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ABSTRACT 

 

Decentralized Model Predictive Control of a  

Multiple Evaporator HVAC System. (August 2008) 

Matthew Stuart Elliott, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Bryan Rasmussen 

 

Vapor compression cooling systems are the primary method used for 

refrigeration and air conditioning, and as such are a major component of household and 

commercial building energy consumption.  Application of advanced control techniques 

to these systems is still a relatively unexplored area, and has the potential to significantly 

improve the energy efficiency of these systems, thereby decreasing their operating costs. 

This thesis explores a new method of decentralizing the capacity control of a 

multiple evaporator system in order to meet the separate temperature requirements of 

two cooling zones.  The experimental system used for controller evaluation is a custom 

built small-scale water chiller with two evaporators; each evaporator services a separate 

body of water, referred to as a cooling zone.  The two evaporators are connected to a 

single condenser and variable speed compressor, and feature variable water flow and 

electronic expansion valves.  The control problem lies in development of a control 

architecture that will chill the water in the two tanks (referred to as cooling zones) to a 

desired temperature setpoint while minimizing the energy consumption of the system. 
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A novel control architecture is developed that relies upon time scale separation of 

the various dynamics of the system; each evaporator is controlled independently with a 

model predictive control (MPC) based controller package, while the compressor reacts 

to system conditions to supply the total cooling required by the system as a whole.  

MPC’s inherent constraint-handling capability allows the local controllers to directly 

track an evaporator cooling setpoint while keeping superheat within a tight band, rather 

than the industrially standard approach of regulating superheat directly.  The compressor 

responds to system conditions to track a pressure setpoint; in this configuration, pressure 

serves as the signal that informs the compressor of cooling demand changes.  Finally, a 

global controller is developed that has knowledge of the energy consumption 

characteristics of the system.  This global controller calculates the setpoints for the local 

controllers in pursuit of a global objective; namely, regulating the temperature of a 

cooling zone to a desired setpoint while minimizing energy usage. 
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CHAPTER I 

INTRODUCTION 

 
Energy is a key foundation upon which the world’s economy and the modern 

way of life are built.  The presence of electricity in modern life allows people to 

conveniently preserve food with refrigeration, cool their homes and offices via air 

conditioning, and operate electronic devices in the pursuit of both profit and leisure.  As 

the developing world continues to grow, mankind’s ever-increasing appetite for energy 

ensures that the cost of the modern electricity-driven lifestyle will continue to increase.  

This economic reality, combined with the effects of man’s energy related activities on 

the climate of our planet, creates an important opportunity to develop methods of energy 

consumption that are efficient, flexible, and reliable. 

Vapor compression cooling (VCC) cycles—air conditioning and food 

refrigeration—accounted for over 30% of household electricity consumption in 2001, 

which is the last year for which official US Dept of Energy statistics are available [1].  

VCC costs are a significant part of the expenses of managing a large building or 

operating a refrigerated truck.  Control techniques for these cycles have traditionally 

consisted of simple electromechanical devices and on/off control strategies;  
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technological advances such as variable speed compressors, electronically controlled 

expansion valves, and improved computing speed now allow more precise control and 

efficient operation.  

This thesis contributes an approach to controlling multiple evaporator systems 

with a two-level control architecture.  Each evaporator has a self-contained controller 

directly tracking evaporator cooling to a setpoint and maintaining superheat within a 

band.  Further, the compressor controls the first evaporator’s pressure, and a discharge 

valve on the secondary evaporator controls its pressure.  The pressure and cooling 

setpoints are generated by a global controller, which seeks to minimize tracking error 

and energy consumption. 

The Control Problem 

The central problem that this thesis addresses is the design of a controller that 

will regulate the temperature of multiple separate cooling zones independently.  This is a 

common scenario that can be found in many applications, such as different apartments in 

an apartment building, different rooms in a house, or even a household refrigerator with 

freezer.  In this case, the cooling zones are two individual volumes of water.   

This controller will meet the desired temperatures of the cooling zones, and 

regulate the vapor compression cycle in such a way that energy efficiency is maximized 

as this task is completed.  These are two competing control objectives; if the objective 

were only to consume minimal amounts of power, a minimum of cooling would be 

performed and the cooling zone temperatures would take an unacceptable amount of 

time to reach their setpoints.  Similarly, if the controller ignores energy consumption, the 
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system will run at maximum capacity; the setpoints would be reached quickly but the 

process would be relatively expensive in terms of power consumption (note that this is 

essentially the approach taken by traditional mechanical controls for HVAC systems).  

Therefore, the controller must be tunable so that different weights can be placed on the 

competing objectives, depending upon the relative importance placed on each objective 

by the user.  In addition, the controller should respect the limitations of the physical 

system being controlled.  Figure 1.1 shows the control problem configuration. 
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Fig. 1.1 Control problem configuration 
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Multiple-Evaporator Vapor Compression Systems 

The research in this thesis is performed on a multiple evaporator water chiller.  

This chiller features a suite of evaporators, each servicing a different cooling zone, and 

linked to a single condenser.  The reader should note that this system is intended to 

mimic a system where the refrigerant evaporation directly cools the air in the room or 

cabin, and not a system where chilled water is used to cool the various cooling zones.  

The compressor is variable speed, which allows it to deliver only the cooling required by 

the system; since the compressor is typically the single largest consumer of energy in the 

system, variable capacity control allows energy optimal operation.  Figure 1.2 is a 

schematic of a general multiple evaporator system with n evaporators; this is adapted 

from a single evaporator system detailed in [2].   

 

 
Fig. 1.2 General multi-evaporator system with designated states 
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The first stage of the thermodynamic cycle is at the inlet of the compressor, 

where refrigerant is in a low pressure, gaseous state, denoted as state 1 in Figure 1.2.  

The compressor adds energy to the fluid by compressing it to a high pressure, high 

temperature gas (state 2).  This gas passes into the condenser, where heat energy is 

rejected from the refrigerant to the secondary fluid (water or air).  This causes the 

refrigerant to condense to a high pressure liquid.  A receiver at the end of the condenser 

ensures that the refrigerant becomes a saturated liquid (state 3).  This saturated liquid is 

fed into a set of electronic expansion valves (EEVs), which meter the refrigerant flowing 

into their respective evaporators.  The refrigerant is now a two-phase fluid (states 4 and 

5).  This two phase fluid absorbs heat from the water entering the evaporators, chilling 

the water and causing the refrigerant to evaporate.  This low pressure gas exits the 

evaporators and returns to the compressor.  The discharge valve (SDR) on the secondary 

evaporators creates a pressure differential between evaporators, thus allowing them to 

provide cooling at different saturation temperatures; at the inlet of the SDR, the 

refrigerant will be superheated at a higher pressure than that of the primary evaporator 

(state 6).  After the refrigerant passes through the SDR, it will be at the same state as the 

refrigerant at the exit of the primary evaporator (state 1).   The water flow valves 

(WFVs) regulate the flow of secondary fluid across each of the evaporators; they are 

equivalent to variable speed fans in an air-based system.  Figure 1.3 shows the pressure-

enthalpy (P-h) diagram of the cycle superimposed on the refrigerant vapor dome. 
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Fig. 1.3 P-h diagram for two-evaporator system 
 

 

 

Model Predictive Control 

VCC systems have many inherent constraints—minimum evaporator pressures, 

maximum compressor speeds, valves cannot open past 100%, et cetera.  In addition, the 

dynamics of these systems are enormously complex and feature a large amount of cross-

coupling.  The presence of these constraints and dynamic coupling implies that a 

multiple-input, multiple-output (MIMO) control approach is desirable.  This is especially 

true for a system with multiple evaporators, where each cooling zone has an individual 

evaporator to meet its cooling needs, and the entire system is serviced by a single 

compressor and condenser.  In light of the constraint handling and controller parameter 
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tuning requirements set forward in the previous section, model predictive control is an 

ideal choice for the control of multiple evaporator systems. 

Model predictive control (MPC) is an overarching term for a suite of control 

strategies mostly developed in industry during the 1970s.  A controller based upon one 

of these strategies selects control inputs via the online optimization of a predefined cost 

function at discrete time intervals.  MPC allows for explicit handling of input, output, 

and state constraints—if a set of control inputs violate a constraint as predicted by the 

dynamic model, that set of inputs is discarded as a possible choice.    MPC is also well 

suited for multiple-input, multiple-output (MIMO) control.  Therefore, closely-coupled 

dynamics in the plant can be controlled with a single controller, whereas a group of 

single-input, single-output (SISO) controllers will frequently interfere with each other.  

Furthermore, since the cost function can be changed online to match changes in global or 

external conditions, MPC-based controllers can have a high level of flexibility in 

meeting general operational goals as the operating conditions change. 

MPC is also referred to as receding horizon control, since the horizon for which 

prediction is performed moves ahead in time at each sampling instant.  There are two 

important horizons in MPC, both of which are expressed in terms of sampling instants.  

The prediction horizon is the span of time for which the plant outputs are predicted.  The 

control horizon is the number of control inputs that are calculated in the prediction 

computation, and is always smaller than the prediction horizon.  The size of the 

prediction horizon is generally limited by computation speed; it is important to choose 
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the control horizon such that the difference between the control and prediction horizons 

is as least as long as it takes for all dynamics in the system to settle out [3].  

Generic MPC Example 

As an example of a generic MPC controller, consider Figure 1.4.   At the current 

sampling instant, k = 0, the input u = 0.375 and the output y = 0.  As shown on the left 

hand plot, the control horizon is 3 sampling instants and the prediction horizon is 5 

sampling instants.  Assume that the three input profiles u1, u2, and u3 are the possible 

input combinations to the plant, with their respective open loop dynamic responses y1, 

y2, and y3 shown on the right side of the figure.  The desired output (setpoint) is 0.333.  

The resulting cost function value for each scenario is given by J, next to the output plots.  

This cost function can be assumed to be dependent upon the weighted tracking errors at 

each sampling instant over the prediction horizon, as well as each weighted control input 

at each sampling instant over the control horizon: 

∑∑
==

Δ+−=
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j
ju

Ny

i
iactualsete uyyJ

11
)( λλ  

In this equation, Ny is the prediction horizon, λe is the weight placed on error, Nu 

is the control horizon, λu is the weight placed on changes in control, and Δu is the 

change in input. 
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Fig. 1.4 MPC example inputs and outputs 
 
 
 
Note that in calculating the command profiles, Nu changes in the input are 

calculated.  After the time is larger than Nu, i.e. from k = 3 through k = 5, the value of 

the input is held constant.  In this case, since the cost function is minimized for the 

response to input profile u2, the first value only of u2 (i.e., u = 0.5) is input to the plant at 

the current sampling instant.  At the next sample instant, this process is repeated: the 

horizons are moved forward by one sample time, an optimal solution is computed, and 

the first control input of the optimal command profile is applied. 

If a constraint were placed on the input so that it could not be larger than 0.9, u3 

would no longer be a valid input, and only u1 and u2 would be considered.  Similarly, if 

the output were constrained to be less than 0.3, then u2 and u3 would no longer be valid 

inputs, since their output responses would violate the specified output constraint.  In this 

case u1 would be chosen, even though it is not the optimal choice in the unconstrained 
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case.  Similarly, if a large weight were placed on controller action in the cost function 

calculation, and a very small weight placed upon error, it is possible that the cost 

function for u1 would be the minimum case and would be chosen as the command 

profile, even though the setpoint is never met for this case.  Clearly, careful selection of 

the constraints and tuning parameters is an important part of any MPC implementation. 

 

Literature Review 

The beginnings of refrigerant flow control are rooted in mechanical expansion 

and metering devices such as the thermal expansion valve (TEV).  The TEV is a very 

widely used mechanical feedback device that regulates superheat at the evaporator exit; 

however, it tends to exhibit a limit cycle behavior commonly referred to as valve 

hunting, wherein the evaporator superheat oscillates without settling to a steady state 

value.  Broerson and van der Jagt used a linearized dynamic model of an evaporator to 

show that this hunting behavior is due to interactions between the TEV with the 

evaporator dynamics [4].  Gruhle and Isermann also modeled the TEV and evaporator 

system, and discuss the conflict between efficient operation—a small superheat—with 

safe operation—keeping superheat above a minimum value [5].  They explored using an 

EEV with a PI control loop to control superheat, with improved results over the TEV.  

Additional modeling work on the TEV with evaporator has been done by Ibrahim in [6], 

and James in [7], although no experimental validation is provided in these researches.  

More recently, Chen, et al., explored the phenomenon of minimum stable superheat, and 

offered an explanation for the onset of hunting due to sudden changes in heat transfer 
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characteristics [8].  These widely observed problems with valve hunting led to 

exploration of the use of automatic controls with refrigeration and air conditioning 

systems. 

The application of classical control theory to variable refrigerant flow systems 

has generally involved using the EEV to control superheat, analogous to the thermal 

expansion valve used in purely mechanical control systems. As mentioned earlier, 

Gruhle and Isermann compared the performance of a PID controller favorably to that of 

a TEV in [5].  In addition, other single-input, single-output controllers have been 

implemented that use the EEV to control superheat.  In [9], Outtagarts compared the use 

of PID with that of optimal qualitative regulation.  Finn and Doyle compare PID 

performance with that of a TEV, and explore using adaptive PID control to improve 

performance [10].  Larsen, Thybo, and Rasmussen applied a nonlinear evaporator model 

and cascaded PID loops to the superheat control problem, where an outer loop calculated 

the necessary mass flow for a desired superheat setpoint, and fed this as a setpoint to an 

inner PID controller, which directly controlled the EEV [11].    

Due to the cross-coupled dynamics of VCC systems, purely SISO control 

approaches are severely limited, as shown by He, Liu, and Asada in [12].  Even a 

decoupled approach, where the EEV and variable compressor speed control different 

output variables, can have unacceptable results if not structured correctly, as found by 

Parnitzki in [13].  He, Liu, and Asada applied an advanced model-based control 

technique, Linear Quadratic Gaussian (LQG) control, in a multi-input, multi-output 

(MIMO) configuration to regulate superheat and evaporator temperature using a 
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variable-speed compressor and EEV [14].  In [15] and [16], He and Asada developed a 

control architecture implementing a nonlinear observer to perform feedback 

linearization, allowing a PI controller to control compressor speed.  Lin and Yeh 

decoupled the control of a similar system, taking advantage of the difference in time 

scales of the dynamics to use the compressor to control evaporator pressure and the EEV 

to control superheat, with the evaporator pressure setpoint generated by a function of the 

difference between actual and desired room temperature [17].  In [18], the authors 

applied multi-variable indirect adaptive Linear Quadratic Regulator (LQR) control to an 

automotive air conditioning system, using the expansion valve and air fan speed to 

control evaporator pressure and superheat.  Singh et al. also applied multivariable 

adaptive LQR control effectively, but to a two-zone fan coil heating system instead of a 

VCC system [19].  The interested reader can find descriptions of LQR, LQG, and other 

modern multivariable control methods in [20]. 

The primary weakness of most advanced control techniques with respect to VCC 

systems is the same as that of classical control: inability to account for constraints 

explicitly in the controller design, leading to a lower level of performance [21].  MPC 

has been used to solve many control problems in the chemical and refining industries 

[22].  Indeed, these industries specifically developed MPC to operate complex 

multivariable systems near constraints without violating them, since the most economic 

operating conditions in chemical processing are typically at intersections of constraints 

[23].  Academic research followed after successful industrial implementation, in a 

reversal of the usual theory/application gap; many of the MPC controllers in wide use 
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are proprietary algorithms [23]. Advancements in the study of stability in the presence of 

constraints and robustness have been made; Mayne provides a useful survey of the work 

performed in [24].  These academic advancements have been applied to systems varying 

from industrial chemical test stands [25] to air quality control in livestock barns [26].  

Rawlings published a tutorial that provides an excellent reference in learning to use 

MPC [27].  In addition, widely referenced textbooks have been published by Camacho 

[21] and Rossiter [3], and Clarke published a collection of MPC papers describing 

advances in robustness, stability, and applications [28]; these are readily available 

resources for the reader wishing to learn more. 

While the linear MPC problem has been heavily addressed, the control of 

nonlinear systems is still an open problem.  Processes with a higher degree of process 

nonlinearity and where market forces require frequent changes in operating conditions, 

such as polymers and gas plants, are still not widely controlled with MPC [29].  Algöwer 

provides a collection of literature on the nonlinear model predictive control (NMPC) 

problem in [30].  The use of multiple model predictive control (MMPC) is a widely 

pursued avenue of interest; in MMPC a suite of linear models are developed: one for 

each linearized operating point deemed necessary by the user, and the controller 

switches among the individual models as operating conditions change [31].   

Direct application of MPC to VCC cycles is still limited, although researchers 

have used MPC-based approaches to control airflow in the air handling units of large 

building cooling systems.  These approaches have either used an MPC algorithm to 

directly control the system actuators as in [32], or used an MPC algorithm to set gains 
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for local PID controllers as in [33] and [34].  Another common approach is to use an 

MPC algorithm to perform controller self-tuning, whether for commissioning or to adapt 

to changing conditions, seen in [35] and [36].  Sousa et al. used MPC with fuzzy logic to 

control water valves in radiative heating systems [37].  He et al. extended this fuzzy 

model approach to the control of an HVAC air handling unit (AHU), such as that found 

in a large building HVAC system [32].  Leducq et al. applied a MIMO MPC algorithm 

to a single-evaporator water chiller system using a nonlinear model, controlling cooling 

and temperatures using compressor speed and water flow [38].  Even in this latter 

approach, however, the EEV was used with a PI loop to control superheat.  One of the 

thrusts of this research will be to explore the idea of using the EEV for other purposes; 

since the EEV is at the entrance of the evaporator and superheat is measured at the end 

of the evaporator, there is significant dynamic behavior between the actuator and the 

controlled variable.   

This research will involve a system with two evaporators, simulating a cooling 

system with multiple cooling zones.  An internet search of multiple evaporator systems 

reveals many patents and commercial developed products, although academic research 

into dynamic controls of these systems is still limited, creating much potential for future 

exploration.  They have not been implemented widely in the United States, despite their 

popularity elsewhere and their potential for energy savings over traditional water loop 

based configurations [39].  In their research into multiple-evaporator systems, Choi and 

Kim showed that using the EEVs and compressor in combination to modulate the 

capacity of each evaporator can result in better operating efficiencies, although each 
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EEV has a strong effect on the other evaporator [40].  Park et al. also explored this 

combination, calculating optimum EEV for a given compressor speed and load ratio 

[41].  In neither case is the design of a dynamic controller considered, although they 

reference the work of Fujita, who investigated using a PID loop with an EEV and 

variable speed compressor to control superheat and cooling capacity in a multi-

evaporator system.  Asada and He explored using feedback linearization in a PI loop 

controlling the compressor speed with a multiple-evaporator system, although simulation 

results only were presented [42].  Kim et al. investigated using MPC to control a 

multiple evaporator heat pump; in this case, the EEV was used to control the evaporator 

temperature.  This method was shown to have performance improvements over using PI 

loops [43].  Shah et al. performed modeling work of a multi-evaporator system and 

explored control techniques; as expected, a MIMO approach was found to be superior to 

SISO techniques for control, due to the complexity of system dynamics [44].  Finally, 

Chiou et al. applied fuzzy control techniques to energy savings for small scale household 

air conditioners with multiple evaporators, and found better temperature regulation than 

could be had with traditional on/off techniques [45]. 

Figure 1.5 illustrates the potential for research in the confluence of several 

different fields of endeavor.  While advanced controls—including MPC—have been 

applied to HVAC systems (both refrigerant flow and air handling elements), very little 

work has been done applying MPC to the refrigerant cycle itself.  Additionally, the 

investigation of applications of advanced control techniques to multiple evaporator 
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systems has barely been explored by either the controls or HVAC communities, and 

therefore the potential for progress in this area is great indeed. 
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Fig. 1.5 Areas of research 

 

 

Organization of Thesis   

Experimental validation is important to any new control architecture; Chapter II 

of the thesis details the custom-built experimental system constructed for this purpose.  

A dynamic analysis was performed in order to develop an understanding of the dynamic 

relationships between the control inputs and the system states.  This effort is described in 

Chapter III.  The information from the dynamic analysis was used to design a two-level 

control architecture; development of the local controllers are described in Chapter IV 

and that of the global controller in Chapter V. A concluding discussion of the results is 

presented in Chapter VI. 



17 

CHAPTER II 

EXPERIMENTAL SYSTEM 

Overview 

Justification and Organization 

The experimental system used for the research presented in this thesis is a 

custom-built, small-scale two-evaporator water chiller.  This system is intended for 

dynamic model validations, control development, fault detection, and other research for 

the Thermo-Fluids Control Laboratory.  These uses and the desire for modularity and 

flexibility were the primary considerations during the process of component selection 

and system construction.  This chapter first gives an overview of the flow logic and 

construction of the primary (refrigerant) system and the secondary (water) system.  

Construction details of the heat exchangers are given.  Details of the individual 

components for the primary and secondary loops are explained.  The sensors used in the 

system are described.  Finally, the software and data acquisition systems are detailed.  

Wiring schematics for the electrical and electronic components can be found in the 

Appendix.  Figure 2.1 is a photo of the entire system. 
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Fig. 2.1 Entire system 
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Primary System 

The refrigerant or “primary” side of the system is constructed of copper tubing.  

Where possible, SAE 45° flare fittings are used to connect the tubing together, since they 

are economical and reusable.  Wherever it was not practical to flare tubing, Swagelok 

brand compression fittings were used.  For some components, such as at the compressor 

inlet and outlet ports, soldered connections were required.  Nominal 1/4” tubing is used 

for lines carrying liquid, and 3/8” tubing is used for gas lines and lines carrying two-

phase fluid (i.e., from the expansion valves to the evaporators).  A liquid receiver is 

installed at the end of the condenser to ensure that saturated liquid is fed to the 

expansion valves.  Manual shutoff valves are used throughout the system to allow 

retention of refrigerant while sections of the system are being worked upon as well as to 

provide manifolds to route refrigerant through different expansion devices or even to 

bypass the liquid receiver if so desired.  The compressor is a variable speed compressor 

that has an integrated accumulator to prevent liquid from passing into the compression 

chamber.  Figure 2.2 is a schematic of the primary side of the system.  Component 

descriptions are provided later in the chapter; additionally, the Appendix contains a 

complete table of the schematic reference numbers (A2, MV8, etc.) and a description of 

the role played by each. 
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Fig. 2.2 Primary (refrigerant) loop 
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Secondary System 

Water is used as the “secondary” working fluid in the heat exchangers, since the 

flow rate of water is much easier to measure and regulate than that of air.  The water is 

fed via gravity to each of the three heat exchangers from water tanks.  Each of these 

supply tanks has a pump inlet as well as an overflow outlet.  Since the pumps delivering 

water to the supply tanks are by design pumping more water than is being fed to the heat 

exchangers, there is an excess of water supplied to the top tanks.  This excess is removed 

from the supply tanks via the overflow lines, which flow into the return tanks at the 

bottom of the system.  This arrangement guarantees that a constant head of water 

pressure (experimentally verified as within 1.8%) is present during system operations 

regardless of water flow to the heat exchangers.  Figure 2.3 shows the overflow 

configuration; Figures 2.4 and 2.5 are photos of the top and bottom tanks, respectively. 
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Fig. 2.3 Water overflow arrangement 
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Fig. 2.4 Top tanks 

 
 
 

 
Fig. 2.5 Bottom tanks 
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 After the water is heated by the condenser or chilled by the evaporators, it is fed 

into one of three return tanks.  Each of the heat exchangers, therefore, has its own 

isolated water supply.  This allows for simulations of controlling the temperature of a 

cabin or room.  A valve manifold also allows for heated condenser water to be diverted 

into the evaporator tanks, which allows simulation of temperature disturbances and 

removes excess heat from the condenser water, since chilled water overflow from the 

evaporator return tanks is fed into the condenser return tank.  Figure 2.6 is a photo of the 

condenser manifold.  A modified window air conditioner is also used to remove the heat 

added to the condenser water, which helps to keep the condenser supply water 

temperature constant within a few degrees over the course of an experiment.  Figure 2.7 

is a photo of this arrangement.  A valve manifold is also used with the water pumps so 

that water from any of the three bottom tanks can be pumped to any of the three top 

tanks.  This feature, along with the return tanks’ overflow lines, means that the water 

from the heat exchangers can be re-mixed during an experimental run, and that the water 

temperature fed into the heat exchangers can be held constant during a model validation 

run.  This becomes especially important while mapping out system behavior over the 

range of operation, and also allows for application of load disturbances, as will be 

detailed later in the thesis.  Figure 2.8 is a photo of the pump manifold.  Figure 2.9 is a 

schematic of the entire secondary system. 
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Fig. 2.6 Condenser manifold 

 
 
 

 
Fig. 2.7 Condenser water chiller 

 
 
 

 
Fig. 2.8 Water pump manifold 
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Fig. 2.9 Secondary loop schematic 
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Heat Exchangers 

The three heat exchangers—two evaporators and one condenser—constructed for 

the system provide the interface between the primary and secondary loops and are the 

means by which energy is transferred within the system.  Since the experimental rig is 

constructed for model validation as well as for the research presented in this thesis, each 

exchanger is of a different design. 

The condenser, which is the largest of the three, consists of 3/8” copper tubing 

wound around a 2” Schedule 40 PVC pipe (all pipe sizes listed are nominal size unless 

noted otherwise).  This is contained within a chamber constructed of 4” Schedule 40 

PVC pipe.  Three intake runners feed water into the chamber; the water comes into 

contact with the copper tubing, drawing heat from the refrigerant inside the tubing 

during the condensing process.  Two exhaust runners allow the water to drain into the 

lower tank.  The rationale behind this “cross-flow” style of construction was to attempt 

to simulate water and refrigerant flowing at right angles to each other in order to 

simplify the modeling assumptions used when modeling flow inside the condenser.  The 

outer condenser shell is approximately 0.74 m long; the uncoiled length of tubing is 

approximately 8.38 m.  Figure 2.10 is a photo of the condenser; figure 2.11 shows a 

cutaway view of the condenser construction. 
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Fig. 2.10 Condenser 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.11 Condenser construction 
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Both evaporators are of a simple shell and tube style construction, wherein the 

primary fluid flows in a center tube, and the secondary fluid flows around this center in 

an outside shell.  The inner tube is a straight run of 1/2” copper refrigeration tubing, 1 m 

long; 1/2” to 3/8” adapter fittings are soldered onto the ends of the tube to interface with 

the 3/8” copper lines at the entrance and exit of the evaporator.  The outer shell is 3/4” 

Drain/Waste/Vent (DWV) PVC pipe, 1 m long.  The water enters via a tee fitting at one 

end of the pipe and exits the other end.  Evaporator #2 is a counterflow heat exchanger; 

the refrigerant and water flow in opposite directions.  Evaporator #1 is a co-flow heat 

exchanger, that is, the refrigerant and water flow in the same direction.  While co-flow is 

not as efficient as counterflow, this arrangement allows for model validation of both 

styles of heat exchanger.  Figure 2.12 is a photo of the evaporators; figure 2.13 shows 

the construction of the two evaporators. 

 

 
Fig. 2.12 Evaporators 

 
 
 

 
Fig. 2.13 Evaporator construction 
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Primary Loop Components 

Refrigerant Valves 

The expansion valves used in the system are electric expansion valves (EEVs) 

manufactured by Sporlan.  Each valve is controlled by a Sporlan IB interface board.  

These boards accept a 4-20 milliamps (mA) command signal from the user and position 

the valve proportionally according to the signal using the step motor integral to the valve 

assembly.  They have a resolution of 1596 steps at 200 steps per second, for a total travel 

time of approximately 8 seconds from completely open to completely closed.  Figure 

2.14 is a photo of the expansion valve. 

 

 
Fig. 2.14 Electronic expansion valve (EEV) 
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In order for the second evaporator to operate at a higher pressure than the first 

evaporator, a discharge control valve must be placed at the end of the second evaporator.  

For this purpose a Sporlan SDR valve was selected.  It is also controlled with a Sporlan 

IB board and a 4-20 mA signal in exactly the same manner as the expansion valve.  

Figure 2.15 is a photo of the discharge valve (hereinafter referred to as the SDR).  The 

stepper motor has exactly the same characteristics as that of the EEV. 

 

 
Fig. 2.15 Discharge valve (SDR) 
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Manual shutoff valves are also installed at various places in the system; this 

allows one of the evaporators to be shut off, or for a section of the primary loop to be 

closed off while another section is being worked on.  This way the majority of the 

refrigerant in the system can be stored in the liquid receiver while the system is being 

worked on, resulting in a minimum of refrigerant loss.  Figure 2.16 is a photo of one of 

these valves. 

 

 
Fig. 2.16 Manual shutoff valve 
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In addition to the EEVs, the second evaporator has two auxiliary selectable 

expansion devices for model validation or other experimental purposes not related to the 

research presented in this thesis.  These two devices are a Thermal Expansion Valve 

(TXV) and an Automatic Expansion Valve (AEV).   The desired auxiliary valve is 

selected using a 3-way L-type ball valve; there is a shutoff manual valve at the end of the 

selection manifold for when the EEV is used.  Figure 2.17 is a photo of this arrangement. 

 

 
Fig. 2.17 Auxiliary expansion device manifold, evaporator #2 
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Compressor 

The compressor for the system is a Sierra model manufactured by Masterflux.  

This is a scroll-type variable speed compressor that uses a 48V DC power supply and is 

designed to operate with R134a refrigerant.  This voltage is fed into a compressor 

control module included by the manufacturer, which accepts control signals from the 

user and regulates the compressor speed.  The control module allows for a manual 

switch to turn the power on and off, outputs a tachometer signal, the current consumed, 

and accepts a 0-5 volt signal to control compressor speed.  The compressor speed varies 

from 1800 to 6500 RPM.  Total compressor capacity is approximately 1.5 tons of 

cooling.  Figure 2.18 is a photo of the compressor. 

 

 
Fig. 2.18 Masterflux compressor 
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Liquid Receiver 

A liquid line receiver made by Henry Technologies is placed at the end of the 

condenser.  This receiver serves as a safety measure to ensure that only liquid is fed into 

the expansion valves, thus decreasing the risk of choking the valves.  Using a receiver 

also ensures that the liquid will be saturated rather than subcooled, which enables some 

assumptions with regards to enthalpy calculations and system conditions.  Figure 2.19 is 

a photo of this component. 

 

 
Fig. 2.19 Liquid receiver 
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Filter/Drier 

A filter/drier is placed in the refrigerant flow stream after the liquid receiver 

manifold in order to protect the expansion devices; in addition, a sight glass is also 

located here to allow the operator to verify that only liquid refrigerant is being passed to 

the valves.  Figure 2.20 is a photo of these components. 

 

 
Fig. 2.20 Filter drier with sight glass 
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Venturi 

A converging-diverging nozzle or Venturi is placed in the fluid flow immediately 

before the compressor.  This is used with a differential pressure transducer to measure 

vapor mass flow into the compressor, although is not used for the research presented in 

this thesis.  Figure 2.21 is a photo of this component. 

 

 
Fig. 2.21 Venturi 
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Pressure Gages 

Pressure gages are installed on the low and high pressure sides of the refrigerant 

loop.  These provide a visual check that the system is working properly and give a 

comparison to the pressure transducers.  Additionally, a Ranco pressure cutoff switch 

kills the power to the compressor if the high or low pressures exceed constraints.  Figure 

2.22 shows one of the pressure gages.  Table 2.1 gives a brief description of each of the 

primary loop components; a list of supplier information can be found in the Appendix. 

 

 
Fig. 2.22 Pressure gage 

 
 
 

Table 2.1 Primary loop system components 

Description Qty Manufacturer Part Number Notes Schematic 
Reference

Electric Expansion Valve (EEV) 2 Sporlan SEI 0.5-10-S R134a expansion A2, A3

Discharge Valve (SDR) 1 Sporlan SDR-3X Evaporator 2 pressure 
regulation A4

Manual Shutoff Valve, 1/4" 8 Mueller A14833 Refrigerant routing MVx-xx-x
Manual Shutoff Valve, 3/8" 4 Mueller A14835 Refrigerant routing MVx-xx-x

3-way Ball Valve, 3/8" 1 ValveWorx 536503 Auxilary valve selector MV13-E2-6
Compressor 1 Masterflux Sierra 03-0982Y3 -- A1

Liquid Receiver 1 Henry Technologies S-8060 -- M2
Filter Drier 1 Alco EK-032 -- M3
Sight Glass 1 Emerson AMI 1FM2 1/4" female X male SAE --

Venturi 1 Lambda Square VU-0.5-0.148 1/2" size; 0.148" throat M1
High Pressure Gage 1 Omega PGC-25L-300 0-300 psig range G1
Low Pressure Gage 1 Omega PGC-25L-160 0-160 psig range G2

Pressure Shutoff Switch 1 Ranco 012-1594-70 -- --  
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Secondary Loop Components 

Water Valves 

The water flow for each evaporator is controlled by an electrically actuated valve 

manufactured by Erie.  The control unit accepts a 4-20 mA signal that opens and closes 

the valve proportionally based upon the command signal.  These valves require a 

24VAC power supply; a transformer is used to supply this voltage to both valves.  Fuses 

are installed on the primary and secondary windings of this transformer.  Figure 2.23 is a 

photo of the water flow valves (WFVs).  In addition, ¾” PVC ball valves are used 

throughout as shutoff valves for the water supply, and ½” PVC ball valves are used to 

bleed air out of the water lines.  These valves are standard plumbing components readily 

available at any hardware store. 

 

 
Fig. 2.23 Water flow valves 
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Water Pumps 

The pumps for the secondary loop are manufactured by Laing.  These are sealed 

centrifugal pumps and are not self priming.  The inlet and outlet connections are ¾” 

male National Pipe Thread (NPT).  These pumps are capable of 10 gallons per minute of 

flow with 8 feet of head and require standard 120 VAC power.  Figure 2.24 is a photo of 

the pumps.  Table 2.2 gives a brief description of the secondary loop components. 

 

 
Fig. 2.24 Water pump 

 
 

Table 2.2: Secondary loop system components 
Description Qty Mfr. Part Number Notes Schematic 

Reference
Water Flow Valve (WFV) 2 Erie APA23A000 water flow control A5, A6

Transformer, 24 VAC 1 Honeywell AT72D-1683 Provides power for WFV N/A
Manual Water Valves 19 various various standard 3/4" PVC ball valves MWVxx

Manual Water Valves 3 various various 1/2" PVC ball valves used for air 
bleed

MWV5, MWV12, 
MWV17

Water Pumps 3 Laing SM-1212-T-26 -- WPx
Condenser Water Chiller 1 Haier HWF05XC5T 5000 BTU/hr rating M4
Condenser Water Tanks 2 Tamco 6314 34 gallon N/A
Evaporator Water Tanks 4 Tamco 6305 15 gallon N/A  
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Transducers 

Water Mass Flow 

The transducers used to measure water flow, seen in Figure 2.25, are volumetric 

turbine-style flowmeters manufactured by Kobold Industries.  These transducers output a 

square wave signal from an NPN transistor whose frequency corresponds linearly to the 

volumetric flow of the fluid.  This signal is converted to a voltage with a signal 

conditioning module which is fed into the data acquisition board on the system 

computer. 

 

 
Fig. 2.25 Water flow transducers 
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Thermocouples 

Temperature measurements are made with type T thermocouples immersed in the 

tested fluid.  These thermocouples have ungrounded sealed tips and are of the low-noise 

variety.  The thermocouples are immersed in the measured fluid; a Swagelok tube fitting 

grips the shaft of the thermocouple, sealing the measured fluid from the air.  Figure 2.26 

is a photo of this arrangement.  The thermocouples are wired into a thermocouple 

terminal board with built-in cold junction compensation; this board is connected to a PCI 

thermocouple board on the computer. 

 

 
Fig. 2.26 Immersion thermocouple 
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Pressure Transducers 

Pressure measurements of the refrigerant are made using sealed stainless steel 

diaphragm-type pressure transducers manufactured by Cole-Parmer.  A transducer with 

maximum pressure of 300 psi is used to measure pressure at the outlet of the condenser, 

and transducers with maximum pressure rating of 100 psi are used at the outlets of the 

two evaporators.  All of these transducers output a 1-5 V signal proportional to the 

pressure, which is fed into the data acquisition boards without processing.  Figure 2.27 is 

a photo of the 300 psi transducer. 

 

 
Fig. 2.27 Pressure transducer 

 

A differential pressure transducer is installed on the Venturi described earlier.  

This transducer outputs a 4-20 mA signal proportional to the pressure drop through the 

Venturi.  The purpose of this arrangement is to allow investigation of fluid flow 

dynamics of the compressor for model verification purposes, although it is not used in 

the research presented in this thesis. 
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Refrigerant Mass Flow 

The transducers used to measure refrigerant flow, seen in Figure 2.28, are 

volumetric turbine-style flowmeters manufactured by McMillan.  These transducers 

output a 0-5V signal, which is fed directly into the data acquisition board without signal 

conditioning. 

 

 
Fig. 2.28 Refrigerant flow transducer 
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Current Transducer 

The current consumed by the compressor is measured with a current transducer 

made by CR Magnetics.  This transducer uses the Hall Effect to measure DC current 

passing through the wire to the compressor electronics; it outputs a 0-5V signal 

proportional to the current. 

Tachometer 

The compressor electronics output a square wave signal whose frequency is 

proportional to the measured compressor speed.  This square wave is fed into a signal 

conditioning module, which converts the signal to a 0-5V DC voltage that the data 

acquisition board can accept.  Table 2.3 gives a brief description of each of the 

transducers in the experimental system. 

 

Table 2.3 Transducers 

Description Qty Mfr. Part Number Operating Range Output
Listed 

Accuracy, 
+/-

Schematic 
Reference

Water Flow 3 Kobold DRS-0380-N5-K000 2-40 LPM 0-320 Hz 1.5% FS S6, S7, S8
Thermocouples 12 Omega GTMQSS-062U-6 -270-400 °C TC 0.5 °C Tx-xxx-x

Evaporator Pressure 2 Cole-Parmer 07356-03 0-100 psig 1-5 V 1.0% FS S5, S11
Condenser Pressure 1 Cole-Parmer 07356-04 0-300 psig 1-5 V 1.0% FS S3
Differential Pressure 1 GE General Eastern Modus W30-31E-1-T 1-6 psid 4-20 ma 1.0% FS S2

Refrigerant Flow 2 McMillan 102-5-E-Q-B4-NIST 50-500 mL/min 0-5 V 3.0% FS S4, S9
Compressor Current 1 CR Magnetics CR5210 0-50 amps DC 0-5 V 1.0% FS S10

Tachometer 1 Masterflux -- 1800-6500 RPM 0-2600 Hz none S1  
 
 

Comments on Sensor Accuracy 

Since the primary thrust of this thesis is design of a control algorithm, less 

emphasis is placed on the accuracy of the transducer measurements than if the research 

was geared towards design of an experimental system, or comparison of the behavior of 
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different systems.  Any measurement biases from the actual values of pressure, 

superheat, et cetera, are not as important to this work as are the trends that these 

measurements follow.  In other words, if the controller is asked to regulate pressure at 

275 kilopascals (kPa), and it performs such that the sensor readings track 275 kPa, the 

controller is considered to be successful, even if the actual pressure is 20% higher.  If the 

setpoint is then changed to 245 kPa, and the controller responds by seeking to decrease 

the measured pressure by the appropriate amount, this level of accuracy will be 

considered sufficient for the purposes of controller design.  In the case where there is a 

severe change in the qualitative behavior of the system, such as during a loss of 

superheat, this will be reflected in the overall behavior and can be detected by all of the 

sensors acting together.  As a measure of validation for the sensor measurements, an 

energy balance was checked wherein the heat transfer measured at the water passing 

through the evaporator is compared to that of the refrigerant; ideally, these properties 

would be equal.  Figure 2.29 shows this comparison.  Although there is as much as a 

15% difference between the two properties, the dynamics track each other quite well.  

This implies that the measurement accuracies are good enough for the purposes of this 

control research. 
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Fig. 2.29 Energy balance comparison 

 

 

Power Components 

The compressor is powered by two 800 Watt DC power supplies.  These power 

supplies accept a 208VAC supply and output up to 16 amps at 48 VDC each.  They are 

connected in parallel to deliver the power needed to run the compressor and are 

individually switched.   

Power supplies for the transducers and signal conditioning equipment are also 

used.  The 24VDC power supply is used to power the pressure, refrigerant flow, 

compressor current, and differential pressure transducers.  The 12 VDC power supply is 

used to power the water mass flow transducers and the cooling fans for the compressor 

control unit and the 48V power supplies. 
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Each Sporlan Interface Board (IB)—one for each EEV and SDR—is powered by 

an individual 24 VAC transformer made by Honeywell.  The IB manufacturer 

recommends that in order to protect the boards metal oxide varistors (MOVs) are placed 

across the 120V AC power supply (from the mains) and ground.  As an additional 

measure of safety, fuses on the primary and secondary windings of the transformers are 

installed.  An identical transformer is used to power the WFVs in the secondary system.  

Table 2.4 describes the power components; wiring schematics for all power components 

can be found in the Appendix. 

 

Table 2.4 Power components 
Description Qty Mfr. Part Number Components Powered Rating

Transformer, 24 VAC 1 Honeywell AT72D-1683 Provides power for WFV 40VA
Transformer, 24 VAC 3 Honeywell AT72D-1683 Provides power for IB 40VA

Power Supply, 48 VDC 2 Cotek 800S-P048 Compressor; requires 208VAC suuply 800W
Power Supply, 24 VDC 1 Traco TML 15124C Sensors 15W
Power Supply, 12 VDC 1 Control Engineering Co. 31053 Water flow, cooling fans 18W
Power Supply, 5 VDC 1 Traco TML 15105C Signal Conditioning 15W  

 

 

Data Acquisition 

The data acquisition (DAQ) system is centered around four on-board DAQ 

boards installed on a PC.  Temperature measurements are performed using the type T 

thermocouples detailed earlier and recorded and logged using a Measurement 

Computing thermocouple board, model PCI-DAS-TC.  This board includes cold junction 

compensation and is capable of handling sixteen thermocouples.  For this system 

arrangement, twelve thermocouples are used.  Analog output signals to control 
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compressor speed, valve positions, et cetera, are output by a Measurement Computing 

PCI-DDA-08 board.  This is a 12-bit board that has up to eight channels of analog 

output. Other sensor measurements (pressure, mass flow, et cetera) are logged using a 

pair of National Instruments E-Series boards, model number E-6023.  These boards have 

eight channels when connected in differential mode.  They also have up to eight 

channels of digital output and two channels of analog output each. 

A pair of Analog Devices signal conditioning backplanes is also used in the 

system.  All analog output channels are processed through optical isolators.  These 

isolators serve the dual purpose of separating the analog output board from the high-

powered system electronics, thus protecting the PC, and they also convert the PC output 

signals into the appropriate signals for the various actuators (e.g., 0-5 VDC to 4-20 ma 

for the EEVs).  For transducers with outputs other than 0-5 VDC, these signals are also 

processed into a 0-5 VDC signal.  For example, the NPN square wave output of the 

water mass flow transducers is converted into a 0-5 VDC signal, proportional to the 

frequency of the square wave.  Table 2.5 details the signal conditioning provided by the 

backplanes and modules. 
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Table 2.5 Signal conditioning 

Signal
Analog 
Input or 
Output

Mfr. Part Number Input Output

Tachometer AI Omega OM5-IKI-3K-C 0-3000 Hz 0-5V
Evaporator 1 Water Flow AI Analog Devices 5B45-01 0-500 Hz 0-5V
Condenser Water Flow AI Dataforth SCM 5B45-01 0-500 Hz 0-5V

Evaporator 2 Water Flow AI Dataforth SCM 5B45-01 0-500 Hz 0-5V
Differential Pressure AI Omega OM5-11-4/20-C 4-20 ma 0-5V

Compressor AO Omega OM5-IV-10B-C -10 to +10V 0-5V
EEV 1 AO Analog Devices 5B39-01 0-5V 4-20 ma
EEV 2 AO Analog Devices 5B39-01 0-5V 4-20 ma
SDR AO Dataforth SCM5B39-01 0-5V 4-20 ma

WFV 1 AO Dataforth SCM5B39-01 0-5V 4-20 ma
WFV 2 AO Dataforth SCM5B39-01 0-5V 4-20 ma  

 
 
 
 

Software 

The data logging and control functions are performed with WinCon 5.0, a 

software package by Quanser that provides a convenient interface with MatLab and 

Simulink.  A Simulink model is created and compiled into a program that WinCon 

executes in real time.  Additionally, gains and many other parameters can be varied 

while the program is running, which is very convenient when tuning controllers or 

performing experiments.  Unfortunately, the selection of available DAQ boards that 

WinCon supports is very limited.  A set of drivers for the thermocouple board and the 

analog output board was developed by the Alleyne Research Group at the University of 

Illinois at Urbana-Champaign; these drivers were modified and implemented for the 

experimental PC.  The analog input boards are supported by WinCon, so no driver 

development was required for these boards. 
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CHAPTER III 

 DYNAMIC ANALYSIS OF WATER CHILLER SYSTEM 

Justification    

Implementation of a massive multi-input, multi-output (MIMO) controller to 

regulate an entire multi-evaporator system is theoretically possible, but is also difficult to 

achieve in practice and is computationally expensive, especially as the number of 

evaporators increases.  Therefore, decoupling of the system dynamics as much as 

possible will aid in the design and implementation of a complete control system; ideally, 

each cooling zone—and hence each evaporator—will have its own independent control 

package, with the compressor responding to the cooling demands placed on the system 

as a whole. 

 Comments on Frequency Response  

A complete understanding of the effects of each actuator on the various system 

conditions is necessary in order to design a control approach; the need for this 

understanding motivates an investigation of the relationships between control inputs 

(e.g., compressor speed, EEV opening) and system outputs (e.g., evaporator pressure, 

cooling), as well as the interaction between evaporators.  If two different actuators have 

similar effects on the same system output, it is difficult to separate the actuators into two 

separate controllers, since the controllers may fight each other.  Two actuators can have 

effects on the same outputs and still be separated, however, if the time scales of the 
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responses are very different from each other.  As an example, consider the illustrative 

MIMO plant shown in Figure 3.1.  This plant has two inputs (u1 and u2) and two outputs 

(y1 and y2).  Three sets of possible dynamic responses will be considered to illustrate the 

possibilities of controller separation: uncoupled dynamics, coupled dynamics, and 

coupled dynamics that are separable due to differences in time scale. 

 

 
 

Fig. 3.1 Illustrative example plant 
 

 

Figure 3.2 shows a possible frequency response plot of the two inputs to the two 

outputs.  Note that the response of y1 to u2 and the response of y2 to u1 are both very 

weak, since the low-frequency gains of these responses are very small.  The responses of 

y1 to u1 and y2 to u2, however, are very strong.  This implies that the dynamics of the 

plant are not coupled, and control of this plant can be separated into two SISO 

controllers.  Figure 3.3 illustrates this control architecture.   
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Fig. 3.2 Frequency response for uncoupled dynamics 
 

 

 
 

Fig. 3.3 SISO Control architecture for MIMO plant 
 

 

Figure 3.4 shows another possible set of frequency responses for the plant in 

Figure 3.1.   As in the earlier example, the input u1 and u2 have strong effects on y1 and 

y2, respectively.  However, input u1 also has a very strong effect on output y2, and input 

u2 has a non-negligible effect on y1.  This implies that if the controllers were separated as 
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in the earlier case, any movement in u1 would impact y2; since the bandwidth of u1 to y2 

is about the same as that of u2 to y2, and the DC gain is larger, y2 might not be able to 

control u2 at all.  At the very least, the controllers would end up fighting each other and 

would not be able to track setpoints properly.  This situation is the usual justification for 

implementation of a MIMO controller as shown in Figure 3.5.   
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Fig. 3.4 Frequency response for significantly coupled dynamics 

 
 
 

 
Fig. 3.5 MIMO control architecture for MIMO plant 
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Figure 3.6 shows a final possible set of frequency responses for the plant in 

Figure 3.1.  Note that both inputs u1 and u2 have a strong steady state gain effect on 

output y1 in this configuration, but the y1 to u1 response curve has a larger bandwidth 

than that of y1 to u2, and hence y1 reacts much faster to changes in u1 than to changes in 

u2.  This allows a controller configuration where u2 controls y2 and u1 controls y1 in a 

SISO configuration, as shown in Figure 3.3.  The “fast” controller does affect both 

dynamics, but the slow moving controller treats these changes as instantaneous, and free 

of dynamics.  Similarly, the fast controller can treat the dynamics of the slow controller 

as steady state, and therefore has sufficient time to respond.  Hence, the controllers can 

be separated out due to a difference in the time scale of the responses of the outputs to 

the two inputs. 
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Fig. 3.6 Frequency response for coupled dynamics separable by bandwidth 
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Single-Input, Single-Output System Identification 

In order to investigate the presence of these sorts of dynamic relationships in the 

experimental system, a set of experimentally derived linear models was created at 

selected operating conditions using standard system identification (ID) techniques [46].  

The system was allowed to come to steady state operation, and then excited with a 

pseudo-random binary signal (PRBS) input.  This procedure was then repeated; the first 

run was used for model identification, and the second run used for model validation.  

Because of the differing units and disparate scaling, the inputs and outputs were 

normalized before constructing empirical models, allowing the effects of each input into 

each output to be compared accurately [20].  This normalization consisted of removing 

the steady state values from the data and dividing by the maximum absolute values that 

resulted; hence, each input and output is at zero when at steady state and the maximum 

value in each vector is at one.   

The models developed were discrete time state space models derived with the 

prediction error method (PEM); these models are of the form: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

sx t T Ax t Bu t Ke t

y t Cx t Du t e t

+ = + +

= + +
 

State space models have a structure that maintains a close relationship to 

physically-based models; this gives them a particular advantage over other identification 

methods such as ARMAX, ARX, et cetera [46].  The PEM algorithm first makes an 

initial guess using the N4SID subspace algorithm detailed in [47], and then refines the 

prediction error fit by minimizing a quadratic prediction error criterion.  The interested 
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reader can find a general reference on system identification in [46].  All model 

identification and validation was performed using the MatLab System Identification 

Toolbox. 

The first step to selecting the models used in the graphs is generating 1st through 

8th order PEM state space models for each input/output pair.  For each of these models, 

the program calculates the quality of the fit as a percentage, according to the following 

formula found in [48]: 

( )
1

% m a

a a

y y
y mean y
− −

=
−

 

In this equation, ya is the vector of actual output data points recorded for a 

recorded set of inputs, and ym is the vector of data points that the model outputs when the 

same input is used.  A perfect fit would result in a value of 100%.  

In general, the model with the best fit is chosen; however, if there is a lower 

order model that comes within 10% of the best model’s fit, the lower order model is 

chosen instead.  For example, if the 6th order model has a fit quality of 82.96%, but the 

2nd order model has a fit of 80.29%, the second order model is chosen, since the 

additional model complexity of the higher order option does not yield significant 

additional improvement.  If at least a 10% quality of fit is not achieved for any of the 

models derived, then a first order model is used—this only tends to happen if the gain 

between the input and output is very small, such as the effect of the first water flow 

valve on the pressure of the second evaporator.   
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The following figures illustrate this process, and show some examples of the 

system identification results.  Figure 3.7 shows the initial results from a system 

identification run: the compressor speed is the input, and the pressure and superheat of 

evaporator 1 are the example outputs.  Figure 3.8 shows this same data run normalized 

as described. 
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Fig. 3.7 Identification data run 
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Fig. 3.8 Normalized data 

 
 

From the “model creation” section of the normalized data, 8 models are created 

for each input-output pair.  Table 3.1 shows the models for each pair, as well as the 

quality of fit for each model when compared to the validation data set. 
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Table 3.1 Model orders and qualities of fit 

Model 
Order Fit Model 

Order Fit

1 68.84% 1 62.35%
2 63.88% 2 54.42%
3 26.74% 3 69.97%
4 71.88% 4 70.22%
5 67.07% 5 70.23%
6 28.18% 6 70.20%
7 67.12% 7 70.24%
8 36.92% 8 70.08%

RPM to Pressure RPM to Superheat

 
 

 

According to the selection algorithm set out earlier, a 1st order model is selected 

for the RPM to Pressure 1 model and a 3rd order model is selected for the RPM to 

Superheat 1 model.  Recall that these models are in the following form: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

sx t T Ax t Bu t Ke t

y t Cx t Du t e t

+ = + +

= + +
 

For RPM to Pressure 1, the matrix values are: 

[0.9909];     [ 0.0003];     [25.749];
        [0];     [0.0061];     0.1s

A B C
D K T

= = − =
= = =
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For RPM to Superheat 1, the matrix values are: 

[ ]

1.1264 0.1303 0.0404 0.0001
0.0196 1.0487 1.0725 ;     0.0010 ;     
0.0735 0.0971 0.6476 0.0004

                      
                     22.1040 4.1532 4.5679 ;
        

               

A B

C

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

= −

0.0089
  [0];     0.0151 ;     0.1

0.0012
sD K T

⎡ ⎤
⎢ ⎥= = − =⎢ ⎥
⎢ ⎥⎣ ⎦

 

As a visual check, the model outputs of the selected models can be compared to 

the validation set.  Figures 3.9 and 3.10 show these validation checks. 
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Fig. 3.9 Model validation—compressor RPM to evaporator 1 pressure 
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Fig. 3.10 Model validation—compressor RPM to evaporator 1 superheat 

 

This approach was applied to the various inputs and outputs of interest in the 

system: compressor speed, EEV, SDR, and WFV as inputs, and pressure, superheat, and 

cooling for both evaporators as the outputs.  Frequency response plots were generated 

for these models as will be shown in the next section; from these curves insight can be 

gained into the dynamic responses of the system. 
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Frequency Responses of Experimental System 

Figure 3.11 shows the frequency responses of the models derived by stepping the 

compressor speed.  Clearly, compressor speed has a strong effect on evaporator 

pressures and superheats.  This effect is stronger at lower speeds.  However, the effect 

on cooling when the compressor alone is varied is weak.  While this may at first seem 

counterintuitive, consider that increasing compressor speed increases superheat, 

condenser pressure, and decreases evaporator pressure, but if the valve does not open to 

permit additional refrigerant flow, the effect on cooling performed by the evaporator will 

be negligible. 
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Fig. 3.11 Normalized frequency responses to step changes in RPM 
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Figure 3.12 shows the effects of the first EEV.  The EEV has a strong effect on 

the pressure and superheat of both evaporators at all operating conditions.  The strength 

of this relationship is reflected in the success that users of EEVs have had in using these 

devices to control the conditions of superheat and pressure.  The effect of the EEV on 

the first evaporator’s cooling has the strongest and fastest response; one can surmise that 

upon changing the valve, the first response is the change in refrigerant flow, before 

pressures and superheats have a chance to respond.   Note that the effect of the first EEV 

on the second evaporator’s cooling is negligible.  
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Fig. 3.12 Normalized frequency responses to step changes in EEV 1 
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Figure 3.13 details the responses to changes in the discharge valve (SDR).  It has 

a strong effect on the pressure of the second evaporator, and therefore its superheat.  The 

SDR does not affect the steady state operation of the first evaporator at steady state, 

though there are some transient effects, as evidenced by the hump in the response curves 

at approximately 0.1 rad/s.   This is evidence of the coupling of the dynamics of the two 

evaporators.  The effects on cooling were negligible so they are omitted. 
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Fig. 3.13 Normalized frequency responses to step changes in SDR 
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Figure 3.14 details how the system responds to changes in water flow of the first 

evaporator via step changes in water flow valve (WFV) #1.  It has a strong effect on 

superheat and a smaller effect on cooling.  WFV #1 does not have any effect on the 

second evaporator. 
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Fig. 3.14 Normalized frequency responses to step changes in WFV 1 
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Clearly, the individual EEVs have a strong effect on the pressure of both 

evaporators; this suggests a strong dynamic coupling between the two evaporators.  

However, the actual cooling performed by each evaporator is unaffected by the other’s 

EEV.  As noted earlier, the evaporators’ cooling is also only minimally affected by 

changing the compressor speed alone.  If the valve does not open to permit additional 

refrigerant flow, increasing compressor speed has the primary effect of increasing the 

ratio of condenser pressure to evaporator pressure (hereinafter referred to as the pressure 

ratio).  The additional energy delivered to the system by the compressor is rejected into 

the condenser water, in effect wasting the extra power consumed by the compressor.  

Figure 3.15 shows the system response to just such a change in inputs; the compressor 

speed is increased but the valve position remains fixed; the pressure ratio and superheat 

increase, but cooling remains fixed.  Figure 3.16 shows the condenser water temperature 

during this same test, illustrating that the system is dumping additional heat into the 

condenser water when the compressor is stepped up. 

This suggests that the compressor can change its speed to deliver the energy 

system necessary to meet changes in cooling demand in one cooling zone without 

affecting cooling performed in other zones.  For example, if evaporator 1 needs 

additional cooling, the compressor can increase speed to provide it without greatly 

affecting the cooling in evaporator 2.     
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Fig. 3.15 Effect of compressor speed changes (no valve changes)  
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Fig. 3.16 Increased heat rejection to condenser from compressor step 

 

An observation made from Figure 3.13 is that the SDR does not affect the steady 

state operation of the first evaporator, which suggests that control of the first evaporator 

can be separated from the SDR.  Furthermore, the SDR can control the pressure of the 

second evaporator without affecting the steady state pressure of the first. 

Finally, the first WFV does not have any effect on the second evaporator; this 

suggests that the water flow for each evaporator can be controlled without affecting the 

other.  The WFV does have an effect on cooling and superheat of the first evaporator, 

however, so it can be an effective control component, much like a variable speed fan in a 

commercially available air conditioning system. 

Figure 3.17 shows the frequency responses of superheat (SH) to compressor 

speed (RPM), EEV, and WFV.  The steady state gain of EEV and RPM are about the 

same, and the WFV has a stronger impact.  The WFV is considerably slower than the 
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other two, especially the EEV.  This graph confirms the intuitive guess that all three 

actuators have a strong effect on evaporator superheat. 
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Fig. 3.17 Frequency responses of superheat to various inputs 

 
 

Similarly, Figure 3.18 shows the response of pressure to the EEV and RPM.  The 

compressor has both a faster and stronger effect on pressure, although the EEV affects 

the pressure as well.  This agrees with the faster response of superheat to RPM shown in 

Figure 3.17. 
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Fig. 3.18 Frequency responses of pressure to various inputs  

 
 

Finally, Figure 3.19 shows the response of cooling (Q) to the same inputs.  

Clearly, the EEV is the best choice to control cooling.  This insight, plus the relative 

strength and speed of pressure response to RPM, point towards using the compressor to 

control pressure in some manner while regulating cooling with the EEV. 
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Fig. 3.19 Frequency responses of cooling to various inputs 

  

 

Conclusion 

The results of this dynamic analysis suggest that control of the system can indeed 

be broken down into a suite of individual controllers for each component or subsystem.  

Each evaporator can be controlled by its respective actuators with a degree of 

independence from the other; this implies that cooling zones can be established and 

maintained for a large system.  Further, the compressor can be controlled to deliver the 

energy needed for the precise cooling demands of the system, suggesting that a high-

level controller can be designed to ensure that the needs of the individual cooling zones 
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can be simultaneously met in the most energy-efficient manner possible.  The design and 

implementation of the lower-level component controllers are detailed in the next chapter. 



73 

CHAPTER IV 

DESIGN AND IMPLEMENTATION OF LOCAL CONTROLLERS 

Overview 

In Chapter III of this thesis, the exploration of the effects of the various system 

actuators on the thermodynamic system conditions was detailed.  The motivation behind 

this exploration was development of a control architecture that decouples the system 

dynamics as much as possible; implementing MIMO control only when necessary 

simplifies the control problem significantly, while simultaneously avoiding the pitfalls of 

competing SISO controllers.  This chapter details the design and implementation of an 

MPC-based control architecture that combines MIMO and SISO controllers; the overall 

goal is an architecture that is modular in approach.  Each evaporator should have its own 

isolated control package that delivers the required amount of cooling—tracking a 

setpoint—while ensuring safe operation (i.e., the presence of superheat).  The 

compressor should be controlled such that it delivers only the necessary energy into the 

system for the total cooling demand.  Moreover, the behavior of the compressor should 

be independent of the total number of evaporators as well as the proportion of total 

cooling load for which each evaporator is responsible. 

Traditional control of VCC systems has primarily depended upon simple 

electromechanical devices and on/off strategies, such as a bimetallic thermostat or a 

mercury switch.  Mechanical valves were used as expansion devices and primarily 
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regulated evaporator pressure (Automatic Expansion Valve, or AEV) or evaporator 

superheat (Thermostatic Expansion Valve, or TXV).  As noted earlier, application of 

completely variable expansion devices, such as the electronic expansion valves (EEVs) 

used in the experimental apparatus, has usually involved an extension of these sorts of 

approaches to both classical and modern control techniques, e.g., PID and LQG, 

respectively.  In these approaches, the EEV is generally used to control evaporator 

pressure or superheat. 

Comments on Superheat Control 

When controlling superheat, the most critical requirement is that superheat is 

present.  Once this condition is met, the primary advantage of a close regulation of 

superheat is that as superheat is driven down to a minimum value, the evaporator 

operates with increasing efficiency.  Traditionally, this regulation has been performed 

mechanically with the TXV, and the EEV has been implemented in a similar manner.  

As the conditions of the system change, the expansion device opens or closes to regulate 

superheat; this indirectly provides a means to control refrigerant flow as more or less 

cooling is required.  For example, with a two-stage compressor, if the compressor speed 

is increased, superheat will also increase, leading the valve to open to return superheat to 

its setpoint; this allows more refrigerant to flow, and hence more cooling is performed.   

With the combination of variable speed compressors and EEVs, however, 

cooling and evaporator pressure setpoint regulation can be performed regardless of the 

amount of superheat present.  Therefore, from the perspective of cooling and pressure 

control, strict regulation of superheat to a setpoint is unnecessary, as long as superheat 



75 

stays above a minimum value to protect the compressor.  However, excessive superheat 

is undesirable, since a large amount implies that a great deal of heat transfer is occurring 

when the refrigerant is in a gaseous state, which is much less efficient than the heat 

transfer that occurs during refrigerant evaporation.  If every kilowatt (kW) of cooling is 

“bought” by a certain amount of power consumed by the compressor, an energy-optimal 

control arrangement will ensure that the maximum amount of heat transfer occurs for a 

given amount of power consumption.  In the case of the evaporator, this implies that the 

vast majority of cooling must occur during the evaporation process, and as small a 

portion of the cooling that is safe and practical occur after the refrigerant has boiled off.  

This idea is illustrated by Figure 4.1 seen below.   
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Fig. 4.1 Evaporator efficiency 
 

Figure 4.1 revisits the experimental run shown in Figure 3.11.  Recall that the 

evaporator cooling remains constant throughout the process as shown, and the expansion 
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valve does not change.  A step increase in the compressor leads to more superheat; 

simultaneously the Coefficient of Performance (COP) decreases, implying less efficient 

operation.  COP is calculated as the cooling performed by the system divided by the 

compressor power consumption (fan work is ignored in this example).  Clearly, for a 

given amount of cooling, as superheat decreases, the cost of each kW of cooling also 

decreases due to more efficient evaporator operation.  However, as noted earlier, 

superheat must be present to avoid damaging the compressor.  Therefore the task at hand 

is to keep superheat above a safety-mandated minimum while not allowing it to grow too 

large, which would decrease operating efficiency.  For the research detailed in this 

thesis, superheat is calculated as: 

ensatroenn TTSH ,, −=  

 
Where: 

nSH  ≡ Superheat of the nth evaporator, °C 

roenT ,  ≡ Exit R134a temperature of nth evaporator, °C 

ensatT ,  ≡ R134a saturation temperature at nth evaporator pressure, °C 
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Model Predictive Control 

In addition to tracking cooling setpoints and keeping superheat within a 

reasonable band, the controller should not exceed the physical constraints of the 

actuators, since the valves cannot open past 100% or close past 0%.  Therefore, a control 

strategy is required that respects the physical limits of the actuators, will regulate cooling 

to a specific value, and will keep superheat within a defined band of operating conditions 

without exerting unnecessary controller effort.  This leads naturally to adopting a model 

predictive control approach.   

As noted in Chapter I, all MPC algorithms use an explicit model of the physical 

system to derive the set of controller actions that minimize a cost function subject to a 

set of constraints.  These constraints can be inherent to the actuators, e.g., a valve cannot 

open past 100% open or close past 0% open. While classical control techniques like PID 

loops can be modified with a saturation to ensure that actuator limits are not exceeded, 

MPC has the advantage of being able to foresee and plan for these limitations, which can 

improve system performance over the long term [21].  MPC also has the advantage that 

additional constraints can be defined by the user to keep the system operating in a safe 

range, e.g., keeping evaporator superheat within a desired band.  

Baseline Case—PID Control 

Before implementation of the final control architecture, a completely SISO 

approach was attempted in order to provide a baseline case and to verify that the 

dynamic analysis detailed earlier provided valid information.  In this baseline case, 



78 

evaporator cooling will track a setpoint with a traditional PI loop using the EEV as the 

actuator.  The idea behind this approach is that since cooling is largely dependent on the 

refrigerant flow, the valve can act to regulate the amount of refrigerant entering the 

evaporator.  For the controllers implemented in this thesis, the cooling calculation is 

performed on the refrigerant side, since the small change in the water temperature as it 

passes across the evaporator during typical operation (approximately 2-3 °C) means that 

the calculation is highly susceptible to sensor noise and uncertainty.  This cooling 

calculation can be done with temperature sensors and a “virtual” mass flow sensor 

relying on a manufacturer supplied mass flow function, but for this research cooling is 

calculated as shown: 

( )ienoennrefn hhmQ ,,, −= &&  

Where:      

nQ&      ≡ Cooling at the nth evaporator, kW 

nrefm ,&  ≡ Mass flow of R134a for nth evaporator, kg/sec 

oenh ,   ≡ Enthalpy of R134a at nth evaporator exit, kJ/kg 

ienh ,   ≡ Enthalpy of R134a at nth evaporator inlet, kJ/kg 

In order to find enthalpy at the evaporator inlet, the condenser outlet pressure is 

measured.  Due to the presence of the liquid receiver, the refrigerant is assumed to be a 

saturated liquid at this state, and enthalpy can be obtained from the refrigerant property 

tables from the pressure only.  Additionally, the expansion valve is assumed to be 

isenthalpic; under these assumptions, the enthalpy of the refrigerant at the evaporator 
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inlet will be same as that at the condenser outlet.  The enthalpy at the evaporator outlet is 

found by measuring the pressure and temperature of the refrigerant at the evaporator 

outlet; assuming this refrigerant is superheated, the enthalpy can be found from the 

thermodynamic property tables. 

Once the evaporator controller is implemented, the evaporators need a way to 

communicate to the compressor how much energy input is required to achieve the total 

desired cooling.  Since the compressor has a large impact on evaporator pressure, and 

changes in the expansion valve to meet cooling demand change the evaporator pressure, 

pressure of the first evaporator is chosen as the signal to communicate this need to the 

compressor.  The first evaporator pressure is chosen because the pressure differential 

between the two evaporators can be independently regulated by the SDR valve.  With 

this approach, the pressure of the two evaporators can be regulated using two SISO PI 

loops.  For example, as one of the EEVs opens to allow more mass flow and achieve the 

set cooling capacity, the pressure of the evaporator will rise.  The compressor will speed 

up to drop the pressure.  Meanwhile, the pressure differential between the two 

evaporators is regulated by the SDR in the second evaporator using a PI loop.  Finally, 

superheat will be regulated using the WFVs.  Figure 4.2 shows the completely SISO 

control architecture.  Table 4.1 shows the controller gains used in each loop. 
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Fig. 4.2 SISO control architecture 
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Table 4.1: SISO control gains 

Controller Input (Actuator) Output KP KI KD

PI 1 EEV #1 E1 Cooling 7.200 1.080 0.000
PI 2 EEV #2 E2 Cooling 7.200 1.080 0.000
PI 3 WFV #1 E1 Superheat 0.750 0.014 0.000
PI 4 WFV #2 E2 Superheat 0.750 0.014 0.000

PID 1 Compressor E1 Pressure 6.000 2.000 3.500
PID 2 SDR E2 Pressure 0.250 0.050 0.025  

 

First, a test run using these controllers was performed.  Superheat, cooling, and 

pressure setpoints were fed into the controllers.  The results of this test run are shown in 

the following set of figures.  Figure 4.3 shows the cooling setpoint tracking of the two 

evaporators.  Figure 4.4 shows the pressure setpoint tracking—note that both evaporators 

are set to the same pressure, 325 kPa.  Figure 4.5 shows the evaporator superheat during 

this test run. 
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Fig. 4.3 Cooling setpoint tracking, SISO control 
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Fig. 4.4 Pressure setpoint tracking, SISO control 
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Fig. 4.5 Evaporator superheat, SISO control 

 
 

This purely SISO-based scheme shows that the EEVs can indeed be used 

effectively to regulate cooling, and the compressor and SDR to regulate pressures.  After 

the step decrease in cooling, the WFVs bring down superheat to the setpoint of 12°C.  
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However, when asked to regulate superheat at a lower value to obtain better system 

efficiency, the WFVs can not manage this task.  Additionally, the EEVs also have a very 

strong effect on superheat; in the presence of a large change in cooling demand, the 

valve changes drastically, which changes pressure, occasionally resulting in a loss of 

superheat.  The WFV has a strong effect on superheat, but its slew rate is too slow and 

the presence of quantization severely affects its ability to provide effective control.  For 

the next set of runs, the water flow valves were maintained at a constant 100% open, to 

allow a demonstration of the EEVs regulating cooling while the compressor and SDR 

regulate evaporator pressures.  Figure 4.6 shows the cooling for this case; Figure 4.7 

shows evaporator pressures; Figure 4.8 shows superheat. 
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Fig. 4.6 Cooling setpoint tracking, SISO control, full water flow 
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Fig. 4.7 Pressure setpoint tracking, SISO control, full water flow 
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Fig. 4.8 Superheat, SISO control, full water flow 
 

   

Again, the SISO loops are very successful at cooling and pressure setpoint 

tracking.  However, in this case, superheat is very high and hence the system is not 
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operating as efficiently as it can.  Since both the EEV and the WFV have a strong effect 

on superheat, and the EEV can regulate cooling, joining the two inputs and the two 

outputs into a MIMO plant is warranted.  Ideally, the EEV would open or close to 

achieve the desired cooling; it would, however, also help to maintain superheat at a 

desirable level long enough for the WFV to catch up so that cooling can be delivered 

while retaining superheat.  This configuration is very well suited for MPC, since the 

superheat constraint can be built directly into the controller. 

In the proposed control architecture, the EEV and WFV for each evaporator will 

be coupled to regulate cooling (the primary control objective) and superheat, resulting in 

a 2-input, 2-output plant for each evaporator.  This is different from the industrially 

standard approach of using EEVs to control evaporator superheat.  This new approach 

also gives the additional benefit of being modular; it is expandable to any number of 

evaporators.  The SISO loops controlling evaporator pressures will be retained from the 

baseline case.  Figure 4.9 shows a block diagram of the proposed architecture. 
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Fig. 4.9 Proposed local control architecture 
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Local Control Configuration 

In the proposed configuration, six outputs—two evaporator pressures, two 

amounts of cooling, and two superheats—are regulated using two 2x2 MIMO plants and 

two SISO PID loops.  One of the great advantages of this decentralized approach is that 

it is expandable to a large number of evaporators networked together over large physical 

distances, without the need for unreasonable increases in computing power. 

The models used in the MPC controllers were experimentally derived using a 

step-response approach.  The system was allowed to come to a steady state operating 

condition where each evaporator was performing 0.75 kW of cooling, at a pressure of 

350 kPa, and approximately 9° C superheat.  A step of 0.75% was applied to the EEV, 

then returned to 10%.  Similarly, the WFV was increased from 27% to 31% and back.  A 

first order response was assumed; from the graphs, time constants and steady state gains 

were calculated.  Since the water flow rate has very weak effects on the evaporator 

cooling measured on the refrigerant side, this transfer function is assumed to be zero.  

This resulted in a 2-input, 2-output first-order model, shown below: 
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Figures 4.10 through 4.12 compare the model responses to the evaporator step 

responses recorded during the aforementioned data run.  Figure 4.10 shows cooling 

response to changes in the EEV.  Figure 4.11 shows the superheat response to the same 



88 

EEV changes.  Finally, Figure 4.12 shows the superheat response to changes in the 

WFV.  Although the EEV response shows evidence of second order behavior, the final 

settling time and steady state gain show good matching, so for the purpose of  simplicity 

in implementing the local controller the first order models are used. All three models 

show good comparison to the recorded data. 
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Fig. 4.10 EEV to cooling step response, model and experimental 

 
 



89 

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
5

6

7

8

9

10

11

12

Time (s)

S
up

er
he

at
 ( 

o C
)

 

 

Experimental Data
Model Output

 
Fig. 4.11 EEV superheat step response, model and experimental 
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Fig. 4.12 WFV to superheat step response, model and experimental 
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Implemented Controller Performance  

The proposed architecture was implemented on the experimental system, and was 

successful in regulating cooling and pressures, and keeping superheat within a desired 

band.  The PID loops controlling the compressor and SDR have the same gains as those 

detailed in Table 4.1.  These gains were developed using a Ziegler-Nichols tuning 

algorithm as detailed in [49].  Integrator anti-windup techniques are applied to the PID 

controllers as detailed in [50]. 

The MPC controller was implemented using the MatLab MPC Toolbox.  The 

controller minimizes the following cost functions as detailed in [51]: 
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The first equation penalizes deviation of the outputs from the setpoints by 

computing the weighted sum of squared deviations, where: 

k  ≡  current sampling interval 

k + i  ≡  future sampling interval  

P  ≡  prediction horizon 

ny  ≡  number of plant outputs 

wj
y  ≡  weight of output j 

rj(k + i) - yj(k + i )  ≡  predicted deviation at future instant k + i 
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The second equation penalizes large changes in the actuators, and makes the 

controller more robust, by computing the weighted sum of controller adjustments, 

where: 

M  ≡  control horizon 

k + i  ≡  future sampling interval  

P  ≡  prediction horizon 

nmv  ≡  number of manipulated variables (inputs) 

wj
Δu  ≡  weight of change in input j 

Δuj(k + i - 1)   ≡  predicted adjustment of input uj at future instant k + i - 1 

Local Controller Parameters 

In the MPC controllers, output weights of 10,000 and 0 (wj
y) were placed on the 

cooling and superheat, and rate weights of 1000 and 100 (wj
Δu) were placed on the EEV 

and WFV, respectively.  A control interval of 4 seconds was used, with a control horizon 

of 3 intervals (12 seconds) and a prediction horizon of 25 intervals (100 seconds).  The 

EEVs were constrained between 8% and 14.5%; the WFVs were constrained between 

22% and 50%.  An output constraint was placed on superheat bounding it between 6° C 

and 12° C.   

The weights placed on the output errors and actuator changes are an important 

part of tuning and implementing the MPC controller [3].  The output weights signify that 

the controller will seek to track the cooling setpoint, since a high weight is placed on 

cooling error, but the weight of superheat being set to zero implies that the controller 
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will ignore superheat unless the model predicts that superheat will exceed the specified 

constraints.  An intuitive understanding of the rate weights on the actuators implies that 

the controller will view the EEV as ten times more expensive to change than the WVF, 

i.e. a 1% change in the EEV costs 1000 and a 1% change in the WFV costs 100.  

Likewise, if the cooling error is +/- 0.1 kW, this has the same weight as a 1% change in 

the EEV.   

The role of the respective weight settings can be illustrated with an example.  If 

the model predicts that the minimum superheat constraint will be violated during the 

prediction horizon, the controller’s first “preference” will be to increase the water flow, 

since changing the WFV has a relatively low weight compared to tracking the cooling 

setpoint.  Since the WFV is a slow actuator with a lower gain to superheat than the EEV, 

however, its change might not be sufficient to prevent the constraint violation during the 

prediction horizon.  In this case, the EEV will also change to help prevent superheat 

violation, even though this will result in an increase in the cooling error—constraint 

violation supersedes all controller weights.  After the WFV has changed sufficiently so 

that superheat can be retained within its constraints at the current cooling setpoint, the 

EEV will return to maintaining cooling.  Intuitively speaking, the EEV tracks the cooling 

setpoint and the WFV seeks to keep the superheat inside the specified constraints; if the 

WFV is not able to perform this task, the EEV will help ensure that superheat stays in 

the desired range.  Also, if the cooling setpoint is greater than the system’s capacity at a 

given pressure, superheat cannot be kept above the lower constraint, and the controller 

will have the net effect of shedding the excess demand. 
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This approach is very different from the way that evaporators are generally 

controlled, in that the controller does not seek explicitly to control superheat.  It can be 

argued that a TEV indirectly regulates cooling capacity by regulating superheat; 

however, the presence of evaporator dynamics creates the valve hunting problems noted 

earlier.  Since valve hunting leads to a fluctuating flow of refrigerant, the cooling 

delivered by the evaporator also fluctuates.  This new control architecture directly 

controls cooling capacity of the evaporator, ignoring superheat unless it threatens to 

exceed allowable limits.  This is only possible due to exploitation of the capabilities of 

MPC.  If the superheat band is set correctly, the controller and evaporator will deliver a 

steady amount of cooling and operate in a safe yet efficient manner. 

Experimental Run with Local Controllers 

An experimental run was performed using the designed local control architecture.  

In this experimental run, random setpoints for cooling and pressure were fed into the 

controllers.  Note that this test run consists of tracking of randomly selected setpoints 

and is not intended to achieve optimal energy efficiency.  Figure 4.13 shows the cooling 

setpoints and actual cooling vs. time for an experimental run using the local controllers; 

the control architecture tracks the setpoint.  Figure 4.14 shows superheat for the two 

evaporators; although it does occasionally exceed the constraints set for the controller, 

the actuators respond quickly to rectify this, and superheat is never lost.  Figure 4.15 

shows the actuator inputs calculated by the MPC controllers. 
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Fig. 4.13 Cooling setpoint tracking, local MPC architecture 
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Fig. 4.14 Evaporator superheat, local MPC architecture 
 



95 

1500 2000 2500

10

15

20

25

30

35

V
al

ve
 O

pe
ni

ng
s 

(%
)

Time (s)

Evaporator 2

1500 2000 2500

10

15

20

25

30

35
Evaporator 1

Time (s)

V
al

ve
 O

pe
ni

ng
s 

(%
)

WFV #1

EEV #1 EEV #2

WFV #2

 
 

Fig. 4.15 MPC controller inputs 
 
 
 

As more cooling is requested of either valve, it opens to permit the extra mass 

flow needed.  Since the has the effect of increasing evaporator pressures, the compressor 

speed increases to keep pressure at the required setpoint; the net effect is that as more 

cooling is needed, the compressor increases the energy input to the system in order to 

achieve the desired cooling.  For a decrease in cooling requirements, the reverse process 

occurs.  Figure 4.16 shows the evaporator pressures during the same test run.  The 

compressor response is seen in Figure 4.17. 
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Fig. 4.16 Refrigerant pressures  
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Fig. 4.17 Compressor speed regulating evaporator pressure 
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In conclusion, a novel control architecture using MPC has been designed and 

tested for this system in order to deliver a desired level of cooling and evaporator 

pressures, while keeping superheat within a set band.  The next phase of the thesis will 

detail efforts to develop a global control law, which will calculate the cooling and 

pressure setpoints to meet a global cooling objective while maximizing energy 

efficiency. 
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CHAPTER V 

DESIGN AND IMPLEMENTATION OF GLOBAL CONTROLLER 

The Global Control Problem 

In Chapter IV of this thesis, a suite of local controllers was developed to regulate 

cooling and pressure in each evaporator and ensure a minimum level of superheat.  

These controllers take desired pressure and cooling setpoints and meet them within the 

limits of operation of the system.  Now we need a global controller to set the evaporator 

cooling and pressure setpoints to meet a desired global objective while maximizing 

energy efficiency.  For the purposes of this research, the temperature of the evaporator 

water at the inlet is the chosen setpoint.  This simulates regulating the temperature of a 

cooling zone in a commercial system.  Since the water from the outlet of the evaporator 

is mixed with the water in the tank, the evaporator inlet water temperature is assumed to 

represent the temperature of the water in the tank—or cooling zone—as a whole.  Figure 

5.1 shows this configuration. 
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Fig. 5.1 Cooling zone configuration 

 
 

The primary role of the global controller will be to govern the setpoints of the 

individual local controllers.  This global controller will regulate the cabin temperatures 

as detailed in figure 5.1 while seeking to maximize the energy efficiency of the system 

as a whole.  In order to achieve this, it must have knowledge of the system energy 

consumption characteristics and estimates of the volume of the cabins.  In order to 

balance the competing goals of temperature regulation via cooling and maximizing 

energy efficiency, weights specified by the user will govern the controller decisions.  For 

example, if a very large weight is placed on the water temperature error relative to the 

weight placed on energy consumption of the plant, the controller will make decisions 

that will bring the temperature to its setpoint as quickly as possible, regardless of energy 

consumption.  Similarly, if energy consumption is specified as very “expensive,” the 

controller will choose cooling and pressure setpoints that will minimize energy 

consumption and the zone temperatures will reach their setpoints slowly, or tolerate a 
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non-zero steady state error.  In addition, this global controller must be easily expanded 

so that a similar approach could be used for systems with more than two evaporators.  

This continues the modular, networked approach pursued in the development of the local 

level controllers.  Finally, the global controller must take into account the local level 

constraints of the various components; for example, the maximum amount of cooling 

that one evaporator is capable of delivering.  The combination of tunable control weights 

and constraint handling again points toward adaptation of an MPC-based control 

algorithm for the global law.  Figure 5.2 shows the overall system architecture that will 

be developed in this chapter. 
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Fig. 5.2 Global control architecture 
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The first step in development of the global control law will be selecting an MPC 

framework for the controller.  Then an energy efficiency function will be developed for 

the experimental system.  A cooling zone temperature error function will be developed 

for use within the MPC framework.    These two functions will be implemented into the 

MPC framework in order to create the global control law.  Finally, some comments on 

implementation and test run results will be provided, along with discussion of the 

implementation results and exploration of the characteristics of the final controller. 

 

MPC Framework for Global Law Development 

 The control law will seek to minimize a quadratic cost function of the 

form: 

min( )

1
2

T T

x
J x Hx f x= +  

Where J is a scalar quantity to be minimized, x is the vector of length n that is to 

be varied to achieve the minimization, H is a constant n × n symmetric, positive definite 

matrix, and f is a constant vector of length n.  Furthermore, this minimization is subject 

to the constraints: 

min

Ax b
x x

≤
≥  

Where x is the vector of length n being varied (as before), A is a constraint 

matrix of dimension Nc x n, where Nc is the number of constraints, b is a constraint 
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vector of length Nc, and xmin is the vector containing the minimum values that each entry 

of x is permitted to take.  This minimization problem is an adaptation of the Generalized 

Predictive Control approach developed by Clarke [52].   

For this MPC controller the vector x is the vector of all control inputs over the 

MPC control horizon.  Specifically, this vector will contain the changes in cooling and 

pressure setpoints from the setpoints at the current sampling instant: 
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Where Nu is the control horizon, nδQi is the change in cooling for the nth 

evaporator at the ith future sampling instant, and mδPj is the change in pressure for the mth 

evaporator at the jth future sampling instant.  These subscript and superscript conventions 

will hold for the rest of this chapter.  Figure 5.3 illustrates these quantities. 
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Fig. 5.3 Global controller conventions 

 
 
 

The development of the global control law consists primarily of using the system 

conditions to derive the R and A matrices, as well as the f vector, in the optimization 

problem so that the cost function can be minimized on-line.  The cooling zone 

temperature errors and a function describing energy consumption will be developed in 

the following sections and adapted to fit into the optimization problem. 
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Energy Efficiency Terms 

The first step in devising this global control law is developing a function that 

expresses energy efficiency as a function of the operating conditions of the evaporators; 

if this function alone were used to determine the setpoints of the local controllers, it 

would select the pressure and cooling setpoints for each evaporator that would minimize 

this function.  A common way of expressing the efficiency of VCC cycles is the 

Coefficient of Performance (COP).  The COP is normally defined as [2]: 

TOTAL

TOTAL

W
Q

=β  

Where QTOTAL is the total cooling performed, and WTOTAL is the work input 

required to perform this cooling, including compressor work and fan work.  Throughout 

this chapter, both cooling and work are expressed in terms of kilowatts (kW).  The COP 

increases with increasing efficiency; however, the control law being developed will seek 

to minimize a cost function.  Therefore, an Inverse Coefficient of Performance (ICOP) 

will be used, and be defined as: 

1 2
1 2 1 2

1 2( , , , ) COMP FAN FANW W WQ Q P P
Q Q

+ +
Φ ≡ Φ =

+  

This portion of the cost function will cause the global controller to select the 

cooling and pressure setpoints that minimize this ICOP function.  In order to predict the 

efficiency of a calculated control profile, the numerator terms must be estimated as 

functions of the evaporator pressure and cooling setpoints.  Therefore, a mathematical 

relationship between the evaporator conditions and the compressor power consumption 



105 

is required.  Additionally, a simulated fan work function will be needed.  In order to 

develop these relationships for the experimental system, a series of test runs was 

performed to map out the range of operation for a single evaporator (in this case, 

evaporator #1).  The second evaporator was closed off for this set of tests.   

Compressor Power Function 

First, the range of testing was determined.  In order to find the range, the 

compressor speed was increased through a range of 2000 through 3000 RPM.  A PI 

controller was used with the EEV to regulate pressure at 250 kilopascals (kPa).  Plotting 

this result in Cartesian space, with the EEV as the ordinate and the compressor speed as 

the abscissa, gives the left hand side of the operating range.  A similar experiment was 

performed using the EEV to regulate superheat at 5° C.  This gave the right hand side of 

the operating range.  Least squares curve fitting to the data from these experiments gave 

two linear functions demarcating the envelope of operation for the compressor mapping 

test in EEV-Compressor space.  Figure 5.4 shows this envelope. 
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Fig. 5.4 Operating envelope 

 
 

Now that a range of operation was developed, the evaporator was walked through 

this range very slowly, simulating a steady state condition.  The condenser and 

evaporator outlet waters were mixed after cooling, and the condenser water cooler turned 

on, so that inlet water temperature for both heat exchangers remained constant over the 

test.  Water flow rate was held constant at maximum flow.  From data collected for this 

test, compressor work as a function of evaporator cooling and pressure could be 

developed using a least squares fit.  Figure 5.5 shows the walkthrough.  Figures 5.6 and 

5.7 show the resulting data points and the least-squares curve, respectively.   
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Fig. 5.5 Command profile for compressor/EEV walkthrough 
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Fig. 5.6 Compressor/EEV walkthrough data points 
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Fig. 5.7 Fit curve: of compressor power as a function of evaporator cooling and pressure 

 
 

The function derived from this approach is: 

204.00006.049576.00004.01369.0 QPQQPWcomp +−+−=  

Therefore, we can now estimate compressor work as a function of the evaporator 

pressure and cooling. 

Fan/Pump Power Function 

In the experimental apparatus used, no energy is consumed to move the water 

through the evaporators, since all of the heat exchangers are gravity fed.  However, this 

is not typical of most VCC systems, which generally use fans or pumps to create 

secondary fluid flow.  Moreover, the selection of the operating speed of the fan or pump 
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is an important consideration for the system efficiency; a higher fan speed can allow for 

a slower compressor speed, or vice versa, in order to get the same system performance 

for less energy consumed, as established by Jakobsen (and cited by Leducq in [38]).  

Therefore, an energy consumption term—expressed as fan work—for the water flow 

must be developed in order to make the global controller more realistic. 

In order to develop a fan work approximation for the water flow, first 

approximate the equivalent amount of air needed for the same amount of cooling and the 

same amount of temperature drop under the same refrigerant conditions.  Note that the 

cooling is calculated on the secondary loop side as: 

s s s sQ m C T= Δ& &  

Where: 

sQ&  ≡ Cooling on secondary loop side (air or water) 

sm&  ≡ Mass flow of secondary fluid across evaporator 

sC  ≡ Specific heat of secondary fluid 

sTΔ  ≡ Change in temperature of secondary fluid 

The specific heats are: 

Cs= 4.186 
kgK
kJ  for water 

Cs= 1.005 
kgK
kJ  for air at 27°C, 1 atmosphere pressure, assuming ideal gas 

Multiplying the range of water mass flow rates by the ratio of heat transfer 

coefficients will therefore give the range of air mass flow rates needed to get the same 
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drop in temperature and the same amount of cooling as that of the water based system; 

this can be converted to volumetric flow of air.  Thus, since the water flow rates vary 

from 0.1 kg/s to 0.3 kg/s, the fictional fan would need to have a range of 748 to 2245 

cubic feet per minute (cfm), under the same assumptions for air as before. 

A DC-powered fan manufactured by Kansas Wind Power is used as the model 

for the system fan [53].  From their fan data, a fan power function can be least-squares 

curve fit that generates fan power as a cubic function of water mass flow.  This fan 

power function will be used in the ICOP function detailed earlier.  Figure 5.8 shows the 

calculated curve with the data points supplied by the manufacturer.  The formula is as 

follows (fan work is in kW, water flow in kg/s): 

32 8447.63016.12249.0 mmmW fan &&& +−=  
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Fig. 5.8 Fan power curve 

 
 
 



111 

In order to implement the fan power function into the ICOP function, and thus 

into the MPC cost minimization problem, it must be expressed as a function of 

evaporator cooling and pressure, thus:   

)),(( PQmfW waterfan &=  

Experience with the experimental system suggests that for a given pressure, 

cooling, and superheat, the required water mass flow rate is fixed1.  Therefore, a 

relationship can be derived for mass flow as a function of cooling and pressures, 

assuming constant superheat.  This function is experimentally derived in much the same 

way as the compressor power term found earlier; the water flow function can be plugged 

into the fan power law, thereby giving the fan power as a function of evaporator pressure 

and cooling. 

Recall that the local MPC controllers keep superheat inside a tight band.  In 

general, the higher the evaporator pressure, the less power the compressor requires; this 

suggests that the global controller will tend to set high evaporator pressures, which will 

reduce superheat.  This fact, along with the knowledge from Chapter IV with regards to 

efficient evaporator operation, implies that if the experimental system is operating in an 

energy efficient manner, superheat will tend towards its lower constraint.  Therefore, for 

the purposes of developing this function, superheat will be fixed near its lower 

constraint, at 6°C.  The EEV will be used to regulate superheat at this low level, as the 

WFV and compressor are slowly walked through their operating ranges for a single 

                                                 
1 The effect of the difference between the evaporator refrigerant and water inlet temperatures is ignored, 
since all of the experiments performed for this research operate with the water inlet temperature in the 
18°C to 30°C range. 
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evaporator.  Figure 5.9 shows the walkthrough in WFV-Compressor Cartesian space.  

Figure 5.10 shows the data points generated, and figure 5.11 shows the surface fit to the 

data points. 
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Fig. 5.9 Compressor/WFV walkthrough command profile 
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Fig. 5.10 Compressor/WFV walkthrough data points 
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Fig. 5.11 Fit curve: water mass flow as a function of evaporator cooling and pressure 
 

 

By measuring P and Q, calculating water mass flow through the derived 

relationship, and plugging this into the Fan work function, we have a direct link between 
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cooling and pressure setpoints and energy efficiency for use in the predictive controller. 

The equation derived is (water mass flow is in kg/s): 

21009.00006.00561.00012.00185.0 QPQQPmwater +−+−−=&  

Assembly of ICOP Function and Conversion to Minimization Problem 

Thus, we now have fan work and compressor work terms as functions of 

evaporator cooling and pressure.  However, the system has two evaporators but only one 

compressor; therefore, a method of relating the total cooling performed to the 

compressor is needed.  The compressor work term will be set as a function of the total 

system cooling (Q1 + Q2), and the pressure of the first evaporator only.  Thus the ICOP 

function becomes: 

1 2 1 1 1 1 2 2 2
1 2 1 2

1 2

( , ) ( , ) ( , )( , , , ) COMP FAN FANW Q Q P W Q P W Q PQ Q P P
Q Q

+ + +
Φ =

+
 

Two experimental runs were performed to justify these assumptions.  First, the 

evaporators were sent cooling setpoints; while the individual setpoints changed, the total 

system cooling performed remained constant, and the compressor power consumption 

remained constant as well.  This implies that the compressor work is dependent on the 

total cooling performed, and the proportion of the total that each evaporator performs 

has a negligible effect on compressor work.  Figure 5.12 shows this test result.  In 

addition, another test was run where the second evaporator’s pressure was changed while 

the compressor regulated the first evaporator’s pressure.  This shows that the compressor 

power consumption is independent of the second evaporator’s pressure.  Figure 5.13 

shows this result.  
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Fig. 5.12 Compressor work vs. total cooling 

 
 
 

0 500 1000 1500 2000
360

380

400

420

440

460

Time (s)

P
re

ss
ur

e 
(k

P
a)

Pressures

 

 

Evap 1
Evap 2

0 50 100 150
0

0.5

1

1.5

W
co

m
p (k

W
)

ΔPe (kPa)

Wcomp vs ΔPe

 
Fig. 5.13 Compressor work vs. evaporator 2 pressure 

 

Now that the ICOP function has been derived for the experimental system, it 

needs to be converted into a form that can be used in the minimization problem detailed 

in the earlier section.  The first step is linearization about a point using a Taylor series 
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expansion; the linearization point is be the value of the ICOP function at the current 

sampling instant as defined for the global controller: 
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Assuming the ICOP function is convex allows ignoring of the constant terms in 

the above, leading to the following: 
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This function is in exactly the form of the linear component of the minimization 

function detailed earlier, with a control horizon of 1.  Since the control horizon will not 

generally be 1, assume that the respective gradients in the row vector above will not 

change over the control horizon as the controller moves the setpoints.  This assumption 

is partially justified by keeping the control horizon small; in addition, the earlier 

assumption of convexity implies that the gradients of Φ will not change drastically in 

nature as the controller moves along the 4-dimensional manifold.  This leads to an 

expansion of the above equation thus: 
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In addition, a weight is added to this term so that the competing requirements of 

efficiency and performance can be balanced: 

Tf UλΦ Φ′Φ = Δ  

Therefore, by plugging the gradient terms into the linear part of the cost function, 

energy efficiency will be maximized as the cost function is minimized.  Figure 5.14 

shows an example function, plotted in two dimensional space, that illustrates this 

principle.  If starting at point A, the gradient is negative; moving to the right will tend to 

minimize the function, since increasing x will decrease fx∇ .  Similarly, if starting at 

point B, where the gradient is positive, moving to the left will tend to minimize the 

function.  This is the method that will be used by the global controller. 
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Fig. 5.14 Sample efficiency function 

 

 

Cooling Zone Temperature Errors 

We have developed an efficiency function that gets smaller as the system 

operates more efficiently.  If the developed ICOP function were the only consideration 

for the control law, the system would simply operate at the conditions that minimize 

ICOP and never leave.  However, VCC systems have a larger role to play—namely, 

keeping temperature of a body of fluid at a desired level.  Therefore, the error—defined 

in this case as the difference between the desired and actual temperatures of a tank of 

water—must also play a role in the development of the control law.  We start with the 

error definition for the ith evaporator: 

00 TTe i
S

ii −=  
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In this equation, Ts is the water temperature setpoint, T0 is the temperature at the 

current sampling instant, and e0 is the error at the current sampling instant.  For the sake 

of clarity, the evaporator number superscripts will be left off the variables henceforth 

during this derivation only.  At each future instant, the future errors will change linearly 

with respect to the future levels of cooling: 

0 0

1 0 1

2 0 1 2
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In these equations, m is the mass of the water in the “cabin,” k is the sample time, 

and c is the specific heat of water.  These are the same conventions laid out in Figure 

5.3.  As before, Nu is the control horizon and Ny is the output prediction horizon.  This 

set of equations can be expressed in vector form as MQvee += 10 , where: 
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Now define a weighting matrix:  Ny NyR Iλ ×=   This will be a symmetric, 

nonsingular, positive definite matrix, since we require λ>0.  Squaring the error vector e 

and scaling it with the weighting matrix R yields a quadratic term:  

( ) ( )0 1 0 1

2
0 1 1 0 1 0 1         

TT

T T T T T T T

e Re e v MQ R e v MQ

e v Rv e v RMQ e Q M R v Q M RMQ

= + +

= + + +
 

Note that the second and third terms in the equality are scalars, so the above 

simplifies into a quadratic equation in Q: 

2
0 1 1 0 12T T T T Te Re e v Rv e v RMQ Q M RMQ= + +  

 

 



121 

Define the terms of the Q vector as the variations from the initial cooling 

condition Q0: 
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Substitution of this into the quadratic form for eTRe yields: 
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Thus we now have a quadratic function in ΔQ that is equal to the weighted sum 

of squares of the water temperature errors over the prediction horizon of the controller.  

Minimizing the sum of squares of the errors is equivalent to minimizing the sums of the 

errors.  Therefore, it can be used in the cost function J derived earlier.  Each evaporator 

will have one of these equations, as will be seen in the assembly of the cost function. 
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Assembly of Optimization Problem 

Cost Function 

In the earlier sections, we derived terms for the Inverse Coefficient of 

Performance and the water temperature errors that were either linear or quadratic in 

terms of the changes in control inputs, where the changes are measured from the 

command profile at the sampling instant of the global controller.  Now these terms must 

be assembled into a cost function that will be used by the global controller.  Recall the 

defined cost function: 
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Inserting the temperature error terms into the cost function yields the following 

(note that the upper left hand superscripts on He and fe denote the cooling 

zone/evaporator number): 
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Now add the Φ’ terms derived from the ICOP function: 
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Note that the matrix in the quadratic term is not invertible; define I as the Nu×Nu 

identity matrix, and add a very small term µ to the diagonal entries in this matrix that are 

currently zero: 
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Finally, as with any controller, a smooth control profile is desirable; that is, some 

damping on the controller is necessary so that the setpoints do not oscillate wildly.  

Recall that the terms in Δu are themselves changes in the control action; therefore, 

simply adding an additional weight to the terms in the quadratic matrix will provide 

controller damping.  Define λQ and λP as the rate weights assigned to changes in cooling 

and pressure, respectively, and add to the quadratic matrix thus: 
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This is the quadratic cost function that the global controller will minimize; it 

balances the cooling demand with energy efficiency according to the weights assigned to 

each by the user, and can be tuned to achieve desired performance characteristics.  Now 

a set of constraints can be built into the solution; the development of these constraints is 

detailed in the next section. 

Constraint Matrix Development 

Recall that the constraints in the quadratic programming problem must be put in 

the following format: 
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min

A u b
u u
Δ ≤

Δ ≥ Δ
 

In this equation A is a constraint matrix of dimension Nc × 4Nu, where Nc is the 

number of constraints, b is a constraint vector of length Nc, and Δu is a 4Nu vector 

containing the command profile through the control horizon Nu. 

The constraints themselves are strictly of the input type, i.e. they are limitations 

on the requests that the global controller makes of the local level controllers.  This 

allows the global controller to account for the maximum cooling that the evaporators are 

capable of delivering, as well as a reasonable range of evaporator pressures.  It also can 

add a maximum slew rate to the change in setpoints; if the change in cooling and 

pressure requirements is limited, the local level controllers can settle quickly to meet the 

setpoints, reducing the chances of unstable behavior and keeping transient dynamics to a 

minimum.  The global constraints chosen are detailed in Table 5.1. 

 
 

Table 5.1 Global constraints 
Constraint Variable Value

1 Evaporator Maximum Cooling 1 kW
2 Evaporator Minimum Cooling 0.6 kW
3 Evaporator Maximum Pressure 350 kPa
4 Evaporator Minimum Pressure 200 kPa
5 Maximum Pressure Slew Rate 40 kPa/sample
6 Maximum Evap Pressure Differential, P2 - P1 100 kPa
7 Minimum Evap Pressure Differential, P2 - P1 0 kPa  

 
 

These constraints are used to generate the constraint matrices.  In the global 

controller implementation, each of these constraints is combined with the conditions at 

the sampling instant to create a constraint in terms of the maximum change of the control 
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input.  Therefore the maximum cooling change for a given evaporator (Constraint #1 

from Table 5.1) is calculated thus: 
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Similarly, the maximum pressure change for a given evaporator (Constraint #3) 

is constrained by: 
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Additionally, a slew rate limit is imposed (Constraint #5): 

max
i P Pδ δ≤  

The maximum change in pressure differential between the evaporators 

(Constraint  #6) is calculated thus: 
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The construction of the experimental systems requires that the pressure of 

evaporator 2 is always greater than or equal to than that of evaporator 1 (Constraint #7): 
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The left sides of each of the preceding inequalities are used to construct the A 

matrix in the first constraint equation.  The right sides of each are used as the elements 

of the b vector in the same equation.  For example, if the control horizon Nu = 1, the 

constraint equation becomes: 
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For the general case, this becomes: 
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Where, as before, Nu is the control horizon, I is the Nu × Nu identity matrix, and 

w1 is the Nu × 1 vector wherein every element is the number 1.  Note that if the number 
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of constraints per sample time Nc was different than 8, the first matrix would be NcNu × 

4Nu in size. 

A similar approach is used to calculate the xmin vector.  Constraints #2 and #4 

from Table 5.1 lead to the following: 
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The minimum constraint requirement is therefore constructed thus: 
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Controller Implementation 

The controller was implemented in Simulink, in conjunction with the local 

controllers detailed in Chapter IV.  The quadratic programming software used is the 

QPDANTZ program, which is included in the MatLab Model Predictive Control 

Toolbox.  This program uses the Wolfe-Dantzig quadratic programming (QP) algorithm 

to solve the QP problem [51, 54].  System conditions are measured and transformed into 

a format useable by the QPDANTZ program by a combination of embedded MatLab 

functions and S-functions coded in the programming language C.  These coded functions 

were adapted from the MatLab code supplied with the MPC Toolbox.  An m-file 

program was also written to allow the user to set the various weights and parameters and 

set up the Simulink file for compilation into the WinCon real-time software. 

Global Controller Development and Experimental Results 

A testing program was performed subjecting the implementing controller to a 

series of conditions to verify that the controller is designed correctly and that it does 

indeed tend to the most efficient operating condition.  Experimentation with the 

controller resulted in a baseline set of parameters for which the system works well; these 

parameters are found in Table 5.2. 
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Table 5.2 Global controller MPC parameters 
Parameter Description Value

Ts Sample Time 150 s
Nu Control Horizon 3
Ny Prediction Horizon 5  

 
 

Test 1: Baseline Case with Global Controller 

For the first test shown, the entire control system was run to bring the water 

temperature down to a desired setpoint as shown.  During this test, a small amount of 

condenser water was mixed into the evaporator water; due to the system construction, 

the same amount of mixed evaporator water overflows into the condenser water tank.  

This has the effect of adding a disturbance to the plant; namely, heating at an unknown 

rate is added to the water in addition to the cooling performed by the system.  For this 

test, the parameters are found in Table 5.3.  Cooling and water temperatures are shown 

in Figure 5.15. 

 
 
 

Table 5.3 Test 1 parameters 
Parameter Description Value

Ts Sample Time 150 s
Nu Control Horizon 3
Ny Prediction Horizon 5
λe Temperature Error Weight 1.0
λΦ ICOP Weight 2000
λQ Cooling Slew Weight 4.0

λP Pressure Slew Weight 4.0  
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Fig. 5.15 Test 1 cooling zone temperatures and cooling 

 
 
 

This figure displays some of the functionality of the control architecture.  At the 

beginning of the experimental run, the zone 1 error is approximately 3 °C; as the water is 

chilled, the error decreases, and the global controller begins to allow cooling to decrease, 

as the dominance of the error term in the cost function decreases.  At approximately 

1200 seconds, the setpoint is decreased, increasing the error significantly; this time, the 

controller responds by increasing cooling to the maximum value allowed.  Again, as the 

error decreases, the cooling setpoint decreases, resulting in an asymptotic approach to 

final temperature by the cooling zone temperature.  Cooling zone 2 shows a different 

example of the controller behavior during the same run.  As the setpoint is increased at 
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approximately 1100 seconds, the controller reduces cooling to its minimum of 0.6 kW.  

Due to the disturbance added, which can be surmised to be approximately 0.6 kW, the 

cooling zone temperature remains almost constant throughout the run.  This displays the 

effect of the weight attached to the ICOP term in the cost function; the steady state error 

of approximately 1 °C is acceptable to the controller.  Later experiments will explore the 

effects of changing the ICOP weight. 

Figure 5.16 shows the superheat during this experimental run.  Note that except 

for some transients, the local controllers successfully keep superheat within a band of 6 

to 12 °C as required. 
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Fig. 5.16 Test 1 superheat 

 
 
 

Figure 5.17 shows the pressure during the experimental run; the controller brings 

both pressures to the same value; they oscillate about 325 kPa over the course of the test.  

A future data run will show the effect of making one fan more expensive than another. 
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Fig. 5.17 Test 1 evaporator pressures 

 
  

Finally, figures 5.18 and 5.19 show the power consumption and Coefficient of 

Performance, respectively.  Note that more fan work is required as more cooling is 

needed.  Additionally, the COP drifts upward slightly as the experiment progresses, 

implying that the system is tending towards more efficient operation. 
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Fig. 5.18 Test 1 component power consumption 
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Fig. 5.19 Test 1 coefficient of performance 
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Test 2: Decreased ICOP Weight 

For this second experimental run, the ICOP weight was decreased from 2000 to 

750.  The results of the first test imply that as the ICOP weight is decreased relative to 

the error weight, the steady state error that the controller will tolerate also decreases.  

The purpose of this experiment is to test the validity of that implication.  Table 5.4 

shows the test parameters.  Figure 5.20 shows the temperatures and cooling setpoints; 

note that a constant disturbance was added to both zones starting at approximately 5000 

seconds. 

 

Table 5.4 Test 2 parameters 
Parameter Description Value

Ts Sample Time 150 s
Nu Control Horizon 3
Ny Prediction Horizon 5
λe Temperature Error Weight 1.0
λΦ ICOP Weight 750
λQ Cooling Slew Weight 4.0
λP Pressure Slew Weight 2.0  
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Fig. 5.20 Test 2 cooling zone temperatures and cooling 

 
 

The results of this test show that with the lower weight, the setpoint is indeed 

reached even in the presence of disturbances.  To better illustrate this idea, figure 5.21 

shows a clear trend that for the case where the ICOP weight is higher, the controller 

requires a larger error before assigning a particular amount of cooling to the evaporator.  
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This agrees with an intuitive sense of the role the relative weights play in tuning the 

global controller.  The black points are from Test 2; the green squares are from Test 1. 

 

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

0.7

0.8

0.9

1

1.1

Evap 1 Error ( oC)

C
oo

lin
g 

S
et

po
in

t (
kW

)

 

 
λφ=750

λφ=2000

 
Fig. 5.21 The effects of λΦ on cooling setpoints 

 
 
 

Figure 5.22 shows the pressures during this test run.  Note that the pressures 

again oscillate about the 325 kPa mark.  This seems to be a point where the compressor 

and fan consumptions balance each other.  Figure 5.23 illustrates this.  In this figure, the 

values of the ICOP function are plotted as functions of evaporator 1 cooling for various 

pressures.  Pressures 1 and 2 are kept identical for this graph, and evaporator 2 cooling is 

held constant at 0.6 kW.  As evaporator pressure increases past 325 kPa, the fans have to 

move more fluid in order to keep superheat above the minimum value; clearly, the global 

controller is seeking an energy-optimal pressure for the evaporators. 
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Fig. 5.22 Test 2 pressures 
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Fig. 5.23 ICOP as a function of evaporator 1 cooling for different pressures 
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Test 3: Increased ICOP weight 

For this test, the weight placed on ICOP was increased to 3000; all other 

parameters are the same as those in Table 5.4.  This resulted in undesirable limit cycle 

behavior, as shown in Figure 5.24.  Additionally, the system was not able to drive the 

cooling zone temperatures down to the setpoint in the presence of a disturbance. 
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Fig. 5.24 Test 3 cooling zone temperatures and evaporator cooling 
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Test 4: Verification that Global Controller will Improve Efficiency 

The purpose of this third test is to provide some verification that the controller 

will move the system from a randomly chosen set of operating points to a more energy 

efficient one.  At the start of this test, the system was allowed to come to a steady state 

where the evaporator cooling and the disturbance were balanced, thereby maintaining a 

constant water temperature.  Then the global controller was activated at approximately 

1200 seconds, which brought the pressure and cooling setpoints to a more efficient 

operating condition.  Figures 5.25 and 5.26 show the temperature/cooling and pressure 

results, respectively.  Figure 5.27 shows how superheat decreases, implying more 

efficient operation.  Figure 5.28 shows the 9.5% increase in COP as a result of the 

controller’s actions.  In each figure arrows indicate when the global controller was 

activated.  The parameters for the test are the same as those in Table 5.4. 
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Fig. 5.25 Test 4 cooling zone temperatures and cooling 
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Fig. 5.26 Test 4 pressures 
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Fig. 5.27 Test 4 superheats 
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Fig. 5.28 Test 4 coefficient of performance 

 
 

Test 5: More Expensive Fan Law 

This final test exploits the modularity and adaptability built into the design 

approach.  The ICOP function is modified so that the first evaporator’s “fan” consumes 

twice as much energy as the default.  The second evaporator’s fan is left unchanged.  

Test parameters are the same as those in Table 5.4.  A disturbance was added to the 

second evaporator so that it tracked its setpoint with its cooling at a minimum.  Figure 

5.29 shows the cooling zone temperatures and evaporator cooling. 
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Fig. 5.29 Test 5 cooling zone temperatures and evaporator cooling 

 
 
 

As a result of the first fan being more expensive, the controller drives the first 

evaporator’s pressure down, since it becomes more expensive to maintain superheat at 

higher pressures.  Figure 5.30 shows the pressures; figure 5.31 shows the component 

work.  Figure 5.32 is similar to the earlier plot of the ICOP function with varying 

cooling, except using the expensive fan for the first evaporator.  In this case, keeping the 
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second evaporator’s pressure constant at 350 kPa, the ICOP function will seek to drive 

the first evaporator’s pressure down to a minimum value. 

This example indicates the possibility that the control approach presented can be 

an effective design tool; combinations of fans and compressors can be explored to help 

ensure an energy efficient design and component selection. 

 

400 600 800 1000 1200
200

250

300

350

400

450
Evap 1 Pressure

time (s)

P
re

ss
ur

e 
(k

P
a)

400 600 800 1000 1200
200

250

300

350

400

450
Evap 2 Pressure

time (s)

P
re

ss
ur

e 
(k

P
a)

 
Fig. 5.30 Test 5 pressures 
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Fig. 5.31 Test 5 component power consumption 
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Fig. 5.32 ICOP as a function of evaporator 1 cooling for different pressures, modified fan law 
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Conclusion 

In this chapter, a new global control approach was derived to regulate the 

setpoints of the local controller architecture designed in Chapter IV.  This architecture 

seeks to drive the temperature of a cooling zone to a setpoint in an energy efficient 

manner.  The controller has knowledge of the energy consumption characteristics of the 

system components; furthermore, it can be tuned to assign different weights to errors and 

energy efficiency.  This allows the user to select weights that reflect the criticality of 

temperature regulation, or the cost of energy consumed in operating the cooling system.  

The controller is also shown to be flexible and modular, and can be used as a design tool 

while selecting components for a cooling system. 
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CHAPTER VI 

CONCLUSION 

Results 

This thesis presents a novel control architecture for multiple evaporator cooling 

systems.  The architecture is a flexible, two-level structure that uses model predictive 

control methods at both levels to achieve the respective goals of each controller.  The 

global controller seeks to regulate the temperatures of two different cooling zones 

serviced by the same vapor compression cycle, while maximizing energy efficiency in 

the process.  It achieves this by calculating the pressure and cooling values for the 

evaporators that minimize a tunable quadratic cost function, subject to a set of 

constraints.  These pressure and cooling values are sent as setpoints to the local 

component controllers.  These local controllers are distributed among the components 

and use a combination of MPC and PID controllers to regulate evaporator cooling and 

pressure while ensuring that superheat stays within a band for all evaporators. 

The control architecture presented was shown to be effective in achieving the 

control objectives.  The global controller was shown to seek the minimum energy 

consumption condition, and can be tuned to place different weights on setpoint error and 

on energy consumption.  This flexibility means the control algorithm can be adapted for 

different situations depending on the user’s need.  Additionally, the global control 

algorithm was shown to be adaptable to different equipment configurations; thus, if the 
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energy consumption characteristics of the individual components change, the global law 

can be adapted to reflect these changes. 

Local Controllers 

At the local control level, 2 x 2 MIMO MPC controllers are implemented on each 

evaporator.  The inputs for these controllers are the EEV and WFV; the outputs are 

evaporator cooling and superheat.  Zero weight is placed on the superheat output, but it 

is constrained within a band.  Using an MPC framework with a MIMO controller allows 

explicit handling of the superheat constraint.  The result of this approach is that no 

control effort is expended to explicitly track superheat, although it is kept above a 

specified minimum for safety and below a specified maximum for efficiency. This is 

different from the industrially standard method of using the expansion device to control 

superheat explicitly, which is really an indirect method of controlling cooling.  This frees 

the controller to pursue the primary goal of the evaporator, which is cooling of a 

secondary fluid. 

The pressure in the first evaporator is controlled with the compressor.  In this 

way, pressure serves as the signal to the compressor that cooling demand is changing.  

For example, if the cooling increases, the valve opens, and pressure increases.  The 

compressor then increases in speed to bring the pressure back to its setpoint. The 

secondary evaporator’s pressure is controlled with the SDR, which tracks the difference 

in pressure setpoints between the second and first evaporators. 
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Global Controller 

For the global controller, an Inverse Coefficient of Performance function was 

derived for the system; the value of this function decreases in magnitude as the system 

operates more efficiently.  Due to a set of simplifying assumptions, the ICOP function 

can be expressed solely as a function of each evaporator’s cooling and pressure setpoints 

over a prediction horizon.  In addition, the error in the cooling zones’ temperatures over 

a prediction horizon can be expressed as a function of each evaporator’s cooling 

setpoints over a control horizon.  The error function and the ICOP function are combined 

into a tunable quadratic cost function that is minimized subject to a set of constraints; the 

optimal solution to this function gives the pressure and cooling setpoints that are 

communicated to the local controllers. 

 

Future Work 

There are many potential avenues for future research along the lines opened up in 

this thesis—as with any research, more questions are revealed in these pages than are 

answered.  General investigations can include demand shedding and fault detection with 

the current system.  Additionally, further development of the global controller and 

exploration of larger, distributed systems are possible.  A few specific areas of inquiry 

are listed next. 
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Demand Shedding and Variable Weight Tuning 

If the total cooling demand is too high for the system, or is deemed too expensive 

to meet, the controllers can use their MPC-based logic to limit the total cooling actually 

performed by the system.  In effect, excess demand is ignored and a lower level of 

cooling is performed.  If handled by the local controllers, a limit can be placed on 

cooling delivered.  If handled by the global controller, either a limit can be placed on the 

setpoints, or additional cost placed on cooling, such that more weight is placed on 

energy consumption.  This would be very useful if electricity were priced based upon the 

time of day. 

Fault Detection Using the Global Law 

Logic can be placed in the global controller that would monitor the actual system 

performance; if the actual performance falls outside certain set boundaries, this can 

signify a problem with the system.  For example, if a certain level of cooling is asked for 

but not received, it might signal a problem with the evaporator such as a non-functioning 

fan or a refrigerant leak.  The global controller could respond by shutting down the 

evaporator in question and notifying maintenance personnel.  Phenomena such as power 

spikes could also be monitored. 

Adaptation of Global Law 

The global law was derived with a set of simplifying assumptions, some of which 

were with regards to water temperatures.  An adaptation algorithm that changes the 

ICOP function as the water temperature changes, for example, could be very useful in 
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developing a controller that performs optimally with respect to energy consumption for 

all situations.  Alternatively, a multiple model approach could be used, where different 

ICOP functions are used in different operating conditions.  Another possibility for 

adaptive control would be adapting the ICOP function by comparing the values of the 

function with the actual system responses; this would allow the function to evolve with 

time and different conditions, such as a change in seasons. 

Nonlinear Local Control 

In general, a better model for use in the local controllers is desirable.  

Additionally, the local components are limited to a fairly small set of operating 

conditions; in order to achieve a larger operating envelope and better local performance, 

a method of dealing with the inherent nonlinearities is required.  This method might 

involve a multiple model MPC approach, where the controller switches between models 

as system conditions change.  This should allow for better control of the local 

components, including perhaps tightening of the superheat band and decreasing the 

minimum superheat required.  This would improve the operating efficiency of the 

system overall.   

Expansion of Approach 

Expansion of the system to a larger cooling network—for example, 6 evaporators 

with 2 compressors—would provide a bevy of technical challenges in adapting this 

approach.  When should each compressor be used?  Do physical distances play a role in 

the behavior of the system overall, and how should these be implemented into the global 
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law?  Also, can the global law derivation be generalized from VCC systems to any 

system that transports energy and mass from one place to another? 

Guarantees of Stability 

A guarantee of stability is one of the most important goals in designing a control 

system, and would present an interesting challenge in further development of the 

approach.  One possibility is guaranteeing passivity of the subsystems and local 

controllers, thereby guaranteeing the passivity and thus stability of the entire system; this 

is a possible fruitful avenue, especially since all of the system components except for the 

compressor are themselves passive, in that they dissipate energy. 
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APPENDIX 

 
 

Fig. A.1 Sensor wiring schematics 
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Fig. A.2 Compressor power wiring 
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Fig. A.3 120VAC wiring 
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Table A.1: Part numbers and supplier info, part 1 
Description Qty Manufacturer Part Number Supplier Contact

Electric Expansion Valve (EEV) 2 Sporlan SEI 0.5-10-S Parker Hannefin www.parker.com

Discharge Valve (SDR) 1 Sporlan SDR-3X Parker Hannefin www.parker.com
Manual Shutoff Valve, 1/4" 8 Mueller A14833 ACR Supply (979) 774-7371
Manual Shutoff Valve, 3/8" 4 Mueller A14835 ACR Supply (979) 774-7371

3-way Ball Valve, 3/8" 1 ValveWorx 536503 Industrial 
Automation www.valvestore.com

Compressor 1 Masterflux Sierra 03-0982Y3 Masterflux www.masterflux.com

Liquid Receiver 1 Henry Technologies S-8060 ACR Supply (979) 774-7371

Sight Glass 1 Emerson AMI 1FM2 ACR Supply (979) 774-7371

Filter Drier 1 Alco EK-032 South Side 
Control Supply www.southsidecontrol.com

Venturi 1 Lambda Square VU-0.5-0.148 Lambda Square www.lambdasquare.com

High Pressure Gage 1 Omega PGC-25L-300 Omega www.omega.com
Low Pressure Gage 1 Omega PGC-25L-160 Omega www.omega.com

Pressure Shutoff Switch 1 Ranco 012-1594-70 Ebay www.ebay.com

Water Flow Valve (WFV) 2 Erie APA23A000 Energy Equipment 
and Control www.energyequipment.com

Manual Water Valves 19 various various U.S. Plastics www.usplastics.com
Manual Water Valves 3 various various U.S. Plastics www.usplastics.com

Water Pumps 3 Laing SM-1212-T-26 McMaster-Carr www.mcmaster.com
Condenser Water Chiller 1 Haier HWF05XC5T Ebay www.ebay.com
Condenser Water Tanks 2 Tamco 6314 U.S. Plastics www.usplastics.com
Evaporator Water Tanks 4 Tamco 6305 U.S. Plastics www.usplastics.com

Water Flow 3 Kobold DRS-0380-N5-K000 Kobold www.kobold.com
Thermocouples 12 Omega GTMQSS-062U-6 Omega www.omega.com

Evaporator Pressure 2 Cole-Parmer 07356-03 Cole-Parmer www.coleparmer.com
Condenser Pressure 1 Cole-Parmer 07356-04 Cole-Parmer www.coleparmer.com

Differential Pressure 1 GE General 
Eastern Modus W30-31E-1-T TTI Instruments

www.instrumart.com
Refrigerant Flow 2 McMillan 102-5-E-Q-B4-NIST McMillan www.mcmillan.com

Compressor Current 1 CR Magnetics CR5210 CR Magnetics www.crmagnetics.com
Tachometer 1 Masterflux -- Masterflux www.masterflux.com

PRIMARY LOOP

SECONDARY LOOP

TRANSDUCERS
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Table A.2: Part numbers and supplier info, part 2 
Description Qty Manufacturer Part Number Supplier Contact

Transformer, 24 VAC 4 Honeywell AT72D-1683 Patriot Supply www.patriot-supply.com

Power Supply, 48 VDC 2 Cotek 800S-P048 Power Supplies 
Unlimited, Inc. www.psui.com

Power Supply, 24 VDC 1 Traco TML 15124C Power Supplies 
Unlimited, Inc. www.psui.com

Power Supply, 12 VDC 1 Control Engineering 
Co. 31053 Ebay www.ebay.com

Power Supply, 5 VDC 1 Traco TML 15105C Power Supplies 
Unlimited, Inc. www.psui.com

0-3000 Hz in, 0-5 V out 1 Omega OM5-IKI-3K-C Omega www.omega.com

0-500 Hz in, 0-5 V out 1 Analog Devices 5B45-01 Measurement 
Computing www.measurementcomputing.com

0-500 Hz in, 0-5 V out 2 Dataforth SCM 5B45-01 Measurement 
Computing www.measurementcomputing.com

4-20 mA in, 0-5 V out 1 Omega OM5-11-4/20-C Omega www.omega.com
-10 to +10 V in, 0-5 V out 1 Omega OM5-IV-10B-C Omega www.omega.com

0-5 V in, 4-20 mA out 2 Analog Devices 5B39-01 Measurement 
Computing www.measurementcomputing.com

0-5 V in, 4-20 mA out 3 Dataforth SCM5B39-01 Measurement 
Computing www.measurementcomputing.com

5B Backplane 2 Analog Devices 5B01 Measurement 
Computing www.measurementcomputing.com

Thermocouple Board 1 Measurement 
Computing PCI-DAS-TC Measurement 

Computing www.measurementcomputing.com

Analog Output Board 1 Measurement 
Computing PCI-DDI-08 Measurement 

Computing www.measurementcomputing.com

Analog Input Board 2 National 
Instruments E-6023 National 

Instruments www.ni.com

Compression Fittings n/a Swagelok varies North Houston 
Valve and Fitting www.swagelok.com

SAE Fittings n/a varies varies Fittings and 
Valves Unlimited www.fittingsandmore.com

PVC Fittings n/a varies varies Sprinkler.com www.sprinkler.com
Vacuum pump n/a Robinair 15300 Ebay www.ebay.com

Refrigerant, refrigerant tools, etc. n/a varies varies Discount 
Refrigerants, Inc. www.discountrefrigerants.com

Copper Tubing n/a varies varies ACR Supply (979) 774-7371

POWER COMPONENTS

SIGNAL CONDITIONING

DATA ACQUISITION BOARDS

MISCELLANEOUS TOOLS AND FITTINGS
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Table A.3: BNC numbers 

BNC # Signal 
Cond. Slot Board Ch. Desc.

1 1 0 AO 0 RPM
2 1 2 AO 2 EEV 1
3 1 3 AO 3 WFV 1
4 1 4 AO 4 EEV 2
5 1 5 AO 5 SDR
6 1 6 AO 6 WFV 2
7
8
9 2 0 AI 0 0 E1 water flow

10 2 1 AI 0 1 Compressor Tachometer
11 2 4 AI 0 4 Vapor flow dP
12
13 AI 1 0 E1 Pressure
14 AI 1 2 E1 refrig. Flow
15
16 AI 1 6 Condenser Pressure
17 2 3 AI 0 3 Condenser water flow
18 2 2 AI 0 5 E2 water flow
19
20
21 AI 1 3 E2 refrig. Flow
22 AI 1 1 E2 Pressure
23 AI 1 4 Current
24

N/A
N/A

N/A

N/A

NOT USED

NOT USED
NOT USED

N/A
N/A

NOT USED
NOT USED

NOT USED

NOT USED  
 



165 

Table A.4 Schematic reference, part 1 
Schematic 
Reference Description Abbrev. Item Type

A1 Compressor K Actuator
A2 Evap 1 Expansion Valve EEV1 Actuator
A3 Evap 2 Expansion Valve EEV2 Actuator
A4 Evap 2 Discharge Valve SDR Actuator
A5 Evap 1 Water Flow Valve WFV1 Actuator
A6 Evap 2 Water Flow Valve WFV2 Actuator

AEV-E2 Evap 2 Auxilary Expansion Valve--AEV AEV Auxilary
G1 High Pressure Gauge G1 Gauge
G2 Low Pressure Gauge G2 Gauge
M1 Venturi V Miscellaneous
M2 Liquid Receiver LR Miscellaneous
M3 Filter Drier FD Miscellaneous
M4 Condenser Water Chiller CWC Miscellaneous

MV1 Liquid Receiver Inlet Shutoff LRI Manual
MV10 Evap 2 Discharge Shutoff E2-4-D Manual
MV11 Evaporator Manifold Discharge Shutoff E-1 Manual
MV12 Low Pressure Access (Suction/Fill) K-1 Manual
MV13 Evap 2 Auxilary Expansion Valve Selector E2-6 Manual
MV14 Evap 2 Auxilary Expansion Valve Shutoff E2-5 Manual
MV2 Liquid Receiver Bypass Valve LRB Manual
MV3 Liquid Receiver Outlet Shutoff LRO Manual
MV4 Evap 1 Inlet Shutoff (EEV) E1-1 Manual
MV5 Evap 1 Auxilary Expansion Valve Inlet Shutoff E1-2 Manual
MV6 Evap 1 Discharge Shutoff E1-3-D Manual
MV7 Evap 2 Inlet Shutoff (EEV) E2-1 Manual
MV8 Evap 2 TXV Inlet Shutoff E2-2 Manual
MV9 Evap 2 AEV Inlet Shutoff E2-3 Manual  
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Table A.5 Schematic reference, part 2 
Schematic 
Reference Description Abbrev. Item Type

MWV01 Water System Drain (Condenser Tank) MWV1 Water Flow
MWV02 WP1 Inlet Shutoff MWV2 Water Flow
MWV03 WP1 Outlet Shutoff MWV3 Water Flow
MWV04 Condenser Top Tank Overflow Shutoff MWV4 Water Flow
MWV05 Condenser Water Line Air Bleed (1/2") MWV5 Water Flow
MWV06 Condenser Water Flow Valve (Manual) MWV6 Water Flow
MWV07 Condenser Discharge Diverter--Evap 1 MWV7 Water Flow
MWV08 Condenser Discharge Diverter--Evap 2 MWV8 Water Flow
MWV09 WP2 Inlet Shutoff MWV9 Water Flow
MWV10 WP2 Outlet Shutoff MWV10 Water Flow
MWV11 Evap 1 Top Tank Overflow Shutoff MWV11 Water Flow
MWV12 Evap 1 Water Line Air Bleed (1/2") MWV12 Water Flow
MWV13 Evap 1 Water Discharge Shutoff MWV13 Water Flow
MWV14 WP3 Inlet Shutoff MWV14 Water Flow
MWV15 WP3 Outlet Shutoff MWV15 Water Flow
MWV16 Evap 2 Top Tank Overflow Shutoff MWV16 Water Flow
MWV17 Evap 2 Water Line Air Bleed (1/2") MWV17 Water Flow
MWV18 Evap 2 Water Discharge Shutoff MWV18 Water Flow
MWV19 Condenser Water Line Fill Access Valve MWV19 Water Flow
MWV20 Evap 1 Water Line Fill Access Valve MWV20 Water Flow
MWV21 Evap 2 Water Line Fill Access Valve MWV21 Water Flow
MWV22 Water System Fill Access Valve MWV22 Water Flow  
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Table A.6 Schematic reference, part 3 

Schematic 
Reference Description Abbrev. Item Type

S02 Differential Pressure (Vapor mass flow) C_RM Transducer
S03 Condenser Pressure PCRO Transducer
S04 Evap 1 Refrigerant Mass Flow E1_RM Transducer
S05 Evap 1 Pressure PERO1 Transducer
S06 Condenser Water Mass Flow C_WM Transducer
S07 Evap 1 Water Mass Flow E1_WM Transducer
S08 Evap 2 Water Mass Flow E2_WM Transducer
S09 Evap 2 Refrigerant Mass Flow E2_RM Transducer
S11 Evap 2 Pressure PERO2 Transducer
T01 Condenser Refrigerant Inlet Temperature TCRI Thermocouple
T02 Condenser Refrigerant Outlet Temperature TCRO Thermocouple
T03 Evap 1 Refrigerant Inlet Temp. TERI1 Thermocouple
T04 Evap 1 Refrigerant Outlet Temp. TERO1 Thermocouple
T05 Evap 2 Refrigerant Inlet Temp. TERI2 Thermocouple
T06 Evap 2 Refrigerant Outlet Temp. TERO2 Thermocouple
T07 Condenser Water Inlet Temperature TCWI Thermocouple
T08 Condenser Water Outlet Temperature TCWO Thermocouple
T09 Evap 1 Water Inlet Temp. TEWI1 Thermocouple
T10 Evap 1 Water Outlet Temp. TEWO1 Thermocouple
T11 Evap 2 Water Inlet Temp. TEWI2 Thermocouple
T12 Evap 2 Water Outlet Temp. TEWO2 Thermocouple

TXV-E2 Evap 2 Auxilary Expansion Valve--TXV TXV Auxilary
WP1 Condenser Water Pump WP1 Water Flow
WP2 Evap 1 Water Pump WP2 Water Flow
WP3 Evap 2 Water Pump WP3 Water Flow  
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Table A.7 Figure to data file cross reference 
Figure Data File ( *.mat) Figure Data File ( *.mat)

2.29 Data_Proc_04_25_08_T4 5.4 Data_Proc_02_29_08_T1, 
Data_Proc_03_06_08_T1

3.7 Data_Proc__SYSID_08_08_07_T1_RPM 5.6 Data_Proc_03_10_08_T5
3.8 Data_Proc__SYSID_08_08_07_T1_RPM 5.10 Data_Proc_04_21_08_T1
3.9 Data_Proc__SYSID_08_08_07_T1_RPM 5.12 Data_Proc_10_17_07_T1
3.10 Data_Proc__SYSID_08_08_07_T1_RPM 5.13 Data_Proc_10_17_07_T2

3.11 Data_Proc__SYSID_08_08_07_T1_RPM 5.15 Data_Proc_04_21_08_T3

3.12 Data_Proc__SYSID_08_08_07_T1_EEV 5.16 Data_Proc_04_21_08_T3

3.13 Data_Proc__SYSID_08_09_07_T2_SDR 5.17 Data_Proc_04_21_08_T3

3.14 Data_Proc__SYSID_08_14_07_T1_H2O1 5.18 Data_Proc_04_21_08_T3

3.15 Data_Proc_01_25_08_T1 5.19 Data_Proc_04_21_08_T3

3.16 Data_Proc_01_25_08_T1 5.20

Data_Proc_04_25_08_T1, 
Data_Proc_04_25_08_T2, 
Data_Proc_04_25_08_T3, 
Data_Proc_04_21_08_T3

3.17
Data_Proc__SYSID_08_08_07_T1_EEV, 
Data_Proc__SYSID_08_08_07_T1_RPM, 
Data_Proc__SYSID_08_14_07_T1_H2O1

5.21
Data_Proc_04_25_08_T1, 
Data_Proc_04_25_08_T2, 
Data_Proc_04_25_08_T3

3.18 Data_Proc__SYSID_08_08_07_T1_EEV, 
Data_Proc__SYSID_08_08_07_T1_RPM 5.22

Data_Proc_04_25_08_T1, 
Data_Proc_04_25_08_T2, 
Data_Proc_04_25_08_T3

3.19
Data_Proc__SYSID_08_08_07_T1_EEV, 
Data_Proc__SYSID_08_08_07_T1_RPM, 
Data_Proc__SYSID_08_14_07_T1_H2O1

5.24 Data_Proc_04_25_08_T4, 
Data_Proc_04_25_08_T5

4.1 Data_Proc_01_25_08_T1 5.25 Data_Proc_04_21_08_T4

4.3 Data_Proc_04_30_08_T2 5.26 Data_Proc_04_21_08_T4

4.4 Data_Proc_04_30_08_T2 5.27 Data_Proc_04_21_08_T4

4.5 Data_Proc_04_30_08_T2 5.28 Data_Proc_04_21_08_T4

4.6 Data_Proc_04_30_08_T1 5.29 Data_Proc_04_28_08_T1, 
Data_Proc_04_28_08_T2

4.7 Data_Proc_04_30_08_T1 5.30 Data_Proc_04_28_08_T1, 
Data_Proc_04_28_08_T2

4.8 Data_Proc_04_30_08_T1 5.31 Data_Proc_04_28_08_T1, 
Data_Proc_04_28_08_T2

4.10 Data_Proc_04_17_08_T3
4.11 Data_Proc_04_17_08_T3
4.12 Data_Proc_04_17_08_T3
4.13 Data_Proc_04_21_08_T2
4.14 Data_Proc_04_21_08_T2
4.15 Data_Proc_04_21_08_T2
4.16 Data_Proc_04_21_08_T2
4.17 Data_Proc_04_21_08_T2  
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