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ABSTRACT 

 
Optimal control is one of the most powerful, important and advantageous topics in 

control engineering. The two challenges in every optimal control problem are defining the 

proper cost function and obtaining the best method to minimize it. In this study, innovative 

optimal control approaches are developed to solve the two problems of consensus and path 

planning in multi-agent systems (MASs). The consensus problem for general Linear-Time 

Invariant systems is solved by implementing an inverse optimal control approach which 

enables us to start by deriving a control law based on the stability and optimality condition 

and then according to the derived control define the cost function. We will see that this 

method in which the cost function is not specified a priori as the conventional optimal 

control design has the benefit that the resulting control law is guaranteed to be both 

stabilizing and optimal. Three new theorems in related linear algebra are developed to 

enable us to use the algorithm for all the general LTI systems. The designed optimal control 

is distributed and only needs local neighbor-to-neighbor information based on the 

communication topology to make the agents achieve consensus and track a desired 

trajectory. 

Path planning problem is solved for a group are Unmanned Aerial Vehicles (UAVs) 

that are assigned to track the fronts of a fires in a process of wildfire management. We use 

Partially Observable Markov Decision Process (POMDP) in order to minimize the cost 

function that is defined according to the tracking error. Here the challenge is designing the 

algorithm such that (1) the UAVs are able to make decisions autonomously on which fire 

front to track and (2) they are able to track the fire fronts which evolve over time in random 

directions. We will see that by defining proper models, the designed algorithms provides 
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real-time calculation of control variables which enables the UAVs to track the fronts and 

find their way autonomously. Furthermore, by implementing Nominal Belief-state 

Optimization (NBO) method, the dynamic constraints of the UAVs is considered and 

challenges such as collision avoidance is addressed completely in the context of POMDP. 
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1. Introduction 

 
In this research, innovative optimal control approaches are developed to solve the 

two important problems of consensus and path planning among multi-agent systems 

(MASs). Consensus is important when the objective of a mission is to get to some specific 

state or track a given desired trajectory. Path planning is generally called to any process of 

finding a sequence of valid configuration that moves the agent through an unnecessarily 

given route. Here we focus on a special application of having a group of Unmanned Aerial 

Vehicles (UAVs) track fire fronts in order to collect data of their spread as an important 

part of wildfire management process. Consensus problem for general Linear Time-

Invariant systems is discussed in chapter 2 and 3. Path planning algorithm for fire fighter 

UAVs is developed in chapter 4 via a special case of Markov Decision Process (MDP) 

named Partially Observable Markov Decision Process (POMDP). Here we briefly 

introduce the two problems, back ground of each one, our approaches and advantages of 

them. 

Cooperative control problem for multi-agent systems (MASs) has received 

tremendous attention in the last two decades owing to its wide range of applications. 

Furthermore, the concept of distributed multi-agent cooperative systems was developed 

with the aid of rapid progress in communication, sensing, and actuation. The cooperative 

teamwork provides much more flexibility and robustness in performance to accomplish 

certain missions compared to single-agent systems and therefore, it has been applied to 

many practical engineering problems such as mobile robots, unmanned aerial vehicles 

(UAVs), autonomous underwater vehicles (AUVs), spacecraft, and automated highway as 
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summarized in [1] . A comprehensive overview on the progress of multi-agent coordination 

has been provided by Cao et al [2]. 

The technical core of cooperative control of MASs is the concept of consensus. It is 

said that multiple vehicles have achieved consensus when they agree on the value of a 

common variable of interest. A good example is a dinner meeting among a group of friends. 

Suppose that five friends want to spend an evening together and have dinner. They all know 

the place (the particular restaurant) but they are uncertain about the time of the meeting. 

One solution is to make a conference call in which all five attend and decide about the 

meeting time. This centralized approach is not a real solution because they still need to set 

a time for attending the conference call all together. The common variable of interest (also 

called the “coordination variable”) is the time the friends want to meet. The distributed 

solution is for each individual to call a subgroup of friends and make a decision on a 

preferred time. Here we suppose that each individual has phone numbers of only two of 

his/her friends. That means each individual can only communicate with two friends. This 

calling process continues and the preferred time is updated each time until it converges to 

a final consistent meeting time.  Figure 1 shows this process of agreement. 
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Figure 1. Meet-for-dinner consensus problem[3] 

 

According to the meet-for-dinner example, consensus among agents is equivalent to 

achieving a common state by neighbor-to-neighbor interaction and information exchange. 

The information and interaction exchange among the agents is represented by 

communication topology which is modeled via graph theory. The classical consensus 

problem and the associated graph and matrix theories were introduced and extensively 

developed primarily on single or double integrator systems [4, 5]. The basic consensus 

algorithm was rapidly generalized to the case of higher-order systems [6, 7]. Other recent 

progress on the average consensus algorithms includes developing novel weighting 

strategies [8] and new classes of fixed-time protocols [9]. 

Since many of the practical applications involve formation and tracking problems of 

mobile vehicles, the integrator systems (both single and double-integrator) have received 
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the most attention and have been thoroughly studied during the last decade [10-12]. 

Considering the constraints of real applications such as limited communication ranges and 

limited bandwidth, the concept of switching topology (instead of time-fixed topology) 

emerged and the conditions for achieving consensus under the switching topology were 

extensively investigated [13-18]. Besides, the leader-follower algorithm as the most 

straightforward approach for solving the tracking problem has been studied and developed 

as well [19-23]. 

Nonlinear analysis has also been taken into consideration in consensus analysis. 

Intermittent communication ( i.e. the case when the communication among the agents is 

attacked disconnects at frequent time intervals) in nonlinear singular MASs has been 

addressed by Xie and Mu [24] as a crucial issue. They have used multi-Lyapunov function 

approach, the observer-based intermittent feedback control protocol to solve the consensus 

problem. Deng et al. [25] have studied another practical problems called “packet dropout” 

which occurs due to unreliable wireless communication. They have applied an iterative 

learning control method to design the control protocol. Other studies have been 

accomplished on applying model reference adaptive control (MRAC) in order to design 

the optimal control for Heterogeneous Nonlinear Multiagent Systems whose Dynamics is 

partially unknown [26] and solving Lag Group Consensus problem via adaptive control 

approach [27].Some other methods to address the consensus problem include designing 

observers [28, 29] and compensators [30]. 

When communication does not occur continuously, the system is called “discrete-

time”. The basic algorithms for consensus in such systems have been derived in [3, 4]. 

Many novel approaches have been developed recently such as constructing adaptive 
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algorithms to drive the local parameters estimators [31] and developing a new form of 

Krasovskii-LaSalle theorem for obtaining an exponential convergence [32]. 

Multi-agent cooperative control has also been investigated from the optimization 

perspective. Consensus can be optimized by improving the network topology via the graph 

theory and analysis. The research along this line is mainly focused on making the most 

efficient configuration to attain the desired property of the representing graph. The 

objectives include finding the fastest convergence rate by maximizing the second smallest 

non-negative eigenvalue of the Laplacian matrix as described by Kim and Mesbahi [33] or 

obtaining the optimal topology (optimal Laplacian matrix), for example via the linear 

quadratic regulator (LQR) approach [34]. Linear matrix inequality (LMI) and iterative LMI 

are also utilized to solve the consensus problem [35-37]. Tuna [38, 39] showed that the 

LQR can synchronize agents if the pair of the state and input matrices (for each agent) is 

stabilizable. However, there was no discussion on the exact approach of constructing 

proper cost functions and defining the desired trajectory. Wang and Xin [40] utilized an 

inverse optimal control method (introduced by Bernstein [41]) for a system of agents to  

address not only consensus but also obstacle/collision avoidance. This similar optimal 

control was applied to cooperative control of multiple autonomous robots [42] and the 

flocking problem [43]. However, the same simplified double-integrator dynamics is 

assumed in these works for the MAS model. Recently, many innovations have been made 

in solving the consensus problem by the optimal control theory. Xie and Lin [44] solved 

the problem of global optimal consensus for higher-order integrators with bounded controls 

starting from any arbitrary initial states and in the presence of actuator saturation. 

Dehshalie et al. [45] used optimal control theory to design a fault tolerant control law for 
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MASs with single and multi-input actuators under both directed and undirected 

communication topologies. A numerical approach was developed by Bailo et al. [46] to 

solve the consensus problem of the nonlinear multi-agent system of Cucker-Smale type 

and the first-order optimality conditions were obtained by using Barzilai-Borwein (BB) 

gradient descent method. Recently, the model predictive control has been used to solve 

cooperative control problems such as controlling connected and autonomous vehicles in 

the intelligent transportation system [47]. 

In chapter 2, we generalize the approach described in [40, 43, 48] in order to embrace 

general LTI systems with single inputs. The advantage of our approach is that, aside from 

being applicable to general systems (rather than mere integrator systems), the optimal 

control is derived based on an inverse optimal control approach in which the cost function 

is not a priori and is obtained after the control law is derived and satisfies stability and 

optimality conditions. The approach will be explained thoroughly in section 2.4. The 

importance of this approach is that the control law is guaranteed to be both stabilizing and 

optimal. The other important advantage of our algorithm is that the optimal control is 

obtained pure analytically without using any numerical approaches.  Consensus, trajectory 

tracking, and minimization of control effort are achieved by constructing proper cost 

functional via the same inverse optimal control method. The optimal cooperative control 

law is distributed, which only needs neighboring agents’ information. Both asymptotic 

stability and optimality are achieved. 

In chapter 3, the same approach develops to embrace the case of multi-input systems. 

We will see that an important challenge would be choosing the most appropriate 

transformation matrix in order to convert the general LTI system to a Controllable 
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Canonical Form (CCF) with specific properties. Three separate theorems in related linear 

algebra will be developed to enable us to obtain the best transformation matrix. Optimal 

control is achieved through the same approach and allow us to solve the consensus problem 

for all the general Linear Time-invariant Multi Agent systems.  

In chapter 4 a novel path planning algorithm is introduced based on Partially 

Observable Markov Decision Process (POMDP). The algorithm is implemented for 

making fire fighter UAVs track the fronts of wildfires. Wildfires are known for fast and 

randomly evolving over time. Therefore, accurate data collection of the spreading pattern 

of the fire fronts is very crucial in wildfire management. Many path-planning algorithms 

have already been developed for autonomous system of vehicles and robots [49-59]. The 

approach introduced here has the following advantages, which makes it different and 

profitable: 

1) It is designed according to the concepts of POMDP, which means that the system 

makes decisions only according to some observations when there is no clearly 

known states (a realistic model for the case of managing wildfires). 

2) In response to the collected information, the approach implements real-time 

calculation in obtaining control commands. 

3)  Using “Receding Horizon” technique, the algorithm has a “look-ahead” quality in 

a sense that for the current time-step, the controls are calculated over a certain time 

horizon. 

4) The dynamics constraints are taken into consideration in the introduced approach 

and the control variables are calculated within certain limits. 
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5) A discrete-time model for evolving fire front is defined to enable the UAVs to track 

them when they evolve in random direction. 

6) The cost function is defined according to the tracking error. 

Each item has already been developed and used separately. For example in [60-63] 

the look-ahead property has been defined but the constraint have not been considered in all 

of them or the cost functions have been defined without considering the tracking error. The 

innovation of the algorithm described in this chapter is that it solves path-planning problem 

in a POMDP framework considering all the features mentioned above. This is novel 

because in other studies, where POMDP is used to solve general path-planning problems, 

either not all these features have been taken into account or separate algorithms are 

designed to overcome the challenges such as collision avoidance or practical constraints in 

UAV motions. In [64] the similar approach is implemented but no constraints has been 

considered. Collision avoidance has been taken into account in [65] but the target tracking 

has not been involved. Other approaches have been also suggested for addressing collision 

avoidance [66-69] among which the most recent ones are Bezier curve optimization [70, 

71], Particle Swarm Optimization (PSO) [72] and nonlinear Model Predictive Control 

(MPC) [73]. Here we extend the approach described in [74] in order to enable the algorithm 

to embrace the case of tracking randomly evolving fire fronts. In [74], it is assumed that 

target motion models are the same for all the targets. In our algorithm, no specific motion 

model for the fire fronts is required and the UAVs are able to track the fronts only according 

to data of the momentary positions of them. This makes the algorithm very compatible for 

being implemented in case of tracking any randomly maneuvering targets and since for 

each time-step a simple linear model is constructed for the target, the algorithm remains 
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computationally fast, efficient and inexpensive. The approach computes the control 

variable of UAVs considering collision avoidance and the dynamic constraints and with a 

“look-ahead” quality in a POMDP framework and the cost function is defined according 

to the tracking error. 

POMDP problems are known as intractable problems, which means they cannot be 

exactly solved but keeping the essence of the theory, approximation methods can be 

implemented to enable us to provide optimal solutions. There are many approximation 

approaches such as heuristic Expected Value-To-Go [75], policy rollout [76], hindsight 

and foresight optimization [77-80] and parametric optimization [79, 81]. In this chapter we 

use Nominal Belief-state Optimization (NBO) which is the most appropriate method for 

tracking problems because it is less computationally intensive and allows us to define the 

cost function to be analytically solvable. Moreover, since it is a special case of hindsight 

and foresight optimization, it can be amicably extended to embrace the case of randomness 

in the tracking problem.  
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2. Single-Input Systems 

 

2.1 Overview 

 
In this chapter, the consensus problem for a general linear time-invariant (LTI) multi-

agent systems with a single input is studied in a new optimal control framework. The 

approach is derived from a modified linear quadratic regulator (LQR) method by an 

innovative design of the cost function by using an inverse optimal control formulation. 

Three cost terms are constructed to address the consensus, control effort, and cooperative 

tracking, respectively. This formulation allows a closed-form feedback control law with 

guaranteed asymptotic stability and optimality. The two important advantages of this 

approach are (1)  the optimal control law is derived pure analytically and (2) it is 

distributed, which means that it only requires local information based on the 

communication topology to  enable the agents to achieve consensus and track a desired 

trajectory, rather than centralized control laws in which all agents’ information is required. 

This chapter is organized as follows. In Section 2.2, some preliminaries and fundamental 

concepts of graph theory are reviewed. The system is described and the problem is 

formulated in Section 2.3. Main results are presented in Section 2.4 and the algorithm of 

the approach is also provided in this Section which can be used as a quick reference for 

practical applications. Two examples are shown in Section 2.5 to demonstrate the 

performance of the proposed method.  
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2.2 Preliminaries 

 
Since communication between agents is modeled by graphs, some basic notions of 

the graph theory are worth reviewing briefly. ( , )G N E= , represents a graph with the 

nonempty set of nodes N  and the nonempty set of the edges E   where E N N  . A graph 

is called “directed” if all the pairs are ordered.  A directed path is a sequence of ordered 

edges in the form of 
1 2 3 4( , ),( , ),...,i i i i  where ji N . 

1 2( , )i i  means that agent 2 can  receive 

information from agent 1 but not vice versa. In an undirected graph, 
1 2( , )i i means that both 

agent 1 and agent 2 can obtain information from each other. An undirected graph is called 

“connected” if a path can be found between each pair of nodes. A directed graph is 

“strongly connected” if there is a path from every node to every other node. Figure 2 shows 

the differences between these types of graphs. 

 

Figure 2. Different types of graphs 

 

Communication topology is described by the adjacency matrix ( )

g g

d

d ij n n
a


 =  A   in which 

( ) 0d

iia =  and  
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                                                   ( )
1           if ( , )

0           if ( , )

d

ij

i j E
a

i j E


= 


       (1) 

where gn  is the number of agents. For an undirected graph, the adjacency matrix is 

symmetric. The Laplacian matrix of a system of agents is defined as: 

                                                             
d= −L D A   (2) 

where D  is the diagonal degree matrix with the entries of ( )

1

n
d

ii ij

j

d a
=

=  . For an undirected 

graph, the Laplacian matrix L  is symmetric, and has a simple zero eigenvalue with an 

associated eigenvector 
gn1   (a column vector of all ones) and all the other eigenvalues are 

positive if and only if the graph is connected. Every row sum of L is zero which means: 

                                                                 
gn =L1 0   (3) 

 

 

2.3 Problem statement and formulation 

 
A general controllable LTI system is said to achieve consensus when all the agents’ 

states converge to the same common value, (i.e.
i j →X - X 0 ) at the same time, where 

iX  

is the state vector of agent i.  

In other words, consensus is reached if there exists a real-valued function ( )cs tX  such that 

( ) ( )cst t− →X X 0  as t → . X  is the state vector of the whole system of agents defined as: 

11 12 1 21 22 2 1 2, , , , , , , , , , , ,
g g g

T

n n n n nnX X X X X X X X X =
 

X where ijX

represents the ith state of the jth agent. 

In this study, it is assumed that each agent has the same dynamics of 
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                                                            i g i g iX = A X + B U  (4) 

The dynamics of the whole system of agents is written as: 

                                                              X = AX + BU   (5) 

where ( )
g gg n ij nn n

a


=  = A A I I , ( )
1g gg n j nn

b


=  = B B I I . n  is the dimension of the 

single agent’s system and 1 2 g

T

n
 =
 

U U U U  is the input vector for the agents.  

The final consensus state vector should satisfy the system equation (5). Since 1gcs n n =U 0  

when the system achieves consensus, we have 

                                                    
cs cs cs csX = AX + BU = AX     (6) 

An error state vector is defined as: 

                                                             ˆ
cs−X = X X   (7) 

Taking the time derivative of the error state vector yields: 

                       ˆ ˆ( )cs cs cs− − −X = X X = AX + BU AX = A X X + BU = AX + BU  (8) 

Consensus is said to be reached if the system (8) is asymptotically stable. 

For any controllable LTI system, a transformation matrix T  can be found to 

transform the system to a controllable canonical form (CCF) [82]. 

                                                                
gnT = MW I  (9) 

where 

                                                 2 1n− =  M B AB A B A B  (10) 

is the controllability matrix and W  is called flipped Toeplitz matrix and has the form of: 
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1 2 1

2 3

1

1

1 0

1 0 0

1 0 0 0

n

n

a a a

a a

a

−

−

 
 
 
 =
 
 
  

W   (11) 

ia ’ s are the coefficients of the characteristic equation of the state matrix gA . 

Using the transformation matrix (9), the state vector and the final consensus vector 

can be expressed as: 

                                                                             =X TX   (12.a) 

                                                                             cs cs=X TX   (12.b) 

Subtracting (12.b) from (12.a) leads to: 

                                                               ˆˆ( )cs cs− − X X = T X X X = TX  (13) 

Using (13), the system (8) can be converted to a CCF as: 

                                                                     ˆ ˆ
X = AX + BU  (14) 

where  

                                          1

0 1 2 1

0 1 0 0

0 0 1 0

0 0 0 1
gn

na a a a

−

−

 
 
 
 = 
 
 
 − − − − 

A = T AT I  (15) 

The last row of A   contains the coefficients of the characteristic equation of the system 

state matrix gA  and  

                                                        1

1
0 0 0 1

g

T

nn

−


= B = T B I  (16) 

Now the system (14) can be rewritten as: 
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                                                          ( )2 1

ˆ ˆ
X = A + BK X + BU  (17) 

where 

                                                                  
2 1+ =A BK A   (18) 

and  

                  2

0 1 0 0

0 0 1 0

 

0 0 0 1

0 0 0 0

gn

n n

 
 
 
 = 
 
 
  

A I ,  1 0 1 1 gn na a a −= − − − K I   (19) 

The new equivalent system has the form of 

                                                                  2 2

ˆ ˆ
X = A X + BU   (20) 

where  

                                                                    2 1

ˆ
U = K X + U  (21) 

The consensus problem becomes finding a feedback control input 
2U  such that the system 

(20) is asymptotically stable. 

In this paper, the cooperative control problem is formulated in an optimal control 

framework as follows: 

                                                                 
1 2 3

2 2

min :

ˆ ˆ
. :

J J J J

s t

= + +

X = A X + BU
 (22) 

1J is the cost for state deviations or consensus cost given by 

                                                                ( )1 1
0

ˆ ˆTJ dt


=  X R X  (23) 
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where 
1R  is a ( g gn n n n   ) diagonal and positive semi-definite (P.S.D) matrix. An 

approach for properly constructing this matrix will be shown afterwards in section 4.4. 

2J  is the control effort cost given by 

                                                                   ( )2 2 2 2
0

TJ dt


=  U R U  (24) 

where 2

2 gc nw=R I  is positive definite (P.D) and 
cw is the weighting parameter. 

3J  is the cost for tracking and has the form of  

                                                                       3
0

ˆ
( )J h dt



=  X  (25) 

where ˆ
( )h X   is constructed by an inverse optimal control approach and contains the 

tracking penalty function, which will be described in the next section. 

 

2.4 Main Results 

2.4.1 Optimal control solution 

 
The following Lemma is used in this paper to prove the asymptotic stability and 

optimality of the proposed cooperative control law. 

Lemma 2.1 [41]: Consider the nonlinear dynamical system 

                                                 ( ) 0

ˆ ˆ ˆ ˆ
( ) ( ) ( ) (0) ,   0t t t t= X = f X ,U ,     X X   (26) 

with ( )f 0,0 = 0 and a cost functional given by: 

                                                         ( ) ( )0

ˆ ˆ
( ) ( ) ( )t t dt



0J X ,U T X ,U  (27) 
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where ( )U  is an admissible control. Let nD be an open set and m . Assume that 

there exists a continuously differentiable function :V D→ and a control law : D →  

such that 

                                                              ( ) 0V =0   (28) 

                                                ˆ ˆ ˆ
( ) 0,     ,   V D  X X X 0   (29) 

                                                             ( ) =0 0   (30) 

                                             ( )ˆ ˆ ˆ ˆ ˆ
'( ) , ( ) 0,   ,   V D   X f X X X X 0   (31) 

                                                    ( )ˆ ˆ ˆ
, ( ) 0,   H D = X X X   (32) 

                                                 ˆ ˆ
( , ) 0,   ,   H D  X U X U   (33) 

where ˆ ˆ ˆ ˆ
( ) ( ) '( ) ( )H T V+X,U X,U X f X,U is the Hamiltonian function. The superscript '   

denotes partial differentiation with respect to ˆ
X . 

Then, with the feedback control  

                                                                     ˆ
( ) ( ( ))U = X  (34) 

the solution ˆ
X 0  of the closed loop system is locally asymptotically stable and there 

exists a neighborhood of the origin 
0D D such that 

                                                     ( )0 0 0 0

ˆ ˆ ˆ ˆ
( ( )) ( ),     V D = J X , X X X   (35) 

In addition, if 0 0

ˆ
DX  then the feedback control (34) minimizes 0

ˆ
( ( ))J X ,U  in the sense 

that 
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                                                    ( )
0

0 0ˆ( ) ( )

ˆ ˆ ˆ
( ( )) min ( ( ))

S




=
U X

J X , X J X ,U  (36) 

where 0

ˆ
( )S X  denotes the set of asymptotically stabilizing controllers for each initial 

condition 0

ˆ
DX . Finally, if ,  n mD = = and 

                                                               ˆ ˆ
( )   as  V → →X X  (37) 

The solution ˆ
(0) X 0  of the closed loop system is globally asymptotically stable. 

Proof: Refer to [41]. 

Before presenting the main theorem, we define the tracking penalty function  

                                                            
1

ˆ ˆ
( ) ( )

i

n

tr

i

g g
=

X X   (38) 

                  
( ) ( )  if the agent  has access to the referenceˆ

( )
0 if not

i

T

i D i D
tr

i
g

 − −
= 


X X G X X
X   (39) 

where G  is a positive semi-definite weighting matrix with tunable elements 
idw

constructed by 

                                            

1 1 2 1

1 2 2 2

1 2

2

2

2

. .

. .

. .

n

n

n n n

d d d d d

d d d d d

d d d d d

w w w w w

w w w w w

w w w w w

 
 
 

=  
 
 
 

G  (40) 

and DX  is the reference trajectory along which the system is expected to follow. 

Combining this tracking penalty function with the formation cost function
1J  enables the 

system of agents to follow a specified desired trajectory consensually. Note that only one 

agent having access to the reference is sufficient to guarantee that the entire system follows 

the desired trajectory if the communication topology is connected. 
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In order to investigate the eigenvalues of G , the following lemma from exterior algebra is 

required. 

Lemma 2.2 [83, 84]: Let R  be a commutative ring and m  be a positive integer. 

The characteristic polynomial of any ( )m RG M can be written as: 

                                     1

1 1det( ) ( ) ... ( ) ( )m m

m m mt t c t c t c−

−− = + + + +I G G G G  (41) 

where ( ) ( 1) tr( ( ))k k

kc = − G G . ( )k G  is the kth exterior power of G  and ( )m RM is the set 

of all the linear mapping with rank m . Furthermore, ( )1 =G G  and ( ) 0k =G  for k r  

where r is the rank of G . 

Proof: Refer to [83, 84]. □ 

 According to Lemma 2.2, the characteristic polynomial of G  can be written as: 

                                                  
0

( ) ( 1) tr( ( ))
m

m k k k

k

P t t −

=

= − G G   (42) 

The matrix G is symmetric and its rank is 1r =   since each column is a product of any other 

column and a constant. Therefore ( ) 0  for any  2k k = G and since 1 =G G , (42) is 

reduced to:  

                                                         ( )
2

1

1

0
i

m
m m

d

i

t w t −

=

 
− = 
 
   (43) 

which implies that the set of eigenvalues contains ( 1)m−   zeros and ( )
2

1
i

m

d

i

w
=

 , therefore 

G  is positive semi-definite.  

Before providing the main results, the following two Lemmas are introduced. 
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Lemma 2.3 2
L  is positive semi-definite (P.S.D) and 2

1 1n n =L 1 0  if the graph is 

undirected and connected. 

Proof: Refer to [40].   □ 

Lemma 2.4 2

k k +L L is positive definite (P.D) and ( )2

1 1k k n n   + =L L 1 0 if the 

graph is undirected and connected and  

                                                                         2 0k i k ie e +   (44) 

where 
ie  is the ith eigenvalue of L . 

Proof: Since L  is the Laplacian matrix of an undirected and connected graph, there exist 

two matrices Q  and Λ  such that: 

                                                                              1−=L QΛQ  (45) 

where Q  is the matrix of eigenvectors of L  and Λ  is a diagonal matrix whose entries are 

the eigenvalues of L  . For 2
L  we can write: 

                                                                 2 1 1 2 1− − −= =L QΛQ QΛQ QΛ Q  (46) 

Using the same approach, 2

k k +L Lcan be written as:  

                                 

2 2 1 1 2 1

2

1 1

2

12 2

2

( )

0 0

0 0

0 0

k k k k k k

k k

k k

k n k n

e e

e e

e e

     

 

 

 

− − −

−

+ = + = +

 +
 

+ =
 
 

+  

L L QΛ Q QΛQ Q Λ Λ Q

Q Q
  (47) 

where 
ie  is the ith eigenvalue of L  . Since L  is the Laplacian matrix for a connected and 

undirected graph, it is P.S.D and 0ie   . Therefore 2

k K +L L is P.D if 2 0k i k ie e +  . 

In addition, 

                          ( )2 2

1 1 1 1 1 1( )k k n k n k n k n k n n          + = + = + =L L 1 L 1 L1 L L1 L1 0  (48) 
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 □ 

The main result of this paper is presented in the following theorem. 

Theorem 2.1 For gn  identical agents with the same controllable LTI dynamics (4), 

and connected and undirected communication topology, by choosing proper weights, the 

feedback control law 

                                                      * 1

2

( )

1
( )

2 c n

g
w

− 
= −


U KT X X

X
 (49) 

makes the system (5) achieve consensus and track the reference trajectory, while 

minimizing the cost functional (22). T is the transformation matrix given by (9). 

( ) 1 2 g

T

n n n nnX X X =
 

X  is the vector of the last states of the agents. K  in (49) is 

defined by 

                                                            ( )1

2 1 gn

−= − − T
K R B P K I  (50) 

where 
1K is defined in (19) and P  is the solution of the algebraic Riccati equation (ARE) 

that will be given in the proof. 

The cost function ˆ
( )h X  in 

3J  in Eq. (25) is constructed as: 

                                         22

( )

1ˆ ˆ ˆ ˆ
( ) ( ) ' ( )( )

ˆ4

T

c n

h g g
w


= − −


X X X A SP X

X
 (51) 

where 1

2

T−=S BR B and 

( )

ˆ
( )

ˆ
n

g



X

X
is the derivative of the tracking penalty function with 

respect to the last states of the agents. 
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Proof: According to the definition of the cost functional (22) and Lemma 2.1, 2

ˆ
( )T X,U

and 2

ˆ
( )f X,U  are defined as: 

                                                       2 1 2 2 2

ˆ ˆ ˆ ˆ
( ) ( )T h+T T
X,U = X R X + U R U X   (52) 

                                                  2 2 2

ˆ ˆ
( , ) = +f X U A X BU   (53) 

A Lyapunov function is chosen as: 

                                                            ˆ ˆ ˆ ˆ
( ) ( )V g= +T
X X PX X  (54) 

For ˆ
( )V X  to be a valid Lyapunov function, it should be continuously differentiable with 

respect to ˆ
X , which is obvious from the definition of ˆ

( )g X .  

The Hamiltonian function is constructed as 

           
( )( )

2 2 2

1 2 2 2 2 2

ˆ ˆ ˆ ˆ ˆ
( , , ' ( )) ( ) ' ( ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆ
( ) 2 ' ( )

T T

T T T T

H V T V

h g

= +

= + + +

X U X X,U X f X U

X R X + U R U X X P X A X + BU
 (55) 

Taking the derivate with respect to 
2U , the optimal control is determined as: 

                                      
2 2

2

1 1

2 2 2

ˆ ˆ0 2 2( ) '( ) 0

1ˆ ˆ ˆ
( ) '( )

2

T

T

H
g

g − −


=  + + =



 − −

T

* T

R U B PX B X
U

U = X = R B PX R B X

 (56) 

Next, all the conditions from (28) to (33) must be satisfied. Substituting 2

*
U  in the second 

term of the Hamiltonian function (55) yields: 

                         
2 2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
' ( ) ( ( )) ( 2 ) '( )

1ˆ ˆ ˆ ˆ
' ( )( ) ' ( ) '( )

2

T T T T

T T

V g

g g g

 = + − −

+ − −

X f X, X X A P PA PSP X X PS X

X A SP X X S X
 (57) 
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where 1

2

− T
S BR B . Note that the term 2

ˆ ˆ
(2 )T

X PA X  in (55) is a scalar and can be rewritten 

as 2 2

ˆ ˆ
( )T T

X A P + PA X in (57). The Hamiltonian function with the optimal control ˆ
( ) X

becomes 

           
2 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
( ( ) ' ( )) ( ) ' ( )( )

1ˆ ˆ ˆ
                                 + ( ) ' ( ) '( )

4

T T T T

T

H V g

h g g

 − + −

−

X, X , X = X A P + PA + R PSP X X A SP X

X X S X
 (58) 

In order to satisfy the condition (32), Eq. (58) should be zero, which requires that: 

                                                         
2 2 1

T + + −A P PA R PSP = 0   (59) 

 and 

                                       2

1ˆ ˆ ˆ ˆ ˆ
' ( )( ) ( ) ' ( ) '( ) 0

4

T Tg h g g− + − =X A SP X X X S X  (60) 

The importance of Eq. (60) is that it allows us to determine ˆ
( )h X and thus the cost function 

3J  .  

Eq. (59) is an algebraic Riccati equation (ARE). In order to solve the ARE, we need to 

construct 
1R  such that it is P.S.D and P is P.D.  Here we construct this matrix as follows: 

                          

2 2

1

2 2

2 12

2 2
1 3 23

2 2

( 1)

2

2

2

g g g g g g

g g g g g g

g g g g g g

g g g g g g
g g

n n n n n n

n n n n n n

n n n n n n

n n n n n n n n n
n n n n

w

w

w

w

  

  

  

   −
  

 
 

− 
 

= − 
 
 
 −
 

L 0 0 0

0 L P 0 0

R 0 0 L P 0

0 0 0 L P

 (61) 

where 
iw ’s are the tunable weights for the ith state and ( 1) ,   1i i i n−  P  are the entries above 

the main diagonal of the matrix P  (the solution of the ARE (59)). These terms are 

subtracted from the diagonal entries of 
1R  to guarantee that ARE becomes a linear function 

of the Laplacian matrix L . Expanding (59) leads to: 
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11 1( 1)

12 2( 1)11 12 1

1( 1) 2( 1) ( 1) 1 ( 1)

2 2

1

2 2

2 122

g g
g g g g g g

g g

g g

g g g g

g g g g

g g g g

n n nn n n n n n

n n nn

n n n n n n n n n

n n n n

n n n n

n n n n n

w

w

w

 −  

 −

− − −  −

 

 

 

  
  
  

+   
  
     

−
+

0 P P0 0 0

0 P PP P P

P P P 0 P P

L 0 0

0 L P 0

0 0

2

1 1 2 1

2

1 2 2

2

22 2
1 2( 1)

1

2

g gn n n n

n n n n nn

n nn n n nn

c

n nn n nn nnn n

w

  

−

 
 
 
 
 
 
 

=             −            −    

0

P P P P P

P P P P P

P P P P PL P

 (62) 

The system of algebraic equations (62) allows us to solve the ARE analytically. P  is 

determined by the following steps. 

1) The equations for the entries on the main diagonal are first solved: 

                            

2 2 2

1 12

2 2 2

( 1) ( 1) 2

1
,      1

1
2 2 ,      2

g g

g g

n n n

c

i i i i i in n n

c

w i
w

w i n
w



− − 


− = =



 + − − =  


L P 0

P L P P 0

 (63) 

and therefore: 

                                                       ,     1in i cw w i n=  P L  (64) 

2) The equations for each row in the system (62) are solved one by one. For example, for 

the first row we derive the following equation: 

                                               2

1 1 ( 1)    1 1i iw w i n+=   −P L   (65) 

Then all the row equations are solved in a similar way to obtain all the entries of P . 

Note that all the entries are obtained analytically without any numerical iteration.   

From the above solutions, it is seen that all the entries of P can be written as a linear 

combination of L  and 2
L  (i.e. k k +2

L L  where both 
k  and 

k  are functions of state and 
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control weighting parameters). Therefore, according to Lemma 4.4, one can always choose 

weighting parameters such that 
1R is P.S.D and P is P.D. 

Since P is P.D and G is P.S.D, ˆ ˆ ˆ
( ) 0,     ,   V D  X X X 0  and condition (29) is satisfied. 

The condition (33) can be shown to hold as follows: 

2 2 2 2 1 2 2

2 2 2 1 2 2

2 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
( ' ( )) ( ) (2 ' ( ))( )

ˆ ˆ ˆ ˆ ˆ ˆ
                          = ( ) (2 ' ( ))( )

ˆ ˆ
                             + ( )

          

T T T T

T T T T

T

H V h g

h g

= + + + + +

+ + + + +

−

T

T

X,U , X U R U X X R X X P X A X BU

U R U X X R X X P X A X BU

X A P + PA + R PSP X

2 2 2 2 2 2

2 2 2

2

ˆ ˆ ˆ ˆ ˆ ˆ
                = ( ) ' ( )( ) 2

1 ˆ ˆ ˆ ˆ
                          = ' ( ) '( ) ' ( )

4

ˆ ˆ ˆ ˆ
                           + (2 ' ( ))

                

T T T T

T T T

T T T

h g

g g g

g

+ + + + +

+ +

+ +

U R U X X A X BU X PBU X PSPX

U R U X S X X SPX

X PSPX X P X BU

2 2 2 2

1 ˆ ˆ ˆ ˆ ˆ ˆ
          = (2 ' ( )) (2 ' ( )) (2 ' ( ))

4

T T T T T T T Tg g g+ + + + +U R U X P X S X P X X P X BU

 (66) 

Since 1 1

2 2

1ˆ ˆ
'( )

2

T g − −= − −T
R B PX R B X from (56), we can write: 

                                   

1

2 2

2

2

ˆ ˆ
2 (2 ') 2 (2 ') '

' 2

' 2

T T

T T

g g V

V

V

 





−= − +  = − + −

 −
 

−

T

T

R B PX R B PX = B

B = R

B = R

 (67) 

Using (67), (66) becomes 

                                        

( ) ( )

2 2 2 2

1

2 2 2 2 2

1

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

1
' ' ( ')

4

1
' ( ) ' '

4

1
( 2 ) ( 2 ) '

4

( 2 )

ˆ ˆ
2 ( ) ( )

T T T

T T T T

T T T

T T T

T
T T T

V V V

V V V

V 

  

    

−

−− −

−

− − − 

T

T

T

U R U + S + U B

= U R U + BR B + U B

= U R U + R R R + U B

= U R U + R + U R

= U R U + R U R = U X R U X 0

 (68) 

Therefore, (68) verifies the condition (33), i.e. 2

ˆ ˆ
( ' ( )) 0H V T
X,U , X  
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Using (59) and (60), the condition (31) can be shown to hold as follows 

          1

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ' ( ) ( ( )) ( ) ( ' ( )) ( '( ))
2 2

T T TV h g g
 

− + + + + 
 

T X f X, X = X R X X X P X S PX X  (69) 

Since 1

ˆ ˆT
X R X  is P.S.D and 

1 1ˆ ˆ ˆ ˆ
( ' ( )) ( '( ))

2 2

T Tg g+ +X P X S PX X  is P.D., 

ˆ ˆ ˆ
' ( ) ( ( )) 0V  T

X f X, X if ˆ
( ) 0h X . From equation (60), ˆ

( )h X is derived as 

2

(1) (2)

1 2 (2) (3)

2

( ) ( ) (1) (2) ( 1)

( ) ( )

1ˆ ˆ ˆ ˆ ˆ
( ) ' ( ) '( ) ' ( )( )

4

ˆ ˆ

ˆ ˆ1 ˆ
( )

ˆ ˆ ˆ ˆ ˆ4

ˆ ˆ

T T

n

c c c cn n n

n n

h g g g

ww wg g g g
g

w w w w
−

= − −

   
   

         
 = + −    
           

   
      

X X S X X A SP X

X X

X X
X L L L

X X X X X

X X

 (70) 

where ( )

ˆ
kX  is the vector of the kth state of all the agents. Eq. (70) shows that one can always 

find proper weights such that ˆ
( ) 0h X . Specifically, for a given set of state weighting 

parameters (i.e. 
1 2, ,..., nw w w ) the control weight parameter can be chosen small enough such 

that the positive term 
2

( )

1 ˆ
( )

ˆ4 c n

g
w




X

X
 is always greater than the other terms that are sign-

indefinite. 

The conditions (28) and (30) are satisfied if ˆ
( ) 0g =X  and ˆ

'( )g =X 0  when ˆ
=X 0 . 

Note that after reaching consensus, when the agents go along a desired trajectory, we have: 

cs D=X X  , which indicates D=X X when ˆ
=X 0 . Therefore, according to the definition of 

ˆ
( )g X , ˆ

( ) 0V =X when ˆ
=X 0 , and the condition (28) holds. 

The second term in the optimal control (56) is calculated as 
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( )

( )

( ) ( )( )      if the agent  has access to the reference
ˆ

ˆ

0                                                              if not

0 0 1

0 0 0

       =

0 0 0

T

i D i D

n

n

ig

  − + − 
=     


 




 

X X G G X X
X

X

( )( )            if  the agent  has access to the reference

0                                                                      if not

g

T

i D

n n

i




 
  + − 





G G X X

 (71) 

It is obvious that when all the agents go along the desired trajectory, (71) is zero and the 

condition (30) holds.  

Now all the conditions (28)-(33) in Lemma 2.1 are satisfied and therefore, the control 

law ˆ
( ) X  is an optimal control to minimize (22). In the meanwhile, the closed-loop system 

(20) is asymptotically stable. Furthermore, it is evident that the Lyapunov function (54) 

satisfies ˆ
( )V →X  as ˆ

→X . Thus, the closed-loop system is globally asymptotically 

stable. 

The optimal control law for system (14) can be obtained from (21) as 

                         

* 1 1

2 1 2

1 1

2 0 1 1 2

1

2

1ˆ ˆ
( ) '( )

2

1ˆ ˆ
( [ ] ) '( )

2

1ˆ ˆ
'( )

2

T T

T

n ng

T

g

a a a g

g

− −

− −

−

−

= − − −

= − − − − −  −

= −

T

U R B P K X R B X

R B P I X R B X

KX R B X

 (72) 

where 

(1) (2) ( )

ˆ
'( )

ˆ ˆ ˆ

T

n

g g g
g

   
 =
    

X
X X X

 and ( ) 1 2 g

T

i i i inX X X =
 

X  ) . 
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Since 1

2 2

1
n

cw

− =R I  and  
1

0 0 0 1
g

T

nn
= B I , the second term of the controller (72) 

can be written as 

                                         1

2 2

( )

1 1ˆ ˆ
'( ) ( )

ˆ2 2

T

c n

g g
w

− 
=


R B X X

X
 (73) 

(72) is the optimal control for the system (14), which is equivalent to the system (20). The 

optimal cooperative control law can be written in a more compact form as 

                                               * 1

2

( )

1 ˆˆ ( )
ˆ2 c n

g
w

− 
−


U = KT X X

X
 (74) 

and K is calculated by (50). 

Applying the control (74) into Eq. (14) leads to 

                                          

( )

1

2

( )

1

2

( )

1 ˆˆ ˆ ˆ ( )
ˆ2

1 ˆˆ ˆ ( )
ˆ2

c n

c n

g
w

g
w

−

−

  = + −
  

  
 = + −  

 

X AX B KT X X
X

X A BKT X B X
X

 (75) 

Replacing X̂  with 
cs−X X  , we have 

               

( ) ( )( )1

2

( )

1 1

2

( )

1 ˆ
( )

ˆ2

1 ˆ
( )

ˆ2

cs cs

c n

cs cs cs

c n

g
w

g
w

−

− −

  
− = + − −  

 

  
 − = − + − −  

 

X X A BKT X X B X
X

X X AX AX BKT X BKT X B X
X

 (76) 

According to (6), cs cs=X AX  and 1

1gcs cs n n

−

 = =U KT X 0 . Thus, (76) is reduced to 

                                           1

2

( )

1 ˆ
( )

ˆ2 c n

g
w

−   
= + −  

 
X AX BKT X B X

X
 (77) 
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( )

ˆ
n

g

X
 is calculated in (71). Since 

DX  is known to the agent i that has access to the desired 

trajectory, 
( )( )

ˆ
( ) ( )

ˆ
nn

 
=


g X g X
XX

. Now the vector ( )i D−X X  can be converted to the 

original state. 

      
1

( )

0 0 1

0 0 0
( ) ( )    if the agent  has access to the reference

0 0 0 0

0                                                                   if not

g

T

i D

n

n n

ig
−



 
 
  + −  = 
  
 



G G T X X

X

 (78) 

Using (78), the optimal control law becomes (49) 

* 1

2

( )

1
( )

2 c n

g
w

− 
= −


U KT X X

X
 

and K  is defined by (50). □ 

Remark 2.1 In the conventional optimal control approach, the cost functional is 

given a priori and the optimal control law is derived by minimizing it. It can be seen that 

the approach described in Theorem 2.1 is an inverse optimal control approach. A Lyapunov 

function ˆ
( )V X is constructed first based on the stability conditions (28) and (29) and then 

the optimal control law ˆ
( ) X  is derived from the optimality condition 0

H
=

U
.  By 

satisfying the optimality condition (32), ˆ
( )h X in the cost functional 

3J   is constructed 

while satisfying the stability condition (31). In other word, for this approach, the cost 

function ˆ
( )h X is not specified a priori as the conventional optimal control design. It is 

constructed inversely from the stability and optimality conditions (28) to (33). The benefit 
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of this design is that the resulting control law is guaranteed to be both stabilizing and 

optimal. In addition, according to the Lemma 4.1, the minimum cost made by the derived 

control law ˆ
( ) X  is equal to the introduced Lyapunov function as shown in (35). 

 

2.4.2 Discussion on the distributed cooperative control law 

 
It is necessary to show that the optimal cooperative control law (49) is a distributive 

control law. To this end, we first investigate the first term of the optimal cooperative control 

*
U  in (49), which can be expanded as follows. 

11 12 1

11 12 1

21 22 2

2 21 22 21

1 2

1 2

0 1 1

1
g g g

g g g g g g g
g g g
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  
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−

  
   
    −    =   
  
 
   − − − −

  
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1 1 1
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




 
 

   
 = − − − − −    

   
 
 

    
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    
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c c c

n n n n n n nn nn n n

c c c

t a t a t a
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w w w

−

−

 
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 
 

     
 − − − − − − − −     
      
 

      
− − − − − − − −      

      

P I P I P I X

P I P I P I  (79) 

where ijt  are the entries of 1−
T . Note that B  is in the form of  0 0 0 1

gn I  and 

thus the product of 1

2

T−
R B P  in K only keeps the last column of P , i.e. 

inP , which is 

calculated by (64). Since 
inP ’s are always linear functions of the Laplacian matrix L as 

shown in Eq. (64), when they are multiplied by the state vector X in (79), the feedback 

information exchange to implement the optimal control occurs only between the agent and 
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its neighbors with whom it has the communication links defined by the Laplacian matrix 

L . The other terms consisting of 
ia ’s (characteristic equation coefficients of gA ) and 

identity matrices in (79) relate to the agent’s own state. The second term of *
U in (49) only 

relates to the state of the agent that has access to the reference. Therefore, from the above 

discussions, the whole optimal cooperative control law is distributed since each agent’s 

control law only needs local information from its own and its communicating neighbors.   

Remark 2.2: According to (79), only the last column of P calculated by (64) is 

required in order to calculate the optimal control law. 

 

2.4.3 Defining the proper desired trajectory 

When the system is controllable, it is possible to reach any state in finite time but we 

still need to define a proper desired trajectory such that the agents are able to follow after 

reaching consensus. Since 
DX  (the desired trajectory) should satisfy the system dynamics, 

we can write: 

                                              D g D g D g D D g D= +  = −X A X B U B U X A X  (80) 

Define two matrices O and N as follows 

                                                           

( 1)

0 1 0 0

0 0 1 0

0 0 0 1
n n− 

 
 
 =
 
 
 

O  (81) 

                                                             
1

1 0 0
n

=N   (82) 

Now by using (80), (81) and (82) the approach below is followed in order to obtain the 

system of ordinary differential equations for finding the desired trajectory: 
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( )

( ) ( )

( ) ( )

g D g D

g D g D

g g D g g D

g g D D g g D D

g g D g D g g D g D

g g g g D g g D

− = −

 − = −

 − = −

 − = −

 − = −

 − = −

B U B U

OB U OB U

NB OB U OB NB U

NB O A X X OB N A X X

NB OA X NB OX OB NA X OB NX

NB OA OB NA X NB O OB N X

 (83) 

Note that gNB   is a scalar (the first entry of the column vector gB ) and therefore it can be 

put anywhere in the equation. 

Expanding the two sides of the equation (83) leads to: 

                

2 1 1 21 2 11 1 22 2 12 1 2 2 1

3 1 1 31 3 11 1 32 3 12 1 3 3 1

1 1 1 11 1 1 12 1 1

0 0

0 0

0 0

n n

n n

D D

n n n n n nn n n

b b b a b a b a b a b a b a

b b b a b a b a b a b a b a

b b b a b a b a b a b a b a

− − − −   
   
− − − −
   =
   
   
− − − −   

X X  (84) 

where jb ’s and ija ’s are the entries of the gB  and gA   respectively. There are ( )1n −  

differential equations with n  unknowns, so the system (84) has infinitely many solutions. 

Once one of the states is set, the rest can be calculated by solving ( )1n −  equations to obtain 

a unique solution as the desired trajectory. 

 

2.4.4 The algorithm for finding the optimal cooperative control  

 

The approach to find the optimal cooperative control *
U  for a system of gn  agents 

with the general LTI dynamics *= +X AX BU  to achieve consensus and follow a desired 

trajectory can be summarized in the following algorithm: 

1) Use (10) to compute the controllability matrix M . 
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2) Check the rank of M . If M is not full rank, the system is not controllable and the 

approach cannot be applied. 

3) Find the characteristic equation of the state matrix gA . 

4) Construct the flipped Toeplitz matrix W by (11). 

5) Compute the transformation matrix 
gn= T MW I   and its inverse 1−

T . 

6) Construct the Laplacian matrix L according to the network topology and 
1R  as 

defined in (61). 

7) Using
1R  , solve the ARE (59) to find the analytical solution of P  given by (64). 

Note that only the last column of P is used in the optimal control as discussed in 

Remark 4.2. 

8) Substitute the calculated ( 1)2 i i−− P  into the diagonal entries of 
1R (constructed in step 

6) and choose proper weights  1 2, , , nw w w  such that 
1R becomes P.S.D. 

9) Choose a proper weight 
cw for the control and make the P.D. matrix 2

2 gc nw= R I . 

10) Pick an appropriate desired trajectory 
DX  by solving the system of differential 

equations (84). 

11) For any agent that has access to the reference vector, the tracking term of the 

controller is: 

                                               1

0 0 1

0 0 0
( ) ( )

0 0 0
g

T

i D

n n

−



 
 
  + −
 
 
 

G G T X X  (85) 

For the rest of the agents, this term will be zero. 

12) The optimal control is designed as: 
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            * 1 1

2 0 1 1 2

( )

1
( )( ) ( )

2g g

T

n n n

c n

a a a g
w

− −

−


= − − − − −   −


U R B P I T I X X

X
 (86) 

The second term is what has been calculated in step 11). Choose 
idw ’ s such that the system 

has the best response. 

 

 

2.5 Illustrative examples 

 
In this section, the performance of the optimal cooperative control design is 

demonstrated through two examples. In the first example a very simple system is 

considered in order to illustrate how the algorithm works mathematically. In example 2, 

the algorithm is applied for solving a practical problem of synchronizing the attitude of a 

group of satellites.  

 

Example 2.1 

For the first example, we intentionally select a simple two-dimensional problem with 

only two agents in order to more clearly show the trajectories and consensus results in a 

phase plane. We assume that the system consists of two identical agents with the same 

dynamics of 

i g i g i= +X A X B U  

where                                              
1 2 1

  ,  
2 3 1

g g

−   
= =   

−   
A B  (87) 

The consensus problem is to make the system reach a specified point at the same time and 

stop there. They can communicate via the undirected link shown in Figure 3.  
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Figure 3. The two agents in example 2.1 

The corresponding Laplacian matrix is: 

                                                                     
1 1

1 1

− 
=  

− 
L  (88) 

In order to obtain a point where the system can reach, the system (84) is solved. It is 

assumed that only the first agent has access to the desired trajectory, which is denoted by 

 1 2

T

D x x=X  . For the system described in this example, the system is reduced to a simple 

ODE as follows: 

                                        

   

   

1 1

2 1 1 21 2 11 1 22 2 12

2 2

1 1

2 2

1 2 1 2

1 1 (2 1) ( 3 2)

5

x x
b b b a b a b a b a

x x

x x

x x

x x x x

   
− = − −   

   

   
 − − = − − −   

   

 − − = −

 (89) 

Since for this example, the two agents are required to reach a fixed point and stop there, 

both derivatives should be zero when consensus is reached. In other words,
1 2 0x x= = . 

Therefore, the desired point should lie on the line
2 15 0 x x− = . 

The optimal control law can be designed analytically by following the algorithm described 

in Section 2.4. The results are shown in Figures 4(a)-(d). The final point is set to be [5, 1] 

and the weights have been selected as: 
1 21 21 , 2 , 0.5 , 1 , 0.5c d dw w w w w= = = = = .  

The initial conditions are  1(0) 1,1x = −   and  2(0) 0,1x =   for the first and second agents, 

respectively. 



36 
 

Figures 4. (a), (b) show the phase plane trajectories for the two agents. It can be seen that 

there will always be a stable focus lying on the line of 
2 10.2x x=  ( [5, 1] for this example). 

Figures 4. (c), (d) show the results for the first and second states of the two agents 

respectively. It can be seen that the first states finally reach the value of 5 and the second 

states reach 1 in finite time. 

 

Figure 4 (a). Phase plane for the first agent 
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Figure 4 (b). Phase plane for the second agent 

  

Figure 4 (c). The first states of the agents 
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Figure 4 (d). The second states of the agents 

    

Example 2.2 Satellite attitude control: 

  In satellite attitude control, appropriate orientation is an important problem. A 

sketch of the satellite control system and the model are shown in Figure 5 (taken from [85, 

86]). The system can be considered as two separate masses (a large mass called “the body” 

and one “attached mass”) which are connected to each other. Therefore it can be modeled 

by a simple mass-spring-damper system in which “ k ” is the spring constant and “ d ” is 

the viscous damping constant. 
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Figure 5. The satellite control system in example 2.2 

The equations of motion are obtained as:  

                                                       
( ) ( )

( ) ( )

1 1 1 2 1 2

2 2 2 1 2 1 0

CJ d k T

J d k

    

    

 + − + − =


+ − + − =

 (90) 

Where 
CT   is the control torque, 

1J   and 
2J   are moments of inertia. The system state matrix 

and input state matrix are constructed based on these equations of motion as below: 

                                          2 2 2 2

1

1 1 1 1

0 1 0 0
0

0

    ,    0
0 0 0 1

1

k d k d

J J J J

k d k d
J

J J J J

 
  
  − −
  
 = = 
  
  
 − −   

 

A B  (91) 

We choose 
1 2 1 , 0.09 , 0.022J J k d= = = =  and the state vector is 2 2 1 1( , , , )T

i    =X . 

Satellite 1 has access to the reference trajectory. Using the system of differential equations 

(115) lead to the obvious result that 1 2 2 2   or  x x  = =  .Therefore the desired trajectory 

could be defined easily. We assume that the angular velocities are constant and equal to 

0.35. Therefore, the angles are supposed to increase along the ramp 0.35t =  . 



40 
 

The state and control weightings parameters have been chosen as: 

1 2 3 41 , 3 , 3 , 1w w w w= = = =  and 
1

5
cw =  . The tunable weights for the tracking penalty 

function are 
1 2 3 4

10 , 500 , 500 , 5d d d dw w w w= = = =  The initial condition of each state of  
2  

, 
2  , 

1  , 
1  are set to be 

     6 5 8 2 7  rad , 0 1 0.5 1 0.5  rad/s , 8 7 7 6 7.5 rad
T T T

− −  and 

 0.6 1.5 1 0.8 1.5  rad/s
T

−  respectively. 

The topology is assumed as shown in Figure 4. The graph is obviously connected and 

undirected. 

 

Figure 6. The topology of the satellites 

The corresponding Laplacian matrix is: 

                                                       

2 0 0 1 1

0 1 0 1 0

0 0 1 0 1

1 1 0 2 0

1 0 1 0 2

− − 
 

−
 
 = −
 
− − 
 − − 

L   (92) 

Figures 7(a)-(e) show the results. It can be seen that the rotational angles converge and 

increase along the ramp of 0.35t =  and the angular rates converge to the constant value 
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of 0.35 rad/s. It is worth noting that the responses of the satellite 1 are very smooth and do 

not have oscillations because it has access to the reference trajectory. 

 

Figure 7 (a). The rotational angles of the attached masses (the first states) 
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Figure 7(b). The angular rates of the attached masses (the second states) 

 

Figure 7(c). The rotational angles of the bodies (the third states) 
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Figure 7(d). The angular rates of the bodies (the fourth states) 
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Figure 7(e). The control torque 
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3. Multi-Input Systems 

 

3.1 Overview 

 
In this chapter the algorithm described in chapter 2 will be generalized to embrace 

general Linear Time-Invariant multi-input systems. When the input matrix is no longer a 

column vector, the most important challenge would be the decision on choosing the proper 

transformation matrix. We will develop three new theorems which enable us to define the 

most appropriate transformation matrix and the important properties of it are derived. The 

Algebraic Riccati Equation (ARE) can no longer be solved analytically but we will see that 

the discussion on the distributed cooperative control law (developed in section 2.4.2) is 

still valid. It will be seen that the proper design strategy of the desired trajectory must also 

be redefined according to the new input matrix.  

Problem statement and Formulation is described in section 3.2. Main results are provided 

in 3.3. In this section optimal control solution is derived and some issues regarding the 

distributed cooperative control law are discussed. Also, the approach for designing the 

proper desired trajectory is explained in this section. Finally, the application of the defined 

algorithm is illustrated through two examples in section 3.4. 

 

3.2 Problem statement and formulation 

 
When the system is a multi-input one, B  is no longer a column vector (i.e. 1m   and 

( )
g gg ij n m

b


=  = n nB B I I ) . Regarding to (9), any columns of the input matrix could be 
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used to obtain a new transformation matrix. The converted state matrix, A  always remains 

unchanged but B  will be different by applying different transformation matrices. The 

challenge of constructing the best transformation matrix can be elucidated by using three 

following theorems: 

Theorem 3.1 Let 
jB s 1,2,...,j m=  be the “m” columns of the input matrix 

gB  for 

each agent and jT s be the associated transformation matrices (i.e.

2 1 ,       1n

j j j g j g j g j j m− = =   T M W B A B A B A B W ) and W is constructed as 

(11). The transformation matrix 
1

g

m

t j n

j=

 
=  
 
T T I  converts the system matrix, A , into 

canonical form (15) (i.e. 1

t t

− =T AT A ). 

 

Proof: For any jT  , we have: 

1

j j

− =T AT A  

which means: 

1 1 1 1

1 1 2 2 ...j j m m

− − − −= = = = =A T AT T AT T AT T AT  

Applying the suggested transformation matrix,
1

m

t j

j=

=T T  we have: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 1

1 2 1 2

1 1

1 2 1 1 1 2

1 1 1

1 2 1 1 1 2 1 1

... ...

                              ... ...

                              ... ...

                           

j j m m

m m

m m

− −

− −

− − −

= + + + + + +

= + + + + + +

= + + + + + +

 T A T T T T A T T T

T T T T AT T T T

T T T T A T AT T T AT T

( ) ( )

( ) ( )

( ) ( )

1 1 1

1 2 1 2 2 2

1

1 2 1 2

1

1 2 1 2

   ... ...

                              ... ...

                              ... ...

m m m m

m m

m m

− − −

−

−

= + + + + + +

= + + + + + +

= + + + + + + =

T T T T A T AT T T AT T

T T T T A T A T A

T T T T T T A A

 



47 
 

Theorem 3.1 shows that the sum of transformation matrices, made by the columns of 

gB , is also a transformation matrix.  

The following two theorems show useful properties of the converted input matrix of each 

agents B  when the transformation matrix 
1

m

j

j=

=T T is applied. 

Theorem 3.2 Let 
jM  be the controllability matrix associated with the “j”th column 

of gB  (i.e. 2 1n

j j g j g j g j

− =  M B A B A B A B where jB  is the “j”th column of gB  ). 

Using  
1

m

t j

j=

=M M  as the transformation matrix, the converted input matrix “ gB ” has the 

following property: 

 
1

1

1 0 0 0
m

T

j n
j


=

=B  

In other words, the sum of columns of the converted matrix is always  
1

1 0 0 0
T

n
.  

 

Proof:   

 

1

1

1 2 1 2 1 2

1 1 1 1

 

    

m

g t g g t g j g

j

m m m m

m j m j j j m

j j j j

−

=

= = = =

 
=  = =  

 

   
  = =    

   



   

B M B B M B M B

B B B M B B B M B M B M B

 

Which means: 

( )1 2 1 2

1 1 1 1

m m m m

m j m j j j

j j j j= = = =

 
+ + + = + + +  =  

 
   B B B M B B B B M B  

but 2 1

1 1 1 1 1

m m m m m
n

j j g j g j g j

j j j j j

−

= = = = =

 
=  
 

    M B A B A B A B , therefore: 
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2 1

1 1 1 1 1 1

m m m m m m
n

j j g j g j g j j

j j j j j j

−

= = = = = =

  
=   
  

     B B A B A B A B B  

and this yields: 

 
1

1

1 0 0
m

T

j n
j


=

=B  

Theorem 3.3 Let jT s be the transformation matrices associated with the columns of 

the input matrix of each agent, 
jB s (i.e. 

j j=T M W and 
jM is as defined in Theorem 3.2 

and W is flipped Toeplitz matrix (11)). Using 
1

m

t j

j=

=T T  as the transformation matrix, the 

converted input matrix gB  has the following property: 

 
1

1

0 0 1
m

T

j n
j


=

=B  

In other words, the sum of columns of the converted input matrix is always

 
1

0 0 1
T

n
. 

 

Proof:  

 

1

1

1 2 1 2 1 2

1 1 1 1

m

g t g g t g j g

j

m m m m

m j m j j j m

j j j j

−

=

= = = =

 
=  = =  

 

   
  = =    

   



   

B T B B T B T B

B B B T B B B T B T B T B

 

which means: 

( )1 2 1 2

1 1 1 1

m m m m

m j m j j j

j j j j= = = =

 
+ + + = + + +  =  

 
   B B B T B B B B T B  

but 2 1

1 1 1 1 1

m m m m m
n

j j g j g j g j

j j j j j

−

= = = = =

 
=  
 

    T B A B A B A B W , therefore: 
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2 1

2

1 1 1 1 1 1

m m m m m m
n

j j g j g j j j

j j j j j j

−

= = = = = =

   
=   
   

     B B A B A B A B W B  

According to the theorem 3.2 we have: 

 

1 2 1

2 3

1 1

1

1 1

1
1

1 1 1

0 1 0 0

0 0

1 0 0

0 1 0 0 0 0

0 0 1

n

m m

j j

j j

n

n n n n

m
T

j n
j

a a a

a a

a

−

= =

−

  


=

     
     
     
     =  =
     
     
          

 =

 



W B B

B

 

Therefore, the appropriate transformation matrix for a multi-input system is defined as: 

                                                                                  
1

g

m

t j n

j=

 
=  
 
T T I  (93) 

Similar to single-input systems, the state and final consensus vectors are converted as: 

                                                                                        
t=X T X  (94.a) 

                                                                                       
cs t cs=X T X   (94.b) 

By subtracting (94-b) from (94-a) the equation for converting the error state vector is 

derived: 

                                                               ( ) ˆˆ
t t− − cs csX X = T X X X = T X  (95) 

Using this transformation equation, the system is converted to: 

                                                                               ˆ ˆ
X = AX + BU  (96) 

where A  is the converted state matrix in form (15) and B  , the converted input matrix, 

has the property that the sum of all its columns is  
1

0 0 1
g

T

nn
 1  where 

gn1 is a 

column vector of  gn  ones. 
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We rewrite the converted system (96) as: 

                                                              ( )2 1

ˆ ˆ
X = A + BK X + BU  (97) 

where 
2 1+ =A BK A . For multi-input systems, 

1K  is a 
g gm n n n   matrix and is 

constructed as follows: 

                                                     

0 1 1

0 1 1

1

0 1 1

g

n

n

n

n m n

a a a

a a a

a a a

−

−

− 

− − − 
 
− − −
 = 
 
 
− − − 

K I  (98) 

Now the system (97) can be written as: 

                                                                  2 2

ˆ ˆ
X = A X + BU  (99) 

where 

                                               
2 1 2

0 1 0 0

0 0 1 0
ˆ

,     

0 0 0 1

0 0 0 0

gn

n n

 
 
 
 = 
 
 
  

U = K X + U A I  (100) 

The problems is to find an input control to make (99) asymptotically stable.  

Problem formulation is the same as what was described in section 2.3. All the definitions 

are valid for multi-input systems. The only difference is the size of the matrix
2R , which is 

defined as: 

                                                                                  2

2 gc m nw =R I  (101) 

 

3.3 Main results 
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3.3.1 Optimal control solution 

 
Lemma 1 is still used for obtaining the main results. All the conditions from (28) to 

(33) should be satisfied for the multi-input systems too. 

Tracking penalty function and its weighting matrix are defined the same as (38)-(40). 

Theorem 3.4 For a system of gn  identical agents each with a dynamics of (4), the 

following control law is an optimal control, which makes the system achieve consensus 

and follow a proper desired trajectory. 

                                            ( )1 1

2 1 2

1
( )

2

T T

t

c

g
w

− − 
= − − −


U R B P K T X B X

X
 (102) 

where 
2R  is the control weighting matrix (102), 

1K is defined as (98), 
tT  is the 

transformation matrix and is defined as (93) and ( )g



X

X
is the derivative of the tracking 

penalty function with respect to the state vector X . The cost function ˆ
( )h X  is calculated 

as: 

                                             2

1ˆ ˆ ˆ ˆ
( ) ' ( ) '( ) ' ( )

4

T T Th g g g= − −X X BB X A SP X  (103) 

where 1

2

T−=S BR B and ˆ ˆ
'( ) ( )

ˆ
g


=


X g X
X

 is the derivative of the tracking penalty function 

with respect to the state vector ˆ
X . 

Proof:  For the converted system (99), ˆ
( , )T X U  and ˆ

( , )f X U  can be defined according to 

the lemma 1 as: 

                                                     1 2 2 2

ˆ ˆ ˆ ˆ
( ) ( )T h+T T
X,U = X R X + U R U X  (104) 

                                                                2 2

ˆ ˆ
( )f X,U = A X + BU  (105) 
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Similar to what we did for single-input systems, a proper Lyapanov function is defined as: 

                                                               ˆ ˆ ˆ ˆ
( ) ( )V g= +T
X X PX X   (106) 

 Again, (106) is a valid Lyapanov function since it is continuously differentiable with 

respect to ˆ
X  (regarding to the definition of G ). On the other hand, 

ˆ ˆ ˆ
( ) 0,   and V   X X D X 0 as long as both P  and G  are Positive Semi Definite (P.S.D). 

The proof is basically the same as it is for theorem 4.1. The control input for the system 

(96) is written as: 

                                              

1 1

2 2 2 1

1 1

2 1 2

1

2 1 2

1ˆ ˆ ˆ
'( )

2

1ˆ ˆ
( ) '( )

2

1ˆ ˆ
( ) ( )

ˆ2

T

T

T

cw

− −

− −

−

= − − =

 = − − −


= − − −



T

T

T

U R B PX R B g X K X + U

U R B P K X R B g X

U R B P K X B g X
X

 (107) 

and 
1K  is constructed as (98). Similarly, the control input (107) must be rewritten in terms 

of the original system. Representing the terms in the parenthesis with K we can write: 

                                                      1

2

1 ˆˆ ˆ ( )
ˆ2

T

t

cw

− 
−


U = KX = KT X B g X

X
 (108) 

 Applying (108) into (8) we have: 

                                                 

( )

1

2

1

2

1 ˆˆ ˆ ˆ ( )
ˆ2

1 ˆˆ ˆ ( )
ˆ2

T

t

c

T

t

c

w

w

−

−

 
= + − 

 

  
 = + −  

 

X AX B KT X B g X
X

X A BKT X BB g X
X

 (109) 

and since ˆ
cs= −X X X , (109) can be expanded as: 

              

( ) ( )( )1

2

1 1

2

1 ˆ
( )

ˆ2

1 ˆ
( )

ˆ2

T

cs t cs

c

T

cs cs t t cs

c

w

w

−

− −

  
− = + − −  

 

  
 − = − + − −  

 

X X A BKT X X BB g X
X

X X AX AX BKT X BKT X BB g X
X

 (110) 
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But when the consensus is achieved, the control input approaches to zero which means: 

1

1gcs t cs m n

−

 = =U BKT X 0 This reduces (110) to: 

                                               1

2

1 ˆ
( )

ˆ2

T

t

cw

−   
= + −  

 
X AX BKT X BB g X

X
 (111) 

The second term must also be conveyed in terms of the original system. Similar to the 

single-input systems, 
DX  is only available to agent “i” (the agent which has access to the 

desired trajectory), therefore ˆ
( ) ( )

ˆ

 
=


g X g X
XX

. This term is expanded as below: 

( ) ( )( )      if the agent "i" has access to the reference
ˆ

ˆ
0                                                              if not

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

       =
0 0 0

T

i D i Dg
 

− + −  
=   

 


X X G G X X
X

X

( )( )            if  the agent "i" has access to the reference

0 0 1

0 0 0

0 0 0

0                                                             

g

T

i D

n n n 

 
 
 
 
 
 
 
 
 
  + −
 
 
 
 
 
 
 
 
 
  

G G X X

         if not

























 (112) 

 and finally, by converting i D−X X  back to the original state vectors, the term for tracking 

penalty function is rewritten as: 
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1

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

( ) ( )            if  the agent "i" has access to the reference
=

0 0 0

0 0 1

0 0 0

0 0 0

0                    

g

T

t i D

n n n

g
−

 

 
 
 
 
 
 
 
 
 
  + −  
 
 
 
 
 
 
 
 
  

G G T X X

X

                                                  if not

























(113) 

Now the control law can be written in terms of the original system. 

                                                          1

2

1
( )

2

T

t

c

g
w

− 
= −


U KT X B X

X
 (114) 

Since the system dynamics is a multi-input one and is in general form, there is no direct 

approach to construct the matrix 
1R  such that the Algebraic Riccati Equation (ARE) 

becomes a linear equation. The only approach is applying numerical methods. In this study, 

we used the methods described in [87]. 

1R  should be constructed such that it is Positive Semi-Definite (P.S.D). A good choice can 

be as below: 

                                                       

2 2

1

2 2

2

1

2 2

g g

n n n n

n n n n

n n n n n n n n n

w

w

w

 

 

    

 
 
 =
 
 
  

L 0 0

0 L 0
R

0 0 L

 (115) 
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where 
iw is the tunable weight for the “i”th state and L  is the Laplacian matrix. 

1R  is P.S.D 

according to the lemma 2.3. 

 

3.3.2 Discussion on the distributed cooperative control 

 
Similar to the discussion for the single-input systems, 

1K in (102) is only a constant 

gain and therefore the terms in the parenthesis ( )1

2 1

T−− −R B P K is a linear function of the 

Laplacian matrix. For investigating the effect of 1

t

−
T we expand the first term of (114) for 

a special case when 2gn m n= = = . According to the theorem 5, in a general form the two 

matrices of B  and 
1K  can be parametrically represented as below: 

                                                                     1 1

2

2 21

b b

b b

− 
=  

− 
B I  (116) 

now the first term is expanded as: 

                                                                     0 1

1 2

0 1

a a

a a

− − 
=  

− − 
K I  (117) 

1 1

2 1

1 1 11 12 0 1 11 2 12 2

4 2 22

2 2 21 22 0 1 21 2 22 2

1 11 2 21 0 2 11 1 12 2 22 1 2 21 1 11 2 21

2

( )

1

1

( ) ( ) (1

T

t

c

c

b b a a t t

b b a a t tw

b b a t b b a t b b

w

− −

= − −

− − −−
=  − 

− − −

+ + + + + +−
=

            
           
            

U R B P K T X

P P I I
I I I X

P P I I

P P I P P I P P
0 2 12 1 12 2 22 1 2 22

1 11 2 21 0 2 11 1 12 2 22 1 2 21 1 11 2 21 0 2 21 1 12 2 22 1 2 22

) ( )

( (1 ) ) ( (1 ) ) ( (1 ) ) ( (1 ) )

a t b b a t

b b a t b b a t b b a t b b a t

+ + + +

− + − + + − + − + − + − + + − + − +

 
 
 

I P P I
X

P P I P P I P P I P P I

 (118) 

where ijt  s are the entries of 1

t

−
T . Since any entry in P  is a linear function of the Laplacian 

matrix, the terms containing its entries guarantee that information exchange occurs only 

among the neighbors of each agent. The other term of characteristic equation coefficients 

and identity matrices represents the state of the agent itself. Therefore the two terms of 
1K  
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and 1

t

−
T  do not affect the communication topology since the control law only requires local 

information gathered from neighbors of each agent. 

 

3.3.3 Defining the proper desired trajectory 

 
It was said that the control input approaches to zero when consensus is achieved (i.e.  

. 1gcs m n =U 0 ). According to this fact, an appropriate desired trajectory could be designed 

along which our system is desired to follow. When all the inputs become zero it can be 

assumed that the input vector is a scalar. In other words, regardless of how many inputs the 

system has, when the agents achieve consensus and follow a desired trajectory they have 

no longer any inputs. Without loss of generality we consider that all the inputs become a 

constant of u  (we know that 0u = ) and the dynamics of each agent can be rewritten as: 

                                                 
1

m

i g i g i g i j i

j

u
=

 
= + = +  

 
X A X B U A X B  (119) 

where 
jB s 1,2,...,j m=  are the “m” columns of the input matrix 

gB . Equation (119) means 

that the system can be seen as a single-input one upon achieving consensus. The original 

multi input system will be equivalent to a single-input system for which the input matrix is 

the sum of the columns of the original one when the agents achieve consensus. Let us call 

1

m

j

j=

B  as 
2B . 

The problem is to find an appropriate desired trajectory for a single-input system with a 

dynamics of 2i g i iu= +X A X B  along which the system could follow. The two matrices N  

and O  are introduced similar to those for single-input systems. 
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                                                      
1

1 0 0
n

=N  (120) 

                                                  

( 1)

0 1 0 0

0 0 1 0

0 0 0 1
n n− 

 
 
 =
 
 
 

O  (121) 

The desired trajectory 
DX  must satisfy the system therefore: 

                                     2 2D g D D D D g D= +  = −X A X B U B U X A X  (122) 

We start with the left hand side of the equation. 

                               

2 2

2 2

2 2 2 2

2 2

2 2 2 2

2 2 2 2

( )

( ) ( )

( ) ( )

D D

D D

D D

g D D g D D

g D D g D D

g g D

− = −

 − = −

 − = −

 − = −

 − = −

 − = −

B U B U

OB U OB U

NB OB U OB NB U

NB O A X X OB N A X X

NB OA X NB OX OB NA X OB NX

NB OA OB NA X NB O OB N X

 (123) 

Since 
2NB is a scalar, it could be placed anywhere in the equation. Expanding the two sides 

of (123) we get: 

 

           

2 1 1 21 2 11 1 22 2 12 1 2 2 1

3 1 1 31 3 11 1 32 3 12 1 3 3 1

1 1 1 11 1 1 12 1 1

0 0

0 0

0 0

n n

n n

D D

n n n n n nn n n

b b b a b a b a b a b a b a

b b b a b a b a b a b a b a

b b b a b a b a b a b a b a

   − − − −
   
− − − −   =
   
   
− − − −      

X X  (124) 

where ib s 1 i n   are the entries of the column vector 
2B . The system of differential 

equations above has infinitely many solutions since it has 1n−  differential equations with 

n  unknowns. For selecting a proper desired trajectory we need to set at least one of the 

states. Once a state is set, the other states can be determined by solving the system of “n-

1” equations with “n-1” unknowns. 
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3.4 Illustrative examples 

Now application of the algorithm is shown through two examples. Like the examples 

in chapter 2, the first example is pure mathematical and has been designed to show how 

the algorithm works. In the second example, we implement the algorithm in order to 

synchronize the lateral motions of a group of aircrafts.  

 

Example 3.1:  

Suppose that we have two identical agents each with a dynamic equation of: 

                                                               i g i g i= +X A X B U  (125) 

where 

                                                         
1 2 3 2

,     
1 1 4 3

g g

   
= =   

−   
A B  (126) 

The two agents communicate with each other and the corresponding graph is as shown in 

Figure 8. 

 

Figure 8. The graph associated with the two agents in Example 3.1 

 

According to the graph, it is obvious that the Laplacian matrix has the form of: 

 

                                                                   
1 1

1 1

− 
=  

− 
L  (127) 
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For finding the appropriate desired trajectory, we first make the equation (119) by adding 

the columns of the input matrix gB . The new equation will be: 

                              

2

1

1 2 5

1 1 7

m

i g i g i g i j i g i i

j

i i i

u u

u

=

 
= + = + = + 

 

   
 = +   

−   

X A X B U A X B A X B

X X

 (128) 

 

now the system (124) should be solved to determine the desired trajectory. In this particular 

example, the system is reduced to two simple differential equations as below: 

                                       

                                    

1 1

2 1 1 21 2 11 1 22 2 12

2 2

1 1

2 2

1 2 1 2

7 5 (5 7) ( 5 14)

7 5 2 19

x x
b b b a b a b a b a

x x

x x

x x

x x x x

   
   − − = − −      

   

   
 − − = − − −   

   

 − − = − −

 (129) 

 

where ib s are the entries for 2B . Suppose that the system is desired to reach a point. That 

means the terms on the left side of the equation (129) are all zeros and therefore any point 

of the line 
1 22 19 0x x− − = or 

2 1(2 /19)x x= −  can be assigned for the system to reach. We 

pick the point (19, 2)− . The results are shown in Figures. 7 (a)-(d). The weighting 

parameters have been selected to be
1 21 25,  2,  0.5,  2,  0.6c d dw w w w w= = = = = . Agent 1 

has access to the reference desired trajectory and the initial conditions of the two agents 

have been set to
1 2(0) (10,10),  (0) (0,6)X X= = . Figures. 7 (a) and (b) show the phase plane 

of the agents. There is always a stable focus, which exactly lies on the line 
2 1

2

19
X X= −  . 
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In this example the focus lies exactly on the point (19, 2)− . The states have been shown in 

Figures 9 (c) and (d). It is seen that the agent 2 will follow the first one and both reach the 

point (19, 2)− at the end. 

 

Figure 9 (a). Phase plane for the first agent 
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Figure 9 (b). Phase plane for the second agent 

 

Figure 9 (c). The first states of the agents 
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Figure 9 (d). The second states of the agents 

 

 

 

 

Example 3.2. Lateral motion of a group of X-29A 

 

As an engineering application, we borrow an example from [36] and [37]. A group 

of four identical Grumman X-29A aircrafts is needed to reach consensus. The LTI 

dynamics of each agent can be described as below: 

 

                                                           29 29X A i X A i− −= +X A X B U  (130) 
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where the two matrices of state and input are: 

 

                               

29

29

2.59 0.997 16.55 0

0.1023 0.0679 6.779 0

0.0603 0.9928 0.1645 0.04413

1 0.07168 0 0

1.347 0.2365

0.09194 0.07056

0.0006141 0.0006866

0 0

X A

X A

−

−

− − 
 
− −
 =
 − − −
 
 

 
 

−
 =
 −
 
 

A

B

 (131) 

 

The state of each agent is defined as  
T

i i i i ip r  =X  where ,  ,   and p r    are the 

roll rate, yaw rate, sideslip angle and bank angle respectively. These parameters are shown 

in Figure 10. 

 

 

Figure 10. Grumman X-29A aircraft 
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Two different communication topologies of the agents will be considered. For both 

topologies the parameters have been chosen as 

1 2 3 41 2 3 41,  2,  3,  2,  0.5,  1,  20,  10 and 5c d d d dw w w w w w w w w= = = = = = = = = . The 

vector of initial condition has been set to be: 

[0.5 1 1.5 1 0.14 0.5 0.24 0.5 0.2 0.6 0.3 0.2 0.1 0.2 0.9 0.5]T− − − − − − − − . In 

order to design an appropriate desired trajectory, the equation (119) is made first and then 

the system of differential equations (124) should be constructed and solved. In this 

example, it is supposed that the objective is to reach periodic functions. For keeping the 

amplitude reasonable, they are multiplied by constants between 0 and 1. It is still assumed 

that only the first aircraft has access to the desired trajectory. We set the last state of the 

first agent 
1  to be 0.76sin t−  . By solving (124), the rest of the states are determined as 

below: 

 

                                                      

1

1

1

0.23cos 0.76sin

0.027cos 0.72sin

0.014sin 0.0099cos

p t t

r t t

t t

= − −

= − +

= − −

 (132) 

 

i) For the first case the configuration is as what is shown in Figure 11. 

 

Figure 11. Topology of the aircrafts for the first case 
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The associated Laplacian matrix will be as below: 

 

                                                          

2 1 0 1

1 2 1 0

0 1 2 1

1 0 1 2

− − 
 
− −
 =
 − −
 
− − 

L  (133) 

 

the control input can be found by using the algorithm described in section 3.3.1 and 

equation (124). The results are shown in Figures 12 (a)-(d). 

 

Figure 12 (a). Roll rates for the first case 
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Figure 12. (b) Yaw rates for the first case 

 

 

Figure 12. (c) Sideslip angles for the first case 
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Figure 12 (d) Bank (roll) angles for the first case 

It is seen that all the states reach the desired periodic functions in half a minute. Next 

another topology is investigated in which the agents 2,3 and 4 do not have direct connection 

to each other. 

ii) The topology for the second case is shown in Figure 13. 

 

 

Figure 13. Topology of the aircrafts for the second case 
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In this case, the agent 1 exchange information with all the other three agents while they do 

not have direct access to each other. The process for finding the control input is still the 

same but the new Laplacian matrix is as below: 

 

                                                         

3 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

− − − 
 
−
 =
 −
 
− 

L  (134) 

 

The results are shown in Figures 14. (a)-(d). 

 

Figure 14 (a) Roll rates for the second case 
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Figure 14 (b) Yaw rates for the second case 

 

 

Figure 14 (c) Sideslip angles for the second case 
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Figure 14 (d) Bank angles for the second case 

 

It is seen that in the second case the convergence rate decreases but the states finally reach 

the desired trajectory. It is worth noting that none of the topologies is “fully connected”. 

However, since the agents 2, 3 and 4 do not exchange information directly from each other 

in the second case, it takes longer for the agents to achieve consensus. 

 

Robustness of the Algorithm 

In many practical real situations the state matrix could get disturbed due to imperfection in 

communication topologies or limited bandwidth. In these situations, we need to make sure 

that the algorithm is robust enough to overcome the disturbances, stay stable and make the 

system achieve consensus even with a disturbed state matrix. In order to test the robustness 

of the control law in this example, I run the algorithm in way that the control law is made 
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by the original state matrix while during integration step the disturbed state matrix has a 

error of 30% (i.e. 0.7 1.3Disturbed A A A ). The results for the maximum and minimum error 

have been shown in figures 15 and 16 (a)-(d). Figure 15 shows the states of the aircrafts 

when the disturbed state matrix is 70% of the original state matrix. It is seen that although 

it takes longer for the state to converge to the desired trajectory, the algorithm is still able 

to make the system achieve consensus. 

 

 

Figure 15 (a). Bank angles with a disturbance of -0.3A 
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Figure 15 (b). Slideslip angles with a disturbance of -0.3A 

 

 

Figure 15 (c). Yaw rates with a disturbance of -0.3A 
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Figure 15 (d). Roll rates with a disturbance of -0.3A 

 
In figure 16, the disturbed state matrix is 130% of the original state matrix. It is seen that 

this disturbance does not affect the effectiveness of the algorithm which means the control 

law is quite robust. 

 

Figure 16 (a) Bank angles with a disturbance of +0.3A 
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Figure 16 (b) Slideslip angles with a disturbance of +0.3A 

 

Figure 16 (c) Yaw rates with a disturbance of +0.3A 
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Figure 16 (d) Roll rates with a disturbance of +0.3A 
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4. Path planning of UAV fire fighters via Partially Observable 

Markov Decision Process (POMDP) 
 

4.1 Overview 

 
In this chapter, a path planning approach is designed in order to guide a group of 

UAVs that are assigned to track active wildfire fronts. The algorithm is developed based 

on the theory of Partially Observable Markov Decision Process (POMDP)[88, 89]. The 

UAVs are equipped with sensors, which measure the position of the fire fronts, and then 

the tracks are obtained by using a Kalman filter. Finally, the process completes by 

calculating the control variables for the UAVs, which are forward accelerations and bank 

angles. We investigate the problem of imposing practical constraints for the controls and 

collision avoidance between the UAVs. Since wildfires are characterized by fast and 

randomly evolving process, the major challenge of this study is that the UAVs must make 

the tracking decisions autonomously and be able to track the fire fronts, which are evolving 

over time in any random directions. 

Problem specification is given in section 4.2 POMDP formulation and ingredients are 

explained in section 4.3 Nominal Belief-state Optimization (NBO) method is developed 

for our model in section 4.4  State-transition laws will be described in sections 4.5 and 4.7. 

The model for finding the coordinates of the fire fronts has been briefly described in section 
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4.6. In this study we assume this data is given. Three different scenarios are defined and 

investigated in section 4.7 as the main results in order to show the performance of the 

designed algorithm. 

 

4.2 Problem specification  

 
We assume that the fire fronts spread on the ground in 2-D. Therefore, we simplify 

the motion model of the UAVs by considering the altitude as a constant. The position of 

the UAVs are determined by the control parameters, which are assumed to be forward 

acceleration and bank angle. The speed of the UAVs is controlled by the first one and the 

second one controls the heading angles. Both control variables are restricted to be chosen 

within certain limits. The fire fronts spread randomly over time and can be seen as moving 

targets maneuvering in random directions. UAVs are equipped with sensors, which 

measure the positions of the active fire fronts (the flames that are evolving over time). 

There would always be random errors depending on the locations of sensors (UAVs) and 

the fire fronts. The path-planning problem of the UAVs is solved when the mean-squared 

error between the tracks and the fire fronts are minimized. We apply a Partially Observable 

Markov Decision Process (POMDP) in order to solve the path-planning problem. The 

process and ingredients of a POMDP problem are introduced and defined in details in the 

next section. 

 

4.3 POMDP: Formulation and Ingredients 
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Markov Decision Processes (MDPs) are discrete-time control processes that model 

“decision making” in situations where the results are partially under the control of the 

decision maker and partially random. In case of a wildfire, the situations (so-called 

“states”) of the fire fronts are not fully observable but only partially observable, which 

means the decision at each step must be made only based on an observation.  According to 

the POMDP algorithms, five elements (“states”, “actions”, “observation law”, “state-

transition law,” and “belief state”) are defined and then a cost function is constructed which 

needs to be minimized. The set of the actions which minimizes the cost function is called 

the optimal policy. Three subsystems of states, targets, and trackers are introduced, and for 

each one we develop a state and a state-transition model. These elements are described in 

more details here: 

States: In a POMDP problem, states are the parameters, that possibly evolve over 

time. For our path-planning problem it is better to define three subsystem of sensors, targets 

(fire fronts) and trackers. Therefore, the state at time k can be shown as a set of  

( ), , ,k k k k kx s  = P  where 
ks and 

k are the states of the sensors and fire fronts respectively 

and ( ),k k P is the tracker state. Sensor states include the locations, the speed and heading 

angles of the UAVs. The discrete points of the fire fronts is required for defining the front 

state. The states of the fire fronts only include the 2-D positions of the active flames. In 

section 6 we explain how to define the momentary model of the fire fronts for each time-

step. The trackers’ state are standard Kalman filters where 
k  denote the posterior mean 

vector and 
kP is the posterior covariance matrix. 

Actions: The second elements of a POMDP problem is called “actions” which 

includes all the controllable variables of the model. For our problem, it is assumed that the 
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two variables of forward accelerations and bank angles of the UAVs can be controlled. 

Therefore, the action vector is represented by ( ),k k ku a =  where 
ka denotes the forward 

acceleration and 
k denotes the bank angle. 

Observation and Observation law: In a POMDP problem, the actions are taken 

according to an observation at each time step because the states are not fully observable. If 

pos

k  and pos

ks  are the position vectors of a fire front and a UAV respectively, the 

observation law of the fire fronts is defined as: 

                               
if the fire front is visible

no measurement otherwise

pos

k k

k

w
z  +

= 


  (135) 

kw  is a random measurement error with a distribution depending on the location of the 

sensor (UAV) and the target (fire front). In case of tracking fire fronts, the sensor states 

and tracker states are assumed to be fully observable. 

State-Transition law: State-Transition laws are the functions which give the next 

states according to the current states being affected by taking actions at time k . Since there 

are three subsystems, three state-transition laws are required to describe how the system 

evolves over time. For the sensors, the state-transition law is represented by ( )1 ,k k ks s u+ =  

where the function   will be defined later in section 5. State-Transition law for a fire front 

is generally defined as ( )1k k kf v + = +  where 
kv  is an independent and identically 

distributed (IID) random noise.  In our study, it is assumed that the data of the fire fronts 

is given but we still need a model to run the Kalman filter at each time-step. Therefore, f  

is a linear momentary model of fire front that will be derived later in section 6. The tracker 

States-Transition laws are determined by standard Kalman filter equations but the only 
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difference is when the fire fronts cannot be observed the update equation will not be 

performed and only the prediction step is taken. 

Cost Function: As it was said in section 2, for solving the path-planning problem, the mean 

squared error between the tracks and the fire fronts must be minimized. Therefore, the cost 

function is defined as ( )
1

2

, 1 1, ,
k kk k v w k k k kC x u E x u 

+ + +
 = −
 

 at the time k . 

Belief State: In POMDP problems, belief states are defined as probability 

distributions over the states. They are updated at each time step after taking actions 

according to the Bayes rule and by using the observations. At each time-step the belief state 

is defined as ( ), , ,s

k k k k kb b b b b = P  and since all the states other than fire front states are 

assumed to be fully observable we have: ( )s

k kb s s= −  , ( )k kb   = −  and ( )k kb = −P P P

. The belief state for the fire fronts will be derived in section 4. 

Policy: A sequence of actions is called a policy. Obviously, a policy is considered to 

be optimal if it minimizes the expected cumulative cost ( )
1

0
,

H

H k kk
J E C x u

−

=
 =
    over a 

time horizon such as H  ( 0,  1, ..., 1k H= −  ). It is assumed that the action taken at time k  

could depend on the history of the observations until time step 1k − . If an optimal action 

exists, it can be shown that the optimal sequence of optimal actions also exists depending 

on “belief-state feedback” [89]. This means that the expected cumulative cost function can 

be rewritten as ( )
1

00
,

H

H k kk
J E c b u b

−

=
 =
   where ( ) ( ), , ( )k k k kc b u C x u b x dx=  . Given a belief 

state 
0b , the optimal cost function is defined as  * *

0 0 1 1 0( ) min ( , ) ( ) ,H u HJ b c b u E J b b u−
 = +    

where 
1b is the new random belief state distribution for the next time step and *

1HJ −  is the 

optimal cumulative cost over the horizon 1H − . 0 ,E b u    shows that the expectation is 
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given by taking action u  when belief state distribution is 
0b  [90].  The terms in the curly 

brackets are defined as the valuesQ− with initial belief state distribution of 
0b and taking 

action u  (i.e. *

0 0 1 1 0( , ) ( , ) ( ) ,H HQ b u c b u E J b b u−
 = +    ), then the optimal policy at 0k =  is 

written as *

0 0 0( ) argmin ( , )u Hb Q b u =  and at time k , we can write 

*( ) argmin ( , )k k u H k kb Q b u −= . In other words, the optimal policy is the sequence of actions, 

which minimizes the Q values at each time step. Calculating Q-values is not always easy 

since the term *

1 1 0( ) ,HE J b b u−
   is hard to be approximated. Therefore, approximation 

methods must be implemented to obtain Q-values. Here we use Nominal Belief-states 

Optimization (NBO) to specify the cost function. We will see that the method considers 

the trace of the error covariance matrix as an approximation of the cumulative cost function 

[74, 88]. The algorithm is explained in the next section. 

 

4.4 NBO Approximation method 

 
It is assumed that there are ffN fire fronts and the states at time k  is represented by 

( )1 2, , , ffN

k k k k   =  where i

k  is the state of the ith fire front. The track state can be 

conveyed as ( )1 2, , , ffN

k k k k   =  and ( )1 2, , , ffN

k k k k=P P P P , where ( ),i i

k k P  is the track state 

associated with the ith fire front. For modeling the fire front dynamics at each time-step, we 

define a linear motion model for the fire front with zero-mean noise with covariance kQ as: 

                                                1      (0, )i i i i

k k k k k kv v N + = +F Q   (136) 
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The observation (135) is defined as 
i i i

k k k kz w = +H  if the fire front is visible where 

(0, ( , ))i i

k k k kw N sR  while there would be no measurement when the fire front is not 

visible. The motion model describing how the fire fronts evolve over time is derived 

according to a complicated model, which we will not go through here and we assume that 

the data of the fire fronts is given. The only data required is the location of the active flame 

(border of the fire front). Once we have this data, we define the state of the front as 

, ,1
T

i i i

k k kx y  =   where ( , )i i

k kx y  is the 2-D position of the ith fire front. In section 6, we 

explain why we should make an augmented state vector like this. For each time-step, we 

construct a linear model matrix
kF , which gives the next position. Since the position of the 

fire fronts are the only observed parameters, the observation model 
kH is defined as

 2 2 2 1,k  =H I 0 . It is assumed that all the distributions are Gaussian, and the belief state for 

the ith fire front is written as ( )( ) ,
i i i

k k kb N   = − P . 

In Nominal Belief-states Optimization (NBO) approximation method, a nominal belief 

state sequence is introduced over a time horizon such as H  (i.e 
1 2 1
ˆ ˆ ˆ, , , Hb b b −

 ) and then the 

objective cost function is approximated by 
1

0 0

ˆ( ) ( , )
H

H k kk
J b c b u

−

=
 . The optimization is 

accomplished through taking a sequence of actions
1 2 1, , , Hu u u −

. The nominal belief state 

for the ith fire front is obtained by the nominal tracks ( )ˆ ˆ,i i

k k P  as ˆ ˆ ˆ( ) ( , )
i i i

k k kb N   = − P . The 

nominal tracks evolve according to the Kalman filter equation as follows: 

                               

1

1
1

11

1

1

ˆ ˆ     (zero-noise)

ˆ if measurement available
ˆ

ˆ otherwise

i i

k k k

i i

kk ki

k

i

k k

 +

−
−

++

+

+

=

   +    = 



F

P S
P

P

   (137) 
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where 
1

ˆ ˆi i T

k k k kk k+
= +P F P F Q  , 

1

1 1 1 1 1 1
ˆ( , )i T i

k k k k k ks
−

+ + + + + +
 =
 

S H R H  and 
1ks +
 is the state of the 

sensors at time 1k +  which is given by the model ( , )k ks u . Since 1
ˆ i

k+P  requires the 

observation at time 1k +  while it is not certainly known, we use the position estimate of 

the fire fronts and the corresponding sensor state at time 1k +  (i.e. ,

1
ˆi pos

k +  and 
1

pos

ks +
 ). Now 

the cost function is approximated as the sum of the trace of the nominal error covariance 

matrix for all the targets or: 

                                                    11

ˆ ˆ( , ) Tr( )
ffN i

k k ki
c b u +=

= P   (138) 

Obviously, the objective cost function which needs to be minimized over a time horizon 

H can be written as: 

                                                 
1

0 10 1

ˆ( ) Tr( )
ffH N i

H kk i
J b

−

+= =
=  P   (139) 

in case of having multiple UAVs, the covariance error matrix for the ith fire front is 

computed as: 

                                                       
1

, 1

1 11

ˆ ˆ( )
sensNi i j

k kj

−
−

+ +=
 =
 P P   (140) 

where 
sensN  denotes the number of the UAVs (sensors) and ,

1
ˆ i j

k+P  represents the nominal 

error covariance matrix of the ith fire front calculated by the jth sensor. 

The measurement error distribution depends on the location of the fire fronts and 

sensors and is according to the Gaussian distribution, which means ( )0, ( , )k k k kw N sR . 

Here kR  shows the uncertainties in range and angle between the fire front and the sensor. 

We assume that the range uncertainty is %p  and angular uncertainty is q . The distance 

between the fire front and sensor at time k   is denoted by kr . Therefore, the standard 

deviations for the angle and range are calculated as: 
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( ) ( /100)

( )

range k

angle k

k p r

k qr





=

=
  (141) 

If the UAV flies exactly above the fire front (active flame), 0kr =  which makes the 

information matrix get very big due to the fact that the information matrix depends on the 

inverse of the measurement covariance matrix. This problem is solved by considering a 

positive number b  and defining the effective distance as 2 2( )eff kr k r b= +  . Now the 

standard deviations can be redefined as: 

                                                   
( ) ( /100) ( )

( ) ( )

range eff

angle eff

k p r k

k qr k





=

=
  (142) 

If it is assumed that the angle between the fire front and the UAV at time k , (the 

angle of the connecting line and the horizontal axis) is 
k   we have: 

                                                

2

2

cos( ) sin( )

sin( ) cos( )

and 

( ) 0

0 ( )

k k

k

k k

range T

k k k

angle

k

k

 

 





− 
=  
 

 
=  

  

M

R M M

   (143) 

and the eigenvalues of 
kR  are  2 2( ), ( )range anglek k  . In our algorithm we implement the 

“receding horizon approach” which means that we do the optimization for H time-steps 

but apply the optimal actions for the current time-step. Then we optimize the actions for 

another H time-steps and apply the optimal actions for the next time-step and this process 

continues. This is the “look-ahead” quality of our algorithm we have mentioned in the 

introduction. 
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4.5 State-transition law for the sensors 

 
The sensor states evolve over time according to a model such as 

1 ( , )k k ks s u+ = where the 

state of each UAV includes the 2-D position coordinates, speed of the UAV and its heading 

angle. We write the state of the jth sensor at time k as ( ), , ,j j j j j

k k k k ks p q V =  where ( , )j j

k kp q  

are the position coordinates, j

kV  denotes the speed of the UAV and j

k  is the heading angle. 

The actions are shown as the vector of forward acceleration and bank angle ( ),j j j

k k ku a = . 

The relationship between the sensor state and the actions defines the mapping function   

as follows: 

                           

   
max max

minmin
1 min max

1

1

1

   where max ,min( , )

( tan( ) / )

cos( )

sin( )

V Vj j j

k k k VV

j j j j

k k k k

j j j j

k k k k

j j j j

k k k k

V V a T v V V v

gT V

p p V T

q q V T
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+
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+
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= +
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  (144) 

 

where 
maxV  and 

minV  shows the maximum and minimum speed limits for the UAVs. 

According to [91], the limits for the control variables is set to be as follows: 

                                              

2 23.05 m/s 3.05 m/s

           
6 6

a

 


−  

−  
 (145) 
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4.6 Modeling Fire Fronts 

 
 

 
 

Figure 17 (a).Three fires at an early stage of fire spread 

 

Figure 17 (b). The fire at the end of the simulation 
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The fire spread simulation was based on the DEVS-FIRE model [92, 93] which is a discrete 

event simulation model for surface fire spread simulation. DEVS-FIRE uses a cellular 

space to represent a wildland area, where each cell has its own terrain data and fuel 

(vegetation) data corresponding to the sub-regions in the area. All cells are coupled to a 

weather model to receive weather data (wind speed and wind direction) over time. Once a 

cell is ignited, it uses Rothermel’s model [94] to compute the fire spread rate and direction 

within the cell. Fire spreading is modeled as a propagation process as burning cells ignite 

their unburned neighboring cells. 

 

In this simulation, three fires are ignited at three different locations of a 200 by 200 cell 

space. Each cell represents a 30-meter by 30-meter area. The simulation is for 5 hours of 

fire spread.  Figure 17(a) shows the three fires at an early stage of fire spread, where red 

cells are burning cells, black cells are burned cells, and other colors represent the different 

fuel types of the cells. Figure 17(b) shows the fire shape at the end of 5 hours of spread, 

when the three fires are combined into a larger fire with a perimeter of 34.11km and burned 

area of 1113.21 hectares.  

 

During the simulation, we recorded the fire perimeter cells and burning & burned cells 

every 10 seconds. These data are then read and displayed by a program to visualize the 

fire spread process.  
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4.7 Main results 

 
In this section the results for the path-planning problem will be provided. It is 

assumed that there are three separate fire fronts, which start from various locations and 

evolve over time to make a single unified big fire. The fire fronts are modeled for five 

hours and we investigate three different scenarios of tracking. In the first scenario, one 

UAV tracks the three fire fronts. We will see that the UAV must shifts from one front to 

another to keep the trace of the covariance error matrix minimized. Since the final fire front 

covers a large area, one UAV may seem insufficient to be able to do a proper coverage. In 

the second scenario, two UAVs track the three fire fronts. In this scenario the UAVs 

autonomously decide where to track so the coverage of all the three fronts is done the best. 

In the third scenario, three UAVs starts tracking the fire fronts but one of them drops off 

in the middle of its mission (this could occur due to an accident or battery discharge) and 

the two other UAVs try to make up for the dropped one and cover the fronts as good as 

they can. In each scenario, we let the fire fronts spread for a while and then the UAVs are 

assigned to start tracking them. The results for each scenario is shown by a few pictures to 

show the performance of the UAVs as time elapses. 

 

Scenario 1: One UAV  

 
The fire front data is supposed to have been calculated and given to us. We need the 

border points of the fire which specify the location of the active flame. In order for our 

algorithm to be working, a momentarily motion model for each time-step is generated 

regarding the two position of the fire front at time k . Sensors see two points of the fire as 
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the positions for the current and the next time-step (i.e ( ),i i

k kx y  and ( )1 1,i i

k kx y+ +  

respectively). A linear motion model matrix for each time-step 
kF   gives us the next state 

at time k  as follows: 

                                                        

1 0

0 1

0 0 1

i

k

i i

k k

x

y

 
 

=  
 
 

F   (146) 

where 
1

i i i

k k kx x x+ = −  and 
1

i i i

k k ky y y+ = −  are obtained from the 2-D position coordinates for 

current and the next time-step. For each time-step the state is defined as , ,1
T

i i i

k k kx y  =   to 

make sure (146) can give us the next state. The tracking results are shown in Figures 18 

(a)-(f). The UAV starts from a point far away from the region and immediately approaches 

the three evolving fire front. As time passes, the UAV flies over the three and tries to cover 

all in order to minimize the cost function. However, as fire fronts become bigger, one UAV 

would not be able to cover all the perimeter of the fire completely and some parts are 

skipped in trying to keep the tracking error minimized. Figures 19 (a)-(b) show the control 

variables (forward acceleration and bank angle) of the UAV at each 600 s for the whole 

period of 18000 s. It is seen that these variables remain within the limits of (145). The 

initial state of the UAV is assumed to be 0 [3000 m 0 m 16 m/s / 6 rad]Ts =  and the 

initial action vector is 2

0 2 m/s /12 rad
T

u  =     
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Figure 18 (a). The first scenario (t = 3000s) 

 

Figure 18 (b). The first scenario (t = 6000s) 
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Figure 18 (c). The first scenario (t = 9000s) 

 

 

Figure 18(d). The first scenario (t = 12000s) 
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Figure 18 (e). The first scenario (t = 15000s) 

 

 

Figure 18 (f). The first scenario (t = 18000s) 
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Figure 19 (a). Forward acceleration of the UAV 

 
 

 
 

Figure 19 (b). Bank angle of the UAV 
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A way to check the validity of results could be making a comparison between true error 

and estimate error of the results. We define the true error as the Euclidean norm of the 

difference between fire front position and position of the nominal estimate (i.e.  

1 1
ˆpos pos

k k + +− where 
1

pos

k +
is the position coordinates of the fire fronts and 

1

pos

k +
 is the position 

coordinate in the nominal track estimate vector). The estimate error on the other hand is 

defined as 11 22
ˆ ˆP P+ where 

11P̂ and 22P̂ are the diagonal elements of the nominal error 

covariance matrix. Figure 20 shows these two errors during the process of tracking the fully 

developed fire ( 18000 st = ) and it is seen that they both have the same pattern indicating 

that the algorithm works properly. 

 
 

Figure 20. True and estimate error of the algorithm 
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Scenario 2: Two UAVs 

 
In case of multiple UAVs, collision avoidance must be taken into consideration. A 

penalty function is introduced and added to the objective cost function in order to avoid 

collision among the UAVs. We show this penalty function by ,

1

coll j

k+P  for the jth  UAV and 

redefine the cost function to be: 

                                        ( )( )1 ,

1 10 1 1

ˆTr
ff sensH N Ni coll j

H k kk i j
J 

−

+ += = =
= +  P P   (147) 

where   is a positive scaling factor which must be chosen big enough to make the second 

term effective when the UAVs get close to each other. The penalty function is defined as 

follows. A constant distance such as D is chosen as a safe distance and the penalty function 

is calculated according to it as follows: 

                                              , 1 1

1

if 

0 otherwise

j j

coll j k k

k

D d d D+ +

+

 − 
= 


P   (148) 

where 
1

j

kd +
 is defined as , 1min ji

i j i kd +  where 
1

ji

kd +
 denotes the distance between the ith and jth 

UAVs. Since the UAVs are assumed to be small D  can be selected to be as small as 5 m 

and the scaling factor is set to be 10 = . The advantage of this approach is that it considers 

the collision avoidance in POMDP context and does not need a separate algorithm to work. 

The results are shown in figures 21 (a)-(g). It is seen that at the beginning of the mission 

both UAVs may try to cover all the three fire fronts and switch between one to another but 

as time elapses they decide which part is the best for them to cover in order to minimize 

the trace of the covariance error matrix. This may happen due to the fact that the accuracies 

of the estimates may be lower when the burning regions are small but once the fire becomes 

large enough the UAVs make clear decisions to keep the distance and also simultaneously 

do the coverage the best they can do. It is assumed that the initial states for the two UAVs 
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are  1

0 3600 m 3300 m 16 m/s / 6 rad
T

s =  and 

 2

0 4200 m  4200 m 16 m/s / 6 rad
T

s =  . The initial action vectors are: 

1 2

0 2 m/s /12 rad
T

u  =    and 2 2

0 2 m/s /12 rad
T

u  =   . 

 

Figure 21(a). The second scenario (t = 1500s) 

 



97 
 

 

Figure 21 (b). The second scenario (t = 3000s) 

 

Figure 21 (c). The second scenario (t = 6000s) 
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Figure 21 (d). The second scenario (t = 9000s) 

 

Figure 21 (e). The second scenario (t = 12000s) 
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Figure 21 (f). The second scenario (t = 15000s) 

 

Figure 21 (g). The second scenario (t = 18000s) 
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Scenario 3: Three UAVs start tracking the fire fronts but one of them 

drops off at some point 

 
Many incidents may cause the UAVs to stop tracking the targets among which battery 

discharge could be the most important one. Once the battery of a UAV is discharged, it has 

to fly back and descend on the ground to get it recharged. Meanwhile, the remainder of the 

UAVs must make up for the lost one in order to keep the coverage reliable or 

mathematically said keep the sum of the traces of the error covariance matrices minimized. 

The three UAVs cover the fronts and the third UAV stops tracking at time 10500 st =  and 

after that, only UAVs 1 and 2 continue to cover the fire fronts. Results are shown in Figures 

22(a)-(g). It is seen that after the sudden change of reducing the number of trackers to two, 

the UAVs experience a period of confusion and the coverage is done less perfectly 

compared to the time when all the UAVs were working (e.g. 12000 st = ) . However, as 

time elapses, the accuracy of the estimation steps rise up and the UAVs decide how to track 

the fronts such that the coverage becomes the best.  We still use the same penalty function 

as (147) and (148) in order to avoid collision among the UAVs. The initial vectors for the 

UAVs are:  1

0 3900 m 3900 m 16 m/s / 6 rad
T

s = , 

 2

0 4800 m 2400 m 16 m/s / 6 rad
T

s = ,  3

0 4800 m 4500 m 16 m/s / 6 rad
T

s =  and 

the initial action vector for all the UAVs are the same and equal to 

2

0 2 m/s /12  rad
T

u  =     
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Figure 22 (a). The Third scenario (t = 3000s) 

 

 

Figure 22 (b). The Third scenario (t = 6000s) 
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Figure 22 (c). The Third scenario (t = 9000s) 

 

 

Figure 22 (d). The Third scenario (t = 10500s) 
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Figure 22 (e). The Third scenario (t = 12000s) 

 

Figure 22 (f). The Third scenario (t = 15000s) 
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Figure 22 (g). The Third scenario (t = 18000s) 

 

4.8 Robustness of the Algorithm 
 

It practical application there would always be some disturbances and it needs for the 

algorithm to be able to overcome the unprecedented situations in order to be applicable. 

Here we check robustness of the designed algorithm by testing the performance of the UAV 

in the presence of a sudden wind gust. It is modeled by adding a certain acceleration in the 

sensor models while the rest of the state-transition functions are kept untouched. A good 

algorithm must be able to get to its normal condition of performance after being disturbed. 

We let the acceleration grow due to the wind be 50% of the maximum acceleration the 

UAV can achieve. In our case, this value would be equal to 2

max / 2 1.525 m/sda a= = where da

denotes the disturbance acceleration induced by the wind gust and maxa is the maximum 
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acceleration of the UAV. We only consider the first scenario for the sake of clearness and 

simplicity and investigate two scenarios of wind disturbance. In both one all the other 

conditions are assumed to be the same as what we had in scenario one in section 4.7. In the 

first case, we let the UAV start tracking the fire fronts when the fire is fully developed (

18000 st = ) and assume that the wind starts blowing when the UAV is at its 100th time step 

( 100 sk = ) when it is at  3068 m, 3993 m . The blow lasts for 100 seconds and vanishes. 

Figures 23 (a)-(c) show the response of the UAV. For better comparison I have put the 

undisturbed situation beside it. It seems that at first the UAV gets deviated from its original 

track and after the wind stops, the UAV still needs some time to get back to its normal way 

but finally it manages to find its way back and continue tracking the fire fronts. In the 

second case, the fire starts at the time-step 750 sk = at lasts for 100 seconds. Again, we see 

that the UAV gets disturbed any finally manages to find it way to accomplish its mission 

of tracking which means that the algorithm is reliable enough to be used in practical 

circumstances where several disturbance factors exist. 
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Figure 23 (a) undisturbed tracking 

 

 

Figure 23 (b) The wind begins at k=100 s and ends at k=200 s 
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 Figure 23 (c) The wind begins at k=750 s and ends at k=850 s 
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CONCLUSION 

 
In this study, new optimal control approaches have been developed for solving 

consensus and path planning problems among multi-agent systems (MASs). It was seen 

that by defining proper cost functions and proper algorithms in order to minimize these 

cost functions, optimal control would be a very powerful tool in solving these two 

problems.  

In chapters 2 and 3 the multi-agent consensus tracking problem for a class of general 

linear time-invariant systems was investigated in an optimal control framework. An inverse 

optimal control approach was employed to derive a proper cost function in order for the 

system to track a defined desired trajectory. The optimal control law was designed with an 

analytical solution and was a linear function of the Laplacian matrix such that the control 

implementation was distributed in that it only needed local information of the agent’s own 

state and its neighbors with the communication links. Both optimality and stability of the 

control law are proved. The approach was then generalized to embrace general multi-input 

Linear Time-Invariant systems. For each type (single-input and multi-input systems), two 

examples were designed and solved to illustrate the algorithm. 

In chapter 4, an algorithm was designed in order to solve the path-planning problem 

of a group of UAVs that are assigned to track the wildfire fronts. The approach was 

developed based on the theory of Partially Observable Markov Decision Process (POMDP) 

and it was seen that all important features such as collision avoidance and dynamic 

constraints can be considered in the context of POMDP. The approach has a “look-ahead” 

property in a sense that it calculates the control variables for each time step based on 
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computation over a certain time horizon. This is done for more accuracy since the UAVs 

are supposed to track randomly evolving fire fronts. Dynamic constraints for the motion of 

the UAVs were taken into account and by using NBO approach, the cost function was 

defined according to tracking error. For each time-step a simple linear motion model for 

the fire fronts was defined which enabled the track state to have been constructed fast and 

efficiently. Three different scenarios were investigated and it was seen that the UAVs were 

able to make decisions about which fronts to track if they were given enough time. 

Furthermore, if a UAV, for any reasons, drops or stops working in the middle of the 

mission, the remainder of the UAVs keep tracking the fire fronts the way they make up for 

the lost one and keep the coverage as good as they can to maintain the defined cost function 

minimized.    
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