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2 

dynamics techniques to analyze the internal motions and thermodynamics of nucleic acids. 

These techniques present "an atomic picture of high resolution with respect to space, energy 

or time',.i and are valuable "probes" of molecular structure and function. 

As noted by one researcher, "[T]he characterization of a biomolecular system at the 

atomic level in terms of structure, mobility, dynamics, and energetics is incomplete * * * 

This incomplete molecular picture makes it difficult to establish the link between molecular 

structure, mobility, dynamics, and interactions on the one hand, and biological function on 

the other. "5 

1For example, a change in pH will produce a change in the electrical charge associated with 
the side chain of an amino acid. This change in charge causes a change in the amino acid 
and overall protein conformation yielding a change in function. 

2Ross, D. W. (1996). Introduction to Molecular Medicine (Second Edition). (New York: 
Springer-Verlag). 

3Drexler, K.E. (1994). Molecular Nanomachines: Physical Principles and Implementation 
Strategies. 23 Annu. Rev. Biophys. Biomol. Struct. 377-405. 

4van Gunsteren, W.F. and Mark, A.E. (1991). On the interpretation of biochemical data by 
molecular dynamics computer simulation. 204 Eur. J. Biochem. 947-961. 

5van Gunsteren, W.F., Luque, F.J., Timms, D. and Torda, A.E. (1994). Molecular 
Mechanics in Biology: From Structure to Function, Taking Account of Solvation. 23 
Annu. Rev. Biophys. Biomol. Struct. 848. For example, molecular dynamics simulations 
were essential in showing the penetration of oxygen through folded myoglobin to reach 
the internal "buried" oxygen-binding site. Fosdick, L.D., Jessup, E.R., Schauble, C., and 
Domik, G. (1996). An Introduction to High-Performance Scientific Computing. 
(Cambridge: MIT Press) 534 citing Karplus, M. and McCammon, J. A. (1986). The 
dynamics of proteins. Scientific American 42-51. 



CHAPTER2 

THE HAMMERHEAD RIBOZYME 

The self-cleaving hammerhead ribozyme has been the subject of intensive recent 

examination. The hammerhead ribozyme, a catalytic RNA, is an interesting example of an 

RNA molecule which is rich in tertiary structure. The molecule's X-ray coordinates were 

received from the Protein Data Banlc 1 The ribozyme consists of three base-paired stems or 

helices and a core of non-complementary nucleotides.2 This molecule "promotes" a 

magnesmm ion-dependent site-specific cleavage of RNA by intermolecular or 

intramolecular reactions.3 Upon the addition of hydrogens and magnesium ions, the 

molecular system in this study consists of 1078 fragments, 651 ring bonds, 3 86 rotatable 

bonds, and 1331 atoms and possesses a molecular weight of 13, 662.61 D. We characterize 

the temporal behavior of the system consisting of the molecule and an ion and solvent 

environment at different temperatures using various dynamical methods. The structural 

motif consists of three helical regions surrounding a conserved core.4 When viewed in two-

dimensions, the hammerhead ribozyme secondary structure resembles a "hammerhead."5 

The Hammerhead Cleavage Reaction Mechanism 

The self-cleavage or auto-cleavage reaction results from the nucleophilic attack by a 

core nucleotide's 2' -hydroxyl upon the adjacent phosphodiester bond. 6 Figure 1 (a) shows 

the general architecture of the hammerhead ribozyme motif and the locations of the scissile 

bond and catalytic pocket. The reaction mechanism yields a 2' ,3 '-cyclic phosphate terminal 
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and a 5' -hydroxyl terminal.7 Significant inquiry is directed currently at the cleavage 

mechanism generally and the role of magnesium ions in proton abstraction (Figure l(b)).8 

Studies have also been conducted on the in vitro activity of the hammerhead ribozyme.9 

Through so-called "ribozyme engineering'', ribozymes may be used to "edit" or repair 

messenger RNA molecules (Figure l(c)). 1° For example, a ribozyme may be used as an 

"antisense" nucleotide designed to bind with and subsequently cleave deleterious RNA and 

DNA sequences. Figure 1 ( d) presents ribozyme engineering and the mechanism of 

hammerhead ribozyme cleavage. 

The hammerhead ribozyme is one of several structurally distinct classes of catalytic 

RNA differing in terms of their reaction products and nucleophile. Most are 

metalloribozymes requiring Mg2
+ or Pb2

+ as electrophiles for their cleavage reactions. 

These ribozymes may be further classified as either splicing or self-cleaving. 11 

Structure Elucidation 

Recent efforts by researchers at several institutions have produced structural models 

for the hammerhead ribozyme. The research groups adopted differing approaches to 

structure solution in terms of the biophysical technique utilized or the molecular system 

investigated. Pley, et al., have produced a structure based on X-ray crystallography of a 

hammerhead RNA-DNA ribozyme-inhibitor complex to a resolution of 2.6A. 12 Tuschl, et 

al., have utilized fluorescence resonance energy transfer of the hammerhead ribozyme in 

solution to produce a three-dimensional model. 13 More recently, Scott, et al., have 
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elucidated the X-ray crystal structure of an all-RNA hammerhead ribozyme. 14 Figure 2 

presents the Pley , Tuschl, and Scott structures. 

Comparisons of the determined structures of the hammerhead ribozyme yield useful 

insight into the efficacy of the method used and provide a basis for critical study of the 

biophysical methodology. We examined the structures obtained by FRET (Tuschl) and X

ray crystallography (Scott, Pley) to determine whether model building with the judicious 

application of distance constraints based upon physical measurements is sufficient to define 

the structure of small RNA molecules such as the hammerhead ribozyme. 15 

Figure 2( d) presents the Scott structure with two ribozyme molecules within the 

asymmetric unit. The molecular coordinate file (revised) as deposited in the Brookhaven 

Protein Databank was modified to produce separate coordinate files for each molecule in 

the Scott structure. The Pley structure contained three molecules within the asymmetric 

unit; one molecule was excised from the coordinate file. The Scott structure and the Pley 

structure were compared with the Tuschl structure. 

In order to correctly compare the methods used to generate each structure, a 

meaningful basis for comparison must be established, i.e. alignment of similar sequence 

residues. Conveniently, for our purposes, each hammerhead ribozyme molecule possesses a 

conserved core of nucleotides articulated into two structural domains. Because of the 

different hammerhead ribozyme complexes studied, a frame of reference is critical. 

We define the common core in the following manner: the nucleotide sequence C U 

GA (the first domain) follo\ved by U followed by the nucleotide sequence GA G C GA A 
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A C (the second domain). The core consists of 14 nucleotides or groups, 302 atoms, and 

307 bonds. Schematically, the consensus structure of each molecule is shovm in Figure 3 

as a backbone representation. 

The Pley and Tuschl structures exhibited a RMSD of 8.500 A. The Scott and 

Tuschl structures exhibited a RMSD of 8.531 A and the Scott and Pley structures showed a 

RMSD of 0.904 A. In each case, the calculations encompassed 4 fragments, 380 ring 

bonds, and 160 rotatable bonds within 2 groups. 302 matches were conducted as part of the 

calculation. These results indicate that the FRET structure deviates strongly from either of 

the X-ray structures. The X-ray structures were in close agreement with each other. It is 

reasonable to conclude that FRET does not yet provide sufficient structural information in 

the case of small macromolecules to be a viable substitute for X-ray crystallography. 

Additionally presented are differing representations of the Scott structure, including 

backbone, ladder, and ball-and-stick depictions. Such representations are useful in 

assessing the degree of structure present in the hammerhead ribozyme. 
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Figure 2. (a) Pley structure (b) Tuschl structure 
( c) Scott structure ( d) Scott structure with two 
ribozyme molecules within asymmetric unit. 

8 



(a) (b) 

Figure 3. (a) Scott core structure (b) Tuschl core structure 
( c) Pley core structure. 
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(c) (d) 

(e) (f) 

Figure 4. Scott structures showing nucleotide backbone 
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1Scott, W.G., Finch, J.T., Klug, A. (1995). The Crystal Structure of an All-RNA 
Hammerhead Ribozyme: A Proposed Mechanism for RNA Catalytic Cleavage. 81 Cell 
991-1002. See also Pley, H.W., Flaherty, K.M., and McKay, D.B. (1994). Three
dimensional structure of a hammerhead ribozyme. 372 Nature 68-74. Tuschl, T., Gohlke, 
C., Jovin, T.M., Westholf, E., and Eckstein, F. (1995). A Three-Dimensional Model for 
the Hammerhead Ribozyme Based on Fluorescence Measurements. 266 Science 785. 

2 A nucleotide (a phosphate ester of a nucleoside) consists of a sugar (ribose or 
deoxyribose), a nitrogen heterocyclic purine or pyrimidine base, and a phosphate group. 
The bases are connected to the sugar-phosphate backbone. The helical backbone is 
comprised of a linear series of sugars which are linked through bonds from the 3' OH of 
the sugar to a phosphate group to the 5' OH of the next sugar; the nitrogenous base is 
attached to the backbone by its N to the CI of the sugar. Base pairing between adenine 
and uracil consists of 2 hydrogen bonds; base pairing between cytosine and guanine 
consists of 3 hydrogen bonds. The orientation of the bases with respect to each other is 
not perfectly coplanar. The actual twisting which occurs is often termed "propeller twist." 
Stryer at 650. 

3Tuschl, T., Gohlke, C., Jovin, T.M., Westholf, E., and Eckstein, F. (1995). A Three
Dimensional Model for the Hammerhead Ribozyme Based on Fluorescence 
Measurements. 266 Science 785. 

4Doudna, J.A. (1995). Hammerhead ribozyme structure: U-tum for RNA structural biology. 
3 Structure 747-750. 

5Yarus, M. (1993). How many catalytic RNAs? Ions and the Cheshire cat conjecture. 7 The 
F ASEB Journal 31 (the three helices coalesce into a T shape). 

6Doudna, J.A. (1995). Hammerhead ribozyme structure: U-tum for RNA structural biology. 
3 Structure 747. 

7Doudna, J.A. (1995). Hammerhead ribozyme structure: U-tum for RNA structural biology. 
3 Structure 747. 

8Scott, W.G., Finch, J.T., Klug, A. (1995). The Crystal Structure of an All-RNA 
Hammerhead Ribozyme: A Proposed Mechanism for RNA Catalytic Cleavage. 81 Cell 
991-1002. See also Smith, D. (1995). Magnesium as the Catalytic Center of RNA 
Enzymes in CowanJ.A., ed. The Biological Chemistry of Magnesium. (New York: VCH) 
85-108. 

9Beck, J. and Nassal, M. (1995). Efficient hammerhead ribozyme-mediated cleavage of the 
structured hepatitis B virus encapsidation signal in vitro and in cell extracts, but not in 
intact cells. 23 Nucleic Acids Research 4954-4962. Hendry, P. and McCall, M.J. (1995). 
A comparison of the in vitro activity of DNA-armed and all-RNA hammerhead 
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ribozymes. 23 Nucleic Acids Research 3928-3936. Lustig, B., Lin, N.H., Smith, S .. 
Jernigan, R.L., and Jeang, K. ( 1995). A small modified hammerhead ribozyme and its 
conformational characteristics determined by mutagenesis and lattice calculation. 23 
Nucleic Acids Research. 3531-3538. Werner, M. and Uhlenbeck, O.C. (1995). The effect 
of base mismatches in the substrate recognition helices of hammerhead ribozymes on 
binding and catalysis. 23 Nucleic Acids Research 12:2092-2096. Beaudry, D., Bussiere, 
F., Laureau, F., Lessard, C. and Perreault, J. (1995). The RNA of both polarities of the 
peach latent mosaic viroid self-cleaves in vitro solely by single hammerhead structures. 
23 Nucleic Acids Research 5: 745-752. 

10Rawls, R. (1996). Splicing ribozyme can 'edit' mammalian RNA. Chemical and 
Engineering News. June 3, 1996 at 7. See also Cech, T.R. (1992). Ribozyme 
Engineering. 2 Current Opinion in Structural Biology 605-609. 

11 Cech, T.R. (1987). The Chemistry of Self-Splicing RNA and RNA Enzymes. 236 Science 
1532-1539. See also Cech, T.R. (1993). Structure and Mechanism of the Large Catalytic 
RNAs: Group I and Group II Intrans and Ribonuclease P. in Gesteland, R.F. and Atkins, 
J.F., eds. (1993). The RNA World. The Nature of Modern RNA Suggests a Prebiotic 
RNA World. (New York: Cold Spring Harbor Laboratory Press) 239-269. 

12Pley, H.W., Flaherty, K.M., and McKay, D.B. (1994). Three-dimensional structure of a 
hammerhead ribozyme. 372 Nature 68-74. 

13Tuschl, T. Gohkle, C., Jovin, T., Westhof, E., Eckstein, F. (1994). A Three-Dimensional 
Model for the Hammerhead Ribozyme Based on Fluorescence Measurements. 266 
Science 785-788. 

14Scott, W.G., Finch, J.T., Klug, A. (1995). The Crystal Structure of an All-RNA 
Hammerhead Ribozyme: A Proposed Mechanism for RNA Catalytic Cleavage. 81 Cell 
991-1002. 

15 A comparison of the Scott and Pley X-ray structures found a strong similarity between the 
two structures. "[B]oth crystal structures must be a close approximation to the true 
solution structure of an unaltered hammerhead ribozyme." Scott, W.G., Finch, J.T., Klug, 
A. (1995). The Crystal Structure of an All-R."l\JA Hammerhead Ribozyme: A Proposed 
Mechanism for RNA Catalytic Cleavage. 81 Cell 991-992. 



CHAPTER3 

FOLDING OF NUCLEIC ACIDS 

The architecture of folding patterns in nucleic acids 1 is currently the subject of 

extensive research particularly as the discovery of additional structures frees nucleic acids 

from the historically confining designation as "carrier[ s] of genetic information".2 One 

central problem is that of defining the "arrangement of RNA structural elements in three

dimensional space" in a system analogous to that developed for proteins.3 

In proteins, it is commonplace to describe polypeptide folding patterns in terms of 

structural motifs such as helices, sheets, barrels, etc.4 The units of RNA folding5 are 

generally viewed as the base-paired double helix secondary structure, pseudoknots, loops 

which cap helices, loops within helices, RNA mispairing regions, nucleoside triple 

interactions, quadruplexes, and U-turns6 as well as multiplexes, junctions, and hairpins.7 

Tertiary structures form, in a manner analogous to protein folding, by the "condensation" of 

"individual blocks of secondary structure."8 The strength of the analogy is limited, however, 

by the view that "RNA secondary structural elements are very stable and capable of 

forming independently of tertiary structure. This has led to the concept that RNA secondary 

structure forms rapidly and precedes the packaging of RNA into tertiary structure, i.e. that 

base pairing interactions occur prior to helix or domain formation.,.9
.1o 

Nonetheless, the foundation for analyzing polynucleotides and polypeptides m 

similar fashion is a sound one. As noted by one author, 

13 
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"From the energy landscape perspective it is natural to suggest that the considerations that 
lead to the theoretical developments of protein folding should also apply to RNA folding. 
In general terms, the requirements for RNA folding are analogous to those of protein 
folding. As is true for polypeptides, the number of conformations in the fully denatured 
state (the Levinthal limit) is large. For RNA sequences, the kinetic problem consists of 
forming the correct secondary structure, that is, Watson-Crick base pairs between 
complementary sequences, and achieving the correct three-dimensional organization of the 
structural elements." 11 

A comparison of the kinetic folding pathways of proteins and RNA 12 shows clear 

differences in the folding pathway. The theoretical time scale for RNA unfolding is 

significantly large so as to exceed the boundaries of the present investigation. However, 

one of the purposes of this project, to characterize the short-term dynamics of the molecule, 

is not diminished by the realization that significant large-scale structural transitions will not 

likely occur before 1 millisecond. 

1See generally Saenger, W. (1984). Principles of Nucleic Acid Structure. (New York: 
Springer-Verlag). 

2Kochoyan, M. and Leroy, J. (1995). Hydration and solution structure of nucleic acids. 5 
Current Opinion in Structural Biology 329-333. 

3Pyle, A.M. and Green, Justin B. (1995). RNA folding. 5 Current Opinion in Structural 
Biology 303. 

4See generally Branden, C. and Tooze, J. (1991). Introduction to Protein Structure. New 
York: Garland. 

5See Zuker, M. (1989). On Finding All Suboptimal Foldings of an RNA Molecule. 244 
Science 48-52. 

6Pyle, A.M. and Green, Justin B. (1995) RNA folding. 5 Current Opinion in Structural 
Biology 303. For example, "[p]seudoknots are interlocked regions of coaxially stacked 
helices that are commonly involved in RNA binding and folding. Pseudoknotting is a 
motif with a high capacity for molecular recognition* * * ".Pyle, A.M. and Green, Justin 
B. (1995) RNA folding. 5 Current Opinion in Structural Biology 303. See also Abrahams, 
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J., van den Berg, M., van Batenburg, E., and Pleij, C. (1990). Prediction of Ri"'J'A 
secondary structure, including pseudoknotting, by computer simulation. 18 Nucleic Acids 
Research 10: 3035-3044; Fontana, W., Stadler, P. Tarazona, P. Weinberger, E. and 
Schuster, L. (1993). RNA folding and combinatory landscapes. 47 Physical Review (E) 
3:2086; Westhof, E and Patel, D. (1995). Nucleic Acids: Diversity, folding, and stability 
of nucleic acid structures. 5 Current Opinion in Structural Biology 279-281. 

7See generally Lilley, D.M.J., Clegg, R.M., Diekmann, S., Seeman, N.C., von Kitzing, E., 
and Hagerman, P.J. (1995). A nomenclature of junctions and branchpoints in nucleic 
acids. 23 Nucleic Acids Research 17: 3363-3364. 

8Pyle, A.M. and Green, J. B. (1995) at 304. 
9 Pyle, A.M. and Green, J.B. (1995) at 307. 
10"As opposed to the protein case, the secondary structure of RNA sequences is well

defined; it provides the major set of distance constraints that guide the formation of 
tertiary structure, and covers the dominant energy contribution to the 3D structure." 
Fontana, W., Stadler, P. Tarazona, P. Weinberger, E. and Schuster, L. (1993). RNA 
folding and combinatory landscapes. 4 7 Physical Review (E) 3 :2086. See also 
Thirumalai, D. and Woodson, S.A. (1996). Kinetics of Folding of Proteins and RNA. 29 
Acc. Chem. Res. 433-439. 

11Thirumalai, D. and Woodson, S.A. (1996). Kinetics of Folding of Proteins and RNA. 29 
Acc. Chem. Res. 433. 

12Draper, D. (1996). Parallel worlds. 3 Nature Structural Biology 5:397-400. See also 
Draper, D. (1996). Strategies for RNA folding. 21 TIBS 145-149. 



CHAPTER4 

MET AL IONS AND RNA STRUCTURE 

The presence of metal ions contributes greatly to the folding of RNA into various 

structures. 1 The structural and dynamic effects of the binding of metal ions to RNA may be 

specific or non-specific. Thermal denaturation experiments have shown that specific (site) 

binding of metal ions, as with tertiary RNA structures, produces a linear relationship 

between the reciprocal of the RNA melting temperature and magnesium ion concentration. 

Non-specific RNA binding by metal ions, as in the case of charge screening and duplex 

formation, produces a sigmoidal plot.2 

It has been concluded that metal ions perform three distinct functions in RNA 

folding: non-specific binding, specific binding or coordination using the Mg2
+ ion, and 

"binding to high-affinity sites through charge density or outer-sphere coordination rather 

than through the formation of direct metal contacts."3 An important concept is the 

counterionic cloud within the context of the Debye-Huckel theory.4 Although there is 

evidence for the Mg2
+ - independent folding of the hammerhead ribozyme5

, one author 

questions the experimental conditions. Specifically the 2' -deoxyribose substitution of the 

cleavage site to prevent cleavage of substrate may have disrupted ion binding.6 

Counterionic Cloud 

The presence of ions produces, as an average property, a "counterionic cloud" 

which moves with the molecule. 7 The molecule's size increases due to the cloud's presence 

16 



17 

which alters the molecule's electrical and hydrodynamic properties.8 The Debye-Huckel 

theory explains the charge distribution of the cloud and the resultant effect upon a charged 

macromolecule's electrical potential V at a given location r.9 Calculation of counterion 

density, i.e. position-dependent concentration, requires the following conditions: (I) non-

constant concentration of ions due to thermal fluctuations, (2) equal concentrations of 

positive and negative counterions at remote distances from the molecule, and (3) a greater 

concentration of oppositely charged counterions than same charge as the molecule at local 

distances from the molecule. 10 

Additionally, the Boltzman distribution is assumed to govern charge distribution. 11 

The counterions assume positions based upon the Boltzmann distribution of their respective 

potential energies; 12 the net charge density p equals the difference between the 

concentration of positive and negative counterions. 13 The relationship between net charge 

density and potential as a function of position is governed by the Poisson equation, d2V /dx2 

+ d2V/dy2 +d2V/dz2 
= -4Tip/D, where p is the net charge density and D is the dielectric 

constant of the medium (solvent). 14 The presence of a counterionic cloud decreases the 

potential energy of the molecular system in comparison to systems without a counterionic 
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CHAPTERS 

PROPERTIES OF NUCLEIC ACIDS 

Conformational Statistics 

Polymeric chains, such as polypeptides and polynucleotides, may be viewed as 

linear systems made of independent elements or statistical segments. 1 In the case of 

polynucleotides, the relevant unit is the nucleotide. The flexibility of biopolymers, due to 

rotation around single bonds, produces a very large set or ensemble of possible 

conformations. Analysis of the potential energy of the biopolymer chain and its functional 

dependence upon the multitude of possible internal angles of rotation underlies the 

conformational statistical approach. 

Internal motions of biopolymers may be functionally classified as local motions 

(atomic fluctuations, sidechain motions, loop motions), rigid-body motions (helix motions, 

domains or hinge-bending motions, and subunit), and larger-scale motions (helix-coil 

transitions, dissociation/association and coupled structural changes, opening and 

distortional fluctuations, and folding and unfolding transitions).2 

The rotations x about the glycosidic bond are of two types: syn where x = 0 and anti 

where x = 210.3 The preferred state is a function of the degree of sugar "puckering" 

present.4 Puckering refers to the relative spatial position of the 5 atoms constituting the 

ribose ring. 5 Four atoms are in the same plane; the fifth, C2' or C3', is above or below the 

plane. 6 An endo conformation exists when the displacement occurs on the same side as 

19 
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CS'; exo occurs when the displacement occurs on the opposite side. 7 There are six 

rotational angles for each backbone unit.8 

By considering factors such as steric (electronic) hindrance or bad (forbidden) 

contacts, the possible conformations may be limited by first-order interactions (between 

atoms whose interatomic distance is dependent upon a single rotation angle.)9 Second-order 

interactions are those interactions whose separation distance is simultaneously dependent 

d. l IO upon two a Jacent ang es. 

Thermodynamics 

Using molecular dynamics techniques, thermodynamic properties, such as entropy, 

may be ascertained from the system's thermally accessible structural conformations. 11 The 

most stable conformation of a biological macromolecule is found at its lowest energy 

structure. 

Helix-Coil Transitions 

The helical structure of protein or polypeptide chains is produced by intermolecular 

hydrogen bonding. In the case of polynucleotides, however, intrarnolecular hydrogen 

bonding between base pairs provides helical structure. 12 The polyelectrolytic nature of 

nucleic acids due, in part, to the presence of negatively charged phosphate groups, plays a 

role as well in the structure of these biopolymers. 13 

It is well known that polynucleotides and polypeptides undergo helix-coil 

transitions under conditions of increasing temperature (thermal denaturation) and changing 

pH of solution. 14 Development of a partition function or free energy expression for a 
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polynucleotide system is essential to an understanding of the helix-coil transition. An 

example of such a relationship is 

Equation I 

tiG(T) = liH(T) - T tiS(T) = liH(T iJ + tiCp(T-T iJ - T tiS(T iJ + tiCPln(T rr iJ 

where tiG(T) represents the difference between the molar Gibbs free energy function of any 

state and a reference state, tiH(T) represents the state's relative enthalpy, tiS(T) represents 

the entropy in a two-state transition and equals liHrMff m; tiCP represents the heat capacity 

at constant pressure and equals dtiH/dT; and TR represents an appropriate reference 

temperature. 15 

The Molten Globule State 

The existence of the molten globule state as an intermediate in protein folding or 

unfolding pathways has been defined and discussed by several researchers. 16 A question 

arises whether such a state exists in the folding or unfolding pathways of other biological 

molecules such as nucleic acids. 

Molten globules, for proteins, have been characterized as compact, mobile structures 

with large amounts of secondary structure, but diminished tertiary contacts relative to the 

native state. 17 The molten globule state may be a common early intermediate during 

folding and may be an equilibrium intermediate under a variety of unfolding conditions 

such as high temperature, extreme pH, presence of organic solvents, or removal of 

stabilizing ions. 18 Researchers have also found the molten globule state to be under kinetic 

19 control. 
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Daggett and Levitt have performed extensive molecular dynamics simulations of 

temperature-induced protein unfolding using bovine pancreatic trypsin inhibitor (BPTl).20 

Their experimental approach began with the X-ray crystallographic structure of BPTI. All 

atoms were explicitly present during simulations. The protein and fragments were 

immersed in a box of water molecules and counterions were present to yield an electrically 

21 neutral system. Daggett et al. observed the molten globule state through a structural 

analysis of protein parameters. The researchers started with BPTI in its native, folded state 

and observed the first transition from native state to molten globule. A second transition 

was observed from the molten globule to the unfolded state. 

The results of phase 1 from the native state to the molten globule state were 

presented in terms of structural level from global to semi-local to local levels. The 

researchers followed time-dependencies of properties which show characteristic differences 

between the X-ray structure and molten globule states. The parameters and characteristics 

examined included global structural deviations from crystal structure (conformational 

sampling, size, packing interactions, hydrophobic core, and presence of secondary structural 

motifs) and semi-local and local structural deviations (secondary structure, turn formation, 

correlated motion). 

Although the researchers found it "difficult to estimate numerically the deviation 

that one would expect for a molten globule or other partially unfolded intermediates:, the 

values obtained "seem[ ed] reasonable for a molten globule, which is native-like in many 

respects, and is not expected to deviate considerably from the native state." 22 
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Additional studies have observed the molten globule state in cytochrome c at low 

pH by examining changes in the molecule's thermodynamic properties.23 Figure 5 presents 

a useful diagram illustrating the pathways.24 Methods of identifying compact nonnative 

structures from the native globular protein structures have also been investigated.25 The 

molten globule has been termed the third thermodynamical state of protein molecules.26 

The transitions from the native folded state (N) to the molten globule state (MG) 

and from MG to the denatured unfolded state (U) have been determined to follow the "all or 

none" mechanism due to the absence of equilibrium intermediates between the states.27 

It has been concluded that "all proteins, under the appropriate conditions, will form 

[compact intermediates ]"28 As recognized by several researchers, it is valuable to 

distinguish between the varying types of partially folded intermediates.29 The following 

diagram attempts to show the relevant distinctions: 

Partially Folded Intermediates 

I \ 

Compact Intermediate Molten Globule Compact Denatured 

At the outset, it is important to recognize that "[t]he term compact intermediates 

encompasses a broad range of conformations and degrees of folding and compactness: 

compact intermediates have no single, unique conformation, but rather a whole plethora of 

structures that range from being very similar to the native state to being substantially 

expanded and significantly unfolded."30 
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The compact intermediate generally possesses the following qualities: [a] 

substantial secondary structure with slight tertiary structure, [b] compact collapsed state 

with respect to the unfolded state as measured in terms of hydrodynamic radius, [ c] exposed 

hydrophobic surfaces, [ d] heat capacity similar to the unfolded state31
, [ e] absence of 

functional properties, and [f] less cooperative unfolding transition.32 

With respect to compact denatured states of proteins in general: (a) An individual 

protein may possess several stable compact intermediate states depending on the individual 

protein character and observation conditions; (b) structurally, two types of compact 

intermediates predominate: "native state-like regions of secondary structure connected by 

disordered regions of polypeptide, but still retaining a relatively native state-like topology, 

or a core of native-like structure";33 and ( c) it is difficult to isolate compact intermediates 

from compact substrates as "the energetic difference between relatively expanded compact 

intermediates and compact unfolded states resides mostly in the entropy and not [in] sic the 

enthalpy."34 The compact intermediate may also be an ensemble of states before passing 

through a high energy state, and bypassing a competing aggregation step, to the native 

state.35 An energy landscape folding model is a valuable method of visualizing the folding 

pathway of biological macromolecules (Figure 5( d)).36 The concern has been raised that the 

molten globule and other non-native states may in fact be incorrectly refolded states 

produced as a result of the observation conditions, which may be inappropriate for folding, 

instead of true folding intermediates: "Does [the protein or nucleic acid] fold and unfold 

through an intermediate state that is stable under some conditions and does not represent an 
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artifact of folding, i.e. is not a misfolded state trapped in a potential we11?"37 Such a state 

would represent "topological frustration" for the molecule.38 

Molecular Stress 

For purposes of stress analysis on the molecular level, the oligonucleotide chain 

may be viewed as a basic unit. The molecules behave as entropic springs. Assume a 

polymer, e.g. a polynucleotide, of length L is subjected to a tensile force F. Macroscopic 

thermodynamic theory holds that 

Equation 2 

F = aAJaL IT 

where A(L,T) is the Helmholtz free energy at absolute temperature T. 

Equation 3 

A(L,T) = U(L,T) - TS(L,T) 

where U is the internal energy and S is the entropy of the system. 

Equation 4 

F = au1aL I T - Tas1aL I T 

The force necessary for polymer extension produces changes, to varying degrees, in 

both internal energy and entropy.39 In the case of constrained macromolecules, the behavior 

is that of a molecular entropic spring in tension.40 The concept of intrinsic monomer stress 

(IMS) has been developed to explain stress in polymeric systems at the atomic level.41 
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Figure 5. (a) In vitro pathway of protein folding illustrating 
possible interconversions between unfolded (U) and 
partially folded intermediates (I) which eventually fold to 
the compact intermediate (CI) state before reaching the 
native state (N) and a competing aggregation step 
(formation of occlusion bodies) for misfolded structures. 
(b) Pathway from unfolded (U) state to properly folded or 
native (N) state showing transition through intermediate 
states including compact intermediate and passage through 
a high energy state. ( c) Model for structure of compact 
intermediates. ( d) Energy landscape folding model. 
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CHAPTER6 

ATOMISTIC SIMULATIONS 

Molecular Dynamics Theory 

Molecular dynamics simulations are used to determine individual molecular 

motions within solids, liquids, or gases. 1 Molecular dynamics simulations investigate 

temporally-related sequences in the positions of molecules, or trajectories, through the 

numerical solution of the equations of motion and may be thus viewed as a purely 

deterministic method.2 

It should be noted that the complexity of biomolecular systems prohibits solution of 

Schrodinger's equation due to the large number of atoms and interactions involved.3 The 

use of classical mechanics theory and semi-empirical or effective interaction functions is a 

useful substitute for the exact quantum mechanical solutions.4 This approach substitutes an 

analysis of the electronic degrees of freedom for atomic degrees of freedom. 5 Molecular 

mechanics theory treats electrons implicitly rather than explicitly.6 The uncertainty 

principle requires the use of advanced quantum mechanical techniques because momentum 

and position carmot both be simultaneously known with certainty with respect to an atom. 

There are three common stages to a molecular dynamics simulation: [a] model 

construction, [b] trajectory calculations, and [c] analysis of trajectories.7 The model 

consists of the molecule under investigation, based upon defined atomic coordinates 

l 
. 8 

derived, for example, through X-ray ana ys1s , and, generally, a fixed environment or 
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volume of gas, solid, or liquid. The molecule and its environment comprise a system for 

investigation. The system is typically at thermodynamic equilibrium. Under equilibrium 

conditions, the physical parameters specifying a given state remain the same, e.g. pressure, 

volume, or temperature. 

The thermodynamic state of the system is a function of the number of molecules 

(N), the volume (V), and the total energy (E). Successive integrations of NeVvton's and 

Langevin's motion equations yield sequential time-related atomic or molecular positions.9 

The integrations produce trajectories or molecular configurations as a function of time. 10 

These time-dependent position vectors are combined with time-dependent momentum 

vectors, formed in response to atomic interactions, to produce a 6N-dimensional hyperspace 

or phase space. Phase space represents the combination of JN-dimensional configuration 

space and JN-dimensional momentum space. 11 

Three general concerns are relevant to the reliability of a molecular model: [a] 

explicit representation of the electronic or atomic degrees of freedom "essential" to the 

representation of the phenomenon of inquiry; [b] the interaction function; [ c] a choice of the 

appropriate set of equations for the molecular motions based upon the available degrees of 

freedom. Equation sets commonly used in simulations include Schrodinger (quantum 

mechanical), Newton or Lagrange (classical mechanical) and Langevin (stochastic). 12 

Molecular dynamics of proteins and nucleic acids has been extensively 

investigated. 13 Specific internal motions of interest in nucleic acids include the relative 
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vibration of bonded atoms, longitudinal motions of bases in double helices, lateral motions 

of bases in double helices, global stretching and twisting, elastic vibration of globular 

region, sugar repuckering, torsional libration of buried groups, relative motion of different 

globular regions (hinge bending), global bending, allosteric transitions, 14 and local 

denaturation. 15 The parameters of interest associated with each of these motions include 

spatial extent and amplitude. 16 Molecular dynamics simulations of helix denaturation have 

, . 1 . d ~ . 11 oeen extensive y examme ior proteins. 

The method of molecular dynamics is also relevant. The commonly used methods 

include adiabatic dynamics, 18 used in the current study, as well as annealed dynamics, 19 

canonical (TVN) dynamics,20 and temperature-damped dynarnics.21 Under the simulated 

annealing or "slow cooling" approach, the atoms lose their thermal mobility.22 These 

methods may be modified further by the use of "impulse" dynamics where the initial 

directional velocities of certain atoms are preset to overcome translation barriers and 

permitting relaxation or "quenched dynamics" where the molecular structure is minimized 

periodically and saved, following dynamic stages, allowing a search for low energy 

structures. 23 

Full Newtonian Simulation or Deterministic Model of Atomic Motion 

In a full Newtonian simulation, the complete equations of motion (Newton's second 

law) 



Equation 5 

r. = F"1 ra/m 
I i 
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are integrated with respect to time for all atoms including hydrogens and, if applicable, 

solvent atoms. The trajectory ri( t) of every atom is thus determined for a given set of 

initial conditions r; ( 0). The force exerted on each atom is the negative gradient of the 

potential energy function: 

Equation 6 

Finl ra = - av I ari . 
I 

In integrating the equations of motion, a time step which is sufficiently short with respect 

to the smallest time scale of the atomic motions must be employed. The time scale of the 

atomic motion decreases as the atomic mass is reduced. Therefore, the time step of the 

simulation and, hence, the overall computational cost is determined by the motion of the 

lighter (hydrogen) atoms. This makes the computational cost of a full Newtonian 

simulation prohibitive. In the present study, in order to reduce the computational cost, 

the CHARMm-based SHAKE algorithm was employed to constrain the lengths of the 

hydrogen bonds during both the Newtonian and Langevin simulations. The harmonic 

motions represented by the fluctuation of the hydrogen bonds are weakly coupled to other 

atomic motions and, hence, may be constrained to within a certain interatomic distance. 

Stochastic Models of Atomic Motion 

Besides the motion due to the interatomic forces, another important component of 

the atomic motion is the harmonic vibration which corresponds to the thermodynamic 
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equilibrium of individual atoms with a temperature bath. The time scale of this motion is 

much shorter than the time scale of the motion which corresponds to the interatomic forces. 

Therefore, any attempt to accurately follow this motion during a full Newtonian simulation 

would make the computational cost of the simulation prohibitive. The representation of this 

vibration with a stochastic (random) motion offers an economical alternative. 

The transition from the original deterministic system to the stochastic one may be 

better understood by introducing the concept of the probability of recurrence, i.e. the 

probability that a particular state (configuration) will reoccur after a finite time has elapsed. 

A physical system which follows Newton's laws of motion is deterministic. Therefore, 

every realizable state of the system can be expected to occur after a finite time with a 

probability equal to I. If the expected time of recurrence is much longer than the time scale 

of the physical phenomena under investigation, then the system can be assumed to be 

random. 

The state of a physical system which is stochastic in nature may be completely 

described by a probability density function defined in the appropriate phase space. The 

modeling of a physical system is made substantially easier by introducing a model system 

which does not obey the same deterministic laws as the original system under investigation 

but which is described by the same probability density function. For example, it can be 

shown that the probability density function which describes a model stochastic system 

which is governed by Brownian kinematics changes in the same way as the probability 
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density function of a physical system which is governed by gradient diffusion. The two 

systems are then said to be statistically equivaf ent. 

Statistical equivalence is the foundation from which stochastic models of otherwise 

deterministic physical phenomena (such as Brownian or Langevin models) are derived. In 

essence, the trajectory r(t) of an atom is now assumed to be a superposition of a 

deterministic and a random motion 

Equation 7 

r;( t) = rider ( t) + riran ( t) . 

The deterministic component of the atomic motion r;d•t ( t) is computed in the same 

manner as in the full Ne\\ttonian simulation, i.e. based on Ne\\tton's second law. The 

interatomic force is again computed as the gradient of a potential energy field. However, 

only the motions due to the interatomic forces are being followed while the harmonic 

motion which corresponds to the thermodynamic equilibrium with the temperature bath is 

represented by the random term r/an ( t) . The choice of this random term (closure 

assumption) is dictated by the requirements of statistical equivalence, i.e. that the effect that 

this random motion has on the probability density distribution function of the position of 

the atoms is the same as the effect of the actual harmonic vibration. 

The simplest choice for the random component of the atomic motion is a Brownian 

(random walk) model. In the Brownian model of motion, the state variable (in the present 

case, position, ri is assumed to change according to 
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Equation 8 

dr.'an = dW. 
I I 

where dWi is a random displacement, e.g. a random walk. The key assumption about the 

statistical properties of dWi is that they depend only on the present state ( ri ) of the system, 

i.e. dWi is independent of any previous states. Naturally, this assumption of uncorrelated 

changes of state is not consistent with the deterministic character of the underlying physical 

laws. However, this assumption is acceptable when the correlation time of these changes is 

much shorter than the time scale of the physical processes which are being modeled. 

When the correlation time of these changes of state cannot reasonably be neglected, 

a Langevin model may be adopted instead. In the Langevin formulation, the assumption of 

negligible correlation time is shifted from position changes to velocity changes. The 

random velocity 

Equation 9 

ean = drrnn /d t 
I I 

of the system is assumed to change according to 

Equation 10 

where A(riran ,riran ,t) is a deterministic acceleration and dWi is a random velocity change 

for which the same assumption of negligible correlation time is maintained. The function 

A( (a" ,r/'"1
, t) determines the correlation profile of the displacements driran which were 
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assumed to be uncorrelated in the Brownian model. It can be shown that, at the asymptotic 

limit of zero correlation time, the Langevin model reduces to the Brownian model. 

In the present study, a Langevin model of the form 

Equation 11 

r;. pin! er 

df.'an = --~-i dt +-i-dt 
' m m 

Was adopted. The feedback function A( riran 'rran 't) has been chosen so that it has the same 

effect as a viscous damping force, - s r; , where s = m b and b is the friction coefficient of 

the particular atom. The random acceleration, dWi , is the effect of a random interatomic 

force F/"1 er with the following statistical properties 

Equation 12 

< Fiintra(t) > = 0 

where kb is Boltzmann's constant and T0 is the absolute temperature of the temperature 

bath. It can be shown that the present choice of the feedback function A( ri'an ,riran, t) 

corresponds to an exponential temporal correlation of the random atomic displacements 

with an autocorrelation time -re = m/s. 

The final form of the equation describing atomic motion in the case of the stochastic 

simulation (compare with Equation 6) is 
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Equation 13 

Sf· F"I er F'"I ra 

dr = --' dt + -'-dt +-'-dt 
' m m m 

1 See generally Haile, J. ( 1992). Molecular Dynamics Simulation: Elementary Methods. 
(John Wiley); van Gunsteren, W.F. and Berendsen, H.J.C. (1990). Computer Simulation 
of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry. 29 
Agnew. Chem. Int. Ed. Engl. 992-1021; Caspar, D.L.D. (1995). Problems in simulating 
macromolecular movements. 3 Structure 327-329. (insufficient sampling of 
conformational sub-states); Fernandez, A. (1993). Simulating an exploration of RNA 
conformational space with an appropriate parallel-updating strategy. 48 Physical Review 
E4: 3107-3111. 

2In a purely stochastic methodology, such as Metropolis Monte Carlo, a molecular 
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Markov chain. The spectrum between purely stochastic and purely deterministic 
simulation methods is composed of hybrid methods with elements, to varying degrees, of 
both methods: Force-Biased Monte Carlo, Brownian Dynamics, and General Langevin 
Dynamics in order of increasing deterministic properties. Haile, J. ( 1992) at 13. 

3van Gunsteren, W. and Mark, A. (1992). On the interpretation of biochemical data by 
molecular dynamics computer simulation. 204 Eur. J. Biochem. 947-948. 

4van Gunsteren, W. and Mark, A. (1992). On the interpretation of biochemical data by 
molecular dynamics computer simulation. 204 Eur. J. Biochem. 948. See also Roitberg, 
A., Gerber, R., Elber, R., Ratner, M. (1995). Anharmonic Wave Functions of Proteins: 
Quantum Self-Consistent Field Calculations of BPTI. 268 Science 1319. Comba, P. 
(1996). Inorganic Molecular Mechanics. 73 Journal of Chemical Education 2: I 08. 
(pictorial description of parameters used in a molecular mechanics force field). Force 
field equations simulate various interactions that describe the potential energy surface of a 
molecule. See further Iachello, F. and Levine, R.D. (1995). Algebraic theory of 
molecules. (New York: Oxford University Press) 156-189. 

5van Gunsteren, W. and Mark, A. (1992). On the interpretation of biochemical data by 
molecular dynamics computer simulation. 204 Eur. J. Biochem. 948. Ab initio models 
include Hartree-Fock models and correlated models. The Hartree-Fock models include 
the Born Oppenheimer approximation involving separation of nuclear and electron 
motions. the Hartree-Fock approximation involving separation of electron motions, and 
the LCAO (linear combination of atomic orbitals) approximation. Chemistry with 
computation: An Introduction to SPARTAN. 1: 1. (1995). 
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7Haile, J. (1992) at l J. 
8
Hendrickson, W.A. (1995). X Rays in Molecular Biophysics. 48 Physics Today 11 :42-4J. 

9
F/t) = mri(t) = - 8µ(rN)/eri . Haile, J. ( 1992) at 15. Newtonian dynamics, which is used in 
the current study, should be contrasted with Hamiltonian dynamics, based upon Newton's 
second law, wherein a time-independent position and velocity function, the Hamiltonian, 
is used. Haile, J. (1992) at 40-42. 

10van Gunsteren, W. and Mark, A. (1992). On the interpretation of biochemical data by 
molecular dynamics computer simulation. 204 Eur. J. Biochem. 948. 

11 Haile, J. (1992) at 4J. In JN-dimensional configuration space, the coordinate axes are 
components of position vectors, r/t); the coordinate axes are components of momentum 
vectors, p/t) in JN-dimensional momentum space. A single point in space represents the 
positions and momenta of the entire N-atom system at a single point in time. 

12van Gunsteren, W.F., Luque, F.J., Timms, D. and Torda, A.E. (1994). Molecular 
Mechanics in Biology: From Structure to Function, Taking Account of Solvation. 2J 
Annu. Rev. Biophys. Biomol. Struct. 849. 

13See generally McCammon, J. and Harvey, S. (1989). Dynamics of proteins and nucleic 
acids. (Cambridge: Cambridge University Press); Brooks, C.L., Karplus, M., and Pettitt, 
B.M. (1988). Proteins: A Theoretical Perspective of Dynamics, Structure, and 
Thermodynamics. (Advances in Chemical Physics Volume LXXI) (John Wiley and 
Sons: New York). 

14The term allosteric effects refers to conformational changes in a biomolecule's structure 
which alter affinity for substrates, e.g. oxygen-binding and hemoglobin. Sybesma, C. 
(1977). Biophysics: An Introduction. (The Netherlands: Kluwer Academic Press). 118-
119. 

l" 
'McCammon (1989) at 29. 

16McCammon (1989) at 29. 
17Daggett, V. and Levitt, M. (1992). Molecular Dynamics Simulations of Helix 

Denaturation. 222J J. Mo!. Biol. 1121. 
18In this method, the molecular structure's temperature is maintained within a specified 

range by periodic scaling of the atomic velocities to constrain the kinetic energy. 
Molecular Simulations, Inc. (6/93). CERIUS Minimizer/Dynamics Document Update.18-
7. 
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19The molecular structure's energy is gradually minimized to avoid local mm1mum 
"trapping". The temperature is incrementally increased, as a function of time, to a 
designated temperature and back to the starting temperature. The lowest energy structure 
within each temperature cycle is minimized. Molecular Simulations, Inc. (6/93). CERIUS 
Minimizer/Dynamics Document Update.18-7. 

20In this isothermal method, temperature, volume, and number of atoms is held constant in 
isothermal fashion by exchanging energy with a heat bath. The degree of thermal 
coupling between the system and the heat bath may be regulated by modification of the 
relaxation time. The heat bath may provide energy needed to overcome rotational barriers 
to conformations. Molecular Simulations, Inc. (6/93). CERIUS Minimizer/Dynamics 
Document Update.18-8. 

21 This adiabatic method maintains a constant temperature through a "weak" coupling 
scheme of sequentially scaling atomic velocities. Molecular Simulations, Inc. (6/93). 
CERIUS Minimizer/Dynamics Document Update.18-8. 

22Press, W.H., Flannery, B.P., Teukolsky, S. A., and Vetterling, W.T. (1986). Numerical 
Recipes. The Art of Scientific Computing. (Cambridge University Press). 327 

23Molecular Simulations, Inc. (6/93). CERIUS Minimizer/Dynamics Document Update.18-
9. 



CHAPTER 7 

POTENTIAL ENERGY FUNCTIONS 

As noted by one author, "[t]he form of the potential function and parameters [force 

constants] are generally chosen with the goal of mimicking the physics of interatomic 

interactions."' The correct choice of a reliable potential energy function is based upon 

considerations of intramolecular energy, charge distributions, hydrogen bonding, dispersion 

coefficients and other factors. 2 The essential components of a force field include atom 

types, auto-typing rules, functions for energy terms, parameters, and an unspecified 

parameters generator.3 The potential energy function or force field equation expresses the 

functional dependence of potential energy upon individual atomic position.4 

Three general interaction models are used in molecular simulations. The Hooke's 

Law model treats the atoms or molecules as connected to their neighbors by springs. The 

hard sphere model treats particle interactions as "billiard ball" interactions with an 

interaction, i.e. bouncing off, taking place only when the particles are within a certain 

distance of each other. The Lennard-Jones model is characterized by "forces that are 

strongly repulsive at very short interparticle distances, attractive at larger distances, and 

extremely weak attractive at very large distances."5 

Typically, the model for the intermolecular potential, µ(rN), is considered pairwise 

additive and accordingly represents the interaction energy among N atoms as the sun1 of 
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isolated two-body contributions: µ(rN) = IIu(rij) where i < j. The Lennard-Jones model 

for soft-sphere pair potential is generally modified, to varying degrees, in producing force 

fields to encompass the energy terms required for different classes of molecules, including 

biomolecules.6 Molecular mechanics, or optimum geometries, and molecular or motional 

dynamics are evaluated from the forces calculated for two- , three- , and four-body 

interactions.7 Using truncated potentials, minimum image criterion, and neighbor lists as 

timesaving measures often optimizes calculations of atomic forces. 8 

The potential function generally includes terms for bonded interactions (e.g. 

harmonic restoring forces between bonded nearest neighbors, penalties for angle 

deformations, and dihedral torsional potentials for hindered rotation of groups about bonds) 

and nonbonded interactions between separated atoms (including repulsive van der Waals 

forces, dispersion attraction, and partial charge electrostatic interactions).9 Parameter data is 

obtained experimentally. 

The governing relationship between potential energy, atomic positions and atomic 

velocities is given by 

Equation 14 

dV d 2x 
- - = F = ma = m-0-dx dt-

where V equals the potential energy, x represents atomic positions, t represents time, m 

equals mass, and F equals force. The following is an example of a typical biomolecular 

force field or effective atomic interaction system: 
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Equation 15 

+I K¢[1+J:~,=~n¢-c5)]+ I [C~2,~ij) _ c;~ij) + 41r:;q; r ] 
I) I) 0 r I) 

all pairs (i, j) 

The first term represents the covalent bond-stretching interaction, a harmonic potential, 

along bond b. The bond lengths and force constants, Kb, depend upon the bond type. The 

second term represents the three-body interaction or bond-angle bending. The third term 

represents dihedral-angle or four-body interactions and the fourth term represents the 

effective non-bonded interactions as a sum over all pairs of atoms (van der Waals and 

Coulomb interactions). 10 

It should be noted, however, that "the actual behavior of molecules is governed by 

the nature of the free energy hyperspace, not that for the potential energy." 11 The 

calculation of the relative free energy of systems has traditionally been computationally 

prohibitive. Modem free energy perturbation methods such as compositional or 

conformational (potential of mean force) calculations and increasingly powerful 

computational methods 12 will result in more accurate simulations. 

1Malhotra, A., Tan, R.K-Z., and Harvey, S.C. (1994). Modeling Large RNAs and 
Ribonucleoprotein Particles Using Molecular Mechanics Techniques. 66 Biophysical 
Journal 1777, 1778. 
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Macromolecules: A Case for Ab Initio Quantum Chemistry. 1 Reports in Molecular 
Theory 1-21. 

3Molecular Simulations, Inc. (6/93). CERIUS Open Force Field Document Update. 7-6. 
4Daggett, V. and Levitt, M. (1993). Realistic Simulations of Native-Protein Dynamics in 

Solution and Beyond. 22 Annu. Rev. Biophys. Biomol. Struct. 355. 
5Fosdick, L.D., Jessup, E.R., Schauble, C., and Domik, G. (1996). An Introduction to 

High-Performance Scientific Computing. (Cambridge: MIT Press). 535-547. 
6Haile, J. (1992) at 188-197. 
7Molecular Simulations, Inc. (6/93). CERIUS Open Force Field Document Update. 7-4. 
8Haile, J. (1992) at 190-197. 
9Brooks, C.L., Karplus, M., and Pettit, B.M. (1988). Proteins: A Theoretical Perspective of 

Dynamics, Structure, and Thermodynamics. (Advances in Chemical Physics Volume 
LXXI) (John Wiley and Sons: New York) at 25. 

10van Gunsteren, W. and Mark, A. (1992). On the interpretation of biochemical data by 
molecular dynamics computer simulation. 204 Eur. J. Biochem. 948-949. 

11 Pearlman, D.A. and Kollman, P.A. (1991). Evaluating the Assumptions Underlying Force 
Field Development and Application Using Free Energy Conformational Maps for 
Nucleosides. 113 J. Am. Chem. Soc. 7177. See also Pearlman, D. and Kollman, P. 
(1990). Are Free Energy Calculations Necessary? A Comparison of DNA Modeling 
Studies in Beveridge, D. and Lavery, R., eds. (1990). Theoretical Biochemistry & 
Molecular Biophysics. (New York: Adenine Press). See generally Mezey, P.G. (1987). 
Potential Energy Hypersurfaces. Studies in physical and theoretical chemistry, v. 53. 
(New York: Elsevier). 

12Plimpton, S. and Hendrickson, B. (1996). A New Parallel Method for Molecular 
Dynamics Simulation of Macromolecular Systems. 17 Journal of Computational 
Chemistry 3:326-337. 



CHAPTERS 

SIMULATIONS 

Molecular Complex Preparation 

The molecule was prepared for dynamics in several steps. Initially, the X-ray 

crystallographic coordinates of the hammerhead ribozyme, as deposited in the Brookhaven 

Protein Databank, were imported into the QUANTA 1 molecular modeling program. 

Hydrogen atoms were added to the ribozyme and a sufficient number of magnesium ions 

were added to the set of coordinates to create an electrically neutral molecule-ion complex. 

The placement of magnesium ions in each complex was essentially random although an 

attempt was made to place the ions in close proximity to the phosphate groups on each 

molecule under the expectation that the positively charged magnesium ions would move 

towards the negatively charged phosphate groups during minimization and dynamics. The 

complex was "solvated" through the use of a distance-dependent dielectric constant. 

Energy Minimization 

Minimization of the complex was accomplished through the CHARMm2 program 

for molecular mechanics and dynamics within the QUANTA environment. CHARMm

based nucleic acid topology and potential function parameter files3 were employed in the 

minimization and dynamics simulations. 

Minimization is used to reduce a macromolecule's potential energy to its lowest 

possible value before running molecular dynamics. The molecule must be "rela'\ed" 
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because "the crystallographic structure is itself a model, generated by balancing the desire 

for atomic positions that reproduce the observed diffraction pattern against the desire for a 

model with traditional values for bond lengths, bond angles, [etc ].',4 Theoretically, the 

molecule will have zero kinetic energy at its potential energy minimum. The potential 

energy gradient, or first derivative, is brought to zero through atomic positioning and 

repositioning through a variety of algorithms.5 Minimization algorithms differentiate the 

potential energy function with respect to each of the molecule's x, y, and z atomic 

coordinates to achieve a gradient very close to zero. The various minimization methods 

traditionally used in simulations may differ in their use of first and second derivatives in 

optimizing a molecule's structure.6 

Steepest descents is used to quickly descend toward the global minimum potential 

energy. Convergence takes place under the steepest descents method by successively 

adjusting the molecular coordinates in the negative direction of the first derivative of the 

potential energy function. 

The size of each successive step is determined by the immediately prior change in 

potential energy. A reduction in potential energy dictates a larger step size; an increase in 

potential energy dictates a smaller step size. Convergence is difficult to achieve using 

steepest descents minimization alone and is regularly achieved through a combination of 

methods. In general, steepest descents will "rapidly improve a very poor conformation."7 

Additionally, a large number of iterations are generally required.8 
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The method of conjugate gradients uses both pnor and current gradients to 

determine the size of successive steps. Mathematically, convergence is achieved in N steps 

for a quadratic energy surface where N is the number of degrees of freedom in the energy. 

The adopted basis Newton-Raphson minimization method iteratively solves the 

Newton-Raphson minimization equations by computing a derivative of the gradient using a 

second derivative matrix diagonalization to find an optimum step size along eigenvectors. 

Small or negative eigenvalues are subjected to additional energy and gradient 

determinations to set necessary step size and direction. Rapid convergence is often 

achieved through this algorithm. The adopted basis method avoids saddle points on the 

energy surface by numerically constructing the second derivative matrix from gradient 

vector changes.9 

Minimization procedures also allow normal mode analysis. The equation for a 

molecular potential surface of n atoms can be used to examine the vibrations around a 

particular minimum by transforming the potential energy expressions from Cartesian 

coordinate representations to normal coordinates to calculate the vibrational frequency of a 

normal mode. Modes with frequencies corresponding to intrarnolecular vibrations, 

molecular translation, and molecular rotation as well as harmonic normal modes can be 

used to describe molecular properties such as average thermal atomic motion. 10 

The potential energy gradient of the complex was brought to 1.53 kcal per mole 

through the use of steepest descents, conjugate gradients, and adopted-basis Newton-



49 

Raphson minimization techniques. The minimized structure of the hammerhead ribozyme 

complex is shown in Figure 6. 

Solvent Representation 

The use of a suitable solvation model is very important m macromolecular 

simulations as longtime dynamics of such molecules in solution are "governed by 

diffusion." 11 The relevant interaction is between solute atoms and solvent atoms-the free 

energy of hydration-which produces conformation and thermodynamic properties. 12 As 

stated by one researcher, "the enzyme plus medium must be regarded as a unit."13 

Among the roles of solvent molecules in simulations are [a] improvement m 

macromolecular packing; [b] reduction of "sizeable" cavities through minimization of free 

surface area due to surface tension effects; [ c] satisfying unmatched hydrogen-bond 

relationships through hydrogen-bonding capacity, [d] exertion of shielding effect on 

electrical interaction between charges or dipoles in the protein or nucleic acid yielding 

solvent-polarity dependent changes in structure and stability and [ e] viscosity of solvent. 14 

Several methods of solvation were contemplated for the solvation of the molecule

ion complex during the simulation: full-scale immersion into a box of water molecules with 

implementation of periodic boundary conditions resulting in a "unit" of tiled water boxes or 

cells 15 and the use of a distance-dependent dielectric constant. The use of periodic boundary 

conditions in a solvent simulation permits the incorporation of fewer water molecules in a 

simulation with no change in results from using bulk water. The Rahman method treats a 

rectangular box of water molecules as a period system-a constant number of neighboring 
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water molecules is maintained both inside and outside the cell. The departure of one water 

molecule from one exit is followed by the entry of the same water from the opposite 

d
. . 16 
irect10n. 

Both methods were viewed with an eye toward reducing the computational cost of 

the simulations. The large number of water molecules and amount of computational time 

required in a periodic boundary condition water box or bulk solvent approach prompted the 

use of a distance-dependent dielectric constant. 17 

Dynamics 

After minimization, two sets of dynamics simulations were initiated by Newtonian 

and Langevin dynamics, using the Verlet 18 algorithm, to perform initialization of atomic 

positions and velocities, heating and equilibration for the simulations. In the Newtonian 

case, heating to the desired temperatures (300K and SOOK) as well as the subsequent 

equilibration, is achieved by scaling the initial velocities. The heating process begins at 0 K 

and the temperature was rapidly increased incrementally over several picoseconds. In the 

Langevin case, heating was accomplished through the use of a temperature bath at 300K or 

SOOK. All molecular complex atoms came within the influence of the heatbath. The 

permissible temperature deviation from the final temperature for all phases of the 

simulations was plus or minus 10 degrees. Violation of these boundaries triggered atomic 

velocity scaling protocols. 

Equilibration, after heating to the desired temperature, was accomplished over time 

in the simulations. 19 The complex at the different temperatures, and under the different 



51 

methods, was subjected to a 600 picosecond molecular dynamics simulation with 2 

femtosecond intervals between steps and a history file written every ten steps. 

Initialization of the molecule-ion complex is accomplished by setting the initial 

positions, rlO), of the atoms to their respective X-ray, minimized, or previous molecular 

dynamics, for the ions, coordinates with time t = 0. The initial velocities are assigned 

d b 
. 20 through ran om num er generat10n. The simulations were run on Silicon Graphics 

Indigo2 Unix Workstations under the IRIX 5.3 operating system. A total of four 

simulations of the molecule-ion complex were conducted: Newtonian and Langevin at 300 

and 500 degrees Kelvin, respectively. 

A distance-dependent dielectric constant was incorporated into the simulation. The 

steps of production dynamics were run and trajectory data, in the form of conformation 

ensembles, was collected for analysis. The analysis items include conformation-dependent 

(internal motions )2 1 and thermodynamic properties. The conformation-dependent 

properties include the radius of gyration, hydrogen bonding and dipole moment. The 

thermodynamic properties include temperature, potential energy, kinetic energy, and total 

energy. The properties are plotted as a function of time over the 600 picosecond 

simulations and the trajectories at each temperature are analyzed in terms of local and large-

scale structural and global energy changes. Additional analysis is conducted with respect 

to the root-mean-square displacement of backbone (phosphate) and side-chain (base) atoms. 

Actual global rela"Xation is expected to occur on a time scale longer than that of the present 

simulations. 
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Figure 6. Minimized Structure showing Mg2
+ 10ns (small 

squares). 
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1Molecular Simulations, Inc. 
2CHARMm is an acronym for Chemistry at Harvard-Macromolecular Mechanics. See 

Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and Karplus, 
M. (1983). CHARMm: A Program for Macromolecular Energy, Minimization, and 
Dynamics Calculations. 4 Journal of Computational Chemistry 187. Representation of 
objects in Cartesian space (x,y,z coordinates) is substituted for a CHARMm internal 
coordinate system in which CHARMm utilizes a Cartesian coordinate representation for 
the first 3 coordinates and bond angle, bond distance/length, and rotational (torsional) 
angle for the fourth coordinate. The potential energy function ("force field") is 
manipulated in terms of the internal coordinates. 

3MacKerell, A and Wiorkiewicz, J., All-Hydrogen Nucleic Acid Parameter File 
(Developmental), Version 5.0 (June 1992); MacKerell, A and Wiorkiewicz-Kucera, J., 
All-Hydrogen Nucleic Acid Topology File (Developmental), Version 5.0 (June 1992). 

4McCammon, J. and Harvey, S. (1987) at 187. 
5Daggett, V. and Levitt, M. (1993). Realistic Simulations of Native-Protein Dynamics in 

Solution and Beyond. 22 Annu. Rev. Biophys. Biomol. Struct. 357. 
6CHARMm Course Outline (1990). Lecture 7. 
7 CHARMm documentation, MINIMIZ.DOC (1991) at 4. 
8Many degrees of freedom in macromolecules may produce many local mm1ma. See 

generally Warshel, A (1991). Computer Modeling of Chemical Reactions in Enzymes 
and Solutions. (New Yark: John Wiley and Sons). 113-117. 

9 CHARMrn documentation, MINIMIZ.DOC ( 1991) at 5. 
10Warshel, A (1991). Computer Modeling of Chemical Reactions in Enzymes and 

Solutions. (New York: John Wiley and Sons). 117-118. Lattice dynamics is used to 
examine vibratory motions of molecules in solids. Haile, J. (1992). Molecular Dynamics 
Simulations. Elementary Methods. (John Wiley) 1. 

11 Perico, A, Guenza, M., Mormino, M., and Fioravanti, R. (1995). Protein Dynamics: 
Rotational Diffusion of Rigid and Fluctuating Three Dimensional Structures. 35 
Biopolymers 47; Beveridge, D.L. and DiCapua, F.M. (1989). Free Energy via Molecular 
Simulation: Applications to Chemical and Biomolecular Systems. 18 Annu. Rev. 
Biophys. Biophys. Chem. 431, 461. See also Still, C., Tempcyzk, A, Hawley, R.C., and 
Hendrickson. T., (1990). Semianalytical Treatment of Solvation for Molecular Mechanics 
and Dynamics. 112 J. Am. Chern. Soc. 6127-6129. (solvent treated as a statistical 
continuum); van Gunsteren, W.F., Luque, F.J., Timms, D. and Torda, A.E. (1994). 
Molecular Mechanics in Biology: From Structure to Function, Taking Account of 
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Solvation. 23 Annu. Rev. Biophys. Biomol. Struct. 847-863; Saenger, W. ( 1987). 
Structure and Dynamics of Water Surrounding Biomolecules. 16 Ann. Rev. Biophys. 
Biophys. Chem. 93-114; Ben-Nairn, A., Ting, K.-L., Jernigan, R.O.L. ( 1989). I. 
Separation of the Volume and Surface Interactions with Estimates for Proteins. 28 
Biopolymers 1309-1325. 

12Kang, Y.K., Gibson, K.D., Nemethy, G., and Scheraga, H.A. (1987). Free Energies of 
Hydration of Solute Molecules. 4. Revised Treatment of the Hydration Shell Model. 92 
Journal of Physical Chemistry 16: 4739-4742. 

13Welch, G.R. (1986). The Fluctuating Enzyme. (New York: John Wiley and Sons) ix. 
14van Gunsteren et al. (1994) at 852. See also discussion of boundaries, long-range 

electrostatic effects and the approximate treatment of solvent effects (853-856). 
15Daggett (1993) at 359. 
16Daggett, V and Levitt, M. (1993). Realistic Simulations of Native-Protein Dynamics in 

Solution and Beyond. 22 Annu. Rev. Biophys. Biomol. Struct. at 358. Such an approach 
may also be necessary to avoid "edge" effects in the case of a small number of molecules 
where the "fraction near the boundary of the system is far greater than a real system 
would have." Winn, J. ( 1995). Physical Chemistry 651. 

17See generally Banks, J., Brower, R., Ma, J. (1995). Effective Water Model for Monte 
Carlo Simulations of Proteins. 35 Biopolymers 331-341. 

18The Verlet method is a finite-difference, third-order Stormer algorithm, used to determine 
positions and velocities. The addition of two Taylor expansion series of position from 
time t forward to time t + 6t and from time t backward to time t + 6t, respectively, 
produces the Verlet algorithm for positions. 

Forward expansion series: 

x(t +6t) = x(t) + (dx(t)/dt) (6t) + Y2 cct2x(t)/dt2)6t2 + 1/3! (d3x(t)/dt3)6t3 + 0(6t4
) 

Backward expansion series: 

x(t -6t) = x(t) - (dx(t)/dt) (6t) + Y2 (d2x(t)/dt2)6t2 
- 1/3! (d3x(t)/dt3)6t3 + 0(6t4

) 

Verlet algorithm for positions: 

x(t +6t) = 2x(t) -x(t -6t) + (d2x(t)/dt2 )6t2 + 0(6t4
) 

Estimation of velocities is accomplished through the use of a first-order central difference 
estimator, v(t) » [x(t +6t) - x(t -6t)]/2t. Acceleration is derived from Newton's second 
law and intermolecular forces. Haile, J. (1992) at 158-159 and references cited therein, 
including Verlet, L. (1967). Computer Experiments on Classical Fluids. I. 
Thermodynamical Properties of Lennard-Jones Molecules. 159 Phys. Rev. 98.; Beeman, 
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D. (1976). Some Multistep Methods for Use in Molecular Dynamics Calculations. 20 J. 
Comput. Phys. 130. Additional Taylor expansion series-based finite-difference methods 
routinely used in molecular dynamics simulations include Euler's method, the multi-order 
Runge-Kutta methods, and the general and Gear predictor-corrector methods. The 
algorithms differ in their stability, i.e. amplification of truncation and round-off errors 
through sequential steps. Haile, J. ( 1992) 148-166. 

19These procedures "decrease[s] [sic] the probability that localized fluctuations in the 
energy (e.g. "hot spots") will persist throughout the simulation." Brooks, C.L., Karplus, 
M., and Pettitt, B.M. (1988). Proteins: A Theoretical Perspective of Dynamics, Structure, 
and Thermodynamics. (Advances in Chemical Physics Volume LXXI) (John Wiley and 
Sons: New York) at 34. Equilibration occurs when the system's energy "settles into a 
reasonable approximation of an oscillation about a mean." Beveridge, D.L. and Di Capua, 
F.M. (1989). Free Energy via Molecular Simulation: Applications to Chemical and 
Biomolecular Systems. 18 Annu. Rev. Biophys. Biophys. Chem. 435. 

20If xx, xy,and Xz are random numbers distributed uniformly over the interval from -1 to +I, 
the corresponding initial velocity coordinates are given by vix(O) = dx/x, viy(O) = dx/x, 

2 2 2 y, • 
and vizCO) = dxjx. x = [ dxx + dxy + dxz ] Haile, J. (1992) at 202. 

21 See generally Cantor and Schimmel. (1980). Biophysical Chemistry, Part III: The 
behavior of biological macromolecules. 980-1018. (theory of calculation of conformation
dependent properties of polymer chains). 



CHAPTER 9 

TRAJECTORY ANALYSIS 

The analysis of the trajectory data generated in the simulations must be carefully 

considered. 1 Thermodynamic (temperature, kinetic energy, potential energy, total energy) 

and conformational (radius of gyration, hydrogen bonds, dipole moment) variable data 

were collected for analysis. Each trajectory was arbitrarily separated into two phases. The 

first phase, Phase I, consisted of the time period from 0 to 300 ps; Phase II covered the time 

period from 301 to 600 ps. 

The selected properties were chosen for their value in contributing to an overall 

characterization of the biomolecular system. The temperature of a system is directly related 

to the kinetic energy by 

Equation 16 

Nn 2 N k T 
Lmy; = / B 

i=I 2 2 

where Na is the number of atoms, mi is the mass of atom i, vi is the velocity of atom i, and 

Nr is the number of degrees of freedom. The radius of gyration reflects the root mean 

square displacement of the atoms from center of mass of the molecule. The number of 

hydrogen bonds formed through intramolecular base pairing is an indication of the relative 

degree of structure of the molecule. In the case of a group of distributed charges, a dipole 

moment exists which may be defined by 
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Equation 17 

µ = Iqir; 

or in the case of a continuous distribution of charge, 

Equation 18 

µ = t.o(r) rdV 
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where p(r) is the charge density at a given position r. "Any system of charges (even if the 

system has a zero net charge) whose center of positive charge does not coincide with the 

center of negative charge will have a dipole moment."2 The dipole moment is essentially an 

indication of the alignment of the molecule's electrical field. The dielectric constant is a 

measure of how much a particular substance will reduce the electric field. 

Two major time frames are relevant to the analysis of the dynamics: (a) the pre

equilibration phase where heating is accomplished and equilibration occurs and (b) the post

equilibration "true" dynamics period where meaningful conclusions may be drawn 

regarding the molecule's search of conformational space. 

The graphs on the following pages show the evolution of the properties over Phase I 

and Phase II. The first 50 ps of each simulation represent the results of a combined heating 

and equilibration protocol within QUANTA. For temperature, equilibration appears to be 

reached in all cases (Figure 8(a)-(f)). For energy, in the Newtonian simulations, 

equilibration is reached by 50 ps (Figure 9). However, in the case of the Langevin method, 

equilibration does not appear to have occurred until 200 ps (Figure 9). By Phase II, energy 
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equilibration has been reached in all simulations. The results for the radius of gyration are 

similar to those of the energy. In the case of hydrogen bonds, Langevin simulations (Figure 

11) equilibrated more quickly than Nev.rtonian ( Figure 11) but both are fully equilibrated 

by SO ps at 300K and SOOK in Phase II. The dipole moment equilibrated rapidly in the 

Nev.rtonian simulations at both 300K and SOOK (Figure 12), but showed at least two major 

transitions in the Langevin simulations before equilibrium positions were reached (Figure 

12). 

The decrease in potential energy and contemporaneous increase in hydrogen 

bonding (Figure 11) during the early phases of dynamics indicate that molecular dynamics 

functions as a very effective energy minimization routine. This may be due to the greater 

conformational space being explored in the dynamics simulation as compared to the energy 

minimization procedure. Overall, the properties equilibrated quickly and remained 

relatively constant during the simulations. These observations were maintained regardless 

of the dynamics method or the temperature utilized. In particular, the radius of gyration and 

dipole moment showed the most change between dynamics methods. The radius of 

gyration took a longer time to equilibrate or "settle down" and achieved higher values in 

the Langevin simulations than in the Nev.rtonian simulations. The dipole moment required a 

longer time to reach a "steady state" value in the Langevin dynamics overall and showed an 

increase in value in Phase II dynamics as compared to a decreasing dipole moment returned 

in Newtonian Phase II dynamics. Additionally, over the long run, Langevin dynamics 

appears to have produced confonnations with somewhat less structure than Nev.rtonian 
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dynamics as evidenced by the formation of fewer hydrogen bonds and possibly greater 

radius of gyration in the Langevin case. No major conformational changes were observed 

during any of the simulations; however, detailed structural analysis (RMSD), in the case of 

the SOOK Newtonian dynamics simulation, showed variation in flexibility for different 

parts of the molecule. 

Comparison of Simulation Trajectories 

Table 1 presents the results for Phase I and Phase II dynamics. In general, the 

Langevin simulation maintained a slightly higher average potential energy in both phases, a 

correspondingly slightly higher total energy in both phases, and a significantly higher dipole 

moment in both phases at both temperatures. As required, the kinetic energy increased in 

the SOOK simulations compared to the 300K ones, but there was a decrease in the potential 

energies at the higher temperatures. This appears to be due to the breaking of some non

covalent interactions. For example, in both the Newtonian and Langevin simulations, the 

number of hydrogen bonds observed decreased at the higher temperature. For the 

Newtonian, but not the Langevin, simulations, the radius of gyration increased at the higher 

temperature, possibly indicating fewer van der Waals interactions since the molecular mass 

would be distributed over a larger volume. 



Table I. Comparison of Average Molecular Properties 
Between Newtonian and Langevin Dynamics Simulations 
at 300K and SOOK 

SIMULATION PE KE TE TEMP HB RG DM 
ND 300(1) -61 OS.3S 1081.14 -S024.20 306.34 Sl .8S 13.4S 167.36 
LD 300 (I) -S42S.18 10S2.74 -4372.44 297.78 S3.l 8 14.77 448.91 
ND 300 (II) -6188.09 109S.9S -S092.14 310.S3 S3.48 13.21 l SO.O 1 
LD 300 (II) -S886.77 10S3.28 -4833.49 297.94 S7.3 l 14.37 364.89 
ND SOO (I) -S4S4.14 1793.24 -3660.89 S08. l l 44.S6 14.71 300.01 
LD SOO (I) -4927.57 17S4.03 -3173.S4 496.16 44.2S 14.34 42S.S5 
ND SOO (II) -SS38.S2 1848.36 -3690.lS 523.73 48.S9 14.22 300.S8 
LD SOO (II) -S403.34 l 754.4S -3648.88 496.26 47.12 13.43 342.81 

Symbols: ND (Newtonian Dynamics), LD (Langevin Dynamics), PE (Potential Energy, 
kcal/mole), KE (Kinetic Energy, kcal/mole), TE (Total Energy, kcal/mole), TEMP 
(Temperature K), HB (Hydrogen Bonds), RG (Radius of Gyration, A), DM (Dipole 
Moment, De byes) 
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For higher level analysis, including RMSD analysis, the SOOK Newtonian dynamics 

simulation was chosen because the Newtonian simulations appear to reach equilibrium 

sooner than the Langevin ones, allowing more points for analysis in the production phase, 

and because the SOOK simulation would explore more conformational space than the 300K 

ones. 

Final Structures 

The pictures in Figure 13 present the final structures of the hammerhead ribozyme 

complex at 600 ps. 

In-Line Cleavage Mechanism 

The hammerhead ribozyme cleavage reaction is believed to proceed via an "in-line" 

mechanism whereby the OS' and P atoms of the adenine residue of the scissile bortd and the 
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02' atom of the cytosine residue on the other side of the scissile bond align themselves into 

a linear or 180 degree pattern.3 The 500K Newtonian dynamics simulation was analyzed to 

determine whether the atoms had so aligned themselves during the simulation. Figure 14 

shows the achieved angle as a function of time for the Phase I and Phase II dynamics, 

respectively. 

As shown, the angular value stays far from the 180 degree value necessitated by the 

"in-line" mechanism. This may be an artifact of the substitution of the 2' -OH of the 

cytosine residue with a 2'0-methyl group to prevent cleavage during crystallization. 

Although the methyl group was invisible during resolution, it may be that a "bad" angle was 

adopted upon substituting the hydroxyl group for the final structure. The Mg2
+ ions may be 

in different places in the simulation than would be required for the transition state for the 

proposed "in-line" mechanism. Finally, it may be that the simulation needs to be much 

larger to observe this intermediate. 

RMSD Evaluation 

As observed in one article, "[t]he most direct way to assess the stability of a 

[molecular dynamics] simulation over the course of time is the evaluation of the difference 

between the initial experimental coordinates and the generated structures, measured by the 

[root-mean-square difference] RMSD.'.4 RSMD analysis provides a meaningful method of 

assessing molecular conformational changes which arise during the course of a simulation. 

In the context of biological macromolecules, two major structural domains are generally 
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examined: the main chain or backbone and the side chains. With respect to nucleic acids, 

the main chain comprises the sugar-phosphate backbone and the side chains comprise the 

bases. 

Two sets of calculations were performed using CHARMm; examples of the Fortran 

programs appear in Appendix A. The first set of calculations used the final structure of the 

ribozyme complex at 600 ps (Newtonian SOOK simulation) as a reference structure with 

respect to which RMSD calculations for the 550 ps dynamics trajectory were produced. 

The trajectory comprised a concatenation of every 1 OOth structure generated during the 

dynamics. These calculations permit an analysis of the structural changes which took place 

in the molecular system as it evolved to the final structure. 

The second set of calculations used the average structure of the ribozyme complex 

during the 550 ps dynamics period as a reference structure with respect to which RMSD 

calculations for the 550 ps dynamics trajectory were produced. These calculations permit 

an assessment of the overall flexibility of the molecule during dynamics. Both calculations 

focused on the two major structural elements of biological macromolecules: the backbone 

(phosphate atoms) and the side-chains (using a single average value for the nucleoside or 

base atoms). 

Figure 13 presents the minimized and average ribozyme structures and the 

structures of the ribozyme at various points during the dynamics, including the final 
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structure at 600 ps. The base-pairing representations are particularly useful in representing 

the degree of hydrogen bonding and overall structural disorder which occurred during the 

simulations. 

RMSD Calculations with respect to the Final Structure 

Phosphate Backbone Changes 

The phosphate backbone is examined in Figure 18 which presents three-dimensional 

plots of phosphate atom versus RMSD with respect to the final structure versus time in the 

form of rotated representations to more clearly visualize the dynamical changes. 

Additionally presented are two-dimensional plots of the average RMSD of the phosphate 

atoms over time versus phosphate atom position which collectively show general trends in 

the conformational changes of the ribozyme backbone. 

The relatively higher magnitude changes in backbone atomic positions are 

summarized in Table 2. The average RMSD values were 0.727 for Phase I and 0.547 for 

Phase II. Larger motions are associated with the terminal or near-terminal, in the case of 

the Guanine 18 phosphate, atoms, especially during the Phase I dynamics and with respect 

to the enzyme strand. As time progresses, these movements are reduced and are replaced 

by larger movements of the Stem 3 phosphate atoms, including some of the conserved core 

phosphate atoms. 
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Table 2. Backbone (Phosphate Atom) Evolution towards 
Final Structure 

Residue Chain Atom Phase I RMSD Phase II RMSD Location 
Gl3 A p 1.04 1.46 Core 
GI4 A p 0.91 1.28 Near-Terminus 
Cl6 A p 1.37 0.69 Terminus 
Gl8 B p 2.65 1.30 Near-Terminus 
A24 B p 1.03 1.32 Core 
G32 B p 1.47 0.58 Stem 3 
A33 B p 1.64 0.88 Stem 3 

Base (Side-chain) Evolution 

Figure 18 presents the R!vfSD of residue atoms in two general formats. First, the 

R!vf SD of the residues are presented as a function of residue position and time. Second, the 

average R!vfSD of all the atoms comprising an individual residue is plotted versus residue 

position. One particular residue, the guanine 17 of the substrate strand, shows the most 

movement in comparison to the other residues during Phase I dynamics; this behavior, 

however, is smoothed out in the Phase II dynamics suggesting perhaps that the initial larger 

movements may be due to full equilibration not having occurred as rapidly as originally 

thought. Not surprisingly, the generated R!vfSD values for the residues are greater than 

those of the phosphate backbone atoms. The average RMSD values were 0.940 for Phase I 

and 0. 795 for Phase II. 

In general, the guanine and cytosine residues showed larger deviations than the 

adenosine and cytosine residues. Of the I 0 base pairs in the original structure, 7 were 

guanine-cytosine base pairs. These base pair residues are located in general at the terminii 
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of the molecule and may be more largely affected due to these positions. Further analysis 

of the breakdown in hydrogen bonding structure is necessary. 

The following table summarizes the higher observed values for RMSD of base 

atoms. An average value for the atoms comprising each base was used for purposes of 

calculation and presentation. The movement of the bases seem to follow the same pattern 

as the backbone phosphate atoms, i.e. greater motions at the terminii in Phase I and greater 

motions within the core region in Phase II. 

Table 3. Side-Chain (Nucleotide Base) Evolution towards 
Final Structure 

Residue Chain Phase I RMSD Phase II RMSD Location 
C6 A 2.06 1.87 Near-Terminus 
CI6 A 2.69 2.38 Terminus 
GI7 B 3.16 2.45 Terminus 
Gl8 B 1.73 0.85 Near-Terminus 
A24 B 1.09 1.41 Core 
C25 B 0.99 1.30 Core 
U26 B 1.02 1.35 Core 
C41 B 2.74 0.70 Terminus 

RMSD Calculations with respect to the Average Structure 

Phosphate Backbone Flexibility 

The phosphate backbone is examined in Figure 19 which presents three-

dimensional plots of phosphate atom versus RMSD with respect to the average structure 

versus time, including rotated representations to more clearly visualize the dynamical 

changes. Additionally presented are two-dimensional plots of the average RMSD of the 
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phosphate atoms over time versus phosphate atoms position which show general trends in 

the evolution of the ribozyme backbone towards the final structure. The values associated 

with the most predominant peaks in the graphs are summarized in Table 4. The average 

RMSD values were 0.393 for Phase I and 0.405 for Phase II. During the designated Phase I 

dynamics, greater movement or flexibility was associated with the phosphate atoms of the 

substrate strand (Chain B) as compared with the phosphate atoms of the enzyme strand 

(Chain A). The near-terminus atoms in both strands showed the most flexibility in Phase I. 

This behavior decreased with respect to these atoms in Phase II and was replaced, generally, 

with higher motions associated with the core structure and Stem 3 atoms. The phosphate 

atom associated with one of the nucleotides of the scissile bond showed significant 

movement during Phase I and Phase II dynamics as well. 

Table 4. Backbone (Phosphate Atom) Flexibility with 
respect to Average Structure 

Residue Chain Atom Phase I RMSD Phase II RMSD Location 
Gl4 A p 0.74 0.69 Near-Terminus 
Gl8 B p 1.28 1.07 Near-Terminus 
C20 B p 0.48 0.36 Near-Terminus 
G21 B p 0.42 0.56 Near-Terminus 
A24 B p 0.41 0.46 Core 
C25 B p 0.44 0.56 Core 
G32 B p 0.56 0.53 Stem 3 
A"" _, _, B p 0.42 0.58 Stem 3 
A37 B p 0.48 0.46 Scissile Bond 

Base (Side-chain) Flexibility 

Figure 19 shows changes in flexibility of the ribozyme structure with respect to the 

average structure over the 550 ps production dynamics. The results are summarized for the 
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predominant peaks in Table 5. The average RMSD values were 0.381 for Phase I and 

0.560 for Phase II. The bases showed significant flexibility as compared to the average 

structure during Phase I and Phase II. The greater motions are localized to residues located 

in the near-terminus, terminus, core, and Stem 3 areas. The values for these motions 

increased through Phase I and Phase II. This observation is in contrast to the flexibility of 

the phosphate atoms which generally evidence a decrease in flexibility as time progresses. 

A strong correlation exists with respect to the average RMSD values for the 

backbone and base atoms in both Phases I and II (Figure 7). This suggests that the 

molecule is moving through conformational space as a concerted unit. 

Table 5. Side-Chain (Base) Flexibility with respect to 
Average Structure 

Residue Chain Phase I RMSD Phase II RMSD Location 
C6 A 0.39 0.67 Near-Terminus 
A9 A 0.55 0.80 
014 A 0.68 0.80 Near-Terminus 
C16 A 0.65 0.82 Terminus 
017 B 0.91 1.16 Terminus 
018 B 0.99 1.27 Near-Terminus 
C20 B 0.52 0.70 Near-Terminus 
A24 B 0.37 0.70 Core 
C25 B 0.39 0.66 Core 
032 B 0.52 0.74 Stem 3 
A"'"' ..) ..) B 0.33 0.61 Stem 3 
C41 B 0.43 0.54 Terminus 
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Figure 8. Temperature versus Time 
(a) 300K Newtonian Dynamics Phase I 
(b) 300K Langevin Dynamics Phase I 
(c) SOOK Newtonian Dynamics Phase I 
( d) SOOK Langevin Dynamics Phase I 
(e) 300K Newtonian Dynamics Phase II 
(t) 300K Langevin Dynamics Phase II 
(g) SOOK Newtonian Dynamics Phase II 
(h) SOOK Langevin Dynamics Phase II 
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Figure 9. Potential Energy, Kinetic Energy, and Total 
Energy versus Time. 
(a) 300K Newtonian Dynamics Phase I 
(b) 300K Langevin Dynamics Phase I 
( c) SOOK Newtonian Dynamics Phase I 
(d) SOOK Langevin Dynamics Phase I 
(e) 300K Newtonian Dynamics Phase II 
(f) 300K Langevin Dynamics Phase II 
(g) SOOK Newtonian Dynamics Phase II 
(h) SOOK Langevin Dynamics Phase II 
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Figure 10. Radius of Gyration versus Time 
(a) 300K Newtonian Dynamics Phase I 
(b) 300K Langevin Dynamics Phase I 
( c) SOOK Newtonian Dynamics Phase I 
( d) SOOK Langevin Dynamics Phase I 
(e) 300K Newtonian Dynamics Phase II 
(f) 300K Langevin Dynamics Phase II 
(g) SOOK Newtonian Dynamics Phase II 
(h) SOOK Langevin Dynamics Phase II 
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Figure 11. Hydrogen Bonds versus Time 
(a) 300K Newtonian Dynamics Phase I 
(b) 300K Langevin Dynamics Phase I 
(c) SOOK Newtonian Dynamics Phase I 
( d) SOOK Langevin Dynamics Phase I 
(e) 300K Newtonian Dynamics Phase II 
(f) 300K Langevin Dynamics Phase II 
(g) SOOK Newtonian Dynamics Phase II 
(h) SOOK Langevin Dynamics Phase II 

7S 



(a) 

a 50 100 150 DJ 2!50 :m 

(c) 

"' 

1: frill·~-

(e) 

(g) 

'j(Q(--o,..-·~· 
r-u-1 

DJo:--o-r--·""-· ,_ ... 

(b) 

(d) 

" 

(f) 

(h) 

. . ~ - - - -
JD( u...-~Ale.. r_,,,., 

0 SO t:O i!iD :;m 250 DI 

76 



Figure 12. Dipole Moment versus Time 
(a) 300K Newtonian Dynamics Phase I 
(b) 300K Langevin Dynamics Phase I 
(c) SOOK Newtonian Dynamics Phase I 
( d) SOOK Langevin Dynamics Phase I 
(e) 300K Newtonian Dynamics Phase II 
(f) 300K Langevin Dynamics Phase II 
(g) SOOK Newtonian Dynamics Phase II 
(h) SOOK Langevin Dynamics Phase II 
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(a) 

(c) 

(b) 

(d) 

Figure 13. Final Structures at 600 ps 
(a) 300K Newtonian 
(b) 300K Langevin 
(c) SOOK Newtonian 
(d) SOOK Langevin 

79 



(a) 

02°-P-05° Bond Angle vs. Time 
Phase I Dynamics 
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Figure 14. 02' -P-05' Bond Angle versus Time: 
(a) Phase I Dynamics (b) Phase II Dynamics. 
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(a) 

(c) 

(b) 

(d) 

Figure 15. Minimized ribozyme structure: (a) ribbon and 
(b) ladder views. Average Ribozyme structure over 5 50 ps 
dynamics: (c) ribbon and (d) ladder views. 
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Figure 17. Ribbon and ladder views ofribozyme 
(a) Ribozyme at 50 ps 
(b) Ribozyme at 100 ps 
(c) Ribozyme at 150 ps 
(d) Ribozyme at 250 ps 
(e) Ribozyme at 350 ps 
(f) Ribozyme at 450 ps 
(g) Ribozyme at 550 ps 
(h) Ribozyme at 600 ps 
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Figure 18. RMSD with respect to Final 
Structure 

(a) Phosphate Atoms (Rotated View) 
(b) Average RMSD of Phosphate Atoms 

Over Time versus Position 
(c) RMSD of Phosphate Atoms versus Time 

(Rotated View). 
( d) RMSD of Residues versus Time 

(Rotated View) 
(e) Average RMSD of Residues over Time 
( f) Average RMSD of Cytosine Residues 

Over Time versus Position 
(g) Average RMSD of Guanine Residues 

Over Time versus Position 
(h) Average RlvfSD of Adenine Residues 

Over Time versus Position 
(i) Average RlvfSD of Uracil Residues 

Over Time versus Position 
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Figure 19. RMSD with respect to Average Structure 
(a) RMSD of Phosphate Atoms versus Position versus 
Time (b) Average RMSD of Phosphate Atoms versus Time 
( c) RMSD of Residues versus Position versus Time ( d) 
Average RMSD of Residues versus Time. 
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CHAPTER 10 

CONCLUSION 

The preliminary examination of the molecular dynamics of the hammerhead 

ribozyme under differing dynamic procedures and at different temperatures showed no 

large-scale or global conformational changes from the minimized structure throughout the 

600 ps simulations or the presence of significant intermediates. The thermodynamic and 

conformational properties behaved as expected. Rapid equilibration was followed by a 

steady dynamics trajectory in each case, but the Newtonian simulations achieved 

equilibrium before the Langevin ones. The SOOK Newtonian dynamics simulation, chosen 

for further RMSD analysis with respect to the final and average structures, showed localized 

movement in the form of slight variations in flexibility of the backbone (phosphate atoms) 

and the side-chains (bases). 

As expected, the simulations were generally characterized by increased movement 

among the terminal phosphate atoms of the enzyme and substrate strands during the first 

phase; this behavior settles down and is replaced by increasing side-chain, conserved core, 

and Stem 3 movement during Phase II. The enzymatic strand showed more movement 

during the Phase I; this may be due to the shorter length, and decreased mass, of the enzyme 

strand as compared with the substrate strand. The phosphate atom associated with one of 

the nucleotides of the scissile bond showed significant movement during Phase I and Phase 

II dynamics as well. 

95 



96 

The bases showed significant flexibility as compared to the average structure and 

final structure during Phase I and Phase II. The greater motions are localized to residues 

located in the near-terminus, terminus, core, and Stem 3 areas. The values for these 

motions increased through Phase I and Phase II. This observation is in contrast to the 

flexibility of the phosphate atoms where there is generally a decrease in flexibility as time 

progresses. 

Additional analysis may reveal more meaningful patterns in the data including the 

possibility that a molten globule-like state was encountered. However, more relevant events 

may only be observable through a longer time frame dynamics simulation. 



APPENDIX A 

CHARMrn (Fortran) program for RMSD calculations 

* RMSD - rmsd calculations for hammerhead ribozyrne simulations 

* 
UPPER ! case for files to write 
bomblevel -5 
wrnlev 0 
pmlev 5 
! Script to read parameter, psf, and ic files 
! Generate the system using the information from Quanta 
open read unit 21 card name $CHM_DATAIMASSES.RTF 
read rtf unit 21 card close unit 21 
open read unit 22 card name 11 .charmrnprm11 

read param unit 22 card! close unit 22 
open read unit 23 card name 11 .charmrnpsf' 
read psf unit 23 card 
open read unit 24 card name 11 .charmrnic11 

ic read unit 24 card 

goto (color) 

label yellow 

!---------------------------------------------------
! Concatenation of Trajectory Files 
! CHARMm versions differ in treatment of file headers 
! Merge multiple trajectory files using traj and iread 
open read unit 61 file name A.DCD 
open read unit 62 file name B.DCD 
open read unit 63 file name C.DCD 
open read unit 64 file name D.DCD 
open read unit 65 file name E.DCD 
open read unit 66 file name F.DCD 
open read unit 67 file name G.DCD 
open write unit 68 file name COMPLETE.DCD 
trajectory iread 61 nread 7 iwrite 68 
set a 1 
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label start 
traj read 
traj write 
incr a by 100 
if a It 27500 goto start 
close unit 23 
close unit 24 
close unit 68 
close unit 61 
close unit 62 
close unit 63 
close unit 64 
close unit 65 
close unit 66 
close unit 67 

label red 

! ---------------------------------------------~-----------------------
! Calculate the Average Structure over the trajectory COMPLETE.DCD 
! 1. Cartesian Coordinates 
open read unit 32 file name COMPLETE.DCD 
coor dyna pax firs 32 nuni 1 skip 10 begin 50010 stop 52750 
close unit 32 

! 2. View PAX analysis results 
open read unit 32 file name COMPLETE.DCD 
coor paxa firs 32 nuni 1 skip 10 begin 50010 stop 52750 
close unit 32 

! 3. List therms fluctuations and write average coordinates 
seal wmai show 
print coor 
open write unit 33 card name AVERAGE.CRD 
write coor card unit 3 3 
* 550 ps dynamics 
* average coordinates for COMPLETE.DCD 

* 
close unit 32 
close unit 33 

! 4. Compute IC values to get dihedral angle references 
ic fill 
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open read unit 24 card name ".charmmic" 
read ic card unit 24 

! 5. Compute and print IC averages 
open read unit 32 file name COMPLETE.DCD 
ic dyna aver firs 32 nuni 1 skip 10 begin 50010 stop 52750 
print ic 
close unit 32 

! 6. Compute and print IC fluctuations about the average 
open read unit 32 file name COMPLETE.DCD 
ic dyna flue firs 32 nuni 1 skip 10 begin 50010 stop 52750 
print ic 
close unit 32 
close unit 24 

label green 

! ------------------------------------------------------------------------------
! RMSD calculations per atom - one coordinate structure set at a time 
! open file for writing rmsd data sets with only one atom per residue 
open write unit 57 card name RMSDP.CRD 
set 2 275.5 
! Fill comparison coordinate set with average coordinates 
open read unit 44 card name A VERAGE.CRD 
read coor card unit 44 
upda cutnb 15.0 ctonnb 11.0 ctofnb 14.0 wmin 0.8 
ener rdie 
coor copy comp 
open unit 43 read file name COMPLETE.DCD 
trajectory iread 43 
set 9 1 
label loop 
traj read 
coor orient rms 
coor rms sele all end 
coor diff 
coor dist weigh 
scalar \vmain average by res sele all end 
print coor rms sele type P card unit 57 end 
print coor rms card unit 57 sele type P end 
incr 9 by 1 
if 9 lt @2 goto loop 
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! The orient command is for coordinate orientation such that the principle 
! geometric axis coincides with the x-axis, and the next largest 
! concides with the y axis. The structure is oriented about its 
! center of geometry. 
! RMS keyword overlaps the main coordinates 
! with those in the comparison set 
close unit 43 
close unit 44 

label purple 

! ----------------------------------------------------------------------------------
! RMSD calculations per residue- one coordinate structure set at a time 
set 2 275.5 
! Fill comparison coordinate set with average coordinates 
open write unit 63 card name RESIDUE.CRD 
set 2 275.5 
open read unit 44 card name A VERAGE.CRD 
read coor card unit 44 
upda cutnb 15.0 ctonnb 11.0ctofnb14.0 wmin 0.8 
ener rdie 
coor copy comp 
open unit 43 read file name COMPLETE.DCD 
trajectory iread 43 
set 9 1 
label loop 
traj read 
coor orient rms 
coor rms sele all end 
coor diff 
coor dist weigh 
scalar wmain average by res sele all end 
print coor rms sele type 05' end 
incr 9 by 1 
if 9 It @2 goto loop 
close unit 43 
close unit 44 
stop 
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CHARMm (Fortran) programs for data manipulation 

C Program table 
real R(300, 1500) 
integer l,J 
open (unit=l, file ='xl.out') 
open (unit=2, file='xa.out') 
Do 100 I=l,275 
Do 100, J=l,39 

100 read (1, 1 O,end=300) R(I,J) 
10 Format (63X,F7.5) 
10 Format (63X,F7.5) 

Do 200 J=l,39 
200 Write (2,20) (R(I,J),1=1,125) 
20 Format (125(1X,F7.5)) 

close (unit=l) 
close (unit=2) 
end 

C Program table 
real R(300, 1500) 
integer I,J 
open (unit=l, file ='xl.out') 
open (unit=2, file='xb.out') 
Do 100 I=l,275 
Do 100, J=l,39 

100 read (1,10,end=300) R(I,J) 
10 Format (63X,F7.5) 

300 Continue 
Do 200 J=l,39 

200 Write (2,20) (R(l,J),1=126,275) 
20 Format (150(1X,F7.5)) 

close (unit=l) 
close (unit=2) 
end 

Sample Data Lines from Coordinate File 

862 28 G 02P 20.38689 -9.18638 35.77438 B 31 0.27038 
863 28G 05' 20.49061-10.8640937.65214B 31 0.29958 
864 28 G CS' 21.65806 -11.12931 38.39593 B 31 0.34141 
865 28 G C4' 21.39165 -11.89022 39 .69059 B 31 0.31036 
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