
TOPICS IN IMBALANCED DATA CLASSIFICATION:

ADABOOST AND BAYESIAN RELEVANCE VECTOR

MACHINE

A Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

WENYANG WANG

Drs. Dongchu Sun and Zhuoqiong He, Dissertation Supervisors

MAY, 2020

The undersigned, appointed by the Dean of the Graduate School, have

examined the dissertation entitled:

TOPICS IN IMBALANCED DATA CLASSIFICATION:

ADABOOST AND BAYESIAN RELEVANCE VECTOR

MACHINE

presented by Wenyang Wang,

a candidate for the degree of Doctor of Philosophy and hereby certify that,in their

opinion, it is worthy of acceptance.

Dr. Dongchu Sun

Dr. Zhuoqiong He

Dr. Tieming Ji

Dr. Athanasios Christou Micheas

Dr. Shawn Ni

ACKNOWLEDGMENTS

I am very grateful to my advisors, Dr. Dongchu Sun and Dr. Zhuoqiong He, for

their guidance, inspiration, and patience to make this project possible. I would like to

thank my committee members Drs. Shawn Ni, Tieming Ji, and Athanasios Christou

Micheas for their constructive suggestions and discussion on my research.

I would also like to thank the other faculty members in the Department of Statis-

tics for providing all the excellent courses from which to learn. Many thanks to Judy

Dooley, Abbie Van Nice-Booher, and Kathleen Maurer for their assistance in the

department. I also thank Dr. Larry Ries for his helpful teaching assistant work ad-

vice. Thanks to my fellow graduate students from the University of Missouri. Their

support and help make my life so enjoyable at Columbia.

Finally, I wish to acknowledge all the love and encouragement of my parents and

wife. It is to them that I dedicate this work. Many love to my daughter, who makes

my life complete and motivated.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . viii

LIST OF FIGURES . x

ABSTRACT . xi

CHAPTER

1 Introduction . 1

1.1 Imbalanced Data Problem . 1

1.2 Machine Learning Approach . 4

1.3 Relevance Vector Machine Approach 7

1.4 Outline of the Dissertation . 9

2 The Improved AdaBoost Algorithms for Imbalanced Data Classi-
fication . 11

2.1 Introduction . 11

2.2 The Enhanced AdaBoost Algorithm 14

2.2.1 The Enhanced AdaBoost . 14

2.2.2 Properties of the Enhanced AdaBoost Algorithm 16

2.2.3 Choices of β and k . 20

2.3 The Reinforced AdaBoost Algorithm 22

2.4 Numerical Studies . 26

2.4.1 Simulation Studies Based on Gaussian Data 29

iii

2.4.2 Simulation Study Based on Uniform Data 33

2.4.3 Real Data Studies . 37

2.5 Conclusion Comments . 42

3 Fully Bayesian Analysis of the Relevance Vector Machine Classi-
fication for Imbalanced Data . 44

3.1 Introduction . 44

3.1.1 Support Vector Machine with Kernel Functions 45

3.1.2 Adaptive Rejection Sampling Method 47

3.2 RVM Classification . 52

3.3 Generic Bayesian RVM Classification Algorithm 59

3.4 Fully Hierarchical Bayesian RVM Classification Algorithm 62

3.5 Numeric Studies . 66

3.5.1 Simulation Data Studies . 66

3.5.2 Real Data Studies . 69

3.6 Conclusion Comments . 70

4 Fully Bayesian Analysis of the Relevance Vector Machine Classi-
fication with Probit Link Function 72

4.1 Introduction . 72

4.1.1 The Probit Link Functions . 73

4.2 Generic Bayesian PRVM Classification Algorithm 74

4.3 Fully Hierarchical Bayesian PRVM Classification Algorithm 79

4.4 Numeric Studies . 80

4.4.1 Simulation Data Studies . 81

iv

4.4.2 Real Data Studies . 83

4.5 Comparison Between the Bayesian RVM and PRVM 83

4.5.1 Elapsed Programming Time 84

4.5.2 Model Selection . 85

4.6 Conclusion Comments . 87

5 Discussion and Future Research . 89

5.1 Discussion of Chapter 2 . 89

5.2 Discussion of Chapter 3 . 91

5.2.1 Generative vs. Discriminative Models 91

5.2.2 The Gaussian Mixture Model 92

5.3 Discussion of Chapter 4 . 95

5.3.1 0− 1 Loss Function . 96

5.3.2 Cost-sensitive Loss Function 97

5.3.3 Cost-sensitive Bayes Classifier 99

5.4 Comparision Between Boosting and Kernel
Methods . 103

APPENDIX

A Proofs of Theorems in Chapter 2 . 110

B Proofs of Theorems in Chapter 3 . 113

C Proofs of Lemmas in Chapter 4 . 116

D Ratio of Uniforms Sampling Method 118

E Proofs of Theorems in Chapter 5 . 121

BIBLIOGRAPHY . 125

v

4.4.2 Real Data Studies . 83

4.5 Comparison Between the Bayesian RVM and PRVM 83

4.5.1 Elapsed Programming Time 84

4.5.2 Model Selection . 85

4.6 Conclusion Comments . 87

5 Discussion and Future Research . 89

5.1 Discussion of Chapter 2 . 89

5.2 Discussion of Chapter 3 . 91

5.2.1 Generative vs. Discriminative Models 91

5.2.2 The Gaussian Mixture Model 92

5.3 Discussion of Chapter 4 . 95

5.3.1 0− 1 Loss Function . 96

5.3.2 Cost-sensitive Loss Function 97

5.3.3 Cost-sensitive Bayes Classifier 99

5.4 Comparision Between Boosting and Kernel
Methods . 103

APPENDIX

A Proofs of Theorems in Chapter 2 . 110

B Proofs of Theorems in Chapter 3 . 113

C Proofs of Lemmas in Chapter 4 . 116

D Ratio of Uniforms Sampling Method 118

E Proofs of Theorems in Chapter 5 . 121

BIBLIOGRAPHY . 125

vi

VITA . 136

vii

LIST OF TABLES

Table Page

2.1 Summation ofDt(i) in Different Conditions of yi and ht(xi) for AdaBoost. 15

2.2 Upper Boundary of k in the Enahnced AdaBoost Algorithm. 22

2.3 Machine Learning Algorithms in AdaBoost Numeric Studies. 27

2.4 Confusion Matrix. 27

2.5 The Results of Simulated Gaussian Data in AdaBoost Numeric Studies

(b = 10). 31

2.6 The Results of Simulated Gaussian Data in AdaBoost Numeric Studies

(b = 5). 33

2.7 The Results of Simulated Uniform Data in AdaBoost Numeric Studies

(b = 20). 36

2.8 The Results of Seismic-bumps Data in AdaBoost Numeric Studies (b =

15.13). 39

2.9 The Results of Glass-2 Data in AdaBoost Numeric Studies (b = 11.59). 39

2.10 The Results of New-thyroid-1 Data in AdaBoost Numeric Studies (b =

5.14). 40

2.11 The Results of Ecoli-1 Data in AdaBoost Numeric Studies (b = 3.36). 42

viii

3.1 The Criteria for Classification Evaluation in RVM Studies. 55

3.2 The Results of Simulated Data in Bayesian RVM (b = 1). 67

3.3 The Results of Simulated Data in Bayesian RVM (b = 2). 68

3.4 The Results of Simulated Data in Bayesian RVM (b = 2.5). 68

3.5 The Results of Simulated Data in Bayesian RVM (b = 5). 68

3.6 The Results of Simulated Data in Bayesian RVM (b = 10). 69

3.7 The Results of Real Datasets in Bayesian RVM.a 70

4.1 The Results of Simulated Data in PRVM (b = 1). 81

4.2 The Results of Simulated Data in PRVM (b = 2). 82

4.3 The Results of Simulated Data in PRVM (b = 2.5). 82

4.4 The Results of Simulated Data in PRVM (b = 5). 82

4.5 The Results of Simulated Data in PRVM (b = 10). 83

4.6 The Results of Real Datasets in PRVM.a 84

4.7 Epalsed Programming Time a of Bayesian RVM and PRVM Models.b 85

4.8 Maximum Likelihood Value of Bayesian RVM and PRVM Models. . . 87

5.1 Risk Matrix for Binary Classification under 0− 1 Loss Function. . . . 96

5.2 Risk Matrix for Binary Classification under Cost-sensitive Loss Function. 98

5.3 The Results of Glass-1 Data(b = 1.82). 105

5.4 The Results of Iris-0 Data(b = 2.00). 105

5.5 The Results of Newthyroid-1 Data(b = 5.14). 106

5.6 The Results of Glass-6 Data(b = 6.38). 106

5.7 The Results of Ecoli-0345 Data(b = 9.00). 107

5.8 The Results of Glass-2 Data(b = 11.59). 107

ix

LIST OF FIGURES

Figure Page

1.1 Principal Issues Leading to Imbalanced Data Problem. 4

1.2 Machine Learning Classifiers Summary. 6

2.1 Distribution of H(x) in Original AdaBoost and Enhanced AdaBoost. . 19

2.2 Simulated Gaussian Data with b = 10 in AdaBoost Numeric Studies. 30

2.3 Simulated Uniform Data with b = 20 in AdaBoost Numeric Studies. . 35

3.1 The Tangential Function wk(x) at sk in ARS Method. 50

3.2 wn(x) Based on Two Support Points in ARS Method. 51

3.3 Simulated Data for Original RVM Classification (N+ = N− = 3). . . . 58

3.4 Convergence Plot of w in Original RVM Classification Algorithm. . . 59

3.5 Simulated Gaussian Data for Bayesian RVM. 67

4.1 Logistic and Probit Link Functions. 73

4.2 Sampling From a Truncated Normal Distribution. 77

x

ABSTRACT

This research has three parts addressing classification, especially the imbalanced

data problem, which is one of the most popular and essential issues in the domain of

classification.

The first part is to study the Adaptive Boosting (AdaBoost) algorithm. Ad-

aBoost is an effective solution for classification, but it still needs improvement in the

imbalanced data problem. This part proposes a method to improve the AdaBoost

algorithm using the new weighted vote parameters for the weak classifiers. Our pro-

posed weighted vote parameters are determined not only by the global error rate but

also by the classification accuracy rate of the positive class, which is our primary

interest. The imbalanced index of the data is also a factor in constructing our al-

gorithms. The numeric studies show that our proposed algorithms outperform the

traditional ones, especially regarding the evaluation criterion of the F − 1 Measure.

Theoretic proofs of the advantages of our proposed algorithms are presented.

The second part treats the Relevance Vector Machine (RVM), which is a super-

vised learning algorithm extended from the Support Vector Machine (SVM) based

on the Bayesian sparsity model. Compared with the regression problem, RVM clas-

sification is challenging to conduct because there is no closed-form solution for the

weight parameter posterior. The original RVM classification algorithm uses Newton’s

method in optimization to obtain the mode of weight parameter posterior, then ap-

proximates it by a Gaussian distribution in Laplace’s method. This original model

would work, but it just applies the frequency methods in a Bayesian framework. This

part first proposes a Generic Bayesian RVM classification, which is a pure Bayesian

xi

model. We conjecture that our algorithm achieves convergent estimates of the quan-

tities of interest compared with the nonconvergent estimates of the original RVM

classification algorithm. Furthermore, a fully Bayesian approach with the hierar-

chical hyperprior structure for RVM classification is proposed, which improves the

classification performance, especially in the imbalanced data problem.

The third part is an extended work of the second one. The original RVM clas-

sification model uses the logistic link function to build the likelihood, which makes

the model hard to conduct since the posterior of the weight parameter has no closed-

form solution. This part proposes the probit link function approach instead of the

logistic one for the likelihood function in RVM classification, namely PRVM (RVM

with the Probit link function). We show that the posterior of the weight parameter

in our model follows the multivariate normal distribution and achieves a closed-form

solution. A latent variable is needed in our algorithm to simplify the Bayesian compu-

tation greatly, and its conditional posterior follows a truncated normal distribution.

Compared with the original RVM classification model, our proposed one is another

pure Bayesian approach and it has a more efficient computation process. For the

prior structure, we first consider the Normal-Gamma independent prior to propose

a Generic Bayesian PRVM algorithm. Furthermore, the Fully Bayesian PRVM al-

gorithm with a hierarchical hyperprior structure is proposed, which improves the

classification performance, especially in the imbalanced data problem.

xii

Chapter 1

Introduction

1.1 Imbalanced Data Problem

Class imbalance is one of the most severe and challenging problems in machine learn-

ing, especially in classification. The class imbalanced situation frequently appears

in many fields such as facial detection (e.g., Yue (2017) and Huang et al. (2019)),

financial fraud detection (e.g., Chan et al. (1998), Bian et al. (2016), and Makki et

al. (2019)), network intrusion detection (e.g., Miahe et al. (2019)), software defect

prediction (e.g., Bennin et al. (2017) and Song et al. (2018)), and oil exploration

(e.g., Kubat et al. (1998), Haixiang et al. (2016), and Geng et al. (2018)).

A binary imbalanced data can be described as follows: Let S = {(x1, y1), (x2, y2),

..., (xn, yn)} be the training data for a classification problem, where xi ∈ X ⊆ Rl,

X is a subset of l-dimensional vector space, and the response yi ∈ {−1, 1} indicates

two classes, i = 1, ..., n. Define S+ = {(xi, yi) ∈ S : yi = 1, i = 1, ..., n} is the

1

positive or minority class; S− = {(xi, yi) ∈ S : yi = −1, i = 1, ..., n} is the negative

or majority class. The class types, {minority, majority} and {positive, negative} are

used to describe {S+,S−}.

Definition 1.1. Let |A| denote the number of the elements in a set A. Define

Np = |S+| and Nn = |S−| are the numbers of samples in the positive class and

negative class, respectively. The imbalanced degree of data is defined as b = Nn/Np.

If Nn > Np, this imbalanced condition in the different classes is called the im-

balanced data problem. b is a positive number larger than 1 in imbalanced data.

There is no explicit definition of the imbalanced data only based on b since other

factors can affect the classification performance such as the dimensions of data, the

overlap situation, and the total sample size (see Sun et al. (2007)). Typically, when

the accuracy rate of S+ is significantly lower than that of S− because of the skewed

structure of the data, we treat this as the imbalanced data problem. Six significant

factors are known to cause an imbalanced data problem (see Lopez et al. (2013)):

(a) Overlap between classes;

(b) Borderline instances;

(c) Areas with small disjuncts;

(d) Noisy data;

(e) Low density and lack of information in the training data;

(f) Possible difference in the distributions of the training and the test data.

Lee et al. (2017) indicated that these factors could be grouped into three principal

issues: (1) class overlap ((a) and (b)), (2) small disjuncts ((c) and (d)), and (3) data

shift ((e) and (f)). Figure 1.1 illustrates these three situations. Each of the sub-

figures in Figure 1.1 includes 30 black points of the negative class and 20 blue points

2

of the positive class indicating b = 1.5 and the bias of the data is not severe. Overlap,

as shown in Figure 1.1 (1), involves two classes that are not completely separated,

especially when almost all the positive class points are located on the borderline of

the negative class. Figure 1.1 (2) shows a small disjunct problem occurring when

several small clusters of the positive points are located inside of the negative class

region. As can be seen in Figure 1.1 (3), the data shift means the distributions of

the training and test data are different. Even when b is small such as 1.5 in Figure

1.1, the classification accuracy of S+ would be degraded when class overlap, small

disjuncts, or data shift happens.

Another factor, data size, could affect the performance of classification. Predicting

the sample size required for classification is a very challenging issue in Statistical

Machine Learning. Typically, a large data size helps improve the performance of

classifiers. However, increasing the data size is not the panacea for classification.

There is an upper boundary for the accuracy rate of classifiers when we increase the

training data size (see Figueroa et al. (2012)). Unlimited increasing the data size

is useless, and people desire the proper amount of training data, which is dependent

on many different aspects of the experiment. In classification, especially in the high-

dimensional data classification, enough data points are necessary for building the

borderlines to break the curse of dimensionality. But in the imbalanced data problem,

more data near the borderline are needed to balance the skewness between two classes.

Adding more data away from the borderline cannot help to solve the imbalanced data

problem. Because there is not any guideline to indicate the information of data near

the borderline, it is impossible to improve the performance of classifiers through the

increasing data size.

3

Figure 1.1: Principal Issues Leading to Imbalanced Data Problem.

Under the balanced situation, Nn ≈ Np, many algorithms are available for clas-

sification such as linear classifiers, Support Vector Machines, decision trees, random

forest, and so on (see Alpaydin (2009)). For the imbalanced situation, although the

algorithms mentioned above still can obtain an excellent global accuracy rate, the

classification accuracy rate of S+ can be low. A worse result is that the classifier

might identify the positive samples as noise and ignore them in the training process.

If S+ is our particular interest, we need some other specific algorithms for the classi-

fication. In a cancer diagnostic where the cancer cases are quite rare compared with

the healthy populations. People desire an optimal classifier that gives the maximum

accuracy rate of the patients’ category without sacrificing the global accuracy rate

much. Only the binary imbalanced class problem is studied in this whole project.

Multiple-class issues can be solved based on the one-versus-all scheme (see Schapire

& Singer (1999)).

1.2 Machine Learning Approach

In the machine learning field, data level and algorithm level methods are two typical

approaches (see Weiss (2004) and Kotsiantis et al. (2006)) to solve the imbalanced

4

class problem. The former is a pre-processing data method (e.g., Batista et al. (2004)

and Hulse et al. (2007)), where resampling is utilized frequently. The basic idea of

the data level method is to delete the instances in S− or increase the instances in

S+ to change the data sizes of the two classes and relieve the imbalanced situation

before the training process. Although the data-level approach is simple, the random

under-sampling or over-sampling makes the pre-processing dataset different from the

raw data. Due to this limitation, the data level method is used less often. On the

other hand, the algorithm level method focuses on training the classifier directly with

the original data. The most common ones are Cost-sensitive Learning proposed in

Cheng (2016) and Ensemble Schemes, including Boosting (see Viola et al. (2002) and

Chawla et al. (2003)) and Bagging (see Galar et al. (2016)). Cost-sensitive Learning

assumes that the misclassified costs have prior information to enhance the impact of

the minority class. The limitation is that the prior information regarding the costs is

hard to find. Also, if the minority class samples are sparse, Cost-sensitive Learning

may not construct an appropriate decision boundary (see Lopez et al. (2012)). Figure

1.2 summarizes the popular classifiers for balanced data and imbalanced data.

5

Figure 1.2: Machine Learning Classifiers Summary.

This project studies Adaptive Boosting (AdaBoost) algorithm, which is the most

popular one in Boosting. Boosting is a kind of Ensemble Schemes and it can combine

a series of weak classifiers that are only a little better than a random guess to con-

struct a robust classifier. The Boosting approach is a resultful method to design the

classification algorithm when it is hard to construct a single strong classifier alone.

AdaBoost is the typical one in Boosting. More details and further improvement of

AdaBoost are discussed in Chapter 2.

6

1.3 Relevance Vector Machine Approach

Relevance Vector Machine (RVM) proposed by Tipping (2000) is a Kernel method

algorithm. The kernel method has become popular with the proposal of the Support

Vector Machine (SVM) by Cortes & Vapnik (1996) and motivated the rapid growth

of the classification algorithms (e.g., Sain (1996) and Shawe et al. (2004)). SVM

is designed based on the Structural Risk Minimization (SRM) and it projects the

linearly indivisible data in the high dimensional linear separable space. Boser et

al. (1992) indicated that SVM constructs an optimal separating hyperplane as the

classification borderline, which can obtain the maximum distance between two classes

for a binary dataset.

Although SVM has been the leading method in classification, it still has a few

limitations indicated by Tipping (2001):

(1) The numbers of kernels and parameters increase linearly with the growth of the

training data size. The free parameters in SVM usually require the cross-validation

for the optimizations. SVM would be inefficient in a large data case;

(2) The classification result is not a probability and does not provide an accuracy

rate.

Tipping (2000) and Tipping (2001) originally proposed the Relevance Vector Ma-

chine (RVM) based on SVM to solve the above two limitations by conducting a

sparsity prior to the weight parameter w. Afterward, a fast sequence RVM algorithm

was proposed in Tipping (2003), and it speeded up the training process significantly.

Later, Thayananthan (2006) extended the RVM algorithm to multiple-output regres-

sion and multiple-output classification. RVM has obtained more applications in text

image recognition (e.g., Silva & Ribeiro (2006)), image classification (e.g., Demir &

7

Erturk (2007)), time series analysis (e.g., Nikolaev & Tino (2005)), mechanical fault

diagnosis (e.g., Wu et al. (2011)) and electric demand forecasting (e.g., Liu et al.

(2004)). However, the most consequential and influential work related to RVM is in

the regression field. RVM classification is hard to be conducted in a pure Bayesian

framework because there is no closed-form solution for the posterior of weight param-

eter w. The original RVM classification applies Newton’s method to seek the mode

of posterior of w, then approximates it with a normal distribution in the Laplace’s

method instead of directly sampling w from its posterior. The original RVM classi-

fication was built in a Bayesian framework but conducted with frequency methods.

This project studies the original RVM classification and concludes the shortcomings of

it. A Bayesian RVM model is proposed in Chapter 3, which keeps the same likelihood

and weight parameter prior to the original RVM. But Bayesian RVM does the sam-

pling process directly from the weight parameter posterior instead of the frequency

methods in the original one. Therefore, a hierarchical structure is considered for the

Bayesian RVM to improve the classification performance in the imbalanced data prob-

lem. Chapter 4 re-defines the likelihood of RVM by the probit link function instead

of the logistic one in the original RVM and we propose the PRVM model. Benefit-

ting from a latent variable, this new likelihood produces a concise weight parameter

posterior, which follows a multivariate normal distribution and has the closed-form

solution. PRVM has similar classification performances compared with the Bayesian

RVM, but PRVM is more sententious and the programming is also more efficient in

the case of code running time.

8

1.4 Outline of the Dissertation

Chapter 2 discusses the machine learning approach for imbalanced data classification

problems. It studies and improves the AdaBoost algorithm. In this chapter, we

first propose an improved AdaBoost algorithm, namely the Enhanced AdaBoost,

to improve the classification performance using the new weighted vote parameters

for the weak classifiers in constructing the algorithm. Theoretic proofs are given to

support the advantages of it compared with the original one. Then, another improved

AdaBoost, the Reinforced AdaBoost algorithm, is proposed. It solves a restriction in

the Enhanced AdaBoost and is a comprehensive solution for the AdaBoost algorithm

improvement. Some numeric studies are finally conducted to support our proposed

algorithms’ preponderance in practice.

Chapter 3 first studies the original Relevance Vector Machine classification model.

We indicate the original one is not a pure Bayesian approach and has several theoretic

shortcomings. Then, this chapter shows that the posterior of the weight parameter

in RVM has the desired log-concave property so that we can do the sampling directly

through the Adaptive Rejection Sampling method. We propose this pure Bayesian

model, namely Bayesian Relevance Vector Machine (Bayesian RVM). Next, a hier-

archical prior structure is employed for Bayesian RVM to improve the classification

performance in the imbalanced data classification problem. Finally, the numeric stud-

ies are conducted to apply our proposed algorithms into practice.

Chapter 4 extends the work of Chapter 3. The original RVM does not have a

closed-form solution in the posterior of the weight parameter since the logistic link

function makes the likelihood function a complex expression. In this chapter, we

propose the probit link function to construct the likelihood function instead of the

9

logistic one. The probit link function is similar to the logistic one, but it helps

to construct a succinct model. We show that the RVM with probit link function

(PRVM) is much more efficient and readable compared with the original one. The

weight parameter in PRVM follows a multivariate normal distribution, which can

be sampled quickly. The same hierarchical prior structure in Chapter 3 is studied

again to solve the imbalanced data problem. The same simulated datasets and real

datasets, as in Chapter 3, are employed in this chapter to evaluate the performance

of PRVM in practice. Finally, we make a model comparison between the Bayesian

RVM and the PRVM.

10

Chapter 2

The Improved AdaBoost
Algorithms for Imbalanced Data
Classification

2.1 Introduction

The AdaBoost formulated by Freund and Schapire (1997) is a popular Boosting algo-

rithm in Ensemble Schemes. It trains a series of weak classifiers iteratively based on

the weighted data. The outputs of all weak classifiers are combined into a weighted

summation that presents the final boosted classifier. A review of the AdaBoost algo-

rithm is stated below.

11

Algorithm 2.1. The Original AdaBoost Algorithm

Input. The training data: (x1, y1), (x2, y2), ..., (xn, yn), xi ∈ X ⊆ Rl and yi ∈

{−1, 1}, i = 1, ..., n. Choose the number of weak classifiers T .

0. Let t = 1 and initialize the sample weight Dt(i) = 1/n, i = 1, ..., n;

1. Find the weak classifier ht(x) ∈ {−1, 1} minimizing the weighted error rate

εt =
∑

i:ht(xi)6=yi
Dt(i);

2. Calculate the weak classifier weight αt1 = 1
2
log{(1− εt)/εt};

3. Update Dt+1(i) = Dt(i)exp{−αt1yiht(xi)}, i = 1, ..., n, renormalize it as

Dt+1(i) = Dt+1(i)/
n∑
j=1

Dt+1(j);

4. If t = T , stop the iteration, else let t = t+ 1 and return to Step 1.

Output. The final strong classifier is C1(x) = sign{H1(x) −M1}, where M1 is

the threshold, and

H1(x) =
T∑
t=1

αt1ht(x).

A weak classifier ht(x) presents a map from X to {−1, 1}. When h∗t (x) is any

map from X to R, we can use ht(x) = sign(h∗t (x)) to transfer h∗t (x) to a weak

classifier. When h∗t (xi) is zero, randomly set xi as the positive or negative class. αt

is the corresponding weighted vote parameter of the weak classifiers. Note that αt1 in

Step 2 is chosen based on the method of minimizing the exponential loss function (see

Rojas (2009)), which implies that the more accurate a weak classifier is, the larger

vote weight it has in constructing the final strong classifier. Step 3 presents the weight

of the samples, Dt(i). If Sample (xi, yi) is misclassified by ht(x), then Dt+1(i) > Dt(i)

12

in ht+1(x). On the other hand, if Sample (xi, yi) is classified correctly by ht(x), then

Dt+1(i) < Dt(i) in ht+1(x) (see Freund and Schapire (1999)). So in AdaBoost, every

weak classifier would get updated by focusing on the misclassified samples in the

previous iteration to improve the global classification accuracy. By highlighting the

misclassified samples and combining all the weak classifiers to build a strong one,

AdaBoost is regarded as a popular and powerful algorithm in classification.

If the positive class S+ is our primary interest, the AdaBoost algorithm should

be improved because it uses the same Dt(i) for all samples in both S+ and S−.

Also, it chooses the αt1 only based on the global error rate εt. In recent years, several

improved AdaBoost algorithms have been proposed for the imbalanced class problem.

Typically, they include adjusting Dt(i) or αt1. AdaCost (see Fan et al. (1999)) and

Cost-sensitive AdaBoost (see Zhou et al. (2017) and Tao et al. (2019)) adjusted Dt(i)

by adding a higher misclassification cost to the minority class. They assimilated

the Cost-sensitive Learning into the AdaBoost but these methods have a similar

limitation as of the Cost-sensitive Learning. Adjusting αt1 is a mighty improvement

without apparent shortcomings. Li et al. (2009) proposed AD AdaBoost with a new

αt to improve the AdaBoost algorithm and received a convincing result in the object

detection problem. In this chapter, we first propose an Enhanced AdaBoost algorithm

which is based on the AD AdaBoost but designed for the imbalanced class problem

by adjusting αt1. When the imbalanced index b is large, the Enhanced AdaBoost

can obtain an excellent classification result. However, b is not the only factor to

define the imbalanced data. Recall Figure 1.1, when b is small, we still could face

an imbalanced problem. So we propose the Reinforced AdaBoost, which is another

improved AdaBoost algorithm. The Reinforced AdaBoost can perform better when

13

the imbalanced index b is relatively small but needs an additional iteration compared

with the Enhanced AdaBoost. Similar to AD AdaBoost, our improved αt includes

not only the global error rate but also the classification accuracy rate of S+. Also,

the imbalanced index b is considered in our proposed algorithms. The final classifier

with our proposed weight parameters αt can focus on S+ to increase the criterion of

F − 1 Measure, which is the evaluation criterion we are most interested in, without

losing the global accuracy rate.

2.2 The Enhanced AdaBoost Algorithm

2.2.1 The Enhanced AdaBoost

We follow the notations, Dt(i) and εt in Algorithm 2.1, b in Definition 1.1.

Definition 2.1. Define Kt =
∑
i:yi=1

Dt(i), Pt =
∑

i:yi=1,ht(xi)=1

Dt(i), and γt = Pt/Kt.

For every ht(x), Kt is the summation of weights of all samples in S+, Pt means the

summation of weights of the correctly classified samples in S+, γt is a measure of the

classification ability of ht(x) in S+. Note that γt ∈ [0, 1], b ∈ (1,∞), and εt ∈ [0, 0.5)

since it is assumed that all the classifiers have to be better than a random guess. The

summation of sample weights under different conditions of yi and ht(xi) are presented

in Table 2.1. The global error rate εt is the summation of the false positive rate At1,−1

and the false negative rate At−1,1, εt = At1,−1 + At−1,1. Kt = At1,· and Pt = At1,1 are

based on Definition 2.1. The proportion of At1,1 in At1,· is presented by γt = Pt/Kt.

Note that in the tth step of the iterations, the number of correctly classified samples

in S+ is Np γt.

14

Table 2.1: Summation of Dt(i) in Different Conditions of yi and ht(xi) for AdaBoost.

ht(xi) = 1 ht(xi) = −1 Row Total

yi = 1 At1,1 =
∑

i:yi=1,ht(xi)=1

Dt(i) At1,−1 =
∑

i:yi=1,ht(xi)=−1

Dt(i) At1,· =
∑
i:yi=1

Dt(i)

yi = −1 At−1,1 =
∑

i:yi=−1,ht(xi)=1

Dt(i) At−1,−1 =
∑

i:yi=−1,ht(xi)=−1

Dt(i) At−1,· =
∑

i:yi=−1

Dt(i)

Column Total At·,1 =
∑

i:ht(xi)=1

Dt(i) At·,−1 =
∑

i:ht(xi)=−1

Dt(i) 1

Now we propose the Enhanced AdaBoost with Dt(i), εt, γt, and b defined above.

Algorithm 2.2. The Enhanced AdaBoost Algorithm

Input. The training data: (x1, y1), (x2, y2), ..., (xn, yn), xi ∈ X ⊆ Rl and yi ∈

{−1, 1}, i = 1, ..., n. Choose the number of weak classifiers T , the parameters β and

k. b = Nn/Np is determined by the training data.

0. Let t = 1 and initialize the sample weight Dt(i) = 1/n, i = 1, ..., n;

1. Find the weak classifier ht(x) ∈ {−1, 1} minimizing the weighted error rate

εt =
∑

i:ht(xi)6=yi
Dt(i).

Let γt =
A1,1

A1,·
, if γt >

1
2
, εt should satisfy εt <

1
2
{1 − (2γt − 1)/(b + 1)}, else

repeat this step;

2. Calculate the weak classifier weight

αt2 =
1

2
log{(1− εt)/εt}+ k exp{β(2 γt − 1)}, (2.1)

where k and β are two parameters, k > 0;

3. Update Dt+1(i) = Dt(i)exp{−αt1yiht(xi)}, i = 1, ..., n, renormalize it as

15

Dt+1(i) = Dt+1(i)/
n∑
j=1

Dt+1(j);

4. If t = T , stop the iteration, else let t = t+ 1 and return to Step 1.

Output. The final strong classifier is C2(x) = sign{H2(x) −M2}, where M2 is

the threshold, and

H2(x) =
T∑
t=1

αt2ht(x).

2.2.2 Properties of the Enhanced AdaBoost Algorithm

In (2.1), αt2 includes two important parameters εt and γt, which means that αt2 con-

siders not only the global error rate but also the classification ability of S+ (see Li et

al. (2007)). In Step 1 of Algorithm 2.2, b plays an important role and constructs

a restriction for the global error rate εt when γt >
1
2
. This restriction is weak when b

is large and should be satisfied easily in a severe imbalanced data problem.

Fact 2.1. Define

Ha(x) = k
T∑
t=1

ht(x)exp [β(2γt − 1)] , (2.2)

H1(x) and H2(x) in Algorithm 2.1 and 2.2 satisfy H2(x) = H1(x) +Ha(x).

Note that C2(x) in Algorithm 2.2 is a monotone function of H2(x). Improving

the performance of C2(x) is equivalent to adjusting H2(x). The idea is to improve

the classification accuracy rate by making the value of H2(x) for S+ increase and

the value of H2(x) for S− decrease compared to H1(x), respectively. Figure 2.1 is

a frequency histogram of H1(X) and H2(X) based on the simulated Gaussian data

16

part in the numeric study section with b = 10, β = 0.5, and k = 0.0009. In Figure

2.1, H2(x) of S+ and S− moves further away than the H1(x) does, which means the

Enhanced AdaBoost would result in more accurate classification.

Fact 2.2. In (2.2), Ha(x) satisfies

∑
i:yi=1

Ha(xi) = Np k
T∑
t=1

(2γt − 1) exp{β(2γt − 1)},

∑
i:yi=−1

Ha(xi) = Np k
T∑
t=1

{(2γt − 1) + (2εt − 1)(b+ 1)}exp{β(2γt − 1)}.

Note that for S+ and S−, we have

∑
i:yi=1

ht(xi) = Npγt · 1 + Np(1− γt) · (−1)

= Np(2γt − 1),

∑
i:yi=−1

ht(xi) = {Nn − [(Nn +Np)εt − (Np −Npγt)]} · (−1) +

[(Np +Nn)εt − (Np −Npγt)] · 1

= 2{(Np +Nn)εt − (Np −Npγt)} −Nn.

Fact 2.2 follows from Fact 2.1. We consider three situations of γt: (a) γt ∈ [0, 1
2
),

(b) γt = 1
2
, and (c) γt ∈ (1

2
, 1]. It is often that γt is larger than 0.5 but in some

steps, especially in the last few steps of iterations, γt might be smaller than 0.5 if the

distribution of S+ is sparse or the small disjunct situation is serious.

17

Theorem 2.1. (a) For γt ∈ [0, 1
2
),

∑
i:yi=−1

Ha(xi) <
∑
i:yi=1

Ha(xi) < 0, (2.3)

(b) For γt = 1
2
,

∑
i:yi=−1

Ha(xi) <
∑
i:yi=1

Ha(xi) = 0, (2.4)

(c) For γt ∈ (1
2
, 1], assume that

εt < 0.5(1− 2γt − 1

b+ 1
) < 0.5, (2.5)

we have

∑
i:yi=−1

Ha(xi) < 0 <
∑
i:yi=1

Ha(xi). (2.6)

Proof. See Appendix A1.

In all three situations of Theorem 2.1,
∑

i:yi=−1

Ha(xi) <
∑
i:yi=1

Ha(xi) always holds

to improve the ability to distinguish S+ and S−, but (c) does a better job than (a)

and (b). In (c), H2(x) of S+ and S− move toward opposite directions compared

to H1(x) because of adding Ha(x). However, in (a) and (b), H2(x) moves to the

negative direction compared to H1(x), H2(x) of S− has a larger movement than that

of S+. Fortunately, (c) happens more frequently in the training process. Combine

all ht(x) with αt2 as the weights to construct the final classifier C2(x). S+ and

S− would be separated toward the opposite directions. Figure 2.1 gives a refined

18

interpretation of this. It indicates that H2(x) has a further movement than H1(x) in

the right direction. The two curves of H1(x) intersect around zero. If we choose the

intersection point as the threshold and the curves beyond the threshold point in each

class cause the misclassification. But the two curves of H2(x) are separated entirely.

Choose any point between the gap of the two curves as the threshold, we could obtain

a perfect classifier.

−15 −10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

H(x)

p(H(x))

H1(x)
H2(x)

Positive classNegative class

Figure 2.1: Distribution of H(x) in Original AdaBoost and Enhanced AdaBoost.

19

2.2.3 Choices of β and k

The Enhanced AdaBoost requires pre-specification of k and β, k > 0. Ha(x) con-

sisting of k and β contributes to H2(x) to improve the classification performance

compared to H1(x). The parameters k and β are important to ensure that the En-

hanced AdaBoost can not only increase the classification accuracy rate for S+ but

also keep the global error rate low.

In the Enhanced AdaBoost, we need αt2 to be an increasing function of γt. So

that under the same εt, the weak classifier will have a larger vote weight if it has a

stronger classification ability for S+. Express this condition as

∂

∂γt
αt2 > 0, (2.7)

which implies

β > 0. (2.8)

We generally choose β = 0.5.

The parameter k is a positive parameter, which decides the adjusting part in αt2.

A large k can make the stretching effect more obvious. But the classification ability

of S− would decrease by a lot if we increase k unadvisedly. A larger k could make

the first term of (2.1) less important. So it is important to determine a proper value

of k. Define Zt =
n∑
j=1

Dt+1(j), t = 1, ..., T − 1. Schapire et al. (1999) proved that for

20

AdaBoost, the global training error satisfies:

1

n
|{i : H(xi) 6= yi}| ≤

T−1∏
t=1

Zt, (2.9)

where | · | means the number of elements in the set, i = 1, .., n.

For t = 1, ..., T−1, the upper boundary of the global training error should decrease

to receive a more accurate final classifier when a new weak classifier is added, which

means that we need Zt < 1 (see Li et al. (2007)). In the Enhanced AdaBoost,

Harrington (2012) showed that Zt is:

Zt = (1− εt) exp{−αt2}+ εt exp{αt2}. (2.10)

By solving the inequality Zt < 1,

0 < k <

0.5 log

(
1− εt
εt

)
exp{β(2γt − 1)}

. (2.11)

The upper boundary of k in (2.11) is a decreasing function of εt. Recall (2.5), in

the most frequent case, we rewrite (2.11) as:

0 < k ≤
0.5 log

(
1 + 2γt−1

b+1

1− 2γt−1
b+1

)
exp{β(2γt − 1)}

<

0.5 log

(
1− εt
εt

)
exp{β(2γt − 1)}

,

where γt ∈ (1
2
, 1].

We recommend to set β = 0.5. b is specified when the training data is given.

We only consider γt ∈ (1
2
, 1] for computational simplicity. Given β = 0.5, b =

21

(2, 5, 10, 20, 50, 100), and γt = (0.505, 0.6, 0.7, 0.8, 0.9, 1.0), the upper boundaries of k

can be obtained in Table 2.2. Here we keep all the numbers rounded to the lowest value

with four decimal places. For example, in the first part of the simulated Gaussian

data study, b = 10. We choose β = 0.5, k = 0.0009 based on Table 2.2 for the new

weak classifier weights αt2. This choice can ensure (2.9) holds and the global error

rate remains low in our proposed algorithm.

Table 2.2: Upper Boundary of k in the Enahnced AdaBoost Algorithm.

γt

b
2 5 10 20 50 100

0.505 0.0033 0.0016 0.0009 0.0004 0.0001 0.0001

0.6 0.0604 0.0301 0.0164 0.0086 0.0035 0.0017

0.7 0.1098 0.0546 0.0297 0.0155 0.0064 0.0032

0.8 0.1501 0.0743 0.0404 0.0211 0.0087 0.0044

0.9 0.1831 0.0899 0.0488 0.0255 0.0105 0.0053

1.0 0.2102 0.1020 0.0552 0.0289 0.0118 0.0060

2.3 The Reinforced AdaBoost Algorithm

The Enhanced AdaBoost has the restriction of εt in (2.5), including b and γt. The

restriction would be weak when the value of b is large, so that Step 1 in Algorithm

2.2 does not need to be repeated. But b is not the only factor to define imbalanced

data. Assume we have a dataset with b = 2. In some particular training iteration of

the Enhanced AdaBoost, γt = 0.99, the restriction of εt in (2.5) is 0 ≤ εt < 0.3367,

which is a small subinterval of 0 ≤ εt < 0.5. This situation often happens for a

22

small b and Step 1 in Algorithm 2.2 would be repeated to seek for a stronger ht(x)

which satisfies the restriction. The worst situation is that under small b, there is no

such ht(x) minimizing εt and satisfying the restriction of εt in (2.5). So we need to

propose a new αt without any restriction to obtain the same further separation of

Ht(x) for S+ and S− as αt2 does. Note that if 0.5(1 − 2γt − 1

b+ 1
) ≤ εt < 0.5, γt has

to be in the interval of (0.5, 1]. Now we propose another improved AdaBoost algo-

rithm by considering a new modified parameter αt3 called the Reinforced AdaBoost.

Algorithm 2.3. The Reinforced AdaBoost Algorithm

Input. The training data: (x1, y1), (x2, y2), ..., (xn, yn), xi ∈ X ⊆ Rl and yi ∈

{−1, 1}, i = 1, ..., n. Choose the number of weak classifiers T , the parameters β and

k. b = Nn/Np is determined by the training data.

0. Let t = 1 and initialize the sample weight Dt(i) = 1/n, i = 1, ..., n;

1. Find the weak classifier ht ∈ {−1, 1} minimizing the weighted error rate

εt =
∑

i:ht(xi)6=yi
Dt(i), let

γt =
At1,1
At1,·

;

2.1. When (1) 0 ≤ γt ≤ 1
2

or (2) 1
2
< γt ≤ 1 and εt <

1
2
{1 − (2γt − 1)/(b + 1)},

calculate the weak classifier weight

αt = αt2 =
1

2
log
(1− εt

εt

)
+ k exp{β(2 γt − 1)};

2.2. When 1
2
< γt ≤ 1 and 1

2
{1 − (2γt − 1)/(b + 1)} ≤ εt, calculate the weak

23

classifier weight

αt = αt3 =
1

2
log
(1− εt

εt

){exp(γt − 0.5) + 0.5

0.5− εt
+

0.5(b+ 1)

γt − 0.5

}
; (2.12)

3. Update Dt+1(i) = Dt(i)exp{−αt1yiht(xi)}, i = 1, ..., n, renormalize it as

Dt+1(i) = Dt+1(i)/
n∑
j=1

Dt+1(j);

4. If t = T , stop the iteration, else let t = t+ 1 and return to Step 1.

Output. The final strong classifier is C3(x) = sign{H3(x)−M3}, where H3(x) =
T∑
t=1

αtht(x), M3 is the threshold.

Here At1,1 and At1,· follow from Table 2.1. Define H
′
3(x) =

T ′∑
t=1

αt3ht(x), T ′ is the

number of weak classifiers that have the weighted vote parameters of αt3. We can

obtain Fact 2.3 based on Fact 2.1 and 2.2.

Fact 2.3. We have the equations:

∑
i:yi=1

H1(xi) = (γt − 0.5) log
(1− εt

εt

)
Np,

∑
i:yi=−1

H1(xi) = {(γt − 0.5) + (εt − 0.5)(b+ 1)} log
(1− εt

εt

)
Np,

∑
i:yi=1

H
′

3(xi) = (γt − 0.5)
{exp(γt − 0.5) + 0.5

0.5− εt
+

0.5(b+ 1)

γt − 0.5

}
log
(1− εt

εt

)
Np,

∑
i:yi=−1

H
′

3(xi) = {(γt − 0.5) + (εt − 0.5)(b+ 1)}
{exp(γt − 0.5) + 0.5

0.5− εt
+

0.5(b+ 1)

γt − 0.5

}
·

log
(1− εt

εt

)
Np.

24

Theorem 2.2. Assume that

γt ∈ (
1

2
, 1] and 0.5(1− 2γt − 1

b+ 1
) ≤ εt < 0.5, (2.13)

we have

∑
i:yi=1

H
′

3(xi) >
∑
i:yi=1

H1(xi), (2.14)∑
i:yi=−1

H
′

3(xi) ≤
∑

i:yi=−1

H1(xi). (2.15)

Proof. See Appendix A2.

Theorem 2.2 indicates that under 1
2
{1−(2γt−1)/(b+1)} ≤ εt with our proposed

αt3, H(x) of S+and S− still can obtain a further separation in positive and negative

directions than the AdaBoost does, respectively. (2.14) is a strict inequation, which

means the positive class can obtain a strict increase in the classification result. The

Reinforced AdaBoost eliminates the restriction of global error in the Enhanced Ad-

aBoost and is a comprehensive solution to improve the AdaBoost algorithm for the

imbalanced data problem. But the additional iteration in the definition of αt in Step

2 of the Reinforced AdaBoost makes it more complex compared with the Enhanced

AdaBoost. So when b is small, the Reinforced AdaBoost is the preferential choice.

Otherwise, the Enhanced AdaBoost is powerful enough for the imbalanced data clas-

sification.

25

2.4 Numerical Studies

In this performance evaluation, we apply several algorithms, including our two pro-

posed ones, the Enhanced AdaBoost and the Reinforced AdaBoost, into two kinds

of simulated datasets and four real datasets. Because the goal of this chapter is to

improve the AdaBoost algorithm, we choose three kinds of original AdaBoost algo-

rithms with different weak classifiers as the comparisons. On the other hand, Support

Vector Machines (SVMs) is a popular classifier. Especially, SVMs with Radial Basis

Function (RBF) kernel has the congenital advantage in Gaussian data classification.

The RBF kernel is defined as

KRBF (x,x′) = exp(−γ||x− x′||2),

where γ defines how far the influence of a single training example reaches. So SVMs

with RBF kernel is under our consideration. Table 2.3 summarizes all the algorithms

we use.

Evaluation criteria play a crucial role in assessing the performance of a classifier.

Before we give the evaluation criteria, the definition of the Confusion Matrix for

the binary classifier is needed in Table 2.4. Kohavi and Provost (1998) proposed

the Confusion Matrix containing the basic information about actual and predicted

classification done by a classifier.

26

Table 2.3: Machine Learning Algorithms in AdaBoost Numeric Studies.

Name Description Parameters

SVMs
Standard single Support Vector Machines

with RBF kernel

γbest is obtained by grid

searching in 2[−20:20]

Ada-DT
AdaBoost using Decision Tree

as weak classifiers

Ada-LSVMs
AdaBoost using linear kernel SVMs

as weak classifiers

Ada-RSVMs
AdaBoost using RBF kernel SVMs

as weak classifiers

γbest is obtained by grid

searching in 2[−20:20]

En-Ada
Enhanced AdaBoost using Decision Tree

as weak classifiers

Re-Ada
Reinforced AdaBoost using Decision Tree

as weak classifiers

Table 2.4: Confusion Matrix.

Prediction

Positive Negative Row Total

Truth
Positive TP =True Positive rate FN =False Negative rate P

Negative FP =False Positive rate TN =True Negative rate N

Column Total P ′ N ′ 1

The common evaluation criteria based on the Confusion Matrix are:

• Global Accuracy = TP + TN ;

• Global Error Rate = 1−Global Accuracy = 1− (TP + TN);

27

• Sensitivity = Recall = TP/P ;

• Specificity = TN/N ;

• Precision = TP/P ′.

In the imbalanced data problem, our goal is to keep the global error low and improve

the classification accuracy rate of S+. Sensitivity (Recall) and Precision are more

important for accessing the classification performance of S+. F − 1 Measure (see

Lewis and Gale (1994)) integrates Sensitivity and Precision as an average, defined

as:

• F − 1 Measure =
2× Precision× Sensitivity
Precision+ Sensitivity

.

F − 1 Measure represents a harmonic mean between Sensitivity and Precision.

The harmonic mean of two numbers is closer to the small one. So a high F −

1 Measure can ensure Sensitivity and Precision are both high.

The Receiver Operating Characteristic (ROC) curve is created by plotting the

true positive rate (TP) on the Y-axis against the false positive rate (FP) on the

X-axis at various threshold settings. The area under the curve (AUC) is equal to

the probability that a classifier will rank a randomly chosen positive instance higher

than a randomly chosen negative one. AUC provides a single measure of a classifier’s

performance based on the ROC curve. Large AUC means the classifier performs well.

We choose five from all seven criteria above. Global Accuracy and AUC are

used to evaluate the global classification ability. Sensitivity and F − 1 Measure are

used as the evaluation criteria to compare the classification ability for S+ in different

algorithms. Specificity is used to assess the classification ability of S−. All the

results of the criteria in this section are kept rounded to four decimal places.

28

2.4.1 Simulation Studies Based on Gaussian Data

The simulated training dataset is:

Xij =

(
Xij1

Xij2

)
iid∼ N2(µi,Σi), (2.16)

where i = −1, 1 and j = 1, . . . , ni.

µ−1 =

(
7

8

)
,µ1 =

(
13

15

)
,Σ−1 =

(
10 3

3 8

)
,Σ1 =

(
1 0

0 2

)
. (2.17)

All the variables in X−1,j and X1,j have the class labels −1 (Majority) and 1 (Mi-

nority), respectively. We consider two cases based on b = 10 and b = 5.

2.4.1.1 b = 10

We set the training sample sizes of the positive and negative class to be (n−1, n1) =

(500, 50). The test dataset has the same distributions as the training data, but the

test data size is (n∗−1, n
∗
1) = (100, 10). The scatter plots of this simulated data are

given in Figure 2.2.

29

−5 0 5 10 15 20

0

5

10

15

20

(a) Simulated Training Data

Xij1

Xij2

majority class, n=500
minority class, n=50

−5 0 5 10 15 20

0

5

10

15

20

(b) Simulated Test Data

Xij1

Xij2

majority class, n=100
minority class, n=10

Figure 2.2: Simulated Gaussian Data with b = 10 in AdaBoost Numeric Studies.

For each simulation of the data, we conduct all the algorithms in Table 2.3

to compare the criteria of Sensitivity, Specificity, F − 1 Measure, AUC, and

Global Accuracy. We repeat the experiments 100 times for every algorithm to reduce

the randomness impact of the data simulation. Table 2.5 displays the mean values

and standard deviation values (shown in brackets) of 100 repeated results.

30

Table 2.5: The Results of Simulated Gaussian Data in AdaBoost Numeric Studies
(b = 10).

Algorithms
Evaluation Measures

Sensitivity Specificity F-1 Measure AUC Global Accuracy

SVMs
0.8931

(0.1051)

0.9903

(0.0109)

0.8968

(0.0761)

0.9417

(0.0527)

0.9815

(0.0135)

Ada-DT
0.8485

(0.1188)

0.9873

(0.0116)

0.8575

(0.0890)

0.9717

(0.0599)

0.9747

(0.0154)

Ada-LSVMs
0.8778

(0.1145)

0.9739

(0.0210)

0.8233

(0.0524)

0.9259

(0.0497)

0.9651

(0.0129)

Ada-RSVMs
0.9822

(0.1024)

0.9693

(0.0092)

0.8636

(0.0352)

0.9801

(0.0082)

0.9712

(0.0085)

En-Ada
0.9833

(0.0157)

0.8834

(0.0779)

0.9153

(0.0900)

0.9259

(0.0541)

0.9185

(0.0376)

Re-Ada
0.9840

(0.0574)

0.8902

(0.0685)

0.9159

(0.0767)

0.9262

(0.0576)

0.9213

(0.0568)

The Reinforced AdaBoost has the largest F − 1 Measure and Sensitivity. No-

tably, F − 1 Measure obtains an obvious improvement in both of our proposed algo-

rithms compared to others. So our proposed algorithms outperform others regarding

the classification performance of the positive class.

The SVMs with RBF kernel has the largest Specificity and Global Accuracy and

the AdaBoost with RBF kernel SVMs has the largest AUC. The phenomenon of

SVMs performing well makes sense since as a reliable classifier, SVMs can obtain an

excellent result for the classification if we are interested in the global accuracy. Also,

31

the data we use is Gaussian data, all the algorithms related to SVMs with RBF kernel

should perform well instinctively. Our proposed algorithms are both AdaBoost with

the decision tree as the weak classifiers and they show better classification results in

the positive class also obtain persuasive results from the global perspective.

The Reinforced AdaBoost has a similar result to the Enhanced AdaBoost. The

reason is that b = 10 is a large value and the theoretical improvement in the Reinforced

AdaBoost is not obvious compared to the Enhanced AdaBoost. We use the same

simulated data but change b = 5 and repeat the experiment in the next case.

2.4.1.2 b = 5

Now the training data and test data are kept in the same distribution as the previous

case but (n−1, n1) = (500, 100) for the training data, and (n∗−1, n
∗
1) = (100, 20) for the

test data. The compared algorithms and criteria are the same as the last experiment.

The results of 100 repeated experiments for the situation of b = 5 are shown in

Table 2.6. All the results in Table 2.6 are similar to the results in Table 2.5. But

the criteria differences between the Reinforced AdaBoost and Enhanced AdaBoost

are more obvious in this study. This result supports the claim that the Reinforced

AdaBoost outperforms the Enhanced AdaBoost when b is relatively small.

32

Table 2.6: The Results of Simulated Gaussian Data in AdaBoost Numeric Studies
(b = 5).

Algorithms
Evaluation Measures

Sensitivity Specificity F-1 Measure AUC Global Accuracy

SVMs
0.9510

(0.0447)

0.9824

(0.0131)

0.9232

(0.0364)

0.9667

(0.0227)

0.9771

(0.0127)

Ada-DT
0.9005

(0.0695)

0.9805

(0.0141)

0.9011

(0.0507)

0.9405

(0.0356)

0.9672

(0.0167)

Ada-LSVMs
0.9663

(0.0425)

0.9621

(0.0267)

0.9003

(0.0520)

0.9642

(0.0291)

0.9628

(0.0207)

Ada-RSVMs
0.9736

(0.0168)

0.9672

(0.0181)

0.9226

(0.0396)

0.9804

(0.0127)

0.9716

(0.0155)

En-Ada
0.9810

(0.0534)

0.9111

(0.0567)

0.9341

(0.0213)

0.9402

(0.0867)

0.9402

(0.0789)

Re-Ada
0.9830

(0.0123)

0.9154

(0.0345)

0.9401

(0.0364)

0.9451

(0.0234)

0.9433

(0.0364)

2.4.2 Simulation Study Based on Uniform Data

The simulated training dataset is:

Xij =

(
Xij1

Xij2

)
iid∼ Uniform2(ai, bi), (2.18)

33

where i = −1, 1 and j = 1, . . . , ni.

a−1 =

(
1

5

)
, b−1 =

(
10

12

)
,a1 =

(
4

12

)
, b1 =

(
6

13

)
. (2.19)

All the variables in X−1,j and X1,j have the class labels −1 (Majority) and 1 (Mi-

nority), respectively. We set b = 20, the training sample sizes of the positive and

negative class are (n−1, n1) = (1000, 50).

The test dataset is:

X∗ij =

(
X∗ij1
X∗ij2

)
iid∼ Uniform2(ai, bi) + εij, (2.20)

where i = −1, 1, j = 1, . . . , n∗i , and

εij =

(
εij1
εij2

)
iid∼ N2(µi,Σi). (2.21)

Where

µ−1 =

(
0

0

)
,µ1 =

(
0

0

)
,Σ−1 =

(
0.1 0

0 0.1

)
,Σ1 =

(
0.05 0

0 0.05

)
. (2.22)

The test data size is (n∗−1, n
∗
1) = (200, 10). The scatter plots of this simulated data

are given in Figure 2.3.

34

2 4 6 8 10
Xij1

5

6

7

8

9

10

11

12

13

Xij2

Simulated Training Data
Majority class, n=1000
Minority class, n=50

2 4 6 8 10
Xij1

6

8

10

12

Xij2

Simulated Test Data
Majority class, n=200
Minority class, n=10

Figure 2.3: Simulated Uniform Data with b = 20 in AdaBoost Numeric Studies.

Except for the different sample sizes, the test data has an additional Gaussian

error term compared to the training data. The training data points are located in

two disjoint squares without overlap between the two classes, but the test data would

have the overlap because of the error term. In Figure 1.1 (3), this situation is referred

to as a Data Shift problem, in the sense that the distributions of the training data

and test data are different. This situation often occurs when a classifier is trained

based on standard and clean training data. However, the test data comes from the

real practice that would have randomness and is not the same as the training data.

35

Table 2.7: The Results of Simulated Uniform Data in AdaBoost Numeric Studies
(b = 20).

Algorithms
Evaluation Measures

Sensitivity Specificity F-1 Measure AUC Global Accuracy

SVMs
0.9198

(0.0906)

0.9941

(0.0053)

0.9027

(0.0623)

0.9570

(0.0449)

0.9906

(0.0060)

Ada-DT
0.9030

(0.0888)

0.9829

(0.0082)

0.8068

(0.0743)

0.9429

(0.0444)

0.9791

(0.0087)

Ada-LSVMs
0.9594

(0.0827)

0.9369

(0.0397)

0.6309

(0.1448)

0.9482

(0.0345)

0.9380

(0.0357)

Ada-RSVMs
0.9386

(0.0824)

0.9913

(0.0068)

0.8901

(0.0687)

0.9650

(0.0410)

0.9888

(0.0073)

En-Ada
0.9801

(0.0431)

0.9256

(0.0234)

0.9404

(0.0245)

0.9446

(0.0345)

0.9424

(0.0253)

Re-Ada
0.9812

(0.0634)

0.9353

(0.0353)

0.9465

(0.0245)

0.9364

(0.0465)

0.9467

(0.0253)

Table 2.7 contains the classification results for this simulated Uniform data. The

results are still similar to Table 2.5 and Table 2.6, but the F − 1 Measure obtains

a more significant improvement in the Reinforced AdaBoost and the Enhanced Ad-

aBoost compared to other algorithms. Our proposed AdaBoost algorithms improve

the classification ability for positive class apparently without losing the global classi-

fication ability.

36

2.4.3 Real Data Studies

Four real binary datasets are studied and their imbalanced index b are 15.13, 11.59,

5.14, and 3.36. Since all the datasets are imbalanced, each dataset is randomly split

in half as the training part and half as the test part to avoid the situation that there

are no or too few numbers of positive samples in the training or test data.

2.4.3.1 Seismic-bumps data study

The Seismic-bumps data with b = 15.13 is obtained from the University of California,

Irvine, Machine Learning Repository. This dataset is about the seismic hazard in

mining activity. Mining activity is always connected with the occurrence of dangers,

which are called mining hazards. Seismic hazard is a special and dangerous case

in mining hazards. The Seismic-bumps dataset is intensely imbalanced with only

170 samples of the positive class among a total of 2584 samples and it contains

18 explanatory variables including seismic hazard assessment obtained by different

methods, seismic energy recorded by different types of equipment, the number of

seismic bumps in different energy range and so on. The hazardous state is the negative

class defined as that there is a high energy seismic bump occurring in the next shift,

which is indicated by y = −1. The non-hazardous state is the positive class defined

as that there is no high energy seismic bump occurring in the next shift, which is

indicated by y = 1.

Table 2.8 displays the Seismic-bumps data experiment. It shows the great per-

formance of our proposed algorithms for the classification of this dataset. Except for

the specificity, all evaluation criteria of the Reinforced AdaBoost and the Enhanced

AdaBoost perform better than other algorithms, especially for the F − 1 Measure.

37

Another interesting fact is the results based on the Enhanced AdaBoost and the Re-

inforced AdaBoost are the same. Because b = 15.13 is a considerable number in this

dataset and γt should be relatively small in this high-dimensional data, the improve-

ment part in the Reinforced AdaBoost compared to the Enhanced AdaBoost does

not work.

2.4.3.2 Glass-2 data study

The Glass-2 dataset is obtained from the Knowledge Extraction Based on Evolution-

ary Learning (KEEL) Dataset Repository. This dataset is originally from the USA

Forensic Science Service and intensely imbalanced with only 17 samples of the posi-

tive class among a total of 214 samples, which means b = 11.59. The Glass-2 dataset

has eight explanatory variables, including the refractive index, the different chemical

elements content and so on. The positive class is labeled as the glass is non-float

processed and it is indicated by y = 1. The negative class is defined as the glass is

made by other processed methods and it is indicated by y = −1.

Table 2.9 displays the Glass-2 data experiment. It shows similar results as the

Seismic-bumps data results. Except for the specificity, all evaluation measures of

our proposed algorithms perform better than other algorithms, especially for the

F − 1 Measure. Compared to the Enhanced AdaBoost, the Reinforced AdaBoost

has a slight improvement.

38

Table 2.8: The Results of Seismic-bumps Data in AdaBoost Numeric Studies (b =
15.13).

Algorithms
Evaluation Measures

Sensitivity Specificity F-1 Measure AUC Global Accuracy

SVMs 0.0000 1.0000 0.0000 0.5 0.9320

Ada-DT 0.1047 0.9873 0.1636 0.5460 0.9273

Ada-LSVMs 0.0000 0.9992 0.0000 0.4996 0.9312

Ada-RSVMs 0.6279 0.6675 0.2030 0.6477 0.6648

En-Ada 0.9211 0.9755 0.9601 0.9101 0.9533

Re-Ada 0.9211 0.9755 0.9601 0.9101 0.9533

Table 2.9: The Results of Glass-2 Data in AdaBoost Numeric Studies (b = 11.59).

Algorithms
Evaluation Measures

Sensitivity Specificity F-1 Measure AUC Global Accuracy

SVMs 0.0000 1.0000 0.0000 0.5 0.8972

Ada-DT 0.0909 0.9896 0.1538 0.5402 0.8972

Ada-LSVMs 0.0000 1.0000 0.0000 0.5000 0.8970

Ada-RSVMs 0.1818 0.9063 0.1818 0.5440 0.8318

En-Ada 0.8962 0.8327 0.8554 0.8948 0.8617

Re-Ada 0.9056 0.9087 0.9074 0.9047 0.9072

2.4.3.3 New-thyroid-1 data study

The New-thyroid-1 dataset is also obtained from the KEEL Dataset Repository. This

dataset is original from the Garavan Institute in Sydney, Australia. It includes the

39

information of thyroid patients and was rearranged by KEEL to be an imbalanced

binary dataset. The New-thyroid-1 dataset is imbalanced with 35 positive samples

among a total of 215 samples, which indicates the imbalanced index is b = 5.14.

This dataset contains 5 explanatory variables, including the levels of different hor-

mones like Thyroxin, Triiodothyronine and so on. The positive class is labeled as

Hyperthyroidism, which is indicated by y = 1. The negative class is defined as non-

Hyperthyroidism, which is indicated by y = −1.

Table 2.10 displays the results of the New-thyroid-1 data experiment. It shows the

satisfactory performance of our proposed algorithms compared to others for this data

classification problem. All the evaluation criteria of the Reinforced AdaBoost and

the Enhanced AdaBoost perform better than other algorithms. Because b = 5.143

is a relatively small number in this dataset, the improvement part in the Reinforced

AdaBoost compared to the Enhanced AdaBoost works.

Table 2.10: The Results of New-thyroid-1 Data in AdaBoost Numeric Studies (b =
5.14).

Algorithms
Evaluation Measures

Sensitivity Specificity F-1 Measure AUC Global Accuracy

SVMs 0.2632 1.0000 0.4167 0.6316 0.8704

Ada-DT 0.7895 0.9888 0.8571 0.8891 0.9537

Ada-LSVMs 0.8421 0.9888 0.8889 0.9154 0.9630

Ada-RSVMs 0.8421 0.9663 0.8421 0.9042 0.9444

En-Ada 0.9881 0.9495 0.9673 0.9888 0.9680

Re-Ada 0.9888 1.000 0.9944 0.9944 0.9943

40

2.4.3.4 Ecoli-1 data study

The Ecoli-1 dataset is also obtained from the KEEL Dataset Repository. This dataset

initially comes from the Institute of Molecular and Cellular Biology at Osaka Uni-

versity. It includes the information of the cellular localization sites of proteins and

is rearranged by KEEL as an imbalanced binary dataset. The Ecoli-1 dataset is

imbalanced with 77 positive samples among a total of 336 samples, which indicates

the imbalanced index is b = 3.36. This dataset contains seven explanatory variables,

including the signal sequence recognition scores by different methods, the presence of

charge on N-terminus and so on. The positive class is labeled as the inner membrane

without a signal sequence, which is indicated by y = 1. The negative class is defined

as other situations, which is indicated by y = −1.

Table 2.11 displays the results of the Ecoli-1 data experiment. It shows the Re-

inforced AdaBoost has the largest F − 1 Measure and Global Accuracy. Compared

to the Enhanced AdaBoost, the relatively small value of b = 3.36 makes the improve-

ment part in Reinforced AdaBoost play a significant role. The differences between

our two proposed algorithms are more obvious in this case.

41

Table 2.11: The Results of Ecoli-1 Data in AdaBoost Numeric Studies (b = 3.36).

Algorithms
Evaluation Measures

Sensitivity Specificity F-1 Measure AUC Global Accuracy

SVMs 0.8889 0.9242 0.8205 0.9066 0.9167

Ada-DT 0.8611 0.9091 0.7848 0.8851 0.8988

Ada-LSVMs 0.0000 1.0000 0.0000 0.5000 0.7857

Ada-RSVMs 0.9444 0.8636 0.7727 0.9040 0.8810

En-Ada 0.9322 0.9437 0.9383 0.9280 0.9379

Re-Ada 0.9205 0.9706 0.9457 0.8371 0.9441

Based on the numeric studies, our two proposed algorithms outperform the tra-

ditional ones in imbalanced data classification. With large imbalanced index b, our

proposed algorithms show excellent performance. The difference between the En-

hanced AdaBoost and the Reinforced AdaBoost is more obvious in the case of the

small value of b and they would have the same performance in a large b case such as

the Seismic-bumps data study.

2.5 Conclusion Comments

Class imbalanced problem is a critical issue in many fields and raises considerable

hardship for classification. To address the challenge of the imbalanced class prob-

lem, the Enhanced AdaBoost and Reinforced AdaBoost are proposed in this chapter

to improve the Adaboost algorithm. The innovation point is an adjustment of the

weighted vote parameters of weaker classifiers αt, which includes the global error rate

42

and the positive class accuracy rate. In addition, our algorithms consider the imbal-

anced index b, to improve the performance of classification in the imbalanced class

problem.

Numerical studies of two kinds of simulated datasets and four real datasets com-

pare the proposed algorithms and four other traditional algorithms. Our algorithms

outperform in the positive class, especially regarding F − 1 Measure, and do not

lose the global accuracy rate. When b is large, the Enhanced AdaBoost is a powerful

algorithm for the imbalanced data classification. But if b is relatively small, the Re-

inforced AdaBoost is recommended to be used for the imbalanced data problem to

obtain a better result.

43

Chapter 3

Fully Bayesian Analysis of the
Relevance Vector Machine
Classification for Imbalanced Data

3.1 Introduction

In statistics, Relevance Vector Machine (RVM) is an algorithm that uses a Bayesian

model to obtain parsimonious solutions for regression and probabilistic classification.

The RVM has an identical functional form to the Support Vector Machine (SVM),

but provides probabilistic classification. Compared to SVM, the Bayesian formulation

of the RVM avoids the set of free parameters of the SVM. RVM uses an Expectation

Maximization (EM)-like learning method and is therefore not a pure Bayesian model.

This chapter studies the original RVM model. Two proposed Bayesian RVM models

are given to complete the RVM framework.

44

3.1.1 Support Vector Machine with Kernel Functions

In classification, we are given a set of input data Strain = {(xtrain1 , ytrain1), (xtrain2 , ytrain2),

..., (xtrainn , ytrainn)} along with the corresponding class label, ytraini ∈ {−1, 1}. From

the training data, we wish to learn a model of the dependency of the class label on the

inputs with the objective of making accurate predictions for the unseen values of x. A

very successful approach to the classification is the Support Vector Machine (SVM).

For the linearly separable data, SVM constructs an optimal separating hyperplane

as the classification borderline, which can obtain the maximum distance between

two classes for a binary dataset. When we do not have a linearly separable set of

training data, the Kernel trick comes handy. The idea is mapping the non-linear sep-

arable dataset into a higher-dimensional space where we can find a hyperplane that

can separate the samples. If we use a mapping function that maps the data into a

higher-dimensional space, the decision rule of SVM will depend on the dot products

of the mapping function for different samples. The kernel function is employed here

to reduces the complexity of finding the mapping function and defines the inner prod-

uct in the transformed space. Vapnik (1998) and Scholkopf et al. (1999) proposed

the output of SVM for an arbitrary data point x0 can be expressed as a weighted

summation of the form

f(x0;w) =
n∑
i=1

wik(x0,x
train
i) + w0, (3.1)

where k(·, ·) is the Kernel function, w0 and wi are weight parameters, i = 1, 2, ..., n.

Note that x0 can be a training data point or a test data point. The Radial Basis

45

Function (RBF) Gaussian kernel, namely

k(xi,xj) = exp
(
− ‖xi − xj‖2

2γ2

)
,

is used throughout this chapter. RBF Gaussian Kernel is the most popular Kernel in

Statistics and Machine Learning fields. The SVM output for the training data Strain

can be expressed as the matrix form

f(xtrain;w) = Ktrainw, (3.2)

where w = (w0, w1, ..., wn)T is the weight parameter and

Ktrain = (Ktrain
1 , Ktrain

2 , ..., Ktrain
n)T

=

1 k(xtrain1 ,xtrain1) k(xtrain1 ,xtrain2) · · · k(xtrain1 ,xtrainn)

1 k(xtrain2 ,xtrain1) k(xtrain2 ,xtrain2) · · · k(xtrain2 ,xtrainn)

: : : : :

1 k(xtrainn ,xtrain1) k(xtrainn ,xtrain2) · · · k(xtrainn ,xtrainn)

.(3.3)

Note that given the training data Strain, the kernel matrix Ktrain is fixed. The

classification goal is to obtain sign(f(xtrain; ŵ)) = ytrain, where ŵ is the proper

estimate of w, sign(z) = 1 if z ≥ 0, and sign(z) = −1 if z < 0.

46

3.1.2 Adaptive Rejection Sampling Method

Sampling plays an important role in statistics. Sampling from the conventional dis-

tributions can be done directly by statistics software like R, but it is hard to do

the sampling from the unconventional distributions. Robert & Casella (2004) pro-

posed the Rejective Sampling method to conduct the sampling of unconventional

distributions. It samples from a proposed conventional distribution and sets a ra-

tio to decide the acceptance or rejection of this sampling value. But the Rejection

Sampling method needs an upper boundary to restrict the proposed conventional

distribution and people do not have a certain approach to determine this boundary.

The original idea of the Adaptive Rejection Sampling (ARS) method was proposed

by Gilks & Wild (1992). It can determine the certain upper boundary of the un-

conventional distributions and has a high acceptance rate for the sampling process.

For distributions whose probability density functions are log-concave, the Adaptive

Rejection Sampling (ARS) method is powerful and efficient.

3.1.2.1 Rejection Sampling method

The Rejection Sampling method is a typical Monte Carlo Sampling method. When

the aim distribution X ∼ pX(x) is not suitable for direct sampling, the Rejection

Sampling method employs a proposal distribution Y ∼ gY (y), which can produce

the sampling values quickly. The basic idea is to sample a random value y′ from the

proposal distribution, then accept y′ as the sample of aim distribution pX(x) with the

probability of pX(y′)/(M gY (y′)), where 1 < M <∞ is a constant.

47

Algorithm 3.1. The Rejection Sampling Method

Input. The sample size N and the aim distribution pX(x).

0. Determine the proposal distribution gY (y) and constant M , let i = 1;

while i ≤ N do:

1. Sample u ∼ U(0, 1), yi ∼ gY (y);

2. If u < pX(yi)/(M gY (yi)) then xi = yi; else repeat Steps 1 and 2;

3. i = i+ 1;

Output. x = {x1, x2, ..., xN} are the sample values.

Although the Rejection Sampling method works, it would produce inaccurate

results and the process is inefficient sometimes. First, if the aim distribution pX(x)

has peak value in some internals, the Rejection Sampling method may result in the

inclusion of samples that should not have been accepted. Also, when the dimension

of the aim distribution increases, the ratio of pX(yi)/gY (yi) convergence to 0 with N

increasing. This would result in that a useful sample is rejected before it is produced.

The most difficult thing is to find the proper proposal distribution gY (y) and the

bounded constant M .

3.1.2.2 Adaptive Rejection Sampling Method

For a better sampling performance in practice, we need a proposal distribution closer

to the aim one. Gilks & Wild (1992) proposed the Adaptive Rejection Sampling

method idea. It exercises a series of envelope functions to do the sampling. If one

48

sample value is rejected and it will be included to construct a more compact envelope

function. First, we give the definition of concavity and convexity of functions.

Definition 3.1. If f(x) is continuous on [a, b] and the second derivative exists.

(1) When f ′′(x) > 0 on (a, b), f(x) is convex on [a, b];

(2) When f ′′(x) < 0 on (a, b), f(x) is concave on [a, b].

A necessary assumption of the ARS method is that the aim distribution is log-

concave. If the aim distribution function is pX(x) defined on D ⊆ R, based on the

Definition 3.1, let VX(x) = −log(pX(x)) and V ′′X((x) > 0 always holds on D. ARS

method needs a serial support points s1 < s2 < ... < sm to construct the envelope

function. The more support points there are, the higher acceptable rate the sampling

process will have at the cost of efficiency. In Figure 3.1, let wk(x) be the tangential

function of VX(x) at support point sk:

wk(x) = V ′X(sk)(x− sk) + VX(sk), (3.4)

where k = 1, 2, ...,m. We obtain m tangential functions based on the support points.

Wn(x) = max{w1(x), w2(x), ..., wm(x)}. (3.5)

Because VX(x) is the convex function on D, and wk(x) are the tangential functions

at sk, where k = 1, 2, ...,m. So Wn(x) ≤ VX(x). Figure 3.2 shows the Wn(x) based

on two support points. After transformation, we have a envelope function

exp(−Wn(x)) ≥ exp(−VX(x)) = pX(x). (3.6)

49

Then a piecewise proposal function is obtained based on exp(−Wn(x)):

πn(x) = cnexp(−Wn(x)), (3.7)

where cn = (
∫
D exp(−Wn(x))dx)−1 is the regularization constant. The basic idea of

ARS method is to first sample the random values u from U(0, 1), x′ from πn(x). If

u < pX(x′)
exp(−Wn(x′))

, we accept x′ as the sample value from pX(x). Otherwise, we add x′

into the support points set Sn to obtain Sn+1 = Sn
⋃
x′, which will construct a more

compact Wn+1(x). Repeat this step until we have enough acceptable samples.

Figure 3.1: The Tangential Function wk(x) at sk in ARS Method.

50

Figure 3.2: wn(x) Based on Two Support Points in ARS Method.

Algorithm 3.2. The Adaptive Rejection Sampling Method

Input. The sample size N , the aim distribution pX(x).

0. Let i = 1 and determine the support points set Si;

while i ≤ N do:

1. VX(x) = −log(pX(x)) and construct the tangential functions of VX(x) based

on the points in Si;

2. Sample u ∼ U(0, 1), x′ ∼ πn(x) ∝ exp(−Wn(x));

3. If u < pX(x′)
exp(−Wn(x′))

, xi = x′ and Si+1 = Si; Else, Si = Si
⋃
x′ and return to Step

1.

Output. x = {x1, x2, ..., xN} are the sample values.

Thereafter, several improved ARS methods were proposed. Gilks (1995) proposed

the MABS method, which combines the Metropolis-Hastings and ARS methods. But

51

this approach produces a Markov chain, which makes the samples are related to

each other. Gorur & Teh (2009) proposed a new ARS method which can also solve

log-convex distribution sampling. It divides the distribution function into several

sections based on the concavity and convexity then conduct the sampling in every

single section. Zhang (2017) summarized all the existing ARS methods and published

the AdapSamp package in R. In this project, we use AdapSamp :: rARS function in

R to conduct the Adaptive Rejection Sampling method.

3.2 RVM Classification

Relevance Vector Machine (RVM) is a Bayesian treatment for the output of the

Support Vector Machine (SVM). This project only focuses on the RVM classification.

It applies the Bernoulli distribution to the output of SVM in (3.1) and constructs the

probability density function p(y|x) for the classification problems. The logistic link

function is a continuous probability distribution. Its cumulative distribution function

is the logistic link function. The logistic distribution is defined as

glogis(t;µ, s) =
e−(t−µ)/s

s (1 + e−(t−µ)/s)
2 . (3.8)

The logistic distribution receives its name from its cumulative distribution function,

which is an instance of the family of logistic functions. The cumulative distribution

function of the logistic distribution is also a scaled version of the hyperbolic tangent,

which is the CDF of standard logistic distribution:

Glogis(t;µ = 0, s = 1) =
1

1 + e−t
. (3.9)

52

The logistic sigmoid link function is used to map f(x;w) into [0, 1]. The likelihood

of the training data set is

p(ytrain|w) =
n∏
i=1

Glogis

(
f(xtraini ;w)

) 1+ytraini
2

[
1−Glogis

(
f(xtraini ;w)

)] 1−ytraini
2

=
n∏
i=1

(
1

1 + exp(−Ktrain
i w)

) 1+ytraini
2

×

(
exp(−Ktrain

i w)

1 + exp(−Ktrain
i w)

) 1−ytraini
2

, (3.10)

where Ktrain
i and w are defined in (3.2) and (3.3). RVM classification introduced a

zero-mean Gaussian prior distribution over w, namely

p(w|α) =
n∏
s=0

N (ws|0, α−1
s) = N (w|0,A−1), (3.11)

where α = (α0, α1, ..., αn)T , A = diag(α0, α1, ..., αn), αs is the hyperparameter asso-

ciated with weight ws, and s = 0, 1, 2, ..., n. This prior helps to obtain the sparsity

constraint. Compared with SVM, RVM classification has fewer relevant vectors be-

cause of the sparsity prior. The Bayesian model provides a posterior distribution for

w as

p(w|ytrain,α) =
p(ytrain|w)p(w|α)∫
p(ytrain|w)p(w|α)dw

=
s(w)

p(ytrain|α)
, (3.12)

where s(w) = p(ytrain|w)p(w|α), which implies that

p(w|ytrain,α) ∝ s(w). (3.13)

53

The limitations of SVM are solved by RVM in the Bayesian framework. The original

RVM classification obtained ŵ, which is the estimation of w, by maximizing s(w).

The classification function for the training data Strain is

ytrain∗ = sign

(
1

1 + exp(−Ktrainŵ)
− 1

2

)
, (3.14)

where Ktrain is defined in (3.3). A test data can be defined as Stest = {(xtest1 , ytest1),

(xtest2 , ytest2), ..., (xtestm , ytestm)}, where xtestj ∈ X ⊆ Rl, X is in the same vector space

as the training data. The response ytestj ∈ {−1, 1} indicates two classes, j = 1, ...,m.

In the imbalanced data problem, we define Stest+ = {(xtestj , ytestj) ∈ Stest : ytestj =

1, j = 1, ...,m} and Stest− = {(xtestj , ytestj) ∈ Stest : ytestj = −1, j = 1, ...,m}. The

classification function for a test data Stest is

ytest∗ = sign

(
1

1 + exp(−Ktestŵ)
− 1

2

)
, (3.15)

where

Ktest = (Ktest
1 , Ktest

2 , ..., Ktest
m)T

=

1 k(xtest1 ,xtrain1) k(xtest1 ,xtrain2) · · · k(xtest1 ,xtrainn)

1 k(xtest2 ,xtrain1) k(xtest2 ,xtrain2) · · · k(xtest2 ,xtrainn)

: : : : :

1 k(xtestm ,xtrain1) k(xtestm ,xtrain2) · · · k(xtestm ,xtrainn)

. (3.16)

Eight criteria listed in Table 3.1 are used to evaluate the performance of algorithms

54

in the RVM research.

Table 3.1: The Criteria for Classification Evaluation in RVM Studies.

Training Data Global Accuracy Rate rtraing =
|ytrain=ytrain

∗ |
n

Training Data Positive Class Accuracy Rate rtrainp =
|ytrain=ytrain

∗ & ytrain=1|
np

Same Size Test Data Global Accuracy Rate rtestg =
|ytest=ytest

∗ |
n

Same Size Test Data Positive Class Accuracy Rate rtestp =
|ytest=ytest

∗ & ytest=1|
np

Smaller Size Test Data Global Accuracy Rate rstestg =
|ystest=ystest

∗ |
ns

Smaller Size Test Data Positive Class Accuracy Rate rstestp =
|ystest=ystest

∗ & ystest=1|
ns
p

Larger Size Test Data Global Accuracy Rate rltestg =
|yltest=yltest

∗ |
nl

Larger Size Test Data Positive Class Accuracy Rate rltestp =
|yltest=yltest

∗ & yltest=1|
nl
p

The calculations of rtestg and rtestp use the same-sized test data as the training data,

ntrain = ntest = n, ntrainp = ntestp = np. Smaller-sized and larger-sized test data are

used for the calculations of (rstestg , rstestp) and (rltestg , rltestp), which means ns < n <

nl, nsp < np < nlp. The simulation data studies use all these eight criteria. The

real data studies only apply rtraing , rtrainp , rtestg , and rtestp because it is hard to obtain

different-sized real test data. All the test data sets in this paper keep the same

imbalance index b as the training data, namely

|Stest− |
|Stest+ |

=
|Strain− |
|Strain+ |

= b.

55

The original RVM classification algorithm is stated as follows:

Algorithm 3.3. The Original RVM Classification Algorithm

Input. The training data: (x1, y1), (x2, y2), ..., (xn, yn), xi ∈ X ⊆ Rl and yi ∈

{−1, 1}, i = 1, ..., n.

0. Let t = 1 and initialize w and α to obtain the started values w1 and α1,

calculate

h = ∇w log g(w) = Φ>
(
y − [σ(φ1w), . . . , σ(φnw)]>

)
−Aw,

H = −∇∇w log g(w) = Φ>BΦ +A, (3.17)

whereB is a (n+1)×(n+1) diagonal matrix with diagonal elements bii = σ(φiw)
[
1−

σ(φiw)
]
;

1. Fix α and update w with

wt+1 = wt + (H)−1h|w=wt ; (3.18)

2. Fix w and update α with

αt+1
s =

γt
s

w2
s

, (3.19)

where γts = 1− αtsHss, s = 0, 1, 2, ..., n;

3. Repeat setps 1 and 2 until sutiable convergence and obtain w0, the mode of

w;

56

Output. The final estimation of w is wMP = H−1ΦTBy|w=w0 .

Note thatwMP, the maximum posterior ofw, is obtained by the Laplace’s Method

in Tipping (2000), which approximates a normal distribution with the mean value w0

to the posterior of w. Xu et al. (2007), Pal & Foody (2012) and Braun et al. (2012)

concluded that RVM is better than SVM in the fields of classification and regression.

They also showed that the conduction speed of RVM is faster than SVM. But the

original RVM classification algorithm still has several shortcomings:

1. Step 1 in Algorithm 3.3 is to maximize the numerator s(w) in (3.10); Step

2 is obtained by maximizing the denominator p(ytrain|α) in (3.10). This iteration

process cannot ensure the maximum of posterior, p(w|ytrain,α);

2. Laplace’s Method is used to approximate p(w|ytrain,α) as a normal distribu-

tion with the mean value w0. Although Bishop and Tipping (2000) indicated that

the posterior of w is approximately normally distributed, the Laplace’s method is

still not stable under a strong normal distribution assumption;

3. The suitable convergence criterion is cryptic. An original RVM classification

convergence study is stated as follows:

The simulated training dataset follows (2.16) and (2.17). Choose N+ = N− = 3,

Figure 3.3 indicates this simulated training data.

57

Figure 3.3: Simulated Data for Original RVM Classification (N+ = N− = 3).

Run the Algorithm 3.3 50000 iterations and check the parameter convergence

in Figure 3.4. The plots take out 5000 burn-in and the red lines indicate 0. Although

the classification accuracy rate is 100% in this case, we cannot determine that the

parameter obtains a suitable convergence.

58

Figure 3.4: Convergence Plot of w in Original RVM Classification Algorithm.

3.3 Generic Bayesian RVM Classification Algorithm

In this section, we propose a Generic Bayesian RVM classification method with the

likelihood and prior for w in (3.8) and (3.9). Our Generic RVM classification algo-

rithm samples the parameter directly from the posterior instead of Newton’s method

in Algorithm 3.3. A Gamma hyperprior is called for each αs and it yields a Student-t

marginal prior for w when α is integrated out. The Gamma hyperprior is

(αs|a, b) ∼ Gamma(αs|a, b), (3.20)

59

the marginal prior for ws is

p(ws) =

∫
p(ws|αs) p(αs)dαs =

baΓ (a+
1

2
)

(2π)
1
2Γ (a)

(
b+ w2

s

)−(a+ 1
2

)

, (3.21)

where s = 0, 1, 2, ..., n. The marginal prior for the vector w is a product of indepen-

dent Student-t distributions in (3.21). Fokoué et al. (2011) indicated that this density

induces more sparsity pressure than the LASSO prior. Recall that the posterior of w

is

p(w|ytrain,α) ∝ exp(−1

2
wTAw)

n∏
i=1

(
1

1 + exp(−φtraini w)

) 1+ytraini
2

×

(
exp(−φtraini w)

1 + exp(−φtraini w)

) 1−ytraini
2

, (3.22)

where s = 0, 1, 2,, n. Although this posterior has no closed-form, it has the desir-

able log-concave property from a computational perspective.

Theorem 3.1. The conditional posterior of ws, p(ws|wk,ytrain, αs) is log-concave,

where k = 0, 1, ..., s− 1, s+ 1, ..., n.

Proof. See Appendix B1.

With this log-concavity, drawing samples from the posterior of ws becomes possible

60

with the ARS method. The posterior of αs is

p(αs|ws, a, b) ∝ α
1
2
s exp

(
− 1

2
αsw

2
s

)
· αa−1

s exp(−b αs)

= α
a+ 1

2
−1

s exp
[
− (b+

1

2
w2
s)αs

]
∝ Gamma(a+

1

2
, b+

1

2
w2
s). (3.23)

The following pseudo-code is implemented to perform the Generic Bayesian RVM

classification.

Algorithm 3.4. The Generic Bayesian RVM Classification Algorithm

Input. The training data: (x1, y1), (x2, y2), ..., (xn, yn), xi ∈ X ⊆ Rl and yi ∈

{−1, 1}, i = 1, ..., n.

0. Let t = 1 and initialize w and α to obtain the started values wt and αt.

Choose (a, b), the number of burn-in B, and the number of iterations T ;

1. Fix αt, draw a new wt+1 according to (3.22);

2. Fix wt+1, draw a new αt+1 according to (3.23);

3. Repeat steps 1 and 2 until suitable convergence is obtained by T iterations;

Output. The final estimation of w is ŵ = (T −B)−1
T∑

t=B+1

wt.

Algorithm 3.4 is a strict Bayesian method and conducted by the Gibbs sampling

method, which could obtain more stable parameter estimates than the original RVM

classification regarding parameter convergence. Although Algorithm 3.4 builds a

Bayesian framework for the RVM classification and ends up yielding a sparsity rep-

61

resentation, the complete freedom of α given to the parameters makes it difficult to

find the unique solution because the number of parameters grows with the sample

size. This is a typical case of the Neyman-Scott problem proposed in Neyman et al.

(1948). Fokoué et al. (2011) indicated that in RVM’s context, the Neyman-Scott

problem means that the prior of (3.11) makes the estimate of w not consistent. A

dimension reduction via the coefficient structure can solve this problem.

3.4 Fully Hierarchical Bayesian RVM Classifica-

tion Algorithm

This section follows the hierarchical prior structure in Fokoué et al. (2011) but applied

to RVM classification instead of the regression problem. One of the main contributions

of Fokoué et al. (2011) is to add another layer random-coefficient structure for prior

of α, which reduces the parameter dimensions. The dimensions reduction can give

consistent estimates of w. This Fully Bayesian method could relate αs’s with the

coefficient parameter and enhance the inner connection of parameters. This section,

compared with Fokoué et al. (2011), makes some improvements. Only n dimensions

of the parameters were considered in Fokoué et al. (2011), the error term of the

parameters, w0 and α0, were ignored. This project considers all n + 1 dimensions

in the parameters. In the numeric study part, Fokoué et al. (2011) specified all the

hyperparameters and only sampled w and α in the Gibbs sampling process. The

numeric studies in this project run the full Gibbs sampling iterations, including all

the parameters. Recall the prior for ws is

p(ws|αs) = N (ws|0, α−1
s). (3.24)

62

Reparametrize α as η = (η0, η1, ..., ηn), where ηs = log(αs), and s = 0, 1, 2, ..., n.

Fokoué et al. (2011) defined the hyperprior for η is

η ∼ Nn+1(µ1n+1, τ
2Σn+1), (3.25)

where Σn+1 = (1 − ρ)In+1 + ρ1n+11
>
n+1, In+1 is an identity matrix, and 1n+1 is a

vector with all values of 1. Note that ρ should remain in the interval of (0, 1). The

interpretation of ρ is to maintain the trade-off between absolute freedom of αs’s when

ρ is close to 0 and the total tightness of αs’s when ρ is close to 1. τ 2 should be

relatively large because sparsity is still an important goal in RVM classification. The

value of ρ indicates the relative contribution of the joint effects between all the αs’s,

the value of τ 2 controls the magnitude of information in α. Based on their expected

effect, we propose the constant priors for ρ and µ, a conjugate prior for τ 2, namely

p(ρ) = Uniform(0, 1), p(µ) = Uniform(0, 1), and p(τ−2) = Gamma(c, d). (3.26)

Since we only add a new layer to the prior, the Fully conditional posterior for w

remains unchanged as (3.22). For the joint posterior of α, we can reach it through

its reparametrized version η, η = log(α),

p(η| others) ∝ p(w|α(η))p
(
η|µ, ρ, τ 2

)
∝

(
n+1∏
s=1

1√
2π

eηs/2

)
exp

(
− 1

2

n+1∑
s=1

eηsw2
s

)
exp

{
− 1

2τ 2(1− ρ)
·

n+1∑
s=1

(ηs − µ)2 +
ρ

2τ 2(1− ρ)(1 + nρ)

[n+1∑
s=1

(ηs − µ)

]2
}
. (3.27)

63

It seems hard to draw samples for this posterior but it also has the desired log-concave

property. The ARS method can be applied again.

Theorem 3.2. The conditional posterior of ηs, p(ηs|others) is log-concave.

Proof. See Appendix B2.

The prior for ρ allows us to write

p(ρ| others) ∝ p(ρ)p(η|µ, ρ, τ 2)

∝ 1

(1− ρ)
n
2 (1 + nρ)

1
2

exp

{
− 1

2τ 2(1− ρ)

n+1∑
s=1

(ηs − µ)2 +

ρ

2τ 2(1− ρ)(1 + nρ)

[n+1∑
s=1

(ηi − µ)

]2
}
. (3.28)

The method of Ratio of Uniforms is used to sample from this conditional posterior.

See Appendix D for more details about the Ratio of Uniforms sampling method. The

posterior of µ is

p(µ| others) ∝ p(µ)p(α|µ, ρ, τ 2)

∝ exp

{
− 1

2τ 2(1− ρ)

n+1∑
s=1

(ηs − µ)2 +
ρ

2τ 2(1− ρ)(1 + nρ)
·

[n+1∑
s=1

(ηi − µ)

]2
}

∝ exp

{
− n+ 1

2τ 2(1 + nρ)

(
µ−

∑n+1
s=1 ηs
n+ 1

)2
}

∝ N

(∑n+1
s=1 ηs
n+ 1

,
τ 2(1 + nρ)

n+ 1

)
. (3.29)

64

For τ 2, we have

p(τ−2| others) ∝ p(τ−2)p(η|µ, ρ, τ2)

∝ (τ−2)c−1 exp(−dτ−2)(τ−2)
n+1
2 exp

(
− 1

2τ2
(η − µ1n+1)> ·

Σ−1(η − µ1n+1)

)
∝ Gam

(
c+

n+ 1

2
, d+

1

2

{
1

1− ρ

n+1∑
s=1

(ηs − µ)2 −

ρ

(1− ρ)(1 + nρ)

[n+1∑
s=1

(ηs − µ)

]2})
. (3.30)

The samples of µ and τ 2 are easy to obtain from their special close-forms. Based on

the above derivation of full conditional posteriors, we have an alternative algorithm:

Algorithm 3.5. Fully Hierarchical Bayesian RVM Classification Algo-

rithm

Input. The training data: (x1, y1), (x2, y2), ..., (xn, yn), xi ∈ X ⊆ Rl and yi ∈

{−1, 1}, i = 1, ..., n.

0. Let t = 1 and initialize w, α, µ, ρ and τ 2 to obtain the started values wt, αt,

µt, ρt and τ 2
t . Choose (c, d), the number of burn-in B, and the number of iterations

T ;

1. Fix other parameters and draw a new wt+1 according to (3.22);

2. Fix other parameters and draw a new αt+1 according to (3.27);

3. Fix other parameters and draw a new ρt+1 according to (3.28);

4. Fix other parameters and draw a new µt+1 according to (3.29);

5. Fix other parameters and draw a new τ 2
t+1 according to (3.30);

65

6. Repeat steps 1-5 until suitable convergence is obtained by T iterations;

Output. The final estimation of w is ŵ = (T −B)−1
T∑

t=B+1

wt.

3.5 Numeric Studies

3.5.1 Simulation Data Studies

The simulated Gaussian datasets have the same distribution as (2.16), (2.17). We

chose five kinds of sizes, (np, nn) = (30, 30), (15, 30), (12, 30), (6, 30), (3, 30), to illus-

trate the performance of different algorithms in different-sized data. b = 1, 2, 2.5, 5, 10

for these five cases and a larger b indicates a more imbalanced dataset. Following Fig-

ure 3.5 shows the training data sets.

We run the Algorithm 3.4 and 3.5 with T = 10000, B = 500, (a, b) = (1, 1/999),

and (c, d) = (1, 1/999). The evaluation criteria come from Table 3.1. For both

Algorithm 3.4 and 3.5, we repeat the experiments 100 times for every case in

Figure 3.5 to reduce the randomness impact of the data simulation. Table 3.2–3.6

display the mean values and standard deviation values (shown in the bracket) of 100

repeated results, the larger accuracy rate is indicated by boldface.

The simulation studies show that for the balanced data and mildly imbalanced

data as b = 1, 2, 2.5, Algorithms 3.4 and 3.5 perform similarly. But for the seri-

ously imbalanced data as b = 5, 10, Algorithm 3.5 outperforms 3.4 significantly.

Especially for b = 10, the accuracy rates for the positive class are almost zero under

Algorithm 3.4, but Algorithm 3.5 improves the classification performance in this

66

case.

Figure 3.5: Simulated Gaussian Data for Bayesian RVM.

Table 3.2: The Results of Simulated Data in Bayesian RVM (b = 1).

rtraing
a

rtestg
b

rstestg
c

rltestg
d

rtrainp
a

rtestp
b

rstestp
c

rltestp
d

Algorithm 3.4
0.9823

(0.0148)

0.9710

(0.0254)

0.9780

(0.0306)

0.9732

(0.0209)

0.9993

(0.0047)

0.9980

(0.0080)

0.9980

(0.0141)

0.9996

(0.0022)

Algorithm 3.5
0.9770

(0.0170)

0.9678

(0.0328)

0.9705

(0.0390)

0.9674

(0.0300)

0.9993

(0.0067)

1.0000

(0.0000)

0.9990

(0.0100)

0.9998

(0.0016)

a (ntrainn = 30, ntrainp = 30), b (ntestn = 30, ntestp = 30), c (nstestn = 10, nstestp = 10), d

(nltestn = 90, nltestp = 90)

67

Table 3.3: The Results of Simulated Data in Bayesian RVM (b = 2).

rtraing
a

rtestg
b

rstestg
c

rltestg
d

rtrainp
a

rtestp
b

rstestp
c

rltestp
d

Algorithm 3.4
0.9796

(0.0257)

0.9791

(0.0235)

0.9773

(0.0418)

0.9757

(0.0147)

0.9680

(0.0690)

0.9693

(0.0542)

0.9760

(0.0870)

0.9698

(0.0378)

Algorithm 3.5
0.9760

(0.0236)

0.9822

(0.0214)

0.9740

(0.0443)

0.9808

(0.0138)

0.9707

(0.0616)

0.9767

(0.0477)

0.9700

(0.0823)

0.9798

(0.0322)

a (ntrainn = 30, ntrainp = 15), b (ntestn = 30, ntestp = 15), c (nstestn = 10, nstestp = 5), d

(nltestn = 90, nltestp = 45)

Table 3.4: The Results of Simulated Data in Bayesian RVM (b = 2.5).

rtraing
a

rtestg
b

rstestg
c

rltestg
d

rtrainp
a

rtestp
b

rstestp
c

rltestp
d

Algorithm 3.4
0.9693

(0.0296)

0.9745

(0.0294)

0.9729

(0.0416)

0.9732

(0.0186)

0.9375

(0.1015)

0.9403

(0.0920)

0.9550

(0.1088)

0.9433

(0.0580)

Algorithm 3.4
0.9679

(0.0376)

0.9710

(0.0286)

0.9650

(0.0482)

0.9731

(0.0171)

0.9383

(0.1212)

0.9325

(0.0860)

0.9275

(0.1390)

0.9414

(0.0541)

a (ntrainn = 30, ntrainp = 12), b (ntestn = 30, ntestp = 12), c (nstestn = 10, nstestp = 4), d

(nltestn = 90, nltestp = 36)

Table 3.5: The Results of Simulated Data in Bayesian RVM (b = 5).

rtraing
a

rtestg
b

rstestg
c

rltestg
d

rtrainp
a

rtestp
b

rstestp
c

rltestp
d

Algorithm 3.4
0.9600

(0.0213)

0.9567

(0.0222)

0.9133

(0.0229)

0.8500

(0.0118)

0.7062

(0.0464)

0.7467

(0.1770)

0.7600

(0.2141)

0.6688

(0.1331)

Algorithm 3.5
0.9614

(0.1675)

0.9568

(0.2042)

0.9348

(0.2041)

0.8933

(0.3171)

0.7101

(0.2334)

0.7811

(0.4003)

0.7805

(0.5152)

0.7600

(0.2289)

a (ntrainn = 30, ntrainp = 6), b (ntestn = 30, ntestp = 6), c (nstestn = 10, nstestp = 2), d

(nltestn = 90, nltestp = 18)

68

Table 3.6: The Results of Simulated Data in Bayesian RVM (b = 10).

rtraing
a

rtestg
b

rstestg
c

rltestg
d

rtrainp
a

rtestp
b

rstestp
c

rltestp
d

Algorithm 3.4
0.9973

(0.2144)

0.9091

(0.0091)

0.9091

(0.0000)

0.9104

(0.1763)

0.0900

(0.0288)

0.0000

(0.0000)

0.0000

(0.0000)

0.0100

(0.0320)

Algorithm 3.5
0.9503

(0.0357)

0.9148

(0.0417)

0.9118

(0.0758)

0.9187

(0.0332)

0.5233

(0.3914)

0.1667

(0.2485)

0.2200

(0.4163)

0.1922

(0.2118)

a (ntrainn = 30, ntrainp = 3), b (ntestn = 30, ntestp = 3), c (nstestn = 10, nstestp = 1), d

(nltestn = 90, nltestp = 9)

3.5.2 Real Data Studies

Six binary real data sets are studied in this paper and the imbalance index b changes

from 1.82 to 11.59. The datasets are obtained from the Knowledge Extraction based

on Evolutionary Learning (KEEL) Dataset Repository (see Jesús Alcalá-Fdez et al.

(2011)). KEEL is an open-source Java software tool used for data discovery tasks.

It includes plenty of datasets that can be used for imbalanced data problem studies.

The detailed descriptions of every dataset can be found on the website of KEEL. For

every dataset, we randomly split the positive and negative classes, where half is the

training part, the other half is the test part. Algorithm 3.4 and 3.5 are applied

to all the datasets. Table 3.7 lists some basic information of the datasets and the

classification results of the four criteria. The real data studies show that Algorithm

3.5 indeed outperforms 3.4, especially for seriously imbalanced datasets when we are

interested in the positive class.

69

Table 3.7: The Results of Real Datasets in Bayesian RVM.a

Dataset b Dimension Total Data Size rtraing rtestg rtrainp rtestp

glass1 1.82 9 214
0.6449

0.6542

0.6449

0.6449

0.0000

0.0263

0.0000

0.0000

iris0 2.00 4 150
1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

newthyroid1 5.14 5 215
0.8318

0.8999

0.8333

0.8333

0.0000

0.0588

0.0000

0.0000

glass6 6.38 9 214
0.8679

0.8679

0.8611

0.8611

0.0000

0.0000

0.0000

0.0000

ecoli0345 9.00 7 200
0.8600

0.9100

0.9000

0.9000

0.0000

0.1000

0.0000

0.0000

glass2 11.59 9 214
0.9245

0.9379

0.9167

0.9300

0.0000

0.0133

0.0000

0.0133
a Results in the table are listed by Algorithm 3.4 on the top, Algorithm 3.5 on the bottom.

3.6 Conclusion Comments

Two Bayesian RVM classification algorithms are proposed in this chapter and they

make two-fold contributions. The first Generic Bayesian RVM algorithm conducts a

pure Bayesian RVM classification algorithm compared to the original RVM classifica-

tion method and makes it possible to sample the weight parameter directly from the

posterior. On the other hand, the Fully Hierarchical Bayesian algorithm follows the

hyperprior structure in Fokoué et al. (2011) but is applied to the classification prob-

lem to improve the classification performance compared to the Generic one, especially

in the imbalanced data problem. We have provided the theoretical justification of the

70

log-concavity for the conditional posterior of some parameters, which helps to set up

a fast and stable sampling process. The simulated data studies use the data from the

same distribution in Chapter 2 but with different imbalance indexes. The experiment

results show the favorable performance of our two proposed algorithms and indicate

that the Fully Hierarchical Bayesian RVM algorithm can classify the seriously imbal-

anced data more strongly than the Generic one. The real data studies explore six

datasets and check the performance of our two proposed algorithms in practice. They

both perform well and the Fully Hierarchical one indeed outperforms the Generic one

in imbalanced data when we are more interested in the positive class.

71

Chapter 4

Fully Bayesian Analysis of the
Relevance Vector Machine
Classification with Probit Link
Function

4.1 Introduction

The original RVM classification is hard to conduct in practice because the posterior

of the weight parameter has no closed-form solution. The previous chapter shows an

approach that addresses this issue by doing the sampling directly from the posterior

based on the log-concave property. In this chapter, we propose the probit link function

to form a new likelihood function in RVM instead of the logistic one in the original

algorithm. Benefiting from a latent variable, this new likelihood function can lead a

more concise posterior, which follows a multivariate normal distribution.

72

4.1.1 The Probit Link Functions

A probit model is a type of regression, where the dependent variable has two values

and the independent variable is (−∞,+∞). The purpose of the probit model is to

estimate the probability that the observations with particular characteristics will fall

into a specific category, so it is popular for the binary classification problem. The

probit link function Gprobit(x) is used to map f(x;w) into [0, 1]. Gprobit(x) is defined

as

Gprobit(t) = Φ(t) =

∫ t

−∞

1√
2π
exp(−1

2
z2)dz. (4.1)

Following Figure 4.1 shows the logistic and probit link functions. The logistic one

has slightly flatter tails. The probit curve approaches the axes more quickly than the

logistic curve. In binary classification problems, they are the same in the application.

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

x

G(x)

logistic link function
probit link function

Figure 4.1: Logistic and Probit Link Functions.

73

4.2 Generic Bayesian PRVM Classification Algo-

rithm

The Bernoulli probability of every data point is

pi = R
1+ytraini

2
i (1−Ri)

1−ytraini
2 , (4.2)

where Ri = Gprobit(K
train
i w), Ktrain

i and w are defined in (3.2) and (3.3). The

likelihood of the training data set is

P (ytrain|w) =
n∏
i=1

pi

=
n∏
i=1

R
1+ytraini

2
i (1−Ri)

1−ytraini
2

=
n∏
i=1

Gprobit(K
train
i w)

1+ytraini
2 (1−Gprobit(K

train
i w))

1−ytraini
2 . (4.3)

Following Albert and Chib (1995), we bring in a latent variable µ for the probit link

function:

µ = (µ1, µ2, ..., µn)T ,

µi
indep.∼ N (Kiw, 1). (4.4)

74

We can show

Ri = Gprobit(Kiw)

=

∫ Kiw

−∞

1√
2π
exp(−1

2
z2)dz

=

∫ +∞

0

1√
2π
exp(−1

2
(µi −Kiw)2)dµi

= P (µi > 0). (4.5)

Note that 1 − Ri = P (µi ≤ 0). Rewrite the likelihood function, including the latent

variable

P (ytrain|w, µ) =
n∏
i=1

(
1(µi>0)

) 1+ytraini
2

(
1(µi≤0)

) 1−ytraini
2 φ(µi −Kiw). (4.6)

Follow the original RVM classification to introduce a zero-mean Gaussian prior

distribution over w, namely

p(w|α) =
n∏
s=0

N (ws|0, α−1
s) = N (w|0,A−1),

where α = (α0, α1, ..., αn)T , A = diag(α0, α1, ..., αn), αs is the hyperparameter asso-

ciated with weight ws, and s = 0, 1, 2, ..., n. A Gamma hyperprior is called for each

αs. The Gamma hyperprior is

(αs|a, b) ∼ Gamma(αs|a, b).

75

The full posterior is

p(w,ytrain,α,µ) = (2π)−
n+1
2 |A|

1
2 exp(−1

2
wTAw)

n∏
i=1

(
1(µi>0)

) 1+ytraini
2

(
1(µi≤0)

) 1−ytraini
2 ·

φ(µi −Kiw).

The conditional posterior of w is

p(w|ytrain,α,µ) ∝ exp(−1

2
wTAw)

n∏
i=1

φ(µi −Kiw). (4.7)

Lemma 4.1. The conditional posterior of w follows a multivariate normal distribu-

tion

p(w|ytrain,α,µ) ∝ N (ŵ,V −1), (4.8)

where V = A+KTK, ŵ = V −1KTµ.

Proof. See Appendix C1.

The conditional posterior of αs is

p(αs|ws, a, b) ∝ α
1
2
s exp

(
− 1

2
αsw

2
s

)
· αa−1

s exp(−b αs)

= α
a+ 1

2
−1

s exp
[
− (b+

1

2
w2
s)αs

]
∝ Gamma(a+

1

2
, b+

1

2
w2
s). (4.9)

76

The conditional posterior of µi is

p(µi|w,ytrain,α) ∝
(
1(µi>0)

) 1+ytraini
2

(
1(µi≤0)

) 1−ytraini
2 φ(µi −Kiw)

=

gRi

(ui) 1(ui>0) if yi = 1

gRi
(ui) 1(ui≤0) if yi = −1

, (4.10)

where gRi
= φ(µi − Kiw), i = 1, 2, ..., n. This conditional posterior is a truncated

normal distribution and the sampling process of it may be inefficient. When Kiw is

far away from 0, one sampling process of (4.10) for yi = 1 or yi = −1 would have

a low acceptable rate. Figure 4.2 shows a situation where we sample some nagative

values from a normal distribtuion with mean value of Kiw = 2. Only the shaded

area can satisfy our requirement and the sampling acceptable rate is low.

−5 0 5 10

0.0

0.1

0.2

0.3

0.4

ui

g(ui)

Kiw

2

Figure 4.2: Sampling From a Truncated Normal Distribution.

77

C. R. Ren (2001) proposed following Lemma 4.2 with an 100% accaptable rate

sampling method for this conditional posterior.

Lemma 4.2. Let u be a uniform random variable on (0, 1), the variable Z follows a

normal distribution Z ∼ N(b, 1).

(1) D = b+ Φ−1(uΦ(−b)) and Z|Z ≤ 0 have the same distribution.

(2) D = b+ Φ−1(1− uΦ(b)) and Z|Z > 0 have the same distribution.

Proof. See Appendix C2.

For i = 1, 2, ..., n, we can do the sampling of µi as follows based on Lemma 4.2:

(1) Sample

u ∼ uniform(0, 1); (4.11)

(2) If yi = 1, calculate

µi = Kiw + Φ−1(1− uΦ(Kiw)); (4.12)

(3) If yi = −1, calculate

µi = Kiw + Φ−1(uΦ(−Kiw)). (4.13)

Φ(·) is the the cumulative distribution function (CDF) of the standard normal dis-

tribution. The following pseudo-code is implemented to perform this Generic PRVM

classification.

78

Algorithm 4.1. The Generic PRVM Classification Algorithm

Input. The training data: (x1, y1), (x2, y2), ..., (xn, yn), xi ∈ X ⊆ Rl and yi ∈

{−1, 1}, i = 1, ..., n.

0. Let t = 1 and initialize w, α, and µ to obtain the started values wt, αt and

µt. Choose (a, b), the number of burn-in B, and the number of iterations T ;

1. Fix αt and µt, draw a new wt+1 according to (4.8);

2. Fix wt+1 and µt, draw a new αt+1 according to (4.9);

3. Fix αt+1 and wt+1, draw a new µt+1 according to (4.11), 4.12, 4.13;

3. Repeat steps 1, 2 and 3 until suitable convergence is obtained by T iterations;

Output. The final estimation of w is ŵ = (T −B)−1
T∑

t=B+1

wt.

Algorithm 4.1 is a more succinct and efficient algorithm compared with the

original RVM and the Bayesian RVM. The conditional posteriors all have closed-form

solutions and the sampling process is simple. For the imbalanced data problem, we

again apply the hierarchical prior structure in Fokoué et al. (2011) to PRVM.

4.3 Fully Hierarchical Bayesian PRVM Classifica-

tion Algorithm

Because we only change the hyperprior structure, the conditional posterior of w keeps

the same as (4.8). Other parameters’ posteriors are the same as Algorithm 3.5.

Based on the above derivations of full conditional posteriors, we have an alternative

79

algorithm:

Algorithm 4.2. The Fully Hierarchical Bayesian PRVM Classification

Algorithm

Input. The training data: (x1, y1), (x2, y2), ..., (xn, yn), xi ∈ X ⊆ Rl and yi ∈

{−1, 1}, i = 1, ..., n.

0. Let t = 1 and initialize w, α, µ, m, ρ and τ 2 to obtain the started values wt,

αt, µt, mt, ρt and τ 2
t . Choose (a, b), (c, d), the number of burn-in B, and the number

of iterations T ;

1. Fix other parameters and draw a new wt+1 according to (4.8);

2. Fix other parameters and draw a new αt+1 according to (3.27);

3. Fix other parameters and draw a new µt+1 according to (3.27);

4. Fix other parameters and draw a new mt+1 according to (3.29);

5. Fix other parameters and draw a new ρt+1 according to (3.28);

6. Fix other parameters and draw a new τ 2
t+1 according to (3.30);

7. Repeat steps 1− 5 until suitable convergence is obtained by T iterations;

Output. The final estimation of w is ŵ = (T −B)−1
T∑

t=B+1

wt.

4.4 Numeric Studies

We use the same simulated datasets and real datasets as chapter 3 in this PRVM

chapter for the numeric studies.

80

4.4.1 Simulation Data Studies

We run the Algorithm 4.1 and 4.2 with T = 5000, B = 500, (a, b) = (1, 1/999),

and (c, d) = (1, 1/999) on the simulated datasets. The evaluation criteria come from

Table 3.1. For both Algorithm 4.1 and 4.2, we repeat the experiments 100 times

for every case in Figure 3.5. Table 4.1–4.5 display the mean values and standard

deviation values (shown in the bracket) of 100 repeated results, the larger accuracy

rate is indicated by boldface. These simulation studies show that PRVM has a similar

performance as the Bayesian RVM. For the seriously imbalanced data as b = 5, 10.

Two algorithms of PRVM outperform the Bayesian RVM. Especially for the case of

b = 10, the PRVM is significantly better than the Bayesian RVM.

Table 4.1: The Results of Simulated Data in PRVM (b = 1).

rtraing
a

rtestg
b

rstestg
c

rltestg
d

rtrainp
a

rtestp
b

rstestp
c

rltestp
d

Algorithm 4.1
0.9990

(0.0071)

0.9570

(0.0947)

0.9570

(0.0833)

0.9592

(0.0914)

0.9987

(0.0094)

0.9607

(0.0802)

0.9700

(0.0735)

0.9687

(0.0593)

Algorithm 4.2
0.9876

(0.1701)

0.9317

(0.0760)

0.9600

(0.0568)

0.9478

(0.0750)

0.9993

(0.0067)

0.9267

(0.1350)

0.9730

(0.1060)

0.9311

(0.1254)

a (ntrainn = 30, ntrainp = 30), b (ntestn = 30, ntestp = 30), c (nstestn = 10, nstestp = 10), d

(nltestn = 90, nltestp = 90)

81

Table 4.2: The Results of Simulated Data in PRVM (b = 2).

rtraing
a

rtestg
b

rstestg
c

rltestg
d

rtrainp
a

rtestp
b

rstestp
c

rltestp
d

Algorithm 4.1
0.9802

(0.1507)

0.9724

(0.0322)

0.9707

(0.0408)

0.9719

(0.0192)

0.9711

(0.2340)

0.9640

(0.0854)

0.9640

(0.0875)

0.9636

(0.0527)

Algorithm 4.2
0.9816

(0.1251)

0.9574

(0.0348)

0.9778

(0.0328)

0.9843

(0.0412)

0.9698

(0.1456)

0.9667

(0.0603)

0.9667

(0.0778)

0.9481

(0.0783)

a (ntrainn = 30, ntrainp = 15), b (ntestn = 30, ntestp = 15), c (nstestn = 10, nstestp = 5), d

(nltestn = 90, nltestp = 45)

Table 4.3: The Results of Simulated Data in PRVM (b = 2.5).

rtraing
a

rtestg
b

rstestg
c

rltestg
d

rtrainp
a

rtestp
b

rstestp
c

rltestp
d

Algorithm 4.1
0.9637

(0.0091)

0.9700

(0.0350)

0.9586

(0.0542)

0.9637

(0.0330)

0.9401

(0.0905)

0.9400

(0.1038)

0.9050

(0.1667)

0.9367

(0.0934)

Algorithm 4.2
0.9651

(0.1967)

0.9619

(0.0526)

0.9464

(0.0512)

0.9619

(0.0302)

0.9411

(0.0975)

0.9458

(0.0729)

0.9375

(0.1111)

0.9431

(0.0833)

a (ntrainn = 30, ntrainp = 12), b (ntestn = 30, ntestp = 12), c (nstestn = 10, nstestp = 4), d

(nltestn = 90, nltestp = 36)

Table 4.4: The Results of Simulated Data in PRVM (b = 5).

rtraing
a

rtestg
b

rstestg
c

rltestg
d

rtrainp
a

rtestp
b

rstestp
c

rltestp
d

Algorithm 4.1
0.9700

(0.1139)

0.9700

(0.0317)

0.9167

(0.0512)

0.9600

(0.0241)

0.7805

(0.1140)

0.8633

(0.1639)

0.8500

(0.2901)

0.8411

(0.1406)

Algorithm 4.2
0.9700

(0.0213)

0.9781

(0.0316)

0.9750

(0.0547)

0.9606

(0.0223)

0.7997

(0.1033)

0.8837

(0.1631)

0.9000

(0.2052)

0.8500

(0.1362)

a (ntrainn = 30, ntrainp = 6), b (ntestn = 30, ntestp = 6), c (nstestn = 10, nstestp = 2), d

(nltestn = 90, nltestp = 18)

82

Table 4.5: The Results of Simulated Data in PRVM (b = 10).

rtraing
a

rtestg
b

rstestg
c

rltestg
d

rtrainp
a

rtestp
b

rstestp
c

rltestp
d

Algorithm 4.1
0.9771

(0.1622)

0.9654

(0.0274)

0.9691

(0.0472)

0.9631

(0.0000)

0.7333

(0.0479)

0.7267

(0.2988)

0.7600

(0.4314)

0.7467

(0.2480)

Algorithm 4.2
0.9802

(0.0236)

0.9757

(0.0395)

0.9818

(0.0407)

0.9797

(0.0124)

0.7434

(0.2214)

0.8842

(0.1856)

0.9113

(0.1431)

0.8444

(0.1685)

a (ntrainn = 30, ntrainp = 3), b (ntestn = 30, ntestp = 3), c (nstestn = 10, nstestp = 1), d

(nltestn = 90, nltestp = 9)

4.4.2 Real Data Studies

Algorithm 4.1 and 4.2 are applied to all the six real datasets. The real data studies

results in Table 4.6 show that Algorithm 4.2 indeed outperforms 4.1, especially for

seriously imbalanced datasets. The performances of Bayesian RVM and PRVM are

similar.

4.5 Comparison Between the Bayesian RVM and

PRVM

From the numeric studies, we can conclude that the Bayesian RVM and PRVM models

are similar for classification accuracy results. The only theoretic difference between

them is the link functions for the likelihood. The Bayesian RVM uses the logistic link

function, but the PRVM employs the probit one. It is still worth discussing more

comparisons between them.

83

Table 4.6: The Results of Real Datasets in PRVM.a

Dataset b Dimension Total Data Size rtraing rtestg rtrainp rtestp

glass1 1.82 9 214
0.6721

0.6890

0.6511

0.6669

0.0000

0.0214

0.0000

0.0108

iris0 2.00 4 150
1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

newthyroid1 5.14 5 215
0.8710

0.9233

0.8541

0.8509

0.0000

0.0591

0.0032

0.0000

glass6 6.38 9 214
0.8901

0.8901

0.8611

0.8611

0.0000

0.0000

0.0000

0.0000

ecoli0345 9.00 7 200
0.8596

0.9274

0.9015

0.9016

0.0000

0.2977

0.0000

0.0000

glass2 11.59 9 214
0.9241

0.9400

0.9221

0.9452

0.0000

0.0159

0.0000

0.0231
a Results in the table are listed by Algorithm 4.1 on the top, Algorithm 4.2 on the bottom.

4.5.1 Elapsed Programming Time

The Bayesian RVM model needs the ARS method to conduct the sampling process.

The model has to conduct one sampling iteration for every dimension of w. Also, we

do not have a strategy to determine the suitable support values for the ARS sampling

process, so the ARS method could be inefficient. PRVM can sample the whole vector

w directly from its posterior since it follows a multivariate normal distribution. Table

4.7 lists the elapsed programming time for these two models. We conduct every

experiment on the simulated Gaussian datasets with 5000 iterations. Repeat 100

times and calculate the mean and standard deviation values listed in the Table 4.7.

84

The PRVM is significantly more efficient than the Bayesian RVM.

Table 4.7: Epalsed Programming Time a of Bayesian RVM and PRVM Models.b

Data Size 30-30 30-15 30-12 30-6 30-3

Generic Bayesian RVM
87758.2994

6419.9621

40447.4915

3565.7886

38074.4325

(2127.4783)

14604.5066

(1049.5469)

16167.2713

(3893.8587)

Generic PRVM c
236.5257

(1.5314)

45.1316

(1.5714)

42.4868

(8.0555)

41.1134

(3.1998)

40.6392

(6.0307)
a Time is measured in seconds.

b R Programmings are conducted on Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz.
c AdapSamp::rARS is used for log-concave posterior sampling.

4.5.2 Model Selection

Many parameter estimation problems adopt likelihood function as the objective func-

tion. When enough training data are available, the accuracy of models can be im-

proved continuously. However, at the cost of model complexity increases, it also

brings up a widespread problem in machine learning, namely overfitting. Therefore,

the problem of model selection seeks an optimal balance between the complexity of

the model and the ability of the model describing the dataset. Many information

criteria have been proposed to avoid the overfitting problem by adding a penalty

for model complexity. We introduce two commonly used model selection methods:

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).

AIC is a standard to measure the goodness of model fitting. Akaike proposed it

in 1974. It is based on the concept of entropy and provides a standard to balance

the complexity of the model estimation and the goodness of model fitting. Generally,

85

AIC is defined as:

AIC = 2k − 2 ln(L̂), (4.14)

where k is the number of model parameters, and L̂ is the maximum value of the

likelihood function. It is common to choose the model with minimum AIC.

BIC is similar to AIC and it is also used for model selection. Schwarz proposed

it in 1978. The penalty term of BIC is larger than AIC since BIC also considers

the number of samples. When the sample size is large, it can effectively prevent the

situation of the model’s complexity being too high.

BIC = k ln(n)− 2 ln(L̂), (4.15)

where k is the number of model parameters, n is the number of samples, and L̂ is

the maximum value of the likelihood function. Given the same data, the two RVM

models in this project, Bayesian RVM and PRVM, have the same k and n. So we

only need to focus on L̂ to compare them in the cases of AIC and BIC. Choose

the Gaussian simulated datasets defined in (2.16) and (2.17) and repeat the process

of seeking maximum likelihood value 100 times for every simulated dataset in the

Bayesian RVM and PRVM. Table 4.8 shows the mean and standard deviation results.

In the case of L̂, the Bayesian RVM and PRVM are similar. But the PRVM seems a

little preferred than the Bayesian RVM.

86

Table 4.8: Maximum Likelihood Value of Bayesian RVM and PRVM Models.

Data Size 30-30 30-15 30-12 30-6 30-3

Bayesian RVM
0.9999928

(1.0120× 10−6)

0.9999928

(1.0120× 10−6)

0.9999928

(1.0120× 10−6)

0.999927

(1.8935× 10−6)

0.9999927

(1.0593× 10−6)

PRVM
0.9999986

(4.9653× 10−7)

0.9999986

(5.3061× 10−7)

0.9999986

(5.3061× 10−7)

0.9999985

(4.1018× 10−7)

0.9999986

(5.1192× 10−7)

4.6 Conclusion Comments

Two RVM with the probit link function (PRVM) classification algorithms are pro-

posed in this chapter. The posterior of the weight parameter in the original RVM

has no closed-form solution, so it is hard to conduct. The intricate likelihood is the

reason for this. The original RVM uses the logistic link function to construct the

likelihood function, which leads to all the difficulties in the algorithm. Benefiting

from the probit link function, the posterior of the weight parameter in PRVM follows

a multivariate normal distribution. PRVM is a more compact algorithm, and its pro-

gramming speed is significantly faster than the Bayesia RVM, which is the algorithm

we proposed in the last chapter. The Fully Hierarchical PRVM follows the hyperprior

structure in Chapter 3 to improve the classification performance in the imbalanced

data problem.

A study of the comparison between Bayesian RVM and PRVM is conducted.

The numeric studies show that these two models have similar classification accuracy

results. For the severely imbalanced data, PRVM is significantly better than the

Bayesian RVM. Also, PRVM is more efficient than the Bayesian RVM in the case

87

of programming time. From the perspective of model selection, PRVM is a little

preferred than the Bayesian RVM in the cases of AIC and BIC.

88

Chapter 5

Discussion and Future Research

There are several possibilities in the future research for these two approaches to solve

the imbalanced data problem. There is a major way to extend the results in Chapter

2 to multiple classes problem. For Chapter 3 and 4, Bayes classifier is deserved to

be studied because it is the optimal one in all possible classifiers. If we consider

the misclassified cost as the prior, this Cost-sensitive Bayes classifier approach is an

admissible direction to continue this project.

5.1 Discussion of Chapter 2

In practice, we often need to deal with the multi-classification data. The disassem-

bling method is the most commonly used in the generalization from binary to multi-

classifications: the multi-classification problem is divided into many binary problems,

and a classifier is trained for each binary problem. During the testing process, the

results of these classifiers are integrated to obtain the final prediction result. Sup-

89

pose the dataset has N categories. According to the splitting strategy, the extended

methods are divided into the following three categories:

(1) One vs. One (OvO)

Training: Randomly choose two pairs from N categories, which produces N(N+

1)/2 binary classification tasks. Each binary task can be solved by the binary classi-

fication algorithm;

Test: All N(N + 1)/2 classifiers are applied to an unseen sample and the class

with the highest number of predictions is predicted by the combined classifier.

(2) One vs. Rest (OvR)

Training: For every category, treat each of them as the positive class and the

others as the negative class. This process produces N binary classification tasks;

Test: Applying all N classifiers to an unseen sample and predicting the label,

which the corresponding classifier reports the highest confidence score.

(3) Many vs. Many (MvM)

OvO and OvR are two special cases of MvM. In MvM, several categories are taken

as the positive class and the other ones are the negative class. The following is the

most common MvM technology: Error Correcting Output Codes (ECOC):

Coding: SeparateN categories toM divisions. Choosem divisions as the positive

class, the other M − m divisions are the negative class. Repeat such a method K

times and it produces K classifier;

Decoding: Applying all K classifiers to an unseen sample and predicting the

label that the corresponding classifier reports the highest confidence score.

For imbalanced data problems, we can extend our improved AdaBoost algorithms

to the multi-classes problem based on the above three options.

90

5.2 Discussion of Chapter 3

In classification, the generative model and discriminative model are the two typical

approaches. The generative model learns the joint probability p(x, y) based on the

training dataset Strain. It predicts the label y0
∗ for the unseen data point x0 by

calculating p(y0
∗|x0) based on the Bayes rule. The discriminative model estimates

p(y|x) directly and learns a map from the input x to the class label y. Gaussian

mixture model (GMM) is the most popular one in the generative model and it has

been applied in many classification tasks (e.g., Hastie & Tibshirani (1996)). Most of

the Kernel methods are discriminative models. They include SVM (Cortes & Vapnik

(1995)), proximal SVM (PSVM) (Fung & Mangasarian (2001) and Rifkin (2002)),

and RVM (Tipping (2001)). To compare the generative model and discriminative

model in classification, we study the GMM and RVM methods. The reasons why we

prefer the discriminative models to the generative models are discussed in this part.

5.2.1 Generative vs. Discriminative Models

Define Θ as the parameters that need to be determined in the model. The straight-

forward way of estimating Θ is through Maximum Likelihood Estimation (MLE). Let

p̂(x|y) is the estimation of p(x|y), MLE classifiers seek Θg = arg maxΘRg(Θ), where

Rg(Θ) =
n∏
i=1

P̂ (xi|yi) .

91

Ng & Jordan (2002) defined this as the generative model. On the other hand, the

discriminative model seeks Θd = arg maxΘRd(Θ), where

Rd(Θ) =
n∏
i=1

P̂ (yi|xi) .

Note that

Rd(Θ) =
n∏
i=1

P̂ (xi|yi) P̂ (yi)

P̂ (xi)

=
n∏
i=1

(
1 +

∑
yj 6=yi P̂ (xi|yj) P̂ (yj)

P̂ (xi|yi) P̂ (yi)

)−1

In the discriminative case, the model minimizes the likelihood of competing classes

yj 6= yi. Note that sometimes a generative model is more appropriate when we have a

confident estimation of p(x|y). But in most cases, the discriminative models perform

better (see Nadas et al. (1988) and Rubinstein & Hastie (1997)).

5.2.2 The Gaussian Mixture Model

The mixture model is a probability model that can be used to represent K sub-

distributions in the population distribution. In other words, the mixture model rep-

resents the probability distribution of observed data in a population, which is a mixed

distribution composed of K sub-distributions. The mixture model does not require

the observed data to provide information about the sub-distributions to calculate the

probability. When x is univariate, a Gaussian probability density function is

P (x|θ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
,

92

where µ is the mean and σ is the standard derivation. When x is multivariate, the

Gaussian probability density function is

P (x|Θ) =
1

(2π)
D
2 |Σ| 12

exp

(
−(x− µ)TΣ−1(x− µ)

2

)
, (5.1)

where µ is the mean vector, Σ is the covariance, D is the dimension of data.

Let K be the numbers of the Gaussian sub-distributions, k = 1, 2, ..., K. αk is the

probability of the data belonging to kth sub-distribution, where αk ≥ 0,
∑K

k=1 αk = 1.

φ (x|Θk) is the probability density function of kth sub-distribution, it is the same as

above (5.1). The latent variable γjk means the probability of xj belonging to kth

sub-distribution. The probability density function of GMM is

P (x|Θ) =
K∑
k=1

αkφ (x|Θk) . (5.2)

We assume all the data are independent of each other. The likelihood function of

GMM is

L(Θ) =
n∏
j=1

P (xj|Θ) ,

the log-likelihood function is

logL(Θ) =
n∑
j=1

logP (xj|Θ) =
n∑
j=1

log

(
K∑
k=1

αkφ (x|Θk)

)
. (5.3)

The MLE method cannot be used here for the estimation of parameters. The EM

algorithm (Dempster (1977)) is usually applied to seek the estimation of parameters

93

iteratively. EM algorithm seeks the low boundary of the likelihood function by the

Jensen inequation, then maximizes this low boundary. The algorithm is stated as

follows.

Algorithm 5.1. EM Algorithm for Gaussian Mixture Model

Input. The training data: (x1, y1), (x2, y2), ..., (xn, yn), xi ∈ X ⊆ Rl and yi ∈

{−1, 1}, i = 1, ..., n.

0. Let t = 1 and initialize all the parameters;

1. E-step: calculate the probability of xj coming from k sub-distribution:

γjk =
αkφ (xj|Θk)∑K
k=1 αkφ (xj|Θk)

, j = 1, 2, . . . , n, k = 1, 2, . . . , K;

2. M-step: update the parameters:

µk =

∑n
j=1 (γjkxj)∑n
j=1 γjk

, k = 1, 2, . . . , K;

Σk =

∑n
j=1 γjk (xj − µk) (xj − µk)T∑n

j=1 γjk
, k = 1, 2, . . . , K;

αk =

∑n
j=1 γjk

n
, k = 1, 2, . . . , K;

3. Repeat steps 1 and 2 until suitable convergence is obtained;

Output. The final estimation of all parameters.

GMM needs a basic assumption: in every class, the data is normally distributed.

Otherwise, a big dataset is needed for GMM to satisfy the Gaussian assumption.

94

Another important reason to use the discriminative model rather than the generative

one is that we should solve the classification problem directly and never solve a

more general problem as an intermediate step, such as estimating p(x|y) (see Vapnik

(1998)). Considering the computational efficiency and matters such as the missing

data, it seems that the discriminative classifiers are always to be preferred to the

generative one. Also, the number of parameters in GMM increases linearly with the

growth of data size. GMM performs badly in big data and the high-dimensional data

cases. But the discriminative models, such as the SVM and RVM, can control the

freedom of parameters by using the sparsity effect.

5.3 Discussion of Chapter 4

In statistical machine learning, the goal of classification is often to obtain a classifier

based on the training data and predict an unobserved output value y based on an

observed input vector x from the test data. This requires us to estimate a functional

relationship h(x) ≈ y from a set of training data pairs of (x, y). Usually, the quality

of the predictor h(x) can be measured by a loss function l(h(x), y). Our goal is to find

a predictor h(x) so that the expected loss of h(·) given below is as small as possible:

L(h(·)) = EX,Y l(h(x), y), (5.4)

where we use EX,Y to denote the expectation with respect to the true underlying

distribution of the data. Many of the loss functions consist of h(x)y. We give the

following definition for this kind of loss functions.

95

Definition 5.1. Given a classification function h(·), the margin of a subject (xi, yi)

is defined as h(xi)yi. All the loss functions consisting of the margin are called the

margin-based loss function.

It is easy to see that a subject is classified correctly by h(·) if and only if its margin

is positive.

5.3.1 0− 1 Loss Function

The classification error of h(·) at a point (x, y) is:

`1(h(x), y) =

1, if y = 1 and h(x) < 0

1, if y = −1 and h(x) ≥ 0

0, otherwise

(5.5)

We transfer (2) to the following Table 5.1:

Table 5.1: Risk Matrix for Binary Classification under 0− 1 Loss Function.

`1(y, h(x)) h(x) ≥ 0 h(x) < 0

y = 1 0 1

y = −1 1 0

Given a set of training data (x1, y1), ..., (xn, yn), we need to find a h(x) that

minimizes the empirical misclassification loss:

1

n

n∑
i=1

`1(h(xi), yi), (5.6)

96

(5.3) is an approximation to the minimization of the true classification error: L1(h(·)) =

EX,Y `1(h(X), Y).

5.3.2 Cost-sensitive Loss Function

In practice, the losses of misclassification in different classes are usually inequable.

In the cancer detection case, the misdiagnosis of a cancer patient is more serious

than the misdiagnosis of a healthy person. So a larger cost should be assigned to the

cancer class. Let c1 and c−1 be the cost of misclassification for two classes and the

classification error of h(·) at a point (x, y) is:

`2(h(x), y) =

c1, if y = 1 and h(x) < 0

c−1, if y = −1 and h(x) ≥ 0

0, otherwise

. (5.7)

Typically, the positive (minority) class is our interest. So c1 ≥ c−1. The empirical

misclassification loss is the average of the linear summation of `2(h(xi), yi) and let

c−1 = 1, c = c1
c−1

. Rewrite (5.7) as

`2(h(x), y) =

c, if y = 1 and h(x) < 0

1, if y = −1 and h(x) ≥ 0

0, otherwise

. (5.8)

Here c ≥ 1. (5.7) is equivalent to (5.8) when we focus on minimizing the empirical

loss. Transfer (5.8) to the following Table 5.2:

97

Table 5.2: Risk Matrix for Binary Classification under Cost-sensitive Loss Function.

`2(y, h(x)) h(x) ≥ 0 h(x) < 0

y = 1 0 c

y = −1 1 0

Given a set of training data (x1, y1), ..., (xn, yn), we wish to find a h(x) that

minimizes the empirical misclassification loss:

1

n

n∑
i=1

`2(h(xi), yi), (5.9)

(5.9) is an approximation to the true classification error: L2(h(·)) = EX,Y `2(h(X), Y).

The 0 − 1 loss function is a special case of the Cost-sensitive loss function. When

c = 1, these two loss functions are identical. We only consider the Cost-sensitive loss

function in the rest of this part. Minimizing (5.9) is hard due to the nonconvexity

of the classification loss function `2. Typically, there are two approaches to solve the

problem.

(1) To avoid dealing with (5.9), find the Bayes classifier directly which is the

optimal one;

(2) Instead of minimizing (5.9), minimize a convex upper bound of the empirical

loss. For example, AdaBoost in Chapter 2 employs the exponential loss function

exp(−h(x)y).

98

5.3.3 Cost-sensitive Bayes Classifier

Assume S is identical, independently distributed (i.i.d.) samples from the data space

and the conditional in-class probabilities, P (X = x|Y = 1) and P (X = x|Y = −1)

are given.

5.3.3.1 Bayes Classifier

Given a class label k, the prior is

P (Y = k), (5.10)

here P (Y = k) + P (Y = −k) = 1.

The likelihood is

P (X = x|Y = k) =
n∏
i=1

P (X = xi|Y = k). (5.11)

The posterior is

P (Y = k|X = x)

=
P (X = x|Y = k)P (Y = k)

P (X = x|Y = k)P (Y = k) + P (X = x|Y = −k)P (Y = −k)
. (5.12)

The Bayes rule is to minimize the posterior risk Lpos(h(x)). The test is:

H0 : h(x) ≥ 0 v.s. Ha : h(x) < 0.

99

We have

Lpos(h(x) ≥ 0) = 1 · P (Y = −1|X = x)

=
P (X = x|Y = −1)P (Y = −1)

P (X = x|Y = 1)P (Y = 1) + P (X = x|Y = −1)P (Y = −1)
,

Lpos(h(x) < 0) = c · P (Y = 1|X = x)

=
c · P (X = x|Y = 1)P (Y = 1)

P (X = x|Y = 1)P (Y = 1) + P (X = x|Y = −1)P (Y = −1)
.

(5.13)

So h(·) should be

h(x) ≥ 0, if c · P (X = x|Y = 1)P (Y = 1) ≥ P (X = x|Y = −1)P (Y = −1)

h(x) < 0, if c · P (X = x|Y = 1)P (Y = 1) < P (X = x|Y = −1)P (Y = −1)

.(5.14)

Rewrite (5.14) as

h(x) ≥ 0, if c ≥ P (X = x|Y = −1)P (Y = −1)

P (X = x|Y = 1)P (Y = 1)

h(x) < 0, if c <
P (X = x|Y = −1)P (Y = −1)

P (X = x|Y = 1)P (Y = 1)

. (5.15)

Assume h(x) ∈ {−1, 1}, rewrite (5.15) as:

hb(x) = sign

(
c− P (X = x|Y = −1)P (Y = −1)

P (X = x|Y = 1)P (Y = 1)

)
= sign

(
c− P (X = x|Y = −1)

P (X = x|Y = 1)
· P (Y = −1)

P (Y = 1)

)
, (5.16)

here sign(A) = 1 if A ≥ 0, sign(A) = −1 if A < 0. hb(x) is the Bayes classifier under

the Cost-sensitive loss function `2(h(x), y). Next we give the definition of the Bayes

100

risk.

Definition 5.2. (Bayes Risk under Cost-sensitive loss function)

The Bayes risk is the minimum of the risk for all classifiers:

L∗2 = inf
h(·)

L2(h(·)).

We can prove that the Bayes risk is achieved by the Bayes classifier hb(x).

Theorem 5.1. (Risk of Bayes Classifier)

L2(hb(·)) = L∗2

Proof. See Appendix E1.

From Theorem 5.1, the Bayes classifier with the Cost-sensitive loss function is the

optimal one. The performance of any given classifier can be evaluated in terms of how

close its risk is to the Bayes risk. The Bayes classifier hb(x) depends on three factors:

the cost factor c, the likelihood ratio P (X=x|Y =−1)
P (X=x|Y =1)

, and the prior ratio P (Y =−1)
P (Y =1)

.

(1) The implementer usually determines the cost factor c based on the working

experience, where c ≥ 1.

(2) Given the conditional in-class probabilities, the likelihood can be calculated

directly based on the training data S and we can obtain the likelihood ratio.

(3) The prior ratio needs to be estimated and we discuss this issue in the following

subsection.

5.3.3.2 Prior Ratio Estimation

We set p = P (Y = 1) and 1 − p = P (Y = −1). So the prior ratio is 1−p
p

. First, we

consider the MAP estimation for the prior.

101

Theorem 5.2. The Maximum A Posterior (MAP) estimate of P (Y = k) is

P (Y = 1) =
n+

n
, P (Y = −1) =

n−
n
. (5.17)

Proof. See Appendix E2.

The prior ratio based on Theorem 5.2 is n−
n+

. If we treat p as the parameter and

bring in a prior for p. The probability of the class label is:

P (yi|p) = p
1+y1

n (1− p)
1−y1

n ,

here i = 1, 2, ..., n. The likelihood of yi is:

P (y1:n|p) =
n∏
i=1

p
1+y1

n (1− p)
1−y1

n

= p
n+

∑n
i=1 yi
2 (1− p)

n−
∑n

i=1 yi
2

= pn+(1− p)n− .

We set a Beta prior for the parameter p:

P (p|ap, bp) = Beta(p; ap, bp) =
1

B(ap, bp)
pap−1(1− p)bp−1.

The posterior of p given yi(i = 1, 2, ..., n) is

P (p|y1:n) ∝ P (y1:n|p)P (p|ap, bp)

= pn+(1− p)n− 1

B(ap, bp)
pap−1(1− p)bp−1

∝ Beta(p;n+ + ap, n− + bp).

102

The estimation of p and 1 − p are E(p|y1:n) =
n+ + ap

n+ ap + bp
and E(1 − p|y1:n) =

n− + bp
n+ ap + bp

. If we choose ap = bp = 1
2
, the estimation for the prior is

P (Y = 1) =
n+ + 1

2

n+ 1
, P (Y = −1) =

n− + 1
2

n+ 1
. (5.18)

The corresponding prior ratio is
n−+ 1

2

n++ 1
2

. The estimation in (5.18) is a Laplace Smooth-

ing of the estimation in (5.17) to avoid the zero-probability estimate. This approach

is study-worthy and can provide the threotically optimal classifier for the imbalanced

data classification problem.

5.4 Comparision Between Boosting and Kernel

Methods

Boosting and Kernel methods are two typical techniques for classification. They both

have received considerable attention in recent years and many successful applications

have been described in the literature. This project studies the Adaptive Boosting

model in Chapter 2, which is the most famous Boosting algorithm. RVM is studied in

Chapters 3 and 4. Several improved RVM algorithms are proposed to make the Kernel

methods family flourish. Boosting and Kernel methods have something in common to

justify their success, namely the margin. By using a kernel trick to map the training

samples from an input space to a high dimensional feature space, the Kernel method

finds an optimal separating hyperplane and uses a parameter to balance its model

complexity and training error. To build the proper classification borderline, SVM and

RVM tend to find the support points and relevant points, respectively. On the other

103

hand, Boosting tries to obtain the same goal indirectly by minimizing a cost function

related to margin. Boosting is a general technique for improving the performance of

any given classifier. It can effectively combine a number of weak classifiers, which

are generally a little better than a random guess, into a strong classifier that can

achieve an arbitrarily low error rate. In this part, we show several numeric studies

based on the Boosting and Kernel methods in this project. A discussion of the curse

of dimensionality in the Kernel method is stated. Some ideas to improve the Kernel

methods are finally listed.

The classification results are similar in the simulated Gaussian data studies of

Chapters 2, 3, and 4. For the high-dimensional real datasets, the significant differences

of the classification results between the algorithms in this project are worthy of further

discussion. Six real binary datasets from KEEL in Chapters 3 and 4 are used in this

part. Three Boosting methods in Table 2.3: Ada-DT, En-Ada, and Re-Ada are

studied. Four Kernel methods in Table 2.3, Algorithm 3.3, 4.2, and 4.3: SVMs, the

Generic Bayesian RVM, the Generic PRVM, and the Fully Hierarchical PRVM are

studied. The first four criteria in Table 3.1 are used for the evaluation of classifiers’

performance.

104

Table 5.3: The Results of Glass-1 Data(b = 1.82).

Algorithms
Evaluation Measures

rtraing rtestg rtrainp rtestp

Ada-DT 0.7042 0.6916 0.0552 0.0658

En-Ada 0.8318 0.6822 0.6316 0.6316

Re-Ada 0.9252 0.6636 0.8421 0.8421

SVMs 0.8131 0.7477 0.0553 0.0474

Generic Bayesian RVM 0.6449 0.6449 0.0000 0.0000

Generic PRVM 0.6721 0.6511 0.0000 0.0000

Fully Hierarchical PRVM 0.6890 0.6669 0.0214 0.0108

Table 5.4: The Results of Iris-0 Data(b = 2.00).

Algorithms
Evaluation Measures

rtraing rtestg rtrainp rtestp

Ada-DT 1.0000 1.0000 1.0000 1.0000

En-Ada 1.0000 1.0000 1.0000 1.0000

Re-Ada 1.0000 1.0000 1.0000 1.0000

SVMs 1.0000 1.0000 1.0000 1.0000

Generic Bayesian RVM 1.0000 1.0000 1.0000 1.0000

Generic PRVM 1.0000 1.0000 1.0000 1.0000

Fully Hierarchical PRVM 1.0000 1.0000 1.0000 1.0000

105

Table 5.5: The Results of Newthyroid-1 Data(b = 5.14).

Algorithms
Evaluation Measures

rtraing rtestg rtrainp rtestp

Ada-DT 0.9366 0.9815 0.0514 0.0253

En-Ada 0.9878 0.9907 0.7234 0.7524

Re-Ada 0.9453 0.9630 0.7934 0.8065

SVMs 0.8422 0.8426 0.0553 0.0556

Generic Bayesian RVM 0.8318 0.8333 0.0000 0.0000

Generic PRVM 0.8710 0.8541 0.0000 0.0032

Fully Hierarchical PRVM 0.9233 0.8509 0.0591 0.0000

Table 5.6: The Results of Glass-6 Data(b = 6.38).

Algorithms
Evaluation Measures

rtraing rtestg rtrainp rtestp

Ada-DT 0.9448 0.9630 0.7891 0.8667

En-Ada 1.0000 0.9352 1.0000 0.8332

Re-Ada 1.0000 0.9352 1.0000 0.8322

SVMs 0.9906 0.9537 0.9286 0.6667

Generic Bayesian RVM 0.8679 0.8611 0.0000 0.0000

Generic PRVM 0.8901 0.8611 0.0000 0.0000

Fully Hierarchical PRVM 0.8901 0.8611 0.0000 0.0000

106

Table 5.7: The Results of Ecoli-0345 Data(b = 9.00).

Algorithms
Evaluation Measures

rtraing rtestg rtrainp rtestp

Ada-DT 0.9711 0.9600 0.6574 0.6000

En-Ada 0.9800 0.9800 0.6316 0.6316

Re-Ada 0.9819 0.9700 0.6777 0.6173

SVMs 0.9000 0.9000 0.0000 0.0000

Generic Bayesian RVM 0.8600 0.9000 0.0000 0.0000

Generic PRVM 0.8596 0.9015 0.0000 0.0000

Fully Hierarchical PRVM 0.9274 0.9016 0.2977 0.0000

Table 5.8: The Results of Glass-2 Data(b = 11.59).

Algorithms
Evaluation Measures

rtraing rtestg rtrainp rtestp

Ada-DT 0.8672 0.8519 0.1522 0.1111

En-Ada 0.9434 0.8981 0.2500 0.3333

Re-Ada 0.9434 0.8981 0.2500 0.3333

SVMs 0.9245 0.9167 0.0000 0.0000

Generic Bayesian RVM 0.9245 0.9167 0.0000 0.0000

Generic PRVM 0.9241 0.9221 0.0000 0.0000

Fully Hierarchical PRVM 0.9400 0.9452 0.0159 0.0231

It is obvious that the Boosting algorithms outperform the Kernel methods sig-

nificantly. Note that all the Kernel methods in this project use the RBF Gaussian

kernel, which is a local kernel, to construct the models. The reason for the unsatis-

107

factory performances is the curse of dimensionality for the local kernel methods (see

Bengio et al. (2005)). The curse of dimensionality (see (Bellman (1961)) means the

number of parameters is large concerning the number of training samples. There is a

risk of over-fitting the training data, which means the poor generalization to classify

new data correctly. Additionally, sensitivity to noise and computational complexity

may increase with the dimension of data. This problem is known as the curse of

dimensionality. For the local Kernel methods, the classification output f(x,w) is

mostly determined by the neighbors of x in the training set. In high-dimensional

data case, the required number of neighborhoods could grow exponentially with the

dimensionality of the data. We have to balance the bias-variance trade-off argument

for classification models: if we make the neighbor regions smaller, bias is reduced

and more complex functions can be represented. But the variance increases because

there is no enough data are used to determine the value of f(x,w) around x, f(x,w)

becomes less stable. This is the reason why the kernel functions methods perform

badly in the high-dimensional real data studies.

To address this issue, Non-Local Means (NLM) can be used for RVM models in

this project. NLM is a method introduced by Buades et al. (2005) and has become

quite popular. The method was further enhanced for speed in subsequent works by

Bilcu et al. (2007). The NLM is a weighted averaging process of the local kernels.

This process can be written mathematically as

ẑ (xi) =
1

Ci

n∑
j=1

kijyi,

108

where Ci =
∑n

j=1 kij. kij is the kernel function such as the RBF Gaussian kernel:

kij = exp
(
−‖xi − xj‖2

γ2

)
.

This kind of global kernels can solve the curse of dimensionality in the RVM models

and this approach is one of the future research works.

109

Appendix A

Proofs of Theorems in Chapter 2

A1. Proof of Theorem 2.1.

It follows from Fact 2.2 that

∑
i:yi=−1

Ha(xi) = Np k
T∑
t=1

{(2γ−1) + (2εt − 1)(b+ 1)}exp{β(2γt − 1)}

=
∑
i:yi=1

Ha(xi) +Np k (b+ 1)
T∑
t=1

(2εt − 1) exp{β(2γt − 1)}.

Note that Np k (b + 1)
T∑
t=1

(2εt − 1) exp{β(2γt − 1)} < 0 because of 0 ≤ εt <
1
2
. So∑

i:yi=−1

Ha(xi) <
∑
i:yi=1

Ha(xi) always holds. Consider three situations:

(a) When γt ∈ [0, 1
2
), it is obvious that

∑
i:yi=1

Ha(xi) < 0, this implies (2.3);

(b) When γt = 1
2
, (2.4) follows from

∑
i:yi=1

Ha(xi) = 0;

110

(c) When γt ∈ (1
2
, 1], under (2.5),

∑
i:yi=1

Ha(xi) = Np k

T∑
t=1

(2γt − 1) exp{β(2γt − 1)} > 0,

∑
i:yi=−1

Ha(xi) = Np k

T∑
t=1

{(2γt − 1) + (2εt − 1)(b+ 1)}exp{β(2γt − 1)} < 0.

These imply (2.6).

A2. Proof of Theorem 2.2.

Under the assumption of (2.13), we can show that

∑
i:yi=1

H
′

3(xi)−
∑
i:yi=1

H1(xi) > 0

⇔ exp(γt − 0.5) + 0.5

0.5− εt
+

0.5(b+ 1)

γt − 0.5
− 1 > 0

⇔ (b+ 1)
exp(γt − 0.5) + 1

γt − 0.5
> 1. (A.1)

Note that (A.1) always holds. So (14) gets proved. On the other hand, we have

∑
i:yi=−1

H
′

3(xi)−
∑

i:yi=−1

H1(xi) ≤ 0

⇔ {(γt − 0.5) + (εt − 0.5)(b+ 1)}
{exp(γt − 0.5) + 0.5

0.5− εt
+

0.5(b+ 1)

γt − 0.5
− 1
}
≤ 0

⇔
{

(b+ 1)− 0.5(b+ 1)2

γt − 0.5

}
(0.5− εt)2 −

{
(γt − 0.5) + (b+ 1)exp(γt − 0.5)

}
·

(0.5− εt) + (γt − 0.5)exp(γt − 0.5) + 0.5(γt − 0.5) ≤ 0

⇔ 0.5− εt ≤
γt − 0.5

b+ 1

⇔ 0.5{1− (2γt − 1)/(b+ 1)} ≤ εt. (A.2)

111

(A.2) always holds under assumption (2.13), so Theorem 2.2 gets proved.

112

Appendix B

Proofs of Theorems in Chapter 3

Appendix B1. Proof of Theorem 3.1.

First, the logorithm of the posterior for w is

lw = log p(w|others)

=
n∑
i=1

[
1 + ytraini

2
log
(1

1 + exp(−φtraini w)

)
+

1− ytraini

2
log
(exp(−φtraini w)

1 + exp(−φtraini w)

)]
−

1

2
wTAw + C

=
n∑
i=1

[
1 + ytraini

2
log

(
1

1 + exp
(
−

n∑
s=0

φtraini,s ws
)
)

+
1− ytraini

2
·

log

(exp
(
−

n∑
s=0

φtraini,s ws
)

1 + exp
(
−

n∑
s=0

φtraini,s ws
)
)]
− 1

2

n∑
s=0

αsw
2
s + C,

113

where C is some constant. For any wk in w, we have

lwk = log p(wk|others)

=
n∑
i=1

[
1 + ytraini

2
log

(
1

1 + exp
(
−

n∑
s=0,s 6=k

φtraini,s ws − φtraini,k wk
)
)

+
1− ytraini

2
·

log

(exp
(
−

n∑
s=0,s 6=k

φtraini,s ws − φtraini,k wk
)

1 + exp
(
−

n∑
s=0,s 6=k

φtraini,s ws − φtraini,k wk
)
)]
− 1

2

n∑
s=0,s 6=k

αsw
2
s −

1

2
αkw

2
k + C,

where k = 0, 1, 2, ..., n. Then we calculate the first and second divergency,

∂

∂wk
lwk =

n∑
i=1

[
1 + ytraini

2

(φtraini,k exp
(
−

n∑
s=0,s 6=k

φtraini,s ws − φtraini,k wk
)

1 + exp
(
−

n∑
s=0,s 6=k

φtraini,s ws − φtraini,k wk
)
)

+

1− ytraini

2

(
−φtraini,k

1 + exp
(
−

n∑
s=0,s 6=k

φtraini,s ws − φtraini,k wk
)
)]
− αkwk,

∂2

∂w2
k

lwk =
n∑
i=1

[
1 + ytraini

2

(
−φtraini,k

2

1 + exp
(
−

n∑
s=0,s 6=k

φtraini,s ws − φtraini,k wk
)
)

+

1− ytraini

2

(−φtraini,k
2
exp
(
−

n∑
s=0,s 6=k

φtraini,s ws − φtraini,k wk
)

1 + exp
(
−

n∑
s=0,s 6=k

φtraini,s ws − φtraini,k wk
)
)]
− αk

< 0,

the log-concavity is proved.

114

Appendix B2. Proof of Theorem 3.2.

The conditional posterior of any ηk in η is

p(ηk | others) ∝ exp

[
ηk
2
− 1

2
exp(ηk)w

2
k −

(ηk − µ)2

2τ 2(1− ρ)
+

ρ(ηk − µ)2

2τ 2(1− ρ)(1 + nρ)
+

ρ(ηk − µ)
n∑

s=0,s 6=k
(ηs − µ)

τ 2(1− ρ)(1 + nρ)

]
,

where k = 0, 1, 2, ..., n. For a constant C, the log-posterior of ηk is

lηk = log p(ηk| others)

= C +
ηk
2
− 1

2
exp(ηk)w

2
k −

1 + (n− 1)ρ

2τ 2(1− ρ)(1 + nρ)
(ηk − µ)2 +

ρ(ηk − µ)
n∑

s=0,s 6=k
(ηs − µ)

τ 2(1− ρ)(1 + nρ)
.

The second divergence is

∂2

∂η2
k

lηk = −1

2
exp(ηk)w

2
k −

1 + (n− 1)ρ

τ 2(1− ρ)(1 + nρ)
.

Because 1 + (n− 1)ρ > 0 for any ρ ∈ (−1, 1), ∂2

∂η2k
lηk < 0 always holds.

115

Appendix C

Proofs of Lemmas in Chapter 4

Appendix C1. Proof of Lemma 4.1.

p(w|ytrain,α,µ) ∝ exp(−1

2
wTAw)

n∏
i=1

φ(µi −Kiw)

= exp
[
− 1

2

(
wTAw +

n∑
i=1

(µi −Kiw)2
)]

∝ exp

[
− 1

2

(
wTAw +

n∑
i=1

(
(Kiw)2 − 2µiKiw

))]
= exp

[
− 1

2

(
wTAw +wTKTKw − 2wTKTµ

)]
= exp

[
− 1

2
(w − ŵ)M (w − ŵ)T

]
∝ Nn+1(ŵ,M−1),

where M = A+KTK, ŵ = M−1KTµ.

116

Appendix C2. Proof of Lemma 4.2.

It is obvious that

D = b+ Φ−1(uΦ(−b))

⇒ u(D) =
Φ(D − b)

Φ(−b)

⇒ P (D) =
∂u(D)

∂D
1(0≤u≤1) = φ(D − b) 1(D≤0).

It is similar process to prove another statement.

117

Appendix D

Ratio of Uniforms Sampling
Method

In this section we introduce the ratio of uniforms method, which is a random number

generation approach. This method was original proposed by Kinderman & Monahan

(1977). Then Ripley (1987) further improved this method. Suppose that a bivariate

random variable (U1, U2) is uniformly distributed and satisfies the following inequality:

0 ≤ U1 ≤
√
g (U2/U1),

where g(x) is a any nonnegative function. So X = U2/U1 has a density function

f(x) = h(x)∫
h(x)dx

. The joint density of U1 and U2, denoted by f12 (u1, u2)is

f12 (u1, u2) =

k, if 0 ≤ u1 ≤

√
g (u2/u1)

0, otherwise

,

118

where k is a constant number. Conduct the following transformation from (u1, u2) to

(x, y) :

x =
u2

u1

, y = u1.

It is obvious that u1 = y, u2 = xy. So the Jacobian for this simple transformation is:

J =

∣∣∣∣∣∣∣∣∣∣
∂u1
∂x

∂u1
∂y

∂u2
∂x

∂u2
∂y

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0 1

y x

∣∣∣∣∣∣∣∣∣∣
= −y.

Rewritten fxy(x, y) as:

fxy(x, y) = |J |f12(y, xy) = ky,

where 0 ≤ y ≤
√
g(x). The marginal density of X, denoted by fx(x), is obtained as

follows:

fx(x) =

∫ √g(x)

0

fxy(x, y)dy =

∫ √g(x)

0

kydy = k

[
y2

2

]√g(x)

0

=
k

2
g(x) = f(x),

where k is taken as k = 2∫
g(x)dx

. Thus, it is shown that fx(·) is equivalent to f(·).

In practice, we need to choose the rectangle which encloses the area 0 ≤ U1 ≤√
g (U2/U1) on the domain of (U1, U2). The basic idea is to generate a uniform point

in the rectangle, and reject the point which does not satisfy 0 ≤ u1 ≤
√
g (u2/u1). So

in this method, we generate two independent uniform random draws u1 and u2 from

119

U(0, b) and U(c, d), respectively. The rectangle is given by:

0 ≤ u1 ≤ b, c ≤ u2 ≤ d,

where b, c and d are given by:

b = sup
x

√
g(x), c = − sup

x
x
√
g(x), d = sup

x
x
√
g(x).

The sampling process is as follows (see Ripley (1987)):

(1) Generate u1 and u2 independently from U(0, b) and U(c, d);

(2) If u2
1 ≤ h (u2/u1), set x = u2/u1. Else, return to (1).

120

Appendix E

Proofs of Theorems in Chapter 5

A1. Proof of Theorem 5.1.

Let h(·) be any classifier. We will show that

c · P (h(X) 6= Y |Y = 1,X = x) + P (h(X) 6= Y |Y = −1,X = x)

≥ c · P (hb(X) 6= Y |Y = 1,X = x) + P (hb(X) 6= Y |Y = −1,X = x).(E.1)

121

P (h(X) 6= Y |Y = k,X = x)

= 1− P (h(X) = Y |Y = k,X = x)

= 1− [P (Y = k, h(X) = k|X = x)]

= 1−
[
E[1Y =k1h(X)=k|X = x]

]
= 1−

[
1h(X)=kE[1Y =k|X = x]

]
= 1−

[
1h(X)=kP [Y = k|X = x]

]
= 1−

[
1h(X)=k

P (X = x|Y = k)P (Y = k)

P (X = x|Y = k)P (Y = k) + P (X = x|Y = −k)P (Y = −k)

]
.

Rewrite (5.14) and consider the following difference

[c · P (h(X) 6= Y |Y = 1,X = x) + P (h(X) 6= Y |Y = −1,X = x)]−

[c · P (hb(X) 6= Y |Y = 1,X = x) + P (hb(X) 6= Y |Y = −1,X = x)]

= c · [P (h(X) 6= Y |Y = 1,X = x)− P (hb(X) 6= Y |Y = 1,X = x)] +

[P (h(X) 6= Y |Y = −1,X = x)− P (hb(X) 6= Y |Y = −1,X = x)]

= c ·
[

P (x|Y = 1)P (Y = 1)

P (x|Y = 1)P (Y = 1) + P (x|Y = −1)P (Y = −1)
(1hb(X)=1 − 1h(X)=1)

]
+[

P (x|Y = −1)P (Y = −1)

P (x|Y = 1)P (Y = 1) + P (x|Y = −1)P (Y = −1)
(1hb(X)=−1 − 1h(X)=−1)

]
=

c · P (x|Y = 1)P (Y = 1)− P (x|Y = −1)P (Y = −1)

P (x|Y = 1)P (Y = 1) + P (x|Y = −1)P (Y = −1)
(1hb(X)=1 − 1h(X)=1)

≥ 0

So that (5.14) always holds.

122

A2. Proof of Theorem 5.2.

The posterior is

Π(θ) =
n∏
i=1

P (X = xi|Y = yi)P (Y = yi),

here θ is all the parameters.

π(θ) = lnΠ(θ)

=
n∑
i=1

lnP (Y = yi) +
n∑
i=1

lnP (X = xi|Y = yi)

Let

αk = P (Y = yi)

=

α1, when yi = 1

α−1, when yi = −1

=
∏

k=1,−1

α
1yi=k

k .

We know
∑

k=1,−1

αk = 1. So

π(θ) = π(αk, λ)

=
n∑
i=1

ln

[∏
k=1,−1

α
1yi=k

k

]
+ λ(

∑
k=1,−1

αk − 1)

=
n∑
i=1

∑
k=1,−1

1yi=kln(αk) + λ(
∑

k=1,−1

αk − 1)

123

Let

∂π(αk, λ)

αk
=

n∑
i=1

1yi=k
αk

+ λ

= 0,

we have αk = −

n∑
i=1

1yi=k

λ
. Also

∑
k=1,−1

αk = 1, we have λ = −n. So

αk = −

n∑
i=1

1yi=k

λ

=

n∑
i=1

1yi=k

n
.

Obtain the result P (yi = 1) = n+

n
and P (yi = −1) = n−

n
.

124

Bibliography

[1] Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaqúın Derrac, Salvador

Garćıa, Luciano Sánchez, and Francisco Herrera (2011). Keel data-mining soft-

ware tool: data set repository, integration of algorithms and experimental analy-

sis framework. Journal of Multiple-Valued Logic and Soft Computing 17, 255-287.

[2] E. Alpaydin (2009), Introduction to machine learning.

[3] J. Albert and S. Chib (1995). Bayesian residual analysis for binary response

regression models. Biometrika 82(4), 747-769.

[4] H. Akaike (1974). A new look at the statistical model identification. IEEE Trans-

actions on Automatic Control 19(6), 716-723.

[5] Bengio, Y., Delalleau, O., and Le Roux, N. (2005). The curse of dimensionality

for local kernel machines. Techn. Rep, 1258.

[6] Bellman, R. (1961). On the approximation of curves by line segments using

dynamic programming. Communications of the ACM 4(6), 284.

125

[7] Buades, A., Coll, B., and Morel, J. M. (2005). A non-local algorithm for image

denoising. 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition Vol. 2, 60-65.

[8] Bilcu, R. C., and Vehvilainen, M. (2007). Fast nonlocal means for image denois-

ing. Digital Photography III Vol. 6502, 65020R.

[9] Y. Bian, M. Cheng, C. Yang, Y. Yuan, Q. Li, J. L. Zhao, and L. Liang (2016).

Financial fraud detection: a new ensemble learning approach for imbalanced

data. PACIS 2016 Proceedings, 315.

[10] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, S. Mensah, and Mahakil

(2017). Diversity based oversampling approach to alleviate the class imbalance

issue in software defect prediction. IEEE Transactions on Software Engineering

44 (6), 534-550.

[11] G. E. Batista, R. C. Prati, and M. C. Monard (2004). A study of the behavior

of several methods for balancing machine learning training data. ACM SIGKDD

Explorations Newsletter 6 (1), 20-29.

[12] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik (1992). A training

algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Work-

shop on Computational Learning Theory, 144-152.

[13] Christopher M Bishop and Michael E Tipping (2000). Variational relevance vec-

tor machines. Proceedings of the Sixteenth Conference on Uncertainty in Artificial

Intelligence, 46-53.

126

[14] Andreas Ch Braun, Uwe Weidner, and Stefan Hinz (2012). Classification in high-

dimensional feature spaces assessment using SVM, IVM and RVM with focus

on simulated enmap data. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing 5(2), 436-443.

[15] P. K. Chan and S. J. Stolfo (1998). Toward scalable learning with non-uniform

class and cost distributions: A case study in credit card fraud detection. Pro-

ceeding of the Fourth International Conference on Knowledge Discovery and Data

Mining, 164-168.

[16] F. Cheng, J. Zhang, and C. Wen (2016). Cost-sensitive large margin distribution

machine for classification of imbalanced data, Pattern Recognition Letters 80,

107-112.

[17] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer (2003). Smoteboost:

Improving prediction of the minority class in boosting. European Conference on

Principles of Data Mining and Knowledge Discovery, 107-119.

[18] Corinna Cortes and Vladimir Vapnik (1995). Support-vector networks. Machine

Learning 20(3), 273-297.

[19] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal Statistical

Society: Series B (Methodological) 39(1), 1-22.

[20] Begüm Demir and Sarp Erturk (2007). Hyperspectral image classification using

relevance vector machines. IEEE Geoscience and Remote Sensing Letters 4(4),

586-590.

127

[21] Ernest Fokoué, Dongchu Sun, and Prem Goel (2011). Fully Bayesian analysis

of the relevance vector machine with an extended hierarchical prior structure.

Statistical Methodology 8(1), 83-96.

[22] Y. Freund and R. E. Schapire (1997). A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and System

Sciences 55 (1), 119-139.

[23] Fung, G., and Mangasarian, O. L. (2001). Semi-superyised support vector ma-

chines for unlabeled data classification. Optimization Methods and Software

15(1), 29-44.

[24] Y. Freund, R. Schapire, and N. Abe (1999). A short introduction to boosting.

Journal of Japanese Society for Artificial Intelligence 14, 771-780.

[25] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan (1999). Adacost: misclassification

cost-sensitive boosting. International Conference on Machine Learning, 97-105.

[26] Haixiang G., Yijing, L., Yanan, L., Xiao, L., and Jinling, L. (2016). BPSO-

Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data

classification. Engineering Applications of Artificial Intelligence 49, 176-193.

[27] X. Geng, Y.-Q. Zhu, and Z. Yang (2018). A novel classification method for

class-imbalanced data and its application in microRNA recognition. International

Journal Bioautomation 22(2).

[28] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera (2016).

Ordering-based pruning for improving the performance of ensembles of classifiers

in the framework of imbalanced datasets. Information Sciences 354, 178-196.

128

[29] Walter R Gilks and Pascal Wild (1992). Adaptive rejection sampling for Gibbs

sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics)

41(2), 337-348.

[30] Triguero, S. Gonzlez, J. M. Moyano, S. Garca, J. Alcalá-Fdez, J. Luengo, A.

Fernández, M. J. del Jesus, L. Snchez, and F. Herrera (2017). KEEL 3.0: An

Open Source Software for Multi-Stage Analysis in Data Mining. International

Journal of Computational Intelligence Systems 10, 1238-1249.

[31] Casella, G., Robert, C. P., and Wells, M. T. (2004). Generalized accept-reject

sampling schemes. A Festschrift for Herman Rubin, 342-347.

[32] W. R. Gilks and P. Wild (1992). Adaptive rejection sampling for Gibbs sampling.

Journal of the Royal Statistical Society: Series C (Applied Statistics) 41(2), 337-

348.

[33] W. R. Gilks, N. G. Best, and K. K. C. Tan (1995). Adaptive rejection Metropolis

sampling within Gibbs sampling. Journal of the Royal Statistical Society: Series

C (Applied Statistics) 44(4), 455-472.

[34] C. Huang, Y. Li, C. L. Chen, and X. Tang (2019). Deep imbalanced learning for

face recognition and attribute prediction. IEEE Transactions on Pattern Analysis

and Machine Intelligence.

[35] Hastie, T., and Tibshirani, R. (1996). Discriminant adaptive nearest neighbor

classification and regression. Advances in Neural Information Processing Sys-

tems, 409-415.

[36] P. Harrington (2012). Machine learning in action. Manning Publications Co..

129

[37] Daniella Hubl, SBölte, S Feineis-Matthews, H Lanfermann, Andrea Federspiel,

W Strik, F Poustka, and Thomas Dierks (2003). Functional imbalance of visual

pathways indicates alternative face processing strategies in autism. Neurology

61(9), 1232-1237.

[38] J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano (2007), Experimental per-

spectives on learning from imbalanced data. Proceedings of the 24th International

Conference on Machine Learning, 935-942.

[39] M. Kubat, R. C. Holte, and S. Matwin (1998). Machine learning for the detection

of oil spills in satellite radar images, Machine Learning 30 (2-3), 195-215.

[40] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas (2006). Handling imbalanced

datasets: A review. GESTS International Transactions on Computer Science

and Engineering 30(1), 25-36.

[41] R. Kohavi and F. Provost (1998). Glossary of terms special issue on applications

of machine learning and the knowledge discovery process. Machine Learning 30,

271-274.

[42] Miroslav Kubat, Robert C Holte, and Stan Matwin (1998). Machine learning for

the detection of oil spills in satellite radar images. Machine Learning 30(2-3),

195-215.

[43] Heller, K., Teh, Y. W., and Gorur, D. (2009). Infinite hierarchical hidden Markov

models. Artificial Intelligence and Statistics, 224-231.

130

[44] A. J. Kinderman and J. F. Monahan (1977). Computer generation of random

variables using the ratio of uniform deviates. ACM Transactions on Mathematical

Software (TOMS) 3(3), 257-260.

[45] V. Lopez, A. Fernandez, S. Garcia, V. Palade, and F. Herrera (2013). An insight

into classification with imbalanced data: Empirical results and current trends on

using data intrinsic characteristics. Information Sciences 250, 113-141.

[46] W. Lee, C.-H. Jun, and J.-S. Lee (2017). Instance categorization by Support Vec-

tor Machines to adjust weights in AdaBoost for imbalanced data classification.

Information Sciences 381, 92-103.

[47] V. Lopez, A. Fernandez, J. G. Moreno-Torres, and F. Herrera (2012). Analysis

of preprocessing vs. cost-sensitive learning for imbalanced classification. Expert

Systems with Applications 39 (7), 6585-6608.

[48] C. Li, X. Ding and Y. Wu (2007). Revised AdaBoost algorithm-Ad AdaBoost

[Chinese Mandrian]. Jisuanji Xuebao/Chinese Journal of Computers 30 (1),

103-109.

[49] D. Lewis and W. Gale (1994). Training text classifiers by uncertainty sampling.

Seventeenth Annual International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval, 3-12.

[50] Zunxiong, L., Deyun, Z., Qindong, S., and Zheng, X. (2004). Mid-term electric

load prediction based on the relevant vector machine. Journal of Xian Jiaotong

University 38(10), 1005-1008.

131

[51] S. Makki, Z. Assaghir, Y. Taher, R. Haque, M.-S. Hacid, and H. Zeineddine

(2019). An experimental study with imbalanced classification approaches for

credit card fraud detection. IEEE Access 7, 93010-93022.

[52] M. O. Miah, S. S. Khan, S. Shatabda, and D. M. Farid (2019). Improving detec-

tion accuracy for imbalanced network intrusion classification using cluster-based

under-sampling with random forests. 2019 1st International Conference on Ad-

vances in Science, Engineering and Robotics Technology (ICASERT), IEEE, 1-5.

[53] Sikora M., Wrobel L. (2010). Application of rule induction algorithms for analysis

of data collected by seismic hazard monitoring systems in coal mines. Archives

of Mining Sciences 55(1), 91-114.

[54] N Nikolaev and P Tino (2005). Sequential relevance vector machine learning from

time series. 2005 IEEE International Joint Conference on Neural Networks 2,

1308-1313.

[55] Ng, A. Y., and Jordan, M. I. (2002). On discriminative vs. generative classi-

fiers: A comparison of logistic regression and naive bayes. Advances in Neural

Information Processing Systems, 841-848.

[56] Jerzy Neyman, Elizabeth L Scott, et al. (1948). Consistent estimates based on

partially consistent observations. Econometrica 16(1), 1-32.

[57] Mahesh Pal and Giles M Foody (2012). Evaluation of SVM, RVM and SMRL for

accurate image classification with limited ground data. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing 5(5), 1344-1355.

132

[58] Rifkin, R. M. (2002). Everything old is new again: a fresh look at historical

approaches in machine learning. Doctoral dissertation in Massachusetts Institute

of Technology.

[59] Rubinstein, Y. D., and Hastie, T. (1997). Discriminative vs Informative Learning.

International Conference on Knowledge Discovery and Data Mining 5, 49-53.

[60] Rojas, R. (2009). AdaBoost and the super bowl of classifiers a tutorial introduc-

tion to adaptive boosting. Freie University, Berlin, Tech. Rep.

[61] B. D. Ripley (1987). Regression techniques for the detection of analytical bias.

Analyst 112(4), 377-383.

[62] C. R. Ren (2001). Topics in Bayesian estimation: frequentist risks and hierar-

chical models for time to pregnancy. Doctor of Philosophy Thesis, University of

Missouri.

[63] Q. Song, Y. Guo, and M. Shepperd (2018). A comprehensive investigation of the

role of imbalanced learning for software defect prediction. IEEE Transactions on

Software Engineering 45 (12), 1253-1269.

[64] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang (2007). Cost-sensitive boosting

for classification of imbalanced data. Pattern Recognition 40 (12), 3358-3378.

[65] R. E. Schapire and Y. Singer (1999). Improved Boosting algorithms using

confidence-rated predictions. Machine Learning 37 (3), 297-336.

[66] Bernhard Schölkopf, Christopher JC Burges, and Alexander J Smola (1999). [B]

Advances in kernel methods: support vector learning. MIT Press.

133

[67] Catarina Silva and Bernardete Ribeiro (2006). Scaling text classification with rel-

evance vector machines. 2006 IEEE International Conference on Systems, Man

and Cybernetics 5, 4186-4191.

[68] G. Schwarz (1978). Estimating the dimension of a model. The Annals of Statistics

6(2), 461-464.

[69] X. Tao, Q. Li, W. Guo, C. Ren, C. Li, R. Liu, and J. Zou (2019). Self-adaptive

cost weights-based support vector machine cost-sensitive ensemble for imbal-

anced data classification. Information Sciences 487, 31-56.

[70] Shawe-Taylor, J., and Cristianini, N. (2004). Kernel methods for pattern analysis.

Cambridge University Press.

[71] Michael E Tipping (2000). The relevance vector machine. The Advances in Neural

Information Processing Systems, 652-658.

[72] Michael E Tipping (2001). Sparse Bayesian learning and the relevance vector

machine. Journal of Machine Learning Research 1(Jun), 211-244.

[73] Michael E Tipping and Anita C Faul (2003). Fast marginal likelihood maximiza-

tion for sparse Bayesian models. Proceedings of the Ninth International Workshop

on ArtificialIntelligence and Statistics.

[74] Arasanathan Thayananthan (2006). Template-based pose estimation and track-

ing of 3D hand motion. Ph.D. Thesis, University of Cambridge.

[75] Vapnik, V. (1998). The support vector method of function estimation. Nonlinear

Modeling, 55-85.

134

[76] P. Viola and M. Jones (2002). Fast and robust classification using asymmetric

AdaBoost and a detector cascade. Advances in Neural Information Processing

Systems, 1311-1318.

[77] G. M. Weiss (2004). Mining with rarity: a unifying framework. ACM Sigkdd

Explorations Newsletter 6 (1), 7-19.

[78] Dinghai, W., Peilin, Z., and Yingtang, Z. (2011). Study on diesel engine faults

diagnosis based on time frequency singular value spectrum and RVM. Journal of

Mechanical Strength 33(3), 317-323.

[79] Xiang-min, X., Yun-feng, M., Jia-ni, X., and Feng-le, Z. (2007). Classification

performance comparison between RVM and SVM. 2007 International Workshop

on Anti-Counterfeiting, Security and Identification (ASID), 208-211.

[80] Yue, S. (2017). Imbalanced malware images classification: a CNN based ap-

proach. arXiv:1708.08042.

[81] B. Zhou, T. Wang, M. Luo, and S. Pan (2017). An online tracking method

via improved cost-sensitive AdaBoost. 2017 Eighth International Conference on

Intelligent Control and Information Processing (ICICIP), 49-54.

[82] Dong Zhang (2017). Adaptive sampling algorithms and its R package develop-

ment. Master Thesis, East China Normal University.

135

VITA

Wenyang Wang was born on March 16, 1991, in Dalian, Liaoning Province of

China. He graduated with a Bachelor of Science in Mathematics from the Dalian

University of Technology in the summer of 2014. In the Fall of 2014, he joined

a graduate program in the Department of Statistics at the University of Missouri,

Columbia, USA. In the summer of 2016, he received a Master of Arts in Statistics

and began his doctoral study with his advisors, Drs. Dongchu Sun and Zhuoqiong

He. He has accepted a faculty position at Dalian Maritime University, China.

He was married to Jingwen Wang in December of 2018. Their daughter, Rita

Xuehan Wang, was born in December 2019.

136

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Imbalanced Data Problem
	Machine Learning Approach
	Relevance Vector Machine Approach
	Outline of the Dissertation

	The Improved AdaBoost Algorithms for Imbalanced Data Classification
	Introduction
	The Enhanced AdaBoost Algorithm
	The Enhanced AdaBoost
	Properties of the Enhanced AdaBoost Algorithm
	Choices of and k

	The Reinforced AdaBoost Algorithm
	Numerical Studies
	Simulation Studies Based on Gaussian Data
	Simulation Study Based on Uniform Data
	Real Data Studies

	Conclusion Comments

	Fully Bayesian Analysis of the Relevance Vector Machine Classification for Imbalanced Data
	Introduction
	Support Vector Machine with Kernel Functions
	Adaptive Rejection Sampling Method

	RVM Classification
	Generic Bayesian RVM Classification Algorithm
	Fully Hierarchical Bayesian RVM Classification Algorithm
	Numeric Studies
	Simulation Data Studies
	Real Data Studies

	Conclusion Comments

	Fully Bayesian Analysis of the Relevance Vector Machine Classification with Probit Link Function
	Introduction
	The Probit Link Functions

	Generic Bayesian PRVM Classification Algorithm
	Fully Hierarchical Bayesian PRVM Classification Algorithm
	Numeric Studies
	Simulation Data Studies
	Real Data Studies

	Comparison Between the Bayesian RVM and PRVM
	Elapsed Programming Time
	Model Selection

	Conclusion Comments

	Discussion and Future Research
	Discussion of Chapter 2
	Discussion of Chapter 3
	Generative vs. Discriminative Models
	The Gaussian Mixture Model

	Discussion of Chapter 4
	0-1 Loss Function
	Cost-sensitive Loss Function
	Cost-sensitive Bayes Classifier

	Comparision Between Boosting and Kernel Methods

	Proofs of Theorems in Chapter 2
	Proofs of Theorems in Chapter 3
	Proofs of Lemmas in Chapter 4
	Ratio of Uniforms Sampling Method
	Proofs of Theorems in Chapter 5
	BIBLIOGRAPHY
	VITA

