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ABSTRACT 

Traditional switching and routing have been very effective for network packet delivery 

but does create some constraints. For example, all packets from a given source to a given 

destination must always take the same path. Within a traditional Ethernet network, a tree 

topology must be used. 

Software-Defined Networking (SDN) has the potential to bypass this tree-topology 

limitation by placing the control of the switches and their forwarding tables under a central 

device called a controller. SDN also allows for sets of controllers. The controller can identify 

individual network flows and issue commands to the switches to, in effect, assign individual 

flows to specific paths. This allows different flows between the same source and destination to 

take different paths. 

In this project we use SDN to assign TCP connections to specific paths through a 

network. Different connections between the same pair of endpoints can be assigned different 

paths. Different directions of the same TCP connection (different TCP "flows") can be assigned 

different paths. Paths are chosen by the controller, with full knowledge of the network topology, 

so there is no need for restrictions on topological loops. 

Unlike with Ethernet link aggregation, our approach does not require that the propagation 

delays on different links are equal, or even are similar. Each TCP flow gets a single path, which 

eliminates link-related packet reordering.
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One application of this is to achieve static load balancing. We create a specific topology 

in which there are multiple "trunk lines" between two host clusters; we can then spread the traffic 

load between the two host clusters evenly over the trunk lines. 

We are also able to achieve dynamic load balancing by periodically reassigning the TCP 

flows to different paths through the trunk lines. This distributes the traffic evenly over the trunk 

lines. For this portion of the project we assumed that individual TCP connections were rate-

limited, with the rate varying with time, so we could measure the per-connection bandwidths and 

assume these values would remain in effect for a reasonable interval. 

We create the networks and switches using the Mininet emulation environment. 
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CHAPTER I 

INTRODUCTION 

Traditional switching and routing have been very effective for network packet delivery 

but does create some constraints. For example, all packets from a given source to a given 

destination must always take the same path. Within a classic Ethernet network, a tree topology 

must be used. 

Software-Defined Networking (SDN) has the potential to bypass this tree-topology 

limitation by placing the control of the switches and their forwarding tables under a central 

device called a controller. SDN also allows for sets of controllers. The controller can identify 

individual network flows and issue commands to the switches to, in effect, assign individual 

flows to specific paths. This allows different flows between the same source and destination to 

take different paths. 

In this project we explore ways to arrange for traffic between two node clusters to be 

spread over multiple trunk lines, in which different connections are usually assigned different 

paths. The technique we use is to assign each individual flow between two nodes to a specific 

path, using OpenFlow software-defined networking. The OpenFlow specifications are currently 

managed by the Open Networking Foundation, opennetworking.org.  

We create a network topology with three sections: an “upper” cluster of N hosts and 

switches, a similar “lower” cluster, and a set of K trunk lines connecting the two (see Figure 1). 
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This models two network clusters joined by multiple trunk lines, so that traffic between 

the clusters can potentially travel over any of the trunk lines. This topology made identification 

of alternative paths straightforward. One direction for future work is to identify “trunk path” 

candidates from an arbitrary network, and then to apply our multitrunk mechanism to those trunk 

paths. 

Each host in our topology is connected directly to its own “host switch”. The upper host 

switches connect, via a complete interconnection graph, to the upper trunk switches, and 

similarly for the lower host switches and lower trunk switches. The upper and lower trunk 

switches are connected, in pairs, by the trunk lines. 

We then use Software Defined Networking, and in particular Open Flow, to route 

individual TCP flows over a specific trunk line. This allows for different flows to take different 

paths and enables a static form of load balancing. 

In our simplest version, flows are assigned to one of the available paths using a round-

robin approach; flow 1 is assigned to path 1, flow 2 to path 2, etc. If there are, for example, three 

paths, then flow 3 will be assigned to path 3 and flow 4 will be assigned to path 1. 

Reverse flows do not need to follow the same path as forward flows, and, in fact, we have all 

reverse flows use trunk 1 (path 1).  

That the flows are traveling along the intended paths can be verified both by using 

tcpdump on intermediate switch nodes, to observe the traffic, and also by using the ovs-ofctl

utility which lists, for each switch, the flows as seen by that switch. We give an example of 

interpreting ovs-ofctl output below.
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In a later version, we monitor each flow for its average bandwidth utilization, and then, at 

time intervals, reassign flows to paths based on their most recent usage so as to divide traffic 

among the trunk lines into reasonably equal shares. For this portion of the project we assumed 

that individual TCP connections were rate-limited, with the rate varying with time, so we could 

measure the per-connection bandwidths and assume these values would remain in effect for a 

reasonable interval. We were then able to observe the reassignment of flows to paths as the flow 

rates varied with time.  

We create the networks and switches using the Mininet emulation environment. 

Overview of our Network 

We choose a specific topology in which there are a fixed number of “trunk” paths (lines) 

between two clusters of nodes. While most of the techniques here apply to general topologies, it 

can be difficult to calculate the set of all paths between pairs of nodes, so we standardize on one 

particular topology. 

Our topology consists of 2N hosts divided into two clusters of N hosts each, and K trunk 

lines between the two clusters. This is related to the “doublebell” topology in which two clusters 

of hosts are joined by a single link. Usually we chose N=5 and K=3, making 10 hosts, 16 

switches and 3 trunks. We used only one controller. Five hosts and five host switches are in the 

upper side of the network, while another five hosts and five host switches are in the lower side of 

the network. There are six trunk switches connected to the trunks, three in each side.  

There is no assumption that the trunk links are in any way similar. They need not have 

similar propagation delays, they need not have similar MTUs, and their endpoints (eg s1, s2 and 

s3) need not be geographically close. As long as OpenFlow can forward packets along the trunk 
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links, they need not all even be Ethernet. In particular, there is no assumption that the trunk links 

can be aggregated at the Ethernet layer. 

Host names start with the letter h, followed by a number. Within Mininet, switch names 

start with the letter s followed by a number, known within Mininet as the switch “dpid”; in the 

diagram below, only the DPID number is shown. The controller is referred to by the letter c. The 

hosts names start from the first host which is h1; the situation is the same for the switches. 

Switch numbering starts with the six switches which are connected to the trunks from each. The 

switches names will depend on N and K in the lower and upper side of the trunks. For the upper 

side the host switches are 2K+1 to 2K+N and the trunk switches are 1 to K, for the lower side the 

host switches are 2K+N+1 to 2K+2N and the trunk switches are K+1 to 2K. Controller c is for 

all switches. 
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Figure 1. Multitrunk Topology. 
Trunks are S1-S4, S2-S5 and S3-S6. 

The blue trunks S2-S5 and S3-S6 are used only for assigned flows. 
All management traffic (ARP and ICMP) takes S1-S4. 

Some switches, in particular those shown with black circles in the diagram above, will 

behave at least partly as learning switches. The blue switches will receive traffic only when the 

controller c has assigned a flow to a path through that switch. 

A TCP flow is one direction of a TCP connection. 

1 32

9 111087

h1 h2

4 65

14 15 16
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h3 h4 h5
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Here is the basic strategy for handling a new TCP connection from the upper cluster, say, 

to the lower cluster. It is implemented in the SDN controller: 

• Choose a trunk link, based on current traffic patterns. A simple choice is to select trunks 

according to round-robin scheduling. 

• Determine the full path from the source node to the destination node, utilizing the selected 

trunk link. In our setting, knowing the host-facing switches and the trunk effectively 

determines the path.  

• Create the reverse path, if necessary. In our work, we chose to have reverse traffic always use 

the s1−s4 trunk, partly because the reverse flow carried only ACKs, and partly to 

demonstrate that having the two flows of a TCP connection be routed separately was entirely 

feasible. 

• Issue the necessary OpenFlow commands to the switches along the paths so that traffic for 

this particular new TCP connection is forwarded along these paths. We always issued these 

commands from the far end of the path towards the front, so, in principle, once a switch had 

the flow entries for a TCP connection, all downstream switches would already be configured. 

The idea was to avoid having switch A know about a connection and so forward the packets 

to switch B, which would not yet have any idea what to do with the packets. In practice, 

thread race conditions and communications delays meant this situation was not completely 

avoidable. 

We are now ready to outline our multitrunk.py POX program, which assigns TCP flows 

to one of the available trunk lines in our topology. We will return to further details, below, in 

Section Basic multitrunk: Assigning Connections to Trunks. The trunk line assigned to a TCP 



7 
 

  

flow is chosen in round-robin fashion. Only flows from top to bottom are handled this way; the 

reverse flows from bottom to top all are sent through the trunk s4 − s1. This corresponds to the 

idea that bulk data traffic is from top to bottom; the reverse flows are small and may carry 

nothing but ACKs.  

Each individual TCP flow will have an OpenFlow match rule specifying 

• The source and destination Ethernet addresses 

• The source and destination IP addresses 

• The source and destination TCP port numbers 

These OpenFlow rules will be installed in each switch on the path. Once a TCP 

connection is made, and the OpenFlow rules are installed, then traffic for that connection will not 

be looked at further by the controller.  

Much of the code here is specific to our topology, but it generalizes in a straightforward 

way to other topologies with multiple “trunk routes” from one cluster of nodes to another.  

Matching on both source and destination is necessary so that each TCP flow can be routed 

individually; matching on destination only would force all flows to the same destination to take 

the same path. Including match rules for the Ethernet addresses is not strictly necessary. 

One of the problems to be solved is the network-discovery problem. Switches discover 

their immediate neighbor switches, and the ports by which these immediate neighbors are 

reached, through a special discovery protocol modeled after the spanning-tree protocol. This runs 

as a separate phase, before data traffic is allowed. This does not help, however, with discovering 

the host neighbors a given switch has, and the ports, as hosts cannot be required to participate in 

a discovery protocol. We solved this problem by using ARP queries. Normally, ARP queries 
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simply identify the destination Ethernet address, given the IP address, but we were able to 

leverage that process to obtain information about the host relationship to the switches as well. 

Host ARP queries and responses are used to identify the switch to which the host connects.  

Because ARP traffic (and ICMP traffic) is not assigned a specific path, we created a spanning 

tree and restricted ARP and ICMP traffic to that spanning tree. ARP traffic cannot be assigned a 

path, the way TCP connections are, as the full information needed to construct such paths is not 

available until after the ARP exchange has completed. 

The OpenFlow switches we are using can be programmed to forward packets based on 

any of the following: 

• Destination MAC address 

• Source MAC address 

• Destination or source IP addresses 

• Destination or source TCP ports 

[10]. Classical Ethernet switches would forward traffic only on the destination MAC 

address. With the OpenFlow functionality above we can create separate forwarding rules for 

each individual TCP flow. The two flows making up a TCP connection can be forwarded to take 

different paths. 

The three trunk lines of Figure 1 are visually parallel, and this may suggest that the trunks 

can be aggregated at the Ethernet layer. However, not only can the trunks have different 

propagation delays and different MTUs, as described above, but the trunks do not necessarily 

have to be “parallel” in any practical sense. For example, our basic techniques would apply to the 
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following network, with four host clusters and four trunk lines. TCP connections from cluster 1 

to cluster 3 can be routed via trunk1−trunk2 or via trunk4−trunk3. 

 

Figure 2. Example network in which trunk lines are not parallel. 
Traffic from Cluster 1 to Cluster 3 can still be divided along the 

Trunk1-Trunk2 and Trunk4-Trunk3 paths. 

The changes necessary for our program to handle a new topology like this would be 

relatively straightforward. Our program does depend on having knowledge of the trunk topology. 

The program uses this knowledge to calculate paths, as in the first and second steps of our basic 

strategy, above. If the topology is changed, knowledge about the new topology would have to be 

incorporated in the controller to enable trunk and path selection. Once that is done, however, the 

basic mechanism for implementing the new paths using OpenFlow is largely the same. 

Background on Ethernet 

Datagram forwarding is the method used in most Ethernet Switches. These switches do 

that by establishing their forwarding database tables without the help of a network controller. 

Originally, Ethernet switches had to be able to work as drop-in replacements for hubs, and so 

could not rely for their operation on any control communication with the associated hosts, and so 
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cannot rely on any specialized protocol for operation. Instead, the forwarding is based on the 

signals coming from other switches. [1] 

Normal switches will build a forwarding table of (destination Mac address, next_hop) 

pairs, where an arriving packet addressed to a given the MAC address is forwarded out the 

corresponding interface. For switches, the next_hop represents the output port of the current 

switch. Switches learn about destination Mac addresses gradually. They must fall back to 

flooding if they didn't have any entry in their database for a particular destination; otherwise they 

could not forward such packets. Unknown Unicast Flooding is a behavior where regular switches 

Fall back to flooding where switches send the packets that arrive at all the hosts on the network 

except for the host where the packet came from. Switches build their tables without the help of 

switch-to-host or switch-to-switch coordination through Fall back to Flooding. 

Switches learn how to reach new destinations by noting the source address of arriving 

packets, and also the arrival interface. The switch then assumes that interface would be used to 

reach that address in the future, and adds that (address,interface) pair to its forwarding table. This 

helps the switch learn how to get to new destinations without flooding. For example, if a packet 

arrives via interface F from source address S, the table will get the entry (S, F). 

If a packet addressed to destination D arrives at a switch S via interface I, the switch 

looks in its table for a record (D,J). If an entry (D, J) was present where J does not equal I, then 

D will be reachable through the Interface J. In that case the packet will be forwarded through 

interface J. If J equals I, meaning the packet came in to the switch via the same interface as the 

outbound interface, then the packet is not forwarded further. That might happen if the interface 

happened to be connected to the same Ethernet link used by another switch S2, which used that 
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link to get the packet closer to D. The packet is delivered to D, but also to S, which in this case 

represents the packet having traveled too far. The unknown-destination fallback to flooding will 

be in practice in the case of J where J does not equal I. When there is no entry is there for 

destination D, the packet will be flooded out of the switch through all of the interfaces J not 

equal to I. As switches find out the interfaces to use to reach active destinations, this need for the 

alternative to fall back will be needed less often after a short while. 

Switch forwarding-table entries are wiped out after a short period of no use. 

If the destination address is the broadcast address, each switch will always flood the 

packet. If the destination address is a multicast address, the switch may simply flood the packet. 

However, the switch may also attempt to keep track of multicast groups, via IGMP snooping, in 

which case the switch will forward the packet only out those interfaces that are part of the 

multicast tree. 

Following the principles of layering, MAC addresses are generally invisible to the 

application layer; applications identify other hosts using their IP addresses. If a remote host is on 

a different LAN, the local host will not know the remote host's MAC address at all. For hosts on 

the same LAN, the correspondence between MAC and IP addresses is made via the ARP 

protocol; one consequence of ARP, however, is more broadcast traffic. Put in mind switches 

can’t find neighbors who are connected directly to them until they receive packets from those 

neighbors. 

Once all the switches along a path have forwarding-table entries for a given destination, 

then the switches each directly forward the packet along the path. There is no more need for 

flooding. Each packet is directly forwarded, not sent to unnecessary links and not flooded now 
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that switches know where the destination host is located. Loops cannot be allowed in a switched-

Ethernet, so paths must be unique. Endlessly forwarded packets will be the result of an existence 

of a loop in the network where the packet which is sent to unknown destination will be stuck in 

the loop till the end of time. 

The learning algorithm also ensures some privacy. Once a packet is forwarded along the 

direct path from source to destination, with no flooding, then no other hosts can eavesdrop on the 

packet. In the past, unswitched Ethernets were known for cases where one host machine could 

eavesdrop on all the passwords of the network, Ethernets which are fully switched do not have 

this problem. Although switches have this characteristic of protection against spying, it can still 

be breached by the act of flooding the network with fake source addresses. This will force the 

switch to drop much of its learned forwarding table and go back to fallback to flooding. 

Forwarding tables of large switches usually have a room for about 10,000 to 100,000 

entries and it is usual that networks which are fully switched will have much less than 100,000 

entries. Since the topology must be loop free, this results in this switch size limitation. Broadcast 

traffic will be a larger and larger portion of the traffic as the switched Ethernet gets bigger and 

bigger in size, as the broadcast traffic must travel everywhere but most unicast traffic does not. 

This makes the business or company which is using this network to change their network to 

include routers in its design. It is a good practice if you have one LAN or VLAN to have less 

than 1000 hosts for it. 

The degree of support of internal parallelism is a major difference when it comes to how 

much an Ethernet switch will cost. The question here is can the switch send for example three 

packets simultaneously if in a scenario where three packets are concurrently arriving on ports 1,2 
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and 3 and they are going out via ports 4,5 and 6 respectively. This scenario in the case of a 

simple switch is that these packets will be bottlenecked as this switch has only one CPU and one 

memory bus. At most two concurrent transmissions can happen for a small five-ports switch; 

such a switch is able to handle this much of parallelism with ease. 
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CHAPTER II 

BACKGROUND AND TOOLS 

Spanning Tree 

Early switches were designed so a packet would circulate forever if it was traveling along 

a loop in the network. Such a loop has a devastating effect on network throughput. But a positive 

side of loops is they provide redundancy so if a link goes down the connectivity will remain; this 

characteristic is great to have. Here where the spanning tree algorithm comes to play. [4] This is 

a switch-to-switch protocol where it creates a subgraph of the graph of the switches’ 

connections, this subgraph allows reachability and it is in the same time has no loops. 

Connections that are not a part of tree are deactivated by the spanning-tree algorithm even if 

those links are along the shortest path between two hosts; this happens a soon as a spanning tree 

has been established. In case that a connection which is a part of a spanning tree goes down 

which may result into splitting the network into two then in that case some of the previously 

disabled links will again be used as a new spanning tree will be established. [11] 

In a network in which all switches support the spanning-tree algorithm, a question arises 

whether the switches can create forwarding tables which are loop free and, at the same, make use 

of all the links. The problem here is not with the unicast traffic but with the forwarding of the 

Ethernet broadcast traffic. Broadcast packets could circulate in the network endlessly if there are 

loops in the topology, even if unicast packets are routed along the shortest paths to their 

destinations.  
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Historically, the topology of switch connections was potentially complicated by the 

existence of Ethernet multi-tap coaxial cable segments and by the existence of hubs. Both multi-

tap cable and hubs are now considered obsolete. In designs that lack the presence of non-

switched ethernets and hubs, the edges and nodes of the topology are simply the hosts and 

Ethernet links. If pieces of non-switched multi-host Ethernet exists, however then each of these 

pieces will be a topology node with a topology edge to each switch where it connects to directly. 

Note that switches that do not participate in the spanning-tree algorithm will be considered as 

hubs by the switches that are running the STP algorithm. However, almost all switches today do 

support the spanning-tree algorithm. 

Every edge that connects to a switch will connect through an interface. The ID of a 

switch (every switch has a unique ID) is the smallest ethernet address. The goal of the spanning-

tree algorithm is to be able to forward packets to any destination and in the same way is to stop 

paths that are unwanted and unnecessary or redundant. 

The node with the smallest ID will be selected as the main node (the root node). Any time 

two switches have a connection between them through an ethernet cable while these same 

switches also have direct connections to the main node (root node), the direct link to the root 

node will be used. If there is more than one direct link, then the one used will be the one with the 

smallest ID. Although recently a cost factor is used for network implementations where this cost 

factor is a bandwidth inversely proportional meaning lower cost has a bigger bandwidth; the 

simplest path cost measure is the hops number. In case of an occurrence of an outage then a 

recalculating will occur for the spanning tree which means that this process is dynamic to be 

adjusted in case of unexpected events. Also, if it happened where an outage, for example, 
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divided the network into two networks, then the two pieces will each have their own spanning 

tree. 

All switches send out a “Hello” message − technically known as a BPDU (bridge 

protocol data unit) − from all its interfaces. These are sent from the interface ethernet physical 

address to the ethernet multicast address 01:80:c2:00:00:00. Keep in mind that a unique physical 

address for each interface is not otherwise required for switches. 

Bridge Protocol Data Units or BPDUs have the path cost, the root node and switch IDs 

where those messages (BPDUs) are not sent to unknown destination as they are known by 

switches where switches look for the short route to the root, the root switch (the switch with 

lowest ID) and finally a tie breaker (a path to the root via a close by switch with a lower ID. If 

there more than one port (let’s say two ports) connects to the switch, then the tie breaker will 

become the port number. 

If all the connections have the same bandwidth will let us have a faster paths preference. 

BPDUs are sent out of all the interfaces of a switch in the case of that switch seeing a new root 

candidate. Distance will be indicated because of these sent BPDUs. Also, interface leading to the 

root will be included. The result of this will be that the switch learning which of its ports will be 

used for reaching the root, the neighbor switches connected to each port of his ports and its path 

to the root. 

Now all or some of the interfaces of the switch can be pruned by the switch itself. All 

interfaces that are not enabled by the following rules will be disabled by the switch: 

(1) Further-out switches ports where theses ports job is to reach the root will be enabled. Also, if 

the port which reaches the root will also be enabled. 
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(2) When segment and other segment neighbor switches connect through the remaining port, 

then this port will be enabled under a condition. The condition will be the switch cost has to 

be minimum to the root among the neighbors. In case of a tie between two ports it will be the 

port with the smallest ID, if the tie happens between neighbors in that case it will be the 

neighbor with the smallest ID. 

(3) If there were no switch neighbors that are connected directly to the port, then the port will be 

enabled as well as it is probably connected to switch neighbors directly. 

Rule 1 will establish the spanning tree. In case that the root will be reached by S3 through 

S2 then this rule will be certain that the port of S3 is open towards S2 also the corresponding port 

of S2 to S3 is also open (the rule that we are talking about is rule 1). All connected to multiple 

switches network segment will get a unique path to the root that is made sure by rule 2, for 

example if S3 and S2 segments-neighbors who are connected another segment for example 

segment N then in this case the segment with the smallest number “wins” meaning that S2 will 

have its directed to the root port opened (enabled) while S3 will not. Creating host nodes paths 

on N (segment N) will be the concern as S3 and S2 will use rule 1 for creating their paths. 

Retaining connectivity for any sub segment is ensured by rule 3 and this rule effect will extend to 

include all the hosts who are connected to switch ports directly. 

Software-Defined Networking and OpenFlow 

Large Ethernet networks using the spanning-tree algorithm generally have many pruned, 

or suspended, links. These suspended links provide redundancy or backups to the network when 

switched from being suspended to back in service. These suspended links will give a huge help 

in the cases of failing of any part of the main ethernet. Making first-class use of all the links, and 
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the avoidance of disabling links in a high-performance environment, is a question still to be 

answered. 

The main difficult area here is the packets addressed to unknown destinations. Traditional 

switches rely on fallback to flooding. The use of broadcast (flooding) is difficult in a loop 

topology network. 

SDN works by using a controller and avoids the common distributed learning algorithm. 

Using a controller helps providing redundancy and forwarding in the same time. The controller 

has a full view of all the network information that any participating switch has discovered. When 

a switch sees a packet with a new source or destination, that information is sent to the controller, 

which can in many cases assign the full path the packet is to take. [10] 

This is done where each participating switch has the forwarding mechanism applied on under the 

authority of the controller. In this context the controller can be either set of distributed nodes or 

can be a single node on the network. The purpose of the controller is the management of the 

forwarding tables of the switches. 

In the beginning the controller probes all the switches for information about links to 

adjacent switches. With this information, the controller can build a spanning tree for broadcast 

traffic through that network. Broadcast traffic can be forwarded on the constructed spanning tree 

links as it is ordered by the controller. Unlike traditional switches the links which are not a part 

of the constructed spanning tree can be still serving to deliver to known destinations. Broadcast 

traffic can be identified by destination address – the broadcast address – or by protocol: in basic 

IPv4 networks, the only broadcast traffic is normally ARP and DHCP. In our networks, the only 

broadcast traffic is ARP “who-has” queries, as DHCP is not used. 
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Reports of packets to unknown destinations are delivered to the controller by the 

switches, at which point it is the controller’s job to determine what the next step will be. One 

way is by forwarding traffic to unknown destination along the same spanning tree which is used 

for broadcast traffic. This allows the use of loop topologies alongside with the safe existence of 

fallback to flooding. 

When a switch discovers a previously unknown source, the controller can inform all other 

switches on the network the best route to the new source. The controller can also inform all 

switches at startup that it is their responsibility to report the addresses of any new source to the 

controller. 

For security purposes SDN controllers can disallow forwarding packets between nodes; 

this behavior is like the work of firewalls. Example of that if there is a bunch of computers 

belonging to user A and there is another group of computers belongs to user B, controllers can be 

configured to a degree that no computer from user A group can forward packets to any computer 

from user B. 

Controller software can be programmed locally allowing control that is considered very 

local of network functionality, but at many networks the controller’s built rely on standardized 

modules. Combining Ethernet with loop topology alongside the network’s functionality control 

is the most important feature of SDN. 

OpenFlow Switches 

The controller's ability to inform switches of how to forward packets is the most 

important characteristic of it. OpenFlow switches are a packet-forwarding architecture, created 

by Open Network Foundation and considered to be a specific standard of SDN. [10]  
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Flow tables are the components which OpenFlow forwarding is built from. Packet match fields 

and groups of packet-response actions, if the match was successful, are the main components of 

a flow-table. Forms of the packet-response actions are: 

(1) Forwarding the packet out of a specified single interface. 

(2) Dropping the packet. 

(3) Forwarding the packet to the controller (usually so the controller can make a forwarding 

decision). 

(4) Flooding the packet out a set of interfaces. 

(5) Matching the packet at another (higher-numbered) flow table. 

(6) Modifying some fields of the packet (not used in this project). 

A single entry for the Ethernet address destination can be an example of match fields; this 

corresponds to traditional forwarding on destination only. However, OpenFlow match fields can 

also include the ingress interface number, or it can include any other packet bit-field. An 

example of this is the use of IP addresses where the forwarding can be performed partially or 

completely using the IP addresses instead of the Ethernet addresses. The case of forwarding by 

IP addresses (instead of Ethernet addresses) will make the OpenFlow switch act superficially as a 

layer 3 device, that is, a router. However, OpenFlow switches still act at the Ethernet layer (for 

example, the Ethernet destination address is not changed). Theoretically, OpenFlow switches 

may skip some header updates required by routers, such as decrementing the IPv4 time-to-live 

field; it is up to the OpenFlow programmer to enable these updates. Note, however, that failing 

to decrement the TTL field may cause severe network difficulties if the traffic ends up in a loop.  
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OpenFlow allows different TCP connections to be sent along different paths, using matching 

rules involving the destination TCP port and destination IP address. Splitting large volume flows 

and real-time traffic is done using policy-based-routing abilities, this is all done in SDN 

(software defined network) settings. 

Forwarding packets to all the interfaces except the one that the packets came from is 

known as flooding and this flooding technique is how OpenFlow switches normally handle 

broadcast packets. There is an option that can be applied on interfaces which sets those interfaces 

into NO_FLOOD mode, meaning that packets designated for flooding will not be sent through 

theses interfaces (packets designated for flooding can be broadcast for anything else). 

Implementation of spanning trees for broadcast traffic is done through setting some interfaces to 

NO_FLOOD mode. Flow table entry is not a requirement for broadcast flooding and unicast 

traffic still can be performed using interfaces with NO_FLOOD mode enabled. 

In the case of a packet matching two or more flow table entries, a priority value is 

assigned to match fields. The winning entry will be the entry with the highest value. Flow-table 

entries with no match fields are called the table miss entries; because they have no match fields, 

they are considered to match every packet. Their priority value is usually 0, so that any other, 

more-specific matching rule will be used if available. Packets that match no entries at all will be 

dropped or in some cases will be forwarded to the controller. 

Common OpenFlow packet modifications include updating the IPv4 checksum and 

decrementing TTL, making the switch act more like a true router, or VLAN coloring. Packet-

modification rules are all included in the flow table instructions which may contain managing or 

modifying packets. Flags, last_used time and counters are also included in flow tables beside the 
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match fields instructions which already a part of flow tables. In case of disappearing of no 

matching packets these packets will be all removed, and this function is done by last_time used. 

QoS (Quality of Service) is enabled on the OpenFlow switch using counters, examples of QoS is 

bandwidth limiting. 

 
Learning Switches in OpenFlow 

We start with a naive (and incorrect) approach to implementing a learning switch in 

OpenFlow. Match rules will be based on the destination MAC address only and will correspond 

to the normal destination-based forwarding table. If there is no match, the arriving packet will be 

reported to the controller; this is the default OpenFlow behavior. The controller will then create 

in the switch an appropriate forwarding match rule, if the next hop can be identified, or else 

flood the packet out all other interfaces, if the next hop cannot be identified. 

 

Figure 3. Ethernet Learning Example. 

In the diagram above, the switch W monitors a packet going from host X to host Y. What 

the switch will do is that it will report this sent packet to the controller. We will assume that the 

controller knows how Y is connected to W − likely because Y has previously sent a packet − and 

so the controller will create a flow entry in the switch W matching all packets with destination 

address Y. Now consider the case of a packet arriving to switch W from another host Z. This 
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packet would be forwarded by the new rule since it would match the flow entry for destination-

address equal to Y. Because there is a match, there will be no need for the packet to be 

forwarded to the controller. But this means that the controller will never install a flow entry for Z 

as a destination, as it is will never learn Z’s address. 

A better solution to implementing a learning switch in OpenFlow is to use pairs of 

destination and source addresses. [7, 8] In case of a packet traveling between hosts and using the 

switch W in his moving between the hosts, when this packet doesn't match any existing flow 

entry at switch W, it will be reported to the controller. Reporting it to the controller will help the 

controller to know that host X can be reached through the port which the packet arrived at W. 

We discuss the standard POX implementation of this approach below, in section Example 1: 

l2_pairs.py.  

Imagine host X broadcasting a packet meant to be send to host Y or it sends it to host Y. 

Switch W will report this sent packet to the controller and the controller in return will send it 

back to W to be flooded, all of that because the switch W table is empty. This will enable the 

controller to learn that host X could be reached from switch W through port 1. 

Let's continue the scenario by saying that host Y will respond to host X by sending 

another packet, when this packet from host Y reaches switch W, the switch W still doesn't have 

entries (flow table entries) so in this case the switch will report this packet to the controller. Here 

the controller already knows that the switch W can reach host X through port 1 and it knows (the 

controller) from the packet sent from host Y to host X through it the host Y could be reached via 

port 2. With all this knowledge the controller now can install in switch W two flow tables where: 

dst=Y, src=X: forward out port 2 
dst=X, src=Y: forward out port 1 



24 
 

 
 

Packet arriving from a third host (let's call it host Z) trying to get to host Y through the 

switch W will not be forwarded as it has a source address that is different than the source address 

of host X, even though the destination address is the same. Since it will not be forwarded it will 

be then sent to the controller. The controller will install rules for: 

dst=Z,src=Y and dst=Y,src=Z 

After host Y reply to Z. The controller will never learn how to reach the host Z and will 

never be able to install rules for host Z if packets from host Z were never reported to the 

controller. This situation can happen if flow rule for destination Y only (dst=Y) was set in the 

switch W. 

In case of the availability of single flow entry table then the OpenFlow learning is 

optimal using the pairs method. Scale will be a problem if we went with this method because we 

will need 100 million pairs of flow table (destination,source) entries to represent all of the 

forwarding possibilities if there are 10 thousand network addresses in all. 

It is possible to implement the pairs method, using the python programming language, 

Pox controller and Mininet network emulator, at least when the total number of network 

addresses is small. 

An alternative OpenFlow learning algorithm is to have more than one table, one for the 

source and another for the destination address. This approach is much more scalable.  In this 

scenario the controller doesn't have to remember forwarding information that is partial as it is on 

the previous version where we discussed after the controller receives the packet from the host X. 

This is called the multiple flow tables approach. We discuss the OpenFlow implementation of 

this approach in the section Example 2:  l2_nx.py, below. 
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Any steps will be applied after the match against the first table happens when the packet 

arrives. A second group of steps may emerge as one of the steps in the first group requires that 

the packet to be matched against the second table. Let presume that A0 is the first table and A1 is 

the second table while keeping on repeating the previous example of E−>F and F−>E. 

In the beginning rules that are low priority match is switch S are the rules which are to be 

installed before the arrival of any packets to the switch: 

A0: match nothing: flood and send to A1 
A1: match nothing and send to the controller 

The purpose of low priority is to make sure of the use of better matching rules when they 

are available. Since there are no packet fields to match, these low priority rules are considered to 

be default rules as they do match all packets. 

The previous rule of table A0 means the packet will be flooded to B when the packet 

goes from host X to host Y. The controller will install the rules below in switch S after knowing 

that the rule for table A1 means that the packet must be sent to the controller. The rules of the 

controller are: 

A0: match dst=X: forward through port 1, send to A1 
A1: match dst=X: do nothing 

The first rule will match as host Y will replay to host X and the packet will be 

resubmitted to A1 as the packet will be forwarded by switch Z. Here the previous A1 rule will 

not match. The packet afterwards will be sent to the controller where the only match will happen 

in the default rule. This will result in the creation of two additional rules in the switch Z as the 

packet will be sent to the controller, these additional rules will be: 

A0: match dst=Y: forward via port 2 and sent to A1 
A1: match src=Y and do not do anything 
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A0 rules at this stage will make sure that correct forwarding is being carried on while A1 

rules will make sure that no packets get sent to the controller from this flow of packets as host X 

and Y continue to talk to each other. 

The addresses list in the two tables A0 and A1 will always be the same as the controller 

will always create in both table the same address. Source addresses will be matched by A1 while 

destination addresses by A0. 

We can also use the concept of multiple flow tables to have switches that makes 

decisions of QoS (Quality of Service) prioritizing, where using the priority which is determined 

by the second table the packet will be forwarded out of a port basing on the determination made 

by the first table. This can be achieved by listing all the source and destination addresses pairs 

combinations within a single table, but this approach is considered to have a lot of entries. 

The use of controllers as firewalls could be difficult to implement but with the new 

concept of the understanding of IP addresses through OpenFlow it became easier. It became 

easier to block traffic like what a router might do between two different IP subnets. Except for 

specific hosts pairs who are using specific protocols OpenFlow let us use it to block all other 

kind of traffic. There are a variety of examples on different situations where for example we can 

make a user contact a database for example while in the same time blocking all other traffic 

going to that database. This communication between the user and the database will be done using 

a TCP port. 

Mininet 

The Mininet application allows multiple “virtual” hosts and switches to run on a single 

host. This is achieved by using Linux network namespaces and virtual Ethernet links. Each 
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virtual host runs in its own network namespace, with its own network interfaces. Network 

interfaces can then be connected by point-to-point virtual Ethernet links. Mininet provides tools 

to allow for the easy configuration of such virtual networks, allowing for network 

experimentation. [9] 

The consumption of resources by these virtual network hosts, even if the allocated 

resources to these virtual machines (nodes) are minimized, is still considered to be high to the 

degree it is only possible to have a limited number of nodes in the network that we created. The 

goal is to have nodes that use sufficiently few resources that we can have, on one host computer, 

as many as 1000 virtual network nodes running at the same time.  

MININET was created for the purposes of SDN (software defined networking), but it is 

also works great for traditional networking modeling including the experimenting and 

demonstrating purposes. The MININET system help us achieve what we want meaning it helps 

to have a lot of virtual nodes running with the least of resources. 

A Mininet node corresponds to a network namespace, or “container”. The Mininet 

software creates the namespace, and then one process within that namespace to represent the host 

CPU. Network namespaces are inherited so all subprocesses will inherit the view of the container 

it is within. Virtual Ethernet interfaces will be constructed to tie virtual container interfaces 

together according to the rules provided for the network layout. 

The same filesystem by default is shared by all the Mininet containers for efficiency. 

Problems could arise sometimes with applications that require files in specified locations with 

individualized configurations. Mininet can be configured to accommodate individual filesystems, 

but in general the shared setup will be simplest and least resource intensive. 
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Protocol implementations and applications before they can be used will need to be ported 

to run in the simulator in the environments that use simulation. Emulation in networking 

environments has an advantage compared to simulation which is that any network software 

available on the host system is available to all the emulator nodes. It is worth mentioning that 

even with this advantage of emulation, there are other drawbacks; for example, we can’t emulate 

a speed in a link that goes beyond the capabilities of the hardware that supports the link. Another 

drawback is a network can be slow due to the complexity and size of the network and the need 

for one CPU to manage all the elements, even before traffic volumes become significant. 

Installing Mininet 

Mininet must be run on Linux because the network-namespace rules it uses are specific to 

Linux. It is recommended to have a virtual machine system running on your operating system to 

install Linux on it. This idea is recommended even if your operating system on your laptop is a 

Linux operating system since it is a good idea to separate a Mininet project world from the host 

system’s world. Mininet could influence the operations of the user’s computer as for example 

Mininet virtual switches often interfere with the laptop suspend feature. 

The Mininet site contains a virtual machine with Mininet preinstalled. The package will 

be downloaded as a Zip file and after it is being unzipped it will give us two files; a file with a 

size of 2GB (more or less) where this file is the virtual disk image and comes in a .vmdk 

extension. The other file represents the virtual machine specification and it will have an 

extension of .ovf 

Two virtual-machine options are recommended to download and install Mininet, which 

are VMware Workstation Player and Virtual Box. Both free and supported. Creating a new 
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virtual machine (a Linux virtual machine) is easier, next select the option for it to use a virtual 

disk that is already existing, lastly assign disk for it which will be the downloaded .vmdk file. 

The privileges needed to run Mininet can be gained through the sudo command which 

will obtain the root privileges. When the login happens using “Mininet” as the username and the 

password. Know that via command sudo bash you can stay logged on as root with keeping the 

terminal window open, and it is recommended to enter the commands one at a time. For 

example: sudo python switchline.py. 

The use of the preinstalled version which comes bundled with the POX controller for 

Openflow who is a very useful software is considered the way to go about this, installing and 

setting up a virtual machine that runs Linux from scratch (Ubuntu distribution for example) and 

then having Mininet to be setup on it is another way to do this. 

Graphical interface for the desktop does not come with so if a user wants it then he or she 

will have to put in mind the “cost” of having it which is represented not in money but in using an 

external 4GB just for it. The user will have to run apt-get install ubuntu-desktop 

to have the full ubuntu desktop. Also, the user must put in mind to apply these steps while he or 

she are logged in as root. Another way to have the user interface is by running the command 

apt-get install xinit lxde which will install lxde desktop environment.  This 

second way is a Mininet site recommendation as it is half the size of ubuntu, so it is a lighter 

weight alternative.   

Graphical text editors can be installed but with lxde comes the leafpad editor which is 

always bundled with it as the standard text editor. 
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For Linux systems that are Debian-based a recommendation before starting anything is to 

run these commands: 

apt-get update 
apt-get upgrade 

The command startx must be executed if the user wants to have the graphical interface 

where it is executed right after the installation of the ubuntu desktop. 

Virtual machines operating in one window on a host system often “capture” the mouse, 

thus disabling access to other host-system windows. This can be quite annoying, but luckily there 

are software packages that are designed to overcome such virtual machine behaviors. In the case 

of Linux guest systems using VirtualBox, there is a guest compatibility package that can be 

installed on the guest system. Using the command mount /dev/cdrom /media/cdrom 

with the mounting of a CD image is required in the virtualbox where doing these two previous 

steps will install the compatibility package. Alternatively, in VMWare the mouse can be released 

to the host system by hitting CTRL+ALT while the same thing is achieved on Virtual box by 

hitting right hand CTRL key. 

Once the Mininet system is running, the Mininet software can be updated with the 

following: 

cd /home/mininet/mininet 
git fetch 
git checkout master   # Or a specific version like 2.2.1 
git pull 
make install 

The most convenient setting for users who have no experience with Mininet and/or are 

experiencing Mininet for the first time is to work with Mininet using the lxde (graphical desktop 

setting). The desktop setting will be more convenient as it allows for the copying and pasting 
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between the host and the virtual machine also the use of WireShark and the opening of xterm 

will be smoother and without any troubles or system bugs. 

On the other hand, it is always possible to run the command ssh -X -l username 

mininet where this command has to have the feature of X windows forwarding enabled as it is 

require multiple SSH logins. The use of this command allows the user to have the program 

window to close or display properly with having the ability to open gedit mininet-demo or 

wireshark program. Meaning the ability to open in the SSH command line a graphical program.   

It is worth noting that the user cannot use or run Wireshark or xterm if that user decides to not to 

use X windows and access the Mininet via SSH terminal sessions only. 

Using Mininet 

There are several commands that we can use at the top-level Mininet command prompt. 

The command links will list the connections between nodes, the command intfs will list the 

interfaces and there is another command net which is the most useful of all the interfaces where 

it does all the work of the previous commands where it lists the connections, the nodes and the 

interfaces. Here is an example of the output of the “nodes” command. [9] 

h1 h1-eth0: s1-eth1 
h2 h2-eth0: s1-eth2 
s1 lo:  s1-eth1:h1-eth0 s1-eth2:h2-eth0 

This means that there are two nodes, h1 and h2, and one switch s1. The h1 node has one 

interface, named h1-eth0, which connects to s1’s interface s1-eth1. Similarly, the h2 node has 

one interface, h2-eth0, which connects to s1’s s1-eth2 interface. The last line lists s1’s three 

interfaces: the loopback interface lo, and the previously mentioned s1-eth1 and s1-eth2. 
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We can run arbitrary linux commands on individual nodes. To do this, we include the node name 

first, and then the command, at the top-level Mininet prompt. Below is an example of how to run 

“ifconfig” on h1, and how to have h1 ping node h6: 

h1 ifconfig 
h1 ping h6 

The first line will tell us the IP address of h1, for example 10.0.0.1. This command also 

will show what is the MAC address of h1 (more correctly the h1-eth0 interface of h1) which 

might be for example 51:33:cf:b0:73:a9. The second command sends a “ping” to h6, from node 

h1. If successful, we know there is network connectivity between h1 and h6. It is also worth 

mentioning that there is another command which between each pair of hosts will generate a ping; 

the name of the command is pingall. 

There is a command that works on both switch nodes and on host nodes, the name of this 

command is Xterm; by using it we can open a full shell window. It is worth mentioning that root 

permissions are what the xterm command runs with. Example on how we can use it is as below: 

Xterm h1 

This will open a full shell window connected to host h1; the window will appear on the 

mininet desktop. After running the command xterm the ping h6 command will not work 

because of the hostname h6 is not known (not recognized) to bash. To go about solving this 

problem we will have to add the entries for h6 and h1 to the /etc/hosts file, or ping using the IP 

address 10.0.0.2. 

When h1 and h6 are entered into the /etc/hosts file of the mininet host system, that will 

mean within the mininet the names h1 and h6 are shared and defined. Put in mind confusion will 
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be certain if different addresses were previously assigned to h1 and h6 through the configuration 

of a different mininet.   

We can see the ping packets by monitoring the interface h1-eth0 using wireshark. The 

command h1 wireshark & can be utilized to have wireshark up and running on the specified 

node. The wireshark command can be run from mininet> prompt. 

Another possible option is that if h6 has an ssh server enabled on it we have the option to 

try to ssh to h6. For this to work we have to run the ssh server, sshd, on each node. This can be 

specified in the mininet configuration file.  

Switches network systems are by default shared with the mininet host system by the 

switches themselves. Another option is that we can utilize xterm by running it on the switch (or 

switches) and starting WireShark on it. Running the command on both trunk switches who are in 

the way between the two hosts h1 and h6. The commands that we will run are: 

s1 ifconfig 
s4 ifconfig 

Then we get the results of Mininet while it is running outside of the Mininet process and 

we compare these results with outputs of the previous two commands. 

Although no interfaces for c0 were shown by the intfs commands and net commands the 

same interfaces will be on c0 (the node controller). 

By default, the nodes of Mininet are not connected to the outside world, so it is a great 

practice to run WireShark on s1-eth1 to examine the flow of packet (traffic) on a network in idle 

state. Without the need of WireShark filtering nor any other traffic there is a way to examine the 

ARP exchange, the three-way handshake of TCP, the delivery of the packets and finally the 
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termination of the connection. This is done by running netcat I-5432 on h6 and then netcat 

10.0.0.2 5432 on h1, all that after running xterm windows on h1 and h6. 

Open vSwitch 

Mininet nodes that represent switches (rather than hosts) run the Open vSwitch software 

package. This provides a switch platform with support of management interfaces. Open vSwitch 

is licensed under the Apache 2 open-source license. [6] 

VirtualBox, Xen, KVM and XenServer are all Linux virtualization technologies who are 

supported by Open vSwitch. Also, the way Open vSwitch was designed is to support multiple 

physical server’s distribution. Add to that it exposes visibility interfaces and standard control to 

the networking layer which is virtual.  Lastly in VM environments Open VSwitch is considered 

the perfect to play the role of a virtual switch.   

C and python bindings for transactional database configurations, policing, Quality of 

Service (QoS) configuration, With or without LACP on upstream switch NIC bonding, 

Tunneling (GRE, Geneve, STT, LISP and VXLAN), Bunch of Extensions most importantly 

OpenFlow 1.0, Connectivity fault management of 802.1ag, Mirroring for more visibility with 

sFlow(R) and NetFlow, Access ports and Standard 802.1Q VLAN with trunk, Uses Linux kernel 

module which leads to high performance forwarding,  These features are all supported by Open 

VSwitch. 

Without any help from kernel module, userspace implementation is another Open 

VSwitch implementation which is entirely independent. DPDK devices or Linux devices are 

accessible by OVS in userspace mode. Userspace OVS compared to a switch which is kernel-
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based it is easier to port. Costly in performance and experimental is what the non DPDK 

userspace datapath Open VSwitch is. 

It makes sense to wonder the reason of the use of Open vSwitch, as it is known how 

reliable and fast the Linux bridge (the built-inL2 switch) which is used to bridge the traffic 

between the outside world and VMs as this ability is needed by Hypervisors. 

When the previous version did not provide what the users hoped for, comes the answer which is 

targeted to virtualization deployments of multi-server presented in the Open vSwitch. In some 

cases, the integration with or changing to switching devices that has special characteristics, using 

endpoints that are highly dynamic to characterize environments and finally logical abstraction 

maintenance. 

Exporting access to control traffic is a method of OpenFlow which is supported by Open 

VSwitch. Link state traffic and the use of inspection of discovery which leads to the global 

network discovery are two of the uses of exporting remote access to control traffic. 

Hardware Integration 

In case it was in an NIC end-host or in a chassis or a hardware switch the housing was, 

Open vSwitch in-kernel datapath or forwarding path is manageable to do the packet processing 

to hardware chipset offloading. This means that pure software implementation or hardware 

switch can be controlled by the control path of the Open vSwitch. 

Many platforms that are vendor specific, Marvell, Broadcom and other multiple silicon 

chipsets are trying to port Open vSwitch to hardware chipsets. 

Automated network control mechanism could be used to manage hosting environments 

which are virtualized and the non-virtualized environments (bare metal environments), this can 
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be done if the control abstraction of the Open vSwitch was exposed by the physical switches. 

This is one of the great advantages of the hardware integration. Add to that the performance 

enhancing within virtual environments. 

Summary: 

In large-scale virtualization environments which are Linux-based, Open vSwitch allows 

both dynamic and automated network control, as compared to networks without Open vSwitch. 

Reusing of subsystems (like Quality-of-Service stack which already exists) when we can and 

working on having the program residing in the kernel as small as it can be (since doing that will 

be great to have a better performance) are the goals of using Open vSwitch. Example on the 

previous is the availability of packaging for user space utilities and including of Open vSwitch as 

a part of the kernel for Linux 3.3 model. 

Simple Mininet example (our topology) 

He At this point we are prepared to describe the network configuration we created. Recall 

from the section Overview of our Network that our experimental topology, with N=5 and K=3, 

is the following: 
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Figure 1. (repeated) 

Our goal is to spread traffic between a node in the top cluster, h1-h5 above, and a node in 

the bottom cluster, h6-h10, over the three “trunk lines” 1-4, 2-5 and 3-6. Any individual TCP 

connection will be assigned to one trunk line; traffic sharing depends on having multiple TCP 

connections. TCP flows can be between the same pair of nodes or between two different pairs. 
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For example, two TCP connections between h3 and h8 can be assigned two different trunks, and 

two TCP connections h1—h10 and h2—h8 can also be assigned different trunks.  

Trunk assignment is by flow, that is, by one direction of the TCP connection. Typically, 

the two flows (directions) of a single TCP connection will be assigned different trunks.  

 In our configuration, we have a single controller c0 for all the switches. This controller will be 

used to specify the forwarding of every packet at every switch. Switches will notify the 

controller of any new TCP connections (or any other previously unassigned traffic), and the 

controller can then send forwarding rules to the switches in response. The controller will 

typically send forwarding rules to the switch that reported the traffic and also to several other 

switches as well. 

The controller communicates with the switches using TCP connections. In the Mininet 

default environment, the controller is accessible at the localhost address, which is the same for 

all the Mininet nodes. Therefore, there is never a need to find the controller, or to create a path to 

it. In more advanced settings, however, this may be necessary. 

In examples 1 and 2 below, we show how to program c0 to make the switches behave like 

learning switches. 

The POX Controller 

The POX controller is preinstalled on the Mininet virtual machine. This is a general-

purpose controller using the Python2 language. Example 1, below, shows one way to make all 

Open vSwitch switches act as Ethernet learning switches. Other forwarding strategies are also 

possible. The focus now will be the switch operation and the programming interface to the POX 

controller. [7]  
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The overall structure of a Pox program is a set of handlers that respond to events. The 

handlers may also call other code. Events originate at the switches, which then communicate the 

event to the controller, which in turn calls the appropriate event handler. Pox event types, for our 

purposes here, can be grouped into the following categories [7, 13]: 

PacketIn: This event is triggered if a switch receives a packet that it forwards to the 

controller. This happens if the switch has not been programmed to handle the packet, or if the 

switch has been programmed specifically to forward the packet to the controller. For example, if 

a switch doesn’t know how to forward a packet without flooding, and we want the switch to 

learn how to forward the packet, we will have the switch send the packet to the controller. Often, 

though not always, a PacketIn event will result in the controller giving new forwarding 

instructions to the switch. 

ConnectionUP: This event is triggered when a switch connects initially to the controller. 

The initial instructions of packet handling given from the controller to the switch will happen in 

this point.  

LinkEvent: Link availability reports are provided in this stage for the controller to be 

told by the switch about if a link is available or not. Link events are optional and are based on a 

modified version of the LLDP link-layer discovery protocol (used by ordinary Ethernet switches 

during the spanning-tree protocol). To activate link events, a special “discovery” module must be 

loaded by Pox which causes each switch to send link-discovery packets, also known as “Hello” 

messages, out each port. The result of a link event is an identification of the switch that sent the 

event, one of that switch’s ports, and the switch and port to which that first port connects. By 

observing link events we can determine the exact network topology. 
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BarrierEvent: This event is triggered when a set of switch actions completes. We set the 

barrier, indicating a set of commands, and the switch triggers this event when those commands 

have completed.  The responses of the switch to the messages received after the barrier and that 

is done after the switch is done with messages received before the barrier. In summary this stage 

is about the response of the switch to the OpenFlow Barrier message. 

In the pox/forwarding and the pox/misc directories there are modules that explain how to 

program controllers. The POX Wiki also has definitions, explanations and examples of 

programming controllers. 

OpenNetworking.org technical library has versions of the data structures of the POX 

which is connected to a big degree to the specification of the OpenFlow switch. 

In mininet, the Pox controller lives on the host system. Each switch can then reach the controller 

via its own localhost interface. This means that switches do not have to perform any controller 

discovery, and do not have to set up paths to the controller. This is a great convenience. 

Alternative, more realistic approaches to switch-controller communication can also be 

implemented. 

Switches communicate with the controller via TCP connections. The connections usually 

are made to port 6633 on the controller, though this can be configured in mininet. 

An OpenFlow table consists of a set of OpenFLow entries, or rulesets. Packets start 

processing with Table 0. 

Pox and OpenFlow Tables 

A typical OpenFlow entry contains one or more packet-matching rules, and an action. 

The matching rules can match on any of the following packet attributes. [10] 

• Ethernet destination address 
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• Ethernet source address 

• Ethernet packet type (eg IP, IPX, ARP) 

• IP destination address 

• IP source address 

• Transport protocol 

• TCP destination port 

• TCP source port 

The action can be to forward the packet out a specific switch port, or to modify the packet 

(not used in this project), or to resubmit the packet to another OpenFLow table.  

An incoming packet is matched against each of the OpenFlow entries in Table 0. If a 

match is found, the action is executed. The action can be to forward the packet, to forward the 

packet to the controller (thus triggering a PacketIn event at the controller), to flood the packet, or 

to process the packet by another, higher-numbered table. 

The Pox programming interface correspond very directly to the OpenFlow rule 

specification. 

Rules sent from the controller to a switch can be examined and verified using the 

command-line program ovs_ofctl. Rules can also be created or deleted using this command. 

We illustrate the creation of basic rule sets via the examples 0 - 2 below. 

Example 0. hub.py 

The simplest POX example can be found in hub.py. In this example, the controller 

instructs the switches to act as Ethernet hubs. This means that each arriving packet is flooded out 

all other switch ports. All the work is done by the ConnectionUp handler. [8] 
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def _handle_ConnectionUp (event): 

   msg = of.ofp_flow_mod() 
  msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) 
  event.connection.send(msg) 

In this example, we create a handler for ConnectionUp events; these occur whenever a 

switch first connects to the controller. In the code above, when a switch connects to the 

controller then the controller 

• Creates an ofp_flow_mod message it will send to the switch; this message corresponds to 

an OpenFlow flow entry. The entry is sent to Table 0, the default table. 

• States that the action of the rule is to flood arriving traffic; that is, to send it out all ports 

other than the arrival port. There are no matching rules in this particular OpenFlow rule, 

meaning that it matches all traffic. (In general, if a packet matches more than one OpenFlow 

rule, then the rule to be applied is determined by rule priority values, not by rule order). 

• Sends the message back to the switch, which then installs the entry. 

At this point there are no PacketIn events because the switch has been told how to handle 

every packet. 

Example 1. l2_pairs.py 

The l2_pairs.py controller, written by James McCauley, is a simple example of how 

OpenFlow can be used to construct an Ethernet learning switch. The name comes from the fact 

that switching acts at layer 2, Ethernet logical layer, and that flows are identified by the pair 

(source_address, destination_address). This approach is not quite the same as what is done by 

native Ethernet switches, but it is slightly simpler to implement in OpenFlow. [8] 
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As packets arrive at the controller, sent by a switch, the controller records state information 

about what it has learned so far about the network, and installs new OpenFlow forwarding entries 

in the switch when it is able to do so. 

Native Ethernet learning switches follow a two-step process, as outlined above: 

• Record the source address and arrival interface, for forwarding of future packets back 

towards the sender. 

• Look up the destination address, to see if we have a forwarding route for this packet (and 

flood if we do not). 

This involves, in effect, two separate matches, which we cannot do with a single 

OpenFlow match table (we describe the two-table approach in the next example). Furthermore, if 

we were to have the controller tell a switch how to forward a packet to a given destination 

address, the switch will forward all future packets to that destination on its own, and not send 

those future packets to the controller. This makes it impossible for the controller to learn 

anything more about the source addresses of those future packets sent to that destination, and so 

the controller never learns how to forward to those source addresses.  

The l2_pairs.py controller solves this problem by creating match rules that match on both 

the source and destination addresses. If a packet arrives at switch S from source A to destination 

B, and no matching rule for src=A,dst=B has yet been established, then S sends the packet to the 

controller. 

The controller maintains, for each switch, a table of known (destination, interface) pairs. 

When the packet from host A to host B is forwarded by switch S to the controller C, then C will 

add address A, with the packet's arrival interface, to its table for S. The controller also looks up 
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the packet destination, B, in this table, to see if it has previously recorded a next_hop 

(forwarding interface) for that destination. 

If not, the controller tells S to flood the packet, just as an Ethernet learning switch would 

do with a packet for which it did not have a forwarding entry for the destination. No new 

OpenFlow rule is created. 

However, if the controller does have an entry for B, it is prepared to take action. Recall 

that, at this point, the controller knows how S should forward packets either to A or to B. The 

controller then installs two rules on S: 

• src=A,dst=B: forward via the interface from the table 

• src=B,dst=A: forward via the interface by which the packet arrived at S 

As an example, suppose A sends a packet to B, and it arrives at S via interface 1. The 

controller does not yet know how to reach B, so it instructs S to flood the packet. The controller 

also enters (A,1) into its private forwarding table. Now suppose B sends a reply to A. When this 

arrives at S, via interface 2, the packet is sent to the controller. At this point the controller knows 

that S reaches A via interface 1 (from its table) and B via interface 2 (from this packet), and so 

installs the rule above. 

Note that if D now sends a packet to B, arriving at S via interface 3, then S does not 

forward the packet, despite the fact that C knows that S should forward all packets to B out 

interface 2. The destination matches, but not the source. If C installed a forwarding rule at S for 

the destination alone, then S would not report the D-to-B packet to C, and so C would never 

discover how S can reach D. 
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We now look at the POX code. The controller has to handle only PacketIn events; all the 

work is done in that handler. The first step, when a packet arrives, is to put its switch and source 

into a Python dictionary named table[S,src]. Within POX, switches are identified by their so-

called dpid values, which are obtained from the PacketIn event object's connection attribute: 

table[(dpid,packet.src)] = event.port 

Dpid values generally match the switch numbers assigned by mininet; that is, s1 has a 

dpid of 1, etc. The value packet.src represents the source address; packet.dst is similar. The 

arrival interface is available in event.port. 

The next step is to check to see if there is an entry in table for the destination, by looking 

up table[(dpid,packet.dst)]. If there is not an entry, then the packet gets flooded as in hub.py 

above: we create a packet-out message containing the to-be-flooded packet and send it back to 

the switch. 

If the controller does find an entry in this lookup, that is, a switch port dst_port, it 

proceeds as follows. OpenFlow supports various types of messages from controller to switch; the 

first step is to create an empty flow modification message. We then fill in various msg.match 

fields. The available match attributes are in the following table [7]: 
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Table 1: Available Match Attributes 

For this example, dl_src and dl_dst will be used. 

After the match fields are defined, we need to specify an action. The msg.actions field 

has the form of a list; we append to this the single action that the packet should be forwarded 

(output) via the appropriate port. After the action is specified, we send the message to the switch. 

We first create the reverse entry, forwarding from destination back to source.   

msg = of.ofp_flow_mod() 
msg.match.dl_dst = packet.src       # reversed dst and src 
msg.match.dl_src = packet.dst       # reversed dst and src 
msg.actions.append(of.ofp_action_output(port = event.port)) 
event.connection.send(msg) 

The corresponding rule in hub.py had no match specifications and use the virtual port 

OFPP_FLOOD. 

We next create the matching rule for the src-to-dst flow, by reversing src and dst, and 

using the port dst_port found in the controller's table[]. 

msg = of.ofp_flow_mod() 

Attribute Meaning 

in_port Switch port number the packet arrived on 

dl_src Ethernet source address 

dl_dst Ethernet destination address 

dl_type Ethertype / length (e.g. 0x0800 = IPv4) 

nw_tos IPv4 TOS/DS bits 

nw_proto IPv4 protocol (e.g., 6 = TCP), or lower 8 bits of ARP o  

nw_src IPv4 source address 

nw_dst IP destination address 

tp_src TCP/UDP source port 

tp_dst TCP/UDP destination port 
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msg.data = event.ofp                # Forward the incoming 
packet 
msg.match.dl_src = packet.src       # not reversed this 
time! 

msg.match.dl_dst = packet.dst 
msg.actions.append(of.ofp_action_output(port = dst_port)) 
event.connection.send(msg) 

The second line, msg.data = event.ofp, includes the entire packet to be retransmitted in 

the message. The packet will be retransmitted after the new match/action rule is installed. 

We can use the command-line utility ovs-ofctl to view the flow tables of each individual switch. 

We will use our mininet configuration program switchline_rc.py, which creates a topology of 

several switches in a row, each with an attached. 

 

Figure 4. Linear arrangement of switches. 

From within Mininet will be having h1 ping h4 and h2 ping h4 after we start 

switchline_rc.py and next l2_pairs.py module (the Pox module). So, we if we ran the command. 

[12] 

ovs-ofctl dump-flows s2 

We will get output like the following (with some entries deleted for simplicity). Note that 

MAC addresses in Mininet are assigned sequentially. 

cookie=0x0, ...,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:04 actions=output:3 
cookie=0x0, ...,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:02 actions=output:1 
cookie=0x0, ...,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:04 actions=output:3 
cookie=0x0, ...,dl_src=00:00:00:00:00:04,dl_dst=00:00:00:00:00:01 actions=output:2 
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Switch s2 has three ports; port 2 connects to s1, port 1 connects to h2, and port 3 connects 

to s3. The above ovs-ofctl output means that s2 forwards traffic from h1 to h4 via port 3, from h4 

to h2 out via port 1, from h2 to h4 via port 3, and from h4 to h1 via port 2. There is no entry yet 

installed for packets from h1 to h3, or from h3 to anywhere, because we did not have h3 send 

any packets. 

Example 2. l2_nx.py 

The l2_pairs algorithm is quite serviceable, but if there are N hosts then each switch will 

have an OpenFlow match table of size approximately N2. The l2_nx.py example, also by James 

McCauley, addresses this by using two different OpenFlow matching tables, and achieves this 

using only O(N) space rather than O(N2). [2] The first table, table 0, matches the packet's source 

address, while table 1 matches the packet's destination address. The source code is found in the 

pox/pox/forwarding directory. [8] 

Multiple flow tables use is enabled by Pox extensions Nicira. This Nicira extension to 

Pox is referred by nx. 

If there is no match for an arriving packet in table 0, the packet is both sent to the 

controller and sent on to table 1. If there is a match, the packet is sent on to table 1 but not to the 

controller. 

Table 1 is set up to match the destination address. If a match is found then the packet is 

forwarded to that destination. If there is no match then the packet is flooded. 

As an example, let us suppose that A sends a packet to B, and B replies; the topology is 

A−−−S−−−B. A’s packet arrives at S, and S looks for a match on the packet’s source address, 

namely A. There is no match, so the packet is forwarded to the controller, which instructs S to 
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create an entry for address A in both table 0 and table 1. The table-1 entry contains an action that 

matching packets are to be forwarded via the port on S that connects to A. 

The packet is also sent on to table 1, where a match on the destination address, B, is 

sought. There is no match there, either, so S floods the packet, in accordance with the associated 

action.  

Now B replies. When this second packet arrives at S, table 0 is searched for a match on 

the source address. No match is found, so the packet is sent to the controller, which installs rules 

for matching B in both tables of S. In table 1, the action is to forward the packet via the port by 

which the packet from B just arrived. 

The second packet is also matched against table 0, using the destination address A. Now 

a match is found, and so the packet is forwarded out the port that leads to A. 

Any future packets between A and B will match both table 0 and table 1, so the controller will no 

longer be involved.  

Because the controller always has S insert identical matching rules into table 0 and table 

1, the two tables will always contain the same values. We could in theory achieve the same effect 

with a single table by submitting first the packet source address to table 0, and then the 

destination address to the same table. OpenFlow, however, always requires that any subsequent 

matches be made against a higher-numbered table, to avoid infinite loops, so a single table is not 

possible. 

Using two OpenFlow tables in POX requires use of the so-called Nicira extensions. We 

load these with a command-line invocation such as the following: 

./pox.py openflow.nicira −convert-packet-in forwarding.l2_nx 
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It is also necessary to create flow-modification messages with nx.nx_flow_mod() instead 

of of.ofp_flow_mod(). 

The path through the nx_l2.py code begins with the _handle_ConnectionUp() handler, 

invoked when the switch S first connects to the controller. The controller sends messages to S to 

implement the following: 

• Enable multi-table support 

• Create a default rule for table 0 that forwards the packet back to the controller 

• Create a default rule for table 0 that floods the packet 

Here is the code for the last step above: 

msg = nx.nx_flow_mod() 
msg.table_id = 1 
msg.priority = 1 # Low priority 

msg.actions.append(of.ofp_action_output(port = 
of.OFPP_FLOOD)) 

event.connection.send(msg) 

Recall that if there are multiple matches within a single table, then the match with the 

highest priority wins. Address-specific match rules will be installed with a priority of 32768 (the 

default), exceeding the default priority of 1.  

When S reports arriving packets to the controller, in accordance with the table-0 default 

action, the controller’s _handle_PacketIn() event handler is invoked. Here is the code that adds 

the packet’s source address to table 0: 

msg = nx.nx_flow_mod() 
msg.match.of_eth_src = packet.src 

msg.actions.append(nx.nx_action_resubmit.resubmit_table(tab
le = 1)) 

event.connection.send(msg) 
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The msg.table_id is, by default, 0. The packet’s Ethernet source address is in packet.src; 

the msg.match field to match this against the source address of incoming packets  is 

of_eth_src. The action that is appended to the match rule instructs S to resubmit the packet 

to table 1. 

A consequence of this implementation is that, unlike in the l2_pairs.py example, the 

controller maintains no state about what addresses are reachable via what ports on switch S. In 

fact, the controller maintains no state whatsoever. 
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CHAPTER III 

BASIC MULTITRUNK ASSIGNING CONNECTIONS TO TRUNKS 

We are now ready to describe our multitrunk.py POX program, which assigns TCP flows 

to one of the available trunk lines in our topology. The trunk line assigned to a TCP flow is 

chosen in round-robin fashion. Only flows from top to bottom are handled this way; the reverse 

flows from bottom to top all are sent through the trunk s4 − s1. Each individual TCP flow will 

have a match rule specifying 

• dl_src and dl_dst, the Ethernet addresses 

• nw_src and nw_dst, the IP addresses 

• tp_src and tp_dst, the TCP port numbers 

These OpenFlow rules will be installed in each switch on the path. Once a TCP 

connection is made, and the OpenFlow rules are installed, then traffic for that connection will not 

be looked at further by the controller.  

Much of the code here is specific to our topology, but it generalizes in a straightforward 

way to other topologies with multiple trunks from one cluster of nodes to another. 
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Figure 1. (repeated) 

Matching on both source and destination is necessary so that each TCP flow can be 

routed individually; matching on destination only would force all flows to the same destination 

to take the same path. Including match rules for the Ethernet addresses is not strictly necessary. 

Switch-to-switch connections can be discovered during the processing of POX LinkEvent events, 

below. However, there is no automatic way to discover switch-to-host connections, such as s7-
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to-h1. While these connections can be determined from the diagram, there is no way to 

determine from the diagram the port used by s7 to reach h1. We solve this problem by using 

ARP. 

We rely on ARP messages to tell the controller where the hosts are, just as ARP 

traditionally tells senders where their destinations are. If h1 sends out an ARP “who-has h8” 

query, then s7 will discover that it is directly connected to h1, and via what port. S7 will report 

this to the controller. S7 will know that the arriving ARP packet comes from a host and not 

another switch because, at startup, each switch will be able to identify which of its ports connect 

to other switches (see the discussion on switch neighbor discovery, below). As the ARP packet is 

not arriving from one of those switch ports, it must represent a direct host connection. 

We will have the controller tell s7 that the ARP packet should be flooded; we will use a spanning 

tree to avoid loops. The ARP packet will eventually be delivered to its destination, h8. This host 

will reply, and thereby inform switch s14 that it is directly connected to h8. This information will 

also be sent to the controller. 

ARP packets will be delivered via forwarding rules built by ordinary Ethernet learning. In 

order to get this to work, we must identify a spanning tree, and we must implement an Ethernet 

learning algorithm in POX. We will use the algorithm of l2_nx.py, using two OpenFlow tables. 

The spanning tree will be determined manually; we will simply disable switches s2, s3 and s5, 

s6. This disables the blue trunk lines shown in the diagram, and also all links from the host 

switches to s2, s3, s5 and s6. 

We will also allow ICMP traffic to be delivered over this same spanning tree, again using 

Ethernet learning. While ICMP traffic carries some important IP-layer error messages, these do 
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not appear in our emulation. Our only visible use of ICMP traffic is in host-to-host pings, which 

is what we use to establish that connectivity is working. 

Matching of TCP flows is done entirely in flow table 0, following the style of the l2_pairs 

example. However, flow table 1 is needed for handling the ARP and ICMP traffic. 

For this program the controller must learn what switches are connected to what other 

switches, and via what ports. POX includes a “discovery” module to achieve this. When this 

module is activated, the controller instructs each switch to send special messages out each of its 

ports. These messages are never forwarded. If the receiver of one of these messages sent by 

switch S1 is another switch S2, then S2 reports receipt of the message back to the controller. The 

controller then learns that S1 and S2 are neighbors, and also what port is needed to reach S2 

from S1 and vice-versa. If the message is delivered to a host, nothing happens. The messages 

themselves are modeled after the HELLO messages used by the spanning-tree algorithm. 

multitrunk.py 

Different paths can be utilized to make a TCP connection between different hosts (two 

hosts); the purpose of multitrunk is to assign these paths so as to distribute traffic over all the 

available trunks.  

The choices of using different and multiple routes between two hosts is why we want to 

use multitrunk. It explains how different paths (or trunks) can be used to route the TCP 

connections. 

As in the figure above, between h1-h5 and h6-h10 there will be multiple trunk lines; these 

are the K connections s1−s4, s2−s5 and s3−s6. 

Our Pox module that runs on the controller is multitrunkpox.py. The program that sets up 

our topology in Mininet is multitrunk12.py. The variable K decides the number of the trunks; 
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K=2 is the default but we use K=3 in all our examples. N represents the number of hosts at each 

end. The topology contains many loops, but, as long as we prevent flooding traffic from using 

the switches s2, s3, s5 and s6, and thus the blue trunk links, the broadcast-traffic looping will not 

happen. There are also loops local to each end of the topology that our approach prevents; 

because s2 does not forward routine packets, the loop s7−s2−s8−s1−s7 has no effect. 

We are primarily concerned with connections between one of the top hosts, h1-h5 in the 

figure, and the bottom hosts, h6-h10. It is these flows that will be assigned one of the s1−s4, 

s2−s5 or s3−s6 trunks. 

Each TCP connection consists of two flows, one for each direction of the connection. If 

we create a TCP connection from h1 to h6, from the top to the bottom of the picture, then we will 

have one flow going from h1 to h6 and one flow going from h6 to h1. We will vary the routing 

only for the top-to-bottom h1 to h6 flow; the left-hand trunk link s1-s4 will always be the path 

used for h6 to h1 flows. 

If we create a TCP connection from h1 to h2, both at the top of the picture, then we will 

again have one flow going from h1 to h2 and one flow going from h2 to h1. In this case, the h2-

to-h1 flow will be routed via s1, and we could in principle route the forward h1-to-h2 flow via 

any of s1, s2 or s3. In fact, we do not assign special routes for this top-to-top case; both flows 

will be routed via s1. 

The forwarding information used by OpenFlow will have to contain the TCP ports; we 

need this to allow different TCP connections between the same pair of hosts (top and bottom) to 

be routed via different trunks. Such connections will in a round-robin way alternate among the 
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trunk lines. It is worth mentioning that in the beginning the s1 to s4 will be used for the first flow 

of TCP between h1 to h6. 

The controller will know which hosts are directly connected through which switch ports 

and also the MAC addresses of these hosts will be learned by switches through PacketIn message 

of the ICMP and ARP packets. It is worth mentioning that the TCP traffic is differently handled. 

Switch-to-Switch Link Discovery 

The first phase of bringing up multitrunkpox.py is neighbor discovery among the 

switches. The names of adjacent switches could be supplied at compile time by reference to the 

diagram, but the switch ports used to reach these adjacent switches can only be discovered 

dynamically. [13, 7] 

Switch discovery requires the Pox openflow.discovery module, requested on the 

command line. The complete command line is  

./pox.py openflow.discovery openflow.nicira −convert-packet-in log.level –WARNING 
forwarding.switchgraph${VER} −N=$N −K=$K 

The discovery module, outlined above, has each switch send out special packets 

resembling spanning-tree HELLO messages, technically known as LLDP messages. When 

switches receive these from their neighbors, they forward them to the controller, which processes 

them via the handle_linkEvent() handler.  A HELLO packet includes the switch port and 

the dpid of the switch who sent the packet. Along with the receiving switch port the dpid gets 

sent to the controller, this happens when a neighboring switch receives an LLDP packet so this 

packet get sent with what we said earlier the dpid and the port. A report will be generated after 

this point and get sent as a linkEvent to the multitrunkpox module; this report has the port 
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numbers and the switches at the sender side and also the receiver side after the controller learn 

them.  

The learning of multitrunkpox module happens as the processing of the messages of 

LinkEvent takes place. The LinkEvent phase is so short in time to a degree it can be measured in 

seconds and the learning process is knowing the information which is what and how the 

connection to a neighboring switch will take place and at what ports are connected directly.  

The neighbor hosts at this point we don't have any information about since we didn't get 

any packets from them but what we will say that we know is that the neighbor switches that are 

directly connected. After the linkEvent phase is completed, we can identify the switch ports that 

connect directly to hosts because these are the ports for which no information has yet been 

discovered. 

The controller keeps all this information about switches and switch-to-switch links in a 

graph of Python SwitchNode objects, one per switch. Each SwitchNode has a list of neighboring 

SwitchNodes, and the ports used to reach them. There is a separate list, for each switch, of 

directly neighboring hosts and the ports used to reach them; these are discovered later. A Python 

map is maintained between switch numeric values − the so-called dpid values −  and the 

corresponding SwitchNode object. 

The exchange of link messages takes some time. As a result, we did not attempt to start 

TCP traffic until 10 seconds after the POX controller was started. The delay in this link-

exchange protocol is of the same general order of magnitude as the delay in the Spanning Tree 

Protocol but can be somewhat faster as there is no need for “convergence”. All the switches are 
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learning is the links by which neighbors can be reached; there is no shortest-path algorithm 

involved. 

ICMP and ARP Traffic 

After the LinkEvent processing and the construction of the SwitchNodes, the switches 

connect to the controller, which triggers the handle_ConnectionUP() processing. It is at this stage 

that the switches are initialized to default rules to handle ICMP and APR traffic. The 

match/action rules for ICMP and ARP traffic are sent to the switches. 

Only switches designated as “flooder” switches carry ARP and ICMP traffic; that is, s2-

s3 and s5-s6 are excluded. The direct links from s7-s11 to s2 and s3  are not disabled; s7-s11 

would therefore flood packets to s2 and s3. However, s2 and s3 would then drop the packets, so 

they would not propagate further. This is not exactly the same as the traditional spanning-tree 

algorithm, which does disable such links, but the end effect is the same. One way to look at this 

is to say that a spanning tree is constructed “manually”, and then OpenFlow rules are established 

to allow ARP and ICMP traffic to be forwarded in the usual way along this spanning tree. TCP 

traffic, on the other hand, will always be assigned specific routes by the controller; it does not 

use the spanning tree. 

Table-initialization code had to include match rules restricting attention to ARP and 

ICMP traffic, as below. Match rules do not allow “or” conditions, so two sets of rules had to be 

created. In the code below, msgi is the message for ICMP match rules, and msga is the 

corresponding message for ARP match rules. 

msgi.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.IP_TYPE) 
msgi.match.append(nx.NXM_OF_IP_PROTO(pkt.ipv4.ICMP_PROTOCOL)) 
msga.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.ARP_TYPE)) 
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Overall, the ConnectionUp processing resembles that of the l2_nx.py example, earlier, in 

that two tables are set up. However, rules for both ICMP and ARP must be installed. 

Because we use two OpenFlow tables for the ICMP/ARP traffic, following the technique in 

Example 2: l2_nx.py, the table sizes need at most O(N) entries (versus the l2_pairs example, in 

which tables could need O(N2) entries). 

 The flooding versus non-flooding switches are handled as follows: 

    if flooder(connection.dpid): 
         msgi.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) 
         msga.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) 

For non-flooding switches, no flood rule is installed. 

Handling TCP Connections 

The next step is to handle TCP connections. Recall that the switches are configured to 

report packets to the controller whenever there is no matching rule. No switch forwards TCP 

packets by default. So, when the first TCP packet of a connection (the SYN packet of the three-

way handshake) arrived at the frontline switch adjacent to the initiating host, the packet would be 

forwarded to the controller, which then generates a PacketIn event for the packet. 

 In the PacketIn event handler, the controller had to distinguish between TCP traffic and 

ARP/ICMP traffic (UDP is not delivered). This is done using the POX find() method, as in the 

following: 

• icmp = packet.find('icmp') 

• arp = packet.find('arp') 

• ipv4= packet.find('ipv4') 

• tcp = packet.find('tcp') 

These variables are set to “None” if the packet is not of the proposed type. 
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Once a TCP packet from a new connection is identified, we identify the source host ha and 

destination host hb and then create a Connection object conn for it; this represents the one-

way flow ha→hb. The next step is to choose a trunk line (by choosing an upper trunk switch; one 

of S1-S3 when K=3). This is done by picktrunk(conn), and is usually done on a round-

robin basis, eg selecting S1, then S2, then S3, then S1 again and so on. The trunk switch chosen 

does not depend on the connection, provided the two endpoints are at opposite ends of the 

network. However, the process still works if both endpoints are at the same end of the network, 

in which case the path will lead from host to selected trunk switch and back to the other host, 

without traversing the trunk link itself. 

At this point, with the Connection conn and trunk switch trunkswitch, we can 

calculate the unique path from ha to hb that goes through trunkswitch. We use here our 

knowledge of our specific topology, though finding this path can be done for general topologies 

also. The path is created by findpath(conn, trunkswitch), and returns a python list of host and 

switch nodes, for example [h2, s8, s2, s5, s15, h9].  

We are then ready to configure the necessary forwarding entries in each switch along the 

path; this is done by create_path_entries(conn, path). The entries are made in 

reverse order; for example, if the path is [h2, s8, s2, s5, s15, h9] then we configure the switches 

in order s15, s5, s2 and s8. This is done so that, if a packet of the connection reaches one switch, 

the remaining switches will likely already have been configured for the connection, and there 

will be no more communication with the controller. This is not guaranteed, as configuration is 

done by having the sender send a flow_mod message to the switch and then having the switch 

process that message; these steps are not synchronous. It is possible that an earlier switch on the 
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path will be configured before a later switch, even though we sent the flow_mod message to 

the later switch first. This proved not to be a problem in practice, however, and, in any event, the 

only problem would be the duplication of the path setup.  

In order to make it easier for the controller to handle receiving two TCP packets from the 

same connection − most likely from two different switches, when the controller processes the 

first packet it records the association between conn and the new path in the dictionary 

conn_to_path. In the event that the controller later sees another packet from the same 

connection, it can easily determine that the path has already been defined and can assign the 

same path during processing of the second packet. In actual experience, we did regularly − 

though not frequently − see the controller process two packets for one TCP connection, 

indicating that this race condition was a real possibility. The conn_to_path dictionary also 

ensures that flow entries which time out (an OpenFlow option we did not make use of) will be 

re-established using the same path. 

There is one potential problem that can come up in the 

create_path_entries(conn, path) process. When creating flow_mod entries for a 

switch S in the path, we need to know not only the next node − which we can determine from the 

path − but also the port on S used to reach that next node. If the next node is also a switch, then 

this port is available in the SwitchNode map. The initial switch-to-switch link-discovery protocol 

provides information about switch ports that connect to other switches; immediately following 

the end of that protocol, however, switch ports that lead directly to hosts have their neighbors left 

unspecified. So, potentially, with path [h2, s8, s2, s5, s15, h9], we might not know the port that 

s15 uses to reach h9.  
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This situation − that s15 does not know how to reach h9 − corresponds to the traditional 

learning-Ethernet switch situation where a switch does not have a forwarding entry to a given 

destination. In that case, the switch floods the packet. Our solution here is to rely on this port 

discovery having been completed during the earlier ARP exchange.  

If host h2 has not previously sent traffic to h9, then h2 will not have h9’s IP address, and 

will send an ARP “who-has” request. This request will likely be flooded, using the spanning tree 

we previously established that contains only the S1−S4 trunk. The ARP message will be flooded 

by s15 in particular and will reach h9. Host h9 will then send an ARP reply; it will be sent to 

h2’s unicast address rather than to the broadcast address but flooding might still potentially 

occur. When h9’s reply reaches its immediate-neighbor front-line switch s15, the switch will 

learn what port it uses to reach h9. This port will, of course, be the port by which the packet from 

h9 just arrived.  

As part of the PacketIn process, whenever a packet arrives at a switch S and is forwarded 

to the controller, the controller checks to see if the arrival port at S was known to connect to 

another switch. If the arrival port is not known to be connected to a switch, it is assumed to be 

connected to a host, and so the controller records in the SwitchMap that that port of S connects 

directly to the host that originated the packet. In this case the switch S must be one of the front-

line switches, as these are the only switches directly connected to hosts. It is this step that 

completes the SwitchMap process. 

It is possible that the ARP processing has not finished by the time the first TCP packet 

(SYN packet) is sent. If this happens, then the create_path_entries() step will fail, 

because the final switch will not know what port connects to the destination host. If this happens, 
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it is likely to succeed when the process is repeated when the SYN packet reaches the next host. 

In the worst case, the SYN packet will be lost, and by the time it is retransmitted the earlier ARP 

processing will almost certainly have completed. 

Assuming create_path_entries() is successful, forwarding rules will be created 

for each switch on the path.  

At the time we create the forward connection, conn, we can also set up the path for the 

reverse connection. The reverse path, rpath, can either use the same trunk link as the original 

path (in which rpath is the Python list reversal of path), or it can use a different trunk link. After 

defining rpath, we proceed as follows: 

rconn = conn.reverse() 
create_path_entries(rconn, rpath) 
conn_to_path[rconn] = rpath 

Using the ovs-ofctl command 

We can view the path entries using the ovs-ofctl command on the Mininet host 

system. For example, the output below was obtained from an instance of our network with K=2 

(two trunk lines) and N=1 (one host at each end). [12] 

 

Figure 5. Two paths between two hosts 
(Multitrunk with N=1 and K=2) 

s1 s3

s6

s2

s5h1

s4

h2
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We created two different ssh connections between h1 and h2, and then ran ovs-ofctl 

dump-flows s5. Only entries relating to TCP connections are shown below:  

cookie=0x0, ..., 
tcp,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,nw_src=10.0.0.1,nw_dst=10.0.0.2,tp_src=59404,tp_dst=22 
actions=output:1 

cookie=0x0, ..., 
tcp,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,nw_src=10.0.0.1,nw_dst=10.0.0.2,tp_src=59526,tp_dst=22 
actions=output:2 

cookie=0x0, ..., 
tcp,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:01,nw_src=10.0.0.2,nw_dst=10.0.0.1,tp_src=22,tp_dst=59404 
actions=output:3 

cookie=0x0, ..., 
tcp,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:01,nw_src=10.0.0.2,nw_dst=10.0.0.1,tp_src=22,tp_dst=59526 
actions=output:3 

The h1-to-h2 flows are represented by the first two entries. h1 has MAC address 

00:00:00:00:00:01 and IP address 10.0.0.1; similarly for h2. TCP source port 59404 and the s1-

s3 trunk is used for the first h1→h2 flow. The port of s5 that connects to s1 is 1, hence the 

output:1 field. The Mininet link command output states s5-eth1<->s1-eth2; the eth1 interface 

corresponds to port 1.  

The second entry represents the second h1→h2 flow, using the s2-s4 trunk and having 

source port 59526. From s5, the output port is 2.  

The third and fourth entries are the reverse flows, h2→h1. The source is h2, the destination is h1, 

and the port on s5 that leads to h1 is 3. 

In general, OpenFlow allows idle TCP connections to time out; the flow entries are then 

deleted. If traffic resumes, the first switch to see the new traffic again contacts the controller; the 

conn_to_path dictionary ensures that the same path is re-established. Because setting up the 

ovs-ofctl command takes a modest amount of time, it was convenient to use an infinite timeout 

to avoid having to hurry. However, a timeout should have a limit in a production environment. 
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If OpenFlow timeouts are used, then connections can be deleted when the final TCP FIN packet 

is seen, or a TCP RST. This would involve ensuring that such packets are always reported to the 

controller; we did not implement this. 

Comparison to ECMP 

The OpenFlow approach here can be compared to Equal-Cost MultiPath routing, or 

ECMP, in which traffic to a given destination is also divided up among multiple paths. [3] In 

ECMP, each path has the same "cost" value, which is also the case in all our examples although 

it is not an explicit requirement. ECMP is supported by most large commercial switches and 

routers. 

ECMP can, in principle, be configured to divide between the two trunks on a per-packet level, 

using round-robin scheduling: one packet is sent via trunk 1 and the second is sent via trunk 2, 

and alternating continuously. 

When used with TCP, however, ECMP is almost always configured so it routes packets 

of any one flow over the same path. The path is chosen based on a hash of the TCP connection 

information (source IPaddr, source port, destination IPaddr, destination port). This is done in part 

to minimize packet reordering, which is a serious problem for TCP connections as out-of-order 

packets are often interpreted as an indication of packet loss. Keeping each flow on the same path 

also avoids the possibility that different packets could face different MTUs, and thus different 

fragmentation rules. Therefore, in ECMP, as with our OpenFlow approach, each TCP flow takes 

the same path. 

This same-path behavior means that the ECMP approach is effectively identical to our 

approach, except that our approach allows us to choose that path, while ECMP does not. 
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This lack of support for path choice puts ECMP at a potentially significant disadvantage. With 

three flows and three paths, the probability that all three flows would be assigned different paths 

is 1/6. For our OpenFlow approach, the probability is 1. 

For moderately large numbers of TCP flows, ECMP is likely to assign roughly equal 

numbers of flows to each path. Even here, though, the OpenFlow approach allows redistributing 

flows among the paths based on current utilization; ECMP does not permit this. For very large 

numbers of TCP flows, ECMP is likely to assign roughly equal volumes of traffic to each path, 

but, for more modest numbers of flows, our approach gives the system managers much more 

control. 

Packet-by-packet ECMP can be implemented in OpenFlow by forwarding packets not to 

a port but to an OpenFlow group. The OpenFlow switch has to then be configured to use round-

robin selection as part of its group action. This was not available to us as POX offers very 

limited support for group actions. In any event, problems with TCP packet reordering make this 

option unattractive. 

One drawback of the OpenFlow approach, compared to ECMP, is the need to maintain 

state information about each flow in every applicable switch (in particular the "front-line" 

switches). Each switch has more processing to do, and so the OpenFlow approach may be slower 

for very large traffic volumes. However, for smaller traffic volumes the OpenFlow overhead is 

small, and this is the case where the OpenFlow advantages over ECMP are strongest. 

Comparison to LAG and LACP 

Our technique can also be compared to Link Aggregation Groups (LAG) and Link 

Aggregation Control Protocol. [5] In LAG and LACP, multiple links between a pair of switches, 

or between a switch and a multi-port server, can be bonded together to serve as one.  
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In the sense that our technique is “bonding” together multiple trunk lines, LAG/LACP is similar. 

However, LAG/LACP requires that all the bonded links start and end at the same pair of devices. 

Our arrangement has no such requirement; in fact, each trunk line in our standard diagram 

connects to its own pair of switches, not connected to by any other trunk line.  

LAG/LACP also requires that each path is an individual link, and, furthermore, that the 

propagation delays on each link are approximately the same. While we do not demonstrate this 

case, our technique also works with trunk lines that may have multiple of hops, rather than being 

simple point-to-point links. Our technique definitely does not care if propagation delays are 

widely different. Finally, our technique would work if there were three clusters of hosts, 

clusterA, clusterB and clusterC, and we wanted to spread traffic from clusterA to clusterB over 

some trunk lines directly from A to B and some trunk lines from A to C to B. 
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CHAPTER IV 

ADVANCED MULTITRUNK REASSIGNING CONNECTIONS TO NEW TRUNKS 

In the final version of our POX program, we introduced a process in which flows were 

rerouted at periodic intervals; that is, the flows were reassigned to new trunks. Rerouting was 

done on the basis of the recent bandwidth usage history of each flow, in order to maximize the 

overall utilization of the three trunk lines. 

For the recent-bandwidth strategy to make sense, we had to assume that each flow's 

bandwidth fluctuated with time under the direction of the application creating the connection. 

That is, flows were rate-limited, based on the needs of their creating application. We also 

assumed that the typical timescale for rate changes was at least as long as the interval at which 

we updated the flow statistics. 

At regular intervals, typically of length 1 second, a Python timer fired and caused the 

controller to call request_flow_stats(), which sent ofp_flow_stats_request messages to 

all front-line switches. These statistics requests were answered asynchronously, creating 

FlowStatsReceived events. The handler for these was handle_flow_stats(). From 

these responses we obtained information about each connection’s throughput during the previous 

interval. These were stored in FlowInfo objects, in the map flowdict indexed by 

Connection (flow) objects. 

At slightly longer intervals, typically 2 to 5 seconds, the function 

reshuffle_flows() was called, which reassigned each top-to-bottom flow to a possibly  
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different trunk line. We did this reassignment so as to distribute the flows as fairly as possible 

among the trunk links. 

In early versions, flow reshuffling was initiated manually by Unix signals received by the 

POX process, in particular SIGUSR1 and SIGUSR2. 

We created a FlowInfo class that held information about recent throughput history, and 

a dictionary flowdict that mapped connections to FlowInfo objects. These FlowInfo 

objects were updated asynchronously by the FlowStatsReceived event handler.  

We also modified the Mininet configuration to assign a fixed bandwidth to each of the trunk 

links. This involved adding the bw=BANDWIDTH option to each Mininet call to addLink(). 

Typically, we used a fixed bandwidth of 20 Mbps. 

We can now describe the reshuffle_flows() algorithm. For each connection (that 

is, one-way connection, or flow), we calculated its recent bandwidth, using the FlowInfo data. 

The next step was to sort the connections in decreasing order of recent bandwidth; that is, with 

the highest-bandwidth users first. We then went through this sorted list and reassigned each 

connection in turn to the trunk that had the largest remaining amount of unassigned bandwidth. 

For example, if the flow bandwidths were 11, 10, 8, 5, 2, the flows would be distributed over the 

trunks as follows: 

• 11: trunk 1 

• 10: trunk 2 (trunks 2 and 3 each have 20 Mbps to allocate; trunk 2 comes first) 

• 8: trunk 3 (at this point trunk 3 has 20 Mbps while trunks 1 and 2 have 9 and 10 Mbps 

respectively) 

• 5: trunk 3 (which has 12 Mbps free, versus 9 and 10 for trunks 1 and 2 respectively) 
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• 2: trunk 2 

This can be described as a “greedy” algorithm. Each trunk was initially allocated 

bandwidth of the BANDWIDTH value set in our Mininet setup. Because recent bandwidth 

history was also limited by the trunk-line BANDWIDTH constraint, the sum of the bandwidth-

history values could not exceed K * BANDWIDTH, where K is as usual the number of trunk 

links.  

Flows were transferred to their new trunk using the function move_flow(conn, 

newtrunk). If a path from h3, with front-line switch s9, was being moved from trunk s1−s4 to 

s2−s5, then creating the new path entry in s9 would need to overwrite the old path entry in s9, so 

that the flow’s traffic would now be forwarded from s9 to s2 instead of to s1. The default 

flow_mod command action, however, was OFPFC_ADD. While using OFPFC_ADD does 

allow overwriting a switch’s flow entry, it resets all the traffic statistics to 0. However, it was 

essential that we retained each flow’s traffic statistics going forward, so we could properly take 

into account its bandwidth history.  

To handle this, we wrote a separate function create_path_entries2(conn, 

path, pivotswitch), where pivotswitch represents the last switch that remains in the 

new path; that is, the switch that must forward the flow out a new port. This would be s9 in the 

example above. We then wrote modTCPrule() (where create_path_entries() used 

addTCPrule()) which used the OFPFC_MODIFY command instead of OFPFC_ADD. 

When applied to an OpenFlow switch flow rule, this updates the forwarding while preserving the 

past traffic statistics. The modTCPrule() function was used to modify the pivotswitch flow 

table. 
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We also had to delete the flow entries that were no longer used at all; in our example 

above these would be the old entries in s1 and s4. To delete flow entries we created 

delTCPrule() which invoked the OFPFC_DELETE command. 

The final step was to create trafficgen.py, which generated rate-limited traffic where the 

rate could be configured to evolve with time. For example, the command 

trafficgen.py h10 5432 5  99 99 20 20 20 50 50 20 generated traffic to host h10, on port 5432, 

with traffic changing at 5-second intervals according to the bandwidth pattern 99%, 99%, 20% 

20%, 20%, 50%, 50%, 20%, where each percentage is the percentage of the maximum available 

bandwidth. 

Our greedy algorithm here is known not to be optimal, in that in some cases it cannot find 

a trunk line to which to assign the last connection, while at the same time preserving the desired 

goal of having the sums of the past bandwidths of the flows on each link be less than or equal to 

the total available bandwidth on that link. However, this goal is not essential, in that if a trunk 

line is oversubscribed then the bandwidth of each flow assigned to that trunk will be 

proportionally reduced.  

We are not aware of any existing Ethernet mechanisms that assign flows to paths based 

on bandwidth-usage history. 

In one demonstration experiment, we created five flows, each with a varying rate limit. Here is a 

graph of how those flows were allocated to the trunk lines: 
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Figure 6. Dynamic flow rebalancing 

The five flows are red, orange, yellow, green and blue. The flow rates vary with a period 

of about 20 seconds; this periodicity is visible in the graph. Our algorithm always assigns the 

flow with the biggest previous bandwidth history to trunk 1; the algorithm will then always 

assign the next two flows to trunks 2 and 3 respectively, and then the final two flows also to the 

set of trunks 2 and three (though the final two flows may be assigned to the same trunk).  

We were unable to start all five flows at the same time. The beginning of the graph shows this, 

with new flows added over seven 2.0-second cycles.  

Note the significant increase in the blue flow’s bandwidth history between 19 and 20, 

resulting in the blue flow moving from trunk 3 to trunk 1. Similarly, while the green flow was 

the highest at time 9, it was just slightly outpaced at time 10 by the yellow flow, and so green 

moved to trunk 2. 
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# original learning-algorithm code copyright 2012 James McCauley 
# 
# pld: this version runs all connections through s1/sK 
# but allows a connection to be migrated to an si/sK+i 
# This version ASSUMES the N,K-double-bell 
# problem: given an sj host switch, how do we figure out how to 
# forward to si? 
 
# Licensed under the Apache License, Version 2.0 (the "License"); 
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at: 
# 
#  http://www.apache.org/licenses/LICENSE-2.0 
# 
# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
 
# Primary dictionaries: 
# 
# smap: map of switches dpid -> SwitchNode 
# flowdict:  dictionary of <Connection, FlowInfo> pairs 
# conn_to_path: map of (one-way) Connections to paths: lists of hosts/switches traversed. 
 
# switchgraph1: first table looks at dest, second table looks at src 
 
# switchgraph7: 
# * support for SIGUSR1, SIGUSR2 
# * fixed handle_flow_stat() so a flow goes into flowdict only if it crosses from one side to the 
other 
# * added support for idle_timeout 
# changed Connection.__str__ output format 
 
# switchgraph8: 
# * make addTCProute() UNIdirectional, so a separate route must be entered for the reversed path. 
# * separate finding the path of a connection from setting up the connection 
# * improved printing in handle_linkEvent() 
# * deleted connections if they don't show up in a handle_flow_stat report 
# * because the reporting switch has timed the connection out for exceeding idle_timeout 
 
# switchgraph12: 
# fixed an error in install_icmp_entry() (wrong packet type for ARP), and removed the spurious 
default clause in set_default_action() (there can only be one default clause!) 
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""" 
This learning switch requires Nicira extensions as found in Open vSwitch. 
Furthermore, you must enable packet-in conversion.  Run with something like: 
 
  ./pox.py openflow.discovery openflow.nicira −convert-packet-in log.level −WARNING 
forwarding.switchgraph2 −N=5 −K=3 
 
 h1−s7   ...                         ...  s12−h6 
 h2−s8   ...  s1−−−−−−−−−−s4  ...  s13−h7 
 h3−s9   ...  s2−−−−−−−−−−s5  ...  s14−h8 
 h4−s10  ...  s3−−−−−−−−−−s6  ...  s15−h9 
 h5−s11  ...                         ...  s16−h10 
 
 
This forwards based on ethernet source and destination addresses.   
This component uses two tables on the switch − one for source addresses 
and one for destination addresses.  Specifically, we use tables 0 and 1 
on the switch to implement the following logic: 
0. Is this dest address known? 
   NO:  flood 
   YES: forward 
   Either case: send to Table 1 
1. Is this source address known? 
   YES:  do nothing  (= drop) 
   NO: send to controller 
 
Table initialization is done by _handle_ConnectionUp, 
including a rule to forward unknown packets to the controller. 
We then add new entries for ARP/ICMP traffic when such packets arrive. 
 
  'OFPP_MAX'     : 65280, 
  'OFPP_FLOOD'   : 65531, 
  'OFPP_CONTROLLER' : 65533, 
  
""" 
 
from pox.core import core 
from pox.lib.addresses import EthAddr 
import pox.openflow.libopenflow_01 as of 
import pox.openflow.nicira as nx 
import pox.lib.packet as pkt 
from pox.lib.revent import EventRemove 
import pox.lib.util as util 
import time 
import threading 
import signal 
 
TCPstarted = False    # flag used to identify start of TCP traffic, which generally comes AFTER 
all hosts have been identified 
 
BROADCAST = EthAddr('ff:ff:ff:ff:ff:ff') 
 
SLEEPTIME = 2    #10     # time in seconds 
 
ICMP_IDLE_TIMEOUT = 0 
TCP_IDLE_TIMEOUT  = 0     # 10301  # 10301 
 
# pld: should get N and K from the command line 
 
N=5 
K=3 
 
# two SwitchNodes should be the same if their dpidvals are the same 
class SwitchNode: 
 # dpid, nmap, hmap 
 def __init__(self, id, connection = None): 
     self.dpidval = id 
     self.nmap = {}   # map of (port, SwitchNode) 
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     self.hmap = {}   # map of (port, EthAddr) 
     self.flagval = 0 
     self.connexion = connection 
     self.reservedports = []    # when all is done, this should be [] 
 
 def __str__(self): 
     return "s" + str(self.dpidval) 
 
 def __repl__(self): 
     return "s" + str(self.dpidval) 
 
 def dpid(self): 
     return self.dpidval 
 
 def switchPorts(self):    # returns list of ports that lead to other switches 
     return self.nmap.keys() 
 
 def hostPorts(self):    # returns list of ports that lead to hosts 
     return self.hmap.keys() 
 
 def setReservedPorts(self, portlist): # list of switch's ports, without knowing what they 
connect to 
     self.reservedports = [] 
     for p in portlist: 
        if not (p in self.nmap) and not (p in self.hmap): 
            self.reservedports.append(p) 
 
 def switchNeighbors(self):  # returns list of all switch neighbors 
     return self.nmap.values() 
 
 def hostNeighbors(self):  # returns list of all switch neighbors 
     return self.hmap.values() 
 
 def addSwitchNeighbor(self, port, n):    # n is the neighbor SwitchNode 
     if not port in self.reservedports: 
         print "{}.addSwitchNeighbor({},{}): port {} not reserved".format(self, port, n, 
port) 
     self.nmap[port] = n 
     if port in self.reservedports: self.reservedports.remove(port) 
 
 def addHostNeighbor(self, port, n):     # n is an EthAddr 
     if not port in self.reservedports: 
         print "{}.addHostNeighbor({},{}): port {} not reserved".format(self, port, n, 
port) 
     self.hmap[port] = n 
     if port in self.reservedports: self.reservedports.remove(port) 
 
 def switchNeighbor(self, port):    # returns the switch reached by that port 
     if port in self.nmap: 
         return self.nmap[port] 
     else: return None 
 
 def hostNeighbor(self, port):    # returns the host reached by that port 
     if port in self.hmap: 
         return self.hmap[port] 
     else: return None 
 
 # returns the port needed to reach the given switch (by SwitchNode), or None 
 def portToSwitchNeighbor(self, switch): 
     for p in self.nmap: 
        if self.switchNeighbor(p) == switch: return p 
     return None 
 
 # returns the port needed to reach the given host (by EthAddr), or None 
 def portToHostNeighbor(self, host): 
     for p in self.hmap: 
        if self.hostNeighbor(p) == host: return p 
     return None 
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 def setFlag(self, val): 
     self.flagval = val 
 
 def setFlag0(self): 
     self.flagval = 0 
 
 def flag(self): 
     return self.flagval 
 
 def connection(self): 
     return self.connexion 
 
 def setConnection(self, conn): 
     self.connexion = conn 
 
 def __hash__(self): 
     return self.dpidval 
 
 def __eq__(self, other): 
     if isinstance(other, self.__class__): 
         return self.dpidval == other.dpidval 
     else: 
         return False 
 
 
class Connection: 
 
 def __init__(self, ethsrc, ethdst, srcip, dstip, srcport, dstport): 
     self.ethsrc = ethsrc 
     self.ethdst = ethdst 
     self.srcip  = srcip 
     self.dstip  = dstip 
     self.srcport= srcport 
     self.dstport= dstport 
 
 def reverse(self): 
     return Connection(self.ethdst, self.ethsrc, self.dstip, self.srcip, self.dstport, 
self.srcport) 
 
 def __str__(self): 
     return '(h{}->h{},{},{},{},{})'.format(hostnum(self.ethsrc), hostnum(self.ethdst), 
self.srcip, self.dstip, self.srcport, self.dstport) 
     #return '({},{},{},{},{},{})'.format(self.ethsrc, self.ethdst,self.srcip, self.dstip, 
self.srcport, self.dstport) 
 
 def __hash__(self): 
     return hash((self.ethdst, self.ethsrc, self.dstip, self.srcip, self.dstport, 
self.srcport)) 
 
 def __eq__(self, other): 
     return self.ethsrc == other.ethsrc and self.ethdst == other.ethdst and self.srcip == 
other.srcip and self.dstip == other.dstip and self.srcport == other.srcport 
      
 def crosses(self): 
     if hostnum(self.ethsrc) <= N and hostnum(self.ethdst) > N: return True 
     if hostnum(self.ethsrc) > N and hostnum(self.ethdst) <= N: return True 
     return False      
 
 def top_to_bottom(self): 
     if hostnum(self.ethsrc) <= N and hostnum(self.ethdst) > N: return True 
     return False 
   
smap = {}  # map of all switches, by dpid: <dpid, SwitchNode> 
 
conn_to_path = {}   # map of (one-way) Connections to list from host to host. 
 
# sets the flag on all switches reachable from s, port p, 
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# *without* going through a switch in the list "excluded". 
# s itself may be in the excluded list 
# excluded is a list of switch dpids, not SwitchNodes. 
# flag is set to k 
# returns a list of all nodes marked with k 
 
def markall (startsw, p, k, excluded): 
   print "starting markall at", startsw 
   markedlist = [] 
   firstnode = startsw.switchNeighbor(p) 
   if firstnode == None: 
   print "{}[{}] goes nowhere".format(startsw, p) 
   if firstnode.dpid() in excluded: return 
   todo = [firstnode]     # list of SwitchNode objects 
   while todo != []: 
   newtodo = [] 
   for s in todo: 
      s.setFlag(k) 
      markedlist.append(s) 
      # print "marking", s 
      for n in s.switchNeighbors(): 
         if n.flag() == k: break    # already marked 
         if n.dpid() in excluded: break 
         if n in newtodo: break 
         newtodo.append(n) 
      # 
   todo = newtodo 
   return markedlist 
         
def floodtest(): 
 print "starting floodtest" 
 s1 = smap[1] 
 exclude = range(1,K+1) 
 markedlist = markall(s1, 2, 37, exclude) 
 print "mark test at s1:", strlist(markedlist) 
 print "done with floodtest" 
 
def pathtest(): 
 print "starting pathtest" 
 printpath(2*K+1,2*K+N+4,2) 
 printpath(2*K+5,2*K+N+1,3) 
 print "done with pathtest" 
 
# prints switches with ports from dpid1 to dpid2 via dpidtrunk 
def printpath(dpid1, dpid2, dpidtrunk): 
 if dpid1 <= 2*K or dpid1 > 2*K+N: 
     print "bad dpid1:", dpid1 
     return 
 if dpid2 <= 2*K +N or dpid2 > 2*K + 2*N: 
     print "bad dpid2:", dpid2 
     return 
 if dpidtrunk > K: 
     print "bad trunk switch:", dpidtrunk 
     return 
 s1 = smap[dpid1]                # starting switch, at "left" 
 st1= smap[dpidtrunk]            # "left" trunk switch 
 st2= smap[switchpeer(dpidtrunk)]   # "right" trunk switch 
 s2 = smap[dpid2]                # ending switch, at "right" 
 p1   =  s1.portToSwitchNeighbor(st1) 
 pt1a = st1.portToSwitchNeighbor(s1) 
 pt1b = st1.portToSwitchNeighbor(st2) 
 pt2a = st2.portToSwitchNeighbor(st1) 
 pt2b = st2.portToSwitchNeighbor(s2) 
 p2   =  s2.portToSwitchNeighbor(st2); 
 print "{}[{}]−−[{}]{}[{}]−−−−−−−−[{}]{}[{}]−−[{}]{}".format( 
     s1,p1, 
     pt1a,st1,pt1b, 
     pt2a,st2,pt2b, 



82 
 

 
 

     p2,s2 
 ) 
   
 
def strlist(x): 
 if x==[]: return '[]' 
 res='[' + str(x[0]) 
 for s in x[1:]: 
    res += ', ' + str(s) 
 res += ']' 
 return res 
 
def switchpeer(i): 
 if i<=K: return i+K 
 return i-K 
 
 
# dpid to monitor 
#mon_dpid = 4 
 
# Even a simple usage of the logger is much nicer than print! 
log = core.getLogger() 
 
def flooder(dpid): 
  if dpid == 1 or dpid == K+1: 
  return True 
  # if dpid == 1: return True 
  if dpid <= 2*K: 
  #print "non-flooder: dpid=", dpid 
  return False 
  return True 
 
# frontline switches are the entry switches, eg s7-s16 
def frontline(dpid): 
 if dpid > 2*K: return True 
 return False 
 
########  _handle_PacketIn  ####################### 
 
# PacketIn should tell us what switch ports connect to HOSTS 
 
def _handle_PacketIn (event): 
 global TCPstarted, conn_to_path 
 packet = event.parsed 
 packet_in = event.ofp     # The actual ofp_packet_in message. 
 psrc = packet.src 
 pdst = packet.dst 
 inport = packet_in.in_port    # is this the same as event.port? 
 assert inport == event.port, "inport {} not equal to event.port {}".format(inport, 
event.port) 
 dpid = event.connection.dpid 
 if event.port > of.OFPP_MAX: 
    log.debug("Ignoring special port %s", event.port) 
    return 
 
 # handle_PacketIn ignores the trunk switches except for s[1]−s[K+1] 
 # the other trunk paths are used ONLY when paths are created. 
 if not flooder(dpid): return 
 
 if isdhcp(packet): return     # pld: ignore DHCP traffic 
 
 # see if this packet came from a known switch 
 if dpid in smap.keys(): 
      switch = smap[dpid] 
 else: 
      switch = None 
      print "unknown switch s{}".format(dpid)     # no point continuing? 
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 # was this packet forwarded FROM another switch? 
 isFromSwitch = (inport in switch.switchPorts()) 
 
 # if this port isn't in the switchport list, assume it's a direct host connection 
 if not isFromSwitch: 
      # if we have NOT seen psrc before as a host 
      if not psrc in switch.hostNeighbors(): 
         if ishost(psrc): 
             print "{}.{} <−> h{} [type {}]".format(switch, inport, hostnum(psrc), 
format(packet.type,'04x')) 
             switch.addHostNeighbor(inport, psrc) 
         else:  # from a host port but not a normal host 
             udp = packet.find('udp') 
             if udp is not None and udp.srcport != 67 and udp.dstport != 67: 
                 print "{}: sees weird packet from {} via port {}".format(switch,psrc, 
inport) 
         #switch.addHostNeighbor(inport, psrc) 
 
 icmp = packet.find('icmp') 
 arp = packet.find('arp') 
 ipv4= packet.find('ipv4') 
 tcp = packet.find('tcp') 
 
 if (icmp is not None or arp is not None): 
     install_icmp_entry(event, psrc) 
     return 
 
 if tcp is None: 
     if packet.type != 0x800: 
         print "unknown packet type:", packet.type 
     else: 
         udp = packet.find('udp') 
         if udp is None: 
             print 'unknown packet, not UDP or TCP' 
         elif udp.srcport == 67 or udp.dstport == 67:    # dhcp 
             pass 
         else: 
             print "unknown udp packet from ({},{}) to ({},{})".format( 
                 ipv4.srcip, udp.srcport, ip.dstip, udp.dstport) 
     return 
 
 # now we know it's a TCP packet 
 if not TCPstarted and tcp is not None: 
     TCPstarted = True 
     TCPstart() 
 if tcp is not None:     
     #if hostnum(psrc) <= N and hostnum(pdst) >= N: 
     conn = Connection(psrc, pdst, ipv4.srcip, ipv4.dstip, tcp.srcport, tcp.dstport) 
     addTCProute(conn, smap[2]) 
     # shortcut to creating the reverse path: 
     """ 
     rpath = revlist(conn_to_path[conn]) 
     rconn = conn.reverse() 
     create_path_entries(rconn, rpath) 
     conn_to_path[rconn] = rpath 
     """ 
     addTCProute(conn.reverse(), smap[3])    # try having the reverse traffic take a different 
path? 
 
# this installs entries for ICMP traffic, and also ARP 
 
def install_icmp_entry(event, psrc): 
 #packet = event.parsed 
 #psrc = packet.src 
 #pdst = packet.dst 
 # FINALLY add to the tables. Only ICMP and ARP packets should get here. 
 # First, source table. pld: this is now table 1 
 msg = nx.nx_flow_mod() 
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 #msg.match = of.ofp_match()    # pld: does this even exist? or use nx_match()? 
 msg.match = nx.nx_match()   # pld: see pox dox "Using nx_match" 
 msg.table_id = 1 
 #msg.match.of_eth_src = psrc 
 #msg.match.dl_type  = pkt.ethernet.IP_TYPE      # IPv4 
 #msg.match.nw_proto = pkt.ipv4.ICMP_PROTOCOL     # ICMP 
 msg.match.append(nx.NXM_OF_ETH_SRC(psrc)) 
 msg.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.IP_TYPE)) 
 msg.match.append(nx.NXM_OF_IP_PROTO(pkt.ipv4.ICMP_PROTOCOL)) 
 # empty action list here! 
 event.connection.send(msg) 
 
 # Add to destination table. pld: this is now table 0 
 # add flow for ICMP 
 msg = nx.nx_flow_mod()    # pld: was "lmsg": woe 
 msg.match = nx.nx_match()   # pld: see pox dox "Using nx_match" 
 msg.table_id = 0 
 msg.match.append(nx.NXM_OF_ETH_DST(psrc)) 
 msg.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.IP_TYPE)) 
 msg.match.append(nx.NXM_OF_IP_PROTO(pkt.ipv4.ICMP_PROTOCOL)) 
 
 msg.actions.append(of.ofp_action_output(port = event.port)) 
 msg.actions.append(nx.nx_action_resubmit.resubmit_table(table = 1)) 
 event.connection.send(msg) 
 
 # now add entries for ARP 
 msg = nx.nx_flow_mod() 
 msg.match = nx.nx_match()   # pld: see pox dox "Using nx_match" 
 msg.table_id = 1 
 msg.match.append(nx.NXM_OF_ETH_SRC(psrc)) 
 msg.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.ARP_TYPE)) 
 event.connection.send(msg) 
 
 msg = nx.nx_flow_mod() 
 msg.match = nx.nx_match()   # pld: see pox dox "Using nx_match" 
 msg.table_id = 0 
 msg.match.append(nx.NXM_OF_ETH_DST(psrc)) 
 msg.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.ARP_TYPE)) 
 msg.actions.append(of.ofp_action_output(port = event.port)) 
 msg.actions.append(nx.nx_action_resubmit.resubmit_table(table = 1)) 
 # again, action list is empty 
 event.connection.send(msg) 
 
 log.info("Learning %s on port %s of %s" 
        % (psrc, event.port, event.connection)) 
 #req_flow_stats1(event.connection) 
 
 ##if dpid == mon_dpid and ishost(packet.src): 
 ##   print "s"+str(dpid) +":", "packet from", packet.src, "arriving on port", event.port 
 
########  addTCProute(tcppacket,ts)  ####################### 
 
# creates a ONE-WAY route for TCP traffic from ha to hb vi trunk switch ts 
# pld CHANGE: replace ha/hb parameters with packet. Then ha = packet.src, hb = packet.dst 
# AND we can also extract other packet attributes. 
# ha, hb are EthAddr; ts1 is a SwitchNode.   
# The forwarding entries created here just use table 0 
 
def addTCProute(conn,ts1): 
 global conn_to_path 
 ha = conn.ethsrc 
 hb = conn.ethdst 
 ida = hostnum(ha) 
 idb = hostnum(hb) 
 print "adding TCP route h{} -> h{} via {}".format(ida, idb, ts1) 
 #print "TCP/IP: {}.{} <−> {}.{}".format(conn.srcip, conn.srcport, conn.dstip, 
conn.dstport) 
 path = findpath(conn, ts1) 
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 create_path_entries(conn, path) 
 conn_to_path[conn] = path 
 return 
 
def move_s2(): 
 """ 
 move flows from h1-h5 to h6-h10 that *were* through s2 to s3 
 """ 
 s2 = smap[2] 
 s3 = smap[3] 
 for c in conn_to_path: 
     if hostnum(c.ethsrc) > 5: continue 
     if hostnum(c.ethdst) <= 5: continue 
     path = conn_to_path[c] 
     if not (s2 in path): continue 
     print 'moving connection from s2 to s3: {}'.format(c) 
     print 'old path:', path 
     addTCProute(c, s3) 
 # delete flow from s2, s5 
 s5 = smap[5] 
 for s in [s2, s5]: 
     fm = of.ofp_flow_mod() 
     fm.xid = None 
     fm.command = of.OFPFC_DELETE 
     s.connection().send(fm) 
 
def move_flow(conn, newtrunk): 
   """move Connection conn, if it exists, to newtrunk. 
   If the connection already goes through newtrunk, do nothing 
   newtrunk is a dpid (that is, is 1, 2, or 3. 
   Initially assume that conn connects one end to the other 
   """ 
   newtrunksw = smap[newtrunk] 
   if not conn in conn_to_path: return 
   path = conn_to_path[conn] 
   if firsttrunk(path) == newtrunk: return 
   start_host = hostnum(path[0]) 
   end_host = hostnum(path[len(path)-1]) 
   oldtrunk = gettrunk(path) 
   if oldtrunk == newtrunk: 
    return 
   if start_host <= N and end_host <= N: 
    print "can't move non-crossing connection {}".format(conn) 
    return 
   if start_host > N and end_host > N: 
    print "can't move non-crossing connection {}".format(conn) 
    newpath = findpath(conn, newtrunksw) 
    create_path_entries(conn, newpath) 
    conn_to_path[conn] = newpath 
    # delete old entries on path 
    unused_switches = path[2:4] 
    for s in unused_switches: 
       delTCPrule(conn, s) 
       #fm = of.ofp_flow_mod() 
       #fm.xid = None 
       #fm.command = of.OFPFC_DELETE 
       #s.connection().send(fm) 
    return 
   if start_host <= N and end_host > N: 
    print 'moving connection {} from s{} to s{}'.format(conn, oldtrunk, newtrunk) 
    pivotswitch = path[1] 
    newpath = findpath(conn, newtrunksw) 
    create_path_entries2(conn, newpath, pivotswitch) 
    conn_to_path[conn] = newpath 
    # delete old entries on path 
    unused_switches = path[2:4] 
    for s in unused_switches: 
       delTCPrule(conn,s) 
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       #fm = of.ofp_flow_mod() 
       #fm.xid = None 
       #fm.command = of.OFPFC_DELETE 
       #s.connection().send(fm) 
    #pass 
   if start_host > N and end_host <= N: 
    print 'moving connection {} from s{} to s{}'.format(conn, oldtrunk, newtrunk) 
    pivotswitch = path[4] 
    newpath = findpath(conn, newtrunksw) 
    create_path_entries2(conn, newpath, pivotswitch) 
    conn_to_path[conn] = newpath 
    # delete old entries on path 
    unused_switches = path[2:4] 
    for s in unused_switches: 
       delTCPrule(conn,s) 
       #fm = of.ofp_flow_mod() 
       #fm.xid = None 
       #fm.command = of.OFPFC_DELETE 
       #s.connection().send(fm) 
    #print 'moving connection from s5 to s6: {}'.format(c) 
    #pass 
 
# pld: this was REALLY incomplete originally! 
# it mirrors the original creation of the entry in addTCPrule() 
def delTCPrule(c,s): 
 msg = nx.nx_flow_mod() 
 msg.match = nx.nx_match()   # pld: see pox dox "Using nx_match" 
 msg.table_id = 0 
 #msg.idle_timeout = TCP_IDLE_TIMEOUT 
 #msg.match.of_eth_dst = psrc 
 msg.match.append(nx.NXM_OF_ETH_SRC(c.ethsrc)) 
 msg.match.append(nx.NXM_OF_ETH_DST(c.ethdst)) 
 msg.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.IP_TYPE)) 
 msg.match.append(nx.NXM_OF_IP_PROTO(pkt.ipv4.TCP_PROTOCOL)) 
 msg.match.append(nx.NXM_OF_IP_SRC(c.srcip)) 
 msg.match.append(nx.NXM_OF_IP_DST(c.dstip)) 
 msg.match.append(nx.NXM_OF_TCP_SRC(c.srcport)) 
 msg.match.append(nx.NXM_OF_TCP_DST(c.dstport)) 
 msg.command = of.OFPFC_DELETE 
 s.connection().send(msg) 
 
 
def firsttrunk(path): 
   """ returns 1, 2 or 3 depending on whether the path goes through s1, s2 or s3 
   """ 
   for i in range(1,K+1): 
    s = smap[i] 
    if s in path: return i 
   return -1 
    
     
# ts here is one of s1,s2,s3 
def findpath(conn, ts): 
 ha = conn.ethsrc 
 hb = conn.ethdst 
 ida = hostnum(ha) 
 idb = hostnum(hb) 
 if ida <= N and idb <= N:   # both on upper side 
     return path_both_upper(conn, ts) 
 if ida > N and idb > N:  # both on lower side 
     ts2 = smap[switchpeer(ts.dpid())] 
     return path_both_lower(conn, ts2) 
 if ida > N and idb <=N:  # lower to upper: just reverse the direction 
     #print "swapping", ida, "and", idb 
     return revlist(path_upper_to_lower(conn.reverse(),ts)) 
 return path_upper_to_lower(conn,ts) 
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# creates TCP rules at each switch in the path. 
# The first and last entries of the path must be hosts. 
# switch entries on the path are of type SwitchNode, not dpids 
# path must contain at least one switch! 
# ha−>s1−>s2−>...->sM−>hb 
 
# option: have the LAST switch in the path (lastswitch, below) add a rule to delete the flow 
# if the TCP FIN bit is set. That's not right; shouldn't delete flow until *both* sides have sent 
FIN. 
def create_path_entries(conn, path): 
 plen = len(path) 
 lastswitch = path[plen-2]      
 addTCPrule(lastswitch, conn, lastswitch.portToHostNeighbor(path[plen-1])) 
 i = plen-3 
 while i > 0: 
      sw = path[i] 
      nsw = sw.portToSwitchNeighbor(path[i+1])    # neighbor switch 
      if nsw == None: 
           print "bad path to create_path_entries: {} and {} not connected".format(sw, nsw) 
      addTCPrule(sw, conn, nsw) 
      i -= 1 
 return 
 
# like the above but with provision for pivotswitch, where an existing entry is *modified*   
def create_path_entries2(conn, path, pivotswitch): 
 plen = len(path) 
 lastswitch = path[plen-2]      
 addTCPrule(lastswitch, conn, lastswitch.portToHostNeighbor(path[plen-1])) 
 i = plen-3 
 while i > 0: 
      sw = path[i] 
      nsw = sw.portToSwitchNeighbor(path[i+1])    # neighbor switch 
      if nsw == None: 
           print "bad path to create_path_entries: {} and {} not connected".format(sw, nsw) 
      if sw == pivotswitch: 
          print 'Modifying switch {} for connection {}'.format(sw, conn) 
          modTCPrule(sw, conn, nsw) 
      else: 
          addTCPrule(sw, conn, nsw) 
      i -= 1 
 return 
       
 
# the following should move a connection to go through trunk switch ts: 
# maybe we need the entire connection path as a parameter? 
def moveTCProute(conn, ts): 
 return 
 
# ts here is one of s1,s2,s3 
def path_both_upper(conn, ts): 
 ha = conn.ethsrc 
 hb = conn.ethdst 
 ida = hostnum(conn.ethsrc) 
 idb = hostnum(conn.ethdst) 
 print 'calling path_both_upper(h{}->h{},{},{},{},{},{})'.format(ida, idb, conn.srcip, 
conn.dstip,conn.srcport, conn.dstport, ts) 
 assert ida <= N, "source host {} not on LHS".format(ha) 
 assert idb <= N, "dest host {} not on RHS".format(hb) 
 sa = smap[hostswitch(ida)] # switch ha connects to 
 sb = smap[hostswitch(idb)] 
 #ts2 = smap[switchpeer(ts1.dpid())] 
 path = [ha, sa, ts, sb, hb] 
 return path 
 #conn_to_path[conn] = route 
 #conn_to_path[conn.reverse()] = route[::-1] 
 # install (ha->hb route) 
 # ha−sa−−−ts1−−−sb−hb 
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 #sb:  forward out port sb.portToHostNeighbor(hb) 
 #addTCPrule(sb,  conn, sb.portToHostNeighbor(hb) ) 
 #ts1: forward out port ts1.portToSwitchNeighbor(sb) 
 #addTCPrule(ts1, conn, ts1.portToSwitchNeighbor(sb) ) 
 #sa:  forward out port sa.portToSwitchNeighbor(ts1) 
 #addTCPrule(sa,  conn, sa.portToSwitchNeighbor(ts1) ) 
     
# ts2 here is one of s4,s5,s6 
def path_both_lower(conn, ts2): 
 ha = conn.ethsrc 
 hb = conn.ethdst 
 ida = hostnum(conn.ethsrc) 
 idb = hostnum(conn.ethdst) 
 print 'calling path_both_upper(h{}->h{},{},{},{},{},{})'.format(ida, idb, conn.srcip, 
conn.dstip,conn.srcport, conn.dstport, ts2) 
 assert ida > N, "source host {} not on LHS".format(ha) 
 sa = smap[hostswitch(ida)] # switch ha connects to 
 sb = smap[hostswitch(idb)] 
 assert idb > N, "dest host {} not on RHS".format(hb) 
 route = [ha, sa, ts2, sb, hb] 
 return route 
 #conn_to_path[conn] = route 
 #conn_to_path[conn.reverse()] = route[::-1] 
 # install (ha−−>hb route) 
 # ha−sa−−−ts2−−−sb−hb 
 #sb:  forward out port sb.portToHostNeighbor(hb) 
 #addTCPrule(sb,  conn, sb.portToHostNeighbor(hb) ) 
 #ts2: forward out port ts2.portToSwitchNeighbor(sb) 
 #addTCPrule(ts2, conn, ts2.portToSwitchNeighbor(sb) ) 
 #sa:  forward out port sa.portToSwitchNeighbor(ts2) 
 #addTCPrule(sa,  conn, sa.portToSwitchNeighbor(ts2) ) 
 #return 
     
# upper_to_lower takes a Connection conn, and a trunk switch ts1, and creates 
# creates routes for BOTH conn and conn.reverse(). 
# each route goes through trunk switch ts1. 
 
def path_upper_to_lower(conn, ts1): 
 ha = conn.ethsrc 
 hb = conn.ethdst 
 ida = hostnum(conn.ethsrc) 
 idb = hostnum(conn.ethdst) 
 # print 'calling upper_to_lower(h{}->h{},{},{},{},{},{})'.format(ida, idb, conn.srcip, 
conn.dstip, conn.srcport, conn.dstport, ts1) 
 assert ida <= N, "source host {} not on LHS".format(ha) 
 sa = smap[hostswitch(ida)] # switch ha connects to 
 sb = smap[hostswitch(idb)] 
 assert idb > N, "dest host {} not on RHS".format(hb) 
 ts2 = smap[switchpeer(ts1.dpid())] 
 # install (ha->hb route) 
 # ha−sa−ts1−−−−ts2−sb−hb 
 route = [ha, sa, ts1, ts2, sb, hb] 
 return route 
 #conn_to_path[conn] = route 
 #sb:  forward out port sb.portToHostNeighbor(hb) 
 #addTCPrule(sb,  conn, sb.portToHostNeighbor(hb) ) 
 #ts2: forward out port ts2.portToSwitchNeighbor(sb) 
 #addTCPrule(ts2, conn, ts2.portToSwitchNeighbor(sb) ) 
 #ts1: forward out port ts1.portToSwitchNeighbor(ts2) 
 #addTCPrule(ts1, conn, ts1.portToSwitchNeighbor(ts2) ) 
 #sa:  forward out port sa.portToSwitchNeighbor(ts1) 
 #addTCPrule(sa,  conn, sa.portToSwitchNeighbor(ts1) ) 
     
 #rconn = conn.reverse() 
 #conn_to_path[rconn] = route[::-1] 
 # reverse: 
 #addTCPrule(sa,  rconn,  sa.portToHostNeighbor(ha) ) 
 #addTCPrule(ts1, rconn, ts1.portToSwitchNeighbor(sa) ) 
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 #addTCPrule(ts2, rconn, ts2.portToSwitchNeighbor(ts1) ) 
 #addTCPrule(sb,  rconn,  sb.portToSwitchNeighbor(ts2) ) 
 #conn_to_path[rconn] = route[::-1] 
 
 
 
def addTCPrule(switch, conn, port): 
 assert (port in switch.hmap) or (port in switch.nmap), "{}: unknown port 
{}".format(switch, port) 
 psrc = conn.ethsrc 
 pdst = conn.ethdst 
 msg = nx.nx_flow_mod() 
 msg.match = nx.nx_match()   # pld: see pox dox "Using nx_match" 
 msg.table_id = 0 
 msg.idle_timeout = TCP_IDLE_TIMEOUT 
 #msg.match.of_eth_dst = psrc 
 msg.match.append(nx.NXM_OF_ETH_SRC(conn.ethsrc)) 
 msg.match.append(nx.NXM_OF_ETH_DST(conn.ethdst)) 
 msg.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.IP_TYPE)) 
 msg.match.append(nx.NXM_OF_IP_PROTO(pkt.ipv4.TCP_PROTOCOL)) 
 msg.match.append(nx.NXM_OF_IP_SRC(conn.srcip)) 
 msg.match.append(nx.NXM_OF_IP_DST(conn.dstip)) 
 msg.match.append(nx.NXM_OF_TCP_SRC(conn.srcport)) 
 msg.match.append(nx.NXM_OF_TCP_DST(conn.dstport)) 
 msg.actions.append(of.ofp_action_output(port = port)) 
 switch.connection().send(msg) 
 # other match options, if IPv4 addrs or TCP ports are passed in: 
 # NXM_OF_IP_SRC, NXM_OF_IP_DST 
 # NXM_OF_TCP_SRC, NXM_OF_TCP_DST 
     
# like the above but just modifying the port 
# HOW DO WE DO THIS??? See Modify Actions in Existing Flow Entries, and OFPFC_MODIFY 
def modTCPrule(switch, conn, port): 
 assert (port in switch.hmap) or (port in switch.nmap), "{}: unknown port 
{}".format(switch, port) 
 psrc = conn.ethsrc 
 pdst = conn.ethdst 
 # msg = nx.nx_flow_mod(command=of.OFPFC_DELETE, table_id = 1) 
 msg = nx.nx_flow_mod()     # (command=of.OFPFC_MODIFY, table_id=0) 
 msg.command = of.OFPFC_MODIFY 
 msg.table_id = 0 
 #msg.idle_timeout = TCP_IDLE_TIMEOUT 
 #msg.match.of_eth_dst = pdst 
 msg.match = nx.nx_match()   # pld: see pox dox "Using nx_match" 
 msg.match.append(nx.NXM_OF_ETH_SRC(conn.ethsrc)) 
 msg.match.append(nx.NXM_OF_ETH_DST(conn.ethdst)) 
 msg.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.IP_TYPE)) 
 msg.match.append(nx.NXM_OF_IP_PROTO(pkt.ipv4.TCP_PROTOCOL)) 
 msg.match.append(nx.NXM_OF_IP_SRC(conn.srcip)) 
 msg.match.append(nx.NXM_OF_IP_DST(conn.dstip)) 
 msg.match.append(nx.NXM_OF_TCP_SRC(conn.srcport)) 
 msg.match.append(nx.NXM_OF_TCP_DST(conn.dstport)) 
 msg.actions.append(of.ofp_action_output(port = port)) 
 switch.connection().send(msg) 
 # other match options, if IPv4 addrs or TCP ports are passed in: 
 # NXM_OF_IP_SRC, NXM_OF_IP_DST 
 # NXM_OF_TCP_SRC, NXM_OF_TCP_DST 
     
 
########  _handle_LinkEvent  ####################### 
 
# pld: LinkEvents don't need the "barrier" trick that PacketIn events do. 
# Although we really would like to know when all the LinkEvents are received. 
 
def _handle_LinkEvent(event): 
     l = event.link 
     #print l 
     sw1 = l.dpid1 
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     sw2 = l.dpid2 
     pt1 = l.port1 
     pt2 = l.port2 
     #  link from (sw1,pt1) to (sw2,pt2); may or may not be new 
     # if sw2 < sw1: sw1,pt1,sw2,pt2 = sw2,pt2,sw1,pt1 
     if sw2 < sw1: return 
     sw1s = str(sw1) 
     pt1s = str(pt1) 
     sw2s = str(sw2) 
     pt2s = str(pt2) 
     #print 'link added is %s'%event.added 
     #print 'link removed is %s' %event.removed 
     if event.added: 
          change = 'added' 
     else: 
          change = 'removed' 
          return     # pld: TEMPORARILY don't do anything when links go down 
     #print change+':', 's'+sw1s+'.'+pt1s, '<−>', 's'+sw2s+'.'+pt2s 
     # look up switches in smap (or install them) 
     if sw1 in smap: 
         s1 = smap[sw1] 
     else: 
         s1 = SwitchNode(sw1) 
         smap[sw1] = s1 
     if sw2 in smap: 
         s2 = smap[sw2] 
     else: 
         s2 = SwitchNode(sw2) 
         smap[sw2] = s2 
     s1pt1 = s1.switchNeighbor(pt1)   # old neighbor s1[pt1] 
 
     # this is a new report if s1pt1 == None 
     if s1pt1 != None and s1pt1 != s2: 
          print "warning: switch {} changed port {} neighbor from {} to {}".format(s1, pt1, 
s1pt1, s2) 
     else: 
          pass 
          #print "switch {} gets port {} neighbor {}".format(s1,pt1,s2) 
 
     # if s1pt1 != None and s1pt1 == s2: do nothing 
     if s1pt1 != s2: 
         s1.addSwitchNeighbor(pt1, s2) 
 
     s2pt2 = s2.switchNeighbor(pt2)   #old neighbor s2[pt2] 
     if s2pt2 != None and s2pt2 != s1: 
          print "warning: switch {} changed port {} neighbor from {} to {}".format(s2, pt2, 
s2pt2, s1) 
     else: 
          pass 
          #print "switch {} gets port {} neighbor {}".format(s2,pt2,s1) 
 
     if s2pt2 != s1: 
         s2.addSwitchNeighbor(pt2, s1) 
 
     if s1pt1 == None and s2pt2 == None: 
         print 'adding switch connection:', 's'+sw1s+'.'+pt1s, '<−>', 's'+sw2s+'.'+pt2s 
     elif s1pt1==None:    # but s2 has s1 as a neighbor already 
         print 'adding switch connection:', 's'+sw1s+'.'+pt1s, '−>', 's'+sw2s+'.'+pt2s 
     elif s2pt2==None: 
         print 'adding switch connection:', 's'+sw2s+'.'+pt2s, '−>', 's'+sw1s+'.'+pt1s 
 
########### _handle_ConnectionUp  ################## 
 
def _handle_ConnectionUp (event): 
 # Initialize the forwarding rules for this switch. 
 # After setting up, we send a barrier and wait for the response 
 # before starting to listen to packet_ins for this switch − before 
 # the switch is set up, the packet_ins may not be what we expect, 
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 # and our responses may not work! 
 
 print "handle_ConnectionUP from dpid", event.connection.dpid, 
util.dpid_to_str(event.connection.dpid) 
 portlist = event.connection.ports.values() 
 # get port_no of each item in portlist 
 portlist = map(lambda x: x.port_no, portlist) 
 portlist = filter(lambda x: x < of.OFPP_MAX, portlist)   
 # print "portlist:", portlist 
 dpid = event.connection.dpid 
 connection = event.connection 
 # Turn on Nicira packet_ins 
 msg = nx.nx_packet_in_format() 
 #event.connection.send(msg) 
 connection.send(msg) 
 
 # Turn on this switch's ability to specify tables in flow_mods 
 msg = nx.nx_flow_mod_table_id() 
 connection.send(msg) 
 
 # Clear second table 
 msg = nx.nx_flow_mod(command=of.OFPFC_DELETE, table_id = 1) 
 connection.send(msg) 
 
 
 # this version sets default flooding actions only for ICMP and ARP packets 
 # (though there IS a rule to send unknown packets to the controller) 
 def set_default_action(connection): 
     # pld fallthrough rule for table 0: flood (IF a flooder) and send to table 1 
     # CHANGE jan 27, 2017: only create flood rules for ICMP and ARP packets 
     # match on packet type, but not on source 
     msgi = nx.nx_flow_mod()  # icmp msg 
     msga = nx.nx_flow_mod()  # arp msg 
     msgi.table_id = msga.table_id = 0 
     msgi.priority = msga.priority = 1 # Low priority 
     msgi.idle_timeout = msga.idle_timeout = ICMP_IDLE_TIMEOUT 
 
     msgi.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.IP_TYPE)) 
     msgi.match.append(nx.NXM_OF_IP_PROTO(pkt.ipv4.ICMP_PROTOCOL)) 
     msga.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.ARP_TYPE)) 
 
     if flooder(connection.dpid): 
         msgi.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) 
         msga.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) 
     msgi.actions.append(nx.nx_action_resubmit.resubmit_table(table = 1)) 
     msga.actions.append(nx.nx_action_resubmit.resubmit_table(table = 1)) 
     connection.send(msgi) 
     connection.send(msga) 
 
     # here we create a default rule to send ANY packet to the controller 
     # May 29: only do this for "frontline" (entry) switches, not trunk switches 
     if frontline(connection.dpid): 
         msg = nx.nx_flow_mod() 
         msg.table_id = 0 
         msg.priority = 0    # rules for ARP/ICMP should be higher priority 
         msg.idle_timeout = ICMP_IDLE_TIMEOUT 
         msg.actions.append(of.ofp_action_output(port = of.OFPP_CONTROLLER)) 
         connection.send(msg) 
 
     # pld fallthrough rule for table 1: send to controller 
     msgi = nx.nx_flow_mod()  # icmp msg 
     msga = nx.nx_flow_mod()  # arp msg 
     msgi.table_id = msga.table_id = 1 
     msgi.priority = msga.priority = 1 # Low priority 
     msgi.idle_timeout = msga.idle_timeout = ICMP_IDLE_TIMEOUT 
     
     msgi.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.IP_TYPE)) 
     msgi.match.append(nx.NXM_OF_IP_PROTO(pkt.ipv4.ICMP_PROTOCOL)) 
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     msga.match.append(nx.NXM_OF_ETH_TYPE(pkt.ethernet.ARP_TYPE)) 
 
     msgi.actions.append(of.ofp_action_output(port = of.OFPP_CONTROLLER)) 
     msga.actions.append(of.ofp_action_output(port = of.OFPP_CONTROLLER)) 
     connection.send(msgi) 
     connection.send(msga) 
 
 # set default action 
 set_default_action(connection) 
 
 def ready (event):     # called right below, as parameter 
     if event.ofp.xid != 0x80000000: 
         # Not the right barrier 
         return 
     log.info("%s ready", event.connection) 
     event.connection.addListenerByName("PacketIn", _handle_PacketIn) 
     return EventRemove 
 
 connection.send(of.ofp_barrier_request(xid=0x80000000)) 
 connection.addListenerByName("BarrierIn", ready) 
 
 # now install switch 
 if dpid in smap: 
     sw = smap[dpid] 
     if sw.connection() is None: 
         sw.setConnection(connection) 
 else: 
     sw = SwitchNode(dpid, connection) 
     smap[dpid] = sw 
 # now add empty port list 
 sw.setReservedPorts(portlist) 
 
######################  flow stats  ############################ 
# When we get flow stats, put it in this dictionary 
# identify the connection object 
 
BWERROR = 0.0123456789 
 
class FlowInfo: 
   
 def __init__(self, lasttime, bytes, packets, idle_timeout, dpid): 
     self.lasttime = lasttime 
     self.prevbytes = 0 
     self.bytes = bytes 
     self.packets = packets 
     self.idle_timeout = idle_timeout 
     self.bw = None      # not known yet 
     self.dpid = dpid 
 
 def update(self, lasttime, bytes, packets, idle_timeout, dpid): 
     interval = lasttime - self.lasttime 
     if bytes >= self.bytes: 
         self.bw = (bytes - self.bytes)/interval 
     else: 
         self.bw = BWERROR 
     self.lasttime = lasttime 
     self.bytes = bytes 
     self.packets=packets 
     self.idle_timeout = idle_timeout 
     if dpid != self.dpid: 
         print 'flowinfo changed from s{} to s{}'.format(self.dpid, dpid) 
 
 def __str__(self): 
     if self.bw == None: bw=0 
     else: bw = self.bw 
     return '({},{} B,{} B/s,{} via s{})'.format(self.lasttime, self.bytes, bw, self.dpid) #, 
self.idle_timeout) 
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# dictionary of <Connection, FlowInfo> pairs 
# ONLY for connections passing through one of s1,s2,s3 
# this is because request_flow_stats only requests info for the trunk switches s1,s2,s3 
# PROBLEM: this means that the flow stats are reset when a connection changes trunk! 
 
flowdict = {} 
 
def printflowdict(): 
 i=1 
 for c in flowdict: 
     print "{}: connection {}".format(i, c) 
     print flowdict[c] 
     i+=1 
 
# only switches in switchlist, below in request_flow_stats(), report. 
# currently this is s1,s2,s3 
# CHANGED TO s7,s8,s9,s10,s11, because a connection never changes its switch on this list 
# we only report flows that actually use a trunk link; 
# that is, NOT h1−s7−s2−s10−h4 
 
# if we get an event from switch si (event.dpid == i), 
#  and there's a connection in flowdict with si in its path, 
# but that connection doesn't show up in the event list, REMOVE THE CONNECTION 
# That connection was removed by a switch because of idle_timeout. 
# Think hard about the setting of TCP_IDLE_TIMEOUT! 
 
def handle_flow_stat (event): 
  global flowdict 
  switchlist = range(2*K+1, 2*K+N+1) 
  conn = event.connection 
  packets = 0 
  byte_count = 0 
  tcp_flow_count = 0 
  dpid = event.dpid     # the switch that answered 
  if dpid not in switchlist: 
   print 'warning: handle_flow_stat received message from switch s{}'.format(dpid) 
  sw = smap[dpid] 
  connlist = [] 
  for f in event.stats:   # f is one of the switch's connection objects. 
   fm = f.match 
   # openflow 1.5.1 p 129 
   # what is in wildcarded field? Apparently it is None 
   if fm.tp_src == None: continue 
   c = Connection(fm.dl_src, fm.dl_dst, fm.nw_src, fm.nw_dst, fm.tp_src, fm.tp_dst) 
   # ignore c if fm.dl_src and fm.dl_dst are not on opposite sides! 
   if not c.top_to_bottom(): continue    # pld: was c.crosses() 
   #src = hostnum(fm.dl_src) 
   #dst = hostnum(fm.dl_dst) 
   #print '********connection from h{} to h{}'.format(src,dst) 
   # ignore connections that don't go from one side to the other 
   #if src <= N and dst <=N: continue 
   #if src > N and dst > N: continue 
   connlist.append(c) 
   # the following are written out mostly to document the attribute names 
   byte_count = f.byte_count     # was +=, which is probably wrong 
   packets = f.packet_count 
   duration_sec = f.duration_sec 
   duration_nsec = f.duration_nsec 
   idle_timeout = f.idle_timeout 
   hard_timeout = f.hard_timeout 
   priority = f.priority 
   table_id = f.table_id 
   show = f.show 
   pack = f.pack 
   unpack = f.unpack 
   cookie = f.cookie 
   if c in flowdict: 
       #print 'updating connection {} to {}'.format(c, flowdict[c]) 
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       oldbytes = flowdict[c].bytes 
       if oldbytes > byte_count: 
           print('WARNING: connection {} decreased byte_count from {} to {}'.format(c, 
oldbytes, byte_count)) 
       flowdict[c].update(time.time(), byte_count, packets, idle_timeout, dpid) 
   else: 
       #print 'new connection: flowdict is' 
       #dumpdict(flowdict) 
       flowdict[c] = FlowInfo(time.time(), byte_count, packets, idle_timeout, dpid) 
   #print 'handle_flow_stat: connection from s{}: {}, info={}'.format(conn.dpid, c, 
flowdict[c]) 
   #web_flows += 1 
   #print "dumping f" 
   #print dir(f) 
   # print "flow:", f.match, "bytes:", f.byte_count 
  # now go through connections in flowdict.keys. 
  # If a connection c has sw in its path conn_to_path[c], but c is NOT in connlist, delete it 
  delete_list = [] 
  for c in flowdict: 
   if not (c in conn_to_path): 
      print 'handle_flow_stat: connection {} has no path!'.format(c) 
      delete_list.append(c)     
      continue    # c has no path! 
   path = conn_to_path[c] 
   if sw in path and not (c in connlist):     # connection *should* therefore be in connlist 
      print 'handle_flow_stat: deleting Connection {} through {} from flowdict'.format(c, sw) 
      delete_list.append(c) 
  for c in delete_list: 
   del flowdict[c] 
 
  log.info("Traffic: %s bytes over %s flows", byte_count, tcp_flow_count) 
  #print "Traffic:", byte_count, "bytes over", tcp_flow_count, "flows from", event.connection 
 
def dumpdict(d): 
   for k in d: 
   print '({}->{})'.format(k, d[k]) 
   print 
 
core.openflow.addListenerByName("FlowStatsReceived", handle_flow_stat) 
 
shufflecount = 10000000    # max number of reshuffle() calls 
 
# executed at intervals of SLEEPTIME > 1 
def statsthread(): 
 global stopThread 
 global shufflecount 
 while True: 
     for i in range(SLEEPTIME-1): 
         time.sleep(1) 
         if stopThread: exit(0) 
     # print ('thread waking up') 
     request_flow_stats() 
     clean_expired_entries() 
     time.sleep(1) 
     if TCPstarted and shufflecount > 0: 
         shufflecount -= 1 
         reshuffle_flows() 
 
def clean_expired_entries(): 
 pass 
 
""" 
Reshuffling plan: 
 
1. Start with flowdict 
2. convert to a LIST of (Connection,FlowInfo) pairs. 
3. eliminate connections that do not go between the top (h1-hN) and the bottom (h[N+1]-h[2N]) 
4. order in decreasing order by f.bw 
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5. Create a table for trunk1 ... trunkK, of bw_allocations, each initialized to zero 
6: the algorithm 
    for each (c,f) in the list 
     find the trunk ti with the smallest bw_allocation (or first such trunk, if there are 
ties) 
     assign connection c to trunk ti 
     update the trunk's bw_allocation by adding f.bw 
""" 
 
def conn_bw(x): 
 (c,f) = x 
 if f.bw == None: return 0 
 return -f.bw 
 
def reshuffle_flows(): 
 cflist = flowdict.items() 
 for (c,f) in cflist: 
     if not c.top_to_bottom():    # pld: was c.crosses() 
         cflist.delete((c,f)) 
 # sort by f.bw, in descending order 
 # FINISH 
 # cflist.sort(key=___w)   # lambda (c,f) : -f.bw) 
 cflist.sort(key=conn_bw)   # lambda (c,f) : f.bw) 
 trunk_usage={}   # map from trunk numbers 1,2,3 to assigned utilization 
 for i in range(1,K+1): 
     trunk_usage[i] = 0 
 print "reshuffling starting" 
 for (c,f) in cflist: 
     #find the trunk  with the smallest bw_allocation (or first such trunk, if there are ties) 
     trunk = find_min_trunk(trunk_usage) 
     #assign connection c to trunk 
     move_flow (c, trunk) 
     #update the trunk's bw_allocation by adding f.bw 
     if f.bw is None: bandwidth = 0 
     else: bandwidth = f.bw 
     trunk_usage[trunk] += bandwidth 
     if c.top_to_bottom(): 
         #print('moving connection {} to trunk {}'.format(c,trunk)) 
         pass 
 print ("trunk usage: 1: {}; 2: {}; 3: {}".format(trunk_usage[1], trunk_usage[2], 
trunk_usage[3])) 
      
# returns, eg, 2 if the trunk through s2 has the smallest trunk_usage value. 
def find_min_trunk(trunk_usage): 
   i = 1 
   index = i 
   min_so_far = trunk_usage[i] 
   i += 1 
   while i <= K: 
    if trunk_usage[i] < min_so_far: 
        index=i 
        min_so_far = trunk_usage[i] 
    i += 1 
   return index 
 
# pld: can you tell we were having trouble with this one? 
# results of request are processed by handle_flow_stat() 
def request_flow_stats(): 
  #global core 
  switchlist = range(1,K+1)   # [1, 2, 3]    # use s7-s11? 
  switchlist = range(2*K+1, 2*K+N+1) 
  #print 'printing core.openflow.connections' 
  #print type(core.openflow.connections) 
  #print dir(core.openflow.connections) 
  #print core.openflow.connections 
  #for con in core.openflow.connections: # make this _connections.keys() for pre-betta 
  #  #print "connection:", con.dpid 
  #  switchlist = [1, 2, 3]    # send request only to these switches 
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  #  if con.dpid in switchlist: 
  #  con.send(of.ofp_stats_request(body=of.ofp_flow_stats_request())) 
  # end for 
  #threading.Timer(10,request_flow_stats).start() 
  for dpid in switchlist: 
   if dpid in core.openflow.connections: 
       con = core.openflow.connections[dpid] 
       assert dpid == con.dpid, 'request_flow_stats(): connection mismatch: connections[{}] 
=s{}'.format(dpid, con.dpid) 
       con.send(of.ofp_stats_request(body=of.ofp_flow_stats_request())) 
   else: 
       print "warning: request_flow_stats() cannot reach s{}".format(dpid) 
    
 
st=None 
cv=None 
stopThread = False 
 
def intr_handler(sig, frame): 
 global st, stopThread 
 stopThread=True 
 print 'CNTL-C received' 
 exit(0) 
 
 
# to invoke this, find the pox pid (eg using 'ps axuww|grep pox' at the command line) 
# and then use this: 
# kill -SIGUSR1  pid 
     
def usr1_handler(sig, frame): 
 print 'SIGUSR1 received' 
 printflowdict() 
     
def usr2_handler(sig, frame): 
 print 'SIGUSR2 received' 
 move_s2() 
 pass 
     
 
def launch (N=3,K=1): 
  global st, cv 
  signal.signal(signal.SIGINT, intr_handler) 
  signal.signal(signal.SIGUSR1, usr1_handler) 
  signal.signal(signal.SIGUSR2, usr2_handler) 
  n = int(N) 
  k = int(K) 
  NKsetter(n,k) 
  print "N=", N, "K=", K 
  st=threading.Thread(target=statsthread, name="statsthread") 
  st.start() 
  # cv.acquire() 
  print 'statsthread started' 
  msg = nx.nx_flow_mod() 
  #print msg 
  #print dir(msg) 
  def start (): 
 if not core.NX.convert_packet_in: 
   log.error("PacketIn conversion required") 
   return 
 core.openflow.addListenerByName("ConnectionUp", _handle_ConnectionUp) 
 log.info("Simple NX switch running.") 
  core.call_when_ready(start, ['NX','openflow']) 
  # Listener below added by pld: is this in the right place? 
  core.openflow_discovery.addListenerByName("LinkEvent", _handle_LinkEvent)    
  #tf = threading.Timer(10,floodtest) 
  tp = threading.Timer(10, pathtest) 
  tp.start() 
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# action to be taken on receipt of first TCP packet: 
# calculate routes, or print host destinations, etc 
 
def TCPstart(): 
 print "TCP traffic starting" 
 foundreservedport = False 
 for s in smap.values(): 
     #print "switch {}".format(s) 
     if s.reservedports != []: 
         print "{}: reserved port list is {}".format(s, s.reservedports) 
         foundreservedport = True 
 if not foundreservedport: 
     print "all reserved ports were assigned!" 
 return 
 
def NKsetter(n,k): 
  global N,K 
  (N,K) = (n,k) 
 
def hostswitch(i): # host is hi 
 return i+2*K 
 
def switchpeer(i): 
 if i<=K: return i+K 
 return i-K 
 
# pld utility about strange dhcp packets 
def isdhcp(packet): 
 dhcp = packet.find('dhcp')     # pld: doesn't work? 
 if dhcp is None: return False 
 return True 
 
 
def hostnum(addr):   # returns, eg, x for 00:00:00:00:00:0x, 0 for other formats 
   addr = addr.toStr() 
   if addr[:14] == '00:00:00:00:00': 
    return int(addr[15:],16)     # pld: this is a 2-byte hex string 
   else: 
    return 0 
 
def ishost(addr):   # returns true for, eg, 00:00:00:00:00:0x 
   addr = addr.toStr() 
   if addr[:14] == '00:00:00:00:00': 
   return True 
   return False 
 
def revlist(lis): 
 return lis[::-1] 
 
def gettrunk(path): 
 trunklist = range(1,K+1) 
 for s in path: 
     if isinstance(s, SwitchNode) and s.dpid() in trunklist: return s.dpid() 
 return -1 
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