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ABSTRACT

The objective of this study was to investigate whether dispersal ability, as measured by a
proxy of hand-wing index, influenced diversification of the birds of Madagascar at two scales.
Madagascar is home to several avian lineages that have diversified greatly while other lineages
are only represented by a single species. A key question in evolutionary biology is why some of
these lineages diversified while others did not. One way to address this is to examine what
features of these lineages promoted their diversification. Recent studies have focused on the
relative importance of dispersal ability to diversification at the continental and island scales. To
further test this relationship, I investigated whether dispersal ability, as measured by hand-wing
index, influenced diversification in the birds of Madagascar at a large regional scale and smaller
local scale within Madagascar. To assess whether dispersal ability influenced diversification of
the birds of Madagascar I compared hand-wing index of Malagasy and source (closest non-
Malagasy relatives) clades of five radiating and three non-radiating lineages. I treated each
lineage as an independent case study with the goals of identifying a pattern reflecting a shift in
dispersal ability upon colonization of Madagascar in radiating lineages. At a smaller local scale
of macrohabitats within Madagascar, I examined whether variation in dispersal ability (HWT)
within widespread Malagasy species differed between subspecies restricted to macrohabitats
reflecting local adaptation and divergence across macrohabitats. My study found that Malagasy
species did not shift in their dispersal ability after colonizing Madagascar and thus, dispersal

ability is not critical to the diversification of Malagasy endemics from their source
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clade in radiating or non-radiating lineages. However, at a scale of Malagasy macrohabitats, |
found variation in dispersal ability was likely due to local adaptations to macrohabitats. This
study adds to our knowledge of dispersal ability and diversification patterns in Malagasy
avifauna. This is a leading step towards additional studies to investigate the impact of potential
geographic barriers to dispersal ability in the birds of Madagascar and provides further insights

into diversification patterns.
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CHAPTER 1
INTRODUCTION

A key question in evolutionary biology is why some lineages diversify while others do
not. One way to address this is to examine what features of these lineages promotes their
diversification. Recent studies have focused on the relative importance of dispersal ability in the
evolutionary processes of speciation and diversification at the continental and island scales
(Claramunt et al., 2012; Weeks and Claramunt, 2014; Kennedy et al., 2016; White 2016).
Dispersal can stimulate speciation and diversification by allowing species to overcome barriers
and expand geographically or colonize new regions. It can also inhibit speciation by maintaining
gene flow between populations (Claramunt et al., 2012). Here, I define dispersal as the
movement of an organism across an already existing geographic barrier. Dispersal ability is a
quantitative measure of an organism’s potential capability to overcome a geographical barrier.

Dispersal ability and its impact on diversification varies greatly across taxa. Birds,
compared to other tetrapods, are generally considered to be better at dispersal due to their ability
to fly but even some birds can be limited in their dispersal ability (Adler et al., 1995; Moore et
al., 2008; Kisel and Barraclough, 2010; Pigot and Tobias, 2015; Kennedy et al., 2016). Several
recent avian studies have found negative or no relationships between dispersal ability and
diversification rates (Claramunt et al., 2012; Weeks and Claramunt, 2014; Kennedy et al., 2016).
Claramunt et al. (2012) found a negative relationship between dispersal and diversification rates

in Furnariidae (woodcreepers). Similarly, Weeks and Claramunt (2014)



found dispersal had a negative relationship with diversification in an Australasian archipelago
study of avifauna. In these examples of continental and island groups the negative relationship
between dispersal ability and diversification means higher dispersal ability leads to lower
diversification. Over the past century scientists have devised numerous ways to study dispersal
ability.

Quantifying avian dispersal directly is difficult, therefore indirect methods have been
developed. Approaches such as tracking organisms using radiotelemetry and satellite or mark-
recapture studies can be costly and time-consuming to obtain adequate samples (van Noordwijk
1984; Martin et al., 2008; Dawideit et al., 2009) and hard to implement for a wide array of
species. A simple yet reliable way to study and quantify dispersal ability is to use measurements
of wing shape taken from closed-wing museum skin specimens to create a hand-wing index
(Kipp 1959; Claramunt et al., 2012; Weeks and Claramunt, 2014; Kennedy et al. 2016; White
2016). The hand-wing index is a simple index of aspect ratio, a proxy of long-distance flight
performance and wing shape (Kipp 1959; Lockwood et al., 1998; Claramunt and Wright, 2017).
The hand-wing index has been used in previous avian studies for investigating population
structure and diversification in Borneo, the relationship between dispersal ability and
diversification rates in a South American continental radiation of Furnariidae and the avifauna of
Australasian archipelagoes, range expansions, habitat preferences, foraging stratum, and
migratory behavior (Chua et al., 2017; Claramunt et al., 2012; Weeks and Claramunt, 2014;
Vanhooydonck et al., 2009; White 2016; Kennedy et al., 2016). To further test whether there is a
relationship between dispersal ability and diversification, I used the hand-wing index as a proxy

for dispersal ability to compare island and continental radiations of birds.



Dispersal ability and diversification

In order to colonize new habitats, islands, or regions animals frequently must overcome
geographical barriers which requires enough dispersal ability. Dispersal differs from migration,
which is the reoccurring two-way movement of an organism between its wintering and breeding
site. Dispersal can be split into two types - range expansion (also referred to as dispersion or
diffusion) and long-distance (jump) dispersal. Range expansion is defined as a particular
population expanding at the edges of its’ geographic range as previously limiting barriers
disappear. In contrast, long-distance dispersal is when a small group of individuals move to a
new location that is a considerable distance away from the edge of a species range (Wilkinson
2017). The former usually occurs in the absence or disappearance of a barrier, while the latter
requires overcoming an otherwise natural barrier. For example, birds that reached Madagascar
from Africa or India overcame oceanic barriers to reach this island (Prum 1993; Yamagishi et al.,
2001; Kirchman et al., 2001; Groombridge et al., 2002; Warren et al., 2003, 2005; Beresford et
al., 2005; Marks and Willard, 2005; Yoder and Nowak, 2006).

Dispersal ability can have positive and negative effects on diversification. High dispersal
ability can have a positive effect on diversification by promoting the opportunity to colonize a
new area such as a remote island and thus providing speciation opportunities such as founder
event speciation or ecological speciation when exposed to new habitats, foraging niches, and
changes in selective pressures; however, high dispersal ability across islands can also result in
few effective geographical barriers so gene flow is high between populations, therefore
decreasing the chance for speciation due to a lack of reproductive isolation (Claramunt et al.,

2012; Weeks and Claramunt, 2014). Low dispersal ability results in difficulty overcoming



geographical barriers such as oceans and channels, therefore decreasing the chance of
successfully colonizing a new area such as an island and in turn, the opportunity for geographical
speciation; low dispersal ability may also promote diversification by limiting gene flow between
geographically separated populations aiding reproductive isolation (Claramunt et al., 2012;
Weeks and Claramunt, 2014; Kennedy et al., 2016). The intermediate dispersal model predicts
that lineages with intermediate dispersal ability will have an ideal mixture of geographical range
expansion and reproductive isolation that results in high speciation rates (Fig. 1; Claramunt et al.,

2012; Weeks and Claramunt, 2014; Kennedy et al., 2016).

barriers: insurmountable abundant ineffective

distribution: Q
O@

speciation rate

dispersal ability

Figure 1. Intermediate dispersal model. According to this model, lineages with low dispersal
ability are unable to overcome barriers and remain restricted to small areas so their speciation
rates are low. Any lineage possessing intermediate dispersal ability may overcome geographic
barriers and have higher rates of speciation in these new isolated areas. Those lineages
possessing high dispersal abilities are easily able to overcome geographic barriers, so their gene
flow remains high in their large distribution and therefore decreases their speciation rates
(reproduced from Claramunt et al., 2012, Figure 1).



Island biogeography and island syndromes

In order to establish a population on an island, a bird must have enough dispersal ability
to colonize via over-water dispersal; this is a first step leading to the production of endemic
biodiversity via allopatric speciation (Cowie & Holland, 2006). Subsequent dispersal into
subregions, or distinct large habitats, can lead to further allopatric speciation and the transitions
into these distinct subregions may stimulate local adaptive divergence (Fine et al., 2014; Warren
et al., 2014; Schenk and Steppan, 2018). The general belief is that older continental land masses,
such as Africa or Asia, are the source of colonizing lineages to younger islands, also known as
the island progression rule (Whittaker et al., 2017). Island species-area relationships are noted for
having an increasing number of species as island size increases (Whittaker et al., 2017). Larger
islands tend to have a higher number of endemic species in part due to their ability to support in
situ diversification resulting from a combination of evolutionary processes and opportunities
(MacArthur and Wilson, 1967; Whittaker et al., 2017). Another general belief is the more
isolated an island is the less likely lineages are able to reach it so there is a negative relationship
between isolation and species richness (MacArthur and Wilson, 1967). Species fortunate enough
to successfully colonize islands with available resources and/or open niches have greater
potential to diversify in situ (Losos and Ricklefs, 2009).

The removal and/or addition of selection pressures on islands can have evolutionary
implications. After successful colonization of an island, organisms are typically exposed to
differing abiotic and biotic conditions that may lead to changes in morphology, behavior, and
ecology; these changes in colonizing lineages are referred to as island syndromes (Adler and

Levins, 1994; Whittaker and Fernandez-Palacios, 2007; Novosolov et al., 2013; Patino et al.,



2017). Several notable syndromes have been documented in birds after they have colonized
islands. Island birds exhibit trends of evolving flightlessness or reduced dispersal ability,
inability to recognize predators, and changes in body size (Roff, 1994; Brown and Lomolino,
1998; Losos and Ricklefs, 2009; Lomolino et al., 2013; Wright et al., 2016; Kennedy et al.,
2016). Reduction in dispersal ability or evolution towards flightlessness has been suggested to be
the result of release from selection pressures such as predation and the high energetic costs
required to fly (Wright et al., 2016; Kennedy et al., 2016). Little is known about the changes in
the Madagascar endemic birds and their in situ dispersal and radiation.

Avian colonization of Madagascar

Madagascar provides a unique model for studying island biogeography and in situ
diversification due to its temporal and geographical isolation. Madagascar is one of the largest
islands in the world at 587,000 square kilometers. Madagascar has had no connections to another
landmass for over 80 million years (Vences et al. 2009) when it was last connected to India.
Madagascar and India are now geographically separated by 3,769 kilometers of ocean (Safford
and Hawkins, 2013). Madagascar has been geographically isolated from continental Africa for
the past 158 million years by the 300-kilometer-wide barrier called the Mozambique Channel
(Vences et al., 2009).

These daunting barriers have made colonizing Madagascar rare for most fauna. For
example, only five mammalian lineages - lemurs, rodents, tenrecs, carnivores, bats - have
successfully colonized the isolated island. Alternatively, many independent lineages of birds
have colonized Madagascar (Yoder et al., 1996; Yoder et al., 2003; Olson and Goodman, 2003;

Poux et al., 2005; Russell et al., 2007; see Fig. 4). This is not surprising since birds are volant,



however, not all birds are capable of dispersing across these barriers due to variation in their
dispersal ability. This is reflected in the fact that not all African lineages are represented in
Madagascar.

Due to Madagascar’s long history of geographical and temporal isolation, modern birds
have colonized Madagascar via over water dispersal (Prum 1993; Yamagishi et al., 2001,
Kirchman et al., 2001; Groombridge et al., 2002; Warren et al., 2003, 2005; Beresford et al.,
2005; Marks and Willard, 2005; Yoder and Nowak, 2006). It has been commonly assumed that
species colonize islands from the nearest continental source, however, this is not always the case.
The stepping-stone island theory has been proposed to explain lineages with closer affinities to
Asia than Africa. This theory suggests that birds from Asia dispersed across the Indian Ocean
during times of low sea level that caused stepping-stone islands to emerge (Warren et al., 2010).
Another theory is that birds dispersed across the Mozambique Channel from Africa. The deep
Mozambique Channel supports the consensus that a majority of Madagascar’s endemic lineages
with African origins were the result of over-water dispersal (Prum 1993; Yamagishi et al., 2001;
Kirchman et al., 2001; Groombridge et al., 2002; Warren et al., 2003, 2005; Beresford et al.,

2005; Marks and Willard, 2005; Yoder and Nowak, 2006) and not any purported land-bridge.



Figure 2. Visual representations of the distance between Asia and Madagascar (A; left) and
Africa and Madagascar (B; right). Both figures taken from Google Earth (data provided to them
by: SIO, NOAA, U.S. Navy, NGA, GEBCO IBCAO Landsat/ Copernicus U.S. Geological
Survey).
Birds and habitats of Madagascar

Madagascar is divided into three major habitats (see Fig. 3A, Harper et al., 2007) or
macrohabitats. The eastern humid rainforest (47,000 km?), the western dry deciduous forest
(32,000 km?), and the southwestern spiny desert (24,000 km?). Given the varied resources in
these macrohabitats, they each support different numbers of endemic species with the eastern
humid forest having the highest (~44), the western dry forest with nine, and the southwestern
spiny desert with 12 endemic avian species (Safford and Hawkins, 2013). The east and west
macrohabitats are a closed habitat class (defined here as dense foliage that can obstruct flight),
which is known for influencing a low dispersal ability wing shape (blunt, rounded wings); the
southwest macrohabitat is an open habitat class (defined as a lack of dense foliage so flight is
unobstructed) which is known for influencing a more dispersive wing shape (longer, more
pointed wings; White 2016). Madagascar has three large massifs that have formed in the north,

center, and south (Mt. d’Ambre, Ankaratra, Andringitra) (see Fig. 3B, Vences et al., 2009).

Rivers flow from the central highlands down to the lowlands of the eastern humid forest and



9
western dry forest (Fig. 3B). These macrohabitat differences and geographical barriers are likely

to drive local adaptation and diversification of species within Madagascar. The levels of avian
endemism among these macrohabitats are likely underrepresented due to an increasing number
of recent discoveries of cryptic species (Block et al., 2012; Younger et al., 2018).

Madagascar has many barriers ranging from rivers and massifs that provide several
potential mechanisms for species diversification. The strong differences between the west and
east macrohabitats may have influenced the formation of new species via adaptation to their
respective macrohabitat’s ecological conditions and divergence from one another, a mechanism
known as the ecogeographic constraint (Yoder and Heckman, 2006; Vences et al., 2009).
Divergent clades have been found in Xanthomixis zosterops that are posited to have become
isolated by elevation in the humid forests (Block et al., 2015); this may possibly be an example
of ecologically mediated speciation within Madagascar’s habitats. Newtonia amphichroa
represents an example of the montane refugia hypothesis; Newtonia amphichroa inhabits
montane humid forest habitats and during the early Pleistocene interglacials some populations
became isolated resulting in vicariant speciation (Younger et al., 2018). We do not know for
certain how effective rivers can be as barriers to Madagascar birds, although they may act as
dispersal barriers in other areas of the world (Pastorini et al., 2003; Goodman and Ganzhorn,

2004; Moore et al., 2008).
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Forest Zones

Dry

Humid

spiny

Figure 3. Macrohabitats and potential geographical barriers in Madagascar. (A; left) visually
summarizes the three major habitats (macrohabitats) of Madagascar; (B; right) highlights the
massifs in red coloration and blue lines represent rivers (Figures 3A and 3B borrowed from
Harper et al., 2007, Figure 1 and Vences et al., 2009, Figure 1A respectively).
Investigating avian dispersal ability on Madagascar

Madagascar provides a model system to investigate dispersal ability and how it relates
with morphology, ecology, and geography. My study investigates how dispersal ability has
influenced diversification in the birds of Madagascar by comparing lineages that have radiated to
non-radiating lineages. I studied eight endemic lineages (Fig. 4) of birds in Madagascar that were
chosen based on sample availability and published phylogenetic trees (Table 1). Five of these
lineages are considered radiating (Vangidae, Bernieridae, Locustellidae, Ploceidae, Cuculidae),
meaning they diversified in situ at least once; the three others are considered non-radiating
(Nectariniidae, Pycnonotidae, Monarchidae) as they did not diversify in situ within Madagascar

but had ample time to do so. I treated each lineage as a case study with the goal of identifying an

overall pattern of features in radiating versus non-radiating lineages that may explain why certain
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lineages diversified in Madagascar and others (non-radiating) failed to do so. None of the

species in my study are migratory, therefore the comparisons of hand-wing index as a metric of

dispersal ability should be related to diversification potential.
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<= Single species
<= radiation
<= putative radiation

Figure 4. Phylogenetic tree of the extant birds of the world highlighting colonizing and radiating
Malagasy lineages. A majority of these independently colonizing lineages are represented by a
single species (source: Reddy, in prep.; modified from Jetz et al., 2012).
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Vanginae (Vangidae) is the largest passerine family in Madagascar with 21 species

present. It is unclear exactly what mainland source this lineage colonized from, but Africa and
Asia are both considered possible dispersal routes to Madagascar (Reddy et al., 2012). Shortly
after colonization of Madagascar this lineage speciated rapidly and it is believed to have been
driven by adaptation to available ecological niches (Reddy et al., 2012). This lineage is a unique
adaptive radiation that displays a wide range of diversity in terms of their morphology
(particularly bill shape), foraging behaviors, and ecology.

Bernieridae is the second largest adaptive radiation of Malagasy passerines. It is currently
composed of eight genera and 11 species but ongoing investigations into cryptic speciation
within this family may reveal additional new species. Beresford et al. (2005) estimated the
divergence of this Malagasy clade from its continental source occurred approximately 25.2 -19.2
Ma, but other studies put the estimate as more recent at about 9-17 Ma (Cibois et al. 2001;
Younger et al. Submitted). The hypothesized origin of the Malagasy lineage is uncertain but
optimal trees (with weak bootstrap support) suggest an African origin (Cibois et al., 2001). A
majority of the species within this lineage can be found gleaning prey at low to mid elevations in
the eastern humid forest although some species deviate from this pattern (Safford and Hawkins,
2013).

There is one lineage of Locustellidae that radiated on Madagascar. This lineage,
commonly known as the emu-tails, is composed of Bradypterus brunneus and Amphilais
seebohmi. Both species exhibit gleaning behaviors but differ in habitat preferences. Bradypterus
brunneus occurs in the eastern humid forest understory, whereas Amphilais seebohmi prefers

marshy habitats in the eastern humid forest at mid to high elevations.
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Ploceidae is a family with two endemic Malagasy species in each genus of Foudia and

Nelicurvius. These genera are believed to have independently colonized Madagascar from Africa
(De Silva et al., 2017). These species are known for their non-breeding flocking behaviors which
may have aided them in establishing populations upon colonization of Madagascar; this flocking
behavior is also documented in their mainland relatives such as Quelea quelea (Safford and
Hawkins, 2013). Within the genus Foudia, the two species prefer different habitat classes but are
altitudinal generalists (Safford and Hawkins, 2013). Foudia madagascariensis is widespread
across Madagascar preferring the open habitat class whereas Foudia omissa is restricted to the
closed eastern humid forest. Within the genus Nelicurvius, the two endemic species differ in
habitat class as well. Nelicurvius sakalava prefers to forage from the ground in dry open habitats
compared to Nelicurvius nelicourvi which prefers to glean and probe in the middle story of the
closed eastern humid forest trees (Safford and Hawkins, 2013).

The genus Coua (Cuculidae) has not been well studied in terms of phylogenetics and
their estimated colonization time remains unclear. Coua consists of three arboreal (C. cristata, C.
verreauxi, C. caerulea) and six primarily terrestrial species (C. gigas, C. coquereli, C. cursor, C.
reynaudii, C. serriana, C. ruficeps) that are found in the various macrohabitats of interest
throughout Madagascar. Several populations can be found such as in Coua cristata which has
been split into three populations or subspecies found in the open southwestern spiny desert
(Coua c. pyropyga), closed western dry deciduous forest (Coua c. dumonti), and closed eastern
humid forest (Coua c. cristata). This is also true for two subspecies of Coua ruficeps found in

the west (Coua r. ruficeps) and southwest (Coua r. olivaceiceps) habitats.
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Nectariniidae consists of two species that independently colonized Madagascar and their

close relatives can be found throughout the nearby islands in the Malagasy region. The Long-
billed Green Sunbird (Cinnyris notata) and Souimanga Sunbird (Cinnyris sovimanga) clades
both colonized Madagascar within the last 3.9 million years with a hypothesized continental
origin of Africa (Warren et al., 2003). It is believed that the sovimanga clade initially colonized
the Comoros archipelagoes followed by an expansion from Anjouan that led to their colonization
of Madagascar (Warren et al., 2003). Both species of Cinnyris are widespread in Madagascar and
present at all elevations. These species are nectar specialists but also exhibit glean foraging
strategies.

Pycnonotidae is a family that has not radiated within Madagascar but is species-rich
elsewhere. The Malagasy clade has only a single species (Hypsipetes madagascariensis) present.
This genus is peculiar because it has relatives throughout Asia and in some of the nearby Indian
Oceanic islands but is absent in continental Africa (Warren et al., 2005). Warren et al. (2005)
finds evidence of a single colonization event from Asia with support for a route pattern
consistent with an initial arrival in Madagascar followed by immigrating to the smaller nearby
islands. The Madagascar Black Bulbul (Hypsipetes madagascariensis) is widespread throughout
all of Madagascar’s elevations and habitats (except for open grasslands) and employs a wide
variety of foraging behaviors making it a generalist (Safford and Hawkins, 2013).

Monarchidae is a highly dispersive family of birds with species and subspecies occurring
on nearby islands around Madagascar; there is one species (two subspp) on Madagascar. Bristol
et al. (2013) and Fabre et al. (2012) agree that the Terpsiphone species occurring on the Indian

ocean islands and the African continent have an Asian origin; however, it remains unresolved as
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to whether the Indian Ocean islands were colonized directly from Asia or via Asia to Africa to

the islands. The Madagascar Paradise Flycatcher (Terpsiphone mutata) is a widespread low to
mid altitude species that displays the foraging behaviors of sally-gleaning and aerial hawking
primarily. One subspecies resides in the closed western dry deciduous forest (Terpsiphone m.
singetra) and the other inhabits the closed eastern humid rainforest (7erpsiphone m. mutata).
Objectives and hypotheses

This study will investigate how dispersal ability has influenced diversification in the birds
of Madagascar at two scales. In chapter 3, I will investigate at a broad scale whether the
endemics Malagasy lineages shifted in their dispersal ability from their closest continental
relatives after colonizing Madagascar. In chapter 4, I will investigate, at a smaller scale, whether
variation in dispersal ability is influenced by local adaptation to the macrohabitats within
Madagascar.

The first goal of this study (chapter 3) is to examine if Malagasy species shift in their
dispersal ability after colonizing Madagascar. 1 compared the dispersal ability, as quantified by
the hand-wing index (Claramunt et al., 2012; Weeks and Claramunt, 2014; Kennedy et al., 2016;
White 2016) of present-day Malagasy species to their closest non-Malagasy relatives (here-by
referred to as the ‘Malagasy clade’ and ‘source clade’, respectively) for each radiating and non-
radiating lineage. I referred to published phylogenetic trees of Malagasy and their source clades
to choose the sampled species for this study. I measured adult male and female museum
specimens for various linear body measurements including hand-wing index. I conducted

multivariate analyses (principal component analysis; MANOVA) and univariate analyses (dot-
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box-plot and ANOVA) to compare morphological variation between Malagasy and source

clades.

For each clade, I examined the difference in the morphospace occupancy between two

groups, Malagasy and source clades. For radiating lineages, I predict the Malagasy clades will be

separated in morphospace from the source clades reflecting a morphological shift to Madagascar

(Fig. 5C&D). For non-radiating lineages, I predict the Malagasy clade will be in the same

morphospace as its source clade (Fig. SA or 5B). I will interpret the possible outcomes as

follows:

1)

2)

3)

There is no significant difference between Malagasy and source morphospace (Fig. SA)—
both groups occupy an equal volume (disparity) and are in the same region of morphospace
(centroids are similar). I will interpret this to mean the Malagasy endemics did not diverge
morphologically from their close relatives (source) and does not reflect an adaptive shift to
an island.

There is a significant difference in the volume of morphospace occupied but the two groups
are in the same region (centroids are similar) of morphospace (Fig. 5B)—one group occupies
a smaller volume of morphospace than the other, larger, morphospace occupying group. I
will interpret this as the two clades do not differ substantially in morphology.

There is significant difference in the Malagasy and source clade occupancy of morphospace
(Fig. 5C&D)—if the groups occupy different regions of morphospace, this indicates that both
groups differ substantially in morphology. Furthermore, if one group occupies a greater
volume of morphospace, I will interpret this as evidence of morphological changes in

response to establishment on Madagascar, as in the following:
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If the volume of morphospace occupied is greater in Malagasy clade than source (Fig.

5C), then I will interpret this to reflect a shift to Madagascar with considerable
subsequent morphological diversification after establishment.

If the volume of morphospace occupied is greater in source clade than Malagasy (Fig.
5D), then I interpret this to reflect a shift to Madagascar with little subsequent

morphological diversification after establishment in Madagascar.
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Figure 5. Cartoon examples of potential results of multivariate principal component analysis for
objective 1. Orange depicts Malagasy clade and blue is source clade. (A) depicts outcome 1 of no
significant differences between the centroids (center of occupancy) or disparity (volume) of
Malagasy and source clade in morphospace; (B) depicts outcome 2 of no differences in
centroids, but one group has greater disparity than the other; (C) depicts outcome 3A of
significant differences in the centroids of the groups but disparity is greater in Malagasy than
source; (D) depicts outcome 3B of centroids of each group being significantly different but
disparity is greater in source clade than Malagasy.
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I also conducted comparisons between the two clades for all morphological variables,

focusing primarily on hand-wing index (HWI2), to understand how and in which traits a lineage

may have diverged morphologically. For radiating lineages, I expect a reduction in dispersal

ability (HWI2) in the Malagasy clade compared to source clade reflective of a shift to

Madagascar (Fig. 6B). For non-radiating lineages, I expect the Malagasy clade to have

maintained high dispersal ability (no significant difference between clades; Fig. 6A). I will

interpret the possible outcomes as follows:

1) The hand-wing index of the Malagasy clade does not differ from source (Fig. 6A)—I will
interpret this to mean dispersal ability did not play a key role in diversification of this group.

2) The hand-wing index of the Malagasy clade is smaller than source (Fig. 6B)—I will interpret
this to mean the Malagasy endemics have reduced dispersal ability after colonizing
Madagascar.

3) The hand-wing index of the Malagasy clade is larger than source (Fig. 6C)—I will interpret
this to mean the Malagasy endemics have greater dispersal ability after colonizing
Madagascar.

4) Other morphological trait(s) is/are significantly different between Malagasy and source
clade—I will interpret this to mean another trait (ex: tarsus length) is important for

diversification of the Malagasy endemics from the source group.
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Figure 6. Cartoon example results of univariate comparisons of trait values between Malagasy
(orange) and source (blue) clade. (A) depicts outcome 1 of no significant difference in hand-
wing index between the two clades. (B) depicts outcome 2 of significant differences in hand-
wing index with Malagasy clade being lower. (C) depicts outcome 3 of a significant difference in
hand-wing index between the two groups but Malagasy being greater than source.

The second goal of this study (chapter 4) was to investigate variation in dispersal ability
within widespread endemic species residing in multiple macrohabitats within Madagascar to test
whether they adapted and diverged across macrohabitats rather than or in addition to colonizing
Madagascar. Wing shape is known to vary among populations in association with the habitat
type and precipitation levels (Vanhooydonck et al. 2009). I examined morphological variation
across widespread species by examining populations across the island to investigate if there were
differences in trait values across different macrohabitats and/or habitat classes. Within each
endemic Malagasy lineage, I compared the dispersal ability of widespread species populations to

their macrohabitats (example: in Cuculidae, Coua cristata has three subspecies- one in each

macrohabitat). For each widespread species, | examined the difference in the morphospace
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occupancy between three macrohabitats: the open southwestern spiny desert, the closed western

dry forest, and the closed eastern humid rainforest. I predict each macrohabitat will occupy a

distinct region in morphospace from each other reflective of diversification via local adaptation

to the environmental and ecological conditions of each macrohabitat. I will interpret the possible

outcomes as follows:

1))

2)

3)

4)

There is no significant difference in the morphospace occupancy between the three
macrohabitats (Fig. 7A)—if all three macrohabitats occupy the same region of morphospace,
I will interpret this to mean they did not diversify across macrohabitats and habitat classes.
There is a significant difference in the southwest versus east and west morphospace
occupancy (Fig. 7B)—if the southwest occupies a different region of morphospace and
east/west occupy the same region of morphospace, I will interpret this as a shift to habitat
classes. Due to the similarity of the closed forests of the east and west they diversified by
open versus closed habitat classes.

There is a significant difference in the morphospace occupancy between all three
macrohabitats (Fig. 7C)—if each macrohabitat occupies a different region in the
morphospace, I will interpret this as they diversified by local adaptation to the environmental
and ecological conditions of each macrohabitat.

There is a significant difference in the morphospace occupancy between the west and east
macrohabitats but southwest is the same as either east or west (Fig. 7D)—if the southwest
occupies a similar region of morphospace as the west or east, I will interpret this as they

diversified due to shared similarities such as environmental factors.
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Figure 7. Examples of potential results of multivariate principal component analysis for objective
2 outcomes. (A) depicts outcome 1 of all three macrohabitats occupying the same morphospace;
(B) depicts outcome 2 of southwest separated in morphospace, but overlap between the east and
west macrohabitats; (C) depicts outcome 3 of all three macrohabitats occupying different
morphospace; (D) depicts outcome 4 of southwest occupying the same morphospace as west, but
east and west occupy different morphospace. Colors are as follows: green = southwest, orange=
east, blue= west.
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For each widespread species, I conducted comparisons between the three macrohabitats

for each morphological variable, focusing primarily on hand-wing index (HW12), to understand

how and in which traits a species may have diverged across macrohabitats and/or habitat classes.

I predict the populations in the open southwestern spiny desert macrohabitat will have the

greatest hand-wing index followed by those in the closed western dry forest and closed eastern

humid forest. I will interpret the possible outcomes as follows:

1) The hand-wing index does not differ between macrohabitats (Fig. 8A)—I will interpret this
to mean dispersal ability was not important for diversification across macrohabitats.

2) The hand-wing index of the southwest is significantly greater than east and west, but east and
west are not significantly different (Fig. 8B)—I will interpret this to mean these populations
evolved differently in open and closed habitat classes.

3) The hand-wing index significantly differs between all macrohabitats (Fig. 8C)—I will
interpret this to mean dispersal into distinct macrohabitats stimulated local adaptation to the
environmental and ecological conditions of each macrohabitat.

4) Other morphological trait(s) is/are significantly different between macrohabitats—I will
interpret this to mean another trait (ex: bill width) is important for driving diversification

across macrohabitats.
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Figure 8. Cartoon example results of univariate comparisons of trait values between
macrohabitats for objective 2 outcomes. (A) depicts outcome 1 of no significant difference in
hand-wing index 2 between all macrohabitats. (B) depicts outcome 2 of southwest having
significantly greater hand-wing index 2 and no significant difference between the east and west
macrohabitats hand-wing index 2. (C) depicts outcome 3 of significant differences in hand-wing
index 2 between all three macrohabitats.



CHAPTER 2
USING MORPHOMETRIC DATA TO EXAMINE PATTERNS OF DIVERSIFICATION

I used the same methodology in this study for objective 1 (chapter three) and objective 2
(chapter four) with only minor differences. In objective 1, I compared morphological traits
between the Malagasy and source clades of families; in objective 2, I compared traits of
widespread Malagasy species by comparing populations in different macrohabitats.
Morphometrics & measurements

In this study I took seven standardized morphometric measurements (bill depth, bill
width, bill length, wing chord length, secondary feather length, tarsus length, and tail length) of
508 museum skin specimens from the collections of the Field Museum of Natural History
(FMNH) and the American Museum of Natural History (AMNH). See Table 3 for a complete list
of specimens measured. I made sure to select only specimens that were adults and had intact
bills, wings, tails, and legs. Using digital calipers (Mitutoyo), I took the standardized
morphometric measurements as follows: bill depth and bill width measured at the anterior edge
of the nostrils (Baldwin et al., 1931; J. Tobias, personal communication, October 23, 2017); bill
length (sometimes referred to as total culmen) measured from the anterior edge of the skull to the
tip of the bill (Baldwin et al., 1931); wing chord length measured from the carpal joint to the tip
of the longest primary feather (Baldwin et al., 1931); secondary length (S1) was measured from
the carpal joint to the tip of the first secondary feather (Claramunt et al., 2012); tarsus length was

measured from the inner notch of the knee to the third scute of the ankle (Baldwin et al., 1931),

27
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and tail length was measured from the base of the rectrices (where they attach to bone) to the tip

of the longest rectrix (Baldwin et al., 1931). In one family, Monarchidae, male specimens in
breeding plumage had long central tail feathers (presumably under sexual selection). For these, I
measured the second longest tail feather to keep all specimens comparable within that clade.
While the primary focus of this study is concerned with dispersal ability, data for additional
morphometric variables were collected to explore any potential associations with lineages
diversification and account for body size. For each museum skin specimen (adults only) all
measurements were taken using Mituyoto digital calipers; all measurements were repeated three
times to ensure precision and accuracy.

In order to effectively and reasonably study dispersal ability, I converted wing
measurements (wing chord length and S1) into hand-wing index 2 (HWI2; see Fig. 9). This
hand-wing index is used as a metric of dispersal ability because it is a measure of wing shape and
due to its relationship with determining long-distance flight efficiency (Claramunt et al., 2012;
Weeks and Claramunt, 2014; Bitton and Graham, 2015; White 2016; Kennedy et al., 2016).
Hand-wing index 2 is calculated as follows: HWI2= 100 x (wing chord length-S1/wing chord
length) (Claramunt et al., 2012; Weeks and Claramunt, 2014). A small HWI2 value is associated
with a more rounded wing shape whereas a large HWI2 value indicates more pointed wings that
are associated with being stronger fliers or more efficient at long-distance flight (Bitton and

Graham, 2014).
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Figure 9. Linear measurements of hand-wing index 2 (reproduced from Claramunt et al., 2012,
Figure 2). This diagram depicts the linear measurements of wing chord length (WL) and
secondary length (SL or referred to as S1 in this study).
Museum skin specimens

Using museum skin specimens to study dispersal ability provides a unique framework for
investigating the effects of dispersal on ecological and evolutionary processes (Claramunt and
Wright, 2017). Museum specimens are reliable for quantifying wing shape because the bone and
keratin that make up wings and feathers do not degrade over time as preserved by well-
maintained collections (Bitton and Graham, 2014). I noted additional data from specimen toe
tags including locality, body mass, latitude and longitude coordinates, elevation, and sex that
may be relevant to interpreting their measurements across populations and species.
Checking the data

All repeated measures I took for a morphological variable of a specimen were within
0.15mm of each other except for tail length (within Imm). Prior to running analyses, each
specimen was checked for outliers and errors by confirming that all repeated measurements were

within one standard deviation. Any suspicious data points were removed or measured again prior

to further analysis. For subsequent analyses, I used the average of the repeated measurements.
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This study was part of a larger collaborative lab project, so I combined data collected by

another investigator (T. Olivia Helms) for a related purpose. In order to make sure there was no
significant systematic differences between our measurements, I conducted ANOVA comparisons
between the two investigators’ data for five morphological variables (bill depth, bill width, bill
length, tarsus length, tail length). I did not compare measurements of wing chord length or
secondary length between investigators because I only used data collected by myself (RL) for
wing measurements of all specimens in this study. For the ANOVA comparisons I needed
specimens measured by both investigators so I (RL) measured 94 specimens that Olivia Helms
(OH) measured. Of the five linear measurements, bill width (ANOVA p<0.05) and tarsus length
(ANOVA p<0.001) were statistically different in how they were measured between investigators
(see Table 2). To correct for the differences in how investigators measured bill width and tarsus
length I performed a simple linear regression for each (Fig. 10). A simple linear regression (R
package: Stats) was performed to create an equation to adjust bill width and tarsus length data
from OH, so it is consistent with the RL measurements. The regression equation for bill width is:
RL Bill width=-0.52609 + 0.93714*OH_Bill Width and for tarsus length it is:

RL Tarsus_Length=0.41268 + 0.87643*OH_Tarsus_Length. For each specimen with borrowed
OH data (n=66), for bill width and tarsus length I inserted OH’s data values into the appropriate
equation to generate a corrected value compatible with RL measurements. These corrected
values replaced the borrowed OH data for bill width and tarsus length and allowed me to perform
analyses on combined datasets with no significant systematic differences in measurements

between investigators.
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Table 2. Summary of ANOVA comparison results between RL (taken by Robert Lauer) and OH
(taken by T. Olivia Helms) for five linear measurements of commonly measured museum skin
specimens. Red font and asterisks indicate those linear measurements with significant differences
between investigators.

Linear Measurement F p
Bill Depth 0.093 0.761
Bill Width 5.822 0.016"
Bill Height 0.005 0.943
Tarsus Length 11.220 <0.001"""
Tail Length 0.229 0.633
o o [ B
0 5 OH ;;)ill Width ) : ' ’ k O;—i Tarsu:)Length35 ! i

Figure 10. Simple linear regression plots comparing measurements of (A) bill width and (B)
tarsus length taken by RL and OH for 94 specimens. I reported the R-squared value in each plot
along the linear regression lines.
Sampling objective 1 (chapter 3)

The first goal of this study was to understand if Malagasy species shift in their dispersal

ability after colonizing Madagascar. I measured all Malagasy species and as many species from

the source clade as were available at FMNH and AMNH. Source clade species were selected
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using published phylogenetic trees. I sampled at least five specimens per species (typically three

males and two females) to encompass the variation for each species of the endemic Malagasy
clade. I sampled two specimens (one male, one female) for each species in the source clade.
Region classifications were organized by using the museum specimen collection tag localities to
assign them to source areas (Africa, Asia, West Indian Ocean Islands) and Malagasy
(Madagascar).
Objective 1 data analysis

I checked for sexual dimorphism in morphological traits within each family by
performing ANOVA and boxplot comparisons between males and females for each trait using
their raw repeated measures. If there were significant differences between males and females in a
morphological trait(s), I analyzed males and females separately for that family. I took the five
individual specimens I measured for each Malagasy species and averaged their repeated
measures collectively for each trait to get a “species average”. I obtained a species average for
source species the same way but with the two individual specimens I measured per species. |
used these species averages for subsequent analyses in objective one. Due to the morphological
variables having very different variances I standardized the variables before conducting a
principal component analysis. To standardize the data for principal component analysis, I
performed a scale function on the species averaged data so that the variances of each
morphological variable were comparable (Coghlan 2017). I generated a scree plot of the
proportion of variance each principal component explained to determine how many principal
components with minimally 5% variation to retain. Principal components were plotted with

minimum convex polygons grouping species in source and Malagasy clades using ggplot2 in R.



33
In the multivariate analyses, I examined the difference in the morphospace occupancy

between Malagasy and source clade for each family using principal component analysis. I
conducted two tests: I performed a multivariate analysis of variance (MANOVA) to test if the
centroids, the multivariate mean of each clade, are statistically different between clades. This test
assesses if these clades are located in different regions of morphospace. Next, I examined
disparity, the volume occupied in multivariate space, of each group to test if the extent of
morphospace is different across these two clades. I generated a disparity plot using the sum of
the variances of principal components incorporating greater than five percent variance and
performed a non-parametric Wilcoxon test to determine if there was a significant difference in
the volume of morphospace occupied between the two clades (R package: DispRity; Guillerme
2018). Additionally, for results that were significantly different using MANOVA or disparity, I
examined PC loadings to determine if HWI2 or wing measurements contributed substantially to
variation explained by these PCs.

For univariate analyses I used raw (not standardized) species averaged data. For each
family, I conducted ANOVA comparisons between the two clades for all morphological
variables, focusing primarily on the HWI2, to understand how and which traits were important to
the diversification of Malagasy lineages. A dot-box-plot was generated to visualize the trait value
differences between clades (R package: ggplot2; Wickham 2016).

Sampling objective 2 (chapter 4)

The second objective of this study is to investigate whether variation in dispersal ability

within widespread Malagasy species differed between populations restricted to one of three

macrohabitats (eastern humid rainforest, western dry forest, southwestern spiny desert) or two
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habitat classes (east/west= closed, southwest = open). The second aim of this study focused on

four widespread species (Schetba rufa, Coua cristata, Coua ruficeps, Terpsiphone mutata, Table
3) from three families (Vangidae, Cuculidae, and Monarchidae). For each widespread species
with multiple subspecies, I measured five specimens per subspecies (where specimens were
available in collections). I classified each individual’s macrohabitat by using the locality
information from the specimen tag. The classifications were decided based on what macrohabitat
the locality was recorded to be within (see Chapter 1 Fig. 3)

Objective 2 data analysis

Similar to objective one, I standardized morphological variables for principal component
analysis, generated a scree plot, generated plots of principal components, performed a
MANOVA, and conducted ANOVA comparisons of traits between groups that are visualized in
dot-box-plots. The only exceptions are that I used specimen-averaged data (see below),
compared traits by macrohabitat groups, conducted pairwise t-tests (for groups of more than
two), and did not perform a test of disparity.

I took the repeated measures for each individual specimen and averaged them for each
trait to get a “specimen average”. I used these specimen averages for subsequent analyses in
objective two. I generated morphospace in a principal component analysis (PCA) for each
widespread species with minimum convex polygons grouping specimens into each macrohabitat.
I performed a multivariate analysis of variance (MANOVA) to see if the centroids of the three
macrohabitats statistically differed.

For univariate analyses I used raw (not standardized) specimen-averaged data. For each

widespread species, I conducted ANOV A comparisons between the three macrohabitats for each
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morphological variable, focusing on HWI2, to understand how and in which traits a species may

have diverged across macrohabitats. These differences, or lack thereof, are visualized in dot-box-
plots (R package: ggplot2). If there were significant differences (ANOVA) overall for a
morphological trait between macrohabitats, then I conducted pairwise t-tests to see which

macrohabitats specifically significantly differed from each other.
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CHAPTER 3
TESTING THE IMPORTANCE OF DISPERSAL ABILITY TO DIVERSIFICATION OF
MALAGASY BIRDS

Summary and discussion of results of objective 1

I investigated how dispersal ability may have influenced diversification of the endemic
birds of Madagascar by comparing morphological variation in radiating lineages and non-
radiating lineages. Using the hand-wing index 2 (HWI2) as a measure of dispersal ability I
compared Malagasy clade to their source clade. I treated each lineage as an independent case
study to determine if there was a general pattern, or lack thereof, that explained why some
lineages diversified in Madagascar and others did not. I predicted the radiating lineages
Malagasy clade to occupy a greater volume of morphological space in a distinct region from
source reflecting a morphological shift to the unique Malagasy habitats. I predicted that I will
find reduced dispersal ability (lower HWI2) in the Malagasy clade in response to isolation in a
smaller range size.

In this chapter, I discuss the results of objective 1: to examine if Malagasy species shifted
in their dispersal ability after colonizing Madagascar. For this component, I sampled 117
species and took seven morphological measurements of 451 specimens (Table 3 [specimen
table]; Table 4). My analyses demonstrate that across all studied groups, dispersal ability (HWI2)
does not differ between Malagasy and source clade and was likely not an important factor in the

diversification of these Malagasy endemics (Table 5). Additionally, my analyses indicated that
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these Malagasy species did not shift in their dispersal ability after colonizing Madagascar. These

same patterns hold for radiating and non-radiating lineages.

The detailed results from my analyses of each family are below (see details of results by
lineage). Briefly, the results of my study found that within Vangidae, Malagasy species occupied
a significantly differed part of morphospace with greater disparity between Malagasy lineages,
which likely reflects a phenotypic shift upon colonization of Madagascar (Fig. 12; Fig. 13). The
Malagasy clade of Bernieridae and its sister, Locustellidae, similarly differed in the region of
morphospace occupancy from source clade, but the disparity between source lineages was
greater than Malagasy ones (Fig. 16; Fig. 17; Fig. 20; Fig. 21). The remaining lineages (except
Nelicurvius males; Fig. 28; Fig. 29) showed a pattern of Malagasy lineages occupying similar
morphospace as their source clades (Fig. 24; Fig. 25; Fig. 32; Fig. 35; Fig. 38; Fig. 41; Fig. 42).
In summary, dispersal ability, as measured by HWI2, does not appear important to the
diversification of Malagasy endemics from their source clades for any of the lineages studied
(Fig. 14; Fig. 18; Fig. 22; Fig. 26; Fig. 30; Fig. 33; Fig. 36; Fig. 39; Fig. 43).

Possible explanations for why dispersal ability was not different between island and
continental lineages include: selection or adaptation to similar environments in islands and
continents, lack of selective pressures to drive shift upon island colonization, phylogenetic
conservatism or other constraint is how this phenotype can evolve, or other factors may be
contributing to phenotypic differentiation than dispersal ability. It is difficult to test between
these possibilities in this current study with only morphometric data.

The lack of morphological differences between Malagasy representatives and close
relatives on islands and continents has been demonstrated (Warren et al., 2003). In some cases,

these may be explained by the biology of each clade—some lineages (like sunbirds) have a
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general ability to disperse easily across landmasses, but rarely demonstrate in-sifu speciation

even in large areas (Warren et al., 2003).

The breadth of variation in HWI2 is greater in the Malagasy clade of Vangidae. In this
Malagasy clade there are extreme variants of HWI2 such as Leptopterus chabert or Cyanolanius
madagascariensis that have high HWI2 values compared to the lower HWI values of Newtonia
species. A recent study sampled more than 99% of avian species to investigate global variation in
HWI (Sheard et al., 2020). They found that within assemblages, the hotspots for the highest
variability in HWI were in Madagascar, the Saharan and Arabian deserts, the Andes mountains,
and the Pacific islands (Sheard et al., 2020). There may be several possibilities for why the
Malagasy vangas have such variation in HWI2 such as their foraging behaviors (sallying,
probing, and gleaning), habitat use, or climatic conditions. There are close phylogenetic relatives
of Malagasy species on nearby islands that vary in island size and provide an opportunity to
study island biogeography. Future research on island biogeography should consider comparing
the HWI2 values these species to see if HWI2 is associated with island size.

Interestingly, although my results did not show significant differences in HWI2, another
trait—tarsus length did show differences in some lineages (Table 5). Tarsus length differed
significantly between clades in Vangidae, Bernieridae, and Locustellidae. Wright et al. (2016)
similarly found evidence of morphological shifts in tarsus length of island birds compared to
their continental relatives. In other studies, tarsus length has been associated with foraging niche
and body size (Derryberry et al., 2011; Tobias et al., 2013). Bill size was significantly reduced in
the Malagasy clade of Monarchidae. These trait differences suggest that adaptations to ecological

conditions other than dispersal ability are driving diversification of birds on Madagascar.
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Table 4. Summary table of the number of species and specimens sampled in each family by clade
for Objective 1. Source clade species and specimens were the same for Bernieridae and
Locustellidae so they were not counted twice in totals. Outliers were omitted from totals.

Malagasy Source

Family # species # specimens # species # specimens

Vangidae 20 129 7 15
Bernieridae 10 66 23 60
Locustellidae 2 10 23 60
Ploceidae (Foudia) 2 10 11 21
Ploceidae (Nelicurvius) 2 15 9 18
Nectariniidae (C. notata) 1 5 3 8
Nectariniidae (C. sovimanga) 1 10 7 18
Pycnonotidae 1 5 9 20
Monarchidae 1 11 8 27
Total 40 261 77 187
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Table 5. Summary of Chapter 3 results for each family. Within each family I compared the
morphometric data of Malagasy (M) and source (S) clades to test for differences. For
MANOVA, significant differences in the centroids between clades is marked ‘M *= S’ with a p-
value. For disparity, the greater or less than sign indicates whether Malagasy or source clade
occupied a significantly a greater volume of morphospace. There were no significant differences
between clades for HWI2. Additional other morphological traits were compared and listed if they
significantly differed between clades.

Multivariate Univariate
Family MANOVA Disparity HWI2 Sig. morphometrics
M"=S M>S
Vangidae (p<0.001)  (p<0.001) p>0.05 tarsus length (p<0.01)
M~ =S M<S
Bernieridae (p<0.001)  (p<0.001) p>0.05 tarsus length (p<0.05)
wing chord length
(p<0.05)
M "=S tarsus length
Locustellidae (p<0.05) — p>0.05 (p<0.05)
Ploceidae (Foudia) p>0.05 - p>0.05 none
M =S
Ploceidae (Nelicurvius) (p<0.001) — p>0.05 none
Nectariniidae (C. notata) — — N/A none
Nectariniidae (C.
souimanga) p>0.05 — N/A none
Pycnonotidae p>0.05 — N/A none
bill depth (p<0.05)
bill width (p<0.05)
Monarchidae p>0.05 —| p>0.05 bill length (p<0.05)
Details of results by lineage
Vanginae (Vangidae)

During the data check, I found four individuals in Vangidae were outliers with standard
deviations greater than one (Falculea palliata (#413666), Xenopirostris polleni (#664429 and
#664430), Prionops plumata (#285944)) and were removed prior to analyses. There was no

significant difference between sexes for any of the morphological variables based on our
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ANOVA, so I analyzed males and females together. The dataset for this family consisted of 27

species (20 Malagasy and seven source; 147 specimens; Table 4) and eight morphological
variables. The principal component analysis resulted in 8 axes of which the first three (Fig. 11)
explained ~91% of the variation (Table 6). There is a significant difference in the Malagasy and
source occupancy of morphospace (MANOVA p<0.001***_ Fig. 12) and the disparity of the
Malagasy clade is greater than source (p<0.001***; Fig. 13). The first principal component
likely reflects body size. HWI2 had the highest weighting in PC2 and PC3 loadings contributing
substantially to variation explained by these PCs (Table 6). There are no significant differences
in the means of HWI2 between Malagasy and source (ANOVA p>0.05, Fig. 14). Tarsus length

of Malagasy was significantly greater than source (ANOVA p<0.01**; Table 7).

proportion of explained variance (%)

4 6
principal component number

Figure 11. Scree plot of the proportion of explained variance for eight principal components in
Vangidae. The first three principal components incorporated greater than 5% variance. Table 6
shows the loadings of these three principal components.
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Table 6. Summary of principal components and their loadings in Vangidae. The cumulative
proportion of the three principal components is 91.08%. Abbreviations are as follows (BD= bill
depth, BW= bill width, BL= bill length, WL= wing chord length, S1= secondary length, Tar-L=
tarsus length, Tail-L = tail length, HWI2= hand-wing index 2).

Morphometrics PCl1 PC2 PC3

BD -0.375 0.072 -0.457

BW -0.320 0.355 -0.638

BL -0.372 -0.152 0.145

WL -0.410 0.073 0.279

S1 -0.408 -0.076 0.213

Tar-L -0.300 -0.553 0.111
Tail-L -0.401 -0.102 0.011
HWI2 -0.172 0.718 0.474

Prop. Of Variance 67.72% 15.73% 7.63%
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Figure 12. Principal components analysis of morphometric comparisons between clades in
Vangidae. (A) Plot of PC1 vs. PC2 (B) Plot PC2 vs. PC3. Each dot represents a single species
and is colored by clade (orange = Malagasy; blue = source); disparity of each group is
represented as a minimal convex polygon of all species in that group. The centroid of each clade
is statistically different (MANOVA p<0.001***),
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Figure 13. Vangidae plot of disparity between clades. Thick black lines represent the median of
the sum of variances in each clade. There is a significant difference in the volume of
morphospace occupied between the two clades with Malagasy species occupying a greater area
in morphological space than source species (non-parametric Wilcoxon test W=9999,
p<0.001%**%*).
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Figure 14. Boxplot of HWI2 between the Malagasy and source clades of Vangidae. Each dot
represents a mean value for individual species” HWI2. The Malagasy clade consists of 20 species
with the inclusion of six subspecies and the source clade consists of seven species with the
inclusion of one subspecies. There are no significant differences in the means of HWI2 between
the Malagasy and source clade (ANOVA p>0.05).



74
Table 7. Summary statistics table of each morphological variable compared between Malagasy
and source clade of Vangidae. Only tarsus length was significantly different between the two
clades. Significant differences between clades that were uncovered using an ANOVA are shown
in bold and asterisk.

Malagasy (n=20) Source (n=7)

Trait Mean SD Mean SD
BD 7.53 4.47 5.71 1.42
BW 5.48 2.17 6.60 1.22
BL 24.10 11.30 21.00 3.83
WL 95.20 28.70 87.60 20.00
S1 79.80 22.70 74.60 15.50
Tar-L** 19.80 4.06 15.00 3.38
Tail-L 76.00 21.70 69.30 18.00
HWI2 15.40 6.00 14.40 3.60

Bernieridae

There are significant differences between sexes for bill length (ANOVA p<0.05), wing
chord length (ANOVA p<0.001), secondary length (ANOVA p<0.01), and tarsus length
(ANOVA p<0.01). For this reason, I analyzed males and females of Bernieridae independently.
To test for differences between Malagasy and source clade, I used 33 species (10 Malagasy and
23 source; 126 specimens; Table 4). Of the resulting eight principal component, the first three
explained ~89% and ~88% of the variation in males and females respectively (Fig. 15; Table 8).
For both sexes, there is a significant difference in the Malagasy and source occupancy of
morphospace (MANOVA p<0.001***; Fig. 16). The disparity of the source clade is greater than
Malagasy (p<0.001*** Fig. 17). The first principal component likely reflects body size. HWI2
did not weigh heavily in the principal component analysis of either sex; tail length was heavily
weighted in PC3 for both sexes (Table 8). There were no significant differences in the means of
HWI2 between Malagasy and source clade in either sex (ANOVA p>0.05, Fig. 18). Tarsus

length of source was significantly greater than Malagasy (ANOVA p<0.05*; Table 9).
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Figure 15. Scree plot of the proportion of explained variance for eight principal components in
Bernieridae (A) males and (B) females. The first three principal components incorporated greater
than 5% variance in males and females. Table 8 shows the loadings of these three principal
components in each sex.

Table 8. Summary of principal components and their loadings in Bernieridae. The cumulative
proportion of the three principal components is 90.02% in males and 88.31% in females.

Males Females
Morphometrics PCl1 PC2 PC3 PCl1 PC2 PC3

BD -0.398 0.049 -0.139 -0.407 0.120 -0.144

BW -0.384 -0.041 -0.002 -0.389 <0.001 -0.347

BL -0.350 0.012 -0.656 -0.372 0.088 -0.420

WL -0.382 -0.303 -0.076 -0.368 -0.431 0.045

S1 -0.400 0.103 -0.127 -0.411 0.109 0.111
Tar-L -0.366 -0.029 0.456 -0.382 -0.040 0.113
Tail-L -0.357 0.104 0.563 -0.295 -0.057 0.798
HWI2 0.042 -0.938 0.042 0.072 -0.880 -0.127

Prop. Of Variance  69.05% 13.93% 7.04% 63.85% 15.25% 9.21%
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Figure 16. Principal components analysis of morphometric comparisons between clades for
males (A,B) and females (C,D) in Bernieridae. Each dot represents a single species and is
colored by clade (orange = Malagasy; blue = source); disparity of each group is represented as a
minimal convex polygon of all species in that group. The centroid of each clade is statistically

different for both sexes (MANOVA p<0.001%*%*).
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Figure 17. Bernieridae plot of disparity between clades for (A) males and (B) females. There is a
significant difference in the volume of morphospace occupied between the two clades with
source species occupying a greater area in morphological space than Malagasy species in both
sexes (non-parametric Wilcoxon test A) W=143, p<0.001***; B) W=0, p<0.001***),
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Figure 18. Boxplot of HWI2 between the Malagasy and source clades of Bernieridae in (A)
males and (B) females. Each dot represents a mean value for individual species’ HWI2. There
are no significant differences in the means of HWI2 between Malagasy and source clade
(ANOVA p>0.05) in either sex.
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Table 9. Summary statistics table of each morphological variable compared between Malagasy
and source clade of Bernieridae. Only tarsus length was significantly different between the two
clades in males and females. Significant differences between clades that were uncovered using
an ANOVA are shown in bold and asterisk with an M and/or F indicating which sex the trait
significantly differed in.

MALE FEMALE

Malagasy (n=10) | Source (n=22) Malagasy (n=9) | Source (n=23)

Trait Mean SD Mean SD Mean SD Mean SD
BD 3.81 0.75 3.91 0.87 3.68 0.50 3.72 0.69
BW 3.05 0.40 3.27 0.77 3.15 0.38 3.21 0.67
BL 18.40 4.56 | 17.00 4.16 17.20 2.69 | 16.50 3.36
WL 69.80 11.20 | 68.40 12.40 65.20 592 65.70 10.60
S1 61.10 9.50 | 57.90 10.30 58.00 4.94 | 55.70 9.03
Tar-L*M¥F 19.20 2.75 | 22.20 4.63 18.80 1.99 | 21.30 3.64
Tail-L 68.20 10.20 | 76.30 19.40 64.00 6.23 | 69.70 17.80
HWI2 12.40 322 | 15.10 7.44 11.00 2.12 | 14.70 8.27

Locustellidae

There were significant differences between sexes for tail length (ANOVA p<0.05%*). For
this reason, I analyzed males and females independently. The dataset for this family consisted of
25 species (two Malagasy and 23 source species; 70 specimens; Table 4). The first three
principal components explained ~92% of the variation in males and females respectively (Fig.
19; Table 10). For both sexes, there is a significant difference in the Malagasy and source
occupancy of morphospace (MANOVA p<0.05*, Fig. 20). Disparity of source appears to be
greater than Malagasy, but I did not calculate a statistical value to confirm this because of low
sample size (two or fewer species) in Malagasy clade (Fig. 21). The first principal component
likely reflects body size. HWI2 was not weighted heavily in the principal component analysis of
either sex (Table 10). Tail length was heavily weighted in PC2 for both sexes (Table 10). There
were no significant differences in the means of HWI2 between Malagasy and source clade in

either sex (ANOVA p>0.05, Fig. 22). No other morphological variables significantly differed
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between clades in males. For females, wing chord length (ANOVA p<0.05%*) and tarsus length

(ANOVA p<0.05%*) was significantly greater in source than Malagasy (Table 11).
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Figure 19. Scree plot of the proportion of explained variance for eight principal components in
Locustellidae (A) males and (B) females. Only the first three principal components incorporated
greater than 5% variance in males and females. Table 10 shows the loadings of these three
principal components in each sex.

Table 10. Summary of principal components and their loadings in Locustellidae. The cumulative
proportion of the first three principal components is 92.83% in males and 92.07% in females.

Males Females
Morphometrics PCl1 PC2 PC3 PCl1 PC2 PC3
BD 0.397 0.040 -0.003 0.405 0.093 0.051
BW 0.392 -0.015 -0.229 0.387 -0.050 0.286
BL 0.359 -0.051 -0.570 0.386 -0.041 0.342
WL 0.377 -0.327 0.177 0.367 -0.402 -0.183
S1 0.403 0.081 0.022 0.412 0.107 -0.056
Tar-L 0.392 -0.032 -0.017 0.405 0.008 0.086
Tail-L 0.315 0.312 0.732 0.255 0.246 -0.847
HWI2 -0.015 -0.884 0.231 -0.040 -0.867 -0.188

Prop. Of Variance 71.56%  15.32% 5.95% 66.80% 15.78% 9.49%
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Figure 20. Principal components analysis of morphometric comparisons between clades in
Locustellidae (A, B) males and (C, D) females. Each dot represents a single species and is color
coded by clade (orange = Malagasy; blue = source); disparity of each group is represented as a
minimal convex polygon of all species in that group. The centroid of each clade is statistically
different for both sexes (MANOVA p<0.05%).
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Figure 21. Locustellidae plot of disparity between clades for (A) males and (B) females. Source
appears to occupy a greater area in morphological space than Malagasy, but I did not calculate a
statistical value of disparity to confirm this because of low sample size in Malagasy clade.
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Figure 22. Boxplot of HWI2 between the Malagasy and source clades of Locustellidae in (A)
males and (B) females. Each dot represents an individual species’ HWI2 value. There are no

significant differences in the means of HWI2 between Malagasy and source clade (ANOVA
p>0.05) in either sex.
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Table 11. Summary statistics table of each morphological variable compared between Malagasy
and source clade of Locustellidae. No significant differences between Malagasy and source male
species were recovered. Wing chord length and tarsus length were significantly greater in female
source species than Malagasy species. Significant differences between clades that were
uncovered using an ANOVA are shown in bold and asterisk with an M and/or F indicating which
sex the trait significantly differed in.

MALE FEMALE

Malagasy (n=2) Source (n=22) Malagasy (n=2) Source (n=23)

Trait Mean SD Mean SD Mean SD Mean SD
BD 3.20 0.10 3.91 0.87 3.10 0.27 3.72 0.69
BW 2.64 0.36 3.27 0.77 2.51 0.24 3.21 0.67
BL 12.90 0.00 17.00 4.16 12.50 0.28 16.50 3.36
WL*F 50.60 1.48 68.40 12.40 48.50 1.27  65.70  10.60
S1 47.00 0.07 5790 10.30 45.20 0.35 55.70 9.03
Tar-L*¥ 16.50 1.70  22.20 4.63 15.90 1.27  21.30 3.64
Tail-L 89.60 5.87 7630  19.40 77.90 898 69.70 17.80
HWI2 6.98 2.67 15.10 7.44 6.47 1.74  14.70 8.27

Foudia clade (Ploceidae)

There were significant differences between sexes for bill depth (ANOVA p<0.05), bill
width (ANOVA p<0.05), wing chord length (ANOVA p<0.05), secondary length (ANOVA
p<0.01), and tarsus length (ANOVA p<0.01). For this reason, I analyzed males and females
independently. The dataset for this family consisted of 13 species (two Malagasy and 11 source
species; 31 specimens; Table 4). The first two principal components (Fig. 23) explained ~89% of
the variation in males (Fig. 23; Table 12). The first three principal components explained ~93%
of the variation in females (Fig. 23; Table 12). For both sexes, the two clades reside in a similar
region of morphospace. The centroid of each clade did not statistically differ in either sex
(MANOVA p>0.05, Fig. 24). The disparity of the source clade species appears to be greater than
Malagasy species, but I did not calculate a statistical value to confirm this because of low sample
size (two or fewer species) in Malagasy clade (Fig. 25). The first principal component likely

reflects body size. HWI2 weighted heavily in PC2 and PC3 of males but did not in the principal
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component analysis for females (Table 12). There were no significant differences in the means of

HWI2 between Malagasy and source clade in either sex (ANOVA p>0.05, Fig. 26). No other

morphological variables significantly differed between clades in either sex (Table 13).

(%
(%

f explained
f explained

i 6 8 2 i 6
principal component number principal component number

Figure 23. Scree plot of the proportion of explained variance for eight principal components in
Foudia (A) males and (B) females. The first two and three principal components in males and
females incorporated greater than 5% variance. Table 12 shows the loadings of these principal
components.

Table 12. Summary of principal components and their loadings in Foudia. The cumulative
proportion of the two principal components in males is 89.35% and three principal components
in females is 93.91%.

Males Females
Morphometrics PCl1 PC2 PC3 PCl1 PC2 PC3

BD 0.323 0.426 -0.458 0.204 -0.548 -0.380

BW 0.267 0.544 -0.348 0.195 -0.586 0.038

BL 0.411 -0.008 0.134 0.400 -0.049 0.620

WL 0.406 <0.001 0.446 0.443 -0.044 -0.229

S1 0.401 -0.219 0.162 0.433 0.149 -0.272

Tar-L 0.388 -0.112 0.041 0.408 0.081 0.471
Tail-L 0.405 -0.186 -0.011 0.405 0.134 -0.252
HWI2 -0.110 0.652 0.649 -0.206 -0.551 0.234

Prop. Of Variance ~ 67.13%  22.22% 4.81% 58.73% 29.29% 5.89%
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Figure 24. Principal components analysis of morphometric comparisons between clades in
Foudia (A, B) males and (C, D) females. Each dot represents a single species and is colored by
clade (orange = Malagasy; blue = source); disparity of each group is represented as a minimal
convex polygon of all species in that group. The centroid of each clade is not statistically

different (MANOVA p>0.05) in either sex.
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Figure 25. Foudia plot of disparity between clades for (A) males and (B) females. Source
appears to occupy a greater area in morphological space than Malagasy, but I did not calculate a
statistical value of disparity to confirm this because of low sample size in Malagasy clade.
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Figure 26. Boxplot of HWI2 between the Malagasy and source clades of Foudia in (A) males
and (B) females. Each dot represents a mean value for individual species’ HWI2. There are no
significant differences in the means of HWI2 between Malagasy and source clade (ANOVA
p>0.05) in either sex.
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Table 13. Summary statistics table of each morphological variable compared between Malagasy

and source clade of Foudia. No significant differences between Malagasy species and source
species were recovered using ANOVA.

MALE FEMALE

Malagasy (n=2) Source (n=11) Malagasy (n=2) Source (n=10)

Trait  Mean SD Mean SD Mean SD Mean SD
BD 8.38 0.41 8.88 1.44 7.76 0.72 8.34 1.04
BW 6.04 0.24 6.46 0.84 5.59 0.48 6.19 0.56
BL 15.30 0.84 | 17.20 3.10 14.80 2.12 | 16.20 2.09
WL 67.90 4.03 | 69.90 6.92 63.60 445 | 66.90 7.15
S1 56.40 2.05| 58.20 6.52 53.00 3.04 | 54.70 7.47
Tar-L 17.60 1.13 17.30 2.35 16.00 0.77 | 16.60 1.66
Tail-L 51.60 1.70 | 48.10 9.34 50.70 1.27 | 45.10 7.62
HWI2 16.80 1.91 16.90 3.29 16.40 1.06 | 18.40 3.80
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Nelicurvius clade (Ploceidae)

There were significant differences between sexes for wing chord length (ANOVA
p<0.01), secondary length (ANOVA p<0.01), tarsus length (ANOVA p<0.01), and tail length
(ANOVA p<0.05). For this reason, I analyzed males and females independently. The dataset for
this family consisted of 11 species (two Malagasy and nine source species; 33 specimens; Table
4). The principal component analysis resulted in eight axes of which, the first three explained
more than 95% of the variation in males and females (Fig. 27; Table 14). There is a significant
difference in the Malagasy and source occupancy of morphospace (Fig. 28). However, only in
males did the centroids of each clade statistically differ (MANOVA p<0.001***_ Fig. 28).
Disparity of source appears to greater than Malagasy, but I did not calculate a statistical value to
confirm this because of low sample size (two or fewer species) in Malagasy clade (Fig. 29). The
first principal component likely reflects body size. HWI2 was weighted heavily in PC2 for males
and in PC2 and PC4 in females (Table 14). There were no significant differences in the means of
HWI2 between Malagasy and source clade in either sex (ANOVA p>0.05, Fig. 30). No other

morphological variables significantly differed between clades in either sex (Table 15).
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Figure 27. Scree plot of the proportion of explained variance for eight principal components in
Nelicurvius (A) males and (B) females. The first four principal components incorporated greater
than 5% variance. Table 14 shows the loadings of these four principal components in each sex.

Table 14. Summary of principal components and their loadings in Nelicurvius. The cumulative
proportion of the first four principal components in males is 96.45% and 96.21% in females.

Males Females
Morphometric ~ PCl1 PC2 PC3 PC4 PCl1 PC2 PC3 PC4
BD -0.289 -0.574 0.159 -0.474 0.301 -0.453 -0.136 0.468
BW -0.407 -0.212  0.004 -0.368 0.408 -0.297  0.178 -0.013
BL -0.360  0.397 -0.235 -0.411 0.380 0.185 0.515 0.292
WL -0.400 0414 0.113  0.070 0396 0390 -0.073 0.158
S1 -0.416  0.255 -0.249 0.143 0.459  0.183  0.067 -0.047
Tar-L -0.351  -0.305 0314 0.46l 0.290 -0.252  -0.709 0.030
Tail-L -0.401  -0.100  0.061 0.440 0.341 0337 -0.236 -0.596
HWI2 0.045 0354 0.860 -0.191 -0.167  0.555 -0.338 0.557
Prop. Of
Variance 59.47% 14.96% 13.71% 8.31% 54.38% 24.27% 11.28% 6.28%
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Figure 28. Principal components analysis of morphometric comparisons between clades in
Nelicurvius (A, B) males and (C, D) females. Each dot represents a single species and is colored
by clade (orange = Malagasy; blue = source); disparity of each group is represented as a minimal
convex polygon of all species in that group. The centroid of each clade is statistically different in
males, but not in females (MANOVA p<0.001***  p>0.05).
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Figure 29. Nelicurvius plot of disparity between clades for (A) males and (B) females. Source
appears to occupy a greater area in morphological space than Malagasy, but I did not calculate a
statistical value of disparity to confirm this because of low sample size in Malagasy clade.
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Figure 30. Boxplot of HWI2 between the Malagasy and source clades of Nelicurvius (A) males
and (B) females. Each dot represents a mean value of individual species’ HWI2. There are no
significant differences in the means of HWI2 between the Malagasy and source clade (ANOVA
p>0.05) in either sex.

Table 15. Summary statistics table of each morphological variable compared between Malagasy
and source clade of Nelicurvius. No significant differences between Malagasy species and source
species were recovered.

MALE FEMALE

Malagasy (n=2) Source (n=9) Malagasy (n=2) Source (n=9)

Trait Mean SD Mean SD Mean SD Mean SD
BD 8.77 1.36 7.52 0.78 8.49 1.29 7.43 0.71
BW 6.26 0.77 6.17 0.46 6.13 0.68 6.08 0.61
BL 17.90 1.56 17.50 2.98 17.00 1.60 | 17.30 3.17
WL 77.40 3.56 | 79.50  10.90 73.40 425| 74.40 10.20
Sl 64.10 246 | 65.00 9.21 61.50 3.51 | 60.70 8.29
Tar-L 17.70 0.85 17.90 2.18 17.00 1.07 | 16.40 1.98
Tail-L 52.70 3.55| 54.60 8.03 49.90 237 | 51.40 8.41
HWI2 17.30 1.27 18.10 4.47 16.20 0.55 18.20 3.76
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Cinnyris notata clade (Nectariniidae)

There were significant differences between sexes for HWI2 (ANOVA p<0.001), wing
chord length (ANOVA p<0.001), secondary length (ANOVA p<0.001), and tail length (ANOVA
p<0.001). For this reason, I analyzed males and females independently. The dataset for this
family consisted of four species (one Malagasy and three source; 13 specimens; Table 4). The
principal component analysis resulted in five axes of which the first two and three explained
more than 97% of the variation in males and females respectively (Fig. 31; Table 16). No
MANOVA or test of disparity was calculated for either sex due to the small sample size of the
clades. Based on visual interpretations of PCA polygons, there does not appear to be a difference
in morphology, but I did not calculate statistical values to confirm this (Fig. 32). The first
principal component likely reflects body size. HWI2 was weighted heavily in PC2 for females,
but not for any principal components in males (Table 16). There are no significant differences in
the means of HWI2 between Malagasy and source clade in either sex (ANOVA p>0.05, Fig. 33).

No other morphological variables significantly differed between clades in either sex (Table 17).
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Figure 31. Scree plot of the proportion of explained variance for five principal components in
Cinnyris notata (A) males and (B) females. The first two principal components for males and
three principal components for females incorporated greater than 5% variance. Table 16 shows
the loadings of their principal components.

Table 16. Summary of principal components and their loadings in Cinnyris notata. The

cumulative proportion of the two principal components in males is 95.54% and three principal

components in females is 97.61%.

95

Males Females
Morphometrics PCl1 PC2 PC3 PCl1 PC2 PC3

BD -0.381 -0.130 -0.599 -0.344 0.148 -0.628

BW -0.369 -0.241 0.572 -0.419 -0.023 0.303

BL -0.390 -0.181 0.355 -0.435 0.063 0.004

WL -0.405 -0.068 -0.210 -0.402 0.298 0.029

S1 -0.397 0.171 -0.136 -0.430 0.080 0.100

Tar-L -0.400 0.118 0.179 -0.369 -0.254 0.326
Tail-L -0.284 0.537 -0.152 -0.169 -0.551 -0.588
HWI2 -0.041 -0.744 -0.261 0.050 0.713 -0.221
Prop. Of Variance 73.64%  21.90% 3.39% 64.17%  22.34%  11.10%
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Figure 32. Principal components analysis of morphometric comparisons between clades in
Cinnyris notata (A, B) males and (C, D) females. Each dot represents a single species and is
colored by clade (orange = Malagasy; blue = source); disparity of each group is represented as a
minimal convex polygon of all species in that group. No MANOVA test was calculated due to
the small sample size of the Malagasy clade for both sexes.
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Figure 33. Boxplot of HWI2 between the Malagasy and source clades of Cinnyris notata (A)
males and (B) females. Each dot represents an individual species’ HWI2 value. There are no
significant differences in the means of HWI2 between Malagasy and source clade (ANOVA
p>0.05) in either sex.

Table 17. Summary statistics table of each morphological variable compared between Malagasy
and source clade of Cinnyris notata. No significant differences between Malagasy species and
source species were recovered.

MALE FEMALE

Malagasy (n=1) Source (n=3) Malagasy (n=1) Source (n=3)

Trait Mean SD Mean SD Mean SD Mean SD
BD 3.86 NA 3.46 0.38 3.99 NA 3.32 0.34
BW 4.41 NA 3.92 0.38 4.22 NA 3.70 0.48
BL 31.80 NA | 24.00 6.09 30.20 NA | 23.50 6.87
WL 69.00 NA | 65.80 5.17 64.40 NA | 58.90 3.74
S1 54.90 NA | 53.70 4.29 53.40 NA | 48.70 3.00
Tar-L 15.30 NA | 14.80 1.43 14.60 NA | 14.40 1.71
Tail-L 52.20 NA | 52.60 7.26 47.10 NA | 44.40 4.17
HWI2 20.50 NA | 18.40 1.96 17.20 NA | 17.20 2.14




98
Cinnyris sovimanga clade (Nectariniidae)

There were significant differences between sexes for bill depth (ANOVA p<0.001), bill
length (ANOVA p<0.001), wing chord length (ANOVA p<0.001), secondary length (ANOVA
p<0.001), tarsus length (ANOVA p<0.05), and tail length (ANOVA p<0.001). For this reason, |
analyzed males and females independently. The dataset for this family consisted of eight species
(one Malagasy and seven source; 28 specimens; Table 4). Of the resulting eight principal
components, the first five and three principal components explained more than 90% of the
variation in males and females (Fig. 34; Table 18). No MANOVA (except for males) or test of
disparity was calculated for either sex due to the small sample size of the clades. The centroid of
each clade did not statistically differ (MANOVA p>0.05) in males (Fig. 35). Based on visual
interpretations of PCA polygons, females appear to not differ in centroids between clades, but I
did not calculate a statistical value to confirm this. Based on visual interpretation, disparity of the
source clade appears to be greater than Malagasy, but I did not calculate a statistical value of
disparity to confirm this due to small sample size in the Malagasy clade (Fig. 35). The first
principal component likely reflects body size. HWI2 was weighted heavily in PC3 for males but
not for any principal components of females (Table 18). There were no significant differences in
the means of HWI2 between Malagasy and source clade in either sex (ANOVA p>0.05, Fig. 36).

No other morphological variables significantly differed between clades in either sex (Table 19).
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Figure 34. Scree plot of the proportion of explained variance for eight principal components in
Cinnyris sovimanga (A) males and (B) females. The first five principal components of males and
three of females incorporated greater than 5% variance. Table 18 shows the loadings of these
principal components.

Table 18. Summary of principal components and their loadings in Cinnyris sovimanga. The
cumulative proportion of the five principal components in males is 97.04% and three principal
components is 90.16% in females.

Males Females

Morphometric  PClI PC2 PC3 PC4 PC5 PCl1 PC2 PC3
BD 20237 0413 -0532 0207 -0.561 20294  0.183 0.898
BW 20319 0490 0262 -0.120 0.470 0337  -0.458 -0.129
BL 20375 0369 -0.162 -0.426 -0.033 20352 -0.224 -0.136
WL 20479  -0.074 0263  0.133  0.002 20415  -0.153 -0.112
S1 20491 -0.188  0.013  0.028 0.139 20418  0.131 -0.187
Tar-L 20290 -0.435 0265 -0.459 -0.511 0.386  0.008 0.113
Tail-L 20362 -0265 -0.084 0.658 0.076 0395 0.172 -0.124
HWI2 0.110 0387 0.688 0311 -0.419 0.147 -0.796 0.285
Prop. OF 4o 4700 10.61% 14.88% 10.06% 5.02%  67.51% 1534% 7.31%

Variance
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Figure 35. Principal components analysis of morphometric comparisons between clades in
Cinnyris sovimanga (A, B) males and (C, D) females. Each dot represents a single species and is
colored by clade (orange = Malagasy; blue = source); disparity of each group is represented as a
minimal convex polygon of all species in that group. The centroid of each clade is not
statistically different (MANOVA p>0.05) in males (no MANOVA is reported for females due to
sample size).
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Figure 36. Boxplot of HWI2 between the Malagasy and source clades of Cinnyris sovimanga (A)
males and (B) females. Each dot represents an individual species’ HWI2 value. There are no
significant differences in the means of HWI2 between the Malagasy and source clade (ANOVA
p>0.05) in either sex.

Table 19. Summary statistics table of each morphological variable compared between Malagasy
and source clade of Cinnyris sovimanga. No significant differences between Malagasy species
and source species were recovered.

MALE FEMALE

Malagasy (n=1) Source (n=7) Malagasy (n=1) Source (n=6)

Trait Mean SD Mean SD Mean SD Mean SD
BD 3.26 NA 3.10 0.23 3.13 NA 2.88 0.23
BW 3.32 NA 3.51 0.21 3.26 NA 3.40 0.34
BL 21.30 NA | 21.10 2.08 20.30 NA | 19.40 1.75
WL 53.80 NA | 55.10 4.10 49.00 NA | 50.70 3.76
Sl 45.60 NA | 46.40 3.68 41.90 NA | 42.70 3.60
Tar-L 13.70 NA | 14.10 0.89 13.20 NA | 13.80 0.87
Tail-L 43.10 NA | 42.70 5.18 37.00 NA | 37.50 4.60
HWI2 15.30 NA | 15.80 2.24 14.40 NA | 15.80 2.42
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Pycnonotidae

There were no significant differences between sexes for any of the morphological
variables. For this reason, I analyzed males and females together. The dataset for this family
consisted of 10 species (one Malagasy and nine source; 25 specimens; Table 4). The first three
principal components explained ~92% of the variation (Fig. 37; Table 20). The centroids of the
two clades do not statistically differ (MANOVA p>0.05, Fig. 38) indicating no substantial
differences in morphology. Disparity of source appears to be greater than Malagasy, but I did not
calculate a statistical value of disparity to confirm this because of low sample size (two or fewer
species) in the Malagasy clade (Fig. 38). The first principal component likely reflects body size.
HWI2 did not weight heavily in this principal component analysis (Table 20). There were no
significant differences in the means of HWI2 between Malagasy and source clade (ANOVA
p>0.05, Fig. 39). No other morphological variables significantly differed between clades (Table

21).
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Figure 37. Scree plot of the proportion of explained variance for eight principal components in
Pycnonotidae. The first three principal components incorporated greater than 5% variance. Table
20 shows the loadings of these three principal components.

Table 20. Summary of principal components and their loadings in Pycnonotidae. The cumulative
proportion of the three principal components is 92.58%.

Morphometric PCl1 PC2 PC3
BD 0.342 0.385 0.229
BW 0.328 0.417 0.117
BL 0.433 0.028 0.196
WL 0.372 -0.366 0.242
S1 0.417 -0.132 0.272
Tar-L 0.368 0.108 -0.828
Tail-L 0.371 -0.323 -0.274
HWI2 0.014 -0.639 0.025

Prop. Of Variance 62.47% 25.05% 5.06%
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Figure 38. Principal components analysis of morphometric comparisons between clades in
Pycnonotidae. Each dot represents a single species and is color coded by clade (orange =
Malagasy; blue = source); disparity of each group is represented as a minimal convex polygon of
all species in that group. The centroid of each clade is not statistically different (MANOVA

p>0.05).
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Figure 39. Boxplot of HWI2 between the Malagasy and source clades of Pycnonotidae. Each dot
represents an individual species’ HWI2 value. There are no significant differences between the
means of HWI2 between Malagasy and source clade (ANOVA p>0.05).
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Table 21. Summary statistics table of each morphological variable compared between Malagasy
and source clade of Pycnonotidae. No significant differences between Malagasy and source
species were recovered.

Malagasy (n=1) Source (n=9)
Trait Mean SD Mean SD
BD 5.94 NA 6.85 0.86
BW 5.01 NA 5.62 0.45
BL 24.70 NA 27.20 1.64
WL 105.00 NA 110.00 10.00
S1 81.00 NA 88.80 6.75
Tar-L 16.80 NA 17.00 1.72
Tail-L 95.90 NA 103.00 9.27
HWI2 22.60 NA 19.30 2.75

Monarchidae

There were significant differences between sexes for wing chord length (ANOVA
p<0.01), secondary length (ANOVA p<0.001), and tail length (ANOVA p<0.001). For this
reason, I analyzed males and females independently. The dataset for this family consisted of nine
species (one Malagasy and eight source; 38 specimens; Table 4). The first three and four
principal components explained more than 93% of the variation in males and females
respectively (Fig. 40; Table 22). For both sexes, there is a significant difference in the Malagasy
and source occupancy of morphospace (Fig. 41). The centroids of the two clades do not
statistically differ (MANOVA p>0.05, Fig. 41) indicating no substantial differences in
morphology for either sex. Disparity of the source clade appears to be greater than Malagasy, but
I did not calculate a statistical value to confirm this because of low sample size (two or fewer
species) in Malagasy clade (Fig. 42). The first principal component likely reflects body size.
HWI2 was weighted heavily in PC3 for males and in PC2 and PC4 for females (Table 22). There

were no significant differences in the means of HWI2 between Malagasy and source clade
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(ANOVA p>0.05, Fig. 43) in either sex. Bill depth, width, and length were significantly greater

in source than Malagasy (ANOVA p<0.05%*) in both sexes (Table 23).
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Figure 40. Scree plot of the proportion of explained variance for eight principal components in
Monarchidae (A) males and (B) females. The first three and four principal components in males
and females incorporated greater than 5% variance. Table 22 shows the loadings of these
principal components.

Table 22. Summary of principal components and their loadings in Monarchidae. The cumulative

proportion of the three principal components in males is 93.15% and four principal components
in females is 96.33%.

Males Females
Morphometrics PCl1 PC2 PC3 PCl1 PC2 PC3 PC4
BD 0.345 -0.321 -0.351 0.372 -0.143 0.560 0.153
BW 0.368 0.235 -0.339 0.418 -0.304 0.128 0.020
BL 0.383 0.269 -0.345 0.417 -0.190 0.162 0.083
WL 0.429 -0.002 0.163 0.408 0.361 -0.108 0.122
S1 0.422 0.109 -0.040 0.430 -0.071 -0.135  -0.290
Tar-L 0.075 0.780 0.392 0.141 -0.448 -0.681 0.489
Tail-L 0.371 -0.286 0.308 0.326 0.268 -0.383  -0.585
HWI2 0.300 -0.254 0.603 0.180 0.664 -0.034 0.535

Prop. Of
Variance 064.34% 15.83% 12.98% 57.38% 18.35% 12.04%  8.56%
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Figure 41. Principal components analysis of morphometric comparisons between clades in
Monarchidae (A, B) males and (C, D) females. Each dot represents a single species and is
colored by clade (orange = Malagasy; blue = source); disparity of each group is represented as a
minimal convex polygon of all species in that group. The centroid of each clade is not
statistically different (MANOVA p>0.05) in either sex.
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Figure 42. Monarchidae plot of disparity between clades for (A) males and (B) females. Source
appears to occupy a greater area in morphological space than Malagasy, but I did not calculate a
statistical value of disparity to confirm this because of low sample size in Malagasy clade.
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Figure 43. Boxplot of HWI2 between the Malagasy and source clades of Monarchidae (A) males
and (B) females. Each dot represents an individual species’ HWI2 value. There are no significant
differences in the means of HWI2 between Malagasy and source clade (ANOVA p>0.05) in
either sex.
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Table 23. Summary statistics table of each morphological variable compared between Malagasy
and source clade of Monarchidae. Bill shape was significantly different between the two clades
in males and females. Significant differences between clades that were uncovered using an
ANOVA are shown in bold and asterisk with an M and/or F indicating which sex the trait
significantly differed in.

MALE FEMALE

Malagasy (n=1) Source (n=8) Malagasy (n=1) Source (n=8)

Trait Mean SD Mean SD Mean SD Mean SD
BD*MF 4.27 0.02 5.16 0.55 4.05 0.07 5.05 0.59
BW#*MF 544  <0.01 6.57 0.60 5.25 0.15 6.30 0.51
BL*MF 16.20 0.07 | 20.20 2.41 15.50 0.14 | 19.00 1.65
WL 76.00 0.56 | 85.00 7.40 72.40 1.34 | 79.70 6.22
S1 62.60 0.84 | 69.00 4.62 60.30 255 64.70 3.44
Tar-L 13.30 0.70 | 14.00 0.85 13.00 0.49 | 13.70 1.44
Tail-L 86.80 3.89 | 106.00 17.60 79.60 5.87| 88.70 9.53
HWI2 17.60 0.56 | 18.70 2.53 16.70 1.98 18.60 4.10




CHAPTER 4
INVESTIGATING VARIATION IN DISPERSAL ABILITY IN WIDESPREAD SPECIES
MACROHABITATS
Summary and discussion of results of objective 2

The second goal of this study was to examine variation in dispersal ability associated
with the three macrohabitats of Madagascar. I investigated widespread Malagasy species and
their subspecies restricted to habitat types — East (E; closed wet forest), West (W; closed dry
forest), and Southwest (SW; open spiny desert). In this chapter, I treated each species occupying
more than one of three macrohabitats in the island as an independent case study to identify
whether there was an overall pattern of morphological differentiation in response to ecological
variation across Madagascar.

The detailed results from my analyses of each widespread species are below. In
summary, my results indicate that some Malagasy species exhibit local adaptation while others
do not (Table 24). When analyzing all eight morphological variables in a multivariate
framework, two of my case studies (Schetba rufa, Coua ruficeps) showed no significant
differences in morphospace occupancy between macrohabitats (Fig. 45; Fig. 51), while the other
two case studies (Coua cristata, Terpsiphone mutata) showed significant differences in
morphospace occupancy between macrohabitats (Table 24). Coua cristata has populations in all

three macrohabitats, but only the SW was distinctly separated from the E and W, which
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overlapped in morphospace (Fig. 48; Table 24). Terpsiphone mutata has subspecies in the W

and E that were separated in morphospace (Fig. 54; Table 24).

Hand-wing index 2 differed significantly between macrohabitats in three of my four case
studies (Table 24). The SW populations of Coua ruficeps had a significantly greater HWI2 than
W (Fig. 52). Coua cristata had a significantly greater HWI2 in the SW population than E or W
populations. HWI2 did not differ between populations of Coua cristata living in closed (E or W)
habitat classes (Fig. 48). Terpsiphone mutata had a significantly greater HWI2 in the W
population than E (Fig. 55). However, in contrast to the results of Terpsiphone mutata, Schetba
rufa did not significantly differ in HWI2 between W and E macrohabitats (Fig. 46). In all four
cases, other morphological trait(s) significantly differed between macrohabitats supporting the
idea that these traits evolved in response to local conditions (Table 24).

The results of my study provide support for differential dispersal ability evolving in open
versus closed habitats. In particular, forest had lower HWI2 than the SW spiny desert. In a study
of the Galapagos medium ground finch (Geospiza fortis) populations of this species similarly
varied in their wing aspect ratios (HWI2 is a simple index of aspect ratio) according to open arid
versus closed humid habitats (Vanhooydonck et al., 2009). A global study of avian dispersal
ability recently found that across all birds, high HWI is associated with open habitats, this
finding is still supported when comparisons of habitat type are restricted to passerines alone
(Sheard et al., 2020). It is interesting that dispersal ability evolves differently for birds in open
versus closed habitats and this pattern is consistent whether compared at a global scale or at a
local scale of the populations within a species.

The results of this study highlighted that within widespread species there are significant

morphological differences between populations restricted to these macrohabitats. These
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populations that are morphologically diverging in different habitats could potentially be different

species. The phylogenetic relationships of Coua still remain unclear (Johnson et al., 1999) and
populations within widespread species have not been tested for genetic divergence. To test if
these morphologically distinct populations of a widespread species are indeed unrecognized new
species, DNA samples of each population should be sequenced and compared. The results of my
study highlight the need for additional phylogenetic studies of widespread species populations
because the true biodiversity of birds in Madagascar is likely underestimated. Understanding the
true biodiversity in each of these macrohabitats is of upmost importance as deforestation in
Madagascar is an ever-growing concern and little is known about these species ability to adapt or
persist in fragmented habitats.

Future research should focus on studying these lineages via ecological niche modeling
with factors such as foraging behavior, foraging strata, elevational data, precipitation, and diet
accounted for as influencing variables. The role of micro-habitats, habitat patchiness, and
elevational variability may reveal more fine-scale patterns. Additional case studies of widespread
species with populations in the W and E should be sampled to further understand and clarify
whether there is a general pattern of populations evolving differently between the closed forest
macrohabitats of the W and E. There are research opportunities to see if my findings of
morphological divergence of widespread species populations in different macrohabitats is

similarly observed in mammals, reptiles, or bats in Madagascar.
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Table 24. Summary of Chapter 4 results for each widespread species. Within each widespread
species I compared the morphometric data of their populations restricted to macrohabitats. For

MANOVA, significant differences in the centroids between macrohabitat populations is marked
‘SW "= W 7= E’ with a p-value.

Multivariate Univariate

Widespread species MANOVA HWI2 Sig. morphometrics
wing chord length (p<0.05)
Schetba rufa p>0.05 p>0.05 tail length (p<0.001)
bill length (p<0.01)
SW A=W "=E wing chord length (p<0.001)
Coua cristata (p<0.01) | p<0.001 secondary length (p<0.001)
bill depth (p<0.05)
Coua ruficeps — p<0.05 tail length (p<0.05)
Terpsiphone mutata — p<0.05 tarsus length (p<0.01)

Details of results by species

Vangidae Schetba rufa

In Schetba rufa, 1 compared Schetba r. occidentalis (W) and Schetba r. rufa (E; five
specimens for each subspecies; Table 26). The first five principal components (Fig. 44)
explained ~95% of the variation (Table 25). There were no significant differences in the W and E
occupancy of morphospace (MANOVA p>0.05, Fig. 45). HWI2 had the highest weighting in
PC3 loadings contributing substantially to variation explained by this PC (Table 25). There were
no significant differences in the means of HWI2 between the W and E (ANOVA p>0.05, Fig.
46). The wing chord length and tail length of the W subspecies was significantly greater than E

(p<0.05, p<0.001; Table 26).
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Figure 44. Scree plot of the proportion of explained variance for eight principal components in
Schetba rufa subspecies. The first five principal components incorporated greater than 5%
variance. Table 25 shows the loadings of these five principal components.

Table 25. Summary of principal components and their loadings in Schetba rufa subspecies. The
cumulative proportion of the five principal components is 95.68%. Abbreviations are as follows
(BD= bill depth, BW= bill width, BL= bill length, WL= wing chord length, S1= secondary
length, Tar-L= tarsus length, Tail-L = tail length, HWI2= hand-wing index 2).

Morphometrics PCl1 PC2 PC3 PC4 PC5
BD <0.001 0.556 0.097 -0.031 0.758
BW 0.047 0.632 0.031 0.036 -0.142
BL -0.328 0.403 -0.002 0.581 -0.454
WL -0.551 -0.121 0.133 0.012 0.145
S1 -0.416 0.030 -0.548 -0.166 0.069
Tar-L -0.345 0.216 0.317 -0.739 -0.316
Tail-L -0.535 -0.206 -0.021 0.211 0.256
HWI2 -0.077 -0.149 0.754 0.199 0.071

Prop. Of Variance 35.14% 27.11% 19.60% 7.48% 6.35%
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Figure 45. Principal components analysis of morphometric comparisons between subspecies
macrohabitats in Schetba rufa. (A) Plot of PC1 vs. PC2 (B) Plot PC2 vs. PC3. Each dot
represents a single specimen and is colored by macrohabitat (orange = E, blue = W); polygons
were drawn as a minimum convex of all specimens in that macrohabitat. The centroid of each

macrohabitat is not statistically different (MANOVA p>0.05).
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Figure 46. Boxplot of HWI2 between the subspecies of Schetba rufa inhabiting E and W. Each
dot represents an individual specimens’ HWI2 value. There are no significant differences in the
means of HWI2 between the W and E (ANOVA p>0.05).
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Table 26. Summary statistics table of each morphological variable compared between E and W
subspecies of Schetba rufa. Only wing chord length and tail length were significantly different
between the two subspecies with W being greater. Significant differences between macrohabitats
that were uncovered using an ANOVA are shown in bold and asterisk.

West (n=5) East (n=5)

Trait Mean SD Mean SD
BD 8.23 0.48 8.23 0.70
BW 6.59 0.24 6.78 0.45
BL 25.00 1.12 23.80 0.92
WL* 105.00 2.18 101.00 2.61
S1 85.10 3.71 83.00 2.43
Tar-L 21.60 0.69 21.20 0.82
Tail-L*** 90.60 3.53 79.00 2.70
HWI2 19.30 3.47 17.60 1.38

Cuculidae Coua cristata

In Coua cristata, 1 compared Coua c. cristata (E), Coua c. dumonti (W), and Coua c.
pyropyga (SW; four specimens in SW and five specimens each in W and E; Table 28). The first
four principal components explained ~93% of the variation (Fig. 47; Table 27). There were
significant differences in the occupancy of morphospace between these macrohabitats
(MANOVA p<0.01, Fig. 48). The SW occupied a distinct region of morphospace from the E and
W, which shared a similar region of morphospace. HWI2 had the highest weighting in PC3
loadings contributing substantially to variation explained by this PC (Table 27). There were
significant differences in the means of HWI2 between macrohabitats overall (ANOVA p<0.001,
Fig. 49). The HWI2 mean of the SW was significantly greater than E or W (pairwise t-tests:
psw.e<0.001, psw,w<0.01). There were no significant differences in the means of HWI2 between
E and W (pairwise t-test pg,w>0.05). Similarly, the wing chord length and secondary length were

significantly greater in the SW population than E or W (p<0.001) with no differences between E
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and W. Bill length was significantly greater in the E than W (p<0.01; Table 28), but neither E or

W differed from SW.
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Figure 47. Scree plot of the proportion of explained variance for eight principal components in
Coua cristata subspecies. The first four principal components incorporated greater than 5%
variance. Table 27 shows the loadings of these four principal components.

Table 27. Summary of principal components and their loadings in Coua cristata subspecies. The
cumulative proportion of the four principal components is 93.45%.

Morphometrics PCl1 PC2 PC3 PC4
BD -0.051 -0.553 -0.305 -0.344
BW 0.088 -0.613 -0.108 0.314
BL 0.070 0.080 -0.869 -0.106
WL -0.530 <-0.001 -0.002 -0.221
S1 -0.508 0.056 -0.095 -0.192
Tar-L -0.280 0.438 -0.317 0.461
Tail-L -0.370 -0.321 0.006 0.644
HWI2 -0.478 -0.110 0.169 -0.239

Prop. Of Variance 42.42% 27.18% 15.10% 8.75%
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Figure 48. Principal components analysis of morphometric comparisons between subspecies
macrohabitats in Coua cristata. (A) Plot of PC1 vs. PC2 (B) Plot PC2 vs. PC3. Each dot
represents a single specimen and is colored by macrohabitat (orange = E; blue = W; green =
SW); polygons were drawn as a minimum convex of all specimens in that macrohabitat. The
centroids of the macrohabitats were statistically different (MANOVA p<0.01**).
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Figure 49. Boxplot of HWI2 between the subspecies of Coua cristata inhabiting the E, SW, and
W macrohabitats. Each dot represents an individual specimens” HWI2 value. There were
significant differences in the means of HWI2 between the macrohabitats (ANOVA p<0.001%**%*),
The HWI2 mean of the SW was significantly different from E or W, but there were no
differences between E and W (pairwise t-tests: psw,g<0.001***  psw w<0.01**, pg w>0.05).
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Table 28. Summary statistics table of each morphological variable compared between
macrohabitats of Coua cristata subspecies. HWI2, bill length, wing chord length, and secondary
length all significantly differed between macrohabitats. HWI2, wing length, and secondary
length were all significantly greater in SW than E or W, but did not differ between E and W. Bill
length was significantly greater in the E than W but did not differ otherwise. Significant
differences between macrohabitats that were uncovered using an ANOVA are shown in bold and
asterisk.

Southwest (n=4) West (n=4) East (n=5)

Trait Mean SD Mean SD Mean SD
BD 9.62 0.29 9.33 0.27 9.70 0.56
BW 7.89 1.16 8.02 0.54 8.47 1.28
BL** 23.20 0.54 22.40 1.37 24.90 0.77
WL *** 161.00 5.20 132.00 3.39 132.00 2.50
S1##* 141.00 5.19 123.00 2.32 125.00 2.78
Tar-L 33.90 2.63 30.00 1.24 31.80 3.53
Tail-L 216.00 15.10 203.00 3.06 203.00 5.19
HWI2*** 12.30 2.55 6.83 0.74 5.91 1.22

Cuculidae Coua ruficeps

In Coua ruficeps, 1 compared Coua r. olivaceiceps (SW) and Coua r. ruficeps (W; five
specimens for SW and four for W; Table 30). The first five principal components explained
~98% of the variation (Fig. 50; Table 29). No MANOVA test was reported due to a residual rank
issue. There appears to be no significant difference in morphospace occupancy of the SW and W
populations as they occupy similar regions of morphospace, but I do not have a statistical value
to confirm their centroids are similar. The only separation in morphospace between
macrohabitats is observed in the PC1 axis (Fig. 51). HWI2 had the highest weighting in PC1
loadings (Table 29). The HWI2 of the SW was significantly greater than W (ANOVA p<0.05,
Fig. 52). Tail length was significantly greater in the SW population than W (ANOVA p<0.05).

Bill depth was significantly greater in the W than SW (ANOVA p<0.05; Table 30).
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Figure 50. Scree plot of the proportion of explained variance for eight principal components in
Coua ruficeps subspecies. The first five principal components incorporated greater than 5%
variance. Table 29 shows the loadings of these five principal components.

Table 29. Summary of principal components and their loadings in Coua ruficeps subspecies. The
cumulative proportion of the five principal components is 98.07%.

Morphometrics PCl1 PC2 PC3 PC4 PC5
BD -0.523 0.022 -0.056 0.165 0.142
BW -0.482 -0.300 -0.036 -0.140 0.159
BL -0.406 -0.192 0.413 0.350 0.371
WL 0.018 -0.559 -0.428 -0.359 0.157
S1 -0.388 0.141 -0.570 -0.146 -0.189
Tar-L 0.093 0.510 -0.121 -0.311 0.785
Tail-L 0.243 -0.088 -0.529 0.751 0.237
HWI2 0.330 -0.520 0.142 -0.128 0.287

Prop. Of Variance 39.82% 25.81% 16.98% 8.42% 7.04%
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Figure 51. Principal components analysis of morphometric comparisons between subspecies
macrohabitats in Coua ruficeps. (A) Plot of PC1 vs. PC3 (B) Plot PC2 vs. PC4. Each dot
represents a single specimen and is colored by macrohabitat (blue = W; green = SW); polygons
were drawn as a minimum convex of all specimens in that macrohabitat. No MANOVA test was

reported due to a residual rank issue.
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Figure 52. Boxplot of HWI2 between the subspecies of Coua ruficeps inhabiting the SW and W
macrohabitats. Each dot represents an individual specimens’ HWI2 value. There are significant
differences in the means of HWI2 between the SW and W (ANOVA p<0.05%).
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Table 30. Summary statistics table of each morphological variable compared between
macrohabitats occupied by subspecies of Coua ruficeps. Tail length and HWI2 were significantly
greater in SW than W, but bill depth was greater in W compared to SW. Significant differences
between macrohabitats that were uncovered using an ANOVA are shown in bold and asterisk.

Southwest (n=5) West (n=4)

Trait Mean SD Mean SD
BD* 9.74 0.40 10.40 0.42
BW 8.12 0.99 9.03 0.60
BL 27.80 1.53 28.70 0.87
WL 164.00 4.78 161.00 5.59
S1 148.00 5.82 154.00 1.91
Tar-L 44.20 3.81 45.50 0.32
Tail-L* 221.00 34.40 167.00 6.95
HWI2* 9.44 341 4.39 2.55

Monarchidae Terpsiphone mutata

In Terpsiphone mutata, I compared Terpsiphone m. mutata (E) and Terpsiphone m.
singetra (W; five specimens for each subspecies; Table 32). The first four principal components
explained ~93% of the variation (Fig. 51; Table 31). No MANOVA test was reported due to a
residual rank issue. There appears to be a significant difference in morphospace occupancy of the
W and E populations as they overall occupy distinct regions of morphospace, but due to a
residual rank issue I cannot confirm their centroids statistically differ (Fig. 54). HWI2 had the
highest weighting in the loadings of PC2 contributing substantially to variation explained by this
PC (Table 31). There HWI2 of the W was significantly greater than the E macrohabitats
(ANOVA p<0.05, Fig. 55). Tarsus length was significantly greater in the E population than W

(ANOVA p<0.01; Table 32).
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Figure 53. Scree plot of the proportion of explained variance for eight principal components in
Terpsiphone mutata subspecies. The first four principal components incorporated greater than
5% variance. Table 31 shows the loadings of these four principal components.

Table 31. Summary of principal components and their loadings in Terpsiphone mutata
subspecies. The cumulative proportion of the four principal components is 93.08%.

Morphometrics PCl1 PC2 PC3 PC4
BD -0.328 0.206 -0.571 0.550
BW -0.299 0.350 -0.449 -0.487
BL -0.496 0.012 -0.077 <0.001
WL -0.468 -0.250 0.210 -0.032
S1 -0.356 -0.459 0.066 0.140
Tar-L -0.197 -0.522 -0.113 -0.400
Tail-L -0.319 0.256 0.531 0.350
HWI2 -0.262 0.470 0.349 -0.394

Prop. Of Variance 43.03% 30.10% 14.77% 5.18%
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Figure 54. Principal components analysis of morphometric comparisons between subspecies
macrohabitats in Terpsiphone mutata. (A) Plot of PC1 vs. PC2 (B) Plot PC2 vs. PC3. Each dot
represents a single specimen and is colored by macrohabitat (orange = E; blue = W); polygons
were drawn as a minimum convex of all specimens in that macrohabitat. No MANOVA test was

reported due to a residual rank issue.
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Figure 55. Boxplot of HWI2 between the subspecies of Terpsiphone mutata inhabiting the E and

W macrohabitats. Each dot represents an individual specimens’ HWI2 value. There are
significant differences in the means of HWI2 between macrohabitats (ANOVA p<0.05%).
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Table 32. Summary statistics table of each morphological variable compared between
macrohabitats occupied by subspecies of Terpsiphone mutata. HWI2 was significantly greater in
W than E, but tarsus length was significantly greater in E than W. Significant differences
between macrohabitats that were uncovered using an ANOVA are shown in bold and asterisk.

West (n=5) East (n=5)

Trait Mean SD Mean SD
BD 4.18 0.18 4.15 0.26
BW 541 0.06 5.29 0.35
BL 15.90 0.59 16.00 0.86
WL 73.90 2.36 75.40 3.26
S1 60.60 2.01 63.10 1.95
Tar-L** 12.80 0.36 13.60 0.36
Tail-L 87.20 4.20 80.30 6.40

HWI2* 18.00 0.83 16.30 1.20




CHAPTER 5
CONCLUSION

In this study, I focused on whether dispersal ability, as measured by hand-wing index 2,
influenced diversification in the birds of Madagascar at a large regional scale and smaller local
scale within Madagascar. The first objective of my study (chapter 3) assessed whether dispersal
ability (HWI12) influenced diversification of the birds of Madagascar by comparing hand-wing
index 2 of the Malagasy and source clades of radiating and non-radiating lineages. The second
objective of my study (chapter 4) investigated dispersal ability, at a smaller local scale of
macrohabitats within Madagascar, to examine whether variation in dispersal ability (HWI2)
within widespread Malagasy species differed between populations restricted to macrohabitats
reflecting local adaptation and divergence across macrohabitats.

When comparing between Malagasy and source clades, my study showed that Malagasy
species did not shift in their dispersal ability after colonizing Madagascar. Dispersal ability (as
estimated by HWI2) is not critical to the diversification of Malagasy endemics from source
clade, in radiating or non-radiating lineages.

However, when examining variation in dispersal ability at a smaller local scale of
Malagasy macrohabitats, three out of four case studies had significant differences in hand-wing
index 2 between the macrohabitats and habitat classes of subspecies on Madagascar. In these
cases, it is likely that this morphological change is due to local adaptations to macrohabitats. In

particular, the results of this study support dispersal ability evolving differently in open (SW)
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versus closed (W or E) habitat classes. However, HWI2 was not the only trait contributing to

morphological diversification across macrohabitats and habitat classes. Traits such as tail length,
bill length, bill depth, and tarsus length significantly differed between macrohabitats further
supporting the idea these traits evolved in response to local conditions.

This study adds to our knowledge of dispersal ability and diversification patterns in
Malagasy avifauna. My study contributed to the growing field of research investigating the
relationship of avian dispersal ability and diversification such as in a South American radiation
of woodcreepers (Claramunt et al., 2012), multiple families in the Australasian archipelagos
(Weeks and Claramunt, 2014), and Corvides (Kennedy et al., 2016) using museum specimen
collections; further emphasizing the importance and ongoing contribution museum specimen
collections provide. This is the first study to investigate Malagasy endemic birds’ dispersal
ability (HWI2) in the context of phylogeny at a broad continental scale and smaller local scale of
macrohabitats. In particular, dispersal ability has not been studied in populations of widespread
Malagasy species categorized by their macrohabitats. This study also contributed a large
morphometric data set to an ongoing large-scale research project investigating phylogeographic
structure of Madagascar avifauna across habitats (Reddy Lab). The results of my study agree
with another study in the Reddy lab that concluded there is evidence of sexual dimorphism
(Bonfitto in prep.). The Malagasy vangas are a truly remarkable radiation with considerable
morphological variation yet they are still overlooked in recent publications discussions despite
being sampled (Navalon et al., 2020), a missed opportunity. The methods of this study can be
applied to other studies of isolated large islands, macrohabitats, and lineages of birds (Claramunt

and Wright, 2017). I do not believe the dispersal ability results of my first objective (chapter 3)
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are generalizable to other islands because of the unique size and habitat richness of Madagascar.

My data suggests that the results of dispersal ability and macrohabitats in this study are
generalizable to other avian species within Madagascar.

My findings of populations of widespread species diverging in different macrohabitats
highlights the possibility of potential new species and the need for additional phylogenetic
studies to test this. This is a leading step towards additional studies to investigate the impact of
potential geographic barriers to dispersal ability in the birds of this region and could provide
further insights into diversification patterns. In particular, studies of the effectiveness of rivers as
barriers to dispersal ability in species could be insightful. Rivers have been known to act as
effective barriers to some birds in South America (Moore et al., 2008), but we do not know for
certain how effective they are within Madagascar. Furthermore, over the past 50 years
deforestation and habitat fragmentation in Madagascar has become a growing threat (Harper et
al., 2007). Little is known about the Madagascan birds’ minimum habitat patch size
requirements and their ability to adapt to these environmental changes. Previous and recent
global studies have found species on islands and/or tropical habitats near the equator have greater
difficulty overcoming habitat gaps and barriers (Moore et al., 2008; Bregman, Sekercioglu, and
Tobias, 2014; Sheard et al., 2020). In my study, I found the Malagasy vangas have broad
variation in HWI2 and thus, their potential ability to overcome barriers such as habitat gaps.
Future research should be conducted to understand the effects of habitat fragmentation on gene
flow among populations of these endemic species, phenotypic adaptations, and impact on

biodiversity.
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