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a b s t r a c t 
In this paper, we present the method of fundamental solutions applied to the determination of elastic resonance 
frequencies and associated eigenmodes. The method uses the fundamental solution tensor of the Navier equations 
of elastodynamics in an isotropic material. The applicability of the the method is justified in terms of density 
results. The accuracy of the method is illustrated through 2D numerical examples for the disk and non trivial 
shapes. 

1. Introduction 
In this work we extend the method of fundamental solutions (MFS) 

to the calculation of elastic resonance frequencies and implement the 
method to find the associated eigenmodes and nodal lines for the disk 
and some other non trivial simply connected domains in 2D. In me- 
chanical or civil engineering applications the knowledge of resonance 
frequencies and natural eigenmodes is of great importance as it indicates 
the possible failure of a structure due to resonance phenomena. 

The MFS was introduced for the calculation of eigenvalues of the 
Laplacian in 2001 with the work of Karageorghis [18] . The application 
of the MFS for the calculation of resonance frequencies, eigenmodes 
and its nodal domains was then considered for more general shapes 
in [2] proving adequate density results for the acoustic case [2,4] . A 
similar technique was used for the calculation of the eigenvalues and 
eigenmodes of the bi-Laplacian operator in [3] , which is an approach to 
search vibrational characteristics of thin elastic plates (e.g. [24] ). 

Although the MFS has been used for direct or inverse elastic prob- 
lems (e.g. [5–7,11,19,25,27,29] ), to our knowledge it has not yet been 
used for the calculation of elastic resonance eigenmodes in a bounded 
domain. In fact, even with other types of numerical methods, there 
seems to be little research is this area and the 1985 book by Kitahara 
[20] is still a useful reference – in that case using boundary integral 
methods. 

There are some references that deal with an associated eigenvalue 
problem for the bi-Laplacian, or thin shells, such as [3,14,16,24,28] , and 
the subject is present in related vibrodynamic problems, such as aircraft 
vibrations or elastic shells (e.g. [15,22,31] ). We will not consider here 
the exterior problem, where complex resonance frequencies appear in 
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scattering problems with arbitrary obstacles, that may be close to real 
axis, with trapping obstacles (e.g. [1,13] ). 

Here we will use the fundamental solutions of the elastodynam- 
ics Navier equation and although density results have been considered 
for these fundamental solutions (cf. [6,7] ), the resonance problem de- 
mands that a previous restriction to non resonance frequencies should 
be avoided. This is of particular importance to justify the calculation of 
the eigenmodes. Therefore in Section 3 we derive appropriate density 
results that justify the algorithmic approach set in Section 4 . 

Finally in Section 5 we present different numerical experiments for 
several 2D simply connected shapes. The algorithm is first tested in 
terms of convergence and ill conditioning, leading to a particular choice 
of source points, as proposed in [2] . For simple shapes, such as the 
disk, we are able to obtain errors of machine precision magnitude. We 
also present numerical results that compare the evolution of the reso- 
nance frequencies in terms of the Poisson coefficient and consider other 
non trivial shapes, with excellent results. It should be noted that here 
the eigenmodes have 2 components and the shapes of each component 
eigenmode may differ substantially, presenting different nodal shapes. 
These are fully illustrated in the examples we present. 
2. Elastic waves in isotropic bounded domains 

We consider a regular bounded simply connected domain Ω ⊂ ℝ " 
with piecewise C 1 boundary Γ = #Ω, in dimensions " = 2 , 3 . The linear 
elastic Lamé operator will be here denoted by Δ⋆ = ∇ ⋅ ∇ ⋆ , where ∇ ⋆ is 
the stress tensor, given by 
∇ ⋆ ( % ) = ( &∇ ⋅ % ) ! + '(∇ % + ∇ % ⊤) , (2.1) 
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Fig. 5.1. Logarithm of the absolute value of the determinant of the matrix, as a function of ) . The dashed red lines correspond to the exact eigenfrequencies. 
where &, '> 0 are the Lamé parameters and I is the D ×D iden- 
tity matrix. 

Given a constant frequency ) > 0, the time harmonic elastic waves 
satisfy the Navier equation (e.g. [20,21] ), 
Δ⋆ % + *) 2 % = 'Δ% + ( & + ')∇∇ ⋅ % + *) 2 % = 0 , (2.2) 
where * denotes the variable density of the elastic material, that we will 
often assume to be unitary ( * = 1) . 

The scattered wave u in Ω, induced by an incident elastic wave u inc 
is given by the boundary value problem 
{ 
Δ⋆ % + ) 2 % = 0 in Ω ( % + % +,- ) = 0 on Γ, (2.3) 

where  denotes the boundary differential operator, which is the iden- 
tity trace  % = % |Γ for the Dirichlet problem or the normal trace  % = 
( # ⋆ n % ) |Γ for the Neumann problem, with # ⋆ n % = ∇ ⋆ ( % ) n , which is the nor- 
mal stress tensor. Here n denotes the unit normal vector on Γ, pointing 
outwards with respect to Ω. 

Problem (2.3) is well-posed provided − ) 2 is not an eigenvalue of the 
Lamé operator Δ⋆ in Ω (e.g. [21,26] ). 

In this paper we will be interested in using the MFS to obtain these 
eigenvalues, and in this case ) is also called a resonance frequency. 
We will first address the theoretical problem that consists in finding the 
resonance frequencies ) for which there exists an eigenmode u ≠0 such 
that 
{ 
Δ⋆ % + ) 2 % = 0 in Ω % = 0 on Γ (2.4) 

and that this eigenmode can be expressed as a linear combination of 
fundamental solutions 
% ( . ) = ∞∑

/=1 " ) ( |. − 0 / |) ! / (2.5) 

where the fundamental solution " ) will be defined in (3.4) and where y j 
are point sources outside Ω̄, and a j are the respective vectorial weights 
to be determined by the MFS system. 
3. Density results with fundamental solutions 

The fundamental solution of the scalar Helmholtz operator Δ + 22 
(where Δ stands for the standard Laplace operator) is given in dimension 
" = 2 by 
Φ2 ( 3 ) = + 4 4 (1) 0 ( 23 ) , (3.1) 
where 3 = |. | is the radial distance and 4 (1) 0 = 5 0 + +6 0 denotes the 
Hänkel function defined with Bessel functions J 0 and Y 0 . In dimension 
" = 3 the fundamental solution is given by 
Φ2 ( 3 ) = exp ( +23 ) 4 73 . (3.2) 

From its definition Φ2 satisfies −(Δ + 22 )Φ2 = 8, where 8 is the Dirac 
delta distribution. 

In elasticity there are two wavenumbers associated with the decom- 
position of u into pressure ( P ) and shear ( S ) waves, 
29 = ) √ 

*
'
, 2: = ) √ 

*
& + 2 ' . (3.3) 

The fundamental solution of the Navier operator Δ⋆ + ) 2 ! is given 
by the symmetric Kupradze tensor (e.g. [7,21] ) 
" ) = 1 

*) 2 (22 
9 Φ29 ! + #(Φ29 − Φ2: ) ), (3.4) 

where I is the identity matrix and # = [ # 2 +/ ] is the second derivative 
Hessian tensor. The fundamental solution equation is then satisfied, 
−(Δ⋆ + ) 2 ) " ) = 8 ! , 
where 8 stands for the Dirac delta. 
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Fig. 5.2. Absolute errors and condition numbers as a function of ; ∈ [0.1, 3], for some values of m . 

Fig. 5.3. The collocation points and three possible choices for the point-sources. 

Fig. 5.4. The plots of g ( ) ), for the source points plotted in Fig. 5.3 . 

Definition 1. Taking a domain Ω̂ ⊃ Ω, we consider set of source points 
Γ̂> = { 0 1 , … , 0 > } ∈ Γ̂ = # ̂Ω and define 
 ) ( ̂Γ> ) = { > ∑

/=1 " ) ( |. − 0 / |) ! / ∶ ! / ∈ ℂ " } 
. (3.5) 

We also define  ) ( ̂Γ) in the limiting case of  ) ( ̂Γ> ) , when the set Γ̂> 
becomes dense in Γ̂. 

Density results have been established (see [7] ) assuming non reso- 
nance frequencies. However in this case we want to find the resonance 
frequencies so that this assumption is avoided. 

A density result will here be proved for any frequency ) ∈ ℝ , in the 
space of Navier solutions ℋ ) . 
Definition 2. We define the space of solutions of the Navier equation 
in Ω to be 
ℋ ) = {% ∈ [ 4 1 (Ω)] " ∶ (Δ⋆ + ) 2 )% = 0 }, (3.6) 
where we consider the topology induced by [ H 1 ( Ω)] D . 
Theorem 1. For any frequency ) ∈ ℝ , the space  ) ( ̂Γ) is dense in ℋ ) . 
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Fig. 5.5. The first components of the eigenmodes associated to the smallest six resonance frequencies of the unit disk and the corresponding nodal domains ( ? = 1 4 ). 
Proof. Consider any @ ∈ ℋ ) , and a function expressed by its Newtonian 
potential, 
% ( 0 ) = ⟨" ) ( | ∙ − 0 |) , ̄@ ⟩[ 4 1 (Ω)] " ×[ 4 −1 (Ω)] " = ∫Ω" ) ( |. − 0 |) @ ( . ) A.. (3.7) 
We assume that % ( 0 ) = 0 , ∀0 ∈ Γ̂ and we want to prove that this or- 
thogonality condition in dual Banach spaces implies that v ≡0. 

Since v in only defined in Ω we extend this function by zero to the 
whole space, and the Newtonian potential may be seen as the convolu- 
tion, % = " ) ∗ @̃ , where @̃ represents the extended function. This implies 

− (Δ⋆ + ) 2 )% = (Δ⋆ + ) 2 )( " ) ∗ @̃ ) = ( 8! ) ∗ @̃ = @̃ , 
in the whole space. In particular (Δ⋆ + ) 2 )% = @ in Ω and (Δ⋆ + ) 2 )% = 
0 in ℝ " ∖ ̄Ω. 

As the convolution of @̃ with the fundamental solution also verifies 
the Sommerfeld radiation condition extended to the elastic problem, 
the well posedness of the exterior problem implies that the boundary 
condition % = 0 on Γ̂ will give a null solution % = 0 in ℝ " ∖ ̄̂Ω which, by 
analytic continuation, is zero in ℝ " ∖ ̄Ω. 
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Fig. 5.6. The second components of the eigenmodes and nodal domains associated to Fig. 5.5 . 
Since the Newtonian potential has no jumps through the boundary, 

the null traces lead to null boundary conditions, and we have the interior 
elastic problem 
⎧ 
⎪ 
⎨ 
⎪ ⎩ 
Δ⋆ % + ) 2 % = @ in Ω, 
% = 0 on Γ, 
# ⋆ n % = 0 on Γ, (3.8) 

where # ⋆ n % is the previously defined normal stress tensor. 

Now, using the extended Green formula in elasticity, and since Δ⋆ % = 
@ − ) 2 %, Δ⋆ @ = − ) 2 @, 
0 = ∫Γ

(
( # ⋆ n % ) ⋅ @̄ − ( # ⋆ n @ ) ⋅ % ) = ∫Ω

(
(Δ⋆ % ) ⋅ @̄ − ( Δ⋆ @ ) ⋅ % )

= ∫Ω (
( @ − ) 2 % ) ⋅ @̄ − (− ) 2 @ ) ⋅ % ) = − ∫Ω @ ⋅ @̄ = − ||@ ||2 C 2 (Ω) 

Since ||@ ||C 2 (Ω) = 0 , this implies v ≡0 and the density is proven, as it was 
shown that the null function is the only function in ℋ ) that is orthogonal 
to all functions in  ) ( ̂Γ) . □
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4

Fig. 5.7. The resonance frequencies of the unit disk, as a function of ? ∈ ]0, 0.5[. 
Corollary 1. Let ) be a resonance frequency with an associated eigenso- 
lution u ≠0 of the problem (2.4) . Given any D > 0 there exist 0 1 , … , 0 > ∈ Γ̂
and ! 1 , … , ! > ∈ ℂ " such that an approximation 
% > ( . ) = > ∑

/=1 " ) ( |. − 0 / |) ! / (3.9) 
verifies 
||% − % > ||[ 4 1 (Ω)] " < D. (3.10) 
Remark 1. From the previous result, given D > 0 any solution in 
(3.6) can be approximated by a sequence in (3.5) for sufficiently large 
m , such that 
||% − % > ||[ 4 1 (Ω)] " < D. 
This holds for any type of boundary condition imposed in (2.4) , since 
the eigensolution belongs to (3.6) . However it should be noted that in 
this result the source points 0 1 , … , 0 > are not given, they are unknown 
points in Γ̂, but they might be approximated as close as we want, by 
taking Γ̂m sets, that in the limit are dense in Γ̂. 
Corollary 2. The frequency ) is a resonance frequency if and only if, given 
any D > 0 there is a solution % > ∈  ) ( ̂Γ) , with 
||% > ||[ 4 1 (Ω)] " = 1 and || % > ||Γ < D. 

(Here ||.|| Γ stands for the appropriate norm in the trace space; it 
is the [ H 1/2 ( Γ)] D norm for the Dirichlet problem or the [ 4 −1∕2 (Γ)∕ ℝ ] " 
norm for Neumann boundary conditions) 
Proof. If ) is a resonance frequency there is an eigensolution u ≠0 with  % = 0 on Γ and ||% ||[ 4 1 (Ω)] " = 1 . With D 1 > 0, from Corollary 1 there 
exists @ > ∈  ) ( ̂Γ) such that ||% − @ > ||[ 4 1 (Ω)] " < D 1 . 

The trace theorem implies that there exists C > 0 such that || E ||Γ ≤ 
F||E ||[ 4 1 (Ω)] " and taking E = % − @ > this gives 
|| @ > ||Γ = || % −  @ > ||Γ ≤ F||% − @ > ||[ 4 1 (Ω)] " < FD 1 . 
It is enough to take % > = @ > ∕ ||@ > ||[ 4 1 (Ω)] " with unitary norm to con- 
clude 
|| % > ||Γ < FD 1 ∕ ||@ > ||[ 4 1 (Ω)] " ≤ F D 1 

1 − D 1 = D 
taking D 1 = D 

D + F , for any given D > 0. 

On the other hand, assume that || % > ||Γ → 0 with ||% > ||[ 4 1 (Ω)] " = 1 . 
Due to continuity, u m → u with  % = 0 and ||% ||[ 4 1 (Ω)] " = 1 ≠ 0 , and 
this means that ) is a resonance frequency and u is an associated 
eigenmode. □

Remark 2. This corollary shows that by searching solutions in  ) ( ̂Γ> ) 
that verify the homogeneous boundary condition (up to D ) and that are 
not null, we obtain all the resonance frequencies spectrum. 
4. Determination of resonance frequencies and eigenmodes with 
the MFS 

We now consider an artificial set Γ̂ = # ̂Ω that surrounds Γ = #Ω by 
taking Ω̄ ⊂ Ω̂, and consider the source points 0 1 , … , 0 > ∈ Γ̂. We also con- 
sider a set of collocation points . 1 , … , . , ∈ Γ and define the collocation 
matrix 
" ( ) ) = ⎡ ⎢ ⎢ ⎣ 

[ " ) ( |. 1 − 0 1 |) ]"×" ⋯ [ " ) ( |. 1 − 0 > |) ]"×" 
⋮ ⋱ ⋮ [ " ) ( |. , − 0 1 |) ]"×" ⋯ [ " ) ( |. , − 0 > |) ]"×" 

⎤ 
⎥ 
⎥ ⎦ , (4.1) 

with > = ,. In this work we will follow the choice for the colloca- 
tion and source points introduced in [2] (other recent approaches 
to avoid a ficticious boundary were considered in [12,23] ). We start 
by distributing m points . 1 , … , . > almost uniformly on the boundary 
Γ and for each of these points we define the corresponding source 
point 
0 G = . G + ;n G , G = 1 , … , >, (4.2) 
where n k is the unitary outward normal vector at the point x k and ; is 
a prescribed positive parameter. 
4.1. Resonance frequencies 

To calculate the resonance frequencies we will search for the fre- 
quencies ) such that this system has non trivial solutions. This can be 
done, for instance, by calculating the frequencies for which the matrix 
M ( ) ) is not invertible, i.e. 
AHI " ( ) ) = 0 (4.3) 
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Fig. 5.8. Plots of the first components of eigenmodes corresponding to the smallest six resonance frequencies of the domain Ω1 ( ? = 1 4 ). 
or equivalently the frequencies for which 
J( ) ) ∶= log ( |AHI " ( ) ) |) (4.4) 
has a singularity. 

Thus, the calculation of each resonance frequency implies the solu- 
tion of a single-variable nonlinear minimization problem that can be 
performed, for example, using a direct search method. In this work we 
used the golden ratio search , as was done in [2] , for the scalar acoustic 
problem. 

Remark 3. To avoid the extremely low values of the determinant, its 
logarithm is calculated within LU factorization, since 
log ( AHI " ( ) )) = log ( AHI # ) = log ( % 11 ⋯ % KK ) = log ( % 11 ) + ⋯ + log ( % KK ) 
with " ( ) ) = $# and K = >". Thus, the calculation of u 11 ⋅⋅⋅u NN is 
avoided and only a sum of logarithms is considered. Another possibil- 
ity to circumvent the ill conditioning of MFS matrices is to consider a 
subspace angle technique, as proposed in [10] . 
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Fig. 5.9. Plots of the second components of the eigenmodes and nodal domains associated to Fig. 5.8 . 
4.2. Eigenmodes 

After calculating an approximate resonance frequency )̃ we are in- 
terested in determining an associated eigenmode. In elastodynamics we 
are also interested in excluding the null solution from the possible solu- 
tions of the system that give the approximate eigenmode. 

We consider two methods: 
(i) In [2] we obtained the eigenmodes by choosing > + 1 point 

sources and collocation points, m points on the boundary and 

an extra collocation point . > +1 inside the domain. To exclude 
the null solution from the possible solutions we calculated the 
approximate eigenmode %̃ by imposing that %̃ ( . > +1 ) = 1 . 

(ii) Another possibility is to impose in the system that, for example, 
one of the components of the vector a m is equal to one. 

The procedure (ii) has some advantages when compared with (i). 
Instead of a ( > + 1) × ( > + 1) system we have a m ×m system, 

but more importantly this avoids the “artificial ” choice of the extra 
collocation point. As stated, the extra collocation point must be placed 
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Fig. 5.10. The resonance frequencies of the domain Ω1 , as a function of ? ∈ ]0, 0.5[. 
outside the nodal lines, and specially for high frequencies, the location 
must be carefully chosen and this disadvantage is avoided imposing, for 
example, that the second component of the coefficient ! > = ( L 1 > , L 2 > ) is 
equal to one. 

For instance, with " = 2 , given an approximate eigenfrequency )̃ , 
and using the notation 
# +,/ = [" ̃) ( |. + − 0 / |) ]2×2 , 
the system becomes 
⎡ 
⎢ 
⎢ 
⎢ 
⎢ ⎣ 

# 1 , 1 … # 1 ,K 
… … …( 

# 1 , 1 >, 1 # 1 , 2 >, 1 
0 0 

) 
... ( 

# 1 , 1 >,> # 1 , 2 >,> 
0 1 

) ⎤ ⎥ ⎥ ⎥ 
⎥ ⎦ 
⎡ 
⎢ 
⎢ 
⎢ 
⎢ ⎣ 

! 1 
…( 
L 1 > 
L 2 > 

) ⎤ ⎥ ⎥ ⎥ 
⎥ ⎦ 
= 
⎡ 
⎢ 
⎢ 
⎢ 
⎢ ⎣ 
(0) 2×1 
…( 
0 
1 
) ⎤ ⎥ ⎥ ⎥ 
⎥ ⎦ 

After solving this last system we substitute the coefficients in the lin- 
ear combination of fundamental solutions (2.5) to obtain the associated 
eigenmode. 
5. Numerical simulations 

In this section we will present some numerical results obtained with 
the proposed algorithm. All the results will be presented in terms of the 
Poisson coefficient ? that can be defined in terms of the Lamé parameters 
by 
? = &

2( & + ') . 
It is important to observe that in the elastic case there is a change of 
the resonance frequencies with respect to the material properties given 
by ?. In applications this change may be of importance in checking 
the possible failure of a shell in a structure due to natural resonance 
phenomena. 

We start with a validation of our numerical algorithm in the case of 
the unit disk, for which we know the exact solution. 

Considering ? = 0 . 25 , in Fig. 5.1 we plot g ( ) ), obtained with > = 30 , 
; = 0 . 5 . We also marked with a dashed line the location of the exact 
eigenfrequencies. We can see that the plot presents a singularity at each 
one of the eigenfrequencies. 

Table 1 
Absolute errors of the former three eigenfrequencies of 
the disk with ? = 0 . 25 . 

m Abs. error ( ) 1 ) Abs. error ( ) 2 ) Abs. error ( ) 3 ) 
30 6 . 69 × 10 −6 9 . 69 × 10 −7 6 . 60 × 10 −6 
50 1 . 80 × 10 −9 3 . 03 × 10 −10 1 . 69 × 10 −9 
70 5 . 28 × 10 −13 8 . 70 × 10 −14 4 . 62 × 10 −13 

In Table 1 we show results for the absolute errors obtained with 
different numbers of points, and we can see that the convergence is 
very fast. 

Next, we show some results regarding the absolute errors obtained 
for the first resonance frequency of the unit disk by varying the param- 
eter ;. 

In the first plot of Fig. 5.2 we show the absolute errors obtained with 
> = 20 , 30 , 40 , 50 , 60 , for ; ∈ [0.1, 3]. 

In general, for simple geometries, the error decreases when we in- 
crease the parameter ;, by moving the auxiliary boundary away from 
the physical boundary Γ, as illustrated in Fig. 5.2 -left. 

In the right plot of the same figure, we show results for the condition 
number 
cond ( " ) = max + ||&+ ( " ( ̃) )) ||

min + ||&+ ( " ( ̃) )) ||
where &+ ( " ( ̃) )) are the eigenvalues of the matrix " ( ̃) ) . 

For instance, following the results obtained with > = 60 , we see that 
the absolute errors decrease when we increase the value of ; until a 
value ;∗ approximately equal to 0.8 is reached. For ; > ;∗ the conver- 
gence curve is broken due to the ill conditioning of the matrix. 

This problem could be circumvented using the MFS-QR technique 
(cf. [8] ). 

Now we test the numerical method with other choices for the source 
points. 

We consider the domain which is the intersection of two unit circles 
centered at the points (0, 1/2) and (0 , −1∕2) . In Fig. 5.3 we plot 80 col- 
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Fig. 5.11. The first components of the eigenmodes associated to the smallest six resonance frequencies of the trapezoid defined through the vertices (−1 , 0) , (1,0), (
1 
2 , 2 ) and (− 1 2 , 2 ) and the corresponding nodal domains ( ? = 1 6 ). 

location points and three possible choices for the location of the point- 
sources. In the first plot we distribute the point sources on the boundary 
of an elipse with axes lengths 2.4 and 1.6, in the second we define the 
point-sources as an “expansion ” of the collocation points ( 0 + = 1 . 7 . + ). 

In the last case we consider the source points defined by (4.2) with 
; = 0 . 4 . In Fig. 5.4 we plot g ( ) ) for these three choices of source points. 

We can observe that in the first two cases we have large numerical er- 
rors, due the ill conditioning of the matrix and we are not able to locate 
the singularities which correspond to the numerical approximations for 
the eigenfrequencies. In the last plot, obtained with the choice we pro- 
posed, the errors are much smaller and this allows to locate the eigen- 
frequencies. 
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Fig. 5.12. The second components of the eigenmodes and nodal domains associated to Fig. 5.11 . 
5.1. Unit disk 

In Figs. 5.5 and 5.6 we plot, respectively, the first and second com- 
ponents of the eigenmodes and the corresponding nodal domains asso- 
ciated to the smallest six eigenfrequencies of the unit disk (with ? = 1 4 ). 

As in the acoustic problem, we could expect that the first eigenmode 
would be always simple (for connected domains) and would not present 
nodal lines cutting the disk in four parts, as we may see in Fig. 5.5 for 
) = 3 . 36484 ... However this does not happen for the first component and 
it only happens for the second component, as we may see in Fig. 5.6 . 
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This may be verified considering the calculation of the multiplicities 
of the resonance frequencies. Indeed, we have several multiple eigen- 
frequencies. For instance, if we denote by ) i , the i -th eigenfrequency, 
counting with multiplicities, in this case of ? = 1 4 we have 
0 < ) 1 = ) 2 < ) 3 < ) 4 = ) 5 < ) 6 = ) 7 < ) 8 < ) 9 = ) 10 < ⋯ 

Thus, in the case of eigenfrequencies with multiplicity two, we are 
just presenting one possible eigenmode. 

We observe that the plots of the nodal lines show some coincidence 
with the nodal lines that are present in the acoustic case, but some of 
them are more complex, which was also expected. 

We are interested in knowing how the change of the Poisson factor 
affects the resonance frequencies. This was plotted in Fig. 5.7 . In that 
picture we plot the resonance frequencies of the unit disk, as a func- 
tion of ? ∈ ]0, 0.5[. We can see that the plots show continuous lines that 
flow with the increase of the Poisson coefficient, with some possible in- 
tersections. This suggests a differentiable continuation of the resonance 
frequencies with ?, but that does not respect the ordering of the magni- 
tude. 
5.2. Non trivial domain (1) 

Next, we show some numerical results obtained for a non trivial do- 
main Ω1 whose boundary is defined by 
#Ω1 = { ( 

cos ( I ) , sin ( I ) + sin (2 I ) 3 
) 

∶ 0 ≤ I < 2 7} 
. 

In Figs. 5.8 and 5.9 we plot (respectively) the first and second com- 
ponents of the eigenmodes associated to the first six eigenfrequencies 
of the domain Ω1 and the corresponding nodal domains, obtained for 
? = 1 4 . Similar patterns to the ones obtained in the case of the disk are 
found here. 

Again we are interested in changing the Poisson coefficient, and in 
Fig. 5.10 we plot the resonance frequencies of the domain Ω1 in the 
interval [3,8], as a function of ?. We may see that, despite some expected 
differences, the plots also show a similar pattern to the one obtained in 
the case of the unit disk, namely in the continuous evolution of the 
resonance frequencies with respect to the Poisson ratio. 
5.3. Non trivial domain (2) 

Finally, we consider a domain with a non-smooth boundary - a trape- 
zoid with vertices at the points (−1 , 0) , (1,0), ( 1 

2 , 2 ) and (− 1 2 , 2 ). Numer- 
ical results are presented with a different Poisson coefficient, ? = 1 6 . Figs. 5.11 and 5.12 show the first and second components of the 
eigenmodes associated to the smallest six resonance frequencies of the 
trapezoid and the corresponding nodal domains. These illustrate the 
good performance of the method, even for non-smooth domains. How- 
ever the accuracy of the MFS when applied to more complicated non- 
smooth regions, such as domains with reentrant corners, is not so good, 
as the solution is not so smooth. An interesting topic that is being con- 
sidered under current research is to extend the approach considered in 
[9] to the elastic case. 
6. Conclusions 

In this paper we apply the MFS for the calculation of elastic reso- 
nance frequencies and the associated eigenmodes. To the best of our 
knowledge the theoretical and computational aspects of this subject 
have not been previously investigated. 

The paper presents a theoretical part that is valid for dimensions 
" = 2 or 3, where density results were derived, and a numerical part 
that was only implemented in 2D. We do not expect major difficulties 
in 3D applications, except in the increase of complexity associated with 
the increase in dimension. 

In this work we only considered the computation of resonance fre- 
quencies for the Dirichlet problem, but current research is being carried 
for other boundary conditions, and also for domains that are not simply 
connected, presenting different boundary conditions, and where tech- 
niques (like in [17,30] ) have to be considered to avoid spurious eigen- 
frequencies. 

The MFS yields excellent results, achieving double precision accu- 
racy for regular shapes, such as the disk and some other non trivial 
smooth domains, such as the one presented in Section 5.2 . This is a huge 
advantage with respect to other mesh-type methods, such as the finite 
element method, where extremely large triangulations would have to 
be considered just to get single precision results. 

The performance for non-smooth domains is more delicate. In 
Section 5.3 we presented a trapezoidal domain for which single- 
precision accuracy was obtained, but we expect higher difficulties for 
domains with reentrant corners. The improvement of the results for 
these irregular shapes is under current research, extending the approach 
considered in [9] to the elastic case. 
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