
From The Department of Dental Medicine  

Karolinska Institutet, Stockholm, Sweden 

STUDIES ON MOLECULAR AND IMMUNE 
SIGNATURES FOR DETECTION OF 

PANCREATIC CANCER AND COVID-19 

Hassan Alkharaan 

 

Stockholm 2021 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications from Karolinska Institutet

https://core.ac.uk/display/427718063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

All previously published papers were reproduced with permission from the publisher. 

Published by Karolinska Institutet. 

Printed by Universitetsservice US-AB, 2021 

© Hassan Alkharaan, 2021 

ISBN 978-91-8016-264-7 



Studies on Molecular and Immune Signatures for 
Detection of Pancreatic Cancer and COVID-19 

 

THESIS FOR DOCTORAL DEGREE (Ph.D.)  

By 

Hassan Alkharaan 

The thesis will be defended in public at the Department of Dental Medicine, ANA Futura 

Blumberg, Alfred Nobels allé 8, Huddinge on Tuesday 8th of June 2021 at 9:00 am 

Principal Supervisor: 

Prof. Margaret Sällberg Chen 

Karolinska Institutet 

Department of Dental Medicine 

Division of Oral Diagnostics and Rehabilitation 

 

Co-supervisor(s): 
Prof. Marco Del Chiaro 

University of Colorado, USA 

Anschutz Medical Campus 

Division of Surgical Oncology 

 

Assoc. Prof. Leif Jansson  

Karolinska Institutet 

Department of Dental Medicine 

Division of Oral Diseases 

 

Dr. Haleh Davanian  

Karolinska Institutet 

Department of Dental Medicine 

Division of Oral Diagnostics and Rehabilitation 

 

Opponent: 

Prof. Li Jian Jin 

University of Hong Kong 

Department of Clinical Dental Science 

Division of Periodontology & Implant Dentistry 

 

Examination Board: 
Prof. Christina Giske 

Karolinska Institutet 

Department of Laboratory Medicine 

Division of Clinical Microbiology 

 

Assoc. Prof. Velmurugesan Arulampalam 

Karolinska Institutet 

Department of Microbiology, Tumor and Cell 

Biology 

 

Prof. Per Alstergren 

Malmö University 

Faculty of Odontology 

Division of Orofacial Pain and Jaw Function 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my beloved parents, brothers and sisters,  

and most of all, my wife and soulmate Mashael,  

and our son Mohammad… 

 

 

 





 

 

ABSTRACT 

Background and objectives 

Etiological factors and accurate diagnostic biomarkers have remained elusive to pancreatic 

cancer, a disease with > 90% five-years mortality rate. The recent understanding of microbiome 

interaction with host organs has opened new research avenues on the potential role of 

microbiota in the tumor microenvironment. The objectives in Study I and II aim to investigate 

molecular and microbiome related biomarkers in plasma, saliva, pancreatic fluid and tissues 

from patient groups diagnosed with pancreatic cystic neoplasms, and their correlation with 

pancreatic neoplastic grade. 

The COVID-19 outbreak occurred in an unprecedented transmission rate which necessitate 

diagnostic biomarkers to manage the pandemic.  The objective in Study III aims to investigate 

the potential use of saliva as a non-invasive approach for assessment of immune exposure to 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 

Results 

Study I shows that elevated bacterial 16S DNA copies and IL-1β levels in pancreas cysts 

correlate with high neoplastic grade. Analysis of the intracystic pancreas microbiome shows 

co-occurrence and enrichment of oral bacterial species. Bacteria DNA level in pancreas is also 

associated to prior exposure to invasive endoscopic procedures. 

Study II shows that elevated plasma and salivary antibody reactivity to oral pathogens 

(particularly F. nucleatum or Fap2 of F. nucleatum) is associated with intraductal papillary 

mucinous neoplasm (IPMN) diagnosis showing high-grade dysplasia or invasive cancer.  

Study III shows that salivary antibody reactivity to SARS-CoV-2 spike and capsid antigens 

persist up to 9 months after mild COVID-19 with a new multiplex antibody assay. Presence of 

specific salivary antibodies also correlates to COVID-19 like symptoms in a second 

undiagnosed cohort. The virus-specific IgG in saliva appears stable and tolerates temperature 

and detergent pre-treatments. 

Conclusion 

Collectively, the results indicate that oral microbes have a role in disease progression of 

pancreatic cystic neoplasms. Reducing the inflammatory microbiome may be a potential 

therapeutic strategy. The salivary antibody testing against oral pathogens holds interesting 

promise for early identification of high-risk pancreatic tumors.  Furthermore, salivary antibody 

testings on a multiplex platform perform well and can support immune diagnostics of COVID-

19. By combining at-home sample collection and the multiplex strategy, salivary diagnostics 

can be a sensitive and non-invasive alternative to conventional tests currently available. 
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1 INTRODUCTION 

1.1   Pancreatic cancer 

1.1.1   Global incidence and mortality 

Pancreatic cancer (PC) is highly lethal, with the incidence rate closely matching the mortality 

rate 1. It is the fourth leading cause of cancer mortality in the United States  1. In Sweden, it is 

estimated that over 1400 patients died of pancreatic cancer in 2017 2, and approximately 

330,400 people die of PC each year worldwide 3.  The yearly incidence rates of PC are on the 

rise, and it is expected to be the second cause of cancer mortality before 2030 1,4. Up to 91% of 

PC patients die within five years of diagnosis, and more than 50% of them die in the first six 

months after the diagnosis 1,5,6. A substantial reason behind the high lethality of PC may be due 

to the lack of apparent symptoms and accurate diagnostic methods to detect the cancer, 

especially at an early stage, which results in mostly diagnosing PC in an advanced stage 7. 

Consequently, patients with late-stage PC were reported to have a high recurrence rate even 

after potentially curative resection of the pancreas 1. Biological characteristics and 

heterogeneity of the pancreatic tumor cells have contributed to PC´s resistance to radiotherapy 

and chemotherapy 8. Postmortem examinations showed that about 90% of PC cases were 

compromised by distant invasion and metastasis 9. 

Several risk factors are associated with increased risk of pancreatic cancer, such as cigarette 

smoking 10, obesity 11, diabetes mellitus 12, chronic pancreatitis 13, family history of pancreatic 

cancer 14, as well as periodontal disease 15.  Pancreatic cancer is an aging-associated disease 

that develops mostly in adults between 60 and 80 years old 1,5 with a 1.5 fold higher incidence 

rate in men than in women 5. Yet, there is no standard screening program for patients at high 

risk nor a clinically significant biomarker for PC.  Early detection of PC is an instrumental step 

to reduce PC mortality rate. Much remains to be explored about the pathogenesis, progression, 

diagnostic and therapeutic approaches for this cancer. 

The pancreas consists of both an exocrine and an endocrine part. The exocrine component 

contributes to the digestion of proteins, fats, and carbohydrates, thereby enabling absorption; 

the pancreas's endocrine component produces and secretes different hormones such as insulin 

and glucagon. Pancreatic cancer mainly develops in the exocrine duct and originates from the 

epithelial cellular lining of pancreatic ducts. Pancreatic ductal adenocarcinoma (PDAC) is the 

most common form of malignant pancreatic tumors, and it is thought to arise from benign 

precursor lesions that are classified under pancreatic cystic neoplasms (PCN) 16.   
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1.1.2   Precursors to pancreatic cancer 

1.1.2.1   Pancreatic cystic neoplasm (PCN) 

Pancreatic cystic neoplasms (PCN) have become an increasingly common clinical finding as 

the cross-sectional imaging diagnostic modalities are becoming more sensitive 17–19. Estimates 

from several studies show that the prevalence can be as high as 40% in the general population 

18,20,21. There are over 30 entities of cystic lesions in the pancreas known today, Kloppel and 

colleagues 22 have classified these into four groups. These groups are classified by the cystic 

lesion biology and morphology as: neoplastic epithelial, neoplastic non-epithelial, non-

neoplastic epithelial, and non-neoplastic non-epithelial cystic lesions. Examples of 

common/uncommon PCNs are shown in Figure 1. The neoplastic epithelial lesions constitute 

around 90% of PCN 23 and include the intraductal papillary mucinous neoplasm (IPMN), 

mucinous cyst neoplasms (MCNs), serous cystadenomas (SCA), and others. These three major 

subgroups (IPMN, MCN, and SCA) represent about 85% of all PCN, of which IPMN 

constitutes up to 45% 24–26. 

 

 

 

 

Fig. 1. Classification of pancreatic cyst neoplasms (Adapted from Chandwani, R et 

al,. 2016 24) 
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1.1.2.2   Intraductal papillary mucinous neoplasm (IPMN) 

One of the most common PCNs is the intraductal papillary mucinous neoplasm (IPMN) 23,27. 

IPMN is epithelial neoplastic cyst in the pancreas's ductal systems distinguished by the 

papillary projection of proliferated epithelial cells and mucin secretion that leads to dilated 

pancreatic duct 28. IPMN can arise in the main and side branches of pancreatic ducts, in the 

head, body, and tails of the pancreas 23. They may be localized, diffused, or multifocal 

distributed in the pancreatic ducts 23. 

IPMNs are known by their association with pancreatic malignancies, and it is believed that the 

dysplastic pattern of IPMN can progress from low-grade dysplasia (LGD) to high-grade 

dysplasia (HGD) and then transform to invasive carcinoma 27,29,30. The growing incidence of 

IPMN and its clear tendency to progress to invasive cancer led to great attention and efforts to 

detect it in its benign stage (LGD), which fortunately constitute most cases and does not require 

surgical intervention 17,23,28. Preoperative diagnostic accuracy is still not entirely reliable, and 

the guidelines of whether to resect the pancreas surgically as a prophylactic procedure or follow 

up the case conservatively are still debated 17. Thus, the surgical resection and routine follow-

up are indicated for most IPMNs patients as the final diagnosis can only be obtained 

histologically after operation 17,28. 

1.1.2.3   Mucinous cyst neoplasm (MCN) 

MCNs are notably less frequent than IPMNs, with a majority of the incidence occurring in 

women 23. In two extensive studies, the average of patients' age at diagnosis was 45 and 48 

years, with a predominant incidence in women in 95% of the cases 31,32.  As with IPMNs, 

MCNs produce mucin within the cysts and are classified according to the degree of dysplasia 

of the epithelial lining into low-grade dysplasia and high-grade dysplasia. MCNs also can 

potentially develop invasive carcinoma, which is shown histologically in about a third of 

surgically resected cases 33,34. MCNs can be histologically distinguished from IPMN and SCA 

by ovarian-like stroma underlying the epithelial layer 32. 

1.1.2.4   Serous cyst adenoma (SCA)   

SCAs are benign microcysts, which are characterized histologically by their cuboidal 

epithelium and thick walls 24. The fluid within the cyst is clear and thin and featured by the 

absence of carcinoembryonic antigen (CEA), a marker found to be elevated in mucinous cysts 

(e.g., IPMN and MCN) 35,36. SCA constitutes approximately 16% of all PCNs, and they possess 

very diminished malignancy transformation risk or invasive behaviour 37. Thus, surgical 
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intervention is not recommended, as the risk of mortality of pancreatic resection (2%) exceeds 

the risk of malignant transformation (>1%) 17,38. 

1.1.3   Oral bacteria and pancreatic cancer  

Several studies over the past decades suggested that microbiota play oncogenic roles and 

influence therapeutic responses in different tumours 39–43. In a recent study by Pushalkar et al., 

the increased relative abundance of bacteria in the pancreas and microbial dysbiosis in the gut 

were found to promote pancreatic tumorigenesis and induce immune suppression both in mice 

and humans 44.  

Distinct strains of oral commensal bacteria were found to be associated with distal tumor 

microenvironments in colorectal cancer 45,46. Table 1 presents several epidemiological studies 

that have investigated the association between oral microbiota and pancreatic cancer. In a study 

conducted in 2017, oral microbial dysbiosis was noted to occur prior to the development of 

pancreatic cancer 47. Furthermore, the link between pancreatic cancer and a history of 

periodontal disease or periodontal disease pathogens has also been reported in case-controlled 

studies 15,48–50. Consistent with these observations, periodontal disease pathogens and an 

increased level of plasma antibodies against distinct oral pathogens were related to an increased 

risk of pancreatic cancer 49,50. Fan, X. et al., reported in a large American study that the relative 

abundance of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans in 

saliva was positively associated with the risk of PC. In contrast, the salivary richness in phylum 

Fusobacteria and its genus Leptotrichia appeared to decrease the risk of developing PC 50. The 

latter was found at the phylum and genus level without information shown at the species or 

strain level. 

1.1.4   Fusobacterium nucleatum and cancer immunity 

Despite the vast global microbial diversity, most microbiological studies have focused for 

decades on a few important taxa because of the challenges in cultivation and the high cost of 

genetic sequencing. This limited information makes the unstudied taxa all the more important 

51. Advanced sequencing techniques, such as metagenomics, revealed a vast diversity of 

microorganisms and helped to better understand many of these understudied microbes and their 

contribution to human diseases 52. Among them,  Fusobacteria phylum remains a prime 

example of understudied microorganisms 52.  
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Authors, 

Publication year 

Study 

country 

Sample type, 

Detection method 

Comparison, Sample size Outcome 

Farrell et al.,  

2012 53 

USA Saliva, 

16S gene qPCR 

Pancreatic cancer (n= 38) 

Chronic pancreatitis (n= 

27) 

Healthy control (n= 38) 

 

Significant variation of salivary microbiota between pancreatic 

cancer and healthy controls. 

G. adiacens and Streptococcus mitis showed significant variation 

between chronic pancreatitis and controls 

Michaud et al., 

2013 49 

Europe Blood antibodies, 

immunoblot array 

Pancreatic cancer (n= 405) 

Healthy control (n= 416) 

 

High antibodies level against Porphyromonas gingivalis 

associated with increased PC risk 

Torres et al.,  

2015 54 

USA Saliva, 

16S rRNA gene 

sequencing (V3-

V4) 

Pancreatic cancer (n= 8) 

Non-pancreatic 

disease/cancer (n= 78) 

Healthy control (n= 22) 

 

 

Higher ratio of Leptotrichia to Porphyromonas in pancreatic 

cancer compared to healthy and non-pancreatic diseases groups 

Fan et al., 

2016 50 

USA Oral wash, 

16S rRNA gene 

sequencing (V3-

V4) 

Pancreatic cancer (n= 361) 

Healthy controls (n= 317) 

Relative abundance of P. gingivalis and Aggregatibacter 

actinomycetemcomitans was associated with high risk of PC. 

Fusobacteria and its genus Leptotrichia appeared to decrease the 

risk of developing PC. 

Olson et al.,  

2017 55 

USA Saliva, 

16S rRNA gene 

sequencing (V4-

V5) 

Pancreatic cancer (n= 40) 

IPMN (n= 39) 

Healthy controls (n= 58) 

No significant difference in microbial diversity between PC and 

IPMN or controls. 

Higher relative proportions of Firmicutes in PC, and 

Proteobacteria in healthy controls 

Wei et al.,  

2020 56 

China Saliva, 

16S rRNA gene 

sequencing (V3-

V4) 

Pancreatic cancer (n= 41) 

Healthy controls (n= 69) 

Carriage of Streptococcus and Leptotrichia was associated with a 

higher risk of PC 

Table 1. Epidemiological or cohort studies investigating the association between oral microbiota and pancreatic 

cancer 
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Fusobacteria phylum is currently classified into two families: the Fusobacteriaceae family and the 

Leptotrichiaceae family 52. They are anaerobic, rod-shaped bacteria with unique metabolic capabilities; 

for example, Psychrilyobacter atlanticus possess metabolic capability that can break down nitramine 

explosives 57.  

Fusobacterium nucleatum (F. nucleatum) is an emerging pathogen species under the Fusobacteriaceae 

family, and one of the most abundant bacteria in the oral cavity 58–60. F. nucleatum is a highly 

heterogeneous species with four recognized subspecies; ss nucleatum, ss animalis, ss vincentii 

(fusiforme) and ss polymorphum. Among those four subspecies, ss nucleatum appears more frequently 

associated with disease 61,62. F. nucleatum is non-motile, gram-negative, opportunistic oral anaerobe 

and known to play an integral part in biofilm formation of dental plaque 63,64. With its unique elongated 

rod shape and multifunctional cell membranes proteins, F. nucleatum can adhere and coaggregate with 

many other microbial cells and build infrastructure bridge between early and late colonizers to create 

multispecies colonies 63–65. However,  F. nucleatum is normally found in the mouth and other mucosal 

sites and it has been isolated from healthy tissues, indicating that they are a natural commensal member 

of oral microbiome 59,60,66,67. Under diseased conditions, F. nucleatum is referred to as an opportunistic 

pathogen as it has been frequently isolated from diseased tissues. In fact,  F. nucleatum is one of the 

most commonly isolated oral bacteria in oral and extra-oral diseases 68–71. This association of F. 

nucleatum with many extra-oral diseases is accumulative, but the pathogenesis remains unclear 71.   

F. nucleatum is gaining attention from the scientific community recently due to its over-representation 

in many cancer types, such as oral, gastric, colon and pancreatic tumors  45,46,72–75. Although F. 

nucleatum´s etiopathological role remains unclear, several studies identified specific proteins as the 

driving virulence factors in the pathogenesis and tumorigenesis of F. nucleatum in colorectal cancer 76–

78. F. nucleatum Fap2 protein plays a critical immunomodulating role by binding to TIGIT receptors 

and inhibiting NK cell cytotoxicity and other T cells 77. The FadA is another active virulence factor that 

has been identified as a mediator for F. nucleatum adhesion and invasion through binding to E‐cadherin 

and activation of the β‐catenin signaling pathway, leading to elevated expression of inflammatory and 

proliferation factors in epithelia cells, which promotes colorectal carcinogenesis (Figure 2) 78. 

Consequently, further studies are needed to investigate the role of oral bacteria in IPMN and the immune 

responses against these bacteria, which may provide a potential opportunity for early diagnostic 

biomarkers for invasive pancreatic tumors. 
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1.2   COVID-19 

1.2.1   Global incidence and mortality  

In the 21st century, three emerging strains of the diverse coronaviruses group outbroke in humans from 

assumed zoonotic origin, causing mild to severe respiratory infections. The first outbreak was in 2002 

with severe acute respiratory syndrome coronavirus (SARS- CoV), the second was in 2012 with the 

Middle East respiratory syndrome coronavirus (MERS- CoV), and the third was in 2019 with severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ), which is the cause of coronavirus disease 

2019 (COVID-19) 79.  

The SARS-CoV-2 outbreak occurred in an unprecedented transmission rate since it was first reported 

in Wuhan, China in late December 2019  80 and was declared a pandemic by WHO on 11 March 2020 

81. As of April 2021, COVID-19´s global morbidity reached over 128 million confirmed cases and a 

mortality of up to 2.8 million from all six continents 82. 

1.2.2   SARS-CoV-2 infection and transmission 

Fig. 2. An overview of F. nucleatum virulence mechanisms. Fap2: fusobacterium 

autotransporter protein 2; FadA: Fusobacterium adhesin A; TIGIT: T‐cell immunoglobulin and 

ITIM domain; CEACAM1: carcinoembryonic antigen-related cell adhesion molecules 1; Gal‐

GalNAc: D‐galactose‐β (1–3)‐N‐acetyl‐D‐galactosamine; NK: natural killer; CRC: Colorectal 

cancer (REF 76-78). 
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Although genetic analysis showed that SARS-CoV-2  is a natural virus of animal origin and clustered 

with betacoronavirus found in bats and pangolin 83,84, there is no solid evidence yet about the 

intermediate host and when and where this novel virus transmitted to humans. As in SARS-CoV and 

MERS-CoV, SARS-CoV-2 targets the angiotensin-converting enzyme 2 (ACE2) receptor and utilizes 

it to enter host cells 85–87. The virus envelope spike (S) glycoprotein mediates SARS-CoV-2 entry into 

cells and is divided into two functional proteins: S1 protein (which includes the receptor-binding 

domain (RBD) mediates the binding to ACE2 receptor and S2 protein mediate the adhesion of SARS- 

CoV-2 to host cell membrane as shown in Figure 3 86,88. Biochemical analysis found that the spike 

protein of SARS-CoV-2 evolved and gained a higher binding affinity from its previous ancestor SARS-

CoV, which can explain the higher transmission ability of this later virus 89,90. However, another study 

reported a similar binding affinity of SARS-CoV-2  compared to the previous SARS- CoV 91. The oro-

nasal route is considered the main entry gates for SARS-CoV-2, and the ACE2 receptors have also been 

found to be highly expressed in the mucosa of nasal, pulmonary, as well as oral epithelial cells 92–95.  

 

 

Fig. 3. Schematic overview of SARS-CoV-2 spherical structure showing the S-trimer protein in 

pre-fusion conformation and N-protein (complexed with the viral RNA genome). TMPRSS2 

prime the S-protein to allow virus-cell fusion and cell entry. The S1 protein contains the RBD 

protein, which mediates binding to the ACE2 host cellular receptor. SARS-CoV-2: severe acute 

respiratory syndrome coronavirus 2; S-Protein: spike protein: N-Protein: nucleocapsid protein; 

RBD: receptor-binding domain; ACE2: angiotensin-converting; TMPRSS2: transmembrane 

serine protease 2 (adapted from REF 86-89). 
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1.2.3   Oral manifestations in COVID-19 

The SARS-CoV-2 transmission can occur through the oral cavity, and ACE2 receptors are expressed 

in the mucosal of oral epithelial cells 94,95. Recently, Huang et al. reported that even acellular and cellular 

salivary fractions from asymptomatic individuals may transmit SARS-CoV-2 ex vivo 95. This finding 

proposes a potential infection-related inflammatory response in the oral cavity organs and tissues, such 

as the salivary glands, tongue, and other oral sensory nerve endings. In fact, quantitative and qualitative 

impairment of taste bud sensitivity and dysfunctional gustatory responses are unique primary symptoms 

of SARS-CoV-2 infection, and is reported in 60% of patients with COVID-19. This impairment of taste 

bud sensitivity and dysfunctional gustatory responses were not reported in SARS and MERS infections 

96–98. Other case report studies observed various oral signs and symptoms related to SARS-CoV-2 

infection, such as non-specific oral ulcerations, desquamative gingivitis, and fungal candidiasis 98–100. 

However, there is no clear evidence whether these oral manifestations are directly related to SARS-

CoV-2  infection or only as consequences of the compromised immune system or adverse reactions of 

pharmacotherapy 101.  

1.2.4   Mucosal immunity to SARS-CoV-2   

Mucosal immunity forms the largest part of the entire immune system and refers to lymphocytes and 

antigen presenting cells in the epithelia of gastrointestinal and respiratory tracts 102. Antigen-activated 

B-lymphocytes, called plasma cells, secrete the antibodies into the lumen of the respiratory or 

gastrointestinal tract 102. Antibodies bind to microbes and toxins to prevent them from infecting cells 

through several effector mechanisms such as neutralization of microbes and toxins, coating (opsonize) 

microbes and transporting them for phagocytosis, and activation of the complement system that 

promote phagocytosis and destruction of microbes 102. The predominant antibody isotype produced in 

mucosal tissues is IgA (SIgA), and because of the large surface area of the mucosal organs, SIgA 

constitutes approximately 2 out of 3 grams of total antibody produced daily by healthy individuals 103. 

SIgA is produced by plasma cells in the lamina propria and migrated through the epithelial layer to bind 

to and neutralizes microbes in the lumen of mucosal organs 104. 

In general, the first protective barrier against microbial invasion is the mucosal surface of the respiratory 

and digestive systems 105. As SARS-CoV-2  primarily infects the upper respiratory tract, mucosal 

immune responses are expected to be induced via nasopharynx-associated lymphoid tissues, which 

refers to the adenoids, tonsils, and lining epithelium in the nasopharynx area 102. Other possible mucosal 

inductive sites were also reported in the bronchial lymphoid tissue in children 106, lacrimal duct 102,  and  
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the oral cavity 107. Bronchial lymphoid tissue is an effective inductive site of mucosal and systemic 

immune responses. However, it is normally involuted in the lungs of healthy adults 106, which raises a 

very important question about their potential instrumental contribution in the reported resistance to 

SARS-CoV-2  infection in children and adolescents patients 108. 
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1.3   Molecular signature and disease biomarker 

1.3.1   Biomarker definition 

Biomarker is not a concept that is exclusive to modern medicine. The need for biomarkers to diagnose 

illness and diseases has been recognized in the history of medicine for centuries. Before 400 BC, 

ancients physicians used body fluids to diagnose diseases. Urine that attract insects was used as a way 

to diagnose patients with boils 109. 

Empirical sophisticated diagnostic techniques have come a long way and installed biomarkers as an 

imperative cornerstone of the modern healthcare system. Biomarkers are a vital part of healthcare 

development, offering comprehensive application tools for disease diagnosis, prediction, and prognosis. 

The term of biomarker is defined at the joint leadership conference of the U.S. Food and Drug 

Administration (FDA) and the National Institutes of Health (NIH) 110 as “A defined characteristic that 

is measured as an indicator of normal biological processes, pathogenic processes, or biological 

responses to an exposure or intervention, including therapeutic interventions. Biomarkers may include 

molecular, histologic, radiographic, or physiologic characteristics. A biomarker is not a measure of how 

an individual feels, functions, or survives.” and categorized into  

• risk biomarker 

• diagnostic biomarker 

• monitoring biomarker 

• prognostic biomarker 

• predictive biomarker 

• pharmacodynamic/response biomarker 

• safety biomarker. 

There are many types of biomarkers. Molecular biomarkers (e.g., genes, proteins, metabolites), 

imaging-based biomarkers (e.g., magnetic resonance images (MRI), X-ray), and other measurable 

biomarkers such as body weight, temperature, and heart rate. Molecular biomarkers play an integral 

role in the diagnosis and therapy guidelines in the modern healthcare system and even more so with 

increasing advancement in laboratory technologies. 

1.3.2   Molecular biomarkers 

From nucleic acid to protein, molecular biomarkers have been routinely used to diagnose health 

conditions in the current healthcare system. The molecular biomarker is defined as the candidate 

biomarker for a disease that can be detected based on a platform such as genomics and proteomics 

technologies 111. Although the importance of molecular biomarkers has been increasingly recognized 

in recent years, their validation is a lengthy process, so that only a few biomarkers have so far been 

routinely used in clinical practice 112,113. As a general rule, the most sensitive and specific biomarker is 

of limited clinical use if it cannot be approached in the least invasive manner possible. 
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1.3.3   Current biomarkers for pancreatic cystic neoplasms 

The absence of a predictive biomarker and validated screening program for patients at high risk of 

developing PC limited the ability for early detection of PC. However, there is emerging data on 

biomarkers in the past two decades with the advancement of cross-sectional imaging modalities and 

molecular diagnostic techniques. Identification of the cystic precursor to PC is of primary importance 

for preventive intervention that would improve the poor prognosis of PC. 

1.3.3.1   Imaging-based biomarkers 

The advancement in cross-sectional imaging provided tremendous help in the detection of pancreatic 

neoplasms. The most commonly used imaging modalities are computed tomography (CT) and magnetic 

resonance imaging (MRI). MRI is the preferred method for fellow-up of PCN 114. Endoscopic 

ultrasonography (EUS) is commonly employed as an adjunct diagnostic tool to improve the accuracy 

of the initial cross-sectional imaging diagnosis or to obtain a cyst fluid sample for cytology and 

biochemical analysis 17. Despite advancements in cross-sectional imaging, radiographic imaging is not 

yet able to provide a definitive diagnosis24 

1.3.3.2   Cystic fluid analysis 

To improve the diagnostic accuracy of PCNs, EUS with fine-needle aspiration is commonly indicated 

as an adjunctive procedure for cytopathological examination 17. Multiple markers have been studied, 

including the carcinoembryonic antigen (CEA) 115, carbohydrate antigen (CA) 19-9 115, K-ras, and 

amylase. For example, CEA level is used for the differentiation between mucinous and non-mucinous 

PCN 36, an increased level of CA 19-9 is associated with the increased risk of malignancy 17 and the 

presence of amylase in the cystic fluid is a sign to exclude pseudocyst (as it has no connection with 

pancreatic ducts) 116. However, these tumor markers suffer from low sensitivity and specificity and are 

not considered as screening tools for PC 117. Similarly, cytological studies based on cyst fluid also 

appeared unreliable as the fluid may have low cellularity and extracellular contamination 116.  

1.3.3.3   Cancer mutation 

Cancers are driven by an accumulation of activated oncogenes and tumor suppressors by mutations or 

overexpression. Several gene mutations have been implicated in pancreatic neoplastic cyst formation. 

These include KRAS, p53, GNAS and SMAD4 118. KRAS and GNAS mutations showed high 
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sensitivity in detecting IPMN in highly sensitive techniques, such as next-generation sequencing (NGS) 

119, yet appeared suboptimal in their specificity for differentiating invasive pancreatic tumors 120. 

1.3.4   Current biomarkers for COVID-19 

The use of COVID-19 biomarkers in the current pandemic state is not only important for pandemic 

management but also are necessary for developing therapeutics and preventive measures including 

vaccination. Detection and quantification of the virus or the virus-specific antibodies are presently 

standard analytical methods used in COVID-19 diagnostics. There are mainly PCR-based assays 121 or 

immunological assays 122,123. The current gold standard for COVID-19 diagnosis is real-time RT-PCR 

detection of SARS-CoV-2 RNA using samples taken from upper respiratory (naso-pharyngeal swab 

with or without saliva )121,124. Methods based on saliva specimens were found as a sensitive alternative 

for diagnosis of asymptomatic and mild SARS-CoV-2 infection 125,126. Other tests based on the 

detection of viral antigens also exist as rapid screening alternatives 127 and the available tests today are 

both laboratory-based or self-performed using lateral-flow devices. 

1.3.4.1   Biomarkers of COVID-19 severity 

Routine laboratory tests applied in clinical settings have been analyzed to assess their association with 

COVID-19 severity. Elevated concentrations of serum biomarkers such as urea, creatinine, cystatin C 

were associated with severe cases of SARS-CoV-2 infection 128. Inflammatory biomarkers such as C-

reactive protein, procalcitonin, IL-6 were also reported to be significantly increased in severely infected 

patients compared with non-severe cases 93,129. Critical risk factors that could be used as biomarkers for 

COVID-19 severity include the patient's age, as higher ACE2 density was found to be positively 

correlated with age 93. However, all of the previous findings were based on retrospective and cross-

sectional studies that are vulnerable to confounding factors and need validation. 
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2 RESEARCH AIMS 

2.1   General aim 

The general aims for studies I and II of this thesis were to investigate molecular and immunological 

biomarkers (in plasma, cyst fluid, pancreatic tissue, and saliva) in patients diagnosed with PCN, and 

the microbiome association with a particular interest in IPMN. 

The aim for Study III was to investigate the potential use of salivary antibodies as an immunological 

marker for exposure to SARS-CoV-2. 

2.2   Specific aims 

Study I 

To investigate pancreatic cyst fluid and plasma in patients diagnosed with PCN, with regard to potential 

pancreatic microbiome, inflammation, and their relation to disease severity. 

Study II 

To investigate humoral responses to oral microbes in the plasma and saliva of patients diagnosed with 

PCN, including response to F. nucleatum Fap2. 

Study III 

To investigate salivary antibody immunity against viral proteins of SARS-CoV-2 in individuals with 

or without COVID-19 diagnosis. 
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3 MATERIALS AND METHODS 

3.1   Ethical considerations 

The studies performed here were approved by the Swedish Ethical Review Authority and complied 

with the declaration of Helsinki. All studies participants signed an informed consent form prior to study 

participation. 

3.2   Patients recruitment 

In study I, a total of 105 patients undergoing surgical pancreatectomy for suspicion of high-risk 

pancreatic cyst tumors were recruited from 2017-2019 at Karolinska University Hospital, Stockholm, 

Sweden.  In study II, a total of 109 plasma and 65 paired saliva samples (among them 8 saliva samples 

from healthy individuals) were collected from patients undergoing surgical pancreatectomy for 

suspicion of high-risk pancreatic cyst tumors were recruited from 2017-2019 at Karolinska University 

Hospital, Stockholm, Sweden. The patients in study I and II were stratified according to post-operative 

histopathological diagnosis into non-IPMN, LGD-IPMN, or HGD-IPMN and cancer. 

In study III, a total of 256 saliva samples were collected and stratified into three cohorts. Cohort 1: 

included 74 samples from convalescent COVID-19 patients collected from June to December 2020; 

cohort 2: included 147 samples from undiagnosed individuals who donated their saliva between May-

Nov 2020; cohort 3: included 35 pre-pandemic saliva samples collected from 2018 before the COVID-

19 outbreak. Samples in study III were collected from participants at Karolinska University Hospital, 

Dental Clinics of Karolinska Institutet and Eastman Institute, Stockholm, Sweden. 

3.3   Self-reported questionnaire and examination 

In study II, a self-reported questionnaire was used for all participants who donated saliva (n=57). This 

questionnaire was composed of eight closed-ended questions to assess the oral health condition. The 

questions were formulated based on the CDC-AAP case definitions for surveillance of periodontitis 130. 

Clinical dental health examination was performed for healthy participants (n= 8) without known PCN 

diagnosis to provide better control baseline data for subsequent analysis. The clinical dental 

examination was performed by recording full-mouth bleeding on probing (BOP), periodontal pocket 

depth (PPD), plaque index (PI) and number of missing teeth. 

In study III, self-reported questionnaire was used to collect COVID-19-related information from 

participants. Data related to potential exposures, including self-experienced symptoms in the past three 

months, and various risk factors such as travel abroad, exposure to COVID-19, clinical work were 

collected. 
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3.4   Blood collection 

In study I and II, peripheral venous blood sample were collected in 10 ml K2 EDTA tubes (BD 

Vacutainer) and centrifuged for plasma (20 min at 2000 g at room temperature) in Ficoll Paque PLUS 

(GE Life Sciences) density gradient according to manufacturers’ instructions, then immediately stored 

at −80C. 

3.5   Saliva collection 

In study II, stimulated saliva was collected in the evening before pancreas surgery. The participants 

were asked to refrain from eating, drinking, smoking, or using oral hygiene products for at least 1 h 

prior to collection. Stimulated whole saliva was collected in sterile 50 mL polyethylene tubes and stored 

immediately stored at −80◦C in 1.5 mL aliquots. 

In study III, unstimulated saliva samples were self-collected in 2 ml tubes using standardized 

instructions given by this study, processed and stored at -80C within 24 h. 

3.6   Microbial DNA extraction 

Microbial DNA was isolated in study I from intracystic fluid and plasma; and in study II from bacterial 

culture or saliva using ZymoBIOMICSTM DNA Mini Kit (Zymo Research, Irvine, California, United 

States) according to the manufacturer’s instructions in a biological class II flow cabinet. In study I, 

DNA was also extracted from formalin-fixed paraffin-embedded (FFPE) pancreatic tissue slices using 

the AllPrep DNA/RNA FFPE Kit (Qiagen, Sollentuna, Sweden). All isolated DNA were stored at 

−20C until use. 

3.7   Sequencing and quantification of bacterial DNA 

In studies I and II, universal bacterial 16S DNA gene copy number was amplified by TaqMan qPCR 

using forward primer: 5’- TGGAGCATGTGGTTTAATTCGA-3, and reverse primer: 5’-TGC 

GGGACTTAACCCAACA-3’, as 16S probe was 5’-FAM- 

CACGAGCTGACGACA[A/G]CCATGCA-TAMRA-3’ 131. In study I, cyst fluid microbial 

composition and diversity was assessed by full-length 16S rRNA gene sequencing PacBio Single 

Molecule, (GATC Biotech, Konstanz, Germany). For gDNA quantification of F. nucleatum (studies I, 

II), and Granulicatella adiacens (G. adiacens) (study I), primers used for F. nucleatum 16S gene were: 

Forward 5’-AGGGTGAACGGCCACAAG-3’, Reverse: 5’-TCTCGGTCCATTGTCCAATATTCC-

3’ and probe 5’-FAM- ACACGGCCCTTACTCC -TAMRA-3’ 132,133. Primers for G. adiacens were: 

Forward 5’- CAAGCTTCTGCTGATGGATGGA-3’, Reverse 5’-CTC 

AGGTCGGCTATGCATCAC-3’, and 5’-FAM- GCTAGTTGGTGAGGTAACGGCTCA-TAMRA-

3’ was used as probe 53. 
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3.8   Bacterial cell isolation and inactivation methods 

In study II, microbial strains of Streptococcus gordonii (S. gordonii), Streptococcus anginosus (S. 

anginosus), G. adiacens, and Escherichia coli (E. coli) were isolated from pancreatic cyst fluid samples 

by cultivation and identified by matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF MS; Bruker Daltonik, Bremen, Germany) profiling (Study I), thereafter 

cultured on blood and hematin agar plates. F. nucleatum and P. gingivalis strains were isolated from 

clinical blood cultures, identified in standard clinical routine by MALDI-TOF MS, then cultured on 

blood agar in anaerobic milieu 48 h at 37C. The plates were examined after 24 h. Liquid cultures were 

prepared with glycerol (20% final concentration) prior to storage at −80C. For enzyme-linked 

immunosorbent assay (ELISA) analysis, the bacteria preparations were pre-treated by heat-inactivation. 

Briefly, the bacteria pelleted at 1 × 109 CFU were washed twice in PBS and heat-inactivated at 85C 

for 1 h. The F. nucleatum Fap2 (Fap2) mimotope TELAYKHYFGT as described earlier by prediction 

analysis (The Immune Epitope Database (IEDB) Analysis Resource) 134, was synthesized to 98% purity 

(Genscript, New York, United States). Of note, an ELISA optimization was first performed with either 

heat- or formalin-inactivated bacteria preparations of F. nucleatum (1 × 108 CFU/ml and 1 ×107 

CFU/ml) and plasma samples in serial dilutions at 1:300, 1:1500, 1:7500. The heat inactivation method 

using F. nucleatum concentration of 5 × 107 CFU/mL, and 1:300 plasma dilution were selected for the 

subsequent analysis. 

3.9   ELISA assays 

In study II, the heat-killed bacterial preparations were prepared for antibody analysis. The F. nucleatum 

and Fap2 mimotope were the antigens of interest. P. gingivalis, S. gordonii, S. anginosus, and G. 

adiacens were included as oral bacterial controls and E. coli as a non-oral bacterial control. Indicated 

bacteria were diluted to the concentrations of 5 × 107 CFU/mL and the mimotope at 10 µg/mL in coating 

buffer (sodium carbonate buffer 50 mM, pH 9.6). Thereafter, 100 µL of the antigen were added to each 

well of a Nunc MaxiSorpTM 96-well ELISA plate (Sigma-Aldrich Sweden AB, Stockholm, Sweden) 

for overnight incubation at 4C. The antigen-coated wells were washed three times with washing buffer 

(0.05% Tween-20 [VWR Chemicals, Spånga, Sweden] in PBS), and blocked by blocking/dilution 

buffer (1% BSA and 2% goat serum [Sigma-Aldrich, G6767] in PBS) and incubated for another 1 h at 

37C and washed before addition of sample diluents. Diluents of plasma (1:300) and saliva (1:16) 

respectively, were added in duplicate wells and incubated for 1 h at 37C. After washing, the wells were 

incubated with a secondary antibody the goat anti-human IgG/IgA conjugated with peroxidase diluted 

1:10000 (Sigma-Aldrich Sweden AB) for 1 h at 37C. Thereafter the substrate tetramethylbenzidine 

(R&D Systems, Minneapolis, Minnesota, United States) was added for 20 min and the reaction was 

stopped with the addition of 0.16 M sulfuric acid. The optical density was read at 450 nm (Multiskan 

MS, Thermo Labsystems, Vantaa, Finland). The total IgG and IgA detection was also performed, in 

which samples were diluted to 1:125 000 and 1:5000 for plasma and saliva, respectively, and detected 

as above as for specific antibodies. Internal controls consisting of high-reactive and low-reactive 
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patients’ plasma or saliva samples were included in each plate. The OD measurements of internal 

controls were used to calculate the inter/intra-assay coefficient of variability for all runs. Inter-assay 

coefficient of variability was 8.5 ± 4.5% and 10.4 ± 2.3%, respectively, for plasma and saliva assays, 

while the intra-assay coefficients of variability were 8 ± 2.3% and 8.7 ± 1%, respectively.  

The competitive ELISA assay was performed by first coating plates with Fap2 peptide overnight. On 

the following day, saliva samples with or without pre-incubation with F. nucleatum, Fap2, or the E. coli 

control (2 h at 37◦C) were added to the Fap2 peptide-coated plates and analyzed as above (Figure 4). 

Total salivary and plasma IgA and IgG antibodies were determined using Human IgA/IgG ELISA Kit 

(Novus Biologicals, Colorado, United States) according to the manufacturer’s instructions. 

 

 

 

 

 

 

3.10   Multiplex bead-based immunoassay 

In study III, salivary antibodies against SARS-CoV-2 were analyzed by a multiplex bead-based 

immunoassay (Figure 5). The assay was optimized first using a panel of five SARS-CoV-2 protein 

antigens: 1) spike trimers comprising the prefusion-stabilized spike glycoprotein ectodomain 

Fig. 4. Principle for the competitive ELISA used in this thesis. Pre-incubated saliva sample with 

indicated antigen was added to the Fap2-coated wells and allowed for Ag-Ab competition. When 

the pre-incubated antigen outcompetes the Fap2-coated antigen in binding to the salivary 

antibodies, the concentration of the salivary antibodies will be low after wash (A). When the 

Fap2-coated antigen outcompetes the pre-incubated antigen in binding to the salivary antibodies, 

the concentration of the bound salivary antibodies will be high after wash (B). Fap2: 

fusobacterium autotransporter protein 2; Ag: antigen; Ab: antibody; OD: optical density. 
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(expressed in human embryonic kidney (HEK) cells and purified using a C-terminal Strep II tag); 2) 

spike S1 domain (Sino Biological, expressed in HEK and purified using a C-terminal His-tag); 3) spike 

RBD domain (expressed in HEK cells and purified using the mFc C tag); 4) full -length nucleocapsid 

protein; 5) nucleocapsid C-terminal chain. Both nucleocapsid were expressed in E.coli and purified 

using a C-terminal His-tag 135,136. All antigens were diluted to 80 µg/ml (in 2-(N-morpholino) ethane 

sulfonic acid buffer, pH 4.5 [SigmaAldrich]) and coated on specific color-coded bead type (bead ID) 

(MagPlex-C, Luminex corp.). The antigen-suspended beads were pooled to form the bead array. Anti-

human IgG (309-005-082, Jackson Immunoresearch) and anti-human IgA (800-338-9579, Bethyl) 

labeled on the surface of microspheres, and the EBV EBNA1 protein (ab138345, Abcam) were added 

as a sample loading control. Saliva samples were diluted 1:5 in assay buffer (3% bovine serum albumin 

[w/v], 5% non-fat milk [w/v], 1×PBS supplemented with 0.05 % [v/v], and Tween20 [VWR, 

437082Q]) and incubated with the bead array for 1 h at room temperature and 650 RPM rotation. 

Afterward, the antigen-antibody complexes were cross-linked by adding 0.2% paraformaldehyde 

(AlfaAesar, 30525-89-4) in PBS 0.05% Tween 20 (PBS-T) for 10 min at room temperature. Salivary 

IgG or IgA that were captured on the antigen-coated beads were detected by the fluorescent R-

phycoerythrin-conjugated anti-human IgG (H10104, Invitrogen) diluted 0.4 µg/mL, or R-

phycoerythrin-conjugated anti-human IgA (800-338-9579, Bethyl) diluted 0.2 µg/mL in PBS-T, 

respectively, after 30 minutes incubation at room temperature. The read-out consisted of the bead-based 

median fluorescent intensity (MFI) using a FlexMap3D system and the xPONENT software (Luminex 

Corp.).  

  

 

 

 

 

Fig. 5. Illustration principle for the multiplex bead-based immunoassay used in this thesis. The 

saliva sample is added to a mixture of color-indexed beads pre-coated with indicated antigens (A) 

to form antigen-antibody complexes (B). The captured salivary antibody is detected by the 

secondary antibody conjugated to transmit a reporter fluorescent signal. The emitted light from 

the reporter signal is measured and the antigen specificity is determined by the color of the bead. 
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3.11   Statistical analysis 

Statistical analyses were mainly performed with GraphPad Prism (version 8.00 for Windows, GraphPad 

Software, La Jolla, CA, United States). In study I, pairwise statistical comparisons between each group 

were performed using Fisher’s exact test (for qualitative parameters), and Kruskal–Wallis test with 

Dunn’s multiple comparisons correction (for quantitative parameters). Non-parametric Kruskal-Wallis 

test with Dunn’s multiple comparison test were performed to determine the quantitative difference of 

bacterial 16S DNA copies, IL-1β or LPS between the diagnosed groups. Spearman's analysis was used 

to correlate 16S DNA and IL-1β quantities. Mann-Whitney unpaired non-parametric test were used to 

compare 16S DNA or IL-1β levels between IPMN LGD and IPMN HGD and also to compare the levels 

of 16S DNA or IL-1β in relation to previous endoscopic procedures or use of proton-pump inhibitors. 

To analyse bacterial compositional, Chao1 richness, Shannon diversity or inverted Simpson’s indices 

were analyzed and compared using Kruskal-Wallis test with Dunn’s test. Bar plots were shown also for 

bacterial relative abundance at phylum and genus levels. Beta diversity between samples visualised by 

cluster heatmap, PCoA spider plots and bacterial co-occurrence network. Linear discriminant analysis 

effect size was used to identify the relative abundant bacterial genera between the three diagnosed 

groups (IPMN LGD, IPMN HGD and cancer). 

In study II, for quantitative and qualitative parameters Kruskal–Wallis test with Dunn’s multiple 

comparisons and Fisher’s exact test were used, respectively. To analyse the difference in antibody 

responses between the diagnosed groups, Kolmogorov–Smirnov test was used. The correlation between 

plasma IgG and salivary IgA reactivity against F. nucleatum was examined with Pearson analysis. 

Pearson analysis was used to correlate plasma IgG and salivary IgA reactivity against F. nucleatum. 

Pairwise Wilcoxon test was used for competitive ELISA. The ELISA cut-off values were computed 

based on the formula described by Frey et al. on healthy controls 137, values above the cut-off were 

assigned as reactive while those that were lower as non-reactive. 

In study III, visualizations of the multiplex bead array data were performed using R (version 3.6.1) with 

RStudio (version1.2.1335) and the additional packages heatmap (1.0.10), reshape2 (1.4.3). GraphPad 

Prism Version 9.0.0 was used for the non-parametric comparisons Mann-Whitney test and Spearman 

correlation analysis. For comparisons of binomial datasets, N1 Chi-squared test was used. A cutoff for 

positivity was calculated per antigen as the mean + 6X SD of 12 negative pre-pandemic reference 

samples carefully selected based on their signal intensity distribution. Descriptive analyses were made 

on clinical characteristics and the number of observations, presented as numbers and percentages. 
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4 RESULTS AND DISCUSSION 

4.1   Study I 

IPMN is a common type of PCN and has significant potential to malignant transformation. A better 

pre-operative identification of high risk IPMN patients will not only improve pancreatic cancer 

management but also reduce the burden of unnecessary surgical interventions and life-long follow-ups. 

4.1.1   Study population characteristics 

The clinical characteristics of all study subjects were grouped on diagnosis-basis and analyzed. In 

comparison, the cancer group is on average older than non-IPMN group and represented with higher 

serum concentrations of Ca 19-9, hemoglobin A1c, albumin, and bilirubin than non-IPMN. In general,  

Ca 19-9 is the only tumor biomarker approved by the Food and Drug Administration (FDA) and offers 

a sensitivity of 79% and specificity of 82% to detect tumor 138; but is not used to predict tumors in 

asymptomatic patients 139. There were more incidences of high levels of Ca 19-9 (>34 U/mL) in the 

cancer group (70.4%) compared to non-IPMN group (23.8%) in our study. 

4.1.2   Bacterial 16S DNA and IL-1β quantification 

Intracystic bacterial 16S DNA copies and IL-1β were found in this study to be associated with 

pancreatic cystic lesions severity. Compared to non-IPMN, higher bacterial 16S DNA copies and IL-

1β were found in IPMN (p=0.0042 and p=0.029, respectively) and cancer (p=0.0008, and p=0.0024, 

respectively). The elevated bacterial 16S DNA were also positively correlated with IL-1β levels. Post-

IPMN stratification into IPMN-LGD and IPMN-HGD showed higher IPMN-HGD intracystic bacterial 

16S DNA (p=0.02), and IL-1β (p=0.0032) compared to IPMN-LGD. This finding of elevated 

proinflammatory IL-1β agrees with other studies that reported IL-1β levels in the cyst fluid as a 

discriminative marker to predict IPMN dysplastic grade 140,141. The inflammatory mediator IL-1β is 

known to play a crucial role in cancer: promoting invasiveness, and metastasis via inflammation in the 

cancer microenvironment 142; alternatively, inflammation can be a result of ductal obstruction and 

release of damage-associated molecular pattern (DAMP) molecules. To investigate potential microbial 

involvement in this intracystic inflammatory response, bacterial 16S DNA and pathogen-specific 

molecules (LPS) were quantified in our study and correlated to IL-1β levels. The results of elevated 

cyst fluid IL-1β levels in high-risk IPMN group and their positive correlation with bacterial load and 

LPS levels suggest a local pancreatic microbiome role in the malignant progression of IPMN. 

4.1.3   Microbial compositional analysis 

To investigate bacterial composition in the IPMN cyst fluid and whether it is associated with disease 

progression, full-length bacterial 16S rRNA genes were measured using PacBio technology. This was 

performed on cyst fluid that passed quantity and quality control for content of 16S DNA. It was found 

that IPMN LGD (n=14) or IPMN HGD (n=8) and cancer (n=14) group revealed a highly diverse 

microbiome and showed no significant differences at operational taxonomic unit (OTU) level for Chao1 
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richness, Shannon diversity, or inverted Simpson's indices. At the phylum level, IPMN LGD was 

predominated by Proteobacteria, while IPMN HGD and cancer were either dominated by Firmicutes or 

Proteobacteria. At the genus level, the microbial composition was found to be heterogeneous with no 

distinctive profile according to the group diagnosis. 

4.1.4   Co-occurrence of oral pathogens in IPMN 

Visualization of bacterial species with network analysis revealed a co-occurrence of F. nucleatum with 

several other species, including Serratia marcescens, Parvimonas micra, Prevotella melaninogenica, 

Haemophilus parahaemolyticus, Streptococcus anginosus, Bergeyella sp. HMT322, Kluyvera 

ascorbata, Eikenella corrodens, Campylobacte concisus and Campylobacter showae, some of which 

appear to be members of the oral microbiome.  Other known oral members also showed high relative 

abundances, such as G. adiacens and S. anginosus. 

4.1.5   Relative abundant bacterial genera based on group diagnosis 

Result determined by LEfSe (Linear discriminant analysis Effect Size) that determines the features most 

likely to explain the differences between classes by coupling standard tests for statistical significance 

with additional tests encoding biological consistency and effect relevance 143 showed 15 relatively 

abundant bacterial genera in the three diagnosed IPMN groups. Among them, Granulicatella, Serratia, 

and Fusobacterium were found to be highly abundant in IPMN HGD compared to IPMN LGD and 

cancer. Subsequent validation analysis for F. nucleatum genome in IPMN cyst fluid and formalin-fixed 

tissue samples by a targeted qPCR assay showed increased F. nucleatum DNA copy number in the 

IPMN HGD and cancer group.  

The association of F. nucleatum in tumor tissue has been demonstrated previously in colorectal cancer, 

not only by PCR 73,144, but also via non-amplification-based techniques such as 16S ribosomal RNA 

(rRNA) fluorescent in situ hybridization (FISH) 145. The biology of tumor mechanisms - angiogenesis, 

permeability, immunosuppression, and the hypoxic condition may attract microbiome to inhabit the 

tumor microenvironment 146. Earlier studies indicate that F. nucleatum is an example of overrepresented 

microbiota in the tumor microenvironment with its anaerobic nature, and specific adhesion capabilities 

to Gal-GalNAc lectin expressed on the surface of host cells and many microbe cells 147. Abed and 

colleagues also demonstrated that F. nucleatum Fap2 protein can attach to tumor-overexpressed Gal-

GalNAc in colorectal cancer tissues in an experimental mouse model, suggesting that targeting Fap2 

may reduce F. nucleatum potentiation of cancer and offer diagnostic opportunity as well 76. 

4.1.6   Association of intracystic bacterial load and clinical parameters 

To investigate potential bacterial translocating factors, we correlated bacterial DNA quantity with 

routine clinical procedures. Prior invasive endoscopic procedures (IEP), use of proton-pump inhibitors 

(PPI) or antibiotics were examined. Our results showed an association between the intracystic bacterial 

quantity and the history of IEP (p=0.0017), which goes in line with another study that reported a higher 

bacterial amount in the pancreas of patients who required endoscopic biliary stenting to decompress 
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biliary obstruction compared with those who did not require the procedure 148. However, more IEP 

exposures did not increase the bacterial load, and the history of IEP was also not associated with the 

severity of IPMN. In fact, some IPMN HGD and cancer patients with no history of IEP were still having 

higher intracystic bacterial load than SCN group (p=0.0268), suggesting other bacterial translocation 

routes into the pancreas could exist. Furthermore, IL-1β or F. nucleatum increase was independent of 

the history of IEP and use of PPI. The routes of bacterial translocation are debated, but accesses via 

gastrointestinal tract, circulation, and lymphoid system have been proposed in the literature 149. As 

reported by Geller et al, although the presence of microbiota can be detected in 76% (86/113) of 

pancreatic cancer samples, it is also seen in 15% (3/20) of normal, non-pathologic pancreatic tissues150. 

Our result is interesting, giving a plausible scenario to the potential reflux phenomenon of bacteria from 

the duodenum to the pancreas, especially with the reported similarity of abundant bacteria in PC to 

bacterial flora of duodenum 151. Taken together, these findings suggest that the pancreas, a previously 

regarded sterile organ, may host microbiome niches, and the abundance of bacteria in pancreas may be 

a driver to chronic inflammation, generating an inflammatory microenvironment that may further 

promote tumor progression 152.   

 

4.2  Study II 

4.2.1   Characteristics of study subjects 

Plasma samples (n = 109) and saliva samples (n = 65) from patients undergoing pancreatic resection 

surgery and healthy controls were investigated. The samples were stratified into HGD-IPMN + cancer 

(n = 46), LGD-IPMN (n = 45), and non-IPMN (n = 18) based on the postoperative diagnosis confirmed 

by histopathology. In these cohorts, the non-IPMN participants were younger than IPMN groups and 

predominated by females, as they were mainly SCN patients. Diabetes was also found more common 

in the high-risk IPMN group (IPMN HGD and cancer), which is in agreement with a previous study 153. 

4.2.2   Plasma antibody responses to oral microbiota and high-risk IPMN 

This study's interest was to evaluate antibody reactivities to the enriched oral bacteria detected in study 

I. Plasma IgG binding antibodies showed stronger reactivity than IgA when tested against F. nucleatum, 

G. adiacens, S. gordonii, S. anginosus, E. coli and F. nucleatum Fap2 by indirect ELISA. High-risk 

IPMN (HGD-IPMN + cancer) group showed higher F. nucleatum (p<0.0006) and lower G. adiacens 

(p<0.002) antibody reactivities compared to non-IPMN group. To rule out potential IgG deficiency 

bias, total IgG levels were analyzed and showed comparable levels between all groups. 

4.2.3  Salivary antibody responses to oral microbiota and high-risk IPMN 

Our results showed that the HGD-IPMN + cancer group had higher IgA antibody reactivities to F. 

nucleatum, G. adiacens, and F. nucleatum Fap2 as compared to other groups (LGD-IPMN and control). 

Of note, the oral health periodontal data showed comparable oral health conditions across all groups. 
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The oral health data served to reduce the potential bias of periodontal disease involvement in the HGD-

IPMN + cancer group, as F. nucleatum is one of the principal periodontal pathogens 58,154. Since 

periodontitis is reported to be prevalent in adults 155, and the IPMN HGD + cancer group were shown 

in this cohort to be older in age than controls, correlation analysis between age and antibodies levels 

were performed to determine age as confounding factor. As shown in Figure 6, no significant 

correlations between age and IgG or IgA reactivities was found in both F. nucleatum and Fap2. 

However interestingly, salivary IgA reactivities to F. nucleatum Fap2 were shown to be positively 

correlated to F. nucleatum (r= 0.685, p<0.0001), which prompted us to validate salivary IgA bindings 

to F. nucleatum Fap2 and F. nucleatum whole cell in subsequent competitive ELISA.  

 

 

 

4.2.4  Confirming salivary IgA specificity to Fap2 mimotope 

To confirm the IgA specificity to Fap2, saliva samples pre-incubated with F. nucleatum or E. coli 

(control) and added to Fap2-coated wells in a competitive ELISA test. The binding was reduced with 

F. nucleatum pre-incubated samples by 24 ± 31% but not with the control E. coli (1.7 ± 25%). Our data 

also showed that IgA in saliva pre-incubated with Fap2 are also outcompeted for the binding to F. 

nucleatum whole cell (coating antigen), suggesting specific antagonist affinity to Fap2 (Figure 7). Our 

result adds to the current notions on host immune interaction with Fap2, which is considered as a 

virulence mechanism in the tumor microenvironment. Other Fap2´s virulence mechanisms include the 

inhibition of the cytotoxicity of NK and other immune cells via activating the TIGIT immune 

suppressor and invading immune system through targeting CEACAM1 to induce lymphocytic 

apoptosis 77,156. Moreover, F. nucleatum´s ability to interact with galactose lectin and endothelial 

cadherin expressed on various mammalian cell surfaces for adhesion and invasion via Fap2 and FadA 

proteins may explain its transmission ability and overrepresentation in distal organs 157–161. 

 

 

Fig. 6. No correlation between age and the circulating IgG plasma (A) or IgA salivary (B) antibody 

reactivity to F. nucleatum or Fap2 (C) determined by the two-tailed Pearson correlation test. 
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4.2.5  Salivary bacterial 16S DNA and antibody reactivities 

Targeted bacterial 16S DNA copy to F. nucleatum and G. adiacens determined by specific qPCR 

Taqman assays showed comparable gene copy levels between all groups. Universal 16S gene copy 

levels were comparable as well across the groups. Moreover, targeted and universal bacterial 16S DNA 

showed no correlations to the bacteria antibody reactivities.  

These findings bring many interesting questions whether mucosal secretory IgA antibodies in saliva 

has better specific immune recognition than plasma IgG to the virulent factor of oral commensals to 

create oral microbial symbiosis, or whether these translocated oral strains possess intrinsic feature able 

to mutate and hide their virulent factor to escape immune recognition when they disseminate to extra-

oral sites. A limitation of our study is that we targeted 16S DNA and antibodies to F. nucleatum at a 

species level, considering that the diversity of Fusobacterial community was reported to be significantly 

reduced when translocating from the oral cavity to gastric or colon sites, suggesting a selective 

translocation of Fusobacterial strains 162. However, the reported altered diversity of fusobacterial 

community between oral cavity and colon were found to be at the strain level rather than species or 

subspecies levels 163. Further studies to focus on the virulence factors of the transmissible strains are 

needed to understand their role in the transmission and exploit them for diagnostic and therapeutic 

purposes.  

 

4.3  Study III 

4.3.1  Salivary antibody responses to SARS-CoV-2 proteins 

A multiplexed bead-based immune array was used in this study. First, a panel of recombinant SARS-

CoV-2 viral proteins (n = 5) was tested to classify COVID-19 convalescence saliva samples (n = 74) 

from pre-pandemic saliva samples (n = 35). For salivary IgG, the absolute best accuracy was shown 

Fig. 7. Competitive ELISA with saliva samples pre-

incubated with or without Fap2 competitor, tested in F. 

nucleatum-coated wells. Statistical analysis was performed 

using Wilcoxon test for two related samples. **p < 0.01 
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with the spike trimers foldon (Spike-f, 88% sensitivity, 100% specificity) followed by the nucleocapsid 

C-terminus protein (NC-C, 66% sensitivity, 100% specificity). Of note, salivary IgA reactivities were 

weak in general in the convalescent samples, which were collected mainly 3-9 months after post-

symptoms-onset, and is consistent with previous studies reporting IgA antibody decay already 1 month 

post-symptoms-onset 164,165. In this study, a second cohort of undiagnosed individuals was invited to 

validate the utility of the salivary antibody assay. Here, the specific salivary antibody responses 

correlated significantly with recent Covid-19-like symptoms. Moreover, combining symptoms with 

other risk factors under past three months prior to sampling, such as 1) travel abroad; 2) contact with 

someone who has been confirmed to be infected with COVID-19; 3) clinical work, further increased 

IgG positivity frequency in this cohort (Figure 8A). This is not noted in those reporting no symptoms 

(Figure 8B).  

  

 

 

4.3.2  Salivary antibody tolerance to temperature and detergent pre-treatments 

The feasibility of using saliva in antibody testing was examined in a series of experimental simulations. 

Saliva inactivation by heat or detergent treatment for example at 56°C for 1 h or by 1% Triton X-100 

(Triton) showed a minor effect on antibody reactivity (the cut-off is based on 10 negative samples). In 

addition, storing samples at room temperature for one, two, or three days led to slight decay of antibody 

signals of positive samples.  

Unlike conventional ELISA, this study demonstrates that salivary antibodies to more than one antigen 

can be simultaneously detected by the bead-based multiplex array approach. Taken together, these 

results showed that the IgG specific to the SARS-CoV-2 spike full-length and nucleocapsid proteins in 

human saliva can be detected up to 9 months in mild COVID-19 cases by the bead-based array 

technology. This finding is in line with the SARS-CoV-2-specific IgG antibody duration in serum can 

be as long as up to 8 months after mild COVID-19, as reported recently in South Korea 166. However, 

further longitudinal study is warranted to rule out the possibility of reinfection.  Our data also showed 

that storing samples at room temperature has a minor effect on antibody reactivity, suggesting that a 

Fig. 8. Frequency of IgG 

positivity to spike trimer (Spike-f) 

or nucleocapsid (NC-C) in 

individuals with self-reported 

symptoms (A), or no symptoms 

(B) with additional risk factors 

such as traveling abroad, contact 

with COVID-19 diagnosed 

people, or clinical work. 
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non-invasive antibody test approach with self-collection at home may serve as a complementary 

alternative to conventional blood serology testing. 

The limitations of our study are the relatively small size and the cross-sectional design. Unobtained 

biographical information of undiagnosed group (such as age and gender) limited sub-analysis options 

to evaluate antibody positivity based on these bio-parameters. Another limitation is the different 

immunoassay methods we used to detect the antibody in serum and saliva. 
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5 CONCLUSIVE REMARKS 

Study I 

• Bacterial DNA and inflammation level in pancreas cysts correlate with the cystic neoplastic 

grade. 

• Pancreas microbiome of cyst fluid display co-occurrence and enrichment of oral bacterial 

species. 

• Bacteria DNA level in pancreas is associated to prior exposure to invasive endoscopic 

procedures. 

• Intracystic bacterial DNA testing of pancreas samples may have added values to guide the 

management of IPMN.  

• Reducing the pancreatic inflammatory microbiome may be a potential therapeutic strategy for 

IPMN patients. 

       

Study II 

• Elevated antibodies to oral pathogens (particularly F. nucleatum or Fap2 of F. nucleatum) in 

blood or salivary may reflect more severe form of IPMN. 

• Salivary IgA against oral pathogens holds promise as a non-invasive biomarker for early 

identification of high risk cystic tumors in the pancreas. 

 

Study III 

• Salivary antibody reactivity to SARS-CoV-2 spike and capsid antigens persist up to 9 months 

after mild COVID-19.  

• The virus-specific IgG in saliva appears stable and tolerates temperature and detergent pre-

treatments  

• A non-invasive saliva-based SARS-CoV-2 IgG test with home self-collection may serve as a 

complementary alternative to conventional blood test. 
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6 POINTS OF PERSPECTIVE 

Study I 

The findings of the study warrant further studies to investigate the viability and oncogenic potential of 

the pancreatic microbiome in co-culture or in-vivo experimental models. Experimental studies to assess 

antibiotic treatment or other antimicrobial strategies as a therapeutic approach to reduce the risk of 

tumor progression are of great clinical importance. The link between invasive endoscopic procedures 

and pancreas bacteria contamination needs not only confirmatory studies but also calls for intervention 

studies, which is important in prevention of bacteria dissemination. 

Study II 

In order to investigate the role of oral bacteria in IPMN progression, metagenomic and metabolomic 

profile analysis of paired saliva and cyst fluid samples are an important area to study. In addition, 

exploring the role of these enriched oral microbiotas, particularly F. nucleatum, in the pancreatic tumor 

microenvironment worth further studies. Moreover, potential F. nucleatum modulation to cell-mediated 

immunity has not been examined in pancreatic tumor patients, which warrants further studies. 

Study III 

We investigated the persistence of binding antibodies to SARS-CoV-2 in a cross-sectional design. 

Longitudinal studies to investigate the kinetics of salivary immunity and antibody neutralization 

efficiency over time are awaited with great interest. Determining the correlation of antibody responses 

to protection, in natural infection as well as vaccination is highly important. Using saliva and multiplex 

strategy to monitor the COVID-19 vaccination programs should simplify the investigations vaccine 

immunity of any given environment. The magnitude and composition of salivary immunity required 

for protection against SARS-CoV-2 infection should be studied in detail.   

 

 

 

  



 

30 

 

7 ACKNOWLEDGEMENTS 

The Ph.D. journey is a challenging task, and it can only be accomplished by the support, guidance, and 

encouragement of the people around you. I am genuinely grateful to everyone who has contributed to 

this fantastic Ph.D. journey. 

I wish to express special thanks to: 

My dedicated and inspiring, main supervisor Margaret Sällberg Chen for giving me the opportunity 

to carry out my doctoral project in her research group, and for all the guidance and encouragement 

throughout my Ph.D. education. I’m also thankful for your optimistic, amiable, and steady personality, 

which has positively impacted me. Moreover, for always finding time to help in your busy schedule. 

Tack så mycket! 

My co-supervisors: Marco Del Chiaro for sharing your expertise in pancreatology and fruitful 

discussions and ideas. Leif Jansson for helping me with the analysis in study II. Haleh Davanian for 

your advice, help, and cheerful personality; I always appreciate your feedback; thanks for always being 

so helpful and kind. 

My former and present research group members: Rogier Gaiser for your support and patience in the 

lab when I was starting up my thesis project. Asif Halimi for helping with surgical sample collections. 

Katie Healy for your help and always having a smile on your face. Liyan Lu for always being so kind 

and helpful. Giorgio Gabarrini for your valuable contribution to our study II. Michał J. Sobkowiak 

for sharing your expertise and valuable contribution in our study II, and for being always helpful and 

elegant. 

My study co-authors for the nice collaboration, feedback and expertise. Special gratitude to Carlos 

Fernández Moro, and Zeeshan Ateeb for working together compiling, translating study participants 

data in study I, II. Volkan Özenci for great collaboration in study II, and  Elisa Pin, Shaghayegh 

Bayati, and Annika Olsson, Soo Aleman for making our study III possible.  

The former and present colleagues in Sweden: Muteb Algharbi, Khaled Almanei, Nabeel Almotairy, 

Muath Alshayban, Abdelrahman Alhilou, Mohammed Alfahadi, Hasan Kadi, Hussam Najjar, 

Mhanna Aljabab, Ibrahim Alarfaj, Wael Albeshri, Ahmed Alsheikh, Faisal Alagrafi, Fahad 

Aleisa , Ziad Alquefel, Raed Aldosary, Ronaldo Lira-Júnior, Reuben Clark, Mirjam Majster, 

Maravelia Panagiota, David Greenwood, Kai Bao, Daniel Manoil, Marco Loreti, Nikolce 

Tudzarovski - to name just a few. I wish you all the best in your future endeavors. 

Special thanks to Judy Mielke for the proofreading and scientific comment on this thesis, Malin 

Ernberg and Inger Wårdh for support and guidance, Maura Krook at Karolinska University Hospital 



 

 31 

for organizing patient recruitment, and most importantly All participants who made these studies 

possible.  

My wonderful family, Mother, Father, Brothers, and Sisters, for your unconditional love and 

continuous support throughout my doctoral journey with special thanks to Ruba for helping in graphics 

improvement. Thank you so much! 

My doctoral education in Sweden would not have been possible without the generous scholarship from 

Prince Sattam Bin Abdulaziz University, Saudi Arabia, represented by the Saudi Cultural Office in 

Berlin, Germany. 

 

This work is dedicated to my beloved wife Mashael, and our son Mohammad, with my endless love 

and gratitude. I'm truly thankful for having you in my life; thank you for your unconditional love and 

care, for your patience and understanding. Together, we enjoyed every step along this journey and 

surely our future endeavors will be equally and more enjoyable. 

In the end, I hope I did not forget to mention anyone, and if I did unintentionally, be assured that you 

have my sincere gratitude! 

 

 

 

  

  

 

 

  



 

32 

8 REFERENCES 

1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA. Cancer J. Clin. 70, 7–30 

(2020). 

2. Socialstyrelsen. Statistikdatabas för dödsorsaker [database on the Internet]. Socialstyrelsen. 

Available at: http://www.socialstyrelsen.se/statistik/statistikdatabas/dodsorsaker.  

3. Torre, L. A. et al. Global cancer statistics, 2012. CA. Cancer J. Clin. 65, 87–108 (2015). 

4. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: The unexpected burden of 

thyroid, liver, and pancreas cancers in the united states. Cancer Res. 74, 2913–2921 (2014). 

5. Rawla, P., Sunkara, T. & Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, 

Etiology and Risk Factors. World J. Oncol. 10, 10–27 (2019). 

6. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality 

worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 68, 394–424 (2018). 

7. Kamisawa, T., Wood, L. D., Itoi, T. & Takaori, K. Pancreatic cancer. Lancet 388, 73–85 

(2016). 

8. Johnson, B. A., Yarchoan, M., Lee, V., Laheru, D. A. & Jaffee, E. M. Strategies for increasing 

pancreatic tumor immunogenicity. Clin. Cancer Res. 23, 1656–1669 (2017). 

9. Kamisawa, T., Isawa, T., Koike, M., Tsuruta, K. & Okamoto, A. Hematogenous Metastases of 

Pancreatic Ductal Carcinoma. Pancreas 11, 345–349 (1995). 

10. Iodice, S., Gandini, S., Maisonneuve, P. & Lowenfels, A. B. Tobacco and the risk of pancreatic 

cancer: A review and meta-analysis. Langenbeck’s Arch. Surg. 393, 535–545 (2008). 

11. Arslan, A. A. et al. Anthropometric measures, body mass index, and pancreatic cancer: A 

pooled analysis from the pancreatic cancer cohort consortium (PanScan). Arch. Intern. Med. 

170, 791–802 (2010). 

12. Bosetti, C. et al. Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis 

from the International Pancreatic Cancer Case-Control Consortium. Ann. Oncol. 25, 2065–

2072 (2014). 

13. Raimondi, S., Lowenfels, A. B., Morselli-Labate, A. M., Maisonneuve, P. & Pezzilli, R. 

Pancreatic cancer in chronic pancreatitis; Aetiology, incidence, and early detection. Best Pract. 

Res. Clin. Gastroenterol. 24, 349–358 (2010). 

14. Lynch, H. T., Brand, R. E., Deters, C. A. & Fusaro, R. M. Update on familial pancreatic 

cancer. Curr. Gastroenterol. Rep. 3, 121–128 (2001). 

15. Chang, J. S., Tsai, C.-R., Chen, L.-T. & Shan, Y.-S. Investigating the Association Between 

Periodontal Disease and Risk of Pancreatic Cancer. Pancreas 45, 134–41 (2016). 

16. Hruban, R. H. et al. Pancreatic intraepithelial neoplasia: A new nomenclature and classification 

system for pancreatic duct lesions. Am. J. Surg. Pathol. 25, 579–586 (2001). 

17. Del Chiaro, M. et al. European evidence-based guidelines on pancreatic cystic neoplasms. Gut 

67, 789–804 (2018). 



 

 33 

18. de Jong, K. et al. High prevalence of pancreatic cysts detected by screening magnetic 

resonance imaging examinations. Clin. Gastroenterol. Hepatol. 8, 806–811 (2010). 

19. Laffan, T. A. et al. Prevalence of unsuspected pancreatic cysts on MDCT. Am. J. Roentgenol. 

191, 802–807 (2008). 

20. Girometti, R. et al. Incidental pancreatic cysts on 3D turbo spin echo magnetic resonance 

cholangiopancreatography: Prevalence and relation with clinical and imaging features. Abdom. 

Imaging 36, 196–205 (2011). 

21. Chang, Y. R. et al. Incidental pancreatic cystic neoplasms in an asymptomatic healthy 

population of 21,745 individuals Large-scale, single-center cohort study. Med. (United States) 

95, e5535 (2016). 

22. Klöppel, G. & Kosmahl, M. Cystic Lesions and Neoplasms of the Pancreas: The Features Are 

Becoming Clearer. Pancreatology 1, 648–655 (2001). 

23. Valsangkar, N. P. et al. 851 resected cystic tumors of the pancreas: A 33-year experience at the 

Massachusetts General Hospital. Surg. (United States) 152, 4–12 (2012). 

24. Chandwani, R. & Allen, P. J. Cystic Neoplasms of the Pancreas. Annu. Rev. Med. 67, 45–57 

(2016). 

25. Le Borgne, J., de Calan, L. & Partensky, C. Cystadenomas and Cystadenocarcinomas of the 

Pancreas. Ann. Surg. 230, 152 (1999). 

26. Del Chiaro, M. et al. European experts consensus statement on cystic tumours of the pancreas. 

Dig. Liver Dis. 45, 703–711 (2013). 

27. Aronsson, L., Andersson, R. & Ansari, D. Intraductal papillary mucinous neoplasm of the 

pancreas–epidemiology, risk factors, diagnosis, and management. Scand. J. Gastroenterol. 52, 

803–815 (2017). 

28. Tanaka, M. et al. International consensus guidelines 2012 for the management of IPMN and 

MCN of the pancreas. Pancreatology 12, 183–197 (2012). 

29. Crippa, S. et al. Low progression of intraductal papillary mucinous neoplasms with worrisome 

features and high-risk stigmata undergoing non-operative management: A mid-term follow-up 

analysis. Gut 66, 495–506 (2017). 

30. Felsenstein, M. et al. IPMNs with co-occurring invasive cancers: Neighbours but not always 

relatives. Gut 67, 1652–1662 (2018). 

31. Pylayeva-Gupta, Y. 基因的改变NIH Public Access. Bone 23, 1–7 (2011). 

32. Yamao, K. et al. Clinicopathological features and prognosis of mucinous cystic neoplasm with 

ovarian-type stroma: A multi-institutional study of the Japan pancreas society. Pancreas 40, 

67–71 (2011). 

33. Jang, K. T. et al. Clinicopathologic characteristics of 29 invasive carcinomas arising in 178 

pancreatic mucinous cystic neoplasms with ovarian-type stroma: Implications for management 

and prognosis. Am. J. Surg. Pathol. 39, 179–187 (2015). 

34. Park, J. W. et al. Mucinous cystic neoplasm of the pancreas: Is surgical resection 



 

34 

recommended for all surgically fit patients? Pancreatology 14, 131–136 (2014). 

35. Thornton, G. D. et al. Endoscopic ultrasound guided fine needle aspiration for the diagnosis of 

pancreatic cystic neoplasms: A meta-analysis. Pancreatology 13, 48–57 (2013). 

36. Dumonceau, J. M. et al. Indications, results, and clinical impact of endoscopic ultrasound 

(EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy 

(ESGE) Clinical Guideline - Updated January 2017. Endoscopy 49, 695–714 (2017). 

37. Jais, B. et al. Serous cystic neoplasm of the pancreas: A multinational study of 2622 patients 

under the auspices of the International Association of Pancreatology and European Pancreatic 

Club (European Study Group on Cystic Tumors of the Pancreas). Gut 65, 305–312 (2016). 

38. King, J. C. et al. Pancreatic serous cystadenocarcinoma: A case report and review of the 

literature. J. Gastrointest. Surg. 13, 1864–1868 (2009). 

39. Bultman, S. J. Emerging roles of the microbiome in cancer. Carcinogenesis 35, 249–255 

(2014). 

40. Helmink, B. A., Khan, M. A. W. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The 

microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019). 

41. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut 

microbiota. Science (80-. ). 350, 1079–1084 (2015). 

42. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against 

epithelial tumors. Science (80-. ). 359, 91–97 (2018). 

43. Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical 

applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019). 

44. Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of 

innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018). 

45. Fukugaiti, M. H. et al. High occurrence of fusobacterium nucleatum and clostridium difficile in 

the intestinal microbiota of colorectal carcinoma patients. Brazilian J. Microbiol. 46, 1135–

1140 (2015). 

46. Warren, R. L. et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 

1, 16 (2013). 

47. Olsen, I. Oral microbial dysbiosis precedes development of pancreatic cancer. J. Oral 

Microbiol. 9, 1374148 (2017). 

48. Michaud, D. S., Joshipura, K., Giovannucci, E. & Fuchs, C. S. A prospective study of 

periodontal disease and pancreatic cancer in US male health professionals. J. Natl. Cancer Inst. 

99, 171–175 (2007). 

49. Michaud, D. S. et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large 

European prospective cohort study. Gut 62, 1764–1770 (2013). 

50. Fan, X. et al. Human oral microbiome and prospective risk for pancreatic cancer: A 

population-based nested case-control study. Gut 67, 120–127 (2018). 



 

 35 

51. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially 

expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017). 

52. Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum — symbiont, opportunist and 

oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019). 

53. Farrell, J. J. et al. Variations of oral microbiota are associated with pancreatic diseases 

including pancreatic cancer. Gut 61, 582–588 (2012). 

54. Torres, P. J. et al. Characterization of the salivary microbiome in patients with pancreatic 

cancer. PeerJ 2015, 1–16 (2015). 

55. Olson, S. H. et al. The oral microbiota in patients with pancreatic cancer, patients with IPMNs, 

and controls: a pilot study. Cancer Causes Control 28, 959–969 (2017). 

56. Wei, A. L. et al. Oral microbiome and pancreatic cancer. World J. Gastroenterol. 26, 7679–

7692 (2020). 

57. Zhao, J. S., Manno, D. & Hawari, J. Psychrilyobacter atlanticus gen. nov., sp. nov., a marine 

member of the phylum Fusobacteria that produces H2 and degrades nitramine explosives under 

low temperature conditions. Int. J. Syst. Evol. Microbiol. 59, 491–497 (2009). 

58. Moore, W. E. C. & Moore, L. V. H. The bacteria of periodontal diseases. Periodontol. 2000 5, 

66–77 (1994). 

59. Teles, F. R. F. et al. RNA-oligonucleotide quantification technique (ROQT) for the 

enumeration of uncultivated bacterial species in subgingival biofilms. Mol. Oral Microbiol. 26, 

127–139 (2011). 

60. Griffen, A. L. et al. Distinct and complex bacterial profiles in human periodontitis and health 

revealed by 16S pyrosequencing. ISME J. 6, 1176–1185 (2012). 

61. Lourenço, T. G. B. et al. Microbial signature profiles of periodontally healthy and diseased 

patients. J. Clin. Periodontol. 41, 1027–1036 (2014). 

62. Gharbia, S. E., Shah, H. N., Lawson, P. A. & Haapasalo, M. The distribution and frequency of 

Fusobacterium nucleatum subspecies in the human oral cavity. Oral Microbiol. Immunol. 5, 

324–327 (1990). 

63. Kolenbrander, P. E., Palmer, R. J., Periasamy, S. & Jakubovics, N. S. Oral multispecies biofilm 

development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8, 471–480 (2010). 

64. Kolenbrander, P. E. et al. Bacterial interactions and successions during plaque development. 

Periodontol. 2000 42, 47–79 (2006). 

65. Kolenbrander, P. E. & London, J. Adhere today, here tomorrow: Oral bacterial adherence. J. 

Bacteriol. 175, 3247–3252 (1993). 

66. Aagaard, K. et al. A metagenomic approach to characterization of the vaginal microbiome 

signature in pregnancy. PLoS One 7, (2012). 

67. Segata, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven 

mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13, (2012). 



 

36 

68. Bolstad, A. I., Jensen, H. B. & Bakken, V. Taxonomy, biology, and periodontal aspects of 

Fusobacterium nucleatum. Clin. Microbiol. Rev. 9, 55–71 (1996). 

69. Didilescu, A. C. et al. Investigation of six selected bacterial species in endo-periodontal 

lesions. Int. Endod. J. 45, 282–293 (2012). 

70. Siqueira, J. F., Rôças, I. N., Paiva, S. S. M., Magalhães, K. M. & Guimarães-Pinto, T. 

Cultivable bacteria in infected root canals as identified by 16S rRNA gene sequencing. Oral 

Microbiol. Immunol. 22, 266–271 (2007). 

71. Han, Y. W. & Wang, X. Mobile microbiome: Oral bacteria in extra-oral infections and 

inflammation. J. Dent. Res. 92, 485–491 (2013). 

72. Mitsuhashi, K. et al. Association of Fusobacterium species in pancreatic cancer tissues with 

molecular features and prognosis. Oncotarget 6, 7209–7220 (2015). 

73. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal 

carcinoma. Genome Res. 22, 292–298 (2012). 

74. Hsieh, Y. Y. et al. Increased Abundance of Clostridium and Fusobacterium in Gastric 

Microbiota of Patients with Gastric Cancer in Taiwan. Sci. Rep. 8, 1–11 (2018). 

75. Al-Hebshi, N. N. et al. Inflammatory bacteriome featuring Fusobacterium nucleatum and 

Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci. Rep. 

7, 1–10 (2017). 

76. Abed, J. et al. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma 

Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe 20, 215–225 

(2016). 

77. Gur, C. et al. Binding of the Fap2 Protein of Fusobacterium nucleatum to Human Inhibitory 

Receptor TIGIT Protects Tumors from Immune Cell Attack. Immunity 42, 344–355 (2015). 

78. Rubinstein, M. R. et al. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by 

Modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin. Cell Host Microbe 14, 

195–206 (2013). 

79. Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. 

Microbiol. 17, 181–192 (2019). 

80. Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. 

Med. 382, 727–733 (2020). 

81. World Health Organization. Coronavirus disease 2019 (COVID-19)- Situation Report – 51. 

(2019). Available at: https://www.who.int/docs/default-source/coronaviruse/situation-

reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10.  

82. University of Johns Hopkins. Coronavirus Resource Center. Available at: 

https://coronavirus.jhu.edu/map.html.  

83. Paraskevis, D., Kostaki, E. G., Magiorkinis, G., Panayiotakopoulos, G. & Tsiodras, S. Full-

genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of 

emergence as a result of a recent recombination event. bioRxiv (2020). 

doi:10.1101/2020.01.26.920249 



 

 37 

84. Zhang, T., Wu, Q. & Zhang, Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the 

COVID-19 Outbreak. Curr. Biol. 30, 1346–1351.e2 (2020). 

85. Gui, M. et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal 

a prerequisite conformational state for receptor binding. Cell Res. 27, 119–129 (2017). 

86. Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is 

Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271–280.e8 (2020). 

87. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS 

coronavirus. Nature 426, 450–454 (2003). 

88. Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U. S. A. 117, 

(2020). 

89. Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 

(2020). 

90. Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor Recognition by the Novel 

Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS 

Coronavirus. J. Virol. 94, 1–9 (2020). 

91. Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike 

Glycoprotein. Cell 181, 281–292.e6 (2020). 

92. Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells 

together with innate immune genes. Nat. Med. 26, 681–687 (2020). 

93. Lukassen, S. et al.  SARS ‐CoV‐2 receptor ACE 2 and TMPRSS 2 are primarily expressed in 

bronchial transient secretory cells . EMBO J. 39, 1–15 (2020). 

94. Zhong, M. et al. ACE2 and Furin Expressions in Oral Epithelial Cells Possibly Facilitate 

COVID-19 Infection via Respiratory and Fecal–Oral Routes. Front. Med. 7, 1–10 (2020). 

95. Huang, N. et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. (2021). 

doi:10.1038/s41591-021-01296-8 

96. Mariz, B. A. L. A., Brandão, T. B., Ribeiro, A. C. P., Lopes, M. A. & Santos-Silva, A. R. New 

Insights for the Pathogenesis of COVID-19-Related Dysgeusia. J. Dent. Res. 99, 1206 (2020). 

97. Costa, K. V. T. d. et al. Olfactory and taste disorders in COVID-19: a systematic review. Braz. 

J. Otorhinolaryngol. 86, 781–792 (2020). 

98. Amorim dos Santos, J. et al. Oral Manifestations in Patients with COVID-19: A Living 

Systematic Review. J. Dent. Res. 100, 141–154 (2021). 

99. Cebeci Kahraman, F. & Çaşkurlu, H. Mucosal involvement in a COVID-19-positive patient: A 

case report. Dermatol. Ther. 33, (2020). 

100. Martín Carreras-Presas, C., Amaro Sánchez, J., López-Sánchez, A. F., Jané-Salas, E. & 

Somacarrera Pérez, M. L. Oral vesiculobullous lesions associated with SARS-CoV-2 infection. 

Oral Dis. 27, 710–712 (2021). 

101. Dziedzic, A. & Wojtyczka, R. The impact of coronavirus infectious disease 19 (COVID-19) on 



 

38 

oral health. Oral Dis. 27, 703–706 (2021). 

102. Russell, Michael W and Mestecky, Jiri and Strober, Warren and Lambrecht, Bart and Kelsall, 

Brian L. and Cheroutre, H. Overview : the mucosal immune system. Mucosal immunology 

(Academic Press, Elsevier, 2015). 

103. Russell, M. W. Biological functions of IgA. Mucosal Immune Def. Immunoglobulin A 144–172 

(2007). doi:10.1007/978-0-387-72232-0_6 

104. Bunker, J. J. & Bendelac, A. IgA Responses to Microbiota. Immunity 49, 211–224 (2018). 

105. Russell, M. W., Moldoveanu, Z., Ogra, P. L. & Mestecky, J. Mucosal Immunity in COVID-19: 

A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front. Immunol. 11, 1–5 (2020). 

106. Tschernig, T. & Pabst, R. Bronchus-associated lymphoid tissue (BALT) is not present in the 

normal adult lung but in different diseases. Pathobiology 68, 1–8 (2000). 

107. Czerkinsky, C., Çuburu, N., Kweon, M.-N., Anjuere, F. & Holmgren, J. Sublingual 

vaccination. Hum. Vaccin. 7, 110–114 (2011). 

108. Bhuiyan, M. U. et al. Epidemiology of COVID-19 infection in young children under five 

years: A systematic review and meta-analysis. Vaccine 39, 667–677 (2021). 

109. Berger, D. A brief history of medical diagnosis and the birth of the clinical laboratory. Med. 

Lab. Obs. 31, 28–30, 32, 34–40 (1999). 

110. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) 

Resource. Silver Spring (MD): Food and Drug Administration (US (published by National 

Institutes of Health (US), Bethesda (MD), 2016). 

111. Lewin, D. A. & Weiner, M. P. Molecular biomarkers in drug development. Drug Discov. 

Today 9, 976–983 (2004). 

112. Holland, R. L. What makes a good biomarker? Adv. Precis. Med. 1, 66 (2016). 

113. Paul, A., Comabella, M. & Gandhi, R. Biomarkers in multiple sclerosis. Cold Spring Harb. 

Perspect. Med. 9, (2019). 

114. Sodickson, A. et al. Recurrent CT, cumulative radiation exposure, and associated radiation-

induced cancer risks from CT of adults. Radiology 251, 175–184 (2009). 

115. Zhang, Y. et al. Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic 

cancer: A meta-analysis. Int. J. Clin. Exp. Med. 8, 11683–11691 (2015). 

116. Brugge, W. R. Should all pancreatic cystic lesions be resected? Cyst-fluid analysis in the 

differential diagnosis of pancreatic cystic lesions: A meta-analysis. Gastrointest. Endosc. 62, 

390–391 (2005). 

117. Gui, J. C., Yan, W. L. & Liu, X. D. CA19-9 and CA242 as tumor markers for the diagnosis of 

pancreatic cancer: a meta-analysis. Clin. Exp. Med. 14, 225–233 (2014). 

118. Izeradjene, K. et al. KrasG12D and Smad4/Dpc4 Haploinsufficiency Cooperate to Induce 

Mucinous Cystic Neoplasms and Invasive Adenocarcinoma of the Pancreas. Cancer Cell 11, 

229–243 (2007). 



 

 39 

119. Singhi, A. D. et al. Preoperative next-generation sequencing of pancreatic cyst fluid is highly 

accurate in cyst classification and detection of advanced neoplasia. Gut 2131–2141 (2017). 

doi:10.1136/gutjnl-2016-313586 

120. Fuccio, L. et al. The role of K-ras gene mutation analysis in EUS-guided FNA cytology 

specimens for the differential diagnosis of pancreatic solid masses: A meta-analysis of 

prospective studies. Gastrointest. Endosc. 78, 596–608 (2013). 

121. Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. 

Eurosurveillance 25, 1–8 (2020). 

122. Seydoux, E. et al. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of 

Potent Neutralizing Antibodies with Limited Somatic Mutation. Immunity 53, 98–105.e5 

(2020). 

123. Gibbons, A. et al. Validation of a SARS-CoV-2 spike protein ELISA for use in contact 

investigations and sero-surveillance. bioRxiv 2020.04.24.057323 (2020). 

doi:10.1101/2020.04.24.057323 

124. Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 

581, 465–469 (2020). 

125. Teo, A. K. J. et al. Saliva is more sensitive than nasopharyngeal or nasal swabs for diagnosis of 

asymptomatic and mild COVID-19 infection. Sci. Rep. 11, 1–8 (2021). 

126. Wyllie, A. L. et al. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. 

N. Engl. J. Med. 383, 1283–1286 (2020). 

127. Mulchandani, R. et al. Accuracy of UK Rapid Test Consortium (UK-RTC) ‘abC-19 Rapid 

Test’ for detection of previous SARS-CoV-2 infection in key workers: Test accuracy study. 

BMJ 371, 1–12 (2020). 

128. Xiang, J. et al. Potential biochemical markers to identify severe cases among COVID-19 

patients. medRxiv 19, 1–10 (2020). 

129. Zeng, M., Shen, S., Zhang, Y. & Liu, S. Combinatorial Assessment of Serum Inflammation 

Reactants in Patients with Acute Urticaria Accompanied by Systemic Symptoms. Indian J. 

Dermatol. 65, 67–68 (2020). 

130. Eke, P. I. et al. Self-reported measures for surveillance of periodontitis. J. Dent. Res. 92, 1041–

1047 (2013). 

131. Yang, S. et al. Quantitative Multiprobe PCR Assay for Simultaneous Detection and 

Identification to Species Level of Bacterial Pathogens. 40, 3449–3454 (2002). 

132. Gaiser, R. A. et al. Enrichment of oral microbiota in early cystic precursors to invasive 

pancreatic cancer. Gut 68, 2186–2194 (2019). 

133. Pessi, T. et al. Bacterial signatures in thrombus aspirates of patients with myocardial infarction. 

Circulation 127, 1219–1228 (2013). 

134. Guevarra, L. A. et al. Immunogenicity of a Fap2 peptide mimotope of Fusobacterium 

nucleatum and its potential use in the diagnosis of colorectal cancer. Infect. Agent. Cancer 13, 

1–6 (2018). 



 

40 

135. Tegel, H. et al. High-throughput protein production - Lessons from scaling up from 10 to 288 

recombinant proteins per week. Biotechnol. J. 4, 51–57 (2009). 

136. Kanje, S. et al. Improvements of a high-throughput protein purification process using a 

calcium-dependent setup. Protein Expr. Purif. 175, 105698 (2020). 

137. Frey, A., Di, J. & Zurakowski, D. A statistically defined endpoint titer determination method 

for immunoassays .pdf. 35–41 (1998). 

138. Goonetilleke, K. S. & Siriwardena, A. K. Systematic review of carbohydrate antigen (CA 19-

9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 33, 266–

270 (2007). 

139. Ballehaninna, U. K. & Chamberlain, R. S. The clinical utility of serum CA 19-9 in the 

diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based 

appraisal. J. Gastrointest. Oncol. 3, 105–119 (2012). 

140. Maker, A. V. et al. Cyst Fluid Interleukin-1  (IL1 ) Levels Predict the Risk of Carcinoma in 

Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clin. Cancer Res. 17, 1502–1508 

(2011). 

141. Simpson, R. E. et al. Pancreatic Fluid Interleukin-1β Complements Prostaglandin E2 and 

Serum Carbohydrate Antigen 19-9 in Prediction of Intraductal Papillary Mucinous Neoplasm 

Dysplasia. Pancreas 48, 1026–1031 (2019). 

142. Kaneko, N., Kurata, M., Yamamoto, T., Morikawa, S. & Masumoto, J. The role of interleukin-

1 in general pathology. Inflamm. Regen. 39, 1–16 (2019). 

143. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 

(2011). 

144. Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal 

carcinoma. Genome Res. 22, 299–306 (2012). 

145. Yu, J. et al. Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of 

proximal colon cancer through the serrated neoplasia pathway. Int. J. Cancer 139, 1318–1326 

(2016). 

146. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144, 646–674 

(2011). 

147. Gholizadeh, P., Eslami, H., Samadi, H. & Kafil, H. S. Carcinogenesis mechanisms of 

Fusobacterium nucleatum. Biomed. Pharmacother. 89, 918–925 (2017). 

148. Ren, Z. et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma 

patients in China. Oncotarget 8, 95176–95191 (2017). 

149. Thomas, R. M. & Jobin, C. Microbiota in pancreatic health and disease: the next frontier in 

microbiome research. Nat. Rev. Gastroenterol. Hepatol. 17, 53–64 (2020). 

150. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the 

chemotherapeutic drug gemcitabine. Science (80-. ). 357, 1156–1160 (2017). 

151. del Castillo, E. et al. The Microbiomes of Pancreatic and Duodenum Tissue Overlap and Are 



 

 41 

Highly Subject Specific but Differ between Pancreatic Cancer and Noncancer Subjects. Cancer 

Epidemiol. Biomarkers Prev. 28, 370–383 (2019). 

152. Multhoff, G., Molls, M. & Radons, J. Chronic inflammation in cancer development. Front. 

Immunol. 2, 1–17 (2012). 

153. Batabyal, P., Vander Hoorn, S., Christophi, C. & Nikfarjam, M. Association of diabetes 

mellitus and pancreatic adenocarcinoma: A meta-analysis of 88 studies. Ann. Surg. Oncol. 21, 

2453–2462 (2014). 

154. Bolstad, A. I., Jensen, H. B. & Bakken, V. Taxonomy, biology, and periodontal aspects of 

Fusobacterium nucleatum. Clin. Microbiol. Rev. 9, 55–71 (1996). 

155. Eke, P. I., Dye, B. A., Wei, L., Thornton-Evans, G. O. & Genco, R. J. Prevalence of 

periodontitis in adults in the united states: 2009 and 2010. J. Dent. Res. 91, 914–920 (2012). 

156. Gur, C. et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating 

CEACAM1. Oncoimmunology 8, 1–6 (2019). 

157. Weiss, E. I. et al. Attachment of Fusobacterium nucleatum PK1594 to mammalian cells and its 

coaggregation with periodontopathogenic bacteria are mediated by the same galactose-binding 

adhesin. Oral Microbiol. Immunol. 15, 371–377 (2000). 

158. Han, Y. W. et al. Fusobacterium nucleatum Induces Premature and Term Stillbirths in 

Pregnant Mice: Implication of Oral Bacteria in Preterm Birth. Infect. Immun. 72, 2272–2279 

(2004). 

159. Han, Y. W. et al. Interactions between periodontal bacteria and human oral epithelial cells: 

Fusobacterium nucleatum adheres to and invades epithelial cells. Infect. Immun. 68, 3140–

3146 (2000). 

160. Rubinstein, M. R. et al. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by 

Modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin. Cell Host Microbe 14, 

195–206 (2013). 

161. Coppenhagen-Glazer, S. et al. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable 

adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect. Immun. 83, 1104–

1113 (2015). 

162. Richardson, M. et al. Analysis of 16S rRNA genes reveals reduced Fusobacterial community 

diversity when translocating from saliva to GI sites. Gut Microbes 12, 1–13 (2020). 

163. Komiya, Y. et al. Patients with colorectal cancer have identical strains of Fusobacterium 

nucleatum in their colorectal cancer and oral cavity. Gut 68, 1335–1337 (2019). 

164. Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. 

medRxiv 2223, (2020). 

165. Isho, B. et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike 

antigens in COVID-19 patients. Sci. Immunol. 5, 1–21 (2020). 

166. Choe, P. G. et al. Antibody Responses 8 Months after Asymptomatic or Mild SARS-CoV-2 

Infection. Emerg. Infect. Dis. 27, 3–6 (2021). 



 

42 

 


	1 INTRODUCTION
	1.1   Pancreatic cancer
	1.1.2   Precursors to pancreatic cancer
	1.3.1   Biomarker definition


	2 RESEARCH AIMS
	3 MATERIALS AND METHODS
	4 RESULTS and discussion
	5 CONCLUSIve remarks
	6 POINTS OF PERSPECTIVE
	7 ACKNOWLEDGEMENTS
	8 REFERENCES

