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ABSTRACT 

Fractal analysis of an image is a mathematical approach to generate surface related 

features from an image or image tile that can be applied to image segmentation and to 

object recognition. In undersea target countermeasures, the targets of interest can appear 

as anomalies in a variety of contexts, visually different textures on the seafloor. In this 

thesis, we evaluate the use of fractal dimension as a primary feature and related 

characteristics as secondary features to be extracted from synthetic aperture sonar (SAS) 

imagery for the purpose of target detection. We develop three separate methods for 

computing fractal dimension and produce both primary “slope” and secondary “intercept” 

and “lacunarity” features as candidates for classification application. Tiles with targets are 

compared to others from the same background textures without targets. The different 

features produced are tested with respect to how well they can be used to detect targets vs. 

false alarms within the same contexts. These features are evaluated for utility using sets of 

image tiles extracted from a SAS data set generated by the U.S. Navy in conjunction with 

the Office of Naval Research. We find that almost all features produced have potential to 

perform well in real-world classification tasks, with the slope and intercept features from 

a fractional Brownian motion model performing the best among those from the three 

individual methods. We also find that the secondary intercept features are just as useful, if 

not more so, in classifying false alarms vs. targets when compared to the primary slope 

features. The secondary lacunarity features, however, dominate as the most useful features 

produced. We also do experiments to address the high amount of compute time required to 

produce the features and to discover how the features change with distance from the image 

sensor.
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1. INTRODUCTION AND BACKGROUND 

In the applications of image segmentation and classification, among others, a key 

part of the processes used is feature extraction. Features extracted from any type of image 

can be used to determine many informative qualities. One of the most informative of these 

qualities is texture. Much research has previously been done to seek out the most 

informative texture features. What sort of textures does an image contain? Does an image 

contain multiple textures? How do the textures change across an image? These are all 

questions that can be answered through the use of extracted texture features. The local 

binary pattern (LBP) [1] [2], local direction pattern (LDP) [3], Haralick gray-level co-

occurrence matrix (GCLM) [4], Sobel edge detector [5], and Histogram of Oriented 

Gradients (HOG) [6] features name just a few of the now well-known features used in the 

field. 

One feature, which has been investigated and applied in domains related to our 

work to a much lesser extent, but having significant potential in those domains and quickly 

becoming more prevalent in the community, is termed “fractal dimension.” The fractal 

dimension of a given texture is essentially a description of the roughness, or ruggedness, 

of that texture. All of the three methods used to compute the fractal dimension of a texture 

that we investigate also produce a secondary “y-intercept” feature, and one of those three 

methods produces a secondary “lacunarity” feature as well. These are discussed to a greater 

extent later on. The work described here has been most significantly guided by the 

investigative work done by Keller [7] in the late 1980s, though the concept of using fractal 

geometry in image analysis extends further back than that. 
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Fractal geometry was initially explored by Benoit Mandelbrot [8] in the 1970s and 

has since been shown to be a valuable tool for describing the irregular and complex shapes 

seen in the natural world. As described by Crownover [9], one can think of elements such 

as a line segment, a square, and a cube as having dimensions 𝐷 of 1, 2, and 3, respectively. 

If those elements are divided into 𝑁 equal sub-segments, sub-squares, and sub-cubes, 

respectively, with each sub-piece being thought of as a scaled down version of the original 

element, with a scaling ratio 𝑟 in all dimensions, then the relationship between 𝑁 and 𝑟 is 

given by the power law 

 𝑁𝑟𝐷 = 1. ( 1 ) 

For example, in the case of a cube, if one divides the cube into 8 equal sub-cubes, each side 

will have been scaled by 𝑟 = 1/2 and 8 ∗ (1/2)3 = 1. These elements – the line segment, 

square, and cube – all have integer dimensions, but this relationship can be extended to 

elements that we can think of as having non-integer dimensions. 

If a bounded set 𝐴 exists in Euclidean 𝑛-space where 𝐴 is the union of 𝑁 distinct 

copies of itself, each progressively scaled down by 𝑟 in every dimension as described 

above, 𝐴 is said to be self-similar [8] [9] [10]. The similarity dimension – or the “fractal 

dimension” – of 𝐴 is given by taking the logarithm on both sides and rearranging Equation 

(1) to get 

 
𝐷 =  

log 𝑁

log (1/r)
 

( 2 ) 

with this equation holding true for even non-integer values of 𝐷. Theoretically, we will 

always have 1 ≤ 𝐷 ≤ 2 for one-variable data and 2 ≤ 𝐷 ≤ 3 for two-variable data as in 

the case of our SAS imagery. 𝐷, then, should be a useful descriptor of the “roughness” or 
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“ruggedness” of a surface. The higher the value of 𝐷, the more rugged the surface is, as 

illustrated in Figure 1-1 and Figure 1-2.  

 
Figure 1-1 – An artificially generated surface having a fractal dimension value 

𝐷 = 2.2 

 
Figure 1-2 – An artificially generated surface having a fractal dimension value 

𝐷 = 2.6 
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More surfaces are shown in Figure 3-1, Figure 3-2, and Figure 3-3. 

We hypothesize that the mathematical representation of the roughness, 𝐷, of image 

tiles containing targets will be distinguishable from 𝐷 representing those tiles containing 

only background textures. In practice, there are multiple ways of estimating 𝐷. Here, we 

implement and examine two box counting methods and a method relying on a fractional 

Brownian motion (fBm) model. All of these methods also produce a secondary feature 𝐶 

or 𝐵, discussed in Section 2, that relates to some version of the power law given in (1) and 

should also be a distinguishing feature.  

It is hypothesized that the further an image tile is from the path of the vehicle 

collecting the data, the higher the 𝐶 and 𝐵 constants of proportionality will be. Just as the 

scale of an object appears to decrease with increasing distance in visual imagery, the scale 

of the seafloor textures seen by the SAS sensor will also decrease with distance. The SAS 

beamforming method used to create the imagery corrects for this, so it is not obvious to the 

human eye. However, because we do not decrease the size of our box as it is moved further 

away from the sensor, the constant of proportionality should instead change. We discuss 

and show results of an experiment to test this hypothesis in Section 3.6.  

As pointed out by Mandelbrot [11] and Voss [12], there are textures that may have 

very similar fractal dimension values but very different appearances or textures. For this 

reason, fractal dimension alone is not sufficient for describing natural textures. Mandelbrot 

[13] introduced “lacunarity” as a way to describe the characteristic of fractals geometries 

having the same dimension but different textures. Keller [7] introduces a method of finding 

lacunarity using the same data computed in our first box-counting method for fractal 

dimension computation (Method 1). We term this “Keller lacunarity” here. Voss [12] 
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introduced another, termed “Voss lacunarity” here, again making use of the Method 1 

computations. These two methods of computing lacunarity are discussed further in Section 

2.1. Finally, Williams [14] discusses a third method of lacunarity computation, termed 

“Williams lacunarity” here. The Williams method does not make use of the work done in 

Method 1 and is discussed in Section 2.5. 
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2. METHODS OF FRACTAL DIMENSION AND SECONDARY 

FEATURE COMPUTATION 

2.1. Method 1 

The first method we use to compute the fractal dimension of a given surface is a 

modified version of the box counting method [7] [9] [12]. Box counting is based on the 

property that the number of boxes of size 𝐿, 𝑁(𝐿), that it takes to cover a fractal surface is 

proportional to 𝐿−𝐷. We define this box of size 𝐿 as having dimensions 

𝐿𝑤𝑖𝑑𝑡ℎ x 𝐿𝑑𝑒𝑝𝑡ℎ x 𝐿ℎ𝑒𝑖𝑔ℎ𝑡. One can think of 𝐿𝑤𝑖𝑑𝑡ℎ, 𝐿𝑑𝑒𝑝𝑡ℎ, and 𝐿ℎ𝑒𝑖𝑔ℎ𝑡 as scaling factors 

applied to a cube with dimensions 1 x 1 x 1 along the first, second, and third dimensions, 

respectively. These values will be incremented to grow the size of the box as the algorithm 

proceeds. 

To begin, we take a SAS image tile with 𝑦 pixel rows and 𝑥 pixel columns for 

which we wish to compute the fractal dimension. The intensity values for the entire data 

set being analyzed will range from 𝑧𝑚𝑖𝑛 to 𝑧𝑚𝑎𝑥. These intensity values are determined 

across the data set as a whole rather than the individual image or image tile so that we have 

consistent dimension computation across the data set. Additionally, if 𝑦 and 𝑥 are the same 

or roughly the same for each tile, we can fix 𝐿𝑑𝑒𝑝𝑡ℎ = 𝐿𝑤𝑖𝑑𝑡ℎ. We set 

 𝐿ℎ𝑒𝑖𝑔ℎ𝑡 =  𝐿𝑤𝑖𝑑𝑡ℎ ∗  𝐿ℎ𝑚 ( 3 ) 

where 

 𝐿ℎ𝑚 =  
𝑧𝑚𝑎𝑥− 𝑧𝑚𝑖𝑛 

𝑚𝑒𝑎𝑛(𝑥,𝑦)
. ( 4 ) 

The purpose of the 𝐿ℎ𝑚 multiplier term is to further scale the height of the box to better fit 

the data, accounting for the fact that the range [𝑧𝑚𝑖𝑛 , 𝑧𝑚𝑎𝑥] may not be proportional to the 
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depth and width of the tile footprint, 𝑦 and 𝑥, respectively. If 𝑦 and 𝑥 are not the same for 

every tile, fixed values – perhaps the mean 𝑦 and mean 𝑥 across the data set – should be 

used in determining 𝐿ℎ𝑚. Again, the purpose of this is to have consistent conputation when 

analyzing many tiles. This box scaling is best illustrated in Figure 2-4 where there are six 

boxes along the depth dimension, six along the width dimension, and seven along the 

height dimension. If, in that case, we had instead set 𝐿ℎ𝑚 = 1, we would have only one 

box along the height dimension and computing a useful fractal dimension value would not 

be possible. 

We center a box of size 𝐿 around the first pixel that allows the entire box to fit over 

the footprint of the SAS image tile. The placement of this first box is shown by the green 

box in Figure 2-1. With the box in place, the points that fall within the box are counted. In 

other words, if the pixel 𝑖 around which the box is centered is located at (𝑖1, 𝑖2) and has an 

intensity value of 𝑖3, all of the pixels 𝑘 for which the following conditions are met are 

counted: 

 (a)    𝑖1 − 𝑓𝑙𝑜𝑜𝑟 (
𝐿𝑑𝑒𝑝𝑡ℎ

2
) ≤ 𝑘1 ≤ 𝑖1 + 𝑓𝑙𝑜𝑜𝑟 (

𝐿𝑑𝑒𝑝𝑡ℎ

2
) ( 5 ) 

 (b)    𝑖2 − 𝑓𝑙𝑜𝑜𝑟 (
𝐿𝑤𝑖𝑑𝑡ℎ

2
) ≤ 𝑘2 ≤ 𝑖2 + 𝑓𝑙𝑜𝑜𝑟 (

𝐿𝑤𝑖𝑑𝑡ℎ

2
) ( 6 ) 

 (c)    𝑖3 −
𝐿ℎ𝑒𝑖𝑔ℎ𝑡

2
≤ 𝑘3 ≤ 𝑖3 +

𝐿ℎ𝑒𝑖𝑔ℎ𝑡

2
. ( 7 ) 

Figure 2-2 illustrates this box placement and point counting. 
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Figure 2-1 – Tile 𝐴 taken from a SAS image of a sand ripple surface. The green 

box illustrates the placement of the first box placement in Method 1. The region 

highlighted in red are pixels for which the point count is not computed. 

 

 

Figure 2-2 – Box placement and point counting on tile 𝐴 

 

A box of size 𝐿 is centered around the point highlighted in green. The red and blue points 

all fall within the footprint of the box, but only the blue points fall within the box itself. 

The blue points are counted and that count is stored in a matrix. The box is then moved by 

one pixel and the process repeats. This point counting happens at every pixel that allows 

the entire box to fit over the footprint of the image. The square annulus region highlighted 

in red in Figure 2-1 shows those pixels for which this point counting is not done for the 
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given box size 𝐿. This border will always have a width of 𝑓𝑙𝑜𝑜𝑟 (
𝐿𝑑𝑒𝑝𝑡ℎ

2
) at the top and 

bottom, and 𝑓𝑙𝑜𝑜𝑟 (
𝐿𝑤𝑖𝑑𝑡ℎ

2
) at the left and right sides. In Figure 2-1 and Figure 2-2, 

𝐿𝑤𝑖𝑑𝑡ℎ = 23, 𝑦 = 151, 𝑥 = 125, and from Equations ( 3) and (4), we are able to calculate 

𝐿ℎ𝑒𝑖𝑔ℎ𝑡 knowing the 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛 values for our data. The boxes in the figures appear to 

have different 𝐿𝑑𝑒𝑝𝑡ℎ and 𝐿𝑤𝑖𝑑𝑡ℎ values because the image pixels are non-square; the depth 

and width of the box are in fact equal to 𝐿𝑤𝑖𝑑𝑡ℎ pixels. 

Once the point count has been recorded at all possible pixels, the size of the box is 

increased. Because we have fixed 𝐿𝑑𝑒𝑝𝑡ℎ = 𝐿𝑤𝑖𝑑𝑡ℎ, and 𝐿ℎ𝑒𝑖𝑔ℎ𝑡 is dependent on 𝐿𝑤𝑖𝑑𝑡ℎ by 

Equation 3, we only need to increment 𝐿𝑤𝑖𝑑𝑡ℎ to grow the box in all three dimensions. We 

do this for 𝐿𝑤𝑖𝑑𝑡ℎ going from 𝐿𝑚𝑖𝑛 to 𝐿𝑚𝑎𝑥 by 𝐿𝑠𝑡𝑒𝑝. Only odd integer values are used 

for 𝐿𝑤𝑖𝑑𝑡ℎ, so 𝐿𝑠𝑡𝑒𝑝 is generally set to 2, but may also be set to a multiple of 2. When setting 

𝐿𝑚𝑎𝑥, it is important to remember that the larger the size of the box becomes, the more 

computationally intensive the image processing will be. Considerations for setting the 

parameters that define 𝐿 are discussed further in Section 2.4. 

Once the point counts are complete, we can let 𝑃(𝑚, 𝐿) be the probability that 𝑚 

points fall with a box of size 𝐿 centered around any pixel in the image (not including the 

square annulus region). Then, for each 𝐿 we have [7]: 

 ∑ 𝑃(𝑚, 𝐿)𝑀
𝑚=1 = 1  ( 8 ) 

with 𝑀 being the maximum possible number of points that could fall in a box of size 𝐿, i.e. 

𝑀 =  𝐿𝑑𝑒𝑝𝑡ℎ ∗ 𝐿𝑤𝑖𝑑𝑡ℎ. From this, we find the number of boxes needed to cover the image 

to be 



10 

 𝑁(𝐿) = 𝑦 ∗ 𝑥 ∗  ∑ (
1

𝑚
) 𝑃(𝑚, 𝐿)𝑀

𝑚=1 . ( 9 ) 

Because 𝑦 ∗ 𝑥 is a constant factor, we take it out and instead set 𝑁(𝐿) to be 

 𝑁(𝐿) = ∑ (
1

𝑚
) 𝑃(𝑚, 𝐿)𝑀

𝑚=1 . ( 10 ) 

𝑁(𝐿) is then related to the fractal dimension 𝐷 of the image tile by 𝑁(𝐿) ∝  𝐿𝑤𝑖𝑑𝑡ℎ
−𝐷, or 

 − ln 𝑁(𝐿) =  𝐷 ln 𝐿 + 𝐶. ( 11 ) 

If we find the least squares linear fit of points plotted as {ln 𝐿𝑤𝑖𝑑𝑡ℎ, − ln 𝑁(𝐿)}, 

shown in Figure 2-3, the slope of the resulting line is the fractal dimension 𝐷 of the image 

tile and our primary “slope” feature, and the y-intercept is 𝐶 from Equation (11), which is 

the logarithm of the proportionality constant and our secondary “intercept” feature. A 

suitable number of different box sizes is used to obtain a slope that best represents the data. 

 

Figure 2-3 – Fractal dimension Method 1 computation on sand ripple tile 𝐴 from 

Figure 2-1 with 𝐿𝑚𝑖𝑛 = 3, 𝐿𝑠𝑡𝑒𝑝 = 2, 𝐿𝑚𝑎𝑥 = 23 

Our experimentation shows that 𝐶 may in fact be an even more discriminatory 

feature than 𝐷 when it comes to classification, as discussed in Section 3. 
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To distinguish different textures that have the same 𝐷 and/or 𝐶 values, we make 

use of the secondary “lacunarity” feature. As stated in Section 1, the Keller lacunarity and 

Voss lacunarity features make use of the work already done in Method 1. The definition of 

lacunarity, 𝐾, that Keller [7] introduces and that we term “Keller lacunarity” here is defined 

as: 

 
𝐾(𝐿) =

Γ(𝐿) − 𝑁(𝐿)

Γ(𝐿) + 𝑁(𝐿)
 

( 12 ) 

with 

 Γ(𝐿) = ∑ 𝑚𝑃(𝑚, 𝐿)𝑀
𝑚=1 . ( 13 ) 

The Voss lacunarity feature, Λ, is then found as:  

 
Λ(𝐿) =

Γ2(𝐿) − (Γ(𝐿))2

(Γ(𝐿))2
 

( 14 ) 

with 

 Γ2(𝐿) = ∑ 𝑚2𝑃(𝑚, 𝐿)𝑀
𝑚=1 . ( 15 ) 

Therefore, there is a separate Keller lacunarity and Voss lacunarity feature computed for 

each box of size 𝐿. When the lacunarity features are computed along with the 𝐷 and 𝐶 

features, repeated computation is avoided. However, the lacunarity, 𝐷, and 𝐶 values will 

all be tied to the same values of 𝐿 where it is possible that useful lacunarity features would 

result from values of 𝐿 other than those used to find 𝐷 and 𝐶. 

2.2. Method 2 

Method 2 is a more simple, intuitive, and classic method for computing fractal 

dimension. The method works by first specifying a box of size 𝐿 as in Method 1. Then, the 

image space is filled with neighboring boxes, as illustrated in Figure 2-4. Because 𝐿ℎ𝑒𝑖𝑔ℎ𝑡 
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is determined as specified in Equations (3) and (4), we obtain roughly the same number of 

boxes in the height dimension as in the depth and width dimensions. Boxes must be allowed 

to go past the edges of the extracted image tile so that at any box size 𝐿, every image tile 

pixel will fall within some box. The number of nonempty boxes, i.e. the number of boxes 

that contain at least one point and the number of boxes needed to cover the tile, are counted. 

This count is stored as 𝑁(𝐿), and, as in Method 1, 𝑁(𝐿) relates to fractal dimension 𝐷 by 

Equation (11). 

 

Figure 2-4 – The effect of scaling the box height by 𝐿ℎ𝑚 is to have roughly the 

same number of boxes in the height dimension as in the depth and width 

dimensions 
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Figure 2-5 – A closer view of the box layout and points to be counted 

To obtain 𝐷 and 𝐶, we do the least squares linear fit as described in Method 1 and 

are able to plot the line and points as shown in Figure 2-6. 

 

 

Figure 2-6 – Fractal dimension Method 2 computation on sand ripple tile 𝐴 from 

Figure 2-1 with 𝐿𝑚𝑖𝑛 = 3, 𝐿𝑠𝑡𝑒𝑝 = 2, 𝐿𝑚𝑎𝑥 = 23 
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2.3. Method 3 

The final method of fractal dimension computation that we implement makes use 

of a fractional Brownian motion (fBm) model. FBm was initially explored by researchers 

such as Kolmogorov [15] in 1940 and Mandelbrot and Van Ness [11] in 1968, and 

described by Crownover [9] in 1995. An fBm is defined by a Hurst parameter 𝐻 with  

0 ≤ 𝐻 ≤ 1. The estimation of fractal dimension for an fBm makes use of the fact that the 

standard deviation of the increments of an fBm satisfy a power law: 

 𝑠𝑡𝑑 (𝑇(𝑖 + 𝑝𝑖 , 𝑗 + 𝑝𝑗) − 𝑇(𝑖, 𝑗)) ∝ ‖(𝑝𝑖 , 𝑝𝑗)‖
𝐻

. ( 16 ) 

A two-variable fBm, as in the case of our data, is then related to the fractal dimension by 

𝐷 = 3 − 𝐻. To determine 𝐻 for a given image tile, we first find the standard deviation of 

the differences between pixels in the original image and pixels in a shifted image, with the 

distance of the shift being determined by a parameter 𝑝 that is analogous to 𝐿 in Method 1 

and Method 2. Generally, we start with 𝑝 = 1 before incrementing it up to 𝑝𝑚𝑎𝑥 by 𝑝𝑠𝑡𝑒𝑝 . 

The algorithm proceeds in the following manner, with 𝑇 being our image tile and 𝑠𝑡𝑑() 

being the standard deviation function: 

 for 𝑝 = 1 to 𝑝 = 𝑝𝑚𝑎𝑥 by 𝑝𝑠𝑡𝑒𝑝 

  for 𝑖 = 1 to 𝑖 = 𝑦 

   for 𝑗 = 1 to 𝑗 = 𝑥 − 𝑝𝑚𝑎𝑥  
    𝑑𝑋(𝑖, 𝑗) = 𝑇(𝑖, 𝑗 + 𝑝) − 𝑇(𝑖, 𝑗) 

   end 

  end 

  𝑠(𝑝) = 𝑠𝑡𝑑(𝑑𝑋(𝑖, 𝑗)), 𝑖 = 1 to 𝑖 = 𝑥, 𝑗 = 1 to 𝑗 = 𝑥 − 𝑝𝑚𝑎𝑥  

 end 

 

Here, the image is shifted to the right (or to the left if you instead set 𝑝 < 0). 

However, the image can also be shifted vertically or diagonally by making simple 
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modifications to the algorithm. It is important to note that for a diagonal shift where  

𝑝 = 𝑎, the shift distance is actually √2𝑎2 rather than just 𝑎. The slope of the line and Hurst 

parameter 𝐻 from Equation ( 16), and the y-intercept, are then given by 

 ln 𝑠(𝑝) =  𝐻 ln 𝑝 + 𝐵. ( 17 ) 

𝐵 is a secondary “intercept” and constant of proportionality feature like 𝐶 in 

Method 1 and Method 2.  While the 𝐵 and 𝐶 features are similar, we notate them differently 

because while 𝐶 is the intercept of the line for which 𝐷 is the slope, 𝐵 is the intercept of 

the line for which 𝐻 is the slope. The data points and line can be plotted as {ln 𝑝, ln 𝑠(𝑝)} 

as shown in Figure 2-7. In this case, 𝑝𝑚𝑎𝑥 = 10 and the image was shifted to the right only. 

 

Figure 2-7 – Fractal dimension Method 3 computation sand ripple tile 𝐴 from 

Figure 2-1 with 𝑝𝑚𝑖𝑛 = 1, 𝑝𝑠𝑡𝑒𝑝 = 1, 𝑝𝑚𝑎𝑥 = 10, and the shift direction set to 

the right 

While the resulting 𝐷 values for sand ripple tile 𝐴 from Figure 2-1 are very close 

when using Method 1 and Method 2 – shown in Figure 2-3 and Figure 2-6, respectively – 

this result depends largely on the selected parameters, as discussed in Section 2.4. 

Meanwhile, the Method 3 computation shown in Figure 2-7 for the same image tile shows 
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a very different 𝐷 when using the fBm model. The experimentation discussed in Section 

3.1 show that even the Method 1 and Method 2 results quickly diverge from one another 

as the theoretical 𝐷 value grows, although they are both box-counting methods. 

2.4. Considerations for Setting 𝑳 and 𝒑 Parameters 

It is important to note that changing the parameters used to define 𝐿 (𝐿𝑚𝑖𝑛, 𝐿𝑠𝑡𝑒𝑝, 

and 𝐿𝑚𝑎𝑥) in Method 1 and Method 2, or 𝑝 (𝑝𝑚𝑖𝑛, 𝑝𝑠𝑡𝑒𝑝, 𝑝𝑚𝑎𝑥, and direction of shift) in 

Method 3, may have non-negligible effects on the resulting 𝐷, 𝐶, and 𝐵 values. Some of 

these effects are seen when comparing Figure 2-8 and Figure 2-9 to Figure 2-7. 

 

Figure 2-8 –  Method 1 computation on sand ripple tile 𝐴 from Figure 2-1 with 

𝐿𝑚𝑖𝑛 = 7, 𝐿𝑠𝑡𝑒𝑝 = 2, 𝐿𝑚𝑎𝑥 = 23 
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Figure 2-9 –  Method 1 computation on sand ripple tile 𝐴 from Figure 2-1 with 

𝐿𝑚𝑖𝑛 = 7, 𝐿𝑠𝑡𝑒𝑝 = 2, 𝐿𝑚𝑎𝑥 = 35 

In both of these cases, after changing the 𝐿𝑚𝑖𝑛 or 𝐿𝑚𝑎𝑥 parameters, the resulting 𝐷 

value is higher and 𝐶 value lower than those computed in Figure 2-7. It is also noted that 

𝑁(𝐿) differs slightly in Figure 2-9 for those values of 𝐿𝑤𝑖𝑑𝑡ℎ used also in Figure 2-3 and 

Figure 2-8. Because 𝐿𝑚𝑎𝑥 is larger for the computation in Figure 2-9 than it is for the 

computation shown in the other two figures, the square annulus region illustrated in Figure 

2-1 is then also larger. This changes the 𝑃(𝑚, 𝐿) values used in Equation ( 10) and therefore 

the 𝑁(𝐿) values as well. We find that the most stable results are achieved when the 

parameters are set so that a linear trend is seen in the general case. For example, the point 

in Figure 2-3 corresponding with 𝐿𝑤𝑖𝑑𝑡ℎ = 3 is less in keeping with the linear trend than 

the remaining points. For this reason, in this case, we would set 𝐿𝑚𝑖𝑛 = 7. 

In Method 2, 𝑁(1) will always be equal to the number of pixels in the tile 𝑦 ∗ 𝑥 

and 𝑁(𝑦) will always be equal to 1 when 𝑥 = 𝑦. In our experiments, setting 𝐿𝑚𝑖𝑛 = 1 or 

𝐿𝑚𝑎𝑥 = 𝑦 (or 𝐿𝑚𝑎𝑥 = 𝑥) may change 𝐷 and 𝐶 drastically. In Figure 2-10, the same 
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experiment as that shown in Figure 2-6 is run with 𝐿𝑚𝑖𝑛 instead set to 1. The additional 

point is not in keeping with the linear trend of the other points, pushing the slope 𝐷 of the 

line out of the theoretical range 2 ≤ 𝐷 ≤ 3. 

 

Figure 2-10 – Method 2 computation on sand ripple tile 𝐴 from Figure 2-1 with 

 𝐿𝑚𝑖𝑛 = 1, 𝐿𝑠𝑡𝑒𝑝 = 2, 𝐿𝑚𝑎𝑥 = 23 

In Method 3, 𝑝𝑠𝑡𝑒𝑝 and 𝑝𝑚𝑎𝑥 should be set with some knowledge of the resolution 

of the tiles in the data set. If a high resolution and a low resolution image tile of the same 

texture is analyzed with the same 𝑝 parameters, very different results may be produced, as 

a shift by 𝑡 pixels for a high resolution image won’t have as much of an effect as the same 

pixel shift in the low resolution image. Method 3 also has the property that for repetitive 

textures, such as the sand ripple captured in image tile 𝐴 (Figure 2-1), the standard 

deviation of the pixel differences will begin to decrease again when the repetition is 

encountered. This is shown dramatically in Figure 2-11, where the repetitive texture 

produces points that violate the theoretical linear model. 
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Figure 2-11 – Method 3 computation on the sand ripple tile 𝐴 from Figure 2-1 

with 𝑝𝑚𝑖𝑛 = 1, 𝑝𝑠𝑡𝑒𝑝 = 1, 𝑝𝑚𝑎𝑥 = 30, and the shift direction set to the right 

With a higher 𝑝𝑚𝑎𝑥 value compared to that used in the computation shown in Figure 

2-7, the computation shown in Figure 2-11 allows this repetition to pull the slope of the 

line down, decreasing 𝐻 and increasing 𝐷. For a perfectly repeated surface and with 𝑝𝑚𝑎𝑥 

sufficiently high, 𝐻 would eventually go to 0 and 𝐷 to 3. Allowing the linear fit line to 

deviate so far from the plotted points is likely to produce unstable results. A change in 𝐷 

can also be seen when 𝑝𝑚𝑎𝑥 is fixed but the shift direction is changed, as seen in Figure 

2-12 and Figure 2-13 compared to Figure 2-7. This change is expected given that the sand 

ripple in the image tile runs up and to the right.  This observation shows the effect that 

texture orientation can have on the produced feature values. 
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Figure 2-12 – Method 3 computation on sand ripple tile 𝐴 from Figure 2-1 with 

 𝑝𝑚𝑖𝑛 = 1, 𝑝𝑠𝑡𝑒𝑝 = 1, 𝑝𝑚𝑎𝑥 = 10, and the shift direction set to up 

 

Figure 2-13 –  Method 3 computation on sand ripple tile 𝐴 from Figure 2-1 with  

𝑝𝑚𝑖𝑛 = 1, 𝑝𝑠𝑡𝑒𝑝 = 1, 𝑝𝑚𝑎𝑥 = 10, and the shift direction set to up and to the 

right 

Noting the effects that tweaking the 𝐿 and 𝑝 parameters can have, it is obvious that 

parameters must be kept consistent when extracting features from a set of image tiles. We 

find that setting the parameters so that we obtain points plotted with as linear a trend as 

possible results in the most stable, and generally most desirable, results. 
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2.5. Williams Lacunarity 

While the Keller lacunarity and Voss lacunarity features are computed along with 

𝐷 and 𝐶, the Williams lacunarity feature does not make use of the same computations. 

Williams’s lacunarity, Υ, is simply defined as [14]: 

 
Υ =  

𝜎2

𝜇2
 ( 18 ) 

where 𝜎2 is the variance of the pixel values being evaluated and 𝜇 is the mean of the same 

pixel values. We implement this using a sliding window across the tile and finding the 

mean Υ value across all windows. The size of the sliding window has dimensions 

 𝐿𝑑𝑒𝑝𝑡ℎ x  𝐿𝑤𝑖𝑑𝑡ℎ like the boxes from Method 1 and Method 2. Similar to the other 

lacunarity features, this is done for different window sizes to produce multiple Williams 

lacunarity features. Williams’s definition of lacunarity does not directly match 

Mandelbrot’s [13], but it is a measure of how intensity distribution relates to the window 

size. 
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3. DATA SETUP, EXPERIMENTATION, AND RESULTS 

3.1. Testing on Artificial Surfaces 

To test our three methods of fractal dimension computation, we generated artificial 

surfaces, using an fBm model, for which the fractal dimension was predefined. The code 

[16] used for this purpose generates a different surface each time it is run. We generated 

ten surfaces for each value of 𝐻 ∈ {0.0, 0.1, … , 1.0} to obtain surfaces with  

𝐷 ∈ {3.0, 2.9, … , 2.0}, respectively. We set 𝑦 = 𝑥 = 100 for all surfaces. Examples are 

shown in Figure 3-1, Figure 3-2, and Figure 3-3. 

 

Figure 3-1 – An artificially generated surface with 𝐻 = 1.0 (𝐷 = 2.0) 
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Figure 3-2– An artificially generated surface with 𝐻 = 0.5 (𝐷 = 2.5) 

 

Figure 3-3– An artificially generated surface with 𝐻 = 0.0 (𝐷 = 3.0) 

We determined the 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 values for the entire artificial data set and then 

computed 𝐷 for each of the surfaces using all three methods. After considering the issues 

discussed in section 2.4 and doing some experimentation, we set the parameters as shown 

in Table 3-1. 
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Table 3-1 – Parameters used in experimentation 

 𝐿𝑚𝑖𝑛 𝐿𝑚𝑎𝑥  𝐿𝑠𝑡𝑒𝑝 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥  𝑝𝑠𝑡𝑒𝑝 shift direction 

Method 1 7 31 2     

Method 2 7 23 2     

Method 3    1 10 1 right only 

 

We obtained the following results. 

 

Figure 3-4 – Method 1 computed 𝐷 on 100 artificial surfaces 
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Figure 3-5 – Method 2 computed 𝐷 on 100 artificial surface 

 

Figure 3-6 – Method 3 computed 𝐷 on 100 artificial surfaces 
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Method 3 shows the tightest clustering of computed dimensions per specified 

dimension, perhaps indicating higher reliability. The generating model in this case was, 

after all, an fBm as discussed in Section 2.3. The resulting points for Method 2 have a much 

greater spread at each specified dimension and overall appear to be scaled down from the 

specified dimensions. From these tests on artificial surfaces, and assuming that the artificial 

surfaces do in fact have the specified theoretical fractal dimension, it is clear that none of 

the three methods will always find the theoretical value of 𝐷, or in some cases even be 

close. However, the estimated fractal dimension trend is obvious for all three methods. This 

encourages us to believe that when the same computations are run on real data, the results 

should be separable, at least in the cases of Method 1 and Method 3, and suitable for 

classification. 

3.2. Data Setup 

The real data set used in our experimentation was provided to us by the U.S. Naval 

Surface Warfare Center as part of an Office of Naval Research project. This data is made 

up of SAS imagery of the seafloor in different regions of the world. The dataset is 

comprised of high frequency (HF) and low frequency (LF) imagery with each HF image 

having a corresponding LF image, and vice versa. The dataset includes many different 

background seafloor textures including hard-packed sand, sand ripple, sea grass, rocky 

surface, coral, and more. A single image will typically include between one and three 

different textures. Examples of some of these textures seen in HF images are shown in 

Figure 3-7. 
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Figure 3-7 – Examples of various background textures seen in HF images 
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It is worth noting that, looking at the images shown in Figure 3-7 where the path of 

the vehicle is located on the left-hand side, one can generally see that the further from the 

sensor an image tile is, the more acoustic shadows will be seen. Closer to the vehicle, where 

the sonar signal travels between the seafloor and vehicle at a steeper angle, there is little to 

no occlusion of further surface features by closer surface features. If this has an impact on 

the extracted features, it should be seen when we analyze the effect that the distance from 

the image sensor has on the extracted features as discussed in Section 3.6. 

The corresponding LF images tend to be much grainier with image details being 

more difficult for humans to decipher. For comparison, the same ground areas shown in 

the last two image strips in Figure 3-7 are also shown in Figure 3-8 from the corresponding 

LF images. 

 
Figure 3-8 – Examples of background textures seen in LF images 

Some images also show anomalies considered as targets. Ground truth coordinates 

were used to extract tiles around all anomalies marked as targets, except in the case of a 

few that were too close to the edge of the image to center a tile around. This tile extraction 

gave us 277 pairs of HF and LF target tiles from a variety of different background textures. 

We then created four separate sets of corresponding false alarm tiles. For each pair of target 
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tiles, four different nearby false alarm hits were randomly selected and extracted as tiles. 

Each of these four tiles was added to a distinct set, with each set containing 277 pairs of 

HF and LF tiles when complete. This way, the same amount of different background 

texture types found in the set of target tiles would be included in each set of false alarm 

tiles. In addition, a balanced data set can be created by pairing the set of target tiles with 

any of the four sets of false alarm tiles. The false alarm hits were generated by a 

“combined” Reed-Xiaoli (RX) prescreener described by Galusha et al [17]. We designate 

the false alarm tile sets as “FA Set 0,” “FA Set 1,” “FA Set 2,” and “FA Set 3.” 

It is important to note that the pixels in these images are non-square, and that the 

pixel heights vary slightly between images. Additionally, the LF imagery effectively has 

half the resolution, along the path of the vehicle collecting the data, as compared to the HF 

imagery. The non-square pixels and different image pixel sizes were considered when 

extracting the image tiles. The same seafloor size – 1.5 m x 1.5 m – was used for every 

extracted tile, resulting in slightly different 𝑦 values across the image tiles having pixel 

dimensions 𝑦 x 𝑥. To fix 𝑦 so that we can find 𝐿ℎ𝑚 using Equation (4), we use the mean 

value of 𝑦 from all of the HF tiles in our data set.  

After creating our tile data set, we set the parameters for our experiments to the 

same as those given in Table 3-1. We then extracted the features listed in Table 3-2 from 

each pair of tiles. 
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Table 3-2 – Features extracted from tiles 

1 Method 1, D (slope), HF  7 Method 1, D (slope), LF 

2 Method 1, C (intercept), HF 8 Method 1, C (intercept), LF 

3 Method 2, D (slope), HF 9 Method 2, D (slope), LF 

4 Method 2, C (intercept), HF 10 Method 2, C (intercept), LF 

5 Method 3, D (slope), HF 11 Method 3, D (slope), LF 

6 Method 3, B (intercept), HF 12 Method 3, B (intercept), LF 
  

13 Keller lacunarity, HF, L_width = 07 48 Keller lacunarity, LF, L_width = 07 

14 Keller lacunarity, HF, L_width = 09 49 Keller lacunarity, LF, L_width = 09 

15 Keller lacunarity, HF, L_width = 11 50 Keller lacunarity, LF, L_width = 11 

16 Keller lacunarity, HF, L_width = 13 51 Keller lacunarity, LF, L_width = 13 

17 Keller lacunarity, HF, L_width = 15 52 Keller lacunarity, LF, L_width = 15 

18 Keller lacunarity, HF, L_width = 17 53 Keller lacunarity, LF, L_width = 17 

19 Keller lacunarity, HF, L_width = 19 54 Keller lacunarity, LF, L_width = 19 

20 Keller lacunarity, HF, L_width = 21 55 Keller lacunarity, LF, L_width = 21 

21 Keller lacunarity, HF, L_width = 23 56 Keller lacunarity, LF, L_width = 23 

22 Keller lacunarity, HF, L_width = 25 57 Keller lacunarity, LF, L_width = 25 

23 Keller lacunarity, HF, L_width = 27 58 Keller lacunarity, LF, L_width = 27 

24 Keller lacunarity, HF, L_width = 29 59 Keller lacunarity, LF, L_width = 29 

25 Keller lacunarity, HF, L_width = 31 60 Keller lacunarity, LF, L_width = 31 

26 Voss lacunarity, HF, L_width = 07 61 Voss lacunarity, LF, L_width = 07 

27 Voss lacunarity, HF, L_width = 09 62 Voss lacunarity, LF, L_width = 09 

28 Voss lacunarity, HF, L_width = 11 63 Voss lacunarity, LF, L_width = 11 

29 Voss lacunarity, HF, L_width = 13 64 Voss lacunarity, LF, L_width = 13 

30 Voss lacunarity, HF, L_width = 15 65 Voss lacunarity, LF, L_width = 15 

31 Voss lacunarity, HF, L_width = 17 66 Voss lacunarity, LF, L_width = 17 

32 Voss lacunarity, HF, L_width = 19 67 Voss lacunarity, LF, L_width = 19 

33 Voss lacunarity, HF, L_width = 21 68 Voss lacunarity, LF, L_width = 21 

34 Voss lacunarity, HF, L_width = 23 69 Voss lacunarity, LF, L_width = 23 

35 Voss lacunarity, HF, L_width = 25 70 Voss lacunarity, LF, L_width = 25 

36 Voss lacunarity, HF, L_width = 27 71 Voss lacunarity, LF, L_width = 27 

37 Voss lacunarity, HF, L_width = 29 72 Voss lacunarity, LF, L_width = 29 

38 Voss lacunarity, HF, L_width = 31 73 Voss lacunarity, LF, L_width = 31 

39 Williams lacunarity, HF, L_width = 05 74 Williams lacunarity, LF, L_width = 05 

40 Williams lacunarity, HF, L_width = 07 75 Williams lacunarity, LF, L_width = 07 

41 Williams lacunarity, HF, L_width = 09 76 Williams lacunarity, LF, L_width = 09 

42 Williams lacunarity, HF, L_width = 11 77 Williams lacunarity, LF, L_width = 11 

43 Williams lacunarity, HF, L_width = 13 78 Williams lacunarity, LF, L_width = 13 

44 Williams lacunarity, HF, L_width = 15 79 Williams lacunarity, LF, L_width = 15 

45 Williams lacunarity, HF, L_width = 17 80 Williams lacunarity, LF, L_width = 17 

46 Williams lacunarity, HF, L_width = 19 81 Williams lacunarity, LF, L_width = 19 

47 Williams lacunarity, HF, L_width = 21 82 Williams lacunarity, LF, L_width = 21 
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After computing the features listed in Table 3-2, we are able to create histograms 

of the resulting feature values to compare how separable the features computed on false 

alarm tiles are from the features computed on targets tiles, and to get a sense of how useful 

a particular feature might be in classification. These histograms for features 1-12 extracted 

from the set of target tiles and FA Set 1 are shown in Figure 3-9. 
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Figure 3-9 – Histograms of computed slope and intercept features FA Set 1, 

false alarms vs. targets 
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It is clear that in some cases, such as the 𝐷 values from Method 1, the features 

computed on the false alarm tiles are not very separable from those computed on target 

tiles. However, in other cases, including some of the secondary 𝐶 and 𝐵 features, the values 

computed do appear to be highly separable. While this may seem counterintuitive, Keller 

et al [10] showed that at least for the fBm model, the constant of proportionality is in fact 

related to the fractal dimension, although it will vary with image scale. This is not a 

significant issue for SAS image construction since the vehicle collecting signals is roughly 

the same distance away from each tile of seafloor. It is then reasonable to say that the 

constant of proportionality 𝐶 found in the box counting methods must also be related to the 

fractal dimension. 

Histograms for the remaining 70 lacunarity features listed in Table 3-2 from FA Set 

1 and all 82 features from FA Set 2 and FA Set 3 can be found in Appendix A. 

3.3. Feature Selection 

To test the utility of our extracted features in practice, we did a few simple 

classification tests using MATLAB’s built-in Classification Learner app. After briefly 

testing all of the classifiers found in the app using 10-fold cross validation on our library 

of false alarm and target tiles, we found that the support vector machine (SVM) classifiers 

generally resulted in the highest classification accuracies. We setup fourteen separate 

experiments for comparison, and in each experiment included different features in the 

feature vectors used for classification: All features in this experiment were extracted from 

the set of target tiles and FA Set 0. 
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Table 3-3 – Features included in classification experiment 

Experiment 

Designation 

Features Included in Feature Vector 

(from Table 3.2-1) 

A 1-12 (all excluding lacunarity) 

B 1, 2, 7, 8 (all from Method 1) 

C 3, 4, 9, 10 (all from Method 2) 

D 5, 6, 11, 12 (all from Method 3) 

E 1, 3, 5 (𝐷 from all methods on HF imagery) 

F 7, 9, 11 (𝐷 from all methods on LF imagery) 

G 2, 4, 6 (𝐶 and 𝐵 from all methods on HF imagery) 

H 8, 10, 12 (𝐶 and 𝐵 from all methods on LF imagery) 

I All lacunarity 

J Selected lacunarity 

K 1-12 and selected lacunarity 

L 5, 6, 11, 12 (all from Method 3) and selected lacunarity 

M All Williams lacunarity only 

N 5, 6, 11, 12 (all from Method 3) and 39-47, 74-82 (all of Williams lacunarity) 

 

Experiment N is significant because it includes all features that do not involve the 

more time-consuming computations of Method 1 and Method 2, and can be computed with 

relatively little time. We then ran 10-fold cross validation training and testing runs using 

each of the SVM classifiers, as well as the cubic k-nearest neighbors (KNN) classifier, and 

achieved the classification accuracies given in Table 3-4. 

Table 3-4 – Classification accuracies (given as %) for one trial 

  Experiment Designations (from Table 3.2-2) 

  A B C D E F G H I J K L M N 

C
la
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if
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Linear SVM 94.6 94.6 93.0 94.6 88.8 92.8 91.9 92.6 96.8 96.6 97.8 97.1 92.2 96.4 

Quadratic SVM 95.8 94.4 93.5 94.9 86.8 93.3 92.6 92.6 97.1 96.8 97.3 97.3 94.2 96.4 

Cubic SVM 94.6 92.6 93.0 93.9 88.8 92.4 93.0 92.1 97.1 97.5 97.1 97.1 95.1 96.2 

Fine Gaussian SVM 93.1 92.2 91.9 93.5 89.4 92.8 93.1 92.2 94.9 95.7 91.3 93.9 90.6 93.5 

Medium Gaussian SVM 95.5 94.2 93.3 94.8 87.9 93.5 92.1 93.7 96.8 96.8 97.3 96.4 90.6 95.8 

Coarse Gaussian SVM 94.8 94.8 92.8 94.9 88.1 92.8 91.2 92.6 95.7 95.3 95.7 95.8 88.1 95.3 

Cubic KNN 95.7 93.7 92.8 94.8 88.6 93.9 90.8 92.4 95.8 96.6 96.2 96.2 90.4 96.0 

Average 94.9 93.8 92.9 94.8 88.6 93.9 90.8 92.4 96.3 96.5 96.1 96.3 91.6 95.7 
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It can be seen here that the highest average classification accuracy (highlighted in 

blue) comes from using selected lacunarity only. The selected lacunarity features are those 

fewer lacunarity features that visually separate targets and false alarms well in the 

histograms in Appendix A. Referencing Table 3-2, these are features 13-14, 26-29, 44-47, 

48-49, 61-64, and 77-82. It is notable that this highest classification accuracy is achieved 

using no fractal dimension slope or intercept features, but rather the secondary lacunarity 

features only. This observation lends credence to the idea that lacunarity is just as, or 

perhaps more of, a discriminatory feature as the others. Experiments A through H rely only 

on the twelve slope and intercept features. The highest classification among these comes 

from using all of those twelve features from all three methods while the worst performing 

classification (highlighted in yellow) comes from using only the 𝐷 values from the HF 

imagery. Confusion matrices for these two cases are given in Table 3-5 and Table 3-6. 

Table 3-5 – Confusion matrix for Experiment A (using all features from all three 

methods) and the Quadratic SVM classifier 

True Class 
False Alarm 264 13 

Target 10 267 

 
False Alarm Target 

Predicted Class 

 

Table 3-6 – Confusion matrix for Experiment E (using 𝑫 values from the three methods 

on HF imagery) and the Quadratic SVM classifier  

True Class 
False Alarm 232 45 

Target 28 249 

 
False Alarm Target 

Predicted Class 

 



36 

Importantly, it can also be seen that the Method 3 features (Experiment D) perform 

as good as or better than the Method 1 (Experiment B) and Method 2 (Experiment C) 

features for every tested classifier, and only ~0.1% worse than all three methods combined. 

In addition, for all three methods combined, in the case of the HF imagery, the secondary 

𝐶 and 𝐵 features (Experiment G) gave a higher average classification accuracy than the 

primary 𝐷 feature (Experiment E). This was reversed for the LF imagery. Interestingly, the 

features from the LF imagery gave higher accuracies than those from the HF imagery. 

While these results are encouraging, it is necessary to evaluate these features in region-by-

region cross-validation experiments that test on areas of seafloor with unique textures while 

training exclusively on the remaining textures. This experimentation is discussed in Section 

3.4. 

It is believed that the method used by the MATLAB Classification Learner app for 

cross-validation selects the tiles to include in each fold in a random or pseudo random 

manner each time a classification experiment is run. As a result, a slightly different 

classification accuracy is obtained each time the same experiment is run. For this reason, 

we treat the single-trial results shown in Table 3-4 as indicators only. To test the stability 

of the classification using these classifiers trained and tested on different folds of data, we 

repeat Experiment J and run 30 trials instead of one. We show the average classification 

accuracy and standard deviation for each classifier in Table 3-7. 
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Table 3-7 – Average and standard deviation of classification accuracy across 30 trials for 

different classifiers using selected lacunarity features 

  
Average Classification 

Accuracy 

Standard Deviation of 

Classification Accuracy 

C
la

ss
if
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Linear SVM 94.8% 0.2% 

Quadratic SVM 95.8% 0.5% 

Cubic SVM 97.0% 0.3% 

Fine Gaussian SVM 95.4% 0.4% 

Medium Gaussian SVM 96.9% 0.3% 

Coarse Gaussian SVM 96.5% 0.2% 

Cubic KNN 97.3% 0.4% 

Average 96.2% 0.3% 

 

The first two numerical columns in Table 3-10 show results with the same experimental 

setup instead using the Experiment D (Method 3) features. 

To determine which features should be used in our region-by-region cross-

validation experiment, we do a forward search feature selection to find the combination of 

features that is likely to give the highest classification accuracies when applied in a real-

world setting. 

We set up the forward search as follows using our set of target image tiles balanced 

with the set containing an equal number of false alarm tiles: Using MATLAB’s quadratic 

SVM classifier, we do 10-fold cross-validation using each feature individually. Because of 

MATLAB’s method for selecting the folds, we do five trials for each and average the 

classification accuracies of the trials together. We select the feature resulting in the highest 

average classification accuracy. We then repeat the process but pair the previously selected 

feature with each of the individual features to again find the highest average classification 

accuracy. The process is repeated for the desired number of selected feature – in our case, 

six. Numerical results from this experiment are given in Appendix B. 
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For FA Set 1, the resulting six selected features are those numbered 62, 38, 41, 16, 

43, and 42 in Table 3-2, selected in that order. We designated these as our “Forward Search 

Features.” It is again noted here that all of these features are lacunarity features. A 98.4% 

average classification accuracy was achieved with these six features, higher than any of the 

classification accuracies shown in Table 3-4. When the same forward search experiment 

was instead run with set of target tiles and FA Set 0, the top six features were 63, 37, 18, 

44, 13, and 47 – all very similar features. The same 98.4 % average classification accuracy 

was achieved. 

3.4. Region-by-Region Cross-Validation Experiment 

For a system being deployed to any part of the many oceans and seas covering the 

earth, it cannot be assumed that all textures that the system will encounter will be available 

beforehand for training purposes. Therefore, it is important to test our features by training 

a classifier on some textures and testing on others. Because the data available to us is from 

seven different regions around the world, with each region having characteristic textures, 

we are able to do this by separating our training and testing folds by region. Using our set 

of 277 target image tile pairs and three corresponding sets of false alarm tiles, we train on 

those tiles from six of the seven regions and then test on the seventh. This is done with 

each of the seven regions held out individually. The number of HF target tiles, LF target 

tiles, HF false alarm tiles, and LF false alarm tiles in each respective fold (the total number 

of tiles in each region is four times that given in the table) is given in Table 3-8. 
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Table 3-8 – Number of target and false alarm tile in each region 

Region A 45 

Region B 4 

Region C 33 

Region D 65 

Region E 35 

Region F 50 

Region G 45 

Total 277 

 

We make use of MATLAB’s ‘fitcsvm’, ‘fitPosterior’, and ‘predict’ functions [17] 

[18]. ‘fitcsvm’ takes a specified kernel function as a parameter. We test the ‘Gaussian’ and 

‘linear’ kernel functions with our Forward Search Features. We run three trials for each 

experiment, with the first trial using FA Set 1, the second trial using FA Set 2, and the third 

trial using FA Set 3. We obtain the following ROC curves from the output confidence 

values and show them in the following figures. 

 
Figure 3-10 – ROC using Forward Search Features, Gaussian SVM kernel, and 

FA Set 1 
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Figure 3-11 – ROC using Forward Search Features, Gaussian SVM kernel, and 

FA Set 2 

 
Figure 3-12 – ROC using Forward Search Features, Gaussian SVM kernel, and 

FA Set 3 
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Figure 3-13 – ROC using Forward Search Features, linear SVM kernel, and FA 

Set 1 

 
Figure 3-14 – ROC using Forward Search Features, linear SVM kernel, and FA 

Set 2 
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Figure 3-15 – ROC using Forward Search Features, linear SVM kernel, and FA 

Set 3 

Noting that the Gaussian SVM kernel performs better than the linear kernel, we use 

the Gaussian kernel when evaluating the 12 slope and intercept (and no lacunarity) features 

only, shown in Figure 3-16, Figure 3-17, and Figure 3-18. 
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Figure 3-16 – ROC using slope and intercept features, Gaussian SVM kernel, 

and FA Set 1 

  
Figure 3-17 – ROC using slope and intercept features, Gaussian SVM kernel, 

and FA Set 2 
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Figure 3-18 – ROC using slope and intercept features, Gaussian SVM kernel, 

and FA Set 3 

Figure 3-16, Figure 3-17, and Figure 3-18 indicate that the primary slope and secondary 

intercept features are not as discriminatory as lacunarity in target vs. false alarm 

classification in a setting where not all textures are available for training. 

Finally, we also do an experiment with the “fast” features – the four Method 3 

features and the Williams lacunarity features – shown in Figure 3-19, Figure 3-20, and 

Figure 3-21. 
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Figure 3-19 – ROC using Method 3 and Williams lacunarity features, Gaussian 

SVM kernel, and FA Set 1 

  
Figure 3-20 – ROC using Method 3 and Williams lacunarity features, Gaussian 

SVM kernel, and FA Set 2 
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Figure 3-21 – ROC using Method 3 and Williams lacunarity features, Gaussian 

SVM kernel, and FA Set 3 

We find here that, in some cases, the fast features are able to perform nearly as well as the 

features selected using our forward search experiment. 

 The results are generally encouraging, but one of the most striking observations 

drawn from these plots is the very poor results achieved when Region D is held out of the 

training and is then tested on. Visual inspection shows this region to include rocky textures 

including objects that have target-like appearances. It is also noted that Region D contains 

the highest number of extracted target and false alarm tiles, making up 65 of the 277 

(23.5%) tile pairs in each set. This may indicate that 212 target tile pairs and 212 false 

alarm tile pairs are not sufficient for training. 

We produce aggregate ROC curves with the confidence values of all seven cross-

validation runs in each experiment aggregated and used to create one ROC curve. We show 
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these curves in Figure 3-22, Figure 3-23, and Figure 3-24 with the four different 

experiments plotted together and each set of false alarm tiles used on a separate plot. 

 
Figure 3-22 – Aggregate ROC curves using FA Set 1 
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Figure 3-23 – Aggregate ROC curves using FA Set 2 

 
Figure 3-24 – Aggregate ROC curves using FA Set 3 
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When we remove from the aggregated data the confidence values produced by the 

cross-validation run in which the Region D tiles were held out of the training and used for 

testing, we are able to achieve an increase in the average AUC of ~0.1 for each FA tile set. 

These aggregated ROC curves are shown in Figure 3-25, Figure 3-26, and Figure 3-27. 

 
Figure 3-25 – Aggregate ROC curves with Region D test cross-validation run 

confidence values removed from aggregated data, using FA Set 1 
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Figure 3-26 – Aggregate ROC curves with Region D test cross-validation run 

confidence values removed from aggregated data, using FA Set 2 

  
Figure 3-27 – Aggregate ROC curves with Region D test cross-validation run 

confidence values removed from aggregated data, using FA Set 3 
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It is made clear through this experiment that the Forward Search Features, all being 

lacunarity features, perform significantly better than the other feature ensembles tested. 

3.5. Low-Resolution Feature Image Experiment 

During our experimentation, we quickly realized that the time required to compute 

our features may be a significant hindrance to their usefulness, particularly in image 

segmentation applications or classification tasks with very large numbers of false alarms. 

In the case of a single image having dimensions 5600 px x ~5200 px, to compute all 82 

features on 1.5 m x 1.5 m tiles surrounding each pixel in the image, we would need to 

process 27.4 million HF-LF tile pairs. Our single-threaded un-optimized code takes about 

5.4 seconds to compute all 82 features per tile pair. This equates to 1720 days for a single 

image. Computing only the four Method 3 features requires about 0.09 seconds per tile 

pair, or about 30 days for the whole image. Even with highly optimized code running on 

GPUs, it is likely that completing the necessary computation for segmentation, or for 

classification where there are hundreds of thousands to millions of false alarms to be 

processed, would not be possible in a practical amount of time. 

To solve this problem, we hypothesized that we could dramatically reduce the 

required compute time by dividing our image into a grid of tiles and processing each of 

those, rather than processing a tile around each individual pixel, and essentially creating a 

very low resolution feature image before than scaling it up to the original image size. We 

would then rely on the interpolation used during the scale-up process to determine the 

feature value at each pixel location. 

Due to compute time required to compute the baseline image used for comparison, 

only limited testing was done. We tested with one image comprised entirely of the sand 
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ripple texture. Only the fastest features – Method 3 slope and intercept features on HF and 

LF imagery – are used as a proof-of-concept. We divided the image into 1.5 m x 1.5 m tiles 

as shown in Figure 3-28 to obtain only 1476 pairs of tiles to be processed. 

 
Figure 3-28 – Sand ripple image divided into 1.5 m x 1.5 m tiles 

At 0.09 sec/tile pair for the four Method 3 features, we can compute our low-

resolution feature image in 2.2 minutes. To produce a baseline image for comparison, we 

use a sliding 1.5 m x 1.5 m tile, stopping at every fourth pixel across and down, and 

computing the Method 3 features for each tile pair centered around the pixel at which we 

stopped. Both the grid-tile-feature image and sliding-tile-feature image are then scaled up 

to the original image size. We then find the error between these two images, as shown in 

the following figures. Note that the color axis has a different scale in each figure. 
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Figure 3-29 – Image of percent error between low-resolution feature image and 

sliding tile feature image for Method 3 HF slope feature,  

mean error is 0.77%, std of error is 0.65% 

  
Figure 3-30 – Image of percent error between low-resolution feature image and 

sliding tile feature image for Method 3 HF intercept feature,  

mean error is 2.31%, std of error is 1.98% 
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Figure 3-31 – Image of percent error between low-resolution feature image and 

sliding tile feature image for Method 3 LF slope feature,  

mean error is 0.30%, std of error is 0.34% 

  
Figure 3-32 – Image of percent error between low-resolution feature image and 

sliding tile feature image for Method 3 LF intercept feature,  

mean error is 0.95%, std of error is 0.95% 
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It is observed that the regions with high error correspond with regions of shadow 

in the original image. If these regions were suppressed, it may be more obvious that much 

of the remaining error is near 0%. Similar results are achieved using 0.5 m x 0.5 m tiles, 

though these error images contain spikes much higher than 9% or 18%. Still, most of the 

error shown in those images is near 0%. The error images for the 0.5 m x 0.5 m tiles can 

be found in Appendix C. We summarize the data in Table 3-9. 

Table 3-9 – Statistics from error images computed for interpolated Method 3 features 

 Tile Size 

 0.5 m x 0.5 m 1.5 m x 1.5 m 

feature mean std mean std 

Method 3, D (slope), HF 1.94% 1.93% 0.77% 0.65% 

Method 3, B (intercept), HF 4.78% 4.72% 2.31% 1.98% 

Method 3, D (slope), LF 0.76% 0.74% 0.30% 0.34% 

Method 3, B (intercept), HF 1.96% 1.82% 0.95% 0.95% 

 

While these results are encouraging, cross-validation experiments using features 

extracted by this method should be done to prove the worth of the method. To take a step 

in that direction, we do another 10-fold cross validation experiment using the MATLAB 

Classification Learner app and the same seven classifiers used previously. The folds in this 

experiment are not region-based. We create a set of the four Method 3 features extracted 

from our set of 277 target image tile pairs and FA Set 1. We then interpolate the same 

features using the method described in this section for the same hit coordinates around 

which the target tiles and tiles in FA Set 1 are centered. We compare the classification 

results across 30 trials between the image tile features and the interpolated features. Our 

classification accuracy averages and standard deviations are given in Table 3-10. 
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Table 3-10 – Comparison of average classification accuracies over 30 trials, using 

Method 3 features directly extracted from tiles vs. interpolated Method 3 featuers 

  Tile Features Interpolated Features  

  

Average 

Classification 

Accuracy 

Standard 

Deviation of 

Classification 

Accuracy 

Average 

Classification 

Accuracy 

Standard 

Deviation of 

Classification 

Accuracy 

Average 

Classification 

Accuracy 

Difference 
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Linear SVM 95.3% 0.2% 88.3% 0.3% 7.0% 

Quadratic SVM 95.3% 0.3% 89.0% 0.5% 6.3% 

Cubic SVM 94.0% 0.5% 87.6% 0.6% 6.4% 

Fine Gaussian SVM 94.8% 0.3% 86.8% 0.6% 8.0% 

Medium Gaussian SVM 95.3% 0.3% 87.8% 0.4% 7.5% 

Coarse Gaussian SVM 95.4% 0.2% 89.4% 0.3% 6.0% 

Cubic KNN 95.3% 0.4% 89.0% 0.4% 6.3% 

Average 95.1% 0.3% 88.3% 0.4% 6.8% 

 

Again, these results show promise, but it is clear that in some cases there may be a 

significant loss in classification accuracy when using interpolated features. Further 

development is needed and more testing should be done with other tile sizes and features. 

3.6. Distance from Sensor Experiment 

As discussed in Section 1, we hypothesized that because the scale of the texture 

changes with distance from the SAS image sensor’s point of view, the constant of 

proportionality, i.e. the 𝐶 and 𝐵 secondary intercept features from the three methods of 

fractal dimension computation, should increase with distance while the 𝐷 primary slope 

feature should remain constant. To test this hypothesis, we used the same image tiles shown 

in Figure 3-28, compute the 12 slope and intercept features on the tiles, bin the features by 

the distance of their corresponding tile from the sensor, and find the mean and standard 

deviation of each bin. We then plot those values vs. the distance from the sensor, given in 

Figure 3-33 and Figure 3-34. 
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Figure 3-33 – Mean and standard deviation vs. distance from the sensor for the 

six slope features 
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Figure 3-34 – Mean and standard deviation vs. distance from the sensor for the 

six intercept features 

In Table 3-11, we summarize the data by tabulating the slopes of the best fit line for the 

mean values of the slope features, and the slopes of the best fit line for the mean value of 

the intercept features. 
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Table 3-11 – Slopes of best fit lines for mean values of slope and intercept features 

 

slope of best fit line 

for slope means 

slope of best fit line 

for intercept means 

Method 1 HF -3.08e-05 1.22e-04 

Method 2 HF 1.86e-05 -4.43e-07 

Method 3 HF 4.15e-06 4.71e-05 

Method 1 LF 1.16e-05 1.45e-05 

Method 2 LF 2.22e-05 -1.20e-05 

Method 3 LF 1.39e-05 3.12e-05 

 

It appears that our hypothesis holds true for the Method 3 HF slope and intercept 

features, where the slope of the best fit line for the intercept feature mean values is an order 

of magnitude greater than that for the slope feature mean values. However, some of the 

other features do not lend support to the hypothesis, or even show declining intercept values 

from left to right across the image while the slope values increase. It is also recognized that 

the slope of the best fit line for the mean values many not be the best method of quantitative 

measurement, particularly for the intercept features, many of which have very nonlinear 

trends and in fact have mean values increasing towards the right hand side of the image – 

further away from the SAS image sensor. 
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4. CONCLUSION AND FUTURE WORK 

In this thesis, we investigated the use of fractal dimension and related features in 

SAS target detection. It is shown that almost all of the features – the fractal dimension 𝐷, 

the y-intercepts 𝐶 and 𝐵, and the lacunarity features – extracted from our SAS image tiles 

have some potential to perform well in classification tasks, and by extension, possibly in 

image segmentation applications also. However, the potential of the lacunarity features 

clearly dominates the potential of the primary fractal dimension slope features and the 

secondary intercept features. The fact that the Method 3 features appear to be essentially 

just as useful in initial classification testing as all of the slope and intercept features 

combined is very advantageous due to of the much lower compute time required for the 

Method 3 features alone. 

Our results could be improved upon by continuing to analyze and experiment with 

the many parameters of the methods used and the characteristics of the experimental setup. 

By tweaking the values used to set the box size in Method 1 and Method 2, the shift distance 

and direction in Method 3, the window size used for the Williams lacunarity features, the 

size of the tiles centered around the targets and false alarms, and more, any number of 

feature sets could be produced for each image tile. Some sort of parameter selection study 

would help to address the concerns discussed in Section 2.4. 

Further experimentation with different classifiers and their respective threshold 

levels would also be prudent. It is possible that the forward search algorithm could be 

improved by guiding the search with computed correlation values between features. 

The region-by-region cross-validation should be run on a full set of data, rather than 

small balanced data sets. While we used balanced data sets of 277 target tile pairs and 277 
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false alarm target pairs, our data set includes ~1.35e6 false alarms. RUSBoost [19] should 

be investigated as a classifier able to deal with such unbalanced data. 

To further show the usefulness of the features investigated here, optimized code 

should be developed that can be applied to GPU devices. Because of the “single instruction, 

multiple data” (SIMD) nature of our computation, these features are great candidates for 

GPU implementation. 

Lastly, our features should be compared in forward search and cross-validation 

experiments to features that are already widely used in classification. Without such a 

comparison, it is difficult to say what contribution the fractal dimension and related 

features would make in a mixed feature ensemble.  
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APPENDIX A 

As discussed in Section 3.2, this appendix contains additional histograms showing 

the features listed in Table 3-2 and computed on the set of target tiles and the three sets of 

false alarm tiles. 
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Figure A-1 – Histograms of twelve slope and intercept features from target tiles 

and tiles in FA Set 2 
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Figure A-2 – Histograms of twelve slope and intercept features from target tiles 

and tiles in FA Set 3 
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Figure A-3 – Histograms of computed Keller lacunarity features on HF imagery 

target tiles and tiles in FA Set 1 
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Figure A-4 – Histograms of computed Keller lacunarity features on HF imagery 

target tiles and tiles in FA Set 2 
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Figure A-5 – Histograms of computed Keller lacunarity features on HF imagery 

target tiles and tiles in FA Set 3 
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Figure A-6 – Histograms of computed Keller lacunarity features on LF imagery 

target tiles and tiles in FA Set 1  
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Figure A-7 – Histograms of computed Keller lacunarity features on LF imagery 

target tiles and tiles in FA Set 2  
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Figure A-8 – Histograms of computed Keller lacunarity features on LF imagery 

target tiles and tiles in FA Set 3 
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Figure A-9 – Histograms of computed Voss lacunarity features on HF imagery 

target tiles and tiles in FA Set 1 
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Figure A-10 – Histograms of computed Voss lacunarity features on HF imagery 

target tiles and tiles in FA Set 2 
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Figure A-11 – Histograms of computed Voss lacunarity features on HF imagery 

target tiles and tiles in FA Set 3 
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Figure A-12 – Histograms of computed Voss lacunarity features on LF imagery 

target tiles and tiles in FA Set 1 
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Figure A-13 – Histograms of computed Voss lacunarity features on LF imagery 

target tiles and tiles in FA Set 2 
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Figure A-14 – Histograms of computed Voss lacunarity features on LF imagery 

target tiles and tiles in FA Set 3 
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Figure A-15 – Histograms of computed Williams lacunarity features on HF 

target tiles and tiles imagery in FA Set 1 
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Figure A-16 – Histograms of computed Williams lacunarity features on HF 

target tiles and tiles imagery in FA Set 2 
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Figure A-17 – Histograms of computed Williams lacunarity features on HF 

target tiles and tiles imagery in FA Set 3 
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Figure A-18 – Histograms of computed Williams lacunarity features on LF 

target tiles and tiles imagery in FA Set 1 
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Figure A-19 – Histograms of computed Williams lacunarity features on LF 

target tiles and tiles imagery in FA Set 2 
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Figure A-20 – Histograms of computed Williams lacunarity features on LF 

target tiles and tiles imagery in FA Set 3  
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APPENDIX B 

Our Forward search results are shown in Table B-1. The process to obtain these is 

explained in Section 3.3. Each column is colored independently with highest average 

classification accuracy in yellow, and second highest in bright green to the lowest in bright 

red. For the first column, each feature is used independently to determine its corresponding 

classification accuracy. The feature corresponding with the highest accuracy is selected. 

For each subsequent column, each feature is grouped separately with the previously 

selected feature(s) and those groups are used to compute the values for the current column. 

After each column of values is computed, the feature corresponding with the highest value 

is selected and added to the ensemble of selected features. 

Table B-1 – Forward search results 

1 Meth 1 slope HF 49.13% 95.74% 97.33% 97.94% 97.87% 97.51% 

2 Meth 1 inter HF 71.95% 96.07% 97.40% 97.83% 97.98% 97.83% 

3 Meth 2 slope HF 57.11% 96.46% 97.76% 97.80% 97.73% 97.58% 

4 Meth 2 inter HF 51.77% 95.78% 97.87% 98.12% 98.01% 97.91% 

5 Meth 3 slope HF 61.44% 96.14% 97.91% 98.05% 98.12% 98.01% 

6 Meth 3 inter HF 90.40% 96.43% 96.79% 97.69% 97.87% 97.87% 

7 Meth 1 slope LF 49.96% 96.10% 97.04% 97.91% 97.62% 97.91% 

8 Meth 1 inter LF 51.55% 96.10% 97.08% 97.91% 97.83% 97.76% 

9 Meth 2 slope LF 50.25% 95.78% 97.11% 97.55% 97.62% 97.83% 

10 Meth 2 inter LF 62.67% 95.74% 97.15% 97.73% 97.87% 97.94% 

11 Meth 3 slope LF 66.25% 95.78% 97.47% 98.34% 97.94% 98.09% 

12 Meth 3 inter LF 92.24% 95.88% 97.33% 97.83% 97.91% 98.05% 

13 Keller Lac HF, L_width = 07 81.23% 96.21% 97.98% 98.05% 98.12% 98.16% 

14 Keller Lac HF, L_width = 09 79.96% 96.28% 97.51% 98.27% 98.16% 98.27% 

15 Keller Lac HF, L_width = 11 87.04% 96.14% 97.65% 98.20% 98.20% 98.05% 

16 Keller Lac HF, L_width = 13 88.81% 96.53% 97.08% 98.41% 98.01% 98.05% 

17 Keller Lac HF, L_width = 15 88.52% 96.68% 97.40% 98.23% 98.05% 98.34% 

18 Keller Lac HF, L_width = 17 90.40% 96.68% 97.58% 98.09% 98.30% 98.27% 

19 Keller Lac HF, L_width = 19 87.26% 96.53% 97.37% 98.09% 97.83% 98.09% 

20 Keller Lac HF, L_width = 21 90.79% 96.50% 97.51% 97.73% 98.09% 98.09% 

21 Keller Lac HF, L_width = 23 90.00% 96.86% 97.33% 98.12% 97.80% 98.05% 

22 Keller Lac HF, L_width = 25 91.01% 97.04% 97.44% 98.12% 97.83% 98.09% 
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23 Keller Lac HF, L_width = 27 89.57% 96.93% 97.37% 97.94% 98.12% 98.05% 

24 Keller Lac HF, L_width = 29 91.30% 96.79% 97.18% 97.80% 97.98% 97.98% 

25 Keller Lac HF, L_width = 31 91.77% 97.04% 97.33% 97.65% 98.20% 98.01% 

26 Voss Lac HF, L_width = 07 90.72% 97.08% 97.22% 97.98% 97.98% 98.09% 

27 Voss Lac HF, L_width = 09 90.98% 96.72% 97.37% 98.01% 97.91% 97.91% 

28 Voss Lac HF, L_width = 11 91.05% 97.04% 97.51% 97.98% 97.94% 98.16% 

29 Voss Lac HF, L_width = 13 91.48% 97.11% 97.04% 98.05% 97.91% 98.16% 

30 Voss Lac HF, L_width = 15 91.30% 96.97% 97.26% 97.83% 98.30% 97.91% 

31 Voss Lac HF, L_width = 17 91.19% 97.04% 97.44% 97.76% 98.01% 97.98% 

32 Voss Lac HF, L_width = 19 90.98% 97.22% 97.58% 97.58% 97.91% 97.98% 

33 Voss Lac HF, L_width = 21 91.05% 97.15% 97.40% 97.91% 97.98% 98.12% 

34 Voss Lac HF, L_width = 23 91.30% 97.26% 97.26% 97.83% 98.16% 98.20% 

35 Voss Lac HF, L_width = 25 91.44% 97.40% 97.37% 97.58% 98.01% 98.30% 

36 Voss Lac HF, L_width = 27 91.66% 97.40% 97.37% 97.80% 97.94% 98.20% 

37 Voss Lac HF, L_width = 29 91.59% 97.47% 97.33% 97.76% 98.09% 98.23% 

38 Voss Lac HF, L_width = 31 91.59% 97.51% 97.29% 98.01% 98.09% 98.27% 

39 Williams Lac HF, L_width = 05 43.18% 96.14% 97.62% 97.69% 97.80% 98.09% 

40 Williams Lac HF, L_width = 07 47.22% 96.28% 97.76% 98.27% 98.09% 97.80% 

41 Williams Lac HF, L_width = 09 53.72% 96.43% 98.27% 98.20% 98.30% 98.27% 

42 Williams Lac HF, L_width = 11 52.31% 96.28% 98.01% 98.20% 98.30% 98.38% 

43 Williams Lac HF, L_width = 13 51.16% 95.99% 98.16% 97.94% 98.38% 98.20% 

44 Williams Lac HF, L_width = 15 56.82% 95.96% 98.12% 97.94% 98.34% 98.16% 

45 Williams Lac HF, L_width = 17 60.00% 95.70% 97.98% 98.05% 97.91% 98.20% 

46 Williams Lac HF, L_width = 19 52.56% 95.88% 97.83% 98.05% 97.98% 98.05% 

47 Williams Lac HF, L_width = 21 57.91% 95.63% 97.87% 98.01% 98.09% 98.12% 

48 Keller Lac LF, L_width = 07 90.04% 95.52% 97.26% 97.87% 97.55% 97.98% 

49 Keller Lac LF, L_width = 09 89.60% 95.78% 97.51% 98.09% 98.01% 97.87% 

50 Keller Lac LF, L_width = 11 91.34% 95.88% 97.29% 97.91% 97.83% 97.91% 

51 Keller Lac LF, L_width = 13 92.02% 95.60% 97.33% 97.83% 97.69% 98.12% 

52 Keller Lac LF, L_width = 15 91.84% 96.21% 97.44% 97.80% 97.80% 98.12% 

53 Keller Lac LF, L_width = 17 92.02% 95.78% 97.22% 97.94% 97.98% 98.20% 

54 Keller Lac LF, L_width = 19 92.27% 96.14% 97.33% 98.09% 97.98% 97.69% 

55 Keller Lac LF, L_width = 21 92.89% 95.92% 97.55% 98.30% 97.76% 98.12% 

56 Keller Lac LF, L_width = 23 92.96% 96.25% 97.33% 98.20% 97.87% 98.12% 

57 Keller Lac LF, L_width = 25 93.86% 96.07% 97.15% 97.83% 97.87% 97.98% 

58 Keller Lac LF, L_width = 27 93.97% 96.10% 97.51% 97.87% 97.80% 97.87% 

59 Keller Lac LF, L_width = 29 93.94% 96.03% 97.51% 97.94% 97.83% 97.98% 

60 Keller Lac LF, L_width = 31 93.54% 96.03% 97.40% 98.01% 98.16% 98.20% 

61 Voss Lac LF, L_width = 07 95.92% 95.67% 97.62% 97.94% 97.98% 97.83% 

62 Voss Lac LF, L_width = 09 96.10% 95.92% 97.76% 98.01% 97.98% 98.05% 

63 Voss Lac LF, L_width = 11 96.07% 95.96% 97.55% 97.94% 97.94% 98.27% 

64 Voss Lac LF, L_width = 13 95.74% 95.88% 97.44% 97.98% 97.80% 98.27% 
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65 Voss Lac LF, L_width = 15 95.56% 96.07% 97.55% 97.80% 98.12% 98.05% 

66 Voss Lac LF, L_width = 17 95.31% 96.03% 97.47% 97.94% 98.01% 97.94% 

67 Voss Lac LF, L_width = 19 95.13% 95.96% 97.58% 97.87% 97.87% 98.30% 

68 Voss Lac LF, L_width = 21 94.95% 95.96% 97.51% 97.69% 97.91% 97.94% 

69 Voss Lac LF, L_width = 23 94.87% 96.17% 97.26% 97.94% 97.94% 98.01% 

70 Voss Lac LF, L_width = 25 95.13% 96.03% 97.33% 97.87% 98.01% 97.94% 

71 Voss Lac LF, L_width = 27 94.98% 95.96% 97.29% 97.98% 97.73% 98.09% 

72 Voss Lac LF, L_width = 29 95.20% 96.07% 97.29% 98.05% 98.01% 97.87% 

73 Voss Lac LF, L_width = 31 95.31% 96.10% 97.47% 97.87% 98.16% 97.94% 

74 Williams Lac LF, L_width = 05 51.70% 95.09% 97.04% 97.40% 97.62% 97.65% 

75 Williams Lac LF, L_width = 07 48.70% 95.99% 97.47% 97.73% 97.65% 97.62% 

76 Williams Lac LF, L_width = 09 52.89% 95.81% 97.15% 97.62% 97.69% 97.55% 

77 Williams Lac LF, L_width = 11 62.17% 95.85% 97.11% 97.62% 97.76% 97.65% 

78 Williams Lac LF, L_width = 13 68.92% 95.96% 97.15% 98.16% 97.65% 97.65% 

79 Williams Lac LF, L_width = 15 77.15% 95.67% 97.37% 97.80% 97.51% 97.69% 

80 Williams Lac LF, L_width = 17 73.32% 95.81% 97.18% 97.87% 97.76% 97.83% 

81 Williams Lac LF, L_width = 19 76.75% 95.27% 97.18% 97.83% 97.80% 97.65% 

82 Williams Lac LF, L_width = 21 78.45% 95.34% 97.26% 97.69% 97.76% 97.76% 

Highest average classification accuracy 

achieved 
96.1% 97.5% 98.3% 98.4% 98.4% 98.4% 

Selected feature 62 38 41 16 43 42 
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APPENDIX C 

As discussed in Section 3.5, this appendix contains additional images showing the 

error between the Method 3 features computed using a sliding window and those features 

computed using interpolation from a much lower resolution feature image. 

   
Figure C-1  – Image of percent error between low-resolution feature image and 

sliding tile feature image for Method 3 HF slope feature,  

mean error is 1.94%, std of error is 1.93% 
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Figure C-2 – Image of percent error between low-resolution feature image and 

sliding tile feature image for Method 3 HF intercept feature,  

mean error is 4.78%, std of error is 4.72% 

  
Figure C-3 – Image of percent error between low-resolution feature image and 

sliding tile feature image for Method 3 LF slope feature,  

mean error is 0.76%, std of error is 0.74% 
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Figure C-4 – Image of percent error between low-resolution feature image and 

sliding tile feature image for Method 3 LF intercept feature,  

mean error is 1.96%, std of error is 1.82% 
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