or more) intervals;

2. Calculate the mean and standard deviation for each interval;

3. Design a graphic with log(σ) vs. log(µ) for each of the regions;

4. Estimate the average slope of the graphic, and use the 1 − λ as initial

value of λ.

It is important to refer that this algorithm is not an unanimous choice for

researchers and usually, as in Ripley et al. ([22]) it is assumed that the best way

to estimate λ is the one that guarantees the maximum likelihood. Drawing the

evolution of the maximum likelihood function can be useful in this case.
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However this method is not prudent, since any |λ| too high will reduce the

variability of the variable goal. Therefore when you re-build the target variable

of y(λ) to y the result may be an estimated variable without any variability. Some

software and statistical packages (MASS in R, STATA) maintain this approach,

but impose limits to y(λ), usually in y(λ) < 1, y(λ) < 2.

Finally, another alternative is to look for a λ value that makes sense to the

analyst. A careful reading of Box and Cox ([4]) points in that direction. So it

is noteworthy that the way loglin⇐⇒λ = 0 is theoretically the one that makes

more sense to use for the premium model, and is easier to interpret:

1. The distribution of total/pure premium costs (i.e. Tweedie with reliable

parameters) is visually close to a log normal or gamma;

2. The log-lin model has the advantage that the coefficients represent elas-

ticities; a very meaningful concept in terms of premiums.

A very simple way to find and test the data transformation — at least

between the linear form and log — is presented in Mackinnon and Davidson ([19]).

Although the estimation process may seem a little complex, the test logic is very

simple: if the linear model is in fact correct, the formula e
(log( ̂y

based on log model
))

will be related to the model under evaluation (so, it will be enough to use the

regression and a t-test).

In short, to determine the tariff model competition in experimental design

context, the Box–Cox methodology is preferable to the Tweedie regression. In

addition, after the analysis of the best functional form, subsequently a Tweedie

regression may be applied but using Box–Cox, for a rough indication of what

value p may assume (i.e. the shape of the Tweedie), so that to overcome the

already mentioned difficulties. That is why we propose this strategy to overcome

the existing computational difficulties.

3.2. Experimental design 2: Box–Cox regression correction

The key variable to estimate in this case is y = commercial premium and

not y(λ). When the estimation process is integrated there is the need to decompose

the Box–Cox formulation in the correct formulation:

(3.2) ŷ =





ŷ(λ)λ + 1 to λ 6= 0 ,

e(dy(λ)) to λ = 0 .

However, this formulation is not the most statistically efficient. In fact

the application of Box–Cox expression underestimates the y expected value.
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The mass point of the linear Box–Cox regression (the average of x and y on

average) is not identical in both equations, in order to ŷ(λ) and in order to y.

In Wooldridge ([25]) is presented a solution for the case λ = 0, which can be gen-

eralized to any variant of Box–Cox regression. It is possible to obtain a corrected

model by regressing y to ŷ without the constant component. The coefficient asso-

ciated to ŷ gives the correction factor of the mass points. So, taking into account

the correction, the final prediction for two stages estimation is:

(3.3) ̂̂y = ŷ × correction coefficient .

4. EXPERIMENTAL DESIGN: IDENTIFICATION OF FACTORS

AND LEVELS TO COLLECT

Regarding the determination of the factors, the experimental work is easy:

Each customer must fill out a quotation document so that a quote can be issued.

Usually, there are no data to work beyond the required (although it is known that

some insurers in bancassurance partnerships use the bank behavior data, and in

other countries it is known that the profile on social networks can be used). The

work on validation factors in brainstorming sessions and interviews with different

experts, see Barker ([2]), is dispensed as companies in the quotation indicate

which factors are supposed to be investigated.

In the case of motor insurance, the factors usually considered are:

1. Characteristics of the insured

• Gender: The rational of this variable is associated mainly to a differ-

ent frequency of accidents according to gender. It should be noted,

however, that in March 1, 2011 the European Court of Justice ruled

that insurance companies which use gender as a risk factor were to

disregard EU equality laws. However, in Portugal, in February 2015

(Law No. 9/2015), it became amicable to have same gender discrim-

ination if premiums and benefits “are proportionate and justified by

a risk assessment based on actuarial and statistically relevant and

accurate data”. The possibility of using this variable from 2015 thus

became a reality.

• Age: The rational of this variable is to measure the inexperience

and risk trend of the insured. It is a variable impacting the accident

frequency and, depending on the coverage, the average cost.

• Claims History: The claim record can be consulted by the Por-

tuguese insurers in SegurNet (a managed platform for the sector’s

association with the claim record).
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• Age when the driver got driver license: When combined with age,

it attain an instrumental variable of the driver’s experience.

• Status: Rarely used in Portugal, although there is some sensitivity

to point to the fact that married drivers have fewer accidents than

the rest of the population.

• Usual path: Variable indicating the accident frequency — the greater

the distance house-work, the greater the likelihood of an accident.

• Payment: The payment method reveals the financial pressure that

the driver is subject; is a factor that correlates with the driving

profile — frequency. In addition, the payment method is correlated

with the insurer capital consumption and therefore to effect on the

commercial premium via the administrative burdens and profit load-

ing.

2. Features of insurance risks

• Vehicle rating: The power to weight ratio increases the sinister

frequency.

• Brand and classification of vehicle: There are brands whose parts

cost more than others, so this variable has an impact on the

average cost. The type of construction, security features also has its

influence on the average cost.

• Using the insured object: If the object is essential for day-to-day, or

for professional use, accident frequency increases while the frequency

per unit of exposure (measured in km driving) decreases. Thus,

having a profession and any instrumental variable of the insured

object use is relevant.

3. Regional and general contexts

• Weather: The loss context has been the least considered issue in

the construction of a tariff. For example, if it rains, there are more

accidents, but companies have rates for a given country in which

implicitly rainfall rates do not vary. If there is a crisis, people use

less the car, so there are fewer accidents. These context variables

are linked to the evolution of times and this issue should be carefully

analyzed.

• Region: Regional variables are often neglected since everything is

placed in large commercial areas and not with sufficient granularity.

• Sector: For professional cases in certain sectors, for example trans-

port and distribution, there is a greater exposure.

4. Company

• To the mentioned factors another one should de added: the company.

Presumably this factor has strong impact on the relationship among

all the others: each company defines their particular pricing model.
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This information should be used to determine the true market risk,

since in theory all companies are measuring the same risk: frequency

and average cost. Otherwise, since there is no exchange of tariff

models between insurance companies, there will be as many models

as the number of companies: the model is statistically different from

company to company and that it is not controlled with a simple

randomization. The inclusion of this information in the estimation

process will be detailed in the next section. A mathematized way,

and considering that x has the usual reading of exogenous variables,

the model assumes the form:

(4.1) yi = fcompanyj
(xi)

and not

(4.2) yi = f(company i, xi) .

Regarding the levels the question is different since the collection is

performed continuously on some key variables. More, there may be

some ratios and values derived (the calculation of the power weight

is perhaps the most obvious case). It should be noted, however, that

the choice of levels must be such as to minimize the information or

the variance, leading to an efficient and feasible project. At this point

it must be assumed that using a panel of experts, see Barker ([2]),

it is possible to minimize/aggregate the number of levels, where it

is emphasized that is best to arrange an experiment as a team effort

and use the brainstorming technique to scope the entire problem.

5. OPTIMAL DESIGNS

The Completely Randomized Design (CRD) is the simplest form of statis-

tical experimental design. In a CRD the treatments are randomly assigned and

the model is linear. It is necessary to check a set of hypotheses, often called clas-

sical hypotheses and to estimate the generating process of tariffs by maximum

likelihood, in order to obtain a centered model. With classic conditions (linear-

ity in the parameters, random sample, absence of perfect multicollinearity) it is

possible to ensure the centering of the maximum likelihood estimators. Thus, in

a random sample, as is customary in regression work context, there is a random

mechanism which selects the sample within all possible samples.

In experimental design context, adopting the usual notation, as in Gray-

bill ([9]), it is possible to interpret the problem differently. If there is a data

generating process (and not a random selection mechanism of samples), the data
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structure remains the same, the estimator formula will be the same and centering

is guaranteed (strict conditions).

It is thus possible to collect any data to ensure the β̂ estimator centering.

But centering is not the only prerequisite. Under this assumption of data gener-

ating mechanism it is also possible to go further in terms of variance test.

The second condition for a good sample design is to maximize the power of

the tests. To ensure that the process is efficient, i.e. that the standard deviation

associated with each of the estimates of the betas is minimal, there is the need to

examine the beta estimator formulation (to see its derivation see, e.g., Gujarati

([11])):

(5.1) β̂ = (X′X)−1 X′y .

The β̂ variance is given by:

(5.2) Var(β̂) = σ2(X′X)−1 .

For an efficient estimator there is the need to have enough number of cases in

order to estimate regression and that each of the elements in the diagonal of

matrix (X′X)−1 is minimum (assuming no interaction effects). The best way is

to guarantee that the matrix (X′X)−1 is only filled in the diagonal — there is no

correlation between the different x, (cf. Cramer Rao, see [3]). In such case the

matrix (X′X)−1 is orthogonal. So, we have:

(5.3) β̂ = IX′y .

In such case the estimator values are easily obtained and will have minimum

variance. Note that if (X′X)−1 6= I there will be confounding and it will not be

possible to estimate without an high error associated to the estimated coefficients.

5.1. Optimal Design — functional adjustments

When the sample design and the data analysis are performed, it is possible

to obtain a simple linear regression model to determine the importance of factors

(through a t-test) and the degree of criticality of their levels (again with t-test,

assuming levels as dummy variables), possibly setting the best functional form.

But it is worth exploring the meaning of (4.2) and the need to have a

function for company seen in the previous section. Relation (4.2) indicates that

the option is to collect and model data for a single company, assuming that

each company should have autonomous pricing models. If one considers only two
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companies, the model can be described as:

(5.4)

[
y1

y2

]
=

[
X1 0
0 X2

] [
β1

β2

]
+

[
e1

e2

]
, or moreover y = Xβ + e ,

where
[
e1

e2

]
= e ∼ N

[[
0
0

] [
σ1IT 0

0 σ2 IT

]
= W

]
, e ∼ N(0,W) .

Another issue arises: Companies are operating in the same market, is it all

the information available to capture the tariff model on the market being used?

Or even more directly: “The tariff models are autonomous, but are they indepen-

dent?” In a more mathematized form (applying the same rational Griffiths et al.

([10])): And if the mistakes of the different equations, e1 and e2, are correlated?

Thus, consider

(5.5)

[
e1

e2

]
= e ∼ N

[[
0
0

] [
σ11IT σ12 IT

σ21IT σ22 IT

]]
.

The idea is that we can estimate the (4.2) per blocks in order to take differ-

ent functional forms, and perhaps different explanatory variables; but considering

(5.5) we can have greater accuracy in forecasting and more power in the tests.

The demonstration of these statements follows below, considering just the case of

two companies, although the generalization is directly (and it can be confirmed

in the Annex to Sec. 17, see Griffiths et al. ([10]).

Considering maximum likelihood, it follows that:

β̂ = (X′W−1X)−1X′y

=

[[
X1 0
0 X2

]′ [
σ11IT σ12 IT

σ21IT σ22 IT

]−1 [
X1 0
0 X2

]]−1 [
X1 0
0 X2

]′ [
y1

y2

]
.

E(ee′) 6= σ I, the usual case does not apply, so: E(ee′) = W and Cov(β̂) =

(X′ W−1X)−1.

However, this estimator is not likely to be calculated, since the matrix W is

not known; then it must be estimated. In other words, it is necessary to establish

the following relationship: σ̂ = ê ê′. Thus:

̂̂
β = (X′ Ŵ−1X)−1X′y

=

[[
X1 0
0 X2

]′ [
σ̂11IT σ̂12 IT

σ̂21IT σ̂22 IT

]−1 [
X1 0
0 X2

]]−1 [
X1 0
0 X2

]′ [
y1

y2

]
=(5.6)
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=

[[
X1 0
0 X2

]′
[
ê′1ê1IT ê′2 ê1IT

ê′1ê2 IT ê′2 ê2IT

]−1 [
X1 0
0 X2

]]−1 [
X1 0
0 X2

]′ [
y1

y2

]
,

with Cov(
̂̂
β) = (X′ Ŵ−1X)−1.

Since without other companies the model is not homoscedastic (i.e., E(e e′)

6= σ I), the different β̂ estimators are not centered with minimum efficiency.

However
̂̂
β is homoscedastic in case of good parametrization. The analysis of

t and F tests will be more precise and the experimental design gains more con-

sistency. And in this way it can be captured which are the mechanisms that

generate pure data/premiums from different companies.

Evidently the SUR adjustment should be applied before the deconstruction

of objective variable and accordingly the correction of the mass point determined

already indicated.

6. APPLICATIONS

To better understand the application of this concept, a database that por-

trays the conditions of the insurance market in 2011 for the Portuguese aggregate

car liability coverage and travel assistance was studied. On the computation pro-

cedures R software ([21]) was used. The data presented were slightly retouched

in order to guarantee the anonymity of the companies under review. The variable

“form of payment” was excluded from the analysis in order to create one more

element of non-identification of the insurers, impairing pure orthogonality.

The following subsections accompany the classic stages of experimental

design.

Stage 1: Identify the factors and levels that define the product

The variables considered were not defined within this article nor by its

authors. The discussion of these variables is indicated in Table 1. Each broker

must deliver a quotation under a specific scenario for the minimum legal capital

requirement plus a minimum coverage for travel assistance.

Stage 2: Optimal Design

The sample was drawn by mystery shopping imposing a minimum number

of observations: A standard case was set up for the main factors, and variable

levels were changed in five subsamples. Therefore, orthogonality was not guar-

anteed. The estimated model is well centered, but is not necessarily statistically

efficient.
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Table 1: Description of factors and levels.

Variables Number of Levels Identification of levels

Gender 2
Male

Female

Age 7

19
23
28
35
45
57
67

Claims history 21

0 injury/10 years/15 years
0 injury/15 years/15 years
0 injury/ 2 years/ 2 years
0 injury/ 4 years/ 4 years
0 injury/ 5 years/10 years
0 injury/ 5 years/12 years
0 injury/ 5 years/ 5 years
0 injury/ 5 years/ 6 years
0 injury/ 5 years/ 7 years
0 injury/ 5 years/ 8 years
0 injury/ 7 years/ 9 years
1 injury/ 0 years/ 1 years
1 injury/ 0 years/ 2 years
1 injury/ 0 years/ 3 years
1 injury/ 0 years/ 4 years
1 injury/ 0 years/ 5 years
1 injury/ 1 years/ 5 years
1 injury/ 2 years/ 9 years
1 injury/ 3 years/ 9 years
1 injury/ 4 years/10 years

no experience

motor classification 6

Picup truck
Light vehicle

Commercial vehicle
Multi-purpose vehicle

Pickup
Off-road vehicle

Automobile age 13 {0,1,...,10}; 15 and 20

Region 58 58 Municipalities

Companies 7 Confidential

Stage 3: Collection of information

This database was collected at the beginning of the decade for a specific

consulting project. A detailed technical specifications could allow customer iden-

tification, project objectives and market conditions. Thus, all data were carefully

calibrated so as not to allow companies to determine the target or operating

results.
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It should be noted that for the realization of information collection resorted

in non-exclusive agents. These brokers collected quotations, according to a sce-

nario/profile structured to be simulated beforehand and subsequent recording of

information on observation grids.

Care was taken to ensure that the brokers were gathering in municipalities

belonging to the working regions.

Stage 4: Analysis

First of all, it should be noted that the model to estimate will run with the

following steps:

1. Building a model for insurance and calculation of λ;

2. Estimation of the model by SUR;

3. Mass point correction;

4. Obtaining the best β estimator;

5. Critical analysis of the results and, optionally, repetition of the cycle.

S4.1. Building a model for insurance and calculation of λ

As discussed, the model should include all the variables collected for each

company.

For choosing λ it was decided initially to obtain a graphic with the evo-

lution of the likelihood function between −10 and 1, and the limits around zero

and in order to include the maximum of each of the functions. The results can

be observed in Figure 1 and indicate that the λ which maximize the objective

functions are: −3.504, −1.723, −4.055, −3.469, −1.380, −3.276 and −3.024.

Figure 1:Evolution of the likelihood functions for each of the companies and obtaining λ.
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All optimal points move away from intervals with easy interpretation. It should

also be noted that apparently the companies use different tariff models reinforcing

the idea of estimating each model separately, according to equation (4.2).

When using these lambda values, and estimates the data generating process

by ordinary regression and reconstructs the variable ultimate goal, the result is

bleak. The choice as accurate lambda ultimately eliminate all variability in the

model. It’s worth mention in Figure 2 the results with λ <∼−3.2 the result is a

parallel to the x-axis. The model is therefore estimated using λ = 0.

Figure 2: Function of ŷ with Box–Cox that maximizes the likelihood function.

S4.2. Estimation with model SUR

The model estimated by SUR, even with the transformation Box–Cox,

shows a strong correlation matrix (qualitative assessment) between models of

different companies. Indeed, the correlation between the estimated rates varies

between 49% and 93%.

Table 2: Estimated models per enterprise — the error correlation matrix.

eq1 eq2 eq3 eq4 eq5 eq6 eq7

eq1 1.00 0.28 0.40 0.53 0.64 0.51 0.34

eq2 0.28 1.00 0.60 0.52 0.40 0.32 0.56

eq3 0.40 0.60 1.00 0.56 0.48 0.54 0.38

eq4 0.53 0.52 0.56 1.00 0.52 0.29 0.58

eq5 0.64 0.40 0.48 0.52 1.00 0.49 0.24

eq6 0.51 0.32 0.54 0.29 0.40 1.00 0.01

eq7 0.34 0.56 0.38 0.58 0.24 0.01 1.00
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S4.3. Mass point correction

Correction of the mass point has different impacts: in some cases is almost

negligible, in others may require a correction of > 4%. In fact, per company it is

possible to find the following correction factors: 1.0427, 1.0202, 1.0053, 1.0177,

1.0263, 1.0398 and 1.0079 .

S4.4. Critical analysis of the results and, optionally, repetition of the cycle

In this work only the R2 between the final estimated variable and the

variable goal is analyzed — indeed to the general objective of this work the main

interest is in evaluating the predictive power of the models. So we have the

following coefficients R2: 0.88021, 0.81354, 0.91175, 0.87484, 0.89378, 0.90491,

and 0.8674 — very high values indicating excellent adjustment capacity.

The remaining quality indicators usually calculated on a regression analysis

may also be applied. In any case it is interesting to compare the estimated model

with the observed pattern. As can be observed in Figure 3, the largest deviation

holds mainly thanks to the existence of outliers that were not treated/corrected.

Therefore the determination of the final model will be made using the matrix W .

Figure 3: Comparison of SUR model with original data.
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7. CONCLUSIONS AND FUTURE RESEARCH

The main purpose of this work was to present a method for collecting and

capturing the tariff model for an insurance company and this goal was achieved.

An approach to sample design based on the principles of orthogonality was pre-

sented as well as the linear regression model, with Box–Cox transformation and

point correction for a first analysis. We presented a methodology to integrate

information from more than one company and therefore increasing the efficiency

of the estimators through a SUR model.

For a future work is the possibility of designing a more complex experimen-

tal design model with GLM — Tweedie. This would potential provide a greater

adherence to data , specially if one can indicate how to get a rough estimate

for the dispersion factor p. It will be interesting to investigate how the Box–Cox

model may contribute for an efficient estimation of Tweedie on the determination

of p. It will be also interesting to assess the prevalence of the SUR approach in

the case of GLM.
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