

OPTIMAL CONTROL APPROACHES FOR CONSENSUS AND

PATH PLANNING IN MULTI-AGENT SYSTEMS

__

A Dissertation

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

POORYA SHOBEIRY

Dr. Ming Xin, Dissertation Supervisor

MAY 2020

© Copyright by Poorya Shobeiry 2020

All Rights Reserved

The undersigned, appointed by the dean of the Graduate School, have examined the

dissertation entitled

OPTIMAL CONTROL APPROACHES FOR CONSENSUS AND PATH PLANNING

IN MULTI-AGENT SYSTEMS

presented by Poorya Shobeiry

a candidate for the degree of Doctor of Philosophy,

and hereby certify that, in their opinion, it is worthy of acceptance.

Professor Ming Xin

Professor Craig Kluever

Professor Noah D. Manring

Professor Roger Fales

Professor Konstantin Makarov

ii

ACKNOWLEDGEMENT

I would like to express my gratitude and appreciation for Professor Ming Xin whose

guidance, support and encouragement has been invaluable throughout this study. I also

wish to thank all the members of my committee who have been a great source of support

and guidance all these years.

iii

Contents

ACKNOWLEDGEMENT ... ii

LIST OF FIGURES ... v

ABSTRACT .. vii

1. Introduction ... 1

2. Single-Input Systems .. 10

2.1 Overview ... 10

2.2 Preliminaries ... 11

2.3 Problem statement and formulation .. 12

2.4 Main Results.. 16

2.4.1 Optimal control solution ... 16

2.4.2 Discussion on the distributed cooperative control law 30

2.4.3 Defining the proper desired trajectory .. 31

2.4.4 The algorithm for finding the optimal cooperative control 32

2.5 Illustrative examples .. 34

3. Multi-Input Systems .. 45

3.1 Overview ... 45

3.2 Problem statement and formulation .. 45

3.3 Main results ... 50

3.3.1 Optimal control solution ... 51

iv

3.3.2 Discussion on the distributed cooperative control .. 55

3.3.3 Defining the proper desired trajectory .. 56

3.4 Illustrative examples .. 58

4. Path planning of UAV fire fighters via Partially Observable Markov Decision Process

(POMDP) ... 76

4.1 Overview ... 76

4.2 Problem specification .. 77

4.3 POMDP: Formulation and Ingredients ... 77

4.4 NBO Approximation method ... 81

4.5 State-transition law for the sensors ... 85

4.6 Modeling Fire Fronts ... 86

4.7 Main results ... 88

Scenario 1: One UAV ... 88

Scenario 2: Two UAVs ... 95

Scenario 3: Three UAVs start tracking the fire fronts but one of them drops off at some

point .. 100

4.8 Robustness of the Algorithm .. 104

CONCLUSION ... 108

REFERENCES: ... 110

VITA ... 122

v

LIST OF FIGURES

Figure 1. Meet-for-dinner consensus problem .. 3

Figure 2. Different types of graphs ... 11

Figure 3. The two agents in example 2.1 .. 35

Figure 4 (a)-(d). Phase planes and states of the agents of exampe 2.1 36

Figure 5. The satellite control system in example 2.2 .. 39

Figure 6. The topology of the satellites .. 40

Figure 7 (a)-(e). States and control input of the satellites in example 2.2 41

Figure 8. The graph associated with the two agents in Example 3.1 58

Figure 9 (a)-(d). Phase planes and states of the agents of example 3.1 60

Figure 10. Grumman X-29A aircraft .. 63

Figure 11. Topology of the aircrafts for the first case .. 64

Figure 12 (a)-(d). Aircrafts’ states of the example 3.2 for the first case 65

Figure 13. Topology of the aircrafts for the second case .. 67

Figure 14 (a)-(d) Aircrafts’ states of the example 3.2 for the second case 68

Figure 15 (a)-(d). Aircrafts’ states with a disturbance of -0.3A 71

Figure 16 (a)-(d) Aircrafts’ states with a disturbance of +0.3A 73

Figure 17 (a)-(b).Fire fronts model at the different stages of the simulation 86

Figure 18 (a)-(f). Stages of the first scenario .. 90

Figure 19 (a)-(b). Control viariables of the UAV ... 93

Figure 20. True and estimate error of the algorithm ... 94

Figure 21(a)-(g). Stages of the second scenario .. 96

Figure 22 (a)-(g). Stages of the third scenario .. 101

vi

Figure 23 (a)-(c) Performance of the UAV in presence of a wind gust 106

vii

ABSTRACT

Optimal control is one of the most powerful, important and advantageous topics in

control engineering. The two challenges in every optimal control problem are defining the

proper cost function and obtaining the best method to minimize it. In this study, innovative

optimal control approaches are developed to solve the two problems of consensus and path

planning in multi-agent systems (MASs). The consensus problem for general Linear-Time

Invariant systems is solved by implementing an inverse optimal control approach which

enables us to start by deriving a control law based on the stability and optimality condition

and then according to the derived control define the cost function. We will see that this

method in which the cost function is not specified a priori as the conventional optimal

control design has the benefit that the resulting control law is guaranteed to be both

stabilizing and optimal. Three new theorems in related linear algebra are developed to

enable us to use the algorithm for all the general LTI systems. The designed optimal control

is distributed and only needs local neighbor-to-neighbor information based on the

communication topology to make the agents achieve consensus and track a desired

trajectory.

Path planning problem is solved for a group are Unmanned Aerial Vehicles (UAVs)

that are assigned to track the fronts of a fires in a process of wildfire management. We use

Partially Observable Markov Decision Process (POMDP) in order to minimize the cost

function that is defined according to the tracking error. Here the challenge is designing the

algorithm such that (1) the UAVs are able to make decisions autonomously on which fire

front to track and (2) they are able to track the fire fronts which evolve over time in random

directions. We will see that by defining proper models, the designed algorithms provides

viii

real-time calculation of control variables which enables the UAVs to track the fronts and

find their way autonomously. Furthermore, by implementing Nominal Belief-state

Optimization (NBO) method, the dynamic constraints of the UAVs is considered and

challenges such as collision avoidance is addressed completely in the context of POMDP.

1

1. Introduction

In this research, innovative optimal control approaches are developed to solve the

two important problems of consensus and path planning among multi-agent systems

(MASs). Consensus is important when the objective of a mission is to get to some specific

state or track a given desired trajectory. Path planning is generally called to any process of

finding a sequence of valid configuration that moves the agent through an unnecessarily

given route. Here we focus on a special application of having a group of Unmanned Aerial

Vehicles (UAVs) track fire fronts in order to collect data of their spread as an important

part of wildfire management process. Consensus problem for general Linear Time-

Invariant systems is discussed in chapter 2 and 3. Path planning algorithm for fire fighter

UAVs is developed in chapter 4 via a special case of Markov Decision Process (MDP)

named Partially Observable Markov Decision Process (POMDP). Here we briefly

introduce the two problems, back ground of each one, our approaches and advantages of

them.

Cooperative control problem for multi-agent systems (MASs) has received

tremendous attention in the last two decades owing to its wide range of applications.

Furthermore, the concept of distributed multi-agent cooperative systems was developed

with the aid of rapid progress in communication, sensing, and actuation. The cooperative

teamwork provides much more flexibility and robustness in performance to accomplish

certain missions compared to single-agent systems and therefore, it has been applied to

many practical engineering problems such as mobile robots, unmanned aerial vehicles

(UAVs), autonomous underwater vehicles (AUVs), spacecraft, and automated highway as

2

summarized in [1] . A comprehensive overview on the progress of multi-agent coordination

has been provided by Cao et al [2].

The technical core of cooperative control of MASs is the concept of consensus. It is

said that multiple vehicles have achieved consensus when they agree on the value of a

common variable of interest. A good example is a dinner meeting among a group of friends.

Suppose that five friends want to spend an evening together and have dinner. They all know

the place (the particular restaurant) but they are uncertain about the time of the meeting.

One solution is to make a conference call in which all five attend and decide about the

meeting time. This centralized approach is not a real solution because they still need to set

a time for attending the conference call all together. The common variable of interest (also

called the “coordination variable”) is the time the friends want to meet. The distributed

solution is for each individual to call a subgroup of friends and make a decision on a

preferred time. Here we suppose that each individual has phone numbers of only two of

his/her friends. That means each individual can only communicate with two friends. This

calling process continues and the preferred time is updated each time until it converges to

a final consistent meeting time. Figure 1 shows this process of agreement.

3

Figure 1. Meet-for-dinner consensus problem[3]

According to the meet-for-dinner example, consensus among agents is equivalent to

achieving a common state by neighbor-to-neighbor interaction and information exchange.

The information and interaction exchange among the agents is represented by

communication topology which is modeled via graph theory. The classical consensus

problem and the associated graph and matrix theories were introduced and extensively

developed primarily on single or double integrator systems [4, 5]. The basic consensus

algorithm was rapidly generalized to the case of higher-order systems [6, 7]. Other recent

progress on the average consensus algorithms includes developing novel weighting

strategies [8] and new classes of fixed-time protocols [9].

Since many of the practical applications involve formation and tracking problems of

mobile vehicles, the integrator systems (both single and double-integrator) have received

4

the most attention and have been thoroughly studied during the last decade [10-12].

Considering the constraints of real applications such as limited communication ranges and

limited bandwidth, the concept of switching topology (instead of time-fixed topology)

emerged and the conditions for achieving consensus under the switching topology were

extensively investigated [13-18]. Besides, the leader-follower algorithm as the most

straightforward approach for solving the tracking problem has been studied and developed

as well [19-23].

Nonlinear analysis has also been taken into consideration in consensus analysis.

Intermittent communication (i.e. the case when the communication among the agents is

attacked disconnects at frequent time intervals) in nonlinear singular MASs has been

addressed by Xie and Mu [24] as a crucial issue. They have used multi-Lyapunov function

approach, the observer-based intermittent feedback control protocol to solve the consensus

problem. Deng et al. [25] have studied another practical problems called “packet dropout”

which occurs due to unreliable wireless communication. They have applied an iterative

learning control method to design the control protocol. Other studies have been

accomplished on applying model reference adaptive control (MRAC) in order to design

the optimal control for Heterogeneous Nonlinear Multiagent Systems whose Dynamics is

partially unknown [26] and solving Lag Group Consensus problem via adaptive control

approach [27].Some other methods to address the consensus problem include designing

observers [28, 29] and compensators [30].

When communication does not occur continuously, the system is called “discrete-

time”. The basic algorithms for consensus in such systems have been derived in [3, 4].

Many novel approaches have been developed recently such as constructing adaptive

5

algorithms to drive the local parameters estimators [31] and developing a new form of

Krasovskii-LaSalle theorem for obtaining an exponential convergence [32].

Multi-agent cooperative control has also been investigated from the optimization

perspective. Consensus can be optimized by improving the network topology via the graph

theory and analysis. The research along this line is mainly focused on making the most

efficient configuration to attain the desired property of the representing graph. The

objectives include finding the fastest convergence rate by maximizing the second smallest

non-negative eigenvalue of the Laplacian matrix as described by Kim and Mesbahi [33] or

obtaining the optimal topology (optimal Laplacian matrix), for example via the linear

quadratic regulator (LQR) approach [34]. Linear matrix inequality (LMI) and iterative LMI

are also utilized to solve the consensus problem [35-37]. Tuna [38, 39] showed that the

LQR can synchronize agents if the pair of the state and input matrices (for each agent) is

stabilizable. However, there was no discussion on the exact approach of constructing

proper cost functions and defining the desired trajectory. Wang and Xin [40] utilized an

inverse optimal control method (introduced by Bernstein [41]) for a system of agents to

address not only consensus but also obstacle/collision avoidance. This similar optimal

control was applied to cooperative control of multiple autonomous robots [42] and the

flocking problem [43]. However, the same simplified double-integrator dynamics is

assumed in these works for the MAS model. Recently, many innovations have been made

in solving the consensus problem by the optimal control theory. Xie and Lin [44] solved

the problem of global optimal consensus for higher-order integrators with bounded controls

starting from any arbitrary initial states and in the presence of actuator saturation.

Dehshalie et al. [45] used optimal control theory to design a fault tolerant control law for

6

MASs with single and multi-input actuators under both directed and undirected

communication topologies. A numerical approach was developed by Bailo et al. [46] to

solve the consensus problem of the nonlinear multi-agent system of Cucker-Smale type

and the first-order optimality conditions were obtained by using Barzilai-Borwein (BB)

gradient descent method. Recently, the model predictive control has been used to solve

cooperative control problems such as controlling connected and autonomous vehicles in

the intelligent transportation system [47].

In chapter 2, we generalize the approach described in [40, 43, 48] in order to embrace

general LTI systems with single inputs. The advantage of our approach is that, aside from

being applicable to general systems (rather than mere integrator systems), the optimal

control is derived based on an inverse optimal control approach in which the cost function

is not a priori and is obtained after the control law is derived and satisfies stability and

optimality conditions. The approach will be explained thoroughly in section 2.4. The

importance of this approach is that the control law is guaranteed to be both stabilizing and

optimal. The other important advantage of our algorithm is that the optimal control is

obtained pure analytically without using any numerical approaches. Consensus, trajectory

tracking, and minimization of control effort are achieved by constructing proper cost

functional via the same inverse optimal control method. The optimal cooperative control

law is distributed, which only needs neighboring agents’ information. Both asymptotic

stability and optimality are achieved.

In chapter 3, the same approach develops to embrace the case of multi-input systems.

We will see that an important challenge would be choosing the most appropriate

transformation matrix in order to convert the general LTI system to a Controllable

7

Canonical Form (CCF) with specific properties. Three separate theorems in related linear

algebra will be developed to enable us to obtain the best transformation matrix. Optimal

control is achieved through the same approach and allow us to solve the consensus problem

for all the general Linear Time-invariant Multi Agent systems.

In chapter 4 a novel path planning algorithm is introduced based on Partially

Observable Markov Decision Process (POMDP). The algorithm is implemented for

making fire fighter UAVs track the fronts of wildfires. Wildfires are known for fast and

randomly evolving over time. Therefore, accurate data collection of the spreading pattern

of the fire fronts is very crucial in wildfire management. Many path-planning algorithms

have already been developed for autonomous system of vehicles and robots [49-59]. The

approach introduced here has the following advantages, which makes it different and

profitable:

1) It is designed according to the concepts of POMDP, which means that the system

makes decisions only according to some observations when there is no clearly

known states (a realistic model for the case of managing wildfires).

2) In response to the collected information, the approach implements real-time

calculation in obtaining control commands.

3) Using “Receding Horizon” technique, the algorithm has a “look-ahead” quality in

a sense that for the current time-step, the controls are calculated over a certain time

horizon.

4) The dynamics constraints are taken into consideration in the introduced approach

and the control variables are calculated within certain limits.

8

5) A discrete-time model for evolving fire front is defined to enable the UAVs to track

them when they evolve in random direction.

6) The cost function is defined according to the tracking error.

Each item has already been developed and used separately. For example in [60-63]

the look-ahead property has been defined but the constraint have not been considered in all

of them or the cost functions have been defined without considering the tracking error. The

innovation of the algorithm described in this chapter is that it solves path-planning problem

in a POMDP framework considering all the features mentioned above. This is novel

because in other studies, where POMDP is used to solve general path-planning problems,

either not all these features have been taken into account or separate algorithms are

designed to overcome the challenges such as collision avoidance or practical constraints in

UAV motions. In [64] the similar approach is implemented but no constraints has been

considered. Collision avoidance has been taken into account in [65] but the target tracking

has not been involved. Other approaches have been also suggested for addressing collision

avoidance [66-69] among which the most recent ones are Bezier curve optimization [70,

71], Particle Swarm Optimization (PSO) [72] and nonlinear Model Predictive Control

(MPC) [73]. Here we extend the approach described in [74] in order to enable the algorithm

to embrace the case of tracking randomly evolving fire fronts. In [74], it is assumed that

target motion models are the same for all the targets. In our algorithm, no specific motion

model for the fire fronts is required and the UAVs are able to track the fronts only according

to data of the momentary positions of them. This makes the algorithm very compatible for

being implemented in case of tracking any randomly maneuvering targets and since for

each time-step a simple linear model is constructed for the target, the algorithm remains

9

computationally fast, efficient and inexpensive. The approach computes the control

variable of UAVs considering collision avoidance and the dynamic constraints and with a

“look-ahead” quality in a POMDP framework and the cost function is defined according

to the tracking error.

POMDP problems are known as intractable problems, which means they cannot be

exactly solved but keeping the essence of the theory, approximation methods can be

implemented to enable us to provide optimal solutions. There are many approximation

approaches such as heuristic Expected Value-To-Go [75], policy rollout [76], hindsight

and foresight optimization [77-80] and parametric optimization [79, 81]. In this chapter we

use Nominal Belief-state Optimization (NBO) which is the most appropriate method for

tracking problems because it is less computationally intensive and allows us to define the

cost function to be analytically solvable. Moreover, since it is a special case of hindsight

and foresight optimization, it can be amicably extended to embrace the case of randomness

in the tracking problem.

10

2. Single-Input Systems

2.1 Overview

In this chapter, the consensus problem for a general linear time-invariant (LTI) multi-

agent systems with a single input is studied in a new optimal control framework. The

approach is derived from a modified linear quadratic regulator (LQR) method by an

innovative design of the cost function by using an inverse optimal control formulation.

Three cost terms are constructed to address the consensus, control effort, and cooperative

tracking, respectively. This formulation allows a closed-form feedback control law with

guaranteed asymptotic stability and optimality. The two important advantages of this

approach are (1) the optimal control law is derived pure analytically and (2) it is

distributed, which means that it only requires local information based on the

communication topology to enable the agents to achieve consensus and track a desired

trajectory, rather than centralized control laws in which all agents’ information is required.

This chapter is organized as follows. In Section 2.2, some preliminaries and fundamental

concepts of graph theory are reviewed. The system is described and the problem is

formulated in Section 2.3. Main results are presented in Section 2.4 and the algorithm of

the approach is also provided in this Section which can be used as a quick reference for

practical applications. Two examples are shown in Section 2.5 to demonstrate the

performance of the proposed method.

11

2.2 Preliminaries

Since communication between agents is modeled by graphs, some basic notions of

the graph theory are worth reviewing briefly. (,)G N E= , represents a graph with the

nonempty set of nodes N and the nonempty set of the edges E where E N N  . A graph

is called “directed” if all the pairs are ordered. A directed path is a sequence of ordered

edges in the form of
1 2 3 4(,),(,),...,i i i i where ji N .

1 2(,)i i means that agent 2 can receive

information from agent 1 but not vice versa. In an undirected graph,
1 2(,)i i means that both

agent 1 and agent 2 can obtain information from each other. An undirected graph is called

“connected” if a path can be found between each pair of nodes. A directed graph is

“strongly connected” if there is a path from every node to every other node. Figure 2 shows

the differences between these types of graphs.

Figure 2. Different types of graphs

Communication topology is described by the adjacency matrix ()

g g

d

d ij n n
a


 =  A in which

() 0d

iia = and

12

 ()
1 if (,)

0 if (,)

d

ij

i j E
a

i j E


= 


 (1)

where gn is the number of agents. For an undirected graph, the adjacency matrix is

symmetric. The Laplacian matrix of a system of agents is defined as:

d= −L D A (2)

where D is the diagonal degree matrix with the entries of ()

1

n
d

ii ij

j

d a
=

= . For an undirected

graph, the Laplacian matrix L is symmetric, and has a simple zero eigenvalue with an

associated eigenvector
gn1 (a column vector of all ones) and all the other eigenvalues are

positive if and only if the graph is connected. Every row sum of L is zero which means:

gn =L1 0 (3)

2.3 Problem statement and formulation

A general controllable LTI system is said to achieve consensus when all the agents’

states converge to the same common value, (i.e.
i j →X - X 0) at the same time, where

iX

is the state vector of agent i.

In other words, consensus is reached if there exists a real-valued function ()cs tX such that

() ()cst t− →X X 0 as t → . X is the state vector of the whole system of agents defined as:

11 12 1 21 22 2 1 2, , , , , , , , , , , ,
g g g

T

n n n n nnX X X X X X X X X =
 

X where ijX

represents the ith state of the jth agent.

In this study, it is assumed that each agent has the same dynamics of

13

 i g i g iX = A X + B U (4)

The dynamics of the whole system of agents is written as:

 X = AX + BU (5)

where ()
g gg n ij nn n

a


=  = A A I I , ()
1g gg n j nn

b


=  = B B I I . n is the dimension of the

single agent’s system and 1 2 g

T

n
 =
 

U U U U is the input vector for the agents.

The final consensus state vector should satisfy the system equation (5). Since 1gcs n n =U 0

when the system achieves consensus, we have

cs cs cs csX = AX + BU = AX (6)

An error state vector is defined as:

 ˆ
cs−X = X X (7)

Taking the time derivative of the error state vector yields:

 ˆ ˆ()cs cs cs− − −X = X X = AX + BU AX = A X X + BU = AX + BU (8)

Consensus is said to be reached if the system (8) is asymptotically stable.

For any controllable LTI system, a transformation matrix T can be found to

transform the system to a controllable canonical form (CCF) [82].

gnT = MW I (9)

where

 2 1n− =  M B AB A B A B (10)

is the controllability matrix and W is called flipped Toeplitz matrix and has the form of:

14

1 2 1

2 3

1

1

1 0

1 0 0

1 0 0 0

n

n

a a a

a a

a

−

−

 
 
 
 =
 
 
  

W (11)

ia ’ s are the coefficients of the characteristic equation of the state matrix gA .

Using the transformation matrix (9), the state vector and the final consensus vector

can be expressed as:

 =X TX (12.a)

 cs cs=X TX (12.b)

Subtracting (12.b) from (12.a) leads to:

 ˆˆ()cs cs− − X X = T X X X = TX (13)

Using (13), the system (8) can be converted to a CCF as:

 ˆ ˆ
X = AX + BU (14)

where

 1

0 1 2 1

0 1 0 0

0 0 1 0

0 0 0 1
gn

na a a a

−

−

 
 
 
 = 
 
 
 − − − − 

A = T AT I (15)

The last row of A contains the coefficients of the characteristic equation of the system

state matrix gA and

  1

1
0 0 0 1

g

T

nn

−


= B = T B I (16)

Now the system (14) can be rewritten as:

15

 ()2 1

ˆ ˆ
X = A + BK X + BU (17)

where

2 1+ =A BK A (18)

and

 2

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

gn

n n

 
 
 
 = 
 
 
  

A I ,  1 0 1 1 gn na a a −= − − − K I (19)

The new equivalent system has the form of

 2 2

ˆ ˆ
X = A X + BU (20)

where

 2 1

ˆ
U = K X + U (21)

The consensus problem becomes finding a feedback control input
2U such that the system

(20) is asymptotically stable.

In this paper, the cooperative control problem is formulated in an optimal control

framework as follows:

1 2 3

2 2

min :

ˆ ˆ
. :

J J J J

s t

= + +

X = A X + BU
 (22)

1J is the cost for state deviations or consensus cost given by

 ()1 1
0

ˆ ˆTJ dt


=  X R X (23)

16

where
1R is a (g gn n n n  ) diagonal and positive semi-definite (P.S.D) matrix. An

approach for properly constructing this matrix will be shown afterwards in section 4.4.

2J is the control effort cost given by

 ()2 2 2 2
0

TJ dt


=  U R U (24)

where 2

2 gc nw=R I is positive definite (P.D) and
cw is the weighting parameter.

3J is the cost for tracking and has the form of

 3
0

ˆ
()J h dt



=  X (25)

where ˆ
()h X is constructed by an inverse optimal control approach and contains the

tracking penalty function, which will be described in the next section.

2.4 Main Results

2.4.1 Optimal control solution

The following Lemma is used in this paper to prove the asymptotic stability and

optimality of the proposed cooperative control law.

Lemma 2.1 [41]: Consider the nonlinear dynamical system

 () 0

ˆ ˆ ˆ ˆ
() () () (0) , 0t t t t= X = f X ,U , X X (26)

with ()f 0,0 = 0 and a cost functional given by:

 () ()0

ˆ ˆ
() () ()t t dt



0J X ,U T X ,U (27)

17

where ()U is an admissible control. Let nD be an open set and m . Assume that

there exists a continuously differentiable function :V D→ and a control law : D →

such that

 () 0V =0 (28)

 ˆ ˆ ˆ
() 0, , V D  X X X 0 (29)

 () =0 0 (30)

 ()ˆ ˆ ˆ ˆ ˆ
'() , () 0, , V D   X f X X X X 0 (31)

 ()ˆ ˆ ˆ
, () 0, H D = X X X (32)

 ˆ ˆ
(,) 0, , H D  X U X U (33)

where ˆ ˆ ˆ ˆ
() () '() ()H T V+X,U X,U X f X,U is the Hamiltonian function. The superscript '

denotes partial differentiation with respect to ˆ
X .

Then, with the feedback control

 ˆ
() (())U = X (34)

the solution ˆ
X 0 of the closed loop system is locally asymptotically stable and there

exists a neighborhood of the origin
0D D such that

 ()0 0 0 0

ˆ ˆ ˆ ˆ
(()) (), V D = J X , X X X (35)

In addition, if 0 0

ˆ
DX then the feedback control (34) minimizes 0

ˆ
(())J X ,U in the sense

that

18

 ()
0

0 0ˆ() ()

ˆ ˆ ˆ
(()) min (())

S




=
U X

J X , X J X ,U (36)

where 0

ˆ
()S X denotes the set of asymptotically stabilizing controllers for each initial

condition 0

ˆ
DX . Finally, if , n mD = = and

 ˆ ˆ
() as V → →X X (37)

The solution ˆ
(0) X 0 of the closed loop system is globally asymptotically stable.

Proof: Refer to [41].

Before presenting the main theorem, we define the tracking penalty function

1

ˆ ˆ
() ()

i

n

tr

i

g g
=

X X (38)

() () if the agent has access to the referenceˆ

()
0 if not

i

T

i D i D
tr

i
g

 − −
= 


X X G X X
X (39)

where G is a positive semi-definite weighting matrix with tunable elements
idw

constructed by

1 1 2 1

1 2 2 2

1 2

2

2

2

. .

. .

. .

n

n

n n n

d d d d d

d d d d d

d d d d d

w w w w w

w w w w w

w w w w w

 
 
 

=  
 
 
 

G (40)

and DX is the reference trajectory along which the system is expected to follow.

Combining this tracking penalty function with the formation cost function
1J enables the

system of agents to follow a specified desired trajectory consensually. Note that only one

agent having access to the reference is sufficient to guarantee that the entire system follows

the desired trajectory if the communication topology is connected.

19

In order to investigate the eigenvalues of G , the following lemma from exterior algebra is

required.

Lemma 2.2 [83, 84]: Let R be a commutative ring and m be a positive integer.

The characteristic polynomial of any ()m RG M can be written as:

 1

1 1det() () ... () ()m m

m m mt t c t c t c−

−− = + + + +I G G G G (41)

where () (1) tr(())k k

kc = − G G . ()k G is the kth exterior power of G and ()m RM is the set

of all the linear mapping with rank m . Furthermore, ()1 =G G and () 0k =G for k r

where r is the rank of G .

Proof: Refer to [83, 84]. □

 According to Lemma 2.2, the characteristic polynomial of G can be written as:

0

() (1) tr(())
m

m k k k

k

P t t −

=

= − G G (42)

The matrix G is symmetric and its rank is 1r = since each column is a product of any other

column and a constant. Therefore () 0 for any 2k k = G and since 1 =G G , (42) is

reduced to:

 ()
2

1

1

0
i

m
m m

d

i

t w t −

=

 
− = 
 
 (43)

which implies that the set of eigenvalues contains (1)m− zeros and ()
2

1
i

m

d

i

w
=

 , therefore

G is positive semi-definite.

Before providing the main results, the following two Lemmas are introduced.

20

Lemma 2.3 2
L is positive semi-definite (P.S.D) and 2

1 1n n =L 1 0 if the graph is

undirected and connected.

Proof: Refer to [40]. □

Lemma 2.4 2

k k +L L is positive definite (P.D) and ()2

1 1k k n n   + =L L 1 0 if the

graph is undirected and connected and

 2 0k i k ie e +  (44)

where
ie is the ith eigenvalue of L .

Proof: Since L is the Laplacian matrix of an undirected and connected graph, there exist

two matrices Q and Λ such that:

 1−=L QΛQ (45)

where Q is the matrix of eigenvectors of L and Λ is a diagonal matrix whose entries are

the eigenvalues of L . For 2
L we can write:

 2 1 1 2 1− − −= =L QΛQ QΛQ QΛ Q (46)

Using the same approach, 2

k k +L Lcan be written as:

2 2 1 1 2 1

2

1 1

2

12 2

2

()

0 0

0 0

0 0

k k k k k k

k k

k k

k n k n

e e

e e

e e

     

 

 

 

− − −

−

+ = + = +

 +
 

+ =
 
 

+  

L L QΛ Q QΛQ Q Λ Λ Q

Q Q
 (47)

where
ie is the ith eigenvalue of L . Since L is the Laplacian matrix for a connected and

undirected graph, it is P.S.D and 0ie  . Therefore 2

k K +L L is P.D if 2 0k i k ie e +  .

In addition,

 ()2 2

1 1 1 1 1 1()k k n k n k n k n k n n          + = + = + =L L 1 L 1 L1 L L1 L1 0 (48)

21

 □

The main result of this paper is presented in the following theorem.

Theorem 2.1 For gn identical agents with the same controllable LTI dynamics (4),

and connected and undirected communication topology, by choosing proper weights, the

feedback control law

 * 1

2

()

1
()

2 c n

g
w

− 
= −


U KT X X

X
 (49)

makes the system (5) achieve consensus and track the reference trajectory, while

minimizing the cost functional (22). T is the transformation matrix given by (9).

() 1 2 g

T

n n n nnX X X =
 

X is the vector of the last states of the agents. K in (49) is

defined by

 ()1

2 1 gn

−= − − T
K R B P K I (50)

where
1K is defined in (19) and P is the solution of the algebraic Riccati equation (ARE)

that will be given in the proof.

The cost function ˆ
()h X in

3J in Eq. (25) is constructed as:

 22

()

1ˆ ˆ ˆ ˆ
() () ' ()()

ˆ4

T

c n

h g g
w


= − −


X X X A SP X

X
 (51)

where 1

2

T−=S BR B and

()

ˆ
()

ˆ
n

g



X

X
is the derivative of the tracking penalty function with

respect to the last states of the agents.

22

Proof: According to the definition of the cost functional (22) and Lemma 2.1, 2

ˆ
()T X,U

and 2

ˆ
()f X,U are defined as:

 2 1 2 2 2

ˆ ˆ ˆ ˆ
() ()T h+T T
X,U = X R X + U R U X (52)

 2 2 2

ˆ ˆ
(,) = +f X U A X BU (53)

A Lyapunov function is chosen as:

 ˆ ˆ ˆ ˆ
() ()V g= +T
X X PX X (54)

For ˆ
()V X to be a valid Lyapunov function, it should be continuously differentiable with

respect to ˆ
X , which is obvious from the definition of ˆ

()g X .

The Hamiltonian function is constructed as

()()

2 2 2

1 2 2 2 2 2

ˆ ˆ ˆ ˆ ˆ
(, , ' ()) () ' () (,)

ˆ ˆ ˆ ˆ ˆ ˆ
() 2 ' ()

T T

T T T T

H V T V

h g

= +

= + + +

X U X X,U X f X U

X R X + U R U X X P X A X + BU
 (55)

Taking the derivate with respect to
2U , the optimal control is determined as:

2 2

2

1 1

2 2 2

ˆ ˆ0 2 2() '() 0

1ˆ ˆ ˆ
() '()

2

T

T

H
g

g − −


=  + + =



 − −

T

* T

R U B PX B X
U

U = X = R B PX R B X

 (56)

Next, all the conditions from (28) to (33) must be satisfied. Substituting 2

*
U in the second

term of the Hamiltonian function (55) yields:

2 2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
' () (()) (2) '()

1ˆ ˆ ˆ ˆ
' ()() ' () '()

2

T T T T

T T

V g

g g g

 = + − −

+ − −

X f X, X X A P PA PSP X X PS X

X A SP X X S X
 (57)

23

where 1

2

− T
S BR B . Note that the term 2

ˆ ˆ
(2)T

X PA X in (55) is a scalar and can be rewritten

as 2 2

ˆ ˆ
()T T

X A P + PA X in (57). The Hamiltonian function with the optimal control ˆ
() X

becomes

2 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
(() ' ()) () ' ()()

1ˆ ˆ ˆ
 + () ' () '()

4

T T T T

T

H V g

h g g

 − + −

−

X, X , X = X A P + PA + R PSP X X A SP X

X X S X
 (58)

In order to satisfy the condition (32), Eq. (58) should be zero, which requires that:

2 2 1

T + + −A P PA R PSP = 0 (59)

 and

 2

1ˆ ˆ ˆ ˆ ˆ
' ()() () ' () '() 0

4

T Tg h g g− + − =X A SP X X X S X (60)

The importance of Eq. (60) is that it allows us to determine ˆ
()h X and thus the cost function

3J .

Eq. (59) is an algebraic Riccati equation (ARE). In order to solve the ARE, we need to

construct
1R such that it is P.S.D and P is P.D. Here we construct this matrix as follows:

2 2

1

2 2

2 12

2 2
1 3 23

2 2

(1)

2

2

2

g g g g g g

g g g g g g

g g g g g g

g g g g g g
g g

n n n n n n

n n n n n n

n n n n n n

n n n n n n n n n
n n n n

w

w

w

w

  

  

  

   −
  

 
 

− 
 

= − 
 
 
 −
 

L 0 0 0

0 L P 0 0

R 0 0 L P 0

0 0 0 L P

 (61)

where
iw ’s are the tunable weights for the ith state and (1) , 1i i i n−  P are the entries above

the main diagonal of the matrix P (the solution of the ARE (59)). These terms are

subtracted from the diagonal entries of
1R to guarantee that ARE becomes a linear function

of the Laplacian matrix L . Expanding (59) leads to:

24

11 1(1)

12 2(1)11 12 1

1(1) 2(1) (1) 1 (1)

2 2

1

2 2

2 122

g g
g g g g g g

g g

g g

g g g g

g g g g

g g g g

n n nn n n n n n

n n nn

n n n n n n n n n

n n n n

n n n n

n n n n n

w

w

w

 −  

 −

− − −  −

 

 

 

  
  
  

+   
  
     

−
+

0 P P0 0 0

0 P PP P P

P P P 0 P P

L 0 0

0 L P 0

0 0

2

1 1 2 1

2

1 2 2

2

22 2
1 2(1)

1

2

g gn n n n

n n n n nn

n nn n n nn

c

n nn n nn nnn n

w

  

−

 
 
 
 
 
 
 

=             −            −    

0

P P P P P

P P P P P

P P P P PL P

 (62)

The system of algebraic equations (62) allows us to solve the ARE analytically. P is

determined by the following steps.

1) The equations for the entries on the main diagonal are first solved:

2 2 2

1 12

2 2 2

(1) (1) 2

1
, 1

1
2 2 , 2

g g

g g

n n n

c

i i i i i in n n

c

w i
w

w i n
w



− − 


− = =



 + − − =  


L P 0

P L P P 0

 (63)

and therefore:

 , 1in i cw w i n=  P L (64)

2) The equations for each row in the system (62) are solved one by one. For example, for

the first row we derive the following equation:

 2

1 1 (1) 1 1i iw w i n+=   −P L (65)

Then all the row equations are solved in a similar way to obtain all the entries of P .

Note that all the entries are obtained analytically without any numerical iteration.

From the above solutions, it is seen that all the entries of P can be written as a linear

combination of L and 2
L (i.e. k k +2

L L where both
k and

k are functions of state and

25

control weighting parameters). Therefore, according to Lemma 4.4, one can always choose

weighting parameters such that
1R is P.S.D and P is P.D.

Since P is P.D and G is P.S.D, ˆ ˆ ˆ
() 0, , V D  X X X 0 and condition (29) is satisfied.

The condition (33) can be shown to hold as follows:

2 2 2 2 1 2 2

2 2 2 1 2 2

2 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
(' ()) () (2 ' ())()

ˆ ˆ ˆ ˆ ˆ ˆ
 = () (2 ' ())()

ˆ ˆ
 + ()

T T T T

T T T T

T

H V h g

h g

= + + + + +

+ + + + +

−

T

T

X,U , X U R U X X R X X P X A X BU

U R U X X R X X P X A X BU

X A P + PA + R PSP X

2 2 2 2 2 2

2 2 2

2

ˆ ˆ ˆ ˆ ˆ ˆ
 = () ' ()() 2

1 ˆ ˆ ˆ ˆ
 = ' () '() ' ()

4

ˆ ˆ ˆ ˆ
 + (2 ' ())

T T T T

T T T

T T T

h g

g g g

g

+ + + + +

+ +

+ +

U R U X X A X BU X PBU X PSPX

U R U X S X X SPX

X PSPX X P X BU

2 2 2 2

1 ˆ ˆ ˆ ˆ ˆ ˆ
 = (2 ' ()) (2 ' ()) (2 ' ())

4

T T T T T T T Tg g g+ + + + +U R U X P X S X P X X P X BU

 (66)

Since 1 1

2 2

1ˆ ˆ
'()

2

T g − −= − −T
R B PX R B X from (56), we can write:

1

2 2

2

2

ˆ ˆ
2 (2 ') 2 (2 ') '

' 2

' 2

T T

T T

g g V

V

V

 





−= − +  = − + −

 −
 

−

T

T

R B PX R B PX = B

B = R

B = R

 (67)

Using (67), (66) becomes

() ()

2 2 2 2

1

2 2 2 2 2

1

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

1
' ' (')

4

1
' () ' '

4

1
(2) (2) '

4

(2)

ˆ ˆ
2 () ()

T T T

T T T T

T T T

T T T

T
T T T

V V V

V V V

V 

  

    

−

−− −

−

− − − 

T

T

T

U R U + S + U B

= U R U + BR B + U B

= U R U + R R R + U B

= U R U + R + U R

= U R U + R U R = U X R U X 0

 (68)

Therefore, (68) verifies the condition (33), i.e. 2

ˆ ˆ
(' ()) 0H V T
X,U , X

26

Using (59) and (60), the condition (31) can be shown to hold as follows

 1

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ' () (()) () (' ()) ('())
2 2

T T TV h g g
 

− + + + + 
 

T X f X, X = X R X X X P X S PX X (69)

Since 1

ˆ ˆT
X R X is P.S.D and

1 1ˆ ˆ ˆ ˆ
(' ()) ('())

2 2

T Tg g+ +X P X S PX X is P.D.,

ˆ ˆ ˆ
' () (()) 0V  T

X f X, X if ˆ
() 0h X . From equation (60), ˆ

()h X is derived as

2

(1) (2)

1 2 (2) (3)

2

() () (1) (2) (1)

() ()

1ˆ ˆ ˆ ˆ ˆ
() ' () '() ' ()()

4

ˆ ˆ

ˆ ˆ1 ˆ
()

ˆ ˆ ˆ ˆ ˆ4

ˆ ˆ

T T

n

c c c cn n n

n n

h g g g

ww wg g g g
g

w w w w
−

= − −

   
   

         
 = + −    
           

   
      

X X S X X A SP X

X X

X X
X L L L

X X X X X

X X

 (70)

where ()

ˆ
kX is the vector of the kth state of all the agents. Eq. (70) shows that one can always

find proper weights such that ˆ
() 0h X . Specifically, for a given set of state weighting

parameters (i.e.
1 2, ,..., nw w w) the control weight parameter can be chosen small enough such

that the positive term
2

()

1 ˆ
()

ˆ4 c n

g
w




X

X
 is always greater than the other terms that are sign-

indefinite.

The conditions (28) and (30) are satisfied if ˆ
() 0g =X and ˆ

'()g =X 0 when ˆ
=X 0 .

Note that after reaching consensus, when the agents go along a desired trajectory, we have:

cs D=X X , which indicates D=X X when ˆ
=X 0 . Therefore, according to the definition of

ˆ
()g X , ˆ

() 0V =X when ˆ
=X 0 , and the condition (28) holds.

The second term in the optimal control (56) is calculated as

27

()

()

() ()() if the agent has access to the reference
ˆ

ˆ

0 if not

0 0 1

0 0 0

 =

0 0 0

T

i D i D

n

n

ig

  − + − 
=     


 




 

X X G G X X
X

X

()() if the agent has access to the reference

0 if not

g

T

i D

n n

i




 
  + − 





G G X X

 (71)

It is obvious that when all the agents go along the desired trajectory, (71) is zero and the

condition (30) holds.

Now all the conditions (28)-(33) in Lemma 2.1 are satisfied and therefore, the control

law ˆ
() X is an optimal control to minimize (22). In the meanwhile, the closed-loop system

(20) is asymptotically stable. Furthermore, it is evident that the Lyapunov function (54)

satisfies ˆ
()V →X as ˆ

→X . Thus, the closed-loop system is globally asymptotically

stable.

The optimal control law for system (14) can be obtained from (21) as

* 1 1

2 1 2

1 1

2 0 1 1 2

1

2

1ˆ ˆ
() '()

2

1ˆ ˆ
([]) '()

2

1ˆ ˆ
'()

2

T T

T

n ng

T

g

a a a g

g

− −

− −

−

−

= − − −

= − − − − −  −

= −

T

U R B P K X R B X

R B P I X R B X

KX R B X

 (72)

where

(1) (2) ()

ˆ
'()

ˆ ˆ ˆ

T

n

g g g
g

   
 =
    

X
X X X

 and () 1 2 g

T

i i i inX X X =
 

X) .

28

Since 1

2 2

1
n

cw

− =R I and  
1

0 0 0 1
g

T

nn
= B I , the second term of the controller (72)

can be written as

 1

2 2

()

1 1ˆ ˆ
'() ()

ˆ2 2

T

c n

g g
w

− 
=


R B X X

X
 (73)

(72) is the optimal control for the system (14), which is equivalent to the system (20). The

optimal cooperative control law can be written in a more compact form as

 * 1

2

()

1 ˆˆ ()
ˆ2 c n

g
w

− 
−


U = KT X X

X
 (74)

and K is calculated by (50).

Applying the control (74) into Eq. (14) leads to

()

1

2

()

1

2

()

1 ˆˆ ˆ ˆ ()
ˆ2

1 ˆˆ ˆ ()
ˆ2

c n

c n

g
w

g
w

−

−

  = + −
  

  
 = + −  

 

X AX B KT X X
X

X A BKT X B X
X

 (75)

Replacing X̂ with
cs−X X , we have

() ()()1

2

()

1 1

2

()

1 ˆ
()

ˆ2

1 ˆ
()

ˆ2

cs cs

c n

cs cs cs

c n

g
w

g
w

−

− −

  
− = + − −  

 

  
 − = − + − −  

 

X X A BKT X X B X
X

X X AX AX BKT X BKT X B X
X

 (76)

According to (6), cs cs=X AX and 1

1gcs cs n n

−

 = =U KT X 0 . Thus, (76) is reduced to

 1

2

()

1 ˆ
()

ˆ2 c n

g
w

−   
= + −  

 
X AX BKT X B X

X
 (77)

29

()

ˆ
n

g

X
 is calculated in (71). Since

DX is known to the agent i that has access to the desired

trajectory,
()()

ˆ
() ()

ˆ
nn

 
=


g X g X
XX

. Now the vector ()i D−X X can be converted to the

original state.

1

()

0 0 1

0 0 0
() () if the agent has access to the reference

0 0 0 0

0 if not

g

T

i D

n

n n

ig
−



 
 
  + −  = 
  
 



G G T X X

X

 (78)

Using (78), the optimal control law becomes (49)

* 1

2

()

1
()

2 c n

g
w

− 
= −


U KT X X

X

and K is defined by (50). □

Remark 2.1 In the conventional optimal control approach, the cost functional is

given a priori and the optimal control law is derived by minimizing it. It can be seen that

the approach described in Theorem 2.1 is an inverse optimal control approach. A Lyapunov

function ˆ
()V X is constructed first based on the stability conditions (28) and (29) and then

the optimal control law ˆ
() X is derived from the optimality condition 0

H
=

U
. By

satisfying the optimality condition (32), ˆ
()h X in the cost functional

3J is constructed

while satisfying the stability condition (31). In other word, for this approach, the cost

function ˆ
()h X is not specified a priori as the conventional optimal control design. It is

constructed inversely from the stability and optimality conditions (28) to (33). The benefit

30

of this design is that the resulting control law is guaranteed to be both stabilizing and

optimal. In addition, according to the Lemma 4.1, the minimum cost made by the derived

control law ˆ
() X is equal to the introduced Lyapunov function as shown in (35).

2.4.2 Discussion on the distributed cooperative control law

It is necessary to show that the optimal cooperative control law (49) is a distributive

control law. To this end, we first investigate the first term of the optimal cooperative control

*
U in (49), which can be expanded as follows.

11 12 1

11 12 1

21 22 2

2 21 22 21

1 2

1 2

0 1 1

1
g g g

g g g g g g g
g g g

g g g

g g g

n

n n n n

n

n n n n n n n n n n n n
c

n n nn

n n n n nn n

n n n n

t t t

t t t
w

t t t
a a a

  
−

−

  
   
    −    =   
  
 
   − − − −

  

P P P
I I I

P P P
I 0 0 0 I I I I

KT X

P P P

I I I
I I I

 

11 12 1

21 22 2

1 2 0 1 12

1 2

11 1 0 21 2 1 1 12 2 2

1

1 1 1

g g g

g g g

g g g

g g g

g g g

n n n n

n n n n

n n nn n n n n

c

n n n n nn n

n n n n n nn n n

c c c

t t t

t t t
a a a

w

t t t

t a t a t a
w w w

−

−






 
 

   
 = − − − − −    

   
 
 

    
− − − − − − −    

    

=

X

I I I

I I I
P P P I I I X

I I I

P I P I P I

12 1 0 22 2 1 2 12 2 2

1 1 0 2 2 1 12 2 2

,

1 1 1
,

1 1 1

g g g

g g g

n n n n n nn n n

c c c

n n n n n n nn nn n n

c c c

t a t a t a
w w w

t a t a t a
w w w

−

−

 
 

 
 

     
 − − − − − − − −     
      
 

      
− − − − − − − −      

      

P I P I P I X

P I P I P I (79)

where ijt are the entries of 1−
T . Note that B is in the form of  0 0 0 1

gn I and

thus the product of 1

2

T−
R B P in K only keeps the last column of P , i.e.

inP , which is

calculated by (64). Since
inP ’s are always linear functions of the Laplacian matrix L as

shown in Eq. (64), when they are multiplied by the state vector X in (79), the feedback

information exchange to implement the optimal control occurs only between the agent and

31

its neighbors with whom it has the communication links defined by the Laplacian matrix

L . The other terms consisting of
ia ’s (characteristic equation coefficients of gA) and

identity matrices in (79) relate to the agent’s own state. The second term of *
U in (49) only

relates to the state of the agent that has access to the reference. Therefore, from the above

discussions, the whole optimal cooperative control law is distributed since each agent’s

control law only needs local information from its own and its communicating neighbors.

Remark 2.2: According to (79), only the last column of P calculated by (64) is

required in order to calculate the optimal control law.

2.4.3 Defining the proper desired trajectory

When the system is controllable, it is possible to reach any state in finite time but we

still need to define a proper desired trajectory such that the agents are able to follow after

reaching consensus. Since
DX (the desired trajectory) should satisfy the system dynamics,

we can write:

 D g D g D g D D g D= +  = −X A X B U B U X A X (80)

Define two matrices O and N as follows

(1)

0 1 0 0

0 0 1 0

0 0 0 1
n n− 

 
 
 =
 
 
 

O (81)

  
1

1 0 0
n

=N (82)

Now by using (80), (81) and (82) the approach below is followed in order to obtain the

system of ordinary differential equations for finding the desired trajectory:

32

()

() ()

() ()

g D g D

g D g D

g g D g g D

g g D D g g D D

g g D g D g g D g D

g g g g D g g D

− = −

 − = −

 − = −

 − = −

 − = −

 − = −

B U B U

OB U OB U

NB OB U OB NB U

NB O A X X OB N A X X

NB OA X NB OX OB NA X OB NX

NB OA OB NA X NB O OB N X

 (83)

Note that gNB is a scalar (the first entry of the column vector gB) and therefore it can be

put anywhere in the equation.

Expanding the two sides of the equation (83) leads to:

2 1 1 21 2 11 1 22 2 12 1 2 2 1

3 1 1 31 3 11 1 32 3 12 1 3 3 1

1 1 1 11 1 1 12 1 1

0 0

0 0

0 0

n n

n n

D D

n n n n n nn n n

b b b a b a b a b a b a b a

b b b a b a b a b a b a b a

b b b a b a b a b a b a b a

− − − −   
   
− − − −
   =
   
   
− − − −   

X X (84)

where jb ’s and ija ’s are the entries of the gB and gA respectively. There are ()1n −

differential equations with n unknowns, so the system (84) has infinitely many solutions.

Once one of the states is set, the rest can be calculated by solving ()1n − equations to obtain

a unique solution as the desired trajectory.

2.4.4 The algorithm for finding the optimal cooperative control

The approach to find the optimal cooperative control *
U for a system of gn agents

with the general LTI dynamics *= +X AX BU to achieve consensus and follow a desired

trajectory can be summarized in the following algorithm:

1) Use (10) to compute the controllability matrix M .

33

2) Check the rank of M . If M is not full rank, the system is not controllable and the

approach cannot be applied.

3) Find the characteristic equation of the state matrix gA .

4) Construct the flipped Toeplitz matrix W by (11).

5) Compute the transformation matrix
gn= T MW I and its inverse 1−

T .

6) Construct the Laplacian matrix L according to the network topology and
1R as

defined in (61).

7) Using
1R , solve the ARE (59) to find the analytical solution of P given by (64).

Note that only the last column of P is used in the optimal control as discussed in

Remark 4.2.

8) Substitute the calculated (1)2 i i−− P into the diagonal entries of
1R (constructed in step

6) and choose proper weights  1 2, , , nw w w such that
1R becomes P.S.D.

9) Choose a proper weight
cw for the control and make the P.D. matrix 2

2 gc nw= R I .

10) Pick an appropriate desired trajectory
DX by solving the system of differential

equations (84).

11) For any agent that has access to the reference vector, the tracking term of the

controller is:

 1

0 0 1

0 0 0
() ()

0 0 0
g

T

i D

n n

−



 
 
  + −
 
 
 

G G T X X (85)

For the rest of the agents, this term will be zero.

12) The optimal control is designed as:

34

  * 1 1

2 0 1 1 2

()

1
()() ()

2g g

T

n n n

c n

a a a g
w

− −

−


= − − − − −   −


U R B P I T I X X

X
 (86)

The second term is what has been calculated in step 11). Choose
idw ’ s such that the system

has the best response.

2.5 Illustrative examples

In this section, the performance of the optimal cooperative control design is

demonstrated through two examples. In the first example a very simple system is

considered in order to illustrate how the algorithm works mathematically. In example 2,

the algorithm is applied for solving a practical problem of synchronizing the attitude of a

group of satellites.

Example 2.1

For the first example, we intentionally select a simple two-dimensional problem with

only two agents in order to more clearly show the trajectories and consensus results in a

phase plane. We assume that the system consists of two identical agents with the same

dynamics of

i g i g i= +X A X B U

where
1 2 1

 ,
2 3 1

g g

−   
= =   

−   
A B (87)

The consensus problem is to make the system reach a specified point at the same time and

stop there. They can communicate via the undirected link shown in Figure 3.

35

Figure 3. The two agents in example 2.1

The corresponding Laplacian matrix is:

1 1

1 1

− 
=  

− 
L (88)

In order to obtain a point where the system can reach, the system (84) is solved. It is

assumed that only the first agent has access to the desired trajectory, which is denoted by

 1 2

T

D x x=X . For the system described in this example, the system is reduced to a simple

ODE as follows:

   

   

1 1

2 1 1 21 2 11 1 22 2 12

2 2

1 1

2 2

1 2 1 2

1 1 (2 1) (3 2)

5

x x
b b b a b a b a b a

x x

x x

x x

x x x x

   
− = − −   

   

   
 − − = − − −   

   

 − − = −

 (89)

Since for this example, the two agents are required to reach a fixed point and stop there,

both derivatives should be zero when consensus is reached. In other words,
1 2 0x x= = .

Therefore, the desired point should lie on the line
2 15 0 x x− = .

The optimal control law can be designed analytically by following the algorithm described

in Section 2.4. The results are shown in Figures 4(a)-(d). The final point is set to be [5, 1]

and the weights have been selected as:
1 21 21 , 2 , 0.5 , 1 , 0.5c d dw w w w w= = = = = .

The initial conditions are  1(0) 1,1x = − and  2(0) 0,1x = for the first and second agents,

respectively.

36

Figures 4. (a), (b) show the phase plane trajectories for the two agents. It can be seen that

there will always be a stable focus lying on the line of
2 10.2x x= ([5, 1] for this example).

Figures 4. (c), (d) show the results for the first and second states of the two agents

respectively. It can be seen that the first states finally reach the value of 5 and the second

states reach 1 in finite time.

Figure 4 (a). Phase plane for the first agent

37

Figure 4 (b). Phase plane for the second agent

Figure 4 (c). The first states of the agents

38

Figure 4 (d). The second states of the agents

Example 2.2 Satellite attitude control:

 In satellite attitude control, appropriate orientation is an important problem. A

sketch of the satellite control system and the model are shown in Figure 5 (taken from [85,

86]). The system can be considered as two separate masses (a large mass called “the body”

and one “attached mass”) which are connected to each other. Therefore it can be modeled

by a simple mass-spring-damper system in which “ k ” is the spring constant and “ d ” is

the viscous damping constant.

39

Figure 5. The satellite control system in example 2.2

The equations of motion are obtained as:

() ()

() ()

1 1 1 2 1 2

2 2 2 1 2 1 0

CJ d k T

J d k

    

    

 + − + − =


+ − + − =

 (90)

Where
CT is the control torque,

1J and
2J are moments of inertia. The system state matrix

and input state matrix are constructed based on these equations of motion as below:

 2 2 2 2

1

1 1 1 1

0 1 0 0
0

0

 , 0
0 0 0 1

1

k d k d

J J J J

k d k d
J

J J J J

 
  
  − −
  
 = = 
  
  
 − −   

 

A B (91)

We choose
1 2 1 , 0.09 , 0.022J J k d= = = = and the state vector is 2 2 1 1(, , ,)T

i    =X .

Satellite 1 has access to the reference trajectory. Using the system of differential equations

(115) lead to the obvious result that 1 2 2 2 or x x  = = .Therefore the desired trajectory

could be defined easily. We assume that the angular velocities are constant and equal to

0.35. Therefore, the angles are supposed to increase along the ramp 0.35t = .

40

The state and control weightings parameters have been chosen as:

1 2 3 41 , 3 , 3 , 1w w w w= = = = and
1

5
cw = . The tunable weights for the tracking penalty

function are
1 2 3 4

10 , 500 , 500 , 5d d d dw w w w= = = = The initial condition of each state of
2

,
2 ,

1 ,
1 are set to be

     6 5 8 2 7 rad , 0 1 0.5 1 0.5 rad/s , 8 7 7 6 7.5 rad
T T T

− − and

 0.6 1.5 1 0.8 1.5 rad/s
T

− respectively.

The topology is assumed as shown in Figure 4. The graph is obviously connected and

undirected.

Figure 6. The topology of the satellites

The corresponding Laplacian matrix is:

2 0 0 1 1

0 1 0 1 0

0 0 1 0 1

1 1 0 2 0

1 0 1 0 2

− − 
 

−
 
 = −
 
− − 
 − − 

L (92)

Figures 7(a)-(e) show the results. It can be seen that the rotational angles converge and

increase along the ramp of 0.35t = and the angular rates converge to the constant value

41

of 0.35 rad/s. It is worth noting that the responses of the satellite 1 are very smooth and do

not have oscillations because it has access to the reference trajectory.

Figure 7 (a). The rotational angles of the attached masses (the first states)

42

Figure 7(b). The angular rates of the attached masses (the second states)

Figure 7(c). The rotational angles of the bodies (the third states)

43

Figure 7(d). The angular rates of the bodies (the fourth states)

44

Figure 7(e). The control torque

45

3. Multi-Input Systems

3.1 Overview

In this chapter the algorithm described in chapter 2 will be generalized to embrace

general Linear Time-Invariant multi-input systems. When the input matrix is no longer a

column vector, the most important challenge would be the decision on choosing the proper

transformation matrix. We will develop three new theorems which enable us to define the

most appropriate transformation matrix and the important properties of it are derived. The

Algebraic Riccati Equation (ARE) can no longer be solved analytically but we will see that

the discussion on the distributed cooperative control law (developed in section 2.4.2) is

still valid. It will be seen that the proper design strategy of the desired trajectory must also

be redefined according to the new input matrix.

Problem statement and Formulation is described in section 3.2. Main results are provided

in 3.3. In this section optimal control solution is derived and some issues regarding the

distributed cooperative control law are discussed. Also, the approach for designing the

proper desired trajectory is explained in this section. Finally, the application of the defined

algorithm is illustrated through two examples in section 3.4.

3.2 Problem statement and formulation

When the system is a multi-input one, B is no longer a column vector (i.e. 1m  and

()
g gg ij n m

b


=  = n nB B I I) . Regarding to (9), any columns of the input matrix could be

46

used to obtain a new transformation matrix. The converted state matrix, A always remains

unchanged but B will be different by applying different transformation matrices. The

challenge of constructing the best transformation matrix can be elucidated by using three

following theorems:

Theorem 3.1 Let
jB s 1,2,...,j m= be the “m” columns of the input matrix

gB for

each agent and jT s be the associated transformation matrices (i.e.

2 1 , 1n

j j j g j g j g j j m− = =   T M W B A B A B A B W) and W is constructed as

(11). The transformation matrix
1

g

m

t j n

j=

 
=  
 
T T I converts the system matrix, A , into

canonical form (15) (i.e. 1

t t

− =T AT A).

Proof: For any jT , we have:

1

j j

− =T AT A

which means:

1 1 1 1

1 1 2 2 ...j j m m

− − − −= = = = =A T AT T AT T AT T AT

Applying the suggested transformation matrix,
1

m

t j

j=

=T T we have:

() () () ()

() ()

() ()

1 1

1 2 1 2

1 1

1 2 1 1 1 2

1 1 1

1 2 1 1 1 2 1 1

... ...

j j m m

m m

m m

− −

− −

− − −

= + + + + + +

= + + + + + +

= + + + + + +

 T A T T T T A T T T

T T T T AT T T T

T T T T A T AT T T AT T

() ()

() ()

() ()

1 1 1

1 2 1 2 2 2

1

1 2 1 2

1

1 2 1 2

m m m m

m m

m m

− − −

−

−

= + + + + + +

= + + + + + +

= + + + + + + =

T T T T A T AT T T AT T

T T T T A T A T A

T T T T T T A A

47

Theorem 3.1 shows that the sum of transformation matrices, made by the columns of

gB , is also a transformation matrix.

The following two theorems show useful properties of the converted input matrix of each

agents B when the transformation matrix
1

m

j

j=

=T T is applied.

Theorem 3.2 Let
jM be the controllability matrix associated with the “j”th column

of gB (i.e. 2 1n

j j g j g j g j

− =  M B A B A B A B where jB is the “j”th column of gB).

Using
1

m

t j

j=

=M M as the transformation matrix, the converted input matrix “ gB ” has the

following property:

 
1

1

1 0 0 0
m

T

j n
j


=

=B

In other words, the sum of columns of the converted matrix is always  
1

1 0 0 0
T

n
.

Proof:

 

1

1

1 2 1 2 1 2

1 1 1 1

m

g t g g t g j g

j

m m m m

m j m j j j m

j j j j

−

=

= = = =

 
=  = =  

 

   
  = =    

   



   

B M B B M B M B

B B B M B B B M B M B M B

Which means:

()1 2 1 2

1 1 1 1

m m m m

m j m j j j

j j j j= = = =

 
+ + + = + + +  =  

 
   B B B M B B B B M B

but 2 1

1 1 1 1 1

m m m m m
n

j j g j g j g j

j j j j j

−

= = = = =

 
=  
 

    M B A B A B A B , therefore:

48

2 1

1 1 1 1 1 1

m m m m m m
n

j j g j g j g j j

j j j j j j

−

= = = = = =

  
=   
  

     B B A B A B A B B

and this yields:

 
1

1

1 0 0
m

T

j n
j


=

=B

Theorem 3.3 Let jT s be the transformation matrices associated with the columns of

the input matrix of each agent,
jB s (i.e.

j j=T M W and
jM is as defined in Theorem 3.2

and W is flipped Toeplitz matrix (11)). Using
1

m

t j

j=

=T T as the transformation matrix, the

converted input matrix gB has the following property:

 
1

1

0 0 1
m

T

j n
j


=

=B

In other words, the sum of columns of the converted input matrix is always

 
1

0 0 1
T

n
.

Proof:

 

1

1

1 2 1 2 1 2

1 1 1 1

m

g t g g t g j g

j

m m m m

m j m j j j m

j j j j

−

=

= = = =

 
=  = =  

 

   
  = =    

   



   

B T B B T B T B

B B B T B B B T B T B T B

which means:

()1 2 1 2

1 1 1 1

m m m m

m j m j j j

j j j j= = = =

 
+ + + = + + +  =  

 
   B B B T B B B B T B

but 2 1

1 1 1 1 1

m m m m m
n

j j g j g j g j

j j j j j

−

= = = = =

 
=  
 

    T B A B A B A B W , therefore:

49

2 1

2

1 1 1 1 1 1

m m m m m m
n

j j g j g j j j

j j j j j j

−

= = = = = =

   
=   
   

     B B A B A B A B W B

According to the theorem 3.2 we have:

 

1 2 1

2 3

1 1

1

1 1

1
1

1 1 1

0 1 0 0

0 0

1 0 0

0 1 0 0 0 0

0 0 1

n

m m

j j

j j

n

n n n n

m
T

j n
j

a a a

a a

a

−

= =

−

  


=

     
     
     
     =  =
     
     
          

 =

 



W B B

B

Therefore, the appropriate transformation matrix for a multi-input system is defined as:

1

g

m

t j n

j=

 
=  
 
T T I (93)

Similar to single-input systems, the state and final consensus vectors are converted as:

t=X T X (94.a)

cs t cs=X T X (94.b)

By subtracting (94-b) from (94-a) the equation for converting the error state vector is

derived:

 () ˆˆ
t t− − cs csX X = T X X X = T X (95)

Using this transformation equation, the system is converted to:

 ˆ ˆ
X = AX + BU (96)

where A is the converted state matrix in form (15) and B , the converted input matrix,

has the property that the sum of all its columns is  
1

0 0 1
g

T

nn
 1 where

gn1 is a

column vector of gn ones.

50

We rewrite the converted system (96) as:

 ()2 1

ˆ ˆ
X = A + BK X + BU (97)

where
2 1+ =A BK A . For multi-input systems,

1K is a
g gm n n n   matrix and is

constructed as follows:

0 1 1

0 1 1

1

0 1 1

g

n

n

n

n m n

a a a

a a a

a a a

−

−

− 

− − − 
 
− − −
 = 
 
 
− − − 

K I (98)

Now the system (97) can be written as:

 2 2

ˆ ˆ
X = A X + BU (99)

where

2 1 2

0 1 0 0

0 0 1 0
ˆ

,

0 0 0 1

0 0 0 0

gn

n n

 
 
 
 = 
 
 
  

U = K X + U A I (100)

The problems is to find an input control to make (99) asymptotically stable.

Problem formulation is the same as what was described in section 2.3. All the definitions

are valid for multi-input systems. The only difference is the size of the matrix
2R , which is

defined as:

 2

2 gc m nw =R I (101)

3.3 Main results

51

3.3.1 Optimal control solution

Lemma 1 is still used for obtaining the main results. All the conditions from (28) to

(33) should be satisfied for the multi-input systems too.

Tracking penalty function and its weighting matrix are defined the same as (38)-(40).

Theorem 3.4 For a system of gn identical agents each with a dynamics of (4), the

following control law is an optimal control, which makes the system achieve consensus

and follow a proper desired trajectory.

 ()1 1

2 1 2

1
()

2

T T

t

c

g
w

− − 
= − − −


U R B P K T X B X

X
 (102)

where
2R is the control weighting matrix (102),

1K is defined as (98),
tT is the

transformation matrix and is defined as (93) and ()g



X

X
is the derivative of the tracking

penalty function with respect to the state vector X . The cost function ˆ
()h X is calculated

as:

 2

1ˆ ˆ ˆ ˆ
() ' () '() ' ()

4

T T Th g g g= − −X X BB X A SP X (103)

where 1

2

T−=S BR B and ˆ ˆ
'() ()

ˆ
g


=


X g X
X

 is the derivative of the tracking penalty function

with respect to the state vector ˆ
X .

Proof: For the converted system (99), ˆ
(,)T X U and ˆ

(,)f X U can be defined according to

the lemma 1 as:

 1 2 2 2

ˆ ˆ ˆ ˆ
() ()T h+T T
X,U = X R X + U R U X (104)

 2 2

ˆ ˆ
()f X,U = A X + BU (105)

52

Similar to what we did for single-input systems, a proper Lyapanov function is defined as:

 ˆ ˆ ˆ ˆ
() ()V g= +T
X X PX X (106)

 Again, (106) is a valid Lyapanov function since it is continuously differentiable with

respect to ˆ
X (regarding to the definition of G). On the other hand,

ˆ ˆ ˆ
() 0, and V   X X D X 0 as long as both P and G are Positive Semi Definite (P.S.D).

The proof is basically the same as it is for theorem 4.1. The control input for the system

(96) is written as:

1 1

2 2 2 1

1 1

2 1 2

1

2 1 2

1ˆ ˆ ˆ
'()

2

1ˆ ˆ
() '()

2

1ˆ ˆ
() ()

ˆ2

T

T

T

cw

− −

− −

−

= − − =

 = − − −


= − − −



T

T

T

U R B PX R B g X K X + U

U R B P K X R B g X

U R B P K X B g X
X

 (107)

and
1K is constructed as (98). Similarly, the control input (107) must be rewritten in terms

of the original system. Representing the terms in the parenthesis with K we can write:

 1

2

1 ˆˆ ˆ ()
ˆ2

T

t

cw

− 
−


U = KX = KT X B g X

X
 (108)

 Applying (108) into (8) we have:

()

1

2

1

2

1 ˆˆ ˆ ˆ ()
ˆ2

1 ˆˆ ˆ ()
ˆ2

T

t

c

T

t

c

w

w

−

−

 
= + − 

 

  
 = + −  

 

X AX B KT X B g X
X

X A BKT X BB g X
X

 (109)

and since ˆ
cs= −X X X , (109) can be expanded as:

() ()()1

2

1 1

2

1 ˆ
()

ˆ2

1 ˆ
()

ˆ2

T

cs t cs

c

T

cs cs t t cs

c

w

w

−

− −

  
− = + − −  

 

  
 − = − + − −  

 

X X A BKT X X BB g X
X

X X AX AX BKT X BKT X BB g X
X

 (110)

53

But when the consensus is achieved, the control input approaches to zero which means:

1

1gcs t cs m n

−

 = =U BKT X 0 This reduces (110) to:

 1

2

1 ˆ
()

ˆ2

T

t

cw

−   
= + −  

 
X AX BKT X BB g X

X
 (111)

The second term must also be conveyed in terms of the original system. Similar to the

single-input systems,
DX is only available to agent “i” (the agent which has access to the

desired trajectory), therefore ˆ
() ()

ˆ

 
=


g X g X
XX

. This term is expanded as below:

() ()() if the agent "i" has access to the reference
ˆ

ˆ
0 if not

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

 =
0 0 0

T

i D i Dg
 

− + −  
=   

 


X X G G X X
X

X

()() if the agent "i" has access to the reference

0 0 1

0 0 0

0 0 0

0

g

T

i D

n n n 

 
 
 
 
 
 
 
 
 
  + −
 
 
 
 
 
 
 
 
 
  

G G X X

 if not

























 (112)

 and finally, by converting i D−X X back to the original state vectors, the term for tracking

penalty function is rewritten as:

54

1

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

() () if the agent "i" has access to the reference
=

0 0 0

0 0 1

0 0 0

0 0 0

0

g

T

t i D

n n n

g
−

 

 
 
 
 
 
 
 
 
 
  + −  
 
 
 
 
 
 
 
 
  

G G T X X

X

 if not

























(113)

Now the control law can be written in terms of the original system.

 1

2

1
()

2

T

t

c

g
w

− 
= −


U KT X B X

X
 (114)

Since the system dynamics is a multi-input one and is in general form, there is no direct

approach to construct the matrix
1R such that the Algebraic Riccati Equation (ARE)

becomes a linear equation. The only approach is applying numerical methods. In this study,

we used the methods described in [87].

1R should be constructed such that it is Positive Semi-Definite (P.S.D). A good choice can

be as below:

2 2

1

2 2

2

1

2 2

g g

n n n n

n n n n

n n n n n n n n n

w

w

w

 

 

    

 
 
 =
 
 
  

L 0 0

0 L 0
R

0 0 L

 (115)

55

where
iw is the tunable weight for the “i”th state and L is the Laplacian matrix.

1R is P.S.D

according to the lemma 2.3.

3.3.2 Discussion on the distributed cooperative control

Similar to the discussion for the single-input systems,

1K in (102) is only a constant

gain and therefore the terms in the parenthesis ()1

2 1

T−− −R B P K is a linear function of the

Laplacian matrix. For investigating the effect of 1

t

−
T we expand the first term of (114) for

a special case when 2gn m n= = = . According to the theorem 5, in a general form the two

matrices of B and
1K can be parametrically represented as below:

 1 1

2

2 21

b b

b b

− 
=  

− 
B I (116)

now the first term is expanded as:

 0 1

1 2

0 1

a a

a a

− − 
=  

− − 
K I (117)

1 1

2 1

1 1 11 12 0 1 11 2 12 2

4 2 22

2 2 21 22 0 1 21 2 22 2

1 11 2 21 0 2 11 1 12 2 22 1 2 21 1 11 2 21

2

()

1

1

() () (1

T

t

c

c

b b a a t t

b b a a t tw

b b a t b b a t b b

w

− −

= − −

− − −−
=  − 

− − −

+ + + + + +−
=

            
           
            

U R B P K T X

P P I I
I I I X

P P I I

P P I P P I P P
0 2 12 1 12 2 22 1 2 22

1 11 2 21 0 2 11 1 12 2 22 1 2 21 1 11 2 21 0 2 21 1 12 2 22 1 2 22

) ()

((1)) ((1)) ((1)) ((1))

a t b b a t

b b a t b b a t b b a t b b a t

+ + + +

− + − + + − + − + − + − + + − + − +

 
 
 

I P P I
X

P P I P P I P P I P P I

 (118)

where ijt s are the entries of 1

t

−
T . Since any entry in P is a linear function of the Laplacian

matrix, the terms containing its entries guarantee that information exchange occurs only

among the neighbors of each agent. The other term of characteristic equation coefficients

and identity matrices represents the state of the agent itself. Therefore the two terms of
1K

56

and 1

t

−
T do not affect the communication topology since the control law only requires local

information gathered from neighbors of each agent.

3.3.3 Defining the proper desired trajectory

It was said that the control input approaches to zero when consensus is achieved (i.e.

. 1gcs m n =U 0). According to this fact, an appropriate desired trajectory could be designed

along which our system is desired to follow. When all the inputs become zero it can be

assumed that the input vector is a scalar. In other words, regardless of how many inputs the

system has, when the agents achieve consensus and follow a desired trajectory they have

no longer any inputs. Without loss of generality we consider that all the inputs become a

constant of u (we know that 0u =) and the dynamics of each agent can be rewritten as:

1

m

i g i g i g i j i

j

u
=

 
= + = +  

 
X A X B U A X B (119)

where
jB s 1,2,...,j m= are the “m” columns of the input matrix

gB . Equation (119) means

that the system can be seen as a single-input one upon achieving consensus. The original

multi input system will be equivalent to a single-input system for which the input matrix is

the sum of the columns of the original one when the agents achieve consensus. Let us call

1

m

j

j=

B as
2B .

The problem is to find an appropriate desired trajectory for a single-input system with a

dynamics of 2i g i iu= +X A X B along which the system could follow. The two matrices N

and O are introduced similar to those for single-input systems.

57

  
1

1 0 0
n

=N (120)

(1)

0 1 0 0

0 0 1 0

0 0 0 1
n n− 

 
 
 =
 
 
 

O (121)

The desired trajectory
DX must satisfy the system therefore:

 2 2D g D D D D g D= +  = −X A X B U B U X A X (122)

We start with the left hand side of the equation.

2 2

2 2

2 2 2 2

2 2

2 2 2 2

2 2 2 2

()

() ()

() ()

D D

D D

D D

g D D g D D

g D D g D D

g g D

− = −

 − = −

 − = −

 − = −

 − = −

 − = −

B U B U

OB U OB U

NB OB U OB NB U

NB O A X X OB N A X X

NB OA X NB OX OB NA X OB NX

NB OA OB NA X NB O OB N X

 (123)

Since
2NB is a scalar, it could be placed anywhere in the equation. Expanding the two sides

of (123) we get:

2 1 1 21 2 11 1 22 2 12 1 2 2 1

3 1 1 31 3 11 1 32 3 12 1 3 3 1

1 1 1 11 1 1 12 1 1

0 0

0 0

0 0

n n

n n

D D

n n n n n nn n n

b b b a b a b a b a b a b a

b b b a b a b a b a b a b a

b b b a b a b a b a b a b a

   − − − −
   
− − − −   =
   
   
− − − −      

X X (124)

where ib s 1 i n  are the entries of the column vector
2B . The system of differential

equations above has infinitely many solutions since it has 1n− differential equations with

n unknowns. For selecting a proper desired trajectory we need to set at least one of the

states. Once a state is set, the other states can be determined by solving the system of “n-

1” equations with “n-1” unknowns.

58

3.4 Illustrative examples

Now application of the algorithm is shown through two examples. Like the examples

in chapter 2, the first example is pure mathematical and has been designed to show how

the algorithm works. In the second example, we implement the algorithm in order to

synchronize the lateral motions of a group of aircrafts.

Example 3.1:

Suppose that we have two identical agents each with a dynamic equation of:

 i g i g i= +X A X B U (125)

where

1 2 3 2

,
1 1 4 3

g g

   
= =   

−   
A B (126)

The two agents communicate with each other and the corresponding graph is as shown in

Figure 8.

Figure 8. The graph associated with the two agents in Example 3.1

According to the graph, it is obvious that the Laplacian matrix has the form of:

1 1

1 1

− 
=  

− 
L (127)

59

For finding the appropriate desired trajectory, we first make the equation (119) by adding

the columns of the input matrix gB . The new equation will be:

2

1

1 2 5

1 1 7

m

i g i g i g i j i g i i

j

i i i

u u

u

=

 
= + = + = + 

 

   
 = +   

−   

X A X B U A X B A X B

X X

 (128)

now the system (124) should be solved to determine the desired trajectory. In this particular

example, the system is reduced to two simple differential equations as below:

    

1 1

2 1 1 21 2 11 1 22 2 12

2 2

1 1

2 2

1 2 1 2

7 5 (5 7) (5 14)

7 5 2 19

x x
b b b a b a b a b a

x x

x x

x x

x x x x

   
   − − = − −      

   

   
 − − = − − −   

   

 − − = − −

 (129)

where ib s are the entries for 2B . Suppose that the system is desired to reach a point. That

means the terms on the left side of the equation (129) are all zeros and therefore any point

of the line
1 22 19 0x x− − = or

2 1(2 /19)x x= − can be assigned for the system to reach. We

pick the point (19, 2)− . The results are shown in Figures. 7 (a)-(d). The weighting

parameters have been selected to be
1 21 25, 2, 0.5, 2, 0.6c d dw w w w w= = = = = . Agent 1

has access to the reference desired trajectory and the initial conditions of the two agents

have been set to
1 2(0) (10,10), (0) (0,6)X X= = . Figures. 7 (a) and (b) show the phase plane

of the agents. There is always a stable focus, which exactly lies on the line
2 1

2

19
X X= − .

60

In this example the focus lies exactly on the point (19, 2)− . The states have been shown in

Figures 9 (c) and (d). It is seen that the agent 2 will follow the first one and both reach the

point (19, 2)− at the end.

Figure 9 (a). Phase plane for the first agent

61

Figure 9 (b). Phase plane for the second agent

Figure 9 (c). The first states of the agents

62

Figure 9 (d). The second states of the agents

Example 3.2. Lateral motion of a group of X-29A

As an engineering application, we borrow an example from [36] and [37]. A group

of four identical Grumman X-29A aircrafts is needed to reach consensus. The LTI

dynamics of each agent can be described as below:

 29 29X A i X A i− −= +X A X B U (130)

63

where the two matrices of state and input are:

29

29

2.59 0.997 16.55 0

0.1023 0.0679 6.779 0

0.0603 0.9928 0.1645 0.04413

1 0.07168 0 0

1.347 0.2365

0.09194 0.07056

0.0006141 0.0006866

0 0

X A

X A

−

−

− − 
 
− −
 =
 − − −
 
 

 
 

−
 =
 −
 
 

A

B

 (131)

The state of each agent is defined as  
T

i i i i ip r  =X where , , and p r   are the

roll rate, yaw rate, sideslip angle and bank angle respectively. These parameters are shown

in Figure 10.

Figure 10. Grumman X-29A aircraft

64

Two different communication topologies of the agents will be considered. For both

topologies the parameters have been chosen as

1 2 3 41 2 3 41, 2, 3, 2, 0.5, 1, 20, 10 and 5c d d d dw w w w w w w w w= = = = = = = = = . The

vector of initial condition has been set to be:

[0.5 1 1.5 1 0.14 0.5 0.24 0.5 0.2 0.6 0.3 0.2 0.1 0.2 0.9 0.5]T− − − − − − − − . In

order to design an appropriate desired trajectory, the equation (119) is made first and then

the system of differential equations (124) should be constructed and solved. In this

example, it is supposed that the objective is to reach periodic functions. For keeping the

amplitude reasonable, they are multiplied by constants between 0 and 1. It is still assumed

that only the first aircraft has access to the desired trajectory. We set the last state of the

first agent
1 to be 0.76sin t− . By solving (124), the rest of the states are determined as

below:

1

1

1

0.23cos 0.76sin

0.027cos 0.72sin

0.014sin 0.0099cos

p t t

r t t

t t

= − −

= − +

= − −

 (132)

i) For the first case the configuration is as what is shown in Figure 11.

Figure 11. Topology of the aircrafts for the first case

65

The associated Laplacian matrix will be as below:

2 1 0 1

1 2 1 0

0 1 2 1

1 0 1 2

− − 
 
− −
 =
 − −
 
− − 

L (133)

the control input can be found by using the algorithm described in section 3.3.1 and

equation (124). The results are shown in Figures 12 (a)-(d).

Figure 12 (a). Roll rates for the first case

66

Figure 12. (b) Yaw rates for the first case

Figure 12. (c) Sideslip angles for the first case

67

Figure 12 (d) Bank (roll) angles for the first case

It is seen that all the states reach the desired periodic functions in half a minute. Next

another topology is investigated in which the agents 2,3 and 4 do not have direct connection

to each other.

ii) The topology for the second case is shown in Figure 13.

Figure 13. Topology of the aircrafts for the second case

68

In this case, the agent 1 exchange information with all the other three agents while they do

not have direct access to each other. The process for finding the control input is still the

same but the new Laplacian matrix is as below:

3 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

− − − 
 
−
 =
 −
 
− 

L (134)

The results are shown in Figures 14. (a)-(d).

Figure 14 (a) Roll rates for the second case

69

Figure 14 (b) Yaw rates for the second case

Figure 14 (c) Sideslip angles for the second case

70

Figure 14 (d) Bank angles for the second case

It is seen that in the second case the convergence rate decreases but the states finally reach

the desired trajectory. It is worth noting that none of the topologies is “fully connected”.

However, since the agents 2, 3 and 4 do not exchange information directly from each other

in the second case, it takes longer for the agents to achieve consensus.

Robustness of the Algorithm

In many practical real situations the state matrix could get disturbed due to imperfection in

communication topologies or limited bandwidth. In these situations, we need to make sure

that the algorithm is robust enough to overcome the disturbances, stay stable and make the

system achieve consensus even with a disturbed state matrix. In order to test the robustness

of the control law in this example, I run the algorithm in way that the control law is made

71

by the original state matrix while during integration step the disturbed state matrix has a

error of 30% (i.e. 0.7 1.3Disturbed A A A). The results for the maximum and minimum error

have been shown in figures 15 and 16 (a)-(d). Figure 15 shows the states of the aircrafts

when the disturbed state matrix is 70% of the original state matrix. It is seen that although

it takes longer for the state to converge to the desired trajectory, the algorithm is still able

to make the system achieve consensus.

Figure 15 (a). Bank angles with a disturbance of -0.3A

72

Figure 15 (b). Slideslip angles with a disturbance of -0.3A

Figure 15 (c). Yaw rates with a disturbance of -0.3A

73

Figure 15 (d). Roll rates with a disturbance of -0.3A

In figure 16, the disturbed state matrix is 130% of the original state matrix. It is seen that

this disturbance does not affect the effectiveness of the algorithm which means the control

law is quite robust.

Figure 16 (a) Bank angles with a disturbance of +0.3A

74

Figure 16 (b) Slideslip angles with a disturbance of +0.3A

Figure 16 (c) Yaw rates with a disturbance of +0.3A

75

Figure 16 (d) Roll rates with a disturbance of +0.3A

76

4. Path planning of UAV fire fighters via Partially Observable

Markov Decision Process (POMDP)

4.1 Overview

In this chapter, a path planning approach is designed in order to guide a group of

UAVs that are assigned to track active wildfire fronts. The algorithm is developed based

on the theory of Partially Observable Markov Decision Process (POMDP)[88, 89]. The

UAVs are equipped with sensors, which measure the position of the fire fronts, and then

the tracks are obtained by using a Kalman filter. Finally, the process completes by

calculating the control variables for the UAVs, which are forward accelerations and bank

angles. We investigate the problem of imposing practical constraints for the controls and

collision avoidance between the UAVs. Since wildfires are characterized by fast and

randomly evolving process, the major challenge of this study is that the UAVs must make

the tracking decisions autonomously and be able to track the fire fronts, which are evolving

over time in any random directions.

Problem specification is given in section 4.2 POMDP formulation and ingredients are

explained in section 4.3 Nominal Belief-state Optimization (NBO) method is developed

for our model in section 4.4 State-transition laws will be described in sections 4.5 and 4.7.

The model for finding the coordinates of the fire fronts has been briefly described in section

77

4.6. In this study we assume this data is given. Three different scenarios are defined and

investigated in section 4.7 as the main results in order to show the performance of the

designed algorithm.

4.2 Problem specification

We assume that the fire fronts spread on the ground in 2-D. Therefore, we simplify

the motion model of the UAVs by considering the altitude as a constant. The position of

the UAVs are determined by the control parameters, which are assumed to be forward

acceleration and bank angle. The speed of the UAVs is controlled by the first one and the

second one controls the heading angles. Both control variables are restricted to be chosen

within certain limits. The fire fronts spread randomly over time and can be seen as moving

targets maneuvering in random directions. UAVs are equipped with sensors, which

measure the positions of the active fire fronts (the flames that are evolving over time).

There would always be random errors depending on the locations of sensors (UAVs) and

the fire fronts. The path-planning problem of the UAVs is solved when the mean-squared

error between the tracks and the fire fronts are minimized. We apply a Partially Observable

Markov Decision Process (POMDP) in order to solve the path-planning problem. The

process and ingredients of a POMDP problem are introduced and defined in details in the

next section.

4.3 POMDP: Formulation and Ingredients

78

Markov Decision Processes (MDPs) are discrete-time control processes that model

“decision making” in situations where the results are partially under the control of the

decision maker and partially random. In case of a wildfire, the situations (so-called

“states”) of the fire fronts are not fully observable but only partially observable, which

means the decision at each step must be made only based on an observation. According to

the POMDP algorithms, five elements (“states”, “actions”, “observation law”, “state-

transition law,” and “belief state”) are defined and then a cost function is constructed which

needs to be minimized. The set of the actions which minimizes the cost function is called

the optimal policy. Three subsystems of states, targets, and trackers are introduced, and for

each one we develop a state and a state-transition model. These elements are described in

more details here:

States: In a POMDP problem, states are the parameters, that possibly evolve over

time. For our path-planning problem it is better to define three subsystem of sensors, targets

(fire fronts) and trackers. Therefore, the state at time k can be shown as a set of

(), , ,k k k k kx s  = P where
ks and

k are the states of the sensors and fire fronts respectively

and (),k k P is the tracker state. Sensor states include the locations, the speed and heading

angles of the UAVs. The discrete points of the fire fronts is required for defining the front

state. The states of the fire fronts only include the 2-D positions of the active flames. In

section 6 we explain how to define the momentary model of the fire fronts for each time-

step. The trackers’ state are standard Kalman filters where
k denote the posterior mean

vector and
kP is the posterior covariance matrix.

Actions: The second elements of a POMDP problem is called “actions” which

includes all the controllable variables of the model. For our problem, it is assumed that the

79

two variables of forward accelerations and bank angles of the UAVs can be controlled.

Therefore, the action vector is represented by (),k k ku a = where
ka denotes the forward

acceleration and
k denotes the bank angle.

Observation and Observation law: In a POMDP problem, the actions are taken

according to an observation at each time step because the states are not fully observable. If

pos

k and pos

ks are the position vectors of a fire front and a UAV respectively, the

observation law of the fire fronts is defined as:

if the fire front is visible

no measurement otherwise

pos

k k

k

w
z  +

= 


 (135)

kw is a random measurement error with a distribution depending on the location of the

sensor (UAV) and the target (fire front). In case of tracking fire fronts, the sensor states

and tracker states are assumed to be fully observable.

State-Transition law: State-Transition laws are the functions which give the next

states according to the current states being affected by taking actions at time k . Since there

are three subsystems, three state-transition laws are required to describe how the system

evolves over time. For the sensors, the state-transition law is represented by ()1 ,k k ks s u+ =

where the function  will be defined later in section 5. State-Transition law for a fire front

is generally defined as ()1k k kf v + = + where
kv is an independent and identically

distributed (IID) random noise. In our study, it is assumed that the data of the fire fronts

is given but we still need a model to run the Kalman filter at each time-step. Therefore, f

is a linear momentary model of fire front that will be derived later in section 6. The tracker

States-Transition laws are determined by standard Kalman filter equations but the only

80

difference is when the fire fronts cannot be observed the update equation will not be

performed and only the prediction step is taken.

Cost Function: As it was said in section 2, for solving the path-planning problem, the mean

squared error between the tracks and the fire fronts must be minimized. Therefore, the cost

function is defined as ()
1

2

, 1 1, ,
k kk k v w k k k kC x u E x u 

+ + +
 = −
 

 at the time k .

Belief State: In POMDP problems, belief states are defined as probability

distributions over the states. They are updated at each time step after taking actions

according to the Bayes rule and by using the observations. At each time-step the belief state

is defined as (), , ,s

k k k k kb b b b b = P and since all the states other than fire front states are

assumed to be fully observable we have: ()s

k kb s s= − , ()k kb   = − and ()k kb = −P P P

. The belief state for the fire fronts will be derived in section 4.

Policy: A sequence of actions is called a policy. Obviously, a policy is considered to

be optimal if it minimizes the expected cumulative cost ()
1

0
,

H

H k kk
J E C x u

−

=
 =
  over a

time horizon such as H (0, 1, ..., 1k H= −). It is assumed that the action taken at time k

could depend on the history of the observations until time step 1k − . If an optimal action

exists, it can be shown that the optimal sequence of optimal actions also exists depending

on “belief-state feedback” [89]. This means that the expected cumulative cost function can

be rewritten as ()
1

00
,

H

H k kk
J E c b u b

−

=
 =
  where () (), , ()k k k kc b u C x u b x dx=  . Given a belief

state
0b , the optimal cost function is defined as  * *

0 0 1 1 0() min (,) () ,H u HJ b c b u E J b b u−
 = +  

where
1b is the new random belief state distribution for the next time step and *

1HJ − is the

optimal cumulative cost over the horizon 1H − . 0 ,E b u   shows that the expectation is

81

given by taking action u when belief state distribution is
0b [90]. The terms in the curly

brackets are defined as the valuesQ− with initial belief state distribution of
0b and taking

action u (i.e. *

0 0 1 1 0(,) (,) () ,H HQ b u c b u E J b b u−
 = +  ), then the optimal policy at 0k = is

written as *

0 0 0() argmin (,)u Hb Q b u = and at time k , we can write

*() argmin (,)k k u H k kb Q b u −= . In other words, the optimal policy is the sequence of actions,

which minimizes the Q values at each time step. Calculating Q-values is not always easy

since the term *

1 1 0() ,HE J b b u−
   is hard to be approximated. Therefore, approximation

methods must be implemented to obtain Q-values. Here we use Nominal Belief-states

Optimization (NBO) to specify the cost function. We will see that the method considers

the trace of the error covariance matrix as an approximation of the cumulative cost function

[74, 88]. The algorithm is explained in the next section.

4.4 NBO Approximation method

It is assumed that there are ffN fire fronts and the states at time k is represented by

()1 2, , , ffN

k k k k   = where i

k is the state of the ith fire front. The track state can be

conveyed as ()1 2, , , ffN

k k k k   = and ()1 2, , , ffN

k k k k=P P P P , where (),i i

k k P is the track state

associated with the ith fire front. For modeling the fire front dynamics at each time-step, we

define a linear motion model for the fire front with zero-mean noise with covariance kQ as:

 1 (0,)i i i i

k k k k k kv v N + = +F Q (136)

82

The observation (135) is defined as
i i i

k k k kz w = +H if the fire front is visible where

(0, (,))i i

k k k kw N sR while there would be no measurement when the fire front is not

visible. The motion model describing how the fire fronts evolve over time is derived

according to a complicated model, which we will not go through here and we assume that

the data of the fire fronts is given. The only data required is the location of the active flame

(border of the fire front). Once we have this data, we define the state of the front as

, ,1
T

i i i

k k kx y  =   where (,)i i

k kx y is the 2-D position of the ith fire front. In section 6, we

explain why we should make an augmented state vector like this. For each time-step, we

construct a linear model matrix
kF , which gives the next position. Since the position of the

fire fronts are the only observed parameters, the observation model
kH is defined as

 2 2 2 1,k  =H I 0 . It is assumed that all the distributions are Gaussian, and the belief state for

the ith fire front is written as ()() ,
i i i

k k kb N   = − P .

In Nominal Belief-states Optimization (NBO) approximation method, a nominal belief

state sequence is introduced over a time horizon such as H (i.e
1 2 1
ˆ ˆ ˆ, , , Hb b b −

) and then the

objective cost function is approximated by
1

0 0

ˆ() (,)
H

H k kk
J b c b u

−

=
 . The optimization is

accomplished through taking a sequence of actions
1 2 1, , , Hu u u −

. The nominal belief state

for the ith fire front is obtained by the nominal tracks ()ˆ ˆ,i i

k k P as ˆ ˆ ˆ() (,)
i i i

k k kb N   = − P . The

nominal tracks evolve according to the Kalman filter equation as follows:

1

1
1

11

1

1

ˆ ˆ (zero-noise)

ˆ if measurement available
ˆ

ˆ otherwise

i i

k k k

i i

kk ki

k

i

k k

 +

−
−

++

+

+

=

   +    = 



F

P S
P

P

 (137)

83

where
1

ˆ ˆi i T

k k k kk k+
= +P F P F Q ,

1

1 1 1 1 1 1
ˆ(,)i T i

k k k k k ks
−

+ + + + + +
 =
 

S H R H and
1ks +
 is the state of the

sensors at time 1k + which is given by the model (,)k ks u . Since 1
ˆ i

k+P requires the

observation at time 1k + while it is not certainly known, we use the position estimate of

the fire fronts and the corresponding sensor state at time 1k + (i.e. ,

1
ˆi pos

k + and
1

pos

ks +
). Now

the cost function is approximated as the sum of the trace of the nominal error covariance

matrix for all the targets or:

 11

ˆ ˆ(,) Tr()
ffN i

k k ki
c b u +=

= P (138)

Obviously, the objective cost function which needs to be minimized over a time horizon

H can be written as:

1

0 10 1

ˆ() Tr()
ffH N i

H kk i
J b

−

+= =
=  P (139)

in case of having multiple UAVs, the covariance error matrix for the ith fire front is

computed as:

1

, 1

1 11

ˆ ˆ()
sensNi i j

k kj

−
−

+ +=
 =
 P P (140)

where
sensN denotes the number of the UAVs (sensors) and ,

1
ˆ i j

k+P represents the nominal

error covariance matrix of the ith fire front calculated by the jth sensor.

The measurement error distribution depends on the location of the fire fronts and

sensors and is according to the Gaussian distribution, which means ()0, (,)k k k kw N sR .

Here kR shows the uncertainties in range and angle between the fire front and the sensor.

We assume that the range uncertainty is %p and angular uncertainty is q . The distance

between the fire front and sensor at time k is denoted by kr . Therefore, the standard

deviations for the angle and range are calculated as:

84

() (/100)

()

range k

angle k

k p r

k qr





=

=
 (141)

If the UAV flies exactly above the fire front (active flame), 0kr = which makes the

information matrix get very big due to the fact that the information matrix depends on the

inverse of the measurement covariance matrix. This problem is solved by considering a

positive number b and defining the effective distance as 2 2()eff kr k r b= + . Now the

standard deviations can be redefined as:

() (/100) ()

() ()

range eff

angle eff

k p r k

k qr k





=

=
 (142)

If it is assumed that the angle between the fire front and the UAV at time k , (the

angle of the connecting line and the horizontal axis) is
k we have:

2

2

cos() sin()

sin() cos()

and

() 0

0 ()

k k

k

k k

range T

k k k

angle

k

k

 

 





− 
=  
 

 
=  

  

M

R M M

 (143)

and the eigenvalues of
kR are  2 2(), ()range anglek k  . In our algorithm we implement the

“receding horizon approach” which means that we do the optimization for H time-steps

but apply the optimal actions for the current time-step. Then we optimize the actions for

another H time-steps and apply the optimal actions for the next time-step and this process

continues. This is the “look-ahead” quality of our algorithm we have mentioned in the

introduction.

85

4.5 State-transition law for the sensors

The sensor states evolve over time according to a model such as

1 (,)k k ks s u+ = where the

state of each UAV includes the 2-D position coordinates, speed of the UAV and its heading

angle. We write the state of the jth sensor at time k as (), , ,j j j j j

k k k k ks p q V = where (,)j j

k kp q

are the position coordinates, j

kV denotes the speed of the UAV and j

k is the heading angle.

The actions are shown as the vector of forward acceleration and bank angle (),j j j

k k ku a = .

The relationship between the sensor state and the actions defines the mapping function 

as follows:

   
max max

minmin
1 min max

1

1

1

 where max ,min(,)

(tan() /)

cos()

sin()

V Vj j j

k k k VV

j j j j

k k k k

j j j j

k k k k

j j j j

k k k k

V V a T v V V v

gT V

p p V T

q q V T

  





+

+

+

+

 = + = 

= +

= +

= +

 (144)

where
maxV and

minV shows the maximum and minimum speed limits for the UAVs.

According to [91], the limits for the control variables is set to be as follows:

2 23.05 m/s 3.05 m/s

6 6

a

 


−  

−  
 (145)

86

4.6 Modeling Fire Fronts

Figure 17 (a).Three fires at an early stage of fire spread

Figure 17 (b). The fire at the end of the simulation

87

The fire spread simulation was based on the DEVS-FIRE model [92, 93] which is a discrete

event simulation model for surface fire spread simulation. DEVS-FIRE uses a cellular

space to represent a wildland area, where each cell has its own terrain data and fuel

(vegetation) data corresponding to the sub-regions in the area. All cells are coupled to a

weather model to receive weather data (wind speed and wind direction) over time. Once a

cell is ignited, it uses Rothermel’s model [94] to compute the fire spread rate and direction

within the cell. Fire spreading is modeled as a propagation process as burning cells ignite

their unburned neighboring cells.

In this simulation, three fires are ignited at three different locations of a 200 by 200 cell

space. Each cell represents a 30-meter by 30-meter area. The simulation is for 5 hours of

fire spread. Figure 17(a) shows the three fires at an early stage of fire spread, where red

cells are burning cells, black cells are burned cells, and other colors represent the different

fuel types of the cells. Figure 17(b) shows the fire shape at the end of 5 hours of spread,

when the three fires are combined into a larger fire with a perimeter of 34.11km and burned

area of 1113.21 hectares.

During the simulation, we recorded the fire perimeter cells and burning & burned cells

every 10 seconds. These data are then read and displayed by a program to visualize the

fire spread process.

88

4.7 Main results

In this section the results for the path-planning problem will be provided. It is

assumed that there are three separate fire fronts, which start from various locations and

evolve over time to make a single unified big fire. The fire fronts are modeled for five

hours and we investigate three different scenarios of tracking. In the first scenario, one

UAV tracks the three fire fronts. We will see that the UAV must shifts from one front to

another to keep the trace of the covariance error matrix minimized. Since the final fire front

covers a large area, one UAV may seem insufficient to be able to do a proper coverage. In

the second scenario, two UAVs track the three fire fronts. In this scenario the UAVs

autonomously decide where to track so the coverage of all the three fronts is done the best.

In the third scenario, three UAVs starts tracking the fire fronts but one of them drops off

in the middle of its mission (this could occur due to an accident or battery discharge) and

the two other UAVs try to make up for the dropped one and cover the fronts as good as

they can. In each scenario, we let the fire fronts spread for a while and then the UAVs are

assigned to start tracking them. The results for each scenario is shown by a few pictures to

show the performance of the UAVs as time elapses.

Scenario 1: One UAV

The fire front data is supposed to have been calculated and given to us. We need the

border points of the fire which specify the location of the active flame. In order for our

algorithm to be working, a momentarily motion model for each time-step is generated

regarding the two position of the fire front at time k . Sensors see two points of the fire as

89

the positions for the current and the next time-step (i.e (),i i

k kx y and ()1 1,i i

k kx y+ +

respectively). A linear motion model matrix for each time-step
kF gives us the next state

at time k as follows:

1 0

0 1

0 0 1

i

k

i i

k k

x

y

 
 

=  
 
 

F (146)

where
1

i i i

k k kx x x+ = − and
1

i i i

k k ky y y+ = − are obtained from the 2-D position coordinates for

current and the next time-step. For each time-step the state is defined as , ,1
T

i i i

k k kx y  =   to

make sure (146) can give us the next state. The tracking results are shown in Figures 18

(a)-(f). The UAV starts from a point far away from the region and immediately approaches

the three evolving fire front. As time passes, the UAV flies over the three and tries to cover

all in order to minimize the cost function. However, as fire fronts become bigger, one UAV

would not be able to cover all the perimeter of the fire completely and some parts are

skipped in trying to keep the tracking error minimized. Figures 19 (a)-(b) show the control

variables (forward acceleration and bank angle) of the UAV at each 600 s for the whole

period of 18000 s. It is seen that these variables remain within the limits of (145). The

initial state of the UAV is assumed to be 0 [3000 m 0 m 16 m/s / 6 rad]Ts = and the

initial action vector is 2

0 2 m/s /12 rad
T

u  =  

90

Figure 18 (a). The first scenario (t = 3000s)

Figure 18 (b). The first scenario (t = 6000s)

91

Figure 18 (c). The first scenario (t = 9000s)

Figure 18(d). The first scenario (t = 12000s)

92

Figure 18 (e). The first scenario (t = 15000s)

Figure 18 (f). The first scenario (t = 18000s)

93

Figure 19 (a). Forward acceleration of the UAV

Figure 19 (b). Bank angle of the UAV

94

A way to check the validity of results could be making a comparison between true error

and estimate error of the results. We define the true error as the Euclidean norm of the

difference between fire front position and position of the nominal estimate (i.e.

1 1
ˆpos pos

k k + +− where
1

pos

k +
is the position coordinates of the fire fronts and

1

pos

k +
 is the position

coordinate in the nominal track estimate vector). The estimate error on the other hand is

defined as 11 22
ˆ ˆP P+ where

11P̂ and 22P̂ are the diagonal elements of the nominal error

covariance matrix. Figure 20 shows these two errors during the process of tracking the fully

developed fire (18000 st =) and it is seen that they both have the same pattern indicating

that the algorithm works properly.

Figure 20. True and estimate error of the algorithm

95

Scenario 2: Two UAVs

In case of multiple UAVs, collision avoidance must be taken into consideration. A

penalty function is introduced and added to the objective cost function in order to avoid

collision among the UAVs. We show this penalty function by ,

1

coll j

k+P for the jth UAV and

redefine the cost function to be:

 ()()1 ,

1 10 1 1

ˆTr
ff sensH N Ni coll j

H k kk i j
J 

−

+ += = =
= +  P P (147)

where  is a positive scaling factor which must be chosen big enough to make the second

term effective when the UAVs get close to each other. The penalty function is defined as

follows. A constant distance such as D is chosen as a safe distance and the penalty function

is calculated according to it as follows:

 , 1 1

1

if

0 otherwise

j j

coll j k k

k

D d d D+ +

+

 − 
= 


P (148)

where
1

j

kd +
 is defined as , 1min ji

i j i kd + where
1

ji

kd +
 denotes the distance between the ith and jth

UAVs. Since the UAVs are assumed to be small D can be selected to be as small as 5 m

and the scaling factor is set to be 10 = . The advantage of this approach is that it considers

the collision avoidance in POMDP context and does not need a separate algorithm to work.

The results are shown in figures 21 (a)-(g). It is seen that at the beginning of the mission

both UAVs may try to cover all the three fire fronts and switch between one to another but

as time elapses they decide which part is the best for them to cover in order to minimize

the trace of the covariance error matrix. This may happen due to the fact that the accuracies

of the estimates may be lower when the burning regions are small but once the fire becomes

large enough the UAVs make clear decisions to keep the distance and also simultaneously

do the coverage the best they can do. It is assumed that the initial states for the two UAVs

96

are  1

0 3600 m 3300 m 16 m/s / 6 rad
T

s = and

 2

0 4200 m 4200 m 16 m/s / 6 rad
T

s = . The initial action vectors are:

1 2

0 2 m/s /12 rad
T

u  =   and 2 2

0 2 m/s /12 rad
T

u  =   .

Figure 21(a). The second scenario (t = 1500s)

97

Figure 21 (b). The second scenario (t = 3000s)

Figure 21 (c). The second scenario (t = 6000s)

98

Figure 21 (d). The second scenario (t = 9000s)

Figure 21 (e). The second scenario (t = 12000s)

99

Figure 21 (f). The second scenario (t = 15000s)

Figure 21 (g). The second scenario (t = 18000s)

100

Scenario 3: Three UAVs start tracking the fire fronts but one of them

drops off at some point

Many incidents may cause the UAVs to stop tracking the targets among which battery

discharge could be the most important one. Once the battery of a UAV is discharged, it has

to fly back and descend on the ground to get it recharged. Meanwhile, the remainder of the

UAVs must make up for the lost one in order to keep the coverage reliable or

mathematically said keep the sum of the traces of the error covariance matrices minimized.

The three UAVs cover the fronts and the third UAV stops tracking at time 10500 st = and

after that, only UAVs 1 and 2 continue to cover the fire fronts. Results are shown in Figures

22(a)-(g). It is seen that after the sudden change of reducing the number of trackers to two,

the UAVs experience a period of confusion and the coverage is done less perfectly

compared to the time when all the UAVs were working (e.g. 12000 st =) . However, as

time elapses, the accuracy of the estimation steps rise up and the UAVs decide how to track

the fronts such that the coverage becomes the best. We still use the same penalty function

as (147) and (148) in order to avoid collision among the UAVs. The initial vectors for the

UAVs are:  1

0 3900 m 3900 m 16 m/s / 6 rad
T

s = ,

 2

0 4800 m 2400 m 16 m/s / 6 rad
T

s = ,  3

0 4800 m 4500 m 16 m/s / 6 rad
T

s = and

the initial action vector for all the UAVs are the same and equal to

2

0 2 m/s /12 rad
T

u  =  

101

Figure 22 (a). The Third scenario (t = 3000s)

Figure 22 (b). The Third scenario (t = 6000s)

102

Figure 22 (c). The Third scenario (t = 9000s)

Figure 22 (d). The Third scenario (t = 10500s)

103

Figure 22 (e). The Third scenario (t = 12000s)

Figure 22 (f). The Third scenario (t = 15000s)

104

Figure 22 (g). The Third scenario (t = 18000s)

4.8 Robustness of the Algorithm

It practical application there would always be some disturbances and it needs for the

algorithm to be able to overcome the unprecedented situations in order to be applicable.

Here we check robustness of the designed algorithm by testing the performance of the UAV

in the presence of a sudden wind gust. It is modeled by adding a certain acceleration in the

sensor models while the rest of the state-transition functions are kept untouched. A good

algorithm must be able to get to its normal condition of performance after being disturbed.

We let the acceleration grow due to the wind be 50% of the maximum acceleration the

UAV can achieve. In our case, this value would be equal to 2

max / 2 1.525 m/sda a= = where da

denotes the disturbance acceleration induced by the wind gust and maxa is the maximum

105

acceleration of the UAV. We only consider the first scenario for the sake of clearness and

simplicity and investigate two scenarios of wind disturbance. In both one all the other

conditions are assumed to be the same as what we had in scenario one in section 4.7. In the

first case, we let the UAV start tracking the fire fronts when the fire is fully developed (

18000 st =) and assume that the wind starts blowing when the UAV is at its 100th time step

(100 sk =) when it is at  3068 m, 3993 m . The blow lasts for 100 seconds and vanishes.

Figures 23 (a)-(c) show the response of the UAV. For better comparison I have put the

undisturbed situation beside it. It seems that at first the UAV gets deviated from its original

track and after the wind stops, the UAV still needs some time to get back to its normal way

but finally it manages to find its way back and continue tracking the fire fronts. In the

second case, the fire starts at the time-step 750 sk = at lasts for 100 seconds. Again, we see

that the UAV gets disturbed any finally manages to find it way to accomplish its mission

of tracking which means that the algorithm is reliable enough to be used in practical

circumstances where several disturbance factors exist.

106

Figure 23 (a) undisturbed tracking

Figure 23 (b) The wind begins at k=100 s and ends at k=200 s

107

 Figure 23 (c) The wind begins at k=750 s and ends at k=850 s

108

CONCLUSION

In this study, new optimal control approaches have been developed for solving

consensus and path planning problems among multi-agent systems (MASs). It was seen

that by defining proper cost functions and proper algorithms in order to minimize these

cost functions, optimal control would be a very powerful tool in solving these two

problems.

In chapters 2 and 3 the multi-agent consensus tracking problem for a class of general

linear time-invariant systems was investigated in an optimal control framework. An inverse

optimal control approach was employed to derive a proper cost function in order for the

system to track a defined desired trajectory. The optimal control law was designed with an

analytical solution and was a linear function of the Laplacian matrix such that the control

implementation was distributed in that it only needed local information of the agent’s own

state and its neighbors with the communication links. Both optimality and stability of the

control law are proved. The approach was then generalized to embrace general multi-input

Linear Time-Invariant systems. For each type (single-input and multi-input systems), two

examples were designed and solved to illustrate the algorithm.

In chapter 4, an algorithm was designed in order to solve the path-planning problem

of a group of UAVs that are assigned to track the wildfire fronts. The approach was

developed based on the theory of Partially Observable Markov Decision Process (POMDP)

and it was seen that all important features such as collision avoidance and dynamic

constraints can be considered in the context of POMDP. The approach has a “look-ahead”

property in a sense that it calculates the control variables for each time step based on

109

computation over a certain time horizon. This is done for more accuracy since the UAVs

are supposed to track randomly evolving fire fronts. Dynamic constraints for the motion of

the UAVs were taken into account and by using NBO approach, the cost function was

defined according to tracking error. For each time-step a simple linear motion model for

the fire fronts was defined which enabled the track state to have been constructed fast and

efficiently. Three different scenarios were investigated and it was seen that the UAVs were

able to make decisions about which fronts to track if they were given enough time.

Furthermore, if a UAV, for any reasons, drops or stops working in the middle of the

mission, the remainder of the UAVs keep tracking the fire fronts the way they make up for

the lost one and keep the coverage as good as they can to maintain the defined cost function

minimized.

110

REFERENCES:

[1] W. Ren, R. W. Beard, and E. M. Atkins, "A survey of consensus problems in multi-

agent coordination," in American Control Conference, 2005. Proceedings of the

2005, 2005, pp. 1859-1864.

[2] Y. Cao, W. Yu, W. Ren, and G. Chen, "An overview of recent progress in the study

of distributed multi-agent coordination," IEEE Transactions on Industrial

informatics, vol. 9, pp. 427-438, 2013.

[3] W. Ren and R. W. Beard, Distributed consensus in multi-vehicle cooperative control:

Springer, 2008.

[4] R. Olfati-Saber, J. A. Fax, and R. M. Murray, "Consensus and cooperation in

networked multi-agent systems," Proceedings of the IEEE, vol. 95, pp. 215-233,

2007.

[5] W. Ren and Y. Cao, Distributed coordination of multi-agent networks: emergent

problems, models, and issues: Springer Science & Business Media, 2010.

[6] W. Ren, K. Moore, and Y. Chen, "High-order consensus algorithms in cooperative

vehicle systems," in Networking, Sensing and Control, 2006. ICNSC'06. Proceedings

of the 2006 IEEE International Conference on, 2006, pp. 457-462.

[7] W. Yu, G. Chen, W. Ren, J. Kurths, and W. X. Zheng, "Distributed higher order

consensus protocols in multiagent dynamical systems," IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 58, pp. 1924-1932, 2011.

[8] F. Mirali, A. M. Gonzalez, and H. Werner, "First-Order Average Consensus for

Cooperative Control Problems Using Novel Weighting Strategies," IFAC-

PapersOnLine, vol. 50, pp. 14302-14307, 2017.

111

[9] J. Ni, L. Liu, C. Liu, X. Hu, and S. Li, "Further Improvement of Fixed-Time Protocol

for Average Consensus of Multi-Agent Systems," IFAC-PapersOnLine, vol. 50, pp.

2523-2529, 2017.

[10] Y. Cao, D. Stuart, W. Ren, and Z. Meng, "Distributed containment control for

multiple autonomous vehicles with double-integrator dynamics: algorithms and

experiments," IEEE Transactions on Control Systems Technology, vol. 19, pp. 929-

938, 2011.

[11] Y. Cao and W. Ren, "Distributed coordinated tracking with reduced interaction

via a variable structure approach," IEEE Transactions on Automatic Control, vol. 57,

pp. 33-48, 2012.

[12] Y. Cao, W. Ren, and Z. Meng, "Decentralized finite-time sliding mode estimators

and their applications in decentralized finite-time formation tracking," Systems &

Control Letters, vol. 59, pp. 522-529, 2010.

[13] Y. Hatano and M. Mesbahi, "Agreement over random networks," IEEE

Transactions on Automatic Control, vol. 50, pp. 1867-1872, 2005.

[14] A. Tahbaz-Salehi and A. Jadbabaie, "A necessary and sufficient condition for

consensus over random networks," Departmental Papers (ESE), p. 355, 2008.

[15] Y. Zhang and Y.-P. Tian, "Consentability and protocol design of multi-agent

systems with stochastic switching topology," Automatica, vol. 45, pp. 1195-1201,

2009.

[16] G. Wen, G. Hu, W. Yu, J. Cao, and G. Chen, "Consensus tracking for higher-

order multi-agent systems with switching directed topologies and occasionally

missing control inputs," Systems & Control Letters, vol. 62, pp. 1151-1158, 2013.

112

[17] J. Zhu and L. Yuan, "Consensus of high-order multi-agent systems with switching

topologies," Linear Algebra and Its Applications, vol. 443, pp. 105-119, 2014.

[18] C.-J. Li and G.-P. Liu, "Consensus for heterogeneous networked multi-agent

systems with switching topology and time-varying delays," Journal of the Franklin

Institute, vol. 355, pp. 4198-4217, 2018.

[19] Z. Meng, Z. Lin, and W. Ren, "Leader–follower swarm tracking for networked

Lagrange systems," Systems & Control Letters, vol. 61, pp. 117-126, 2012.

[20] H. Min, F. Sun, S. Wang, and H. Li, "Distributed adaptive consensus algorithm

for networked Euler–Lagrange systems," IET control theory & applications, vol. 5,

pp. 145-154, 2011.

[21] L. Gao, J. Li, X. Zhu, and W. Chen, "Leader-following consensus of linear multi-

agent systems with state-observer under switching topologies," in Control

Automation Robotics & Vision (ICARCV), 2012 12th International Conference on,

2012, pp. 572-577.

[22] H. Du, G. Wen, G. Chen, J. Cao, and F. E. Alsaadi, "A distributed finite-time

consensus algorithm for higher-order leaderless and leader-following multiagent

systems," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47,

pp. 1625-1634, 2017.

[23] C. Yuan, "Distributed adaptive switching consensus control of heterogeneous

multi-agent systems with switched leader dynamics," Nonlinear Analysis: Hybrid

Systems, vol. 26, pp. 274-283, 2017.

113

[24] X. Xie and X. Mu, "Observer-based Intermittent Consensus Control of Nonlinear

Singular Multi-agent Systems," International Journal of Control, Automation and

Systems, vol. 17, pp. 2321-2330, 2019.

[25] X. Deng, X. Sun, and S. Liu, "Iterative Learning Control for Leader-following

Consensus of Nonlinear Multi-agent Systems with Packet Dropout," International

Journal of Control, Automation and Systems, vol. 17, pp. 2135-2144, 2019.

[26] T. Wang, H. Fu, J. Li, Y. Zhang, X. Zhou, and X. Chen, "Optimal Consensus

Control for Heterogeneous Nonlinear Multiagent Systems with Partially Unknown

Dynamics," International Journal of Control, Automation and Systems, vol. 17, pp.

2400-2413, 2019.

[27] W. Guo, W. Luo, and Z. Zheng, "Lag group consensus for the second-order

nonlinear multi-agent systems via adaptive control approach," International Journal

of Control, Automation and Systems, vol. 17, pp. 1971-1977, 2019.

[28] Z. Li, Z. Duan, G. Chen, and L. Huang, "Consensus of multiagent systems and

synchronization of complex networks: A unified viewpoint," IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 57, pp. 213-224, 2010.

[29] M. Wu, H. Zhang, H. Yan, and H. Ren, "Self-triggered output feedback control

for consensus of multi-agent systems," Neurocomputing, vol. 190, pp. 179-187, 2016.

[30] J. H. Seo, H. Shim, and J. Back, "Consensus of high-order linear systems using

dynamic output feedback compensator: Low gain approach," Automatica, vol. 45, pp.

2659-2664, 2009.

114

[31] M. S. Radenković and M. Krstić, "Distributed adaptive consensus and

synchronization in complex networks of dynamical systems," Automatica, vol. 91, pp.

233-243, 2018.

[32] T.-C. Lee, W. Xia, Y. Su, and J. Huang, "Exponential consensus of discrete-time

systems based on a novel Krasovskii–LaSalle theorem under directed switching

networks," Automatica, vol. 97, pp. 189-199, 2018.

[33] Y. Kim and M. Mesbahi, "On maximizing the second smallest eigenvalue of a

state-dependent graph Laplacian," in American Control Conference, 2005.

Proceedings of the 2005, 2005, pp. 99-103.

[34] Y. Cao and W. Ren, "Optimal linear-consensus algorithms: an LQR perspective,"

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40,

pp. 819-830, 2010.

[35] D. Zhang, X. Wang, and L. Meng, "Consensus problems for high-order LTI

systems: a decentralized static output feedback method," International Journal of

Innovative Computing, Information and Control, vol. 9, pp. 2143-2154, 2013.

[36] K. D. Listmann, "Novel conditions for the synchronization of linear systems," in

Decision and Control (CDC), 2015 IEEE 54th Annual Conference on, 2015, pp.

5605-5612.

[37] L. D. Col, "Sur l'analyse et la conception des controles distribues pour les

systemes multi-agents soumis a des informations limitee.," PhD, Universite de

toulouse, Francais, 2016.

[38] S. E. Tuna, "LQR-based coupling gain for synchronization of linear systems,"

arXiv preprint arXiv:0801.3390, 2008.

115

[39] S. E. Tuna, "Conditions for synchronizability in arrays of coupled linear systems,"

IEEE Transactions on Automatic Control, vol. 54, pp. 2416-2420, 2009.

[40] J. Wang and M. Xin, "Multi-agent consensus algorithm with obstacle avoidance

via optimal control approach," International Journal of Control, vol. 83, pp. 2606-

2621, 2010.

[41] D. S. Bernstein, "Nonquadratic cost and nonlinear feedback control,"

International Journal of Robust and Nonlinear Control, vol. 3, pp. 211-229, 1993.

[42] J. Wang and M. Xin, "Distributed optimal cooperative tracking control of

multiple autonomous robots," Robotics and Autonomous systems, vol. 60, pp. 572-

583, 2012.

[43] J. Wang and M. Xin, "Flocking of Multi-Agent Systems Using a Unified Optimal

Control Approach," Journal of Dynamic Systems, Measurement, and Control, vol.

135, p. 061005, 2013.

[44] Y. Xie and Z. Lin, "Global optimal consensus for higher-order multi-agent

systems with bounded controls," Automatica, vol. 99, pp. 301-307, 2019.

[45] M. E. Dehshalie, M. B. Menhaj, and M. Karrari, "Fault tolerant cooperative

control for affine multi-agent systems: An optimal control approach," Journal of the

Franklin Institute, vol. 356, pp. 1360-1378, 2019.

[46] R. Bailo, M. Bongini, J. A. Carrillo, and D. Kalise, "Optimal consensus control of

the Cucker-Smale model," IFAC-PapersOnLine, vol. 51, pp. 1-6, 2018.

[47] J. Wang, S. Gong, S. Peeta, and L. Lu, "A real-time deployable model predictive

control-based cooperative platooning approach for connected and autonomous

116

vehicles," Transportation Research Part B: Methodological, vol. 128, pp. 271-301,

2019.

[48] J. Wang and M. Xin, "Integrated optimal formation control of multiple unmanned

aerial vehicles," IEEE Transactions on Control Systems Technology, vol. 21, pp.

1731-1744, 2013.

[49] S. M. LaValle, Planning algorithms: Cambridge university press, 2006.

[50] X. Ma and D. A. Castanon, "Receding horizon planning for Dubins traveling

salesman problems," in Proceedings of the 45th IEEE Conference on Decision and

Control, 2006, pp. 5453-5458.

[51] Y. Lu, X. Huo, O. Arslan, and P. Tsiotras, "Incremental multi-scale search

algorithm for dynamic path planning with low worst-case complexity," IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, pp.

1556-1570, 2011.

[52] W. Ren, J.-S. Sun, R. W. Beard, and T. W. McLain, "Nonlinear tracking control

for nonholonomic mobile robots with input constraints: An experimental study," in

Proceedings of the 2005, American Control Conference, 2005., 2005, pp. 4923-4928.

[53] W. Li and C. G. Cassandras, "A cooperative receding horizon controller for

multivehicle uncertain environments," IEEE Transactions on Automatic Control, vol.

51, pp. 242-257, 2006.

[54] J. Kim, K. Jo, D. Kim, K. Chu, and M. Sunwoo, "Behavior and path planning

algorithm of autonomous vehicle A1 in structured environments," IFAC Proceedings

Volumes, vol. 46, pp. 36-41, 2013.

117

[55] Y. Zhuang, H. Huang, S. Sharma, D. Xu, and Q. Zhang, "Cooperative path

planning of multiple autonomous underwater vehicles operating in dynamic ocean

environment," ISA transactions, vol. 94, pp. 174-186, 2019.

[56] S. Ruan and Y. Ma, "Optimization of Acceleration Motion Trajectory of SHEV

Based on Radau Pseudospectral Method," IFAC-PapersOnLine, vol. 52, pp. 48-53,

2019.

[57] C. Xiong, D. Chen, D. Lu, Z. Zeng, and L. Lian, "Path planning of multiple

autonomous marine vehicles for adaptive sampling using Voronoi-based ant colony

optimization," Robotics and Autonomous Systems, vol. 115, pp. 90-103, 2019.

[58] E. Taheri, M. H. Ferdowsi, and M. Danesh, "Closed-loop randomized

kinodynamic path planning for an autonomous underwater vehicle," Applied Ocean

Research, vol. 83, pp. 48-64, 2019.

[59] F. Hegedüs, T. Bécsi, S. Aradi, and P. Gápár, "Model based trajectory planning

for highly automated road vehicles," IFAC-PapersOnLine, vol. 50, pp. 6958-6964,

2017.

[60] C. Geyer, "Active target search from UAVs in urban environments," in 2008

IEEE International Conference on Robotics and Automation, 2008, pp. 2366-2371.

[61] J. Tisdale, H. Durrant-Whyte, and J. K. Hedrick, "Path planning for cooperative

sensing using unmanned vehicles," in ASME 2007 International Mechanical

Engineering Congress and Exposition, 2007, pp. 715-723.

[62] R. He, A. Bachrach, and N. Roy, "Efficient planning under uncertainty for a

target-tracking micro-aerial vehicle," in 2010 IEEE International Conference on

Robotics and Automation, 2010, pp. 1-8.

118

[63] C. G. Cassandras and W. Li, "A receding horizon approach for dynamic UAV

mission management," in Enabling Technologies for Simulation Science VII, 2003,

pp. 284-293.

[64] P. W. Sarunic, R. J. Evans, and B. Moran, "Control of unmanned aerial vehicles

for passive detection and tracking of multiple emitters," in 2009 IEEE Symposium on

Computational Intelligence for Security and Defense Applications, 2009, pp. 1-7.

[65] S. Temizer, M. Kochenderfer, L. Kaelbling, T. Lozano-Pérez, and J. Kuchar,

"Collision avoidance for unmanned aircraft using Markov decision processes," in

AIAA guidance, navigation, and control conference, 2010, p. 8040.

[66] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, "Probabilistic

roadmaps for path planning in high-dimensional configuration spaces," IEEE

transactions on Robotics and Automation, vol. 12, pp. 566-580, 1996.

[67] J. Borenstein and Y. Koren, "Real-time obstacle avoidance for fast mobile

robots," IEEE Transactions on systems, Man, and Cybernetics, vol. 19, pp. 1179-

1187, 1989.

[68] I. K. Nikolos, K. P. Valavanis, N. C. Tsourveloudis, and A. N. Kostaras,

"Evolutionary algorithm based offline/online path planner for UAV navigation,"

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 33,

pp. 898-912, 2003.

[69] B. A. Kumar and D. Ghose, "Radar-assisted collision avoidance/guidance strategy

for planar flight," IEEE Transactions on Aerospace and Electronic Systems, vol. 37,

pp. 77-90, 2001.

119

[70] J. Moreau, P. Melchior, S. Victor, L. Cassany, M. Moze, F. Aioun, and F.

Guillemard, "Reactive path planning in intersection for autonomous vehicle," IFAC-

PapersOnLine, vol. 52, pp. 109-114, 2019.

[71] K. Kawabata, L. Ma, J. Xue, C. Zhu, and N. Zheng, "A path generation for

automated vehicle based on Bezier curve and via-points," Robotics and Autonomous

Systems, vol. 74, pp. 243-252, 2015.

[72] H. S. Lim, S. Fan, C. K. Chin, S. Chai, N. Bose, and E. Kim, "Constrained path

planning of autonomous underwater vehicle using selectively-hybridized particle

swarm optimization algorithms," IFAC-PapersOnLine, vol. 52, pp. 315-322, 2019.

[73] C. Wei, R. Romano, F. Hajiseyedjavadi, N. Merat, and E. Boer, "Driver-centred

Autonomous Vehicle Motion Control within A Blended Corridor," IFAC-

PapersOnLine, vol. 52, pp. 212-217, 2019.

[74] S. Ragi and E. K. Chong, "UAV path planning in a dynamic environment via

partially observable Markov decision process," IEEE Transactions on Aerospace and

Electronic Systems, vol. 49, pp. 2397-2412, 2013.

[75] C. Kreucher, A. O. Hero, K. Kastella, and D. Chang, "Efficient methods of non-

myopic sensor management for multitarget tracking," in 2004 43rd IEEE Conference

on Decision and Control (CDC)(IEEE Cat. No. 04CH37601), 2004, pp. 722-727.

[76] D. P. Bertsekas and D. A. Castanon, "Rollout algorithms for stochastic scheduling

problems," Journal of Heuristics, vol. 5, pp. 89-108, 1999.

[77] E. K. Chong, R. L. Givan, and H. S. Chang, "A framework for simulation-based

network control via hindsight optimization," in Proceedings of the 39th IEEE

Conference on Decision and Control (Cat. No. 00CH37187), 2000, pp. 1433-1438.

120

[78] G. Wu, E. K. Chong, and R. Givan, "Burst-level congestion control using

hindsight optimization," IEEE Transactions on Automatic Control, vol. 47, pp. 979-

991, 2002.

[79] D. P. Bertsekas and J. N. Tsitsiklis, "Neuro-dynamic programming: an overview,"

in Proceedings of 1995 34th IEEE Conference on Decision and Control, 1995, pp.

560-564.

[80] D. P. Bertsekas, "Dynamic programming and optimal control 3rd edition, volume

II," Belmont, MA: Athena Scientific, 2011.

[81] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning vol. 135:

MIT press Cambridge, 1998.

[82] K. Ogata and Y. Yang, Modern control engineering vol. 5: Prentice hall Upper

Saddle River, NJ, 2010.

[83] K. CONRAD, "UNIVERSAL IDENTITIES, II:⊗ AND∧," Technical report,

Univ. of Connecticut, 2017. Expository paper in math. uconn.

edu/kconrad/blurbs/linmultialg/univid2. pdf2017.

[84] F. W. Warner, Foundations of differentiable manifolds and Lie groups vol. 94:

Springer Science & Business Media, 2013.

[85] J. Almeida, C. Silvestre, and A. M. S. Pascoal, "Self-Triggered Output Feedback

Control of Linear Plants in the Presence of Unknown Disturbances," IEEE Trans.

Automat. Contr., vol. 59, pp. 3040-3045, 2014.

[86] R. Biernacki, H. Hwang, and S. Bhattacharyya, "Robust stability with structured

real parameter perturbations," IEEE Transactions on Automatic Control, vol. 32, pp.

495-506, 1987.

121

[87] W. F. Arnold and A. J. Laub, "Generalized eigenproblem algorithms and software

for algebraic Riccati equations," Proceedings of the IEEE, vol. 72, pp. 1746-1754,

1984.

[88] S. A. Miller, Z. A. Harris, and E. K. Chong, "A POMDP framework for

coordinated guidance of autonomous UAVs for multitarget tracking," EURASIP

Journal on Advances in Signal Processing, vol. 2009, p. 724597, 2009.

[89] E. K. Chong, C. M. Kreucher, and A. O. Hero, "Partially observable Markov

decision process approximations for adaptive sensing," Discrete Event Dynamic

Systems, vol. 19, pp. 377-422, 2009.

[90] R. Bellman, "Dynamic programming," Science, vol. 153, pp. 34-37, 1966.

[91] B. Geiger, J. Horn, A. DeLullo, A. Niessner, and L. Long, "Optimal path planning

of UAVs using direct collocation with nonlinear programming," in AIAA Guidance,

Navigation, and Control Conference and Exhibit, 2006, p. 6199.

[92] L. Ntaimo, X. Hu, and Y. Sun, "DEVS-FIRE: Towards an integrated simulation

environment for surface wildfire spread and containment," Simulation, vol. 84, pp.

137-155, 2008.

[93] X. Hu, Y. Sun, and L. Ntaimo, "DEVS-FIRE: design and application of formal

discrete event wildfire spread and suppression models," Simulation, vol. 88, pp. 259-

279, 2012.

[94] R. C. Rothermel, A mathematical model for predicting fire spread in wildland

fuels vol. 115: Intermountain Forest and Range Experiment Station, Forest Service,

United …, 1972.

122

VITA

Poorya Shobeiry was born in Tehran, Iran. After completing his schoolwork at

National Organization for Development of Exceptional Talents (NODET) in 2003, Poorya

entered Razi University in Kermanshah, Iran. He received a Bachelor of Science with a

major in Mechanical Engineering from Razi University in July 2008. He then attended

Sharif University of Technology and earned his master’s degree in Mechanical Engineering

(Energy Conversion) in 2011. He started his PhD at University of Missouri in August 2014

with a major in Mechanical and Aerospace Engineering (MAE) and during the last six

years, he has been working on developing innovative optimal control approaches in order

to solve consensus and path planning problems in multi-agent systems (MASs). His results

have been implemented successfully in modeling many practical applications. He has also

been a TA for the course of “Engineering Graphics, Fundamentals” since 2015. During his

years of teaching, he managed to make effective contribution in teaching AutoCAD to the

freshmen by making video tutorials to walk the students through most of the common

issues they face during the course. These tutorials proved to be so valuable, that he was

provided with a $1,000 honorarium by the university and his permission was gained for

other TAs to use the tutorials as well. In his doctoral work, Poorya gained a high level of

proficiency for controlling multiple Unmanned Aerial Vehicles (UAVs) for fighting

wildfires – a project sponsored jointly by the National Science Foundation and the US

Department of Agriculture. The results of this research are believed to be impactful and

improve ability to suppress wildfires in arid climates.

