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Alpha2-Adrenoceptor agonists are used frequently in 
human and veterinary clinical anesthesia.1,2 These 
drugs produce sedation and analgesia, reduce anes-

thetic requirements, and improve perioperative hemody-
namic stability.3,4 Medetomidine is a potent and selective 
α2-adrenoceptor agonist with an α2/α1 selectivity ratio of 
1620/1, as measured by the displacement of [3H]clonidine.5 Its 
active isomer is dexmedetomidine (the dextro-enantiomer),6 

an α2-adrenoceptor agonist, which was approved recently 
for human and animal clinical use in Europe. Medetomidine 
has the pharmacologic activity of dexmedetomidine, and 
dexmedetomidine is administered and equieffective at half 
the dose of medetomidine.6,7 Dexmedetomidine in humans 
and medetomidine in animals provide a good anesthetic 
stability and reduce postanesthetic delirium and agita-
tion.8,9 However, (dex)medetomidine can affect learning 
and memory in humans4,10–12 as well as in rodents.13,14 This 
finding is in agreement with the impact of the pharmaco-
logic manipulation of the noradrenergic system on memory 
performance,15–17 which has synaptic plasticity as its neuro-
physiologic correlate.18,19 These plastic changes associated 
with memory performance are most evident in hippocam-
pal circuits and are typified by short-term plasticity such as 
paired-pulse facilitation (PPF) and long-term plasticity such 
as long-term potentiation (LTP).20,21 Little is known, however, 
about the effect of (dex)medetomidine in the hippocampus 
at the electrophysiological level, mainly in adults.

Previous studies reported that different effects of α2-
adrenoceptor activation affected glutamate release and glu-
tamatergic transmission in the hippocampus.22–24 Moreover, 
the α2-adrenoceptor activation reduced LTP in the occipital 
cortex25 and in the basolateral amygdala,26 whereas a dif-
ferent impact of the α2-adrenoceptor agonist dexmedetomi-
dine was observed in hippocampal LTP: either no effect27 
or a decrease of LTP amplitude in the hippocampus of 
young mice without affecting PPF.28 Therefore, the effect 
of α2-adrenoceptors agonists on basal excitatory synaptic 
transmission and/or on short-term or long-term synaptic 
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plasticity in the adult hippocampus is yet to be established 
to provide a neurophysiologic correlate of memory impair-
ment caused by (dex)medetomidine administration.

The purpose of this study was to evaluate the effect of 
different concentrations of the α2-adrenoceptor agonist 
medetomidine on basal excitatory synaptic transmission 
and on short-term (PPF) and long-term synaptic plasticity 
(LTP) in the CA1 region of the adult mouse hippocampus, 
an age group more routinely subject to anesthesia and less 
prone to develop neurotoxicity on exposure to anesthetics 
than the more commonly studied younger brain.

METHODS
All procedures were provided ethical approval from the 
Portuguese competent authority for animal protection, 
Direcção Geral de Veterinária (Lisbon, Portugal).

Animals and Hippocampal Slice Preparation
The experiments were performed on hippocampal slices 
from 5- to 6-month-old female BALB/c mice. The mice were 
housed with controlled temperature (21–23ºC) and relative 
humidity at 55%. The animals were euthanized by cervical 
dislocation followed by decapitation; the brain was removed 
rapidly and the hippocampi dissected free in ice-cold artifi-
cial cerebrospinal fluid (aCSF) of the following composition 
(mM): NaCl 124, KCl 3, NaH2PO4 1.25, glucose 10, NaHCO3 
26, MgSO4 1, CaCl2 2, gassed with 95% O2 and 5% CO2  
(pH = 7.4). Slices (400-μm thick) were cut perpendicular to 
the long axis of the hippocampus with a McIlwain tissue 
chopper (Mickle Laboratory Engineering Co Ltd, Guildford, 
UK) and maintained for at least 60 minutes in gassed aCSF 
solution at room temperature (23–25ºC).

Electrophysiological Recording
A single slice was placed in a submerged recording cham-
ber (1 mL capacity) and superfused at a rate of 3 mL/min 
with aCSF continuously bubbled with 95% O2 and 5% 
CO2, which was maintained at a constant temperature of  
32.0 ± 0.1ºC, to record synaptic transmission and plasticity 
as previously described.29 To summarize, electrical stimu-
lation was applied through a bipolar tungsten electrode 
placed over the Schaffer collateral/commissural fibers. 
Stimulation was applied through a constant current output 
unit (Grass Photoelectric Stimulus Isolating Unit 6; Grass 
Technologies, Warwick, RI), connected to a Grass S44 stim-
ulator. The stimulus duration was 0.1 millisecond, and its 
intensity (4–6 mA) was adjusted to evoke field excitatory 
postsynaptic potentials (fEPSPs) with 40% to 50% of their 
maximal amplitude. Evoked fEPSPs were recorded in the 
stratum radiatum layer of the hippocampus CA1 area using 
a glass micropipette filled with 4 M NaCl (2–5 MΩ resis-
tance). Signals were amplified 1000-fold, and filtered below 
at 5 Hz and above 3 kHz, using an ISO-80 isolated bio-
amplifier (World Precision Instruments, Inc., Sarasota, FL), 
and digitally recorded at 10 kHz using a Pico Technologies 
(Cambridgeshire, UK) analog-to-digital converter ADC-
42, connected to a Pentium-based PC system running the 
1.3 version of the LTP program.30 All data were stored as 
averages of 8 consecutive responses. Offline analysis was 
performed with WinLTP program, version 1.11 (WinLTP 
Ltd., University of Bristol, Bristol, UK), without additional 

signal filtering, and responses were quantified as the initial 
slope of the average fEPSPs. In addition, the amplitude of 
the fiber volley was also measured when recording basal 
synaptic transmission.

Under basal conditions, stimuli were delivered at a fre-
quency of 0.067 Hz. To elicit PPF, 2 consecutive pulses were 
applied with a 50-millisecond interpulse interval, and the 
interval between paired pulses was 15 seconds. PPF was 
quantified as the ratio of the fEPSP slopes of the second 
response over the first, for each pair of stimuli. LTP was 
induced by a high-frequency stimulation (HFS) train (100 
pulses at 100 Hz). This train was applied 30 minutes after a 
stable baseline at 0.067 Hz stimulation was established. This 
basal stimulation frequency was resumed immediately after 
application of the HFS. LTP induction was quantified as the 
ratio of averaged fEPSP slopes of the first 6 minutes after 
HFS over the averaged fEPSP slopes during the 10 minutes 
before HFS, and LTP maintenance was quantified as the ratio 
of the averaged fEPSP slope from 54 to 60 minutes after HFS 
over the averaged fEPSP slope 10 minutes before HFS.

Drugs Used and Their Administration
Medetomidine ((±)-4-[1-(2,3-dimethylphenyl) ethyl]-
1H-imidazole monohydrochloride) solution (Domitor®) 
was obtained from Pfizer (Porto Salvo, Oeiras, Portugal) and 
was diluted in aCSF to obtain the desired concentration. For 
PPF and basal synaptic transmission experiments, each slice 
was cumulatively exposed to increasing concentrations of 
medetomidine (1, 2, 4, 8, 12, 24, 48, 100, and 200 μM) for 20 
minutes, and the effect of a given medetomidine concentra-
tion was determined using the fEPSP recorded in the last 
6 minutes of application. For LTP experiments, each slice 
was exposed to only one concentration of medetomidine 
(0.1, 0.2, or 0.4 μM). The drug was introduced 30 minutes 
before induction of LTP and was maintained throughout the 
experiment. Control slices were perfused with aCSF only.

Statistical Analysis
We analyzed all data (effects of different concentrations of 
medetomidine on basal synaptic transmission, presynaptic 
volley amplitude, PPF, LTP induction, and LTP maintenance) 
by using 2-way analysis of variance (ANOVA), considering 
animals and medetomidine concentrations as factors. When 
an overall difference was found, post hoc multiple compari-
son Dunnett test (2-tailed) was used, with the drug-free con-
dition as the control group. Exact significance (P values) for 
post hoc comparisons is presented except where indicated. 
Because of the low number of replicates for each experiment 
(n = 4), the number of comparisons, and to avoid causing a 
type I error, a P value <0.01 was considered for statistically 
significant. The aforementioned statistical analyses were 
performed using SPSS 21 for Windows (IBM Corporation, 
Armonk, NY).

The logarithm of the concentration of medetomidine that 
produces 50% of maximal inhibition (LogIC50) of basal syn-
aptic transmission and of LTP maintenance was calculated 
by fitting the data by means of a nonlinear least-squares 
method (the software used was Prism v5.0, GraphPad 
Software, Inc., San Diego, CA), with a 4-parameter Hill 
equation, Y = Bottom + (Top − Bottom)/(1 + 10^((LogIC50 
− X) * Hill slope)), with nonweighted samples, and with 
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the following constraints: bottom = 0% and top = 100% for 
the basal synaptic transmission; bottom = 100% and top = 
148.8% (48.8% increase over baseline being the maximal 
LTP amplitude recorded in drug-free condition) for the LTP 
maintenance.

All results are expressed as mean ± SD, unless stated 
otherwise.

RESULTS
Effects of Animals on Basal Synaptic 
Transmission, Fiber Volley Amplitude, PPF, LTP 
Induction, and LTP Maintenance
No effects of animals as factor were observed regarding all 
parameters analyzed (2-way ANOVA: P ≥ 0.347) except for 
PPF ratio (2-way ANOVA: P = 0.00048).

Effects of Different Concentrations of 
Medetomidine on Basal Synaptic Transmission 
and on Fiber Volley Amplitude
After 20 minutes of stable baseline recording with aCSF, the 
application of consecutively increasing concentrations of 
medetomidine up to 12 μM (1, 2, 4, 8, and 12 μM) did not 
significantly modify synaptic transmission (control [0 μM] 
versus each of the aforementioned concentrations individu-
ally: all P > 0.999; n = 4), as gauged by the lack of alteration 
of fEPSP slopes (Fig.  1A). When greater concentrations of 
medetomidine were applied (24, 48, 100, and 200 μM), syn-
aptic transmission significantly decreased (control [0 μM] 
versus each of the aforementioned concentrations individu-
ally: all P < 0.00001; n = 4). In fact, medetomidine concentra-
tions of 24, 48, 100, and 200 μM inhibited the fEPSP slope 
by 9.65 ± 1.77%, 18.40 ± 0.94%, 44.31 ± 5.01%, and 92.16 ± 
2.77%, respectively (Fig. 1, A–C). This inhibition was com-
pletely reverted after washout of medetomidine (control 
versus washout: P = 0.611; n = 4) (Fig. 1A). The LogIC50, half-
maximal inhibitory concentration (IC50), and Hill slope val-
ues for the inhibition of the basal synaptic transmission by 
medetomidine, as calculated from the concentration–inhibi-
tion curves shown in Figure 1B, were –4.00 (95% confidence 
interval [CI], –4.07 to –3.94), 98.9 (95% CI, 85.5–114.4) μM, 
and 2.46 (95% CI, 1.64–3.30), respectively (n = 4).

Lower concentrations of medetomidine (1, 2, 4, 8, and 
12 μM) also failed to modify presynaptic volley amplitude 
(control [0 μM] versus 1 μM: P > 0.999; control versus 2 μM: 
P = 0.990; control versus 4 μM: P = 0.995; control versus 8 
μM: P = 0.995; control versus 12 μM: P = 0.829; n = 4). By 
contrast, greater concentrations of medetomidine (24, 48, 
100, and 200 μM) significantly decreased the presynaptic 
volley amplitude (control [0 μM] versus each of the afore-
mentioned concentrations individually: all P < 0.00001, n 
= 4). In fact, medetomidine concentrations of 24, 48, 100, 
and 200 μM inhibited the presynaptic volley amplitude 
by 29.37% ± 7.87%, 38.99% ± 9.10%, 64.32% ± 3.79%, and 
84.84% ± 5.39%, respectively (Fig. 1C).

Effects of Different Concentrations of 
Medetomidine on PPF
Only the greatest concentration of medetomidine tested (200 
μM) significantly affected the PPF ratio (control [0 μM] ver-
sus 1 μM: P > 0.999; control versus 2 μM: P = 0.991; control 

versus 4 μM: P = 0.998; control versus 8 μM: P > 0.999; con-
trol versus 12 μM: P > 0.999; control versus 24 μM: P > 0.999; 
control versus 48 μM: P = 0.998; control versus 100 μM:  
P = 0.941; control versus 200 μM: P < 0.00001; n = 4) (Fig. 2).

Effects of Different Concentrations of 
Medetomidine on LTP Induction and Maintenance
Under control conditions, HFS increased the fEPSP slope 
to 230.35% ± 19.25% (n = 4) in the first 6 minutes after its 
application (LTP induction), relative to baseline (Fig.  3A). 
When present at a concentration of 0.1 μM, medetomidine 
did not significantly modify LTP induction (control [0 μM] 
versus 0.1 μM: P = 0.380; n = 4). At concentrations of 0.2 and 
0.4 μM, however, medetomidine significantly decreased 
LTP induction to 192.19% ± 23.37% and 159.37% ± 13.43%, 
respectively (control [0 μM] versus 0.2 μM: P = 0.00031; con-
trol versus 0.4 μM: P < 0.00001; n = 4) (Fig. 3, B and C). When 
we explored the effects of medetomidine on LTP mainte-
nance (between 54 and 60 minutes after HFS), no significant 
differences were detected between LTP amplitude, relative 
to baseline, in control slices (148.82% ± 2.07%) and in slices 
treated with 0.1 μM of medetomidine (146.86% ± 1.77%) 
(control [0 μM] versus 0.1 μM: P = 0.897; n = 4). However, 0.2 
μM medetomidine decreased LTP maintenance to 125.09% 
± 1.32%, and the greatest tested concentration of medetomi-
dine (0.4 μM) abrogated LTP maintenance (103.03% ± 0.99%) 
(control [0 μM] versus 0.2 μM: P < 0.0001; control versus 0.4 
μM: P < 0.0001; n = 4) (Fig. 3, B and D). The LogIC50, IC50, 
and Hill slope values for the inhibition of LTP maintenance 
by medetomidine, as calculated from the concentration–
response curves shown in Figure 3D, were −6.69 (95% CI, 
−6.71 to −6.68), 0.202 (95% CI, 0.194–0.210) μM, and −4.04 
(95% CI, −4.83 to −3.25), respectively (n = 4).

DISCUSSION
This study showed that the α2-adrenoceptor agonist 
medetomidine mainly affected LTP in a concentration-
dependent manner rather than basal excitatory synaptic 
transmission and presynaptic volley amplitude, which 
were only affected by greater concentrations of medeto-
midine (24, 48, 100, and 200 μM). By contrast, medetomi-
dine only affected PPF at the greatest tested concentration. 
This finding indicates that medetomidine mostly affects 
postsynaptic receptors involved in synaptic plasticity and 
blocks stimulus-induced transmission at greater concentra-
tions, without evident presynaptic effects controlling the 
evoked release of glutamate.

The concentrations of medetomidine tested in the pres-
ent study included sedative concentrations in rodents, 
encompassing concentrations close to those used in clini-
cal human settings. Human plasma concentrations of dex-
medetomidine, for sedation, are approximately 1 to 2 ng/
mL,31 that is, 0.005 to 0.01 μM. Although the plasma concen-
tration of medetomidine in anesthetized mice has not been 
determined, a subcutaneous administration of 0.08 mg/kg 
of medetomidine in rats led to a plasma concentration of 
30 ng/mL.32 Considering that the clinical sedative dose in 
mice is 1 mg/kg,33 the plasma concentrations of medeto-
midine are expected to be approximately 375 ng/mL, that 
is, 2 μM. Furthermore, (dex)medetomine is highly lipid 
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soluble and preferentially accumulates in the brain, with 
peak levels 5 times greater than those in the plasma,32 lead-
ing to estimates of brain concentrations of (dex)medetomi-
dine between 0.025 and 0.05 μM in humans and 10 μM in 
mice. In addition, in this study we used medetomidine that 
has the same pharmacologic activity of dexmedetomidine 
but to be equieffective is administrated at double the dose 
of dexmedetomidine.6,7 In this study, a wide range of rel-
evant concentrations of medetomidine (0.1–200 μM) was 
tested. The lowest concentration of medetomidine tested 
was nearly equivalent to the dexmedetomidine concentra-
tion estimated in human brain tissue. The extrapolation 
of our results for human and veterinary clinical practice, 
however, requires extreme caution because the effects of 
medetomidine in ex vivo conditions may not be the same 
as in an in vivo setting. Moreover, differences in the routes 
of administration, doses used, exposure times, and inter-
species variations are important variables that also have to 
be considered.

The most striking effect of medetomidine in excit-
atory hippocampal synapses was a decrease of the induc-
tion and maintenance of LTP in the CA1 region of the 
adult hippocampus, which was observed with low con-
centrations of medetomidine. Thus, we observed that 
concentrations of 0.2 μM and 0.4 μM medetomidine 
concentration-dependently decreased and completely 

blocked the maintenance of LTP in the adult hippocam-
pus. Although the effects of α2-agonists on LTP in the 
adult hippocampus have not been described previously, 
it was reported that the α2-adrenoceptor agonist cloni-
dine dose-dependently reduced LTP elicited in vivo in 
the occipital cortex of anesthetized rats25 and ex vivo in 
amygdala circuits19 and dexmedetomidine decreased LTP 
in hippocampal slices of young mice28; in this last study, 
the half-inhibitory concentration of dexmedetomidine 
to depress LTP maintenance was approximately 28 nM, 
whereas in our study, the IC50 was approximately 200 
nM. This difference can be explained by the combined 
facts that only a half of the dose of dexmedetomidine is 
required to induce similar effects to medetomidine6,7 and 
because the adult brain is less sensitive to neurotoxicity 
caused by drugs than the young brain.34 This finding sug-
gests that the concentration of α2-agonists necessary to 
induce alterations of LTP and probably memory deficits 
in adult animals is greater than in younger animals.

The effects of α2-adrenoceptor agonists on basal excit-
atory synaptic transmission in the hippocampus of adults 
also have not been previously reported. Dexmedetomidine, 
the active enantiomer of medetomidine, at a concentration 
of 50 nM did not affect basal synaptic transmission in the 
hippocampus of young mice (20–30 days),27 whereas nor-
adrenaline was reported to inhibit excitatory glutamatergic 

Figure 1. Effects of different concentrations of medetomidine on basal synaptic transmission in Schaffer fiber-CA1 pyramid synapses from 
hippocampal slices of adult mice. A, Representative experiment illustrating the time course of the cumulative effects of increasing concentra-
tions of medetomidine on field excitatory postsynaptic potential (fEPSP) slope. B, Average (mean of n = 4) concentration–response curve of 
the inhibitory effects of medetomidine on fEPSP slopes; in the ordinates, 0% corresponds to the fEPSP slope before medetomidine applica-
tions and 100% represents the complete inhibition of fEPSPs (n = 4). Significant (*P < 0.00001) inhibition of fEPSP slope was observed after 
the application of 24, 48, 100, and 200 μM medetomidine. C, Superimposed fEPSPs showing the inhibition of the greater concentrations of 
medetomidine on fEPSP slope and on presynaptic volley.
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transmission in autaptic synapses through α2-receptors22 
but independently of α2-receptors in hippocampal slices 
from juvenile rodents.23 We observed that medetomidine 
inhibited basal excitatory synaptic transmission in hip-
pocampal slices of adult mice, but this effect occurred at 
concentrations 2-fold greater than those affecting synaptic 
plasticity. In fact, lower concentrations of medetomidine 
(1–12 μM) did not affect basal excitatory synaptic trans-
mission, whereas only greater concentrations (24–200 μM) 
decreased basal synaptic transmission in a concentration-
dependent manner. Simultaneously, the same concentra-
tions (24–200 μM) also decreased the presynaptic volley 
amplitude, suggesting that the inhibitory effect of medeto-
midine on basal synaptic transmission could be explained 
by an overall inhibition of neuronal activity induced by 
medetomidine.

The results obtained in the present study also showed 
that medetomidine concentrations between 1 and 100 μM 
did not affect CA1 hippocampal PPF, corroborating in 
adult hippocampal circuits a previous observation that 50 
nM dexmedetomidine did not modify PPF in the hippo-
campal CA1 region of young mice.28 This finding contrasts 
with the previously reported ability of dexmedetomidine 
to decrease the hypoxia-evoked glutamate release from 
hippocampal slices,24 which might result from synaptic 
and nonsynaptic sources (namely involving astrocytes). 
PPF results from presynaptic mechanisms, and it is used 

routinely as a presynaptic index for probability of neu-
rotransmitter release.35,36 Under control conditions in aCSF 
slices, the response to the second of a pair of stimulation 
pulses was greater than the first response. Residual pre-
synaptic calcium, after the first stimulation, is responsible 
for bolstering neurotransmitter release in response to the 
second stimulation. Therefore, our findings suggest that 
medetomidine did not affect dynamic changes in transmit-
ter release that are required for PPF at Schaffer collateral 
terminals, except when the greatest concentration was 
applied. This result implies that the effects of the lower 
concentrations of medetomidine on LTP and of moderate 
concentrations on synaptic transmission are unlikely to 
result from a presynaptic effect of α2-adrenoceptors and 
possibly involve the action of the most abundantly located 
postsynaptic α2-adrenoceptors37–39 that have been shown 
to control ionic conductances, such as hyperpolarization-
activated cyclic nucleotide-gated inward current,40,41 that 
mainly affect synaptic plasticity but also synaptic transmis-
sion in hippocampal circuits.42,43

In conclusion, we have shown that α2-adrenoceptor 
agonist medetomidine mainly affects LTP in the CA1 
region of the mouse hippocampus rather than presynap-
tically affecting the release of glutamate to modify short-
term plasticity of basal synaptic transmission at excitatory 
synapses in the hippocampal circuits from adult mice. 
This provides a neurophysiologic correlate supporting the 

Figure 2. Effects of different concentrations of medetomidine on paired-pulse facilitation (PPF) in Schaffer fiber-CA1 pyramid synapses from 
hippocampal slices of adult mice. A, Time course of the effects of increasing cumulative concentrations of medetomidine on PPF measured 
as the ratio of field excitatory postsynaptic potential (fEPSP) slopes triggered by the second pulse divided by first pulse (interpulse interval 
of 50 milliseconds). Only the greatest concentration of medetomidine significantly decreased PPF (P < 0.00001). B, Superimposed fEPSPs 
showing the inhibition by the greater concentration of medetomidine.
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reported deleterious impact of medetomidine on memory 
performance.
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