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ABSTRACT 

 

Understanding Reservoir Mechanisms Using Phase and Component Streamline Tracing. 

 (August 2008) 

Sarwesh Kumar, B.Tech., Indian School of Mines, Dhanbad, India 

Chair of Advisory Committee: Dr. Akhil Datta-Gupta 

 

Conventionally streamlines are traced using total flux across the grid cell faces. The 

visualization of total flux streamlines shows the movement of flood, injector-producer 

relationship, swept area and movement of tracer. But they fail to capture some important 

signatures of reservoir dynamics, such as dominant phase in flow, appearance and 

disappearance of phases (e.g. gas), and flow of components like CO2.  

In the work being presented, we demonstrate the benefits of visualizing phase and 

component streamlines which are traced using phase and component fluxes respectively. 

Although the phase and component streamlines are not appropriate for simulation, as they 

might be discontinuous, they definitely have a lot of useful information about the 

reservoir processes and recovery mechanisms. 

 In this research, phase and component streamline tracing has been successfully 

implemented in three-phase and compositional simulation and the additional information 

obtained using these streamlines have been explored. The power and utility of the phase 

and component streamlines have been demonstrated using synthetic examples and two 

field cases. The new formulation of streamline tracing provides additional information 

about the reservoir drive mechanisms. The phase streamlines capture the dominant phase 
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in flow in different parts of the reservoir and the area swept corresponding to different 

phases can be identified. Based on these streamlines the appearance and disappearance of 

phases can be identified. Also these streamlines can be used for optimizing the field 

recovery processes like water injection and location of infill wells. Using component 

streamlines the movement of components like CO2 can be traced, so they can be used for 

optimizing tertiary recovery mechanisms and tracking of tracers. They can also be used to 

trace CO2 in CO2 sequestration project where the CO2 injection is for long term storage in 

aquifers or reservoirs.  They have also other potential uses towards study of reservoir 

processes and behavior such as drainage area mapping for different phases, phase rate 

allocations to reservoir layers, etc.  
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NOMENCLATURE 

 
 

xV                            X-direction velocity of the phase in the cell under consideration 

BTSNWEV /////            Average velocity components in the east/west/north/south/top/bottom 

                                directions respectively  

zyx ∆∆∆ //              Dimensions of the grid cells in the x/y/z directions 

BTSNWEQ /////           Volume flow rate components in the east/west/north/south/top/bottom  

                                directions respectively 

),,,( 0tzyxν             Velocity field which is independent of time and depends on the  

                                location in the grid only 

γβα ,,                     Fractional distance along x/y/z directions respectively (for corner  

                                point grid to unit cube cell conversion) 

zyxQ //                      Principal velocity at points within unit cube cell in x/y/z directions  

                                respectively 

TniF                          Total flow rate from cell 'i' into neighbouring cell 'n' 

gwo //µ                     Oil /water/gas viscosity, cp 

gwo //ρ                     Oil/water/gas density,lbm/cu ft 

φ                             Porosity of the cell 

τ                             Time of flight, day(s)    

rpk                           Relative permeability of the phase p, (e.g. rok is the relative  

                                permeability of oil) 

G                             Acceleration due to gravity 
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D                              Cell center depth 

  τd                             Time of flight for the streamline for the given cell 

dx                             Distance traveled by the streamline in x, y, z directions 

c
px                            Mole fraction of component c in phase p 

dPpni                         Potential difference of phase p between cells n and i 

                                Where,  

                                dPpni  = Ppn - Ppi - �pni G(Dn-Di)      

                                or 

                                dPpni  = Ppn - Pi - Pcpn - Pcpi - �pni G(Dn-Di)      

Pcp                                        Capillary pressure for the phase p  

Pp                                          Pressure for the phase p  

�cp                                         Mass density of phase p 

  niT                            Transmissibility between cells ‘n’ and ‘i’ 

Sij                                          Phase saturation  

�ij                                          Phase molar density 

xij                                          Mole fraction 

krj                                         Relative permeability 

�j                                           Phase viscosities 

Pj                                          Phase pressure 

�j                                          Phase density 

ri                                    Molar flow rate per unit bulk volume for component i 
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CHAPTER I 

INTRODUCTION 

 

Streamline Simulation is now an established reservoir engineering tool, particularly 

useful for geologically complex and heterogeneous systems and for convection 

dominated flow. As it decouples the underlying geological model from the solution 

process of the transport equations, it is a computationally efficient alternative of 

conventional finite-difference simulation and has been successfully implemented for fast 

simulation of waterflood cases16-23 and effective assisted history matching30-38. The 

comparative performance of finite difference method with numerical & analytical 

streamline simulator for a water flood case has been described in detail7.  

  In addition to the regular simulation uses, the streamlines have the added feature 

of visualizing the flow and thus it can be used for identifying swept and un-swept 

regions in waterflood16-23, for establishing injector-producer relationship1,21,25 and tracer 

transport25-29, for water-flood allocation3,21, for predicting water breakthrough1, for 

optimizing water injection and management of waterflood16,18, for identifying reservoir 

compartmentalization24, for statistical ranking of stochastic geo-models39-41. Using the 

concept of effective density, streamline simulation has also been successfully used for 

compositional simulations24.  

 

_____________ 
This thesis follows the style of Society of Petroleum Engineers Journal. 
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Streamlines have also been used with API tracking which can be compared to 

miscible gas injection (like CO2)26-27. The ranking process of geostatistical models 

involving streamlines have been modified to incorporate production history and as well 

as to preserve the geological information41.  

Traditionally streamlines have been traced using total flux which can be used to 

trace the movement of the fluid as total. As discussed in detail in the above mentioned 

references, in addition to the regular simulation uses, total flux streamlines are great tool 

for study of reservoir dynamics due to visualization of the flow in the reservoir. They 

can be used for heterogeneity assessment of the reservoir1,3 e.g., calculation of 

heterogeneity indicators such as Dynamic Dykstra Parson Coefficients and Lorentz 

coefficients for the reservoir. They are useful in upscaling because we can identify the 

layers having identical flow behavior1, 3, 8. But they fail to capture some of the important 

signatures of the reservoir dynamics, e.g. the dominant phase in flow in different regions 

of the reservoir and appearance & disappearance of phases cannot be identified. 

Streamlines based on total flux do not provide conclusive evidence of reservoir drive 

mechanism operating in different parts of reservoir and they cannot be used for tracking 

components like CO2.  

In this research, application of streamlines, as a flow visualization and reservoir 

dynamics study tool, have been broadened by tracing streamlines corresponding to the 

individual phases and components along with streamlines corresponding to the total flux. 

It would be demonstrated that some of the drawbacks of total flux streamlines can be 

addressed by this new approach of streamline tracing. 
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I .1 Motivation and Literature Review 

 

Streamline simulation has been in use for quite some time now and it has been used for 

almost all stages of reservoir evaluation and monitoring. In addition to fast simulation 

that streamline simulation technology provides, flow visualization is one of the other 

most important benefit of streamlines. The literature on use of streamline simulation as a 

reservoir engineering tool is voluminous. Use of streamline simulation  ranges from 

quick evaluation and ranking of geostatistical models, upscaling to get optimal layer 

simulation model, identification of un-swept reserves, and as source of novel 

information like injector-producer relationship. In spite of all the attention that 

streamlines have been getting recently as a simulation and flow visualization tool, we 

feel that still a lot need to be done to explore all the information that streamlines have to 

offer. The current study is a step towards that attempt.  

The modeling of convection dominated flow in the reservoir has seen at least 

four other technologies1 that have preceded streamline simulation. These are Line-

source/sink methods, streamtube methods, particle tracking, and tracer & two phase flow 

using concept of stream-functions and potential-function.  

A very important development, which enabled the decoupling of the underlying 

geological model and makes streamline simulation computationally efficient, is the 

concept of “time of flight” introduced by Datta-Gupta & King1.  The 3D problem of 

saturation calculations can be reduced to 1D transport equations along the streamlines 

using transformation to time of flight coordinates. The solution in this transformed 
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coordinates is not restricted by CFL (Courant, Fredrichs, and Levy) criteria and hence 

large time-steps can be taken leading to overall faster simulation1, 5, 7.  

Pollock’s algorithm11, that suggests piece-wise linear interpolation of the velocity 

field within a grid block, forms the basis of streamline tracing in rectangular grid. Later 

this was extended to more complex geometries by several researchers and now 

streamline simulators can practically handle most of the geological complexities9.  

Broadly the application of streamlines can be divided into two categories 

depending on their special properties, which are: 

1) Flow Visualization Applications 

2) Faster Flow Computation Applications 

 

Most of the projects undertaken by researchers and industry professionals exploit 

both the benefits of the streamlines, some of which are being listed below: 

1)      Flow Visualization Applications: 

a) Swept Volume Calculations: As streamline time of flight is directly 

related to the movement of flood front and mapping of TOF (�) on the 

streamlines at different cut-offs gives an intuitive and visually appealing 

representation of  the swept area1, 2. It also gives the connected volume that 

can be used for swept volume calculations for the geological model under 

various scenarios of well location and completions. Fig. 1 presents the 

streamlines traced using total flux and the corresponding grid cells 

intersected at a particular cut-off of time-of-flight. As shall be discussed in 
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detail in Chapter II, time-of flight although given in unit of time, is used as a 

spatial coordinate in streamline simulation. So TOF can be treated as that 

linear distance along streamline till where the reservoir has been contacted in 

that many days (e.g. the penetrated cells presented in the right panel of the 

figure represent swept area in 10,000 days). It is significant to point out that 

the swept area in pattern is not uniform and is a function of heterogeneity and 

the well rates. So it would not be imprudent to conclude that a visualization 

tool like streamline is of immense help in reservoir management.  

 Streamline based drainage volumes can also be used to infer reservoir 

compartmentalization and flow barriers24. This process is based on matching 

the drainage volumes associated with the streamlines with their counter-parts 

from the decline curve analysis. Discrepancy in the two drainage volumes 

suggests some flow barrier or compartment not accounted in the geological 

model. Here for primary depletion or compressible flow, the concept of 

diffusive TOF is utilized.  
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Fig. 1 – Swept Volume Calculation Using Streamline TOF Cut-Off 
 (Here TOF Cut-Off of 10,000 Days is used) 

      

b) Rate Allocation and Pattern Balancing:  Due to the way the streamlines 

are constructed, they establish a direct relationship between the injectors and 

producers. Finite difference methods focus on where the fluid is and what 

the components involved are, whereas streamline simulation focuses on 

where the fluid is going. So streamline simulation can be used for rate 

allocation in producer-injector relationship and for balancing of patterns to 

minimize the water-cut. The use of streamlines to calculate Dynamic 

Injection Pattern Allocations21 has been demonstrated to describe waterflood 

patterns through time. Here the author has highlighted the advantage of 

streamlines over the conventional finite difference simulation in finding out 

inefficiencies in the waterflood and to set injection targets. This dynamic 

process is better than static allocation methods like using angle open to flow 
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or volume distance weighting methodology which rarely represent the flow 

behavior or flow paths. The author has concluded that use of streamline 

generated dynamic allocation leads to reduced water cycling and increased 

efficiency of patterns. 

                  The ability to quantify and visualize reservoir flow using streamline          

simulations and their use to define dynamic well allocation factors (WAFs) 

between injector and producers has been demonstrated in numerous previous 

works1-4,6, 18. They have also shown how the streamlines allow well allocation 

factors to be broken down into phase rates at either end of each 

injector/producer pair. The streamlines account for out of pattern flow which 

was a handicap of the previous methods.  In this paper the authors have used 

streamlines derived injection efficiency, which has been defined as volume of 

offset oil production per unit volume of water being injected, to optimize the 

injection-production pattern.  

c) Waterflooding: The single biggest area of application of streamlines is 

waterflood monitoring and optimization. This is due to the favorable nature 

of the problem in water-flood, of convection based flow regime with slighty 

compressible flow. Streamlines are also good for study of water floods due 

to visual depiction of movement of water front along the streamlines and 

have been used for optimal waterflood management16. Here the approach 

used is to equalize the arrival times of the water-front at all the producers 

within a selected sub-region of waterflood to minimize water recycling and 
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to maximize sweep efficiency. Streamline simulation has also been 

proactively used to manage waterflood19. Pattern optimization by actively 

using streamlines leads to gain in the offset oil producers. The streamlines 

were used to quickly build the history matched model by delineating which 

regions of the reservoir were responsible for low/high water-cuts and also 

gave some idea about the order of permeability change required at those 

regions. Then the streamlines in the history matched model guided the 

pattern optimization by indicating (i) where to increase injection rate, (ii) 

where to control the production rate, (iii) which high gross rate wells to close 

so as to divert the flow towards offset oil producers, (iv) assessment of 

unswept reservoir for infill, (v) which producer-injector pairs to be converted 

and (vi) estimation of water-cut for development location. In streamline 

based reservoir management22, the balanced and unbalanced patterns can be 

identified, swept volume can be calculated and the kind of water drive 

present can be checked.  

d) Modeling Tracer Flow: Streamlines have also been used to investigate 

inter-well connectivity and tracer transport25. Streamline simulation has also 

been used to simulate API tracking and it is mathematically similar to 

miscible gas injection26. Although this paper talks about the CO2 injection as 

a possible candidate, but does not mention how CO2 or for that matter any 

other component can be tracked using streamline. Also it does not talk about 

study of streamline as a visualization tool for CO2 injection.  These concerns 
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have been addressed in the work being presented as part of this thesis.  

Streamlines have also been used for IOR (Incremental Oil Recovery) 

evaluation process27. Here the approach is to calibrate ‘recovery curves’ that 

capture the characteristics of oil mobilization and returned solvent volumes 

as a function of gas injected. These calibrated curves are then used as tracers 

using streamline front tracking simulation to scale up to full field response.  

2) Faster Computation Applications: 

a) Up-gridding and Upscaling:  Streamlines are useful in upgridding 

because we can identify the layers having identical flow behavior1-3. 

Application of streamlines to propose non-uniform up-gridding and to 

evaluate efficiency of this method, have been studied by Kurelenkov et al8. It 

has been established that non-uniform grids generated using the streamline 

technology better captures reservoir heterogeneity and that they are more 

efficient.  Also, irrespective of whether the streamlines are used for 

upgridding and upscaling or not, the validity of the upgridding and upscaling 

process can be checked using streamline simulation because of their flow 

based approach and fast computation5. 

b) Ranking Geostatistical Models: Streamline simulation can handle 

geological models without upscaling. As the flow simulation is 

comparatively faster, they have been used for statistical ranking of stochastic 

geo-models39, 40. In one of the approaches the streamline properties like time-
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of-flight for the geological realizations are compared with that of a history 

matched model to rank them36.  

c) History Matching/ Production Data Integration: As streamlines not only 

visualize the flow and establish injector-producer relationship but also their 

properties are directly related to the permeabilities, they can be used in 

assisted history matching30-36. Its use as an effective assisted history 

matching tool relies on sensitivity calculation using the fact that the 

modifications to reservoir properties needed to match production data can be 

estimated by using streamline TOF. The TOF, in turn, is inversely 

proportional to the average permeability along the streamline.  

d) Primary Recovery, Compressible Flow and Compositional Simulation: 

Streamline simulation loses some of its computational advantages when used 

with compressible flow although in favorable cases it can be substantially 

faster than finite-difference methods. Also they have unique flow 

visualization capabilities which are not available with finite difference 

simulation1,2. For application to primary recovery or compressible flow 

concept of diffusive TOF is used whereas the compositional simulations are 

carried out using the concept of effective density1, 31.   

It can be observed that a lot of work is available in literature illustrating the use 

of total velocity streamlines but to our best knowledge no attempt has been made to 

extend the theory and implementation of streamline tracing to use of phase and 

component fluxes in streamline tracing. The nearest attempt is the use of tracer analogy 
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to model miscible gas injection. But this requires upscaling to 2D and although it is 

faster, it can not be used for visualization tool in general. Also the major challenge 

associated with this tracer analogy is the process of building up and validating the 2D 

layered field tracer model for the use by the streamline simulation.  

 

I .2  Objective of Study 

 

The objective in this research is to implement phase and component streamline tracing 

using the output of black oil and compositional simulators. Then these streamlines have 

been interpreted and analyzed along with the conventional streamlines to see how this 

added information helps us in better understanding of the reservoir flow mechanisms. 

Attempt has also been made to list the various purposes that they can be used for. The 

obvious motivation was to overcome the limitations of the conventional streamlines in 

terms of flow visualization.  

Here the output of conventional black oil and compositional simulator has been 

used for streamline tracing. Thus by use of our post-processing tool to trace streamlines, 

the benefits of the finite difference simulator, in terms of accuracy of solutions, and 

reservoir flow visualization benefits of streamlines have been combined.  
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CHAPTER II 

STREAMLINE-BASED SIMULATION 

 

Reservoir simulation is the process of modeling the flow behavior of fluids through the 

porous media. The steps in reservoir simulation mainly consists of (i) Building up of the 

fine geostatistical model using all the available petrophysical parameters (porosity, 

permeability, seismic data, etc.), well locations & completions and other information 

(e.g. analogy to some other reservoirs), (ii) Upscaling to a coarse simulation model 

suitable for handling by simulators, (iii) Allocating the dynamic parameters such as well 

rates and production control parameters, (iv) Computation of the flow rates and pressure 

using mass conservation equation and Darcy’s law, (v) Calibration of the simulation 

model by tuning to match the production history, (vi) Using the calibrated model to 

predict the future reservoir performance. Before advent of streamline simulation, the 

finite difference simulator dominated both the theoretical and practical work of reservoir 

simulation. Finite difference simulators are popular due to their robustness and due to 

their ability to simulate a lot of reservoir effects, e.g. capillary pressure and production 

parameters such as surface group constraints.  

But finite-difference simulation methods have not been able to cope up with the 

advancement in the geological model building capacity. With advancement of 

computing technology and recent developments in geosciences, multi-million cell 

models can be easily made. But finite difference methods typically cannot handle such 

detailed models, so the geological models need to be upscaled and generally this 
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upscaling process leads to loss of information and often, introduction of unrealistic 

features. Also recently focus has shifted to have multiple realizations of the reservoir so 

that the range of uncertainty in the data and the modeling processes can be addressed. 

But all the hard work done in the uncertainty incorporation in the geological modeling 

can be incorporated in the business and operation decision making process only when 

flow simulations can be done to rank them or to generate multiple realizations of 

reservoir performance based on them. But finite difference simulators, due to the 

computational requirement, are of little help here.  

Streamline simulation is IMPES in solution process because the pressure solution 

is implicit at each time step and the saturation is solved explicitly along each streamline. 

Streamline simulation are particularly useful for modeling large, complex and 

heterogeneous geological systems where the factors pre-dominantly affecting the flow 

are well positions and rates, static properties (porosity, permeabilities, faults, etc. ), fluid 

mobility and gravity. They are computationally efficient, particularly for the cases where 

the time-steps in finite-difference simulation are restricted due to CFL criteria. This is 

due to decoupling of heterogeneity from saturation solution process.  

Streamline simulation consists of the following steps: 

1) Computation of velocities across the cell faces: This involves solution of pressure 

and saturation equations to get the phase velocities. 

2) Tracing of streamlines is done using the total velocity and computation of time of 

flight is done on fly while tracing streamlines. By construction streamline density 

is more in high flow region and hence streamlines tend to resolve the area of 
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higher flow density in better way and the regions of flow stagnancy are allocated 

relatively fewer streamlines.  

3) The initial saturation at that particular time-step is mapped to the streamlines.  

4) After initialization of streamlines, the saturation equations are solved along 

streamlines in time of flight coordinates. This transformation from the actual 

geological grid coordinates to the time of flight coordinates decouples the effect 

of the heterogeneity and variation in grid dimensions. As the underlying grid 

does not matter during time-step selection, the time steps can be much larger than 

the ones for finite difference simulations.  

5) Streamlines are periodically updated to honor the change in mobility conditions 

due to drastic change in saturation. Also change in field conditions like infill 

wells warrant update of the streamlines. After each update the time of flight is 

computed and the saturation calculations are carried forward in the updated time 

of flight coordinates.  

6) Mapping of saturation from streamlines to the geological grid or vice-versa is a 

potential source of error in streamline simulation. This problem is addressed by 

having sufficient number of streamlines in each grid cell so that the computation 

efficiency is not lost whereas the saturation error are less than the allowable 

tolerance.  
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II .1  Basic Governing Equations 

 

For tracing of streamlines and computation of time of flight along streamlines, velocities 

of the phases are required. Pressure equations need to be derived to obtain phase 

pressures and phase fluxes.  

The general mass conservation equation for component i can be written as, 

ii
i RJ

t
W

=⋅∇+
∂

∂ …………………………………………………................................(1) 

Where, iW , iJ  and iR  are the accumulation, flux and the source or sink terms 

respectively1. Expanding the accumulation term, expressing the flux of component i in 

terms of convective and dispersive terms, and source or sink terms in molar flow rate per 

unit bulk volume for component i, the general conservation equation for component i 

can be written as1 :  
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            Where,  

            φ   =  Porosity 

 jξ  =  Molar density of phase j 

 jS  =  Saturation of phase j 

 ijx  =  Mole fraction of component i in phase j 

 K  =  Dispersion tensor 
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Here the phase fluxes 
ju  are related to the phase pressures through a multiphase 

version of Darcy’s law, 

,)( jrjijjjrjijj kDgPku Φ∇⋅−=∇−∇⋅−= λρλ  …………………………………..(3) 

Where,  

�rj = Given as ( krj/ �j ) are the relative phase mobilities 

Pj = Phase pressure 

�j  = Phase density 

D = Depth from a reference pressure datum 

g  = Acceleration due to gravity 

�j = Phase potential 

For incompressible flow and ideal mixing, the above conservation equation can 

be represented in terms of volume of component i per unit bulk volume per unit time as 

follows, 
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 Where, the accumulation, flux and source terms become respectively, 
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ii qR = , ………………..……………………………………………………..…....….(7) 
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Where, 

iq = Specific flow rate, i.e., volumetric flow rate of component i per unit bulk 

volume  

Cij = Concentration of component j 

Sj  = Saturation of phase j 

Summing up the component conservation Eq. 4 over all components leads to the 

following,  
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……………………………………………………….…….....................(8) 

Where qt represents the total specific rate, that is, total volumetric 

injection/production rate per unit bulk volume. Substituting Darcy’s Law into Eq. 8 

leads to the following pressure equation,  
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Using the capillary pressure relations to express all other phase pressure in terms 

of the aqueous phase pressure as given below,  

Pj=Pw + Pcwj……………………………………..……………………………………(10) 

Leads to the equation describing the aqueous phase pressure distribution:  
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The above equations can be solved numerically to obtain the phase pressure and 

phase velocities for incompressible flow. During simulation, typically finite difference 

methods are used to solve these equations.  

 

II .2  Coordinate Transformation to TOF Coordinates 

 

Streamlines are defined as integrated curves that are locally tangential to the direction of 

the velocity. The relationship between streamline and velocity is expressed 

schematically in Fig. 2. Here the velocity used for tracing streamline is instantaneous 

velocity at a particular time step. The actual simulation problem which can be unsteady 

state is treated as a series of steady-state problems at each time step. 

 

 

Fig.  2 – Relationship Between Streamline and Velocity in Planar Flow 
(after Bear, 1972) 
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Streamline should not be confused with pathline which is the actual trajectory of 

a neutral tracer particle as it moves through space and time. For a steady state flow 

streamline and pathline describe the same path but not for an unsteady state flow. For 

unsteady state flow, streamlines are a representation of the instantaneous velocity, not a 

physical trajectory.  

Time of Flight: Time of flight is a very important parameter along the 

streamlines. By definition, it is the time taken by a neutral tracer to travel from the origin 

(sources like injectors or aquifer) to the point under consideration. Fig. 3 schematically 

presents the concept of the time of flight.  

 

 

Fig. 3 – Schematic Diagram to Illustrate “Time of Flight” 

 

Tracing of streamlines using total velocity will be discussed in detail in the next 

chapter. Without loss of continuity, it can be stated here that once the phase velocities 

are available they are summed up to get the total velocity which is used for tracing. For 
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each grid cell the time of flight is calculated and streamlines are traced on fly from 

source to sinks.  

Once the streamlines are traced the transport equations are solved along the 

streamlines which is basically a transformation of the Euclidian coordinates to time of 

flight coordinates which is very crucial in terms of making the simulation process 

computationally efficient. Time of flight can also be used to represent the movement of 

fluid along streamline and hence can be used for swept volume calculation.   

 Time of flight is represented by the following integral:  

ds
u

s

�=
0

φτ  ……………….…………………………………………………………...(12) 

 The test particle moves at the interstitial velocity, φ/u , and s is the spatial 

distance along streamline. Rewriting Eq. 12 as a differential relationship,  

φτ =∇⋅u …………………………………………………………………………….(13) 

Or as,  

τφ ∆
∆= su

……………………………………………………………………………....(14) 

 This can be rewritten as in terms of the operator identity, 
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 The Eq. 15 presents the operator identity at the heart of transformation from 

physical coordinates to the streamline time-of-flight coordinates. The power of the 

transformation of Euclidean coordinates to the time of flight (�) coordinates can be 
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shown by application of this concept to the conservation equation for water phase in 

two-phase incompressible flow away from source and sink, (neglecting gravity and 

capillarity) as follows,  

,0)( =⋅∇+
∂

∂
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w uF
t

Sφ …………………………………………..………………......(16) 

Where Fw is the fractional flow term, twwF λλ /= , Using the operator identity as 

derived in Eq. 15 to transform from the physical space to the time of flight  coordinates,  
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Thus, the conservation equation can be written as,  
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As a result of this coordinate transformation, the 3D fluid flow has been 

decomposed into a series of 1D (in TOF coordinates) evolution equation for Sw along 

streamlines. This transformation includes all the effects of the heterogeneity and the 

dimensions of the problem (1D, 2D or 3D). The transport equation in TOF coordinates 

do not suffer from CFL restriction so can take large time-steps. The gravity and 

capillarity effects can be inducted in the transport calculations by use of operator 

splitting. Therefore, this transformation leads to order of magnitude of efficiency in 

computation7, 20. With all these background information about streamline simulation we 

are ready to compare streamline simulation viz-a-viz conventional finite difference 

simulation. 
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II .3  Streamline Simulation vs. Finite Difference Simulation 

 

Streamline simulations are computationally more efficient than the finite difference 

simulations due to the following reasons: 

1) As streamlines need to be updated only when there is some drastic change in 

saturation conditions or field conditions, the streamlines are updated infrequently. 

2) Transport equations along the streamlines can be often solved analytically. 

3) The solution of 1D transport equations along the streamlines are not constrained 

by the underlying geological grid-stability criterion (CFL criteria), thus allowing larger 

time-steps. 

4) For displacements dominated by heterogeneity, computation time with streamline 

simulation varies linearly with the number of grid cells involved whereas for finite 

difference simulation it is order of magnitude more.  

 

In addition to the computational advantage, the streamline simulation gives 

intuitive depiction of fluid flow due to their visualization capability which is not possible 

with finite difference methods. Also the streamlines give novel information like injector-

producer relationship, swept area, well allocation factors and dynamic resolution of flow 

regions (i.e. higher streamline density in areas of higher flow compared to that of lower 

flow) which can be used in non-uniform up-gridding and upscaling. All these 

information is not available from finite-difference simulation methods directly or in most 

cases not even indirectly.  
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CHAPTER III 

STREAMLINE TRACING USING TOTAL FLUX 

 

By definition, streamlines are integrated curves that are locally tangential to the velocity 

field. It is same as the particle trajectory for steady state flow but not for unsteady state 

flow1. 

 

 
 

Fig.  4 – Streamline Tracing Using Total Flux 

 

Fig. 4 shows a schematic workflow for streamline tracing using the total flux. 

The geo-cellular (earth) model is read into the standard simulator, which solves the 

pressure equations implicitly at each time step. After the calculation of pressure, flow 

equations are solved to obtain the fluxes of each phase at the cell faces. The phase fluxes 

(oil / gas/ water) across the cell faces are summed up to get the total flux which is used 

for streamline tracing. The streamlines are traced using the Pollock’s or Modified 

Pollock’s algorithm depending upon the kind of grid involved (rectangular or corner 

point grid) 9-11.  
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III . 1 Streamline Tracing in Cartesian Grid 

 

For the streamline tracing in the conventional way, the total velocity is used. The tracing 

algorithm depends on the type of underlying grid. In this exercise, the grid used is corner 

point grid (CPG), but to understand the tracing in CPG we need to first go through the 

rectangular grid streamline tracing9. 

 

III .1.1    Pollock’s Algorithm  

 

Pollock’s algorithm assumes that the total velocity varies linearly between the values on 

the opposing cell faces.  

 The Convention used in this exercise is as given in the Fig. 5.The average linear 

velocity component across each face is given as in Eq. 19.   

 

 
 

Fig. 5 – Finite Difference Cell Showing xyz Definitions9 
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Where Q is volume flow rate across a cell face and �x, �y and �z are the 

dimensions of the cell in the respective coordinate directions. By the Pollock’s 

interpolation, the principal velocity components at points within a cell can be obtained as 

follows: 
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Where, Ax, Ay and Az are constants that correspond to the components of the 

velocity gradients given as, 
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 The movement of the particle is tracked through the grid cell. In the grid cell, the 

rate of change in the particle’s x-component of velocity is given by:- 
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Borrowing the definition of Ax from Eq. 21 and denoting the time rate of change 

of the x-location of the particle, (dx/dt)p, by Vxp we get, 
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Integrating between times t1 and t2 leads to,  
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Putting the definition of the Vxp from the Eq. 20 in the Eq. 24 gives us the                    

x-position  of the particle as follows:  
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III .1.2    Steps of Streamline Tracing in Cartesian Grid 

 

Now having established the equations for streamline tracing, the steps of the streamline 

tracing can be listed as follows: 

a) The phase velocities are computed from the three dimensional solution of the 

pressure field and by application of Darcy’s Law.  The total velocity is the sum of these 

phase velocities in the appropriate units.  

b)  For the streamline tracing in the conventional way, the total velocity is used. The 

Pollock’s Algorithm is used for the rectangular grid streamline tracing9. 

c)  Here using Eq. 24 corresponding to the respective faces, the time of flight taken 

by the particle to reach all the possible faces of exit are calculated.  
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d)   Obviously, the actual streamline path would be the one with the minimum 

positive time of flight. For example, in the Fig. 6 for a two-dimensional grid, the actual 

time is the smaller of �tx and  �ty (Time of Flight in x and y directions respectively) and 

is denoted by �te. 

 

 

Fig. 6 – Computation of Exit Point and Travel Time in 2D9 

 

e)   This minimum of the positive time-of-flight, �te, is used in Eq. 25 to determine 

the exit coordinates  (xe, ye) for the particle as it leaves the cell (i, j),  
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These steps are repeated for each grid cell that the particle enters until the 

particle reaches a sink or discharge point. Similarly for 3D these equations are repeated 

in all the three coordinates.  

Equation of streamlines, which is the backbone of streamline tracing, is presented 

in the parametric form as follows: 

( ) ( ) ( )000 ,,,,,,,,, tzyx
dz

tzyx
dy

tzyx
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zyx νννφ
τ === ……………………………...……(28) 

 

III .2    Streamline Tracing in Corner Point Grid (CPG) 

 

Here the development by Cordes and Kinzelbach12 (CK) as used by Eduardo Jimenz10 is 

used as an extension to Pollock’s algorithm. The streamline is traced in the unit cube cell 

using linear varying model of flux as discussed below. Then the unit cell coordinates, 

entry and exit coordinates are mapped back to the physical space in CPG using iso-

parametric transformation.  

 

III .2.1    Modified Pollock’s Algorithm  

 

For the unit cell, the Pollock’s equation is re-written in dimensionless variables using the 

fractional distances through all three coordinate directions. The fractional distances are 

as represented in Eq. 29, 
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DX
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DZ
z=γ  

 

The directional interstitial velocities are converted into volumetric fluxes using 

the equations given as,  
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Then a simple linear interpolation, similar to Eq. 20 is applied to compute the 

principal velocity components at points within a cell. The linear interpolate for the 

volumetric flux in the x-direction is given as, 

( ) 3,2,1, =⋅+= jCAQ jjjjj αα …………………………………………………..….(31) 

Using the expression for the rate of change in the particle’s velocity components 

as it moves through the cell, Eq. 30 can be expressed as below,  
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So in the transformed coordinates, the following relationships are obtained,  
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This equation is similar to the streamline equation in the rectangular grid,           

Eq. 28; just the Pollock’s model has been rescaled in terms of dimensionless distances 

and volumetric fluxes. For general corner point grids, the cell volume (DX.DY.DZ) in the 

Eq. 33 is replaced by the Jacobian of the transformations J  as suggested by Cordes & 

Kinzelbach. So the time of flight can be determined by the following set of equations,  
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Here, as the Jacobian has the dimensions of volume and is a cross sectional area 

times a physical distance, the right side in the Eq. 34 is essentially a Darcy velocity in 

the corresponding direction, scaled by cell length in that direction. But the solution of 

the Eq. 34 to solve for the ),,( γβα trajectories is quite difficult compared to similar 

operation in rectangular grid cells. This is so because the parameters ),,( γβα  are 

coupled through the Jacobian. To simplify the integration of the ),,( γβα  trajectories, 

the concept of pseudo-time-of-flight has been introduced9. 

 

III .2.2    Pseudo Time of Flight 

 

The pseudo time of flight increases along a trajectory and acts as a time like variable. In 

the x-direction the equation for pseudo-time-of-flight would be, 
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  Generalizing for the three directions the parametric equation for streamline is 

given as,  
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For constant scaling factors, the equations for the ),,( γβα  in terms of the pseudo 

time of flight (T) are identical to the Pollock’s equations in a three dimensional 

rectangular cell as given in Eq.  28. 

 

III .2.3    Transformation to Real Space of CPG 

 

Once the streamlines are traced in unit cube and we have the unit cube co-ordinates, the 

entry and the exit coordinates, then they are mapped to the real space of the CPG using 

iso-parametric transformation. For illustration, the transformation equations for the point 

1 of the grid in Fig. 7 are given as: 

 

 
 

Fig. 7 – Iso-Parametric Transformation of Unit to Real Space9 
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Where,  
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Similar equations are used for y and z coordinates of the point 1. Similarly 

transformations are carried out for all the points of the grid.  After this transformation 

exercise we have the streamline entry and exit coordinates in the real space of the CPG. 

 

III .2.4    Time of Flight Calculation in CPG  

 

Actual time-of-flight in corner point grid is calculated as follows,  

 ( )�=
T

dTTTTJ
0

)(),(),( γβαφτ …………………………………………………...….(39) 

Where the Jacobian of the real coordinates is expressed as follows: 
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The Jacobian is a polynomial in �, �, and � and they in turn are all known 

functions of the pseudo-time of flight. The resulting integrand is a sum of exponentials 

and constants which can be integrated numerically using the quadrature approach.  

 

III .2.5     Steps of Streamline Tracing in CPG 

 

a) To begin with, a unit cube is considered. The volumetric fluxes and its linear 

interpolate in unit cube and dimensionless distances are computed to be used in 

Modified Pollock’s Algorithm as explained in Section (III.2.1).  

b) The pseudo time of flight is computed for exit of particles from all the possible 

cell faces of the unit cube cell using Eq. 35. 

For example, the time to reach the east face will be,  
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Here, the volumetric flux has been replaced by its linear interpolate as given by 

Eq.  31. 
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c) Similarly time to exit from the other faces can be calculated and the actual 

pseudo-time of flight would be the one with the minimum positive value of the  T∆ , i.e.,  

),,,,,( BTWNWEe TTTTTTMinT ∆∆∆∆∆∆=∆  

Where, the subscripts ‘e’ corresponds to the actual time of flight taken to escape 

from the grid cell and subscripts E, W, N, S, T, B correspond to escape, east, west, north, 

south, top and bottom respectively. 

d) Once the pseudo-time of flight is known the exit coordinate in the unit cube can 

be calculated in the similar fashion as that for the rectangular grid. The set of equations 

are as follows:  

	



�
�


� −++=

	



�
�


� −++=

	



�
�


� −++=

3
3010

2
1010

1
1010

1
)(

1
)(

1
)(

3

2

1

C
e

Ca

C
e

Ca

C
e

Ca

TC

e

TC

e

TC

e

γγγ

βββ

ααα

……………………………………………...………(42) 

 

 Fig. 8 shows the exit coordinates computation in the unit cube, where the 

particle’s time-of-flight is the minimum positive time to escape from the top face and 

hence the streamline is as shown by the curved line. 
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Fig. 8 – Computation of Exit Point and Time of Flight in a Unit Cube9 

 

e) For each unit cube, the unit cube coordinates, entry and exit points for each 

streamline are transformed to the real space coordinates of CPG using equations similar 

to Eq. 37 for each point.  

f) The time of flight in real space is calculated as specified in Section (III.2.4). 

 

Once streamlines are traced, the transport equations are solved along each 

streamline which in effect means transformation of coordinates from Cartesian grid to 

the time-of-flight coordinates. As the underlying geological model is decoupled, the 

selection of time step is not restricted by the CFL criteria and hence the saturation 

solution is computationally efficient1. Here the initial saturation is mapped from grid to 

streamline and after the solution of transport equation the final saturation is mapped back 

to the grid.  

This research deals with only streamline tracing and does not concern with the 

saturation computation and mapping of saturation from streamlines to the grid. For 
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details of streamline simulation, solution of transport equation along streamlines and 

mapping of saturation from streamlines to grid, readers may refer to the several literature 

sources cited in the reference section. 

Streamlines traced using the total flux, are great tool for study of reservoir 

dynamics due to visualization of the flow in the reservoir e.g. water flood front 

movement. Also they can be used for heterogeneity assessment of the reservoir. 

Dynamic Dykstra parson coefficients and Lorentz coefficients which are statistical 

indicators of heterogeneity for the reservoir can be calculated using streamlines. They 

are useful in upscaling because the layers having identical flow behavior can be 

identified. In upscaling the objective is to minimize the variation within an upscaled 

layer and maximize the variation between the layers. Using streamline the layers having 

similar flow properties can be clubbed together and thus optimal upscaling can be 

obtained. Also fast flow simulation can be done using streamline simulation to check the 

efficacy of upscaling. As mentioned in the references given in introduction, the total 

velocity streamlines are also useful for study of injector-producer relationship due to 

explicit visual depiction of their interaction, swept area calculation, ranking of 

geostatistical model based on swept area, and in AHM (Assisted History Matching) 

which involves the alteration of permeability as demarcated by the streamlines. But total 

velocity streamlines fail to capture some of the important signatures of the reservoir 

dynamics, e.g. the dominant phase in flow in different regions of the reservoir and also 

appearance & disappearance of phases cannot be identified. Streamlines traced using 

total flux do not provide conclusive evidence of reservoir drive mechanism operating in 
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different part of reservoir and also they cannot be used for tracking components like CO2 

in compositional simulation.  
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CHAPTER IV 

STREAMLINE TRACING INVOLVING INDIVIDUAL FLUID PHASES AND 

COMPONENTS FLUXES 

 

IV.1    Phase Streamline Tracing Using Output of Black Oil Simulators 

 

In this exercise a standard commercial finite-difference black oil simulator has been used 

to compute the pressure and fluxes. The fluxes obtained as output along with array of 

other parameters written to the restart file have been used. 

 

IV.1.1    Individual Phase Fluxes vs. Total Flux 

 

The total flow rate from cell ‘i’ into neighboring cell ‘n’ is given by the sum of flow rate 

of all the phases.  

gniwnioniTni FFFF ++= …………………………………………….………(43) 
  

Where, TniF = Total flow rate from cell ‘i’ into neighboring cell ‘n’  

                         oniF = Oil flow rate from cell ‘i’ into neighboring cell ‘n’ 

   wniF = Water flow rate from cell ‘i’ into neighboring cell ‘n’ 

 gniF = Gas flow rate from cell ‘i’ into neighboring cell ‘n’ 
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In the proposed approach, at the step when the individual phase fluxes are 

available, instead of summing them up to get the total velocity, they are treated 

individually for the tracing purpose. 

 

IV.1.2    Streamline Tracing Using Phase Fluxes 

 

Modified Pollock’s algorithm for corner point grid (CPG) as discussed in Section 

(III.2.1) has been used for computing streamline trajectories and pseudo-time of flight 

following the steps as explained in Section (III.2.5). Eq. 36 for all the phases in the unit 

cube is solved separately and phase streamlines are traced in the unit cube cell.  

( ) ( ) ( )γ
γ

β
β

α
α

γβαφ
τ

iii
Q

d
Q

d
Q

d
J

d
dT i

i
321),,(

===
⋅

= ……………………………….…….(44) 

  
Where, i = oil, gas or water 
 

Then the coordinates are transformed from the unit cube to the corner point grid 

(CPG) using equations similar to Eqs. 37 and 38 (chapter III) and TOF in CPG is 

computed using Eq. 39 of the chapter III. 

As generalized streamline tracing assumes nothing about the phase involved, 

streamlines for all the involved phases can be traced separately.  The simulator is run 

only once and the phase fluxes stored can be used for tracing under different scenarios.  

The phase streamlines need not lie along the total flux streamlines. For example, 

in regions with high gravity, the flow of water and oil can be totally different whereas 

the total velocity vector would be a result of vector addition of these two velocities.   
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Fig. 9 illustrates how phase streamlines can be different from the total velocity 

streamlines using a simple case of flow under effects of gravity. Here the streamlines 

would be locally tangential to the corresponding velocity vector. Similarly in areal sense 

also the water, oil, gas streamlines would show the regions of their respective dominance 

and orientation of flow. In real field cases, in addition to gravity, several other reasons 

could be in play causing the phase streamlines to be very different from each other and 

from total flux streamlines. These could be different zones of injection and production, 

different relative permeability resulting in differential flow of phases, alteration in 

injection schemes (e.g. Water Alternate Gas Injection Schemes), etc. The results 

discussed using the synthetic and field examples in Chapter V has tried to cover as many 

cases of such kind as possible.  

 

 

Fig. 9 – Schematic Diagram to Illustrate the Relationship between Phase and Total 
Velocity Streamline Tracing 

 

The phase streamline tracing feature is not available in any of the commercial 

software. So a C++ based code (DESTINY), used to trace streamlines using total flux, 
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was modified to suit the need. Here, streamlines can be traced originating from sinks, 

which can be either the producers or individual cells having fractional flow (of the phase 

under consideration) greater than a specified value. For all practical purposes, the tracing 

from the individual cells is same as tracing from injectors onwards.  

In our study, the fluxes are obtained from an industry standard finite difference 

simulator and the streamlines are traced by post processing the fluxes. The full flow 

physics involved has been honored by using finite-difference simulator and on the same 

hand the advantages of flow visualization and injector-producer connectivity information 

provided by the streamline analysis have been utilized. So this procedure has the benefits 

of both the streamline and finite difference simulation technologies.  

 

IV.2   Component and Phase Streamline Tracing Using Output of Compositional 

Simulators  

 

Standard compositional simulators give individual component fluxes as output instead of 

the phase fluxes. The component output is in moles/day. These along with other outputs 

such as phase potentials, molar density, mole fraction, relative permeability, etc. 

reported for each cell have been used in the following exercise to compute the 

component & phase streamlines.  
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IV.2.1    Component, Phase and Total Flux Calculations 

 

As represented schematically in Fig. 10, the fractions of each component in different 

phases have been identified to get the phase fluxes which can then be used for tracing of 

streamlines.  

 

Fig. 10 – Schematic Diagram to Explain Component and Phase Flux Computation 
from the Component Fluxes Obtained as Compositional Simulator Output 

 

The flow rate of component ‘c’ embedded in a phase p (p=o, w, g) into cell ‘i’ 

from a neighboring cell ‘n’ is given as13, 14, 15,  

pni
c
pni

c
Tni dPMTF )(= ……………………………………………………………..……(45) 

 
Where, c

pM  is the generalized mobility of component c in phase p given as,   
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µ
)(= …………………………………………………………….…….(46) 

 
Where, c

px   =  Mole fraction of component c in phase p 

rpk   =  Relative permeability of the phase p 
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pS   =  Saturation of phase p 

m
pb   =  Molar density of phase p 

 
pµ   =  Viscosity of phase p 

The fluid mobilities c
pM  are evaluated in the upstream cell for each phase (oil, 

water, gas) separately. 

 And, for the potential difference terms,  

dPpni  =  Potential difference of phase p between cells n and i defined as, 

dPpni  = Ppn - Ppi - �pni G(Dn-Di)      

or 

dPpni  = Ppn - Pi - Pcpn - Pcpi - �pni G(Dn-Di)      

where,  

Ppn    =   Pressure for the phase p in cell ‘n’ 

Ppi    =   Pressure for the phase p in cell ‘i’ 

Pcp    =   Capillary pressure for the phase p  

�cp     =   Mass density of phase p 

    G     =   Acceleration due to gravity 

Here Eq. 45 has been used to identify the fraction of the components in different 

phases. Then it has been multiplied with the component flow rate across the cell faces in 

appropriate units to get the phase velocities.  Then these phase velocities are used for 

streamline tracing. For total velocity streamlines, these phase velocities are summed up 

in the appropriate units to obtain the total velocity. If component tracking is required 
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then the component velocity in appropriate units is used. Also for each component, 

streamlines in different phases can be traced separately, i.e. CO2 in aqueous phase and 

CO2 dissolved in oil phase can be traced separately.  

  The streamlines corresponding to CO2 in aqueous phase would be a great tool to 

study the movement of CO2 in sequestration projects, in which the CO2 is injected into 

aquifers for long time storage. 

 

IV.2.2    Streamline Tracing Using the Phase(s) and Component Fluxes 

 

Once the phase velocities and the component velocities are obtained in appropriate units 

for streamline tracing then the Modified Pollock’s Algorithm for streamline tracing in 

the unit cube is used as explained in Section (III.2.1). Streamlines are traced using the 

steps outlined in Section (III.2.5) and then iso-parametric transformation is used to get 

the corresponding streamline coordinates in the real space corner point grid (CPG). The 

streamline TOF in CPG coordinates is calculates as explained in Section (III.2.4). 

So, regarding tracing involving phases and components it can be summed that 

this new approach of streamline tracing is more or less same as the generalized 

streamline tracing in CPG with the only difference being in the way the fluxes are 

computed and treated for tracing.  
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CHAPTER V 

RESULTS AND APPLICATIONS 

 

V.1    Synthetic Model - Streamlines Using Output of Black Oil Simulator 

 

 

Fig. 11 – 2D Synthetic Model Used to Test the Formulation of Phase and 
Component Streamlines 

 

Fig. 11 presents the two dimensional synthetic model which has been used to validate 

the phase streamline tracing. This model is a reservoir grid of (50X50X1) 2500 grid cells 

and has three phases, namely oil, water & gas in flow. This synthetic case was 

particularly chosen because although it is a simple model, yet it has different drive 

mechanism operating in different parts of the reservoir. It is a five spot pattern with four 

producers located at the corners & the injector at the center and the simulation study is 
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for 6 years. The porosity is same for all the cells at 22.5 % but permeability shows a high 

permeability trend in the north-west south-east direction. The pressure and fluxes were 

computed using the Eclipse©(Schlumberger) simulator and the streamline tracing was 

done using the in-house developed code “DESTINY”. 

 

V.1.1    Total Flux Streamlines (Fails to Capture Important Flow Effects) 

 

 

Fig. 12 – Synthetic Model: Total Flux Streamlines (Traced from Cells as Sinks, Oil 
Saturation Mapped on Streamlines) 

 

In Fig. 12, the streamlines traced using the total flux have been presented. They have 

been traced from individual cells having fractional flow of the total flux greater than 0.1 

(equivalent to tracing from injectors onwards to all the cells having fractional flow 

greater than the cut-off specified). For the total flux streamline this would include all the 

cells where the total flow is present because in all of those cells the fractional flow of the 
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total flow would be greater than 0.1. Oil saturation has been mapped along the 

streamlines and the streamlines along with saturation profile at eight consecutive time-

steps, of 260 days each, have been shown. 

The direction of sweep, as shown by oil saturation mapping on streamlines, can 

be easily linked to the permeability orientation. Although the movement of flood front 

can be visualized with time, we can not say for sure which regions have been stripped of 

oil and which regions have the dominant gas flow. We can not comment about the 

appearance and disappearance of gas in the history of field production. Also we are not 

able to distinguish between the drive mechanisms operating in different regions. We 

would try to address these issues with phase streamlines. 

 

V.1.2    Phase Streamlines - Implementation and Significance 

 

In this section, the streamlines have been traced separately for each phase (oil /water/ 

gas) & then they have been interpreted along with the total velocity streamlines. For 

each phase, streamlines have been traced from individual cells where the fractional flow 

of the phase under consideration is greater than 0.1 or from producers as sinks and 

corresponding saturation is mapped on the streamlines, e.g. water saturation on water 

streamlines and gas saturation on gas streamlines. 
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V.1.2.1    Water Streamlines (Explain Reservoir Drive Mechanism and Water-Cut   

                 of Producers) 

 

 

Fig. 13 – Synthetic Model: Water Streamlines (Traced from Producers and Cells as 
Sinks, Water Saturation Mapped on Streamlines) 

 

 

In Fig. 13 the streamlines based on water flux have been shown. Here the streamlines 

have been traced from producers as well as from individual cells having fractional flow 

of water greater than 0.1. So we see streamlines only in the regions of significant water 

flow along with water streamlines that have broken through at the producers.   

Water streamlines suggest that the lion’s share of water being injected is 

supporting the production from the well P1 and P3 whereas the wells P2 and P4 do not 

see effect of water drive until around 2000 days. From relative density of water 
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streamlines in near well regions, it is visually evident that the production at wells P1 and 

P3 is under water injection drive whereas production at well P2 and P4 is under natural 

depletion drive. The production from a well which is pressure supported by water being 

injected has been termed to be under water injection drive whereas production from a 

well which is driven by pressure depletion, without significant pressure support, has 

been termed as under natural depletion drive. Here using water streamlines the two 

different reservoir drive mechanisms can be identified and their existence can be 

distinguished from each other.  

The water streamlines can also be used for explaining the water-cut of the 

producers. Fig. 19 on page 56 shows the water-cut of all of the four producers. Well P1 

& P3, at which the water streamlines have broken through, show early initiation of 

water-cut compared to the wells P2 & P4. The density of the water streamlines can also 

be used for explaining the water-cut magnitude in these wells. The well P1 having higher 

density of water streamlines has the higher water-cut compared to the well P3.  

These streamlines can also be used for water flood front movement study. Thus, 

these streamlines are particularly effective for deciding on infill injection. As we can 

visually map the drainage area of the well with time, these streamlines can also be used 

for well test drainage area calculation.  

They can also be used for assisted history matching of water cut. In history 

matching the approach is to honor the field production history without altering the prior 

model drastically. By using water streamlines, the regions whose static properties have 

direct bearing on the water production can be delineated. So to achieve a water-cut 
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match, the permeability only in the water streamline demarcated region is modified 

instead of using permeability multiplier for the entire model.  

 

 

Fig. 14 – Synthetic Model: Streamline Delineated Cells for History                  
Matching - Water Streamlines vs. Total Velocity Streamlines  

(Traced from Producers as Sinks, Oil Saturation Mapped on Streamlines) 
 

In Fig. 14 the water streamlines and total flux streamlines are presented for the time-step 

corresponding to water-breakthrough at well P1. It can be noted that water streamline 

delineated region for permeability alteration for matching water-cut is more localized 

than the region delineated by total flux streamlines (which breakthrough at the 
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producers). So water streamlines assisted history matching would have a higher 

tendency to preserve the prior model compared to total velocity streamlines. Please note 

that only streamlines which breakthrough at the producers should be used for assisted 

history matching.  

 

V.1.2.2   Gas Streamlines (Show the Appearance & Disappearance of Gas with  

                Time) 

 

 

Fig. 15 – Synthetic Model: Gas Streamlines (Traced from Cells as Sinks, 
Gas Saturation Mapped on Streamlines) 

 

In Fig. 15 the gas streamlines from individual cells having fractional flow of gas greater 

than 0.1 have been shown. In the vicinity of the well P4 it can be noted that the gas 

saturation increases and then decreases with time. This increase in gas saturation can be 
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correlated to the natural depletion drive mechanism. In natural depletion drive, 

production is due to pressure drop and as there is little pressure support, reservoir 

pressure is more likely to go below bubble point pressure compared to regions of 

reservoir under pressure support. So high gas saturation because of release of solution 

gas is a typical signature of this kind of reservoir drive. Here the wells P2 and P4 which 

have been found to be producing under natural depletion show increase in gas saturation 

with time. But once the water being injected starts reaching these regions, with increase 

in reservoir pressure the gas is re-dissolved into the solution. This is also indicated by 

streamline density. High gas streamline density represents high gas flux near these wells. 

The regions with low or almost no gas streamlines specify the regions stripped of oil and 

hence having negligible or no mobile gas. On the same premises as using water 

streamlines for matching water-cut, the gas streamlines breaking through at producers 

can be used for assisted history match of gas-oil-ratio (GOR) of the producing wells. 

 

V.1.2.3    Oil Streamlines (Identify Reservoir Drive Mechanism and Guide Water  

                 Flood Management & Well Location Optimization) 

 

Fig.  16 shows the oil streamlines where the streamlines have been traced from the cells 

having fractional flow of oil greater than 0.1. Here by observing the distribution of oil 

streamlines, regions depleted of oil can be easily identified. Thus, the oil streamlines will 

be effective in identifying the infill producers. Near the wells P4 and P2 the oil 

saturation is decreasing but waterflood has not reached these regions so they are 
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producing under natural depletion whereas wells P1 and P3 are producing under water 

flood drive as shown by the streamlines. The two different reservoir mechanism of 

production, as were identified with water and gas streamlines, have now been verified 

using the oil streamlines.   

 

 

Fig. 16 – Synthetic Model: Oil Streamlines (Traced from Cells as Sinks,  
Oil Saturation Mapped on Streamlines) 

 

Here it is noteworthy to observe that while regions of unswept oil remains in the 

reservoir, the water being injected is recycled through wells connected to injector 

through high permeability streaks without aiding oil recovery. So it can be concluded 

that considering the heterogeneity of the reservoir, the location of injector is not 

optimum and as most of the water injected is recycled by wells P1 and P3 after 

breakthrough, the location of injector should be changed (after 4th time step). Once we 
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have evaluated the base case, several scenarios can be created with different locations of 

injectors & producers and additional infill wells and then fast streamline simulations can 

be done to optimize the location of the wells to have maximum recovery. Thus, oil 

streamlines can be used to optimize the water injection well location and to locate infill 

wells to extract the un-swept oil. 

 

V.1.2.4    Overlapping of Phase Streamlines (Helps in Determining the Reservoir 
 

     Drive Mechanism) 
 
 

 

Fig. 17 – Synthetic Model: Overlapping of Phase Streamlines - Depicts Dominant 
Phase in Flow in Different Regions of the Reservoir 
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In Fig. 17 oil and gas streamlines, at 1040 days (time-step 4), have been superimposed 

with water streamlines to show the selective regions of their dominance. It is quite 

evident that they complement each other. This is valuable information in a reservoir 

study for flood management and infill drilling location evaluation because the regions 

not benefitting from the current injection program can be identified. 

 

V.1.3    Validation of Observations from Phase Streamlines Using the Pressure and   

             Production Data 

 

 

 
 

Fig. 18 – Synthetic Model:  Pressure Map - Validates the Observations Made Using 
Phase Streamlines 
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Fig. 18 shows the average reservoir pressure map at the last time step (2080 days) for the 

model, which has been used to validate the observations about the GOR, water-cut and 

the drive mechanisms. 

The wells P2 and P4 where we had dense gas streamlines show insufficient 

pressure support and high GOR (encircled in red), which are typical features of natural 

depletion whereas wells P1 and P3 have good pressure support and high water saturation 

which is in line with dense water streamlines at these wells suggesting water injection 

drive (encircled in blue).  

 

 
 

Fig. 19 – Synthetic Model: - Observed Water Cut in the Production Wells - 
Supports the Observations from Phase Streamlines 
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 In Fig. 19, the water-cut for all the wells are presented. Here it can be noted that 

the wells where the water streamlines had broken through have high water-cut. Also the 

well P1 where the water streamlines had broken through earlier has early water-cut 

whereas P3 has water breakthrough after approximately 1000 days corresponding to 4th 

time step. The wells P2 and P4 where the water streamlines have not broken through 

show zero water-cut.  

 

 

 
 

Fig. 20– Synthetic Model:  Observed Oil Production Rate - Supports the 
Observations from Phase Streamlines 
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In Fig. 20, the oil production rates for all the wells are presented. At the wells P2 

and P4 the oil rate drops till the 5th time step as it is producing under natural depletion 

whereas once they start getting pressure support due to water injected, the production 

rate increases again, which validates our observation about the drive mechanism from 

the phase streamlines.  If the injection is continued for long time then eventually all of 

these wells would also come under water injection drive but before that a lot of water 

would be recycled without effecting any oil displacement.  

 

V.2     Field Case - Streamlines Using Output of Black Oil Simulator 

 

 
 

Fig. 21 – Field Case:  South African Offshore Reservoir 
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For the field implementation of phase streamline tracing a South American Offshore 

Reservoir has been considered. The field is in water depth of 400 to 800 m. It is a 

turbiditic geological set-up with three partially connected Eocene deep-marine reservoirs 

(organized in sheet and channel sands) at a depth of approximately 3000 m. The OOIP 

was 500 MMSTB and the initial reservoir pressure was 4000 psi. The field was initially 

produced under natural flow conditions (primary depletion) from 2 wells for 6 years. It 

was then completely shut in and brought on production after re-development with 6 new 

producers and 4 water injectors, over a time frame of 3 years. After re-development 

another 3 years of production history were available. The quality of the sands is quite 

good with payzone thickness upto 70 m, porosity in range of 20-35 %, permeabilities up 

to 10 Darcy. The geological model with the location of wells is as presented in Fig. 21. 

The oil bearing zone is at the crest of the reservoir deposition and there is a surrounding 

aquifer. The 4 injectors are located along the periphery of the reservoir and the 8 

producers are at the crest of the reservoir and production history of 11 yrs has been 

considered. 

 

V.2.1    Total Flux Streamlines 

 

In Fig. 22, the streamlines traced using total flux have been presented. Clearly they show 

the drainage area in the field and when presented for each producer individually they 

will represent the drainage area as a function of time for that particular well. These can 

be used for locating unswept regions for location of infill wells.  
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Fig. 22 – Field Case: Total Flux Streamlines - Show Drainage Area (Traced from 
Producers as Sinks, Oil Saturation Mapped on Streamlines) 

 

 

In the Fig. 23, permeability in the reservoir is presented along with the 

streamlines traced using total flux. The permeability fields show presence of high 

permeability channels flanked by low-permeability overbanks. Clearly the effect of this 

permeability orientation has been captured by the streamlines. Also they can be used to 

establish the path of connected volume that would be swept with time.  
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Fig. 23 – Field Case: The Total Flux Streamlines Capture the Effect of Permeability 
Orientation on the Fluid Movement 

 

 

Figs. 24 and 25 show the permeability orientation and the injector producer 

relationship which manifests that the channel orientation is dictating the injector-

producer relationship. This information can be obtained to tune the injection rates so that 

the water breakthrough is delayed at the producers and the water-flood influence area is 

maximized.  

Although total flux streamlines present a lot of valuable information, they fail to 

ascertain the movement of aquifer, if any. Also we cannot segregate the areas based on 

dominance of water or oil flow. Please be reminded that the saturation mapped on the 

streamlines show the amount of phases present, not necessarily their movement. It might 
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be that the areas of high oil saturation do not have significant oil flow signifying their 

non-contribution to the field production and potential areas for locating infill wells.  

 

 

Fig. 24 – Field Case: Permeability Field and Injector-Producer Relationship 
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Fig. 25 – Field Case: Permeability Field and Injector-Producer Relationship on 
Well-by-Well Basis 

 
 

V.2.2     Phase Streamlines 

 

The issues that could not be addressed by the total flux streamlines would be explored 

with the phase (oil / water) streamlines and their relevance to the understanding of the 

reservoir processes would be presented. Streamlines have been traced from individual 

cells having fractional flow of the phase under consideration greater than 0.1. 
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V.2.2.1      Water Streamlines 

 

 The water streamlines are presented in Fig. 26. Here the streamlines have been traced 

from cells as sinks where the fractional flow of water is more than 0.1. It can be noted 

that the water streamlines are located in the periphery where aquifer is located and where 

most of the water injection is going on. When the water streamlines at lapse of 11 yrs are 

compared then the encroachment of water streamlines (marked with red) can be 

observed during the field life. Thus although very subtle, the movement of aquifer has 

been captured using the water streamlines. Streamlines from aquifer also suggest 

peripheral water drive. 

 

 

 

Fig. 26 –Field Case: Water Streamlines - Show Aquifer Movement (Traced from 
Cells as Sinks and Water Saturation Mapped on Streamlines) 
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V.2.2.2      Oil Streamlines 

 

The oil streamlines are presented in Fig. 27. The oil streamlines are predominantly 

located at the crest of the reservoir. So by visual depiction of the phase streamlines, the 

dominant phase in flow in different regions can be established. The effect of 

encroachment of aquifer has been marked in red in the figure.  

 
 

 

 

Fig. 27 – Field Case: Oil Streamlines - Useful for Infill Well Placement (Traced 
from Cells as Sinks and Oil Saturation Mapped on Streamlines) 
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Based on the aquifer movement as depicted by streamlines the location of next 

series of injectors can be decided. Overlap of oil and water streamlines can be used in 

selecting regions which would be suitable for locating further infill wells for production 

because regions having un-swept oil can be demarcated. Also as using phase streamlines 

the preferential path of movement of water being injected can be established, these can 

be used to plan orientation of the horizontal section, if horizontal injectors are planned. 

Similarly the orientation of horizontal section of producers can be planned to delay the 

breakthrough of water (by keeping it away from the direction of encroachment of aquifer 

or water channels) 

 

V.3     Synthetic Model - Streamlines Using Output of Compositional Simulator 

 

The component and phase streamline tracing has been applied to the synthetic case (the 

two dimensional synthetic case discussed previously). Here the static & dynamic 

parameters like permeability field, production & injection rates of the reservoir have 

remained unchanged. Only significant change is the replacement of the fluid being 

injected from water to CO2. 

  

V.3.1     Total Flux Streamlines 

 

The streamlines traced using the total flux for the synthetic model have been presented 

in the Fig.  28. They have been traced from grid cells having fractional flow of the total 
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flux greater than 0.1 (for total flux streamlines all the grid cells would be used where the 

total flux is present), which is same as tracing from injector to the grid cells satisfying 

this criteria. Clearly they capture the movement of flood front but we cannot establish 

the region of dominant CO2 or other phases flow.  Also it cannot be ascertained where 

CO2 is in gas phase at reservoir conditions or dissolved in oil. Also different drive 

mechanisms cannot be identified.  

 

 

Fig. 28 – Synthetic Model: Total Flux Streamlines from Output of Compositional 
Simulator (Traced from Cells as Sink , Oil Saturation Mapped on Streamlines) 
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V.3.2     Phase and Component (CO2) Streamlines 

 

V.3.2.1    CO2 Streamlines 

 

The CO2 streamlines and the corresponding oil streamlines have been presented in      

Fig. 29. They have been traced from grid cells having fractional flow of CO2 greater 

than 0.1, which is same as tracing from injector to the grid cells satisfying this criteria. 

Clearly, the movement of CO2 with time has been captured by the CO2 streamlines but 

not with the total velocity streamlines.  

 

 

Fig. 29 – Synthetic Model: CO2 Streamlines - Capture the Movement of CO2  Flood 
(Traced from Cells as Sinks, Gas Saturation Mapped on Streamlines) 
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From study of CO2 streamlines, it can be observed that the CO2 breakthroughs at the 

well P1 much faster than at other wells, which shows the adverse effect of the 

permeability orientation. This can also be verified by the GOR plot of the wells         

(Fig. 30). Also it can be observed that only well P1 is benefitting from CO2 flood 

whereas other wells are producing under natural depletion. 

A very high GOR is observed at well P1 because CO2 being injected is recycled 

through this well, bypassing the remaining oil in the reservoir. Thus, it can also be 

pointed out that the tertiary recovery mechanism is not augmenting the production from 

other wells.   

 

 

Fig. 30 – Synthetic Model: GOR for the Producers of the CO2 Injection Synthetic 
Example 
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V.3.2.2     Oil Streamlines 

 

 

Fig. 31– Synthetic Model: Oil Streamlines for the CO2 Flood - Show Poor Sweep 
Efficiency of  Flood (Traced from Cells as Sinks, Oil Sat.  Mapped on Streamlines) 

 

 

The oil streamlines have been presented in Fig. 31. From these streamlines also it can be 

observed that only regions connected to well P1 have been swept whereas a lot of un-

swept oil, as represented by dense oil streamlines, is still left in the other regions. For 

tertiary flood, the rule of thumb states that if it is a good waterflood then it is going to be 

a better CO2 flood but reservoir showing poor response to waterflood will respond 

poorer to CO2 flood. In the synthetic case under study, this rule of thumb appears to have 

been validated, because the spread of CO2 is much less and sweep is poorer than the case 

of waterflood. 
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V.3.2.3      Gas Streamlines 

 

Gas streamlines presented in Fig.  32 show that the injected CO2 movement path is same 

as the gas streamlines suggesting that the injected CO2 is in gas phase and the reservoir 

pressure is below MMP (minimum miscibility pressure). 

 

 

Fig. 32 – Synthetic Model: Gas Streamlines - Show That the Injected CO2 Is in 
Gaseous Phase (Traced from Cells as Sinks, Gas Saturation Mapped on 

Streamlines) 
 

 

From CO2, oil and gas streamlines it can be concluded that wells P2. P3 and P4 

are not getting pressure support and hence are producing under natural depletion. Also 

the regions of dominant flow for each phase can be identified.  
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V.3.2.4     Water Streamlines 

 

Here the presence of water streamlines indicate that water is mobile although their 

contribution to total flow is not very significant. Comparing water streamlines (Fig. 33) 

with the oil streamlines presented in Fig. 31 suggest that the water movement follows 

the movement of the oil in general. Comparing water streamlines with component (CO2) 

streamlines tells that in the region of dominant CO2  flow, water flow is quite less 

significant from other regions. 

  

 

Fig. 33 – Synthetic Model:  Water Streamlines - Show That the Flow in the 
Reservoir Is Two-Phase (Traced from Cells as Sinks, Water Saturation Mapped on 

Streamlines) 
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Also we can note the effect of injection as the orientation of water streamlines is 

along the CO2  streamlines, i.e. diagonally towards well P1 (in the region of component 

CO2  flow) whereas in other regions of the field, they are oriented along oil streamlines. 

 

V.4     Field Case - Streamlines Using Output of Compositional Simulator 

 

A Canadian Onshore Reservoir (Fig.  34) currently under CO2 flood was selected as the 

pilot field project to validate the component and phase streamline tracing using the 

output of compositional simulator.  

The field was discovered in 1954, put on waterflood in 1960s and tertiary 

recovery was implemented in 2003 with CO2 flood. Original oil in place was about 1.5 

billion barrels. After a peak production of about 50,000 STB/D, production declined 

steadily for the next 20 years dropping to 9,000 STB/D by the late 80’s. Additional infill 

wells (horizontal and vertical) were drilled, increasing production to approximately to 

22, 000 STB/D. By the end of the 90’s, the recovery of oil was 23 % of OOIP. 

Production was declining again and it was envisaged that if no EOR methods are applied 

then the total recovery from the field would not be more than 25 %. 
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Fig. 34 – Field Case for CO2 Flood Study: Canadian Onshore Reservoir 

  

Detailed study suggested CO2 injection to enable additional production. Injected 

CO2  reduces the viscosity of oil and increases the transmissibility of oil. Also CO2  

swells oil and forces them out of tight pores where they are left as irreducible oil in 

waterflood. Water was pumped alternate to CO2 (WAG process) to push the swelled oil 

towards the producer wells. The irreducible oil in case of CO2 flood is of the order of 3-

8% compared to 23-35 % in case of waterflood; thus, the difference is the targeted 

incremental oil. The success of EOR project will be measured not only by the additional 

production, but also by delivering the background work and example of field application 

necessary to encourage implementation of CO2 geological storage. Total number of 
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wells in the field is 1016 in a 9-spot grid pattern. But for this project study, a section of 

reservoir where CO2 injection is active was selected. This section has total of 213 wells 

(160 producers, 26 water injectors and 27 CO2 injectors). 

The streamline based reservoir management process is quite promising for such a 

field. Streamlines can be used to understand the well interactions (including injector-

producer connectivity), to identify the bypassed oil zones useful to optimize the WAG 

process, to calculate allocation factors and to use the allocation factors for identifying 

the efficiency of injectors.  

 

V.4.1     Streamlines during the Waterflood Regime 

 

Here the case presents the opportunity to test our formulation and to investigate the 

additional information for waterflood period (starting in 1965) as well as for the tertiary 

recovery stage involving CO2 injection (WAG). 

 

V.4.1.1     Total Flux Streamlines  

 

Fig. 35 shows the streamlines traced using total flux, during the period of waterflood. 

Streamline tracing is done from producers to injectors so they show all the streamlines 

that are breaking through at the producers. The streamlines show the drainage area for 

each pattern. Although most of the producers are draining from the patterns, flow is out 

of pattern for some of the others (particularly in the wells around the center of map). 
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Also the pattern performance can be judged on the basis of this, e.g. pattern on the left 

most corner are not performing as good as other patterns. Also we can identify the 

migration from 5-spot to 9-spot pattern as the infill wells are drilled gradually and so we 

can note the injector-producer relationship. 

 

 

Fig. 35– Field Case for CO2 Flood Study: Total Flux Streamlines during 
Waterflood Regime 

 (Traced from Producers as Sinks, Oil Saturation Mapped on the Streamlines) 
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V.4.1.2     Oil Streamlines  

 

 

Fig. 36– Field Case for CO2 Flood Study: Oil Streamlines during Waterflood 
Regime (Traced from Producers as Sinks, Oil Saturation Mapped on the 

Streamlines) 
 

 

Fig. 36 presents the oil streamlines for the waterflood regime. Areal comparison to total 

flux streamlines reveal that for most of the areas they overlap. As we shall observe with 

a specific example, this statement cannot be generalized for all the phases. Here also we 

can see how the injectors and producers are interacting. Here as streamlines carry oil 
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only, so we can dynamically allocate oil production from each producer to the pressure 

supporting injectors.  Also we can map the oil drainage regions areally as well as 

vertically.  

 

V.4.1.3      Water Streamlines  

 

 

Fig. 37 – Field Case for CO2 Flood Study: Water Streamlines during Waterflood 
Regime (Traced from Producers as Sink, Oil Saturation Mapped on the 

Streamlines) 
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In Fig. 37 the streamlines traced using water flux are presented at the same six time-

steps as the previous streamlines. Here we can see that water is not supporting few of the 

producers as given by holes (regions of no streamlines) in the map. Also the streamline 

density between the injector-producers can be taken as measure of the  water-cut severity 

at the producers. Also they can be used as tool to dynamically allocate the injection 

volume to the producers in the patterns.  

 

V.4.1.4     Comparison of Phase and Total Flux Streamlines  

 

In Figs. 38 and 39 the streamlines traced using total flux, oil flux, and water flux are 

compared at one particular time step. Although the top view shows some difference in 

the oil drainage pattern and water drainage patterns, the main difference is in the vertical 

positioning of the streamlines as seen in Fig. 39. The water streamlines are dominant in 

the lower region of reservoir where the injection is going on and hence water movement 

is dominant, whereas the oil streamlines are dominant at the upper layers where the 

production wells are completed. Thus the regions of dominant oil and gas flows can be 

demarcated on basis of their flow. Also we can see the injection is creating a pseudo 

bottom water drive to support pressure and production of oil.  
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Fig. 38 – Field Case for CO2 Flood Study: Comparison of Total Flux, Oil and Water 
Streamlines during Waterflood Regime (Top View) 

(Traced from Producers as Sink, Oil Saturation Mapped on the Streamlines) 
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Fig. 39 – Field Case for CO2 Flood Study: Comparison of Total Flux, Oil and Water 
Streamlines during Waterflood Regime (Side View) 

(Traced from Producers as Sink, Oil Saturation Mapped on the Streamlines) 
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Fig. 40 – Field Case for CO2 Flood Study: Total Flux, Water and Oil Streamlines 
Corresponding to a Pattern during Waterflood Regime 

(Traced from Producers as Sink, Oil Saturation Mapped on the Streamlines) 
 

 

In Fig. 40, total flux, water and oil streamlines for a particular well are 

compared. It can be commented that the region between the well 01_16-31 & 01_04-05 

and 01_16-31 & 01_10-31 is having water as the dominant phase in flow whereas  for 

other injector-producer pairs the flow is two phase (water and oil). Information like these 

are not available using the total flux streamlines. Here based on these streamlines we can 

say which well is expected to get the highest water-cut and thus the candidates for re-

completion can be identified.  

From Fig. 40 it can be noted that the injected water in the pattern is going out of 

pattern as well. Generally for well allocation it is difficult to account for out of pattern 
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flow, but streamlines can account for that. And with phase streamlines the out of pattern 

flow can be further broken down in oil and gas flows, in and out of pattern.  

 

V.4.2     Streamlines During the CO2 Flood Regime 

 

The streamlines corresponding to the phases (oil, gas, water), component (CO2) and total 

velocity has been traced and we are presenting the results at some time steps to 

demonstrate their significance. 

 

V.4.2.1    Total Flux Streamlines 

 

Fig. 41, presents the total velocity streamlines. Here the movement path of the fluid can 

be identified and also the regions which have negligible fluid movement can be 

identified. The pattern boundaries which are regions of flow stagnancy can be marked as 

they don’t have any (or very few) total velocity streamlines.  
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Fig. 41 – Field Case for CO2 Flood Study: Total Velocity Streamlines during CO2 
Flood Regime 

(Traced from Producers as Sink, Oil Saturation Mapped on the Streamlines) 
 

 

V.4.2.2     Component (CO2) Streamlines 

 

Comparing CO2 streamlines in the Fig.  42 and the total velocity streamlines (Fig. 41) it 

can be noted that the flow of CO2 was not captured by the total velocity streamlines.  
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Fig. 42 – Field Case for CO2 Flood Study: CO2  Streamlines during CO2 Flood 
Regime  

(Traced from Cells as Sink, TOF Mapped on the Streamlines) 
 

 

In the Fig. 42, the movement of injected CO2 can be tracked with time and if the 

model is history matched with respect to waterflood regime, then we can also predict 

with reasonable accuracy as to which producers will see breakthrough of CO2 and in 

which order. Accordingly the facilities to handle CO2 production can be designed at the 

corresponding wells. Using the component tracking, the CO2 dissolved in aqueous phase 

can be traced in CO2 sequestration projects where it is injected for long time storage. 

Also from CO2 streamlines density, the injection wells can be ranked in terms of the 
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injection rates vs. swept area. This ranking would be useful to identify the injectors to 

shut down when there is shortage of CO2 on supply side or when CO2 needs to be 

diverted to new locations. 

From these streamlines, the regions which are not getting benefit of injection 

program, due to heterogeneity and bypass of flow, can be delineated and thus the 

component streamlines (CO2) can be used for identifying the location of the CO2 

injectors in future. Also it can be noted that for some of the injectors the CO2 influenced 

area extends beyond their pattern boundary as well indicating that assuming strictly 

pattern based allocation between injector and producer would be unjustified in these 

cases.  

 

 

 

Fig. 43 – Field Case for CO2 Flood Study: CO2 Streamlines Showing the Movement 
Path and Injector-Producer Relationship (1 Oct 2005) 

(Traced from Producers as Sink, TOF Mapped on the Streamlines) 
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Fig. 43 presents the producers and injectors along with the CO2 streamlines, thus 

explicitly showing the injector-producer relationship. It can be observed that the path of 

CO2 is more controlled and directed in case of horizontal injectors (near the top regions 

of map) compared to the vertical injectors. Also the out of pattern flow can be observed. 

In Fig. 44 few selected injector wells along with their corresponding producing partners 

are presented. The close up look at the CO2 injectors and the movement of the injected 

fluid gives a fair idea about the variation in their flow paths, which could be interplay of 

various reservoir and well control parameters.  

 

 

Fig. 44 – Field Case for CO2 Flood Study: CO2 Streamlines for Few Selected Wells 
to Demonstrate Their Unique Paths Instead of Pattern Flow (1 Apr 2004) 

(Traced from Producers as Sink, TOF Mapped on the Streamlines) 
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V.4.2.3    Oil Streamlines 

 

Fig. 45 presents the oil streamlines at the same time steps as total flux streamlines. Here 

comparing the streamlines at gradually progressing time-steps, it can be noted that the 

regions where the density of oil streamlines have reduced are regions swept of oil. Also 

we can see that the borders of the patterns have high oil saturation and low streamline 

density suggesting un-swept oil is not benefitting from current reservoir production 

mechanism. The “holes” or regions with no streamlines near the injectors (CO2) suggest 

that the injected CO2 is in gas phase.  

 

 
Fig. 45 – Field Case for CO2 Flood Study: Oil Streamlines during CO2 Flood 

Regime (Traced from Cells as Sinks, Oil Saturation Mapped on the Streamlines) 
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V.4.2.4     Water Streamlines 

 

 
 

Fig. 46 – Field Case for CO2 Flood Study: Water Streamlines during CO2 Flood 
Regime (Traced from Cells as Sink, Water Saturation Mapped on the Streamlines) 

 

 

In Fig. 46, the streamlines corresponding to water flux are presented and the streamlines 

are injector onwards to cells where fractional flow of water is greater than 0.1. 

Comparing with oil and total velocity streamlines, it can be noted that water is not a 

dominant phase of flow and in regions near the pattern boundaries the fractional flow of 

water is less than 0.1. The movement path of water being injected (during water cycle of  

WAG) can be observed and it can be noted that the flow is out of pattern for few of 
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them. Also the swept area vs. the volume of water allocated to the injectors can be used 

to rank them in terms of sweep efficiency.  

 

V.4.2.5      Gas Streamlines 

 

Fig. 47 – Field Case for CO2 Flood Study: Gas Streamlines during the CO2 Flood 
Regime (Traced from Cells as Sinks, Gas Saturation Mapped on the Streamlines) 
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Fig. 47 shows the gas streamlines traced from individual grid cells to the injectors. Here 

it can be observed that the gas streamlines almost overlap with the CO2 streamlines 

suggesting that the CO2 is in gaseous phase near the well and not much of it is in 

dissolved phase with oil. This indicates that the pressure is below MMP. Still there is 

some region in the middle of map where the CO2 is in dissolved phase. The gas 

streamlines provides good information for the WAG cycles, because for efficient 

displacement of oil the CO2 should swell oil, which is possible only when sufficient 

pressure and time is given for the process, thus in turn dictating the timing of CO2 

injection period and the following water injection period.  

 
 

V.4.2.6      Comparison of Total Flux, Phase and Component Streamlines 

 

Fig. 48 presents the total velocity streamlines and the CO2 streamlines at the same time 

thus illustrating that the CO2 movement was not captured by the streamlines traced using 

total flux. 
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Fig. 48 – Total Velocity vs. CO2  Streamlines for a Time-Step in CO2 Flood 
 (1st Oct 2005) (Traced From Cells as Sinks, Oil Saturation Mapped on Total 

Velocity Streamlines and TOF on the CO2 Streamlines) 
 

 

In Fig. 49 and Fig. 50, the phase (oil, gas, water) and component streamlines at a 

specific time step have been compared. It can be noted that the regions with high density 

of CO2 have dominant gas streamlines suggesting that the pressure of the reservoir is 

below MMP (minimum miscibility pressure) and hence CO2 is not dissolved in oil and is 

in gaseous phase. By comparison of oil, water and gas streamlines it can be remarked 

that for all practical purposes water and oil streamlines are overlapping whereas gas 

streamlines are sparsely located suggesting that the flow in the reservoir is mostly two 

phase and most of the reservoir is above bubble point because of pressure maintenance 
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by water and CO2 injection. All these information were not obtained by just using the 

streamlines traced using total flux. 

 

 

Fig. 49 – Comparison of CO2 & Phase Streamline Tracing  Provides Valuable 
Information for Tertiary Recovery Management 

 (Streamlines Traced on Time Step Corresponding to 1st Oct 2005) 
(Traced from Producers as Sinks, TOF Mapped on the CO2 Streamlines and 

Corresponding Saturations Mapped on the Phase Streamlines) 
 (For Scales Refer to their Respective Plots in Previous Sections) 
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Fig. 50 – Comparison of CO2 & Gas Streamline Tracing  Shows That the CO2 Is in 
Gaseous Phase (Streamlines Traced on Time Step Corresponding to 1st Oct 2005) 

(Traced from Cells as Sinks, TOF Mapped on the CO2Streamlines and Gas 
Saturation on Gas Streamlines) 

 

 

In Fig. 51, the phase and component streamlines for a hypothetical scenario of 

pressure regime and injection rates for the same field case is presented. The injection 

rates are significantly higher than the actual case and so is the reservoir pressure. This 

was done to demonstrate the condition in regions where the CO2 is completely dissolved 

in liquid phases and does not exist in gaseous phase at the reservoir conditions. It can be 

noted that the regions with high density of CO2 streamlines do not have dominant gas 

streamlines (in center of map) validating that the pressure of the reservoir is above MMP 

(minimum miscibility pressure) in those regions and hence CO2 is dissolved in oil and is 
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not in gaseous phase. By comparison of oil, water and gas streamlines it can be remarked 

that water and oil streamlines are overlapping whereas gas streamlines are sparsely 

located suggesting that the flow in the reservoir is mostly two phase and most of the 

reservoir is above bubble point. 

 

 

Fig. 51 – Comparison of CO2 & Phase Streamline Corresponding to a Hypothetical 
Pressure and Injection Regime Where the CO2 Is  in Liquid Phase Dissolved in Oil 

Rather Than in Gaseous Phase under Some Conditions (1st Oct 2005) 
(Traced from Cells as Sinks, Corresponding Saturations Mapped on the 

Streamlines) 
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In Fig. 52, the CO2 and water streamlines corresponding to different time-steps 

are presented for an injection well which is undergoing WAG (Water Alternate Gas) 

injection process. The corresponding injection schedule is presented in Fig. 53. It can be 

noted that the period of water and CO2 injection can be differentiated based on water/ 

CO2 streamlines. CO2 Streamlines are not present at 1 July 2003 when there is no CO2 

injection,  few water streamlines are at 1 Oct 2004 when CO2 injection cycle is going on 

and again CO2 Streamlines decrease when water injection cycle starts. We can also see 

that the preferential paths of movement of the two phases are different which is logical 

since different mechanisms are responsible for movement of CO2 and water.  
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Fig. 52 –  Water and CO2 Streamlines for a Particular Injector at Different 
Timesteps to Demonstrate Their Use in Study of WAG Processes 

(Traced from Cells as Sinks, Water Saturation Mapped on Water Streamlines and 
Gas Saturation on CO2 Streamlines) 
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Fig. 53 – Water and CO2 Injection Rates for a Particular Injector Showing the 
WAG Cycles 

 

 

V.4.3     Rate Allocations and Drainage Area Mapping Using the Phase Streamlines 

 

Fig. 54 presents the oil streamlines corresponding to a particular well from the CO2 field 

case study. This time-step corresponds to the field under initial water injection drive in 

1960s. From the oil streamlines it can be pointed out that the main contributors to oil 

flow are two different layers (one having streamlines with orange and the other with 

yellow colored streamlines) and using fraction of streamlines in each layer, share of 

production from the different layers can be found. Similar analysis for water streamlines 
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in injectors will lead to identification of thief zone taking most of the water injected. 

Water streamlines in producers will identify the zone to be shut off to reduce the water 

production.  Here if only total streamlines are used then they would give the fraction of 

total production coming from different layers without differentiating between the phases.  

 

 

 
 
 

Fig.  54 – Oil Streamlines for a Particular Well: Can Be Used for Estimating Layer 
Contributions and Drainage Area in Each Layer 

(Traced from Producers as Sinks, Oil Saturation Mapped on Streamlines) 
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From the Fig. 54 it can also be observed that the area of drainage is different in 

different layers and so oil streamlines can be used to map the oil drainage area in 

different layers.   

 

 

 

 
Fig. 55 – Oil Streamlines For Producer-Injector Pair: Allow Estimation of Oil Rate 

Allocation of Producers to Corresponding Injectors 
(Traced from Producers as Sinks, Oil Saturation Mapped on Streamlines) 

 

 

In Fig. 55, oil streamlines have been shown for a producer, which is being 

pressure supported by water injection from two wells. Using the fraction of streamlines 
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for these two pairs we can estimate how much oil production of the well, under 

consideration, can be allocated to each of the injectors. This kind of dynamic allocation 

has been done previously using total velocity streamlines but they did not furnish any 

information about the contributions of the individual phases in flow, i.e. from total 

velocity streamlines one can not conclude the contribution of injector A to the water 

production of producer B or the contribution of injector C to the oil rate of producer B. 

Traditionally the total flux streamlines have been used for mapping the drainage 

and swept area for a well. Here we would like to demonstrate that the phase streamlines 

can also be used to map the drainage area contributing to the production and the drainage 

area corresponding to different phases can be different from each other and from the 

total flux streamlines. In Figs. 56 and 57 the streamlines for a time-of-flight cut-off of 

10,000 days and the corresponding swept grid cells are presented in areal and vertical 

perspectives for a time-step corresponding to waterflood regime around an injector. 
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Fig. 56 – Streamlines Corresponding to an Injector Traced Using Total Flux, Oil 
Flux, and Water Flux With TOF Threshold of 10,000 Days and Corresponding 

Filtered Grid Cells. (Top View) 
(Traced from Cells as Sinks, TOF mapped on the Streamlines)  

 

Here it can be observed that the as water is being injected in the lower layers they 

constitute the bulk of flow there and they provide the pressure support to the production 

of the producer from bottom. The regions of the dominant flow of phases can be 

identified independently both in terms of areal expansion as well as the vertical 

distribution.  They can be used to identify the left over oil in layers and also to identify 

thief zones taking lot of water without effecting any meaningful displacement.  
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Fig. 57 – Streamlines Corresponding to an Injector Traced Using Total Flux, Oil 
Flux, and Water Flux With TOF Threshold of 10,000 Days and Corresponding 

Filtered Grid Cells. (Side View) 
(Traced from Cells as Sinks, TOF mapped on the Streamlines)  
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CHAPTER VI 

CONCLUSIONS 

 

1. The phase and components streamline tracing has been successfully 

demonstrated and the power and utility of these have been analyzed using synthetic and 

field cases. 

2. For forward flow simulation, industry standard black oil and compositional 

simulators have been used to obtain fluxes and a post processing tool has been used for 

tracing streamlines corresponding to total flux, phase fluxes and component fluxes.  

3. Phase and component streamlines overcome some of the shortcomings of the 

streamlines traced using total velocities, particularly in terms of flow visualization and 

understanding reservoir flow. 

4. Uses of phase and component streamlines are as follows: 

4.1   As a source of additional information towards understanding of reservoir 

drive mechanism. 

4.2   Phase streamlines have been successfully used for identification of the 

dominant phase(s) in flow in different regions of the reservoir. Based on their 

trajectories the area swept for any particular phase can be identified as well as 

the effects of permeability channels or high permeability streaks on the 

distribution of phase flows can be identified.  
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4.3   The phase streamlines have also been used for depiction of appearance 

and disappearance of phase(s) in reservoir. Thus, they can be used to explain 

high gas oil ratio in some wells vs. others having low GOR.  

4.4   The use of phase streamlines (for the phase which is being injected, e.g. 

water streamlines corresponding to water injection wells) for study of effects 

of reservoir parameters on the flow of fluid being injected have been 

demonstrated. They have also been used for locating regions which are not 

benefiting from the current injection program. Thus they can be used for 

optimization of location of injection well and the injection rates. Also, oil 

streamlines have been successfully used to identify the regions unswept of oil 

so they can be used to identify the location of infill wells to maximize the 

recovery from the reservoir. Thus, the phase streamlines are of potential 

significance in secondary recovery processes like waterflooding.  

4.5   As the component streamlines have been demonstrated to be capable of 

tracking the movement of components like CO2 or other gases which can be 

used during tertiary recovery processes, the location of infill wells for 

production and injection can be optimized based on them. So they have been 

proved to be a promising tool for tertiary field development and management.  

4.6   As phase streamline delineated regions have been shown to be more 

localized than the total velocity streamlines, so use of phase streamlines 

would have a better tendency to preserve the prior model and therefore they 



 106 

can be used as an improvement over the total velocity streamline during 

assisted history matching.  

4.7   As CO2 dissolved in any phase, including water, can be tracked using the 

formulation presented, the component streamlines corresponding to CO2 

along with the total and phase streamlines can be used for CO2 sequestration 

management where CO2 is injected in aquifers for long time storage. Also 

component streamline can be used to track movement of components.  

4.8   The use of phase streamlines to allocate the contribution of any layers in 

any phase flow has been demonstrated. The oil streamlines have been used to 

back allocate the production to different producing layers. Following similar 

rationale, the intake capacity of the layers or zones in any reservoir can be 

estimated. These are useful in identify the thief zones and the cross flow in 

reservoir.  

4.9   Using phase streamlines the total rate allocation using total velocity 

streamlines can be further broken down to individual phase rates. This use 

has also been demonstrated.  
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