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ABSTRACT

Surgery on Frames. (August 2008)

Nga Quynh Nguyen, B.S., Hanoi State University

Chair of Advisory Committee: Dr. David Larson

In this dissertation, we investigate methods of modifying a tight frame sequence

on a finite subset of the frame so that the result is a tight frame with better properties.

We call this a surgery on the frame. There are basically three types of surgeries:

transplants, expansions, and contractions. In this dissertation, it will be necessary to

consider surgeries on not-necessarily-tight frames because the subsets of frames that

are excised and replaced are usually not themselves tight frames on their spans, even

if the initial frame and the final frame are tight. This makes the theory necessarily

complicated, and richer than one might expect.

Chapter I is devoted to an introduction to frame theory. In Chapter II, we

investigate conditions under which expansion, contraction, and transplant problems

have a solution. In particular, we consider the equiangular replacement problem.

We show that we can always replace a set of three unit vectors with a set of three

complex unit equiangular vectors which has the same Bessel operator as the Bessel

operator of the original set. We show that this can not always be done if we require

the replacement vectors to be real, even if the original vectors are real. We also prove

that the minimum angle between pairs of vectors in the replacement set becomes

largest when the replacement set is equiangular. Iterating this procedure can yield a

frame with smaller maximal frame correlation than the original. Frames with optimal

maximal frame correlation are called Grassmannian frames and no general method

is known at the present time for constructing them. Addressing this, in Chapter III

we introduce a spreading algorithm for finite unit tight frames by replacing vectors
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three-at-a-time to produce a unit tight frame with better maximal frame correlation

than the original frame. This algorithm also provides a “good” orientation for the

replacement sets. The orientation part ensures stability in the sense that if a selected

set of three unit vectors happens to already be equiangular, then the algorithm gives

back the same three vectors in the original order. In chapter IV and chapter V, we

investigate two special classes of frames called push-out frames and group frames.

Chapter VI is devoted to some mathematical problems related to the ”cocktail party

problem ”.
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CHAPTER I

INTRODUCTION TO FRAME THEORY

Frames for a Hilbert space were formally defined by Duffin and Schaeffer [9] in

1952 to study some deep problems in nonharmonic Fourier series. Their ideas did

not generate much general interest outside of nonharmonic Fourier series until the

landmark paper of Daubechies, Grossmann and Meyer [8] in 1986. Since then the

theory of frames began to be more widely studied. Recent references for frames and

the closely related topics of wavelets and wavelet frames that we have used include

[2],[4],[5],[7],[11]. We have also used several textbooks and research monographs for

basis theory and notation in the subjects of operator theory [18],[21],[22], matrix

analysis [17],[27], and group representation [23].

Frames have traditionally been used in signal processing. Today, frames have

many useful applications in mathematics and engineering such as sampling theory,

image processing, data transmission with erasures, as well as operator theory. What

makes frames a useful tool in these areas is their overcompleteness, which allows rep-

resentations of vectors which are resiliant to additive noise, give stable reconstruction

after erasures, and give freedom to capture significant signal characteristics.

A frame for a Hilbert space H is a sequence {xj}j∈J in H , for a countable index

set J with the property that there exist positive constants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
∑

j∈J

|〈 x , xj 〉|2 ≤ B‖x‖2 (I.1)

holds for every x ∈ H . We call the largest A and the smallest B for which (VI.1)

This dissertation follows the style of SIAM Journal on Control and Optimization.
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holds the lower and upper frame bounds for the frame, repectively. A frame is called

tight when A = B, and a frame is Parseval when A = B = 1. If we only require the

right-hand side of the inequality (VI.1), then {xj}j∈J is called a Bessel sequence. In

the case that (VI.1) holds only for all the x ∈ span{xj}j∈J, then we say that {xj}j∈J is

a frame sequence. In a finite dimensional space, a finite frame is just a finite spanning

set, and every finite set is a frame sequence. If all the frame vectors have the same

norm then we call it an equal-norm frame, and if the frame vectors are all norm one

we call it a unit norm frame. A set {xj}j∈J of unit norm vectors is called equiangular

if there is a constant c ∈ [0, 1] such that |〈 xk , xl 〉| = c when k 6= l and strictly

equiangular if 〈 xk , xl 〉 = c when k 6= l. The analysis operator ΘX : H → ℓ2(J) for a

Bessel sequence X = {xj}j∈J is defined by

ΘX(x) =
∑

j∈J

〈 x , xj 〉ej , x ∈ H,

where {ej} is the standard orthonormal basis for the ℓ2(J)-sequence space. The

adjoint operator Θ∗
X : ℓ2(J) → H of the analysis operator ΘX is called the synthesis

operator. It is easy to check that Θ∗
X(
∑

j∈J
cjej) =

∑

j∈J
cjxj . We can verify that

Θ∗
XΘX =

∑

j∈J
xj⊗xj , where x⊗y is the elementary tensor rank-one operator defined

by (x⊗ y)(h) = 〈 h , y 〉x for h ∈ H . The operator x⊗ x is a projection if and only if

||x|| = 1. If x = (x1, x2, ..., xk)
T and y = (y1, y2, ..., yk)

T then

x⊗ y =



















x1ȳ1 x1ȳ2 · · · x1ȳk

x2ȳ1 x2ȳ2 · · · x1ȳk

· · · · · · · · · · · ·

xkȳ1 xkȳ2 · · · xkȳk



















.

The operator SX = Θ∗
XΘX : H → H is called the frame operator. For a Bessel

sequence X = {xj}j∈J, we call the operator BX =
∑

j∈J
xj⊗xj the Bessel operator for
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the sequence X. The operator GX = ΘXΘ∗
X : ℓ2(J) → ℓ2(J) is called the Grammian

operator. It is useful to note that [15], in a finite dimensional space, the Grammian

matrix for a frame X = {xj}k
j=1 is

G =



















〈 x1 , x1 〉 〈 x2 , x1 〉 · · · 〈 xk , x1 〉

〈 x1 , x1 〉 〈 x2 , x1 〉 · · · 〈 xk , x1 〉

· · · · · · · · · · · ·

〈 x1 , xk 〉 〈 x2 , xk 〉 · · · 〈 xk , xk 〉



















.

If n ∈ N, we denote Hn the n dimensional Hilbert (real or complex) space.

We say that frames {xj}j∈J and {yj}j∈J on Hilbert spaces H,K, respectively, are

unitarily equivalent if there is a unitary operator U : H → K such that Uxj = yj for

all j ∈ J. We say that they are similar if there is a bounded linear invertible operator

T : H → K such that Txj = yj for all j ∈ J. The following result tells us that every

frame is similar to a Parseval frame.

Lemma I.1. ([14]) Let X = {xj}j∈J be a frame for a Hilbert space H with frame

operator SX . Then {S−1/2
X xj}j∈J is a Parseval frame for H .

We can characterize a frame through its analysis operator, synthesis operator,

frame operator as follows.

Proposition I.2. ([3],[14]) Suppose {xj}j∈J is a sequence of vectors in a Hilbert space

H . The following are equivalent:

1){xj}j∈J is a frame for H .

2)The analysis operator Θ : H → ℓ2(J) is linear, bounded, bounded from below.

3)The synthesis operator Θ∗ : ℓ2(J) → H is linear, bounded and surjective.

4)The frame operator S : H → H is positive, self-adjoint, invertible.

We also can characterize a Parseval frame through its analysis operator, synthesis

operator, frame operator and Grammian operator as follows.
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Proposition I.3. ([3],[6]) Suppose {xj}j∈J is a sequence of vectors in a Hilbert space

H . The following are equivalent:

1){xj}j∈J is a Parseval frame for H

2)The analysis operator Θ is an isometry from H into ℓ2(J).

3)The synthesis operator Θ∗ : ℓ2(J) → H is a partial isometry.

4)The frame operator S : H → H is the identity.

5)The Grammian operator G : ℓ2(J) → ℓ2(J) is an orthogonal projection with

range Θ(H).

One of the most important properties of a frame is the ability to recover every

element in the Hilbert space as a combination of a frame vectors. In [13], it is proved

that if X = {xj}j∈J is a frame for H then

x =
∑

j∈J

〈 x , xj 〉S−1xj =
∑

j∈J

〈 x , S−1xj 〉xj

for all x ∈ H . The collection of vectors X∗ = {S−1xj}j∈J is called the canonical dual

frame of X.

Lemma I.4. Suppose X = {xj}k
j=1 and Y = {yj}k

j=1 are frames in Hn and GX , GY

are their Grammian operators, respectively. Then GX = GY if and only if there is a

unitary operator U such that yj = Uxj for j = 1, 2, ..., k.

Proof. For the ”only if ” part, define U = Θ∗
Y ∗ΘX : Hn → Hn where ΘX is the analysis

operator for X and Θ∗
Y ∗ is the synthesis operator for the canonical dual frame Y ∗ of

Y . We will prove that U is an unitary operator and yj = Uxj for all j.

For all x ∈ Hn, we have Ux =
∑k

j=1〈 x , xj 〉y∗j and so for any l,

Uxl =

k
∑

j=1

〈 xl , xj 〉y∗j

Since GX = GY , 〈 xl , xj 〉 = 〈 yl , yj 〉 for l 6= j. Thus, Uxl =
∑k

j=1〈 yl , yj 〉y∗j = yl for
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all l.

We have Θ∗
Y ΘY ∗(x) =

∑k
j=1〈 x , y∗j 〉yj = x for all x ∈ Hn which implies that

Θ∗
Y ΘY ∗ = I. Similarly, Θ∗

Y ∗ΘY (x) =
∑k

j=1〈 x , yj 〉y∗j = x for all x ∈ Hn which

implies that Θ∗
Y ∗ΘY = I.

We have UU∗ = Θ∗
Y ∗ΘXΘ∗

XΘY ∗ = Θ∗
Y ∗GXΘY ∗ = Θ∗

Y ∗GY ΘY ∗ = Θ∗
Y ∗ΘY Θ∗

Y ΘY ∗ =

I.I = I. Therefore, for all x ∈ Hn, ||U∗x||2 = ||〈UU∗x , x 〉|| = ||x||2. So U∗ : Hn →

Hn is an isometry and injective operator which imply that U∗ is an unitary operator.

So U is an unitary operator as well.

For the ”if ” part, since yj = Uxj for all j and each row vectors of ΘX and ΘY

are x̄j
T and ȳj

T , respectively. So ΘXU
∗ = ΘY and GY = ΘY Θ∗

Y = ΘXU
∗UΘ∗

X =

ΘXΘ∗
X = GX .

The following lemma is well known.

Lemma I.5. If {xj} is a unit norm tight frame of k vectors in a n dimensional space

Hn, then the frame bound is k
n

and we have

k
∑

j=1

xj ⊗ xj =
k

n
I

where I is the identity on Hn. So for a uniform norm orthogonal basis with norm b,

the frame bound is b2.

We will need to use the following proposition which was shown in [10],[20].

Proposition I.6. Let A ∈ B(H) be a finite rank positive operator with integer trace

k. If k ≥ rank(A), then A is the sum of k projections of rank one.

Proof. We will construct unit vectors x1, x2, ..., xk such that A =
∑k

j=1 xj ⊗ xj . The

proof uses induction on k. Let n = rank(A) and write Hn = ran(A). If k = 1, then

A is a rank-1 projection. Assume that k ≥ 2. Select an orthonormal basis {ej}n
j=1
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for Hn such that A can be written on Hn as a diagonal matrix with positive entries

a1 ≥ a2... ≥ an > 0.

Case 1 : k > n. In this case, we have a1 > 1 so we can take xk = e1. Then

A− (xk ⊗xk) = diag(a1 −1, a2, ..., an) has positive diagonal entries, rank n, and trace

k − 1 ≥ n. By the inductive hypothesis, the result holds.

Case 2 : k = n. We have a1 ≥ 1 and an ≤ 1. Given any finite rank, self adjoint

R ∈ B(H), let µn(R) denote the n-th largest eigenvalue of R counting multiplicity.

Note that µn(A − (e1 ⊗ e1)) ≥ 0, µn(A − (en ⊗ en)) ≤ 0 and µn(A − (x ⊗ x)) is a

continuous function of x ∈ Hn. Hence, there is y ∈ Hn such that µn(A− (y⊗y)) = 0.

Choose xk = y. Note that A− (xk ⊗ xk) ≥ 0 and

trace(A− (xk ⊗ xk)) = n− 1,

rank(A− (xk ⊗ xk)) = n− 1 = k − 1.

Again, by the inductive hypothesis, the result holds.

In [13], the following proposition is proved.

Proposition I.7. i) Let J be a countable (or finite) index set. If {ej}j∈J is an

orthonormal basis for a Hilbert space K and P is the orthogonal projection from K

onto a closed subspace H , then {Pej}j∈J is a Parseval frame for H .

ii) Suppose that {xj}j∈J is a Parseval frame for a Hilbert space H . Then there

exists a Hilbert space K ⊇ H and and an orthonormal basis {ej}j∈J for K such that

xj = Pej, where P is the orthogonal projection from K onto H .

Let T be a positive operator in B(H) and {ej}j∈J be an orthonormal basis for

H . Let vj = T 1/2ej. Then T = T 1/2(
∑

j∈J
ej ⊗ ej)T

1/2 =
∑

j∈J
(T 1/2ej) ⊗ (T 1/2ej).

Thus every positive operator can be written in the form T =
∑

j∈J
vj ⊗ vj where the
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sum is convergent in the strong operator topology. In this connection, the following

lemma proves useful.

Lemma I.8. ([15]) Let T be a positive operator on H . Suppose T =
∑

j∈J
vj ⊗ vj ,

where the series has either finitely or countably many terms and converges in the

strong operator topology. Then ran(T ) = span{vj}.

Proof. Let P be the orthogonal projection of H onto ran(T ), and let P⊥ = I − P .

Then we have:

0 = P⊥TP⊥ =
∑

j∈J

P⊥vj ⊗ P⊥vj .

That P⊥vj ⊗ P⊥vj is a positive operator implies P⊥vj = 0 for all j. Thus vj ∈

P (H) = ran(T ), so span{vj} ⊆ ran(T ).

Now suppose that span{vj} is a proper subset of ran(T ). Then we could find a

unit vector z ∈ ran(T ) that is perpendicular to each vj . Let zj = Twj ∈ ran(T ) be

such that zj → z, and let Q = z ⊗ z. Then Qzj → Qz = z. But for each j we also

have

Qzj = QTwj =
∑

l∈J

〈wj , vl 〉Qvl = 0

So this implies that z = 0, which is a contradiction.

For a unit norm frame {xj}k
j=1 in Hn, we define the maximal frame correlation

M({xj}k
j=1) by M({xj}k

j=1) = max{|〈 xm , xl 〉| : m 6= l}. A sequence of vectors

{xj}k
j=1 in Hn is called a Grassmannian frame if it is a solution to min{M({xj}k

j=1)}

where the minimum is taken over all unit norm frames {xj}k
j=1 in Hn. In other

words, Grassmannian frame is the unit norm frame which makes the smallest angle

between vectors as large as possible. A compactness argument shows that Grass-

mannian frames exist. However, constructing Grassmannian frames can be difficult.
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The concept of Grassmannian frames is related to various areas in mathematics and

engineering[24].

Theorem I.9. ([24]) Let {xj}k
j=1 be a unit frame in Hn. Then

M({xj}k
j=1) ≥

√

k − n

n(k − 1)

Equality holds if and only if {xj}k
j=1 is an equiangular tight frame.

Furthermore,

If H = R, equality can only hold if k ≤ n(n+1)
2

.

If H = C, equality can only hold if k ≤ n2.

We call unit norm frames that meet the bound with equality optimal Grassman-

nian frames.

This dissertation will provide a spreading method which allows one to replace

three vectors of a given unit norm frames at a time to achieve a better distribution

which might lead to a construction of Grassmannian frames. To this end, I need to

consider the conditions under which I could make a replacement for a set of vectors to

get better properties. I call the replacement process a surgery on the frame. There are

basically three types of surgeries: transplants, expansions, and contractions. It will

be necessary to consider surgeries on not-necessarily-tight frames because the subsets

of frames that are excised and replaced are usually not themselves tight frames on

their spans, even if the initial frame and the final frame are tight. This makes the

theory necessarily complicated, and richer than one might expect.



9

CHAPTER II

THE (P,Q)-REPLACEMENT PROBLEM

Let {xj}j∈J be a frame. If we remove p vectors from the frame and replace this

set with a set of q vectors, we call the operation a (p, q)-replacement surgery on the

frame. We call the p vectors removed the ”exised” set and the q replacement vectors

the ”replacement” set. There are three possibilities: p > q, p = q, p < q. It is clear

that if the excised and replaced sets have the same Bessel operator, then the frame

operator for the new frame is unchanged from the old frame operator. In this case

the frame bounds are unchanged and, in particular, if the original frame is tight then

the new frame is tight. In this chapter we consider only surgeries on tight frames.

Not all (p, q)-replacement surgeries we want to consider preserve the frame op-

erator. If {xj}j∈J is an equal-norm frame and if we want the new frame to also be

equal-norm, then unless we replaced the entire set, the new vectors must have the

same norm as the original. If the original frame is tight and we require the new frame

to be tight as well, then if p 6= q the new frame bound must be different from the old

frame bound. This follows immediately from Lemma I.5. So the equal-norm tight

frame (p, q)-replacement problem will require change in frame bound unless p = q.

This will be true for the case p > q (contraction) and p < q (expansion). By scaling

an equal-norm frame we can assume that all frame vectors have norm one.

First we consider the possibilities to have a tight frame from an arbitrary sequence

of vectors which does not form a tight frame by inserting another set of vectors with

arbitrary norms into the sequence. It turns out that this can always be done if we

insert n− 1 vectors where n is the dimension of the space.

Lemma II.1. Suppose {xl}k
l=1 is a sequence of vectors in Cn with k ≥ 1 which does
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not form a tight frame. Then we can always find n− 1 vectors {yj}n−1
j=1 such that the

sequence {xl}k
l=1

⋃{yj}n−1
j=1 is a tight frame.

Proof. Let B =
∑k

l=1 xl ⊗ xl and m = ||B||. Then mI − B is a positive, singular

operator with rank less than n. So we can find n − 1 vectors {yj}n−1
j=1 such that

mI −B =
∑n−1

j=1 yj ⊗ yj. Therefore, {xl}k
l=1

⋃{yj}n−1
j=1 has the frame operator mI and

forms a tight frame.

However, if the vectors in the original set all have norm 1 and we want to find a

set of unit vectors such that by taking the union with the original set we have a unit

norm tight frame, then we may require more vectors than in the non-unit case.

Lemma II.2. Let {xl}k
l=1 be a sequence of unit vectors in Cn with k ≥ 1 which does

not form a tight frame, and let B be its Bessel operator. If {yj}q
j=1 is a sequence of unit

vectors such that {xl}k
l=1

⋃{yj}q
j=1 is a tight frame then q ≥ n||B|| − k. Conversely,

if q ≥ max{n||B|| − k, n} then we can find q unit vectors to insert in the original set

to make a tight frame.

Proof. Suppose that q < n||B|| − k. Since k+q
n

< ||B||, we have
∑q

j=1 yj ⊗ yj =

k+q
n
I −∑k

l=1 xl ⊗ xl which is not a positive operator, a contradiction. Now suppose

that q ≥ max{n||B|| − k, n}. Then A = k+q
n
I −∑k

l=1 xl ⊗ xl is a positive operator

with rank(A) ≤ n ≤ q = tr(A). Therefore, by proposition I.6, there are unit vectors

{yj}q
j=1 such that

∑q
j=1 yj ⊗ yj = k+q

n
I −∑k

l=1 xl ⊗ xl. So {xl}k
l=1

⋃{yj}q
j=1 is a tight

frame.

1. The tight unit norm contraction problem (The case p > q)

The following proposition will give the basic principle for the (p, q)-contraction prob-

lem.
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Lemma II.3. Suppose that {xl}k
l=1 is a unit norm tight frame in Hn. Necessary and

sufficient conditions in order to replace a subset of p vectors {xj}j∈M , where M has

cardinality p, with q unit vectors {ym}q
m=1, for p > q, such that the new sequence

remains a tight frame are
∑

j∈M

xj ⊗ xj ≥
p− q

n
I

and

rank(
∑

j∈M

xj ⊗ xj −
p− q

n
I) ≤ q

Proof. For the necessary condition, by Lemma I.5, we have:

k
∑

l=1

xl ⊗ xl =
k

n
I

q
∑

m=1

ym ⊗ ym +
∑

l∈{1,...,k}\M
xl ⊗ xl =

k − p+ q

n
I

By subtracting both sides of the above equations and changing sides, we have:

∑

j∈M

xj ⊗ xj −
p− q

n
I =

q
∑

m=1

ym ⊗ ym

So
∑

j∈M xj ⊗ xj ≥ p−q
n
I and rank(

∑

j∈M xj ⊗ xj − p−q
n
I) ≤ q.

For the sufficient condition, by Proposition I.6, we can find q unit vectors {ym}q
m=1

such that
∑

j∈M

xj ⊗ xj −
p− q

n
I =

q
∑

m=1

ym ⊗ ym

Therefore,
∑q

m=1 ym⊗ym+
∑

l∈{1,...,k}\M xl⊗xl = k−p+q
n

I and {ym}q
m=1

⋃{xl}l∈{1,...,k}\M

is a tight frame.

The above Lemma gives a practical way to test whether a solution of a (p, q)-

contraction problem exists.

Corollary II.4. A necessary condition for the existence of a solution of a (p, q)-
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contraction problem is that the exised set must span the entire space Hn. In partic-

ular, p ≥ n.

For p ≥ n, a solution to a tight unit norm contraction problem may or may not

exist depending on the properties of a given frame .

Example .1. Let

x1 = (

√
2√
3
, 0,

1√
3
)T , x2 = (−

√
2√
3
, 0,

1√
3
)T , x3 = (0,

√
2√
3
,

1√
3
)T , x4 = (0,−

√
2√
3
,

1√
3
)T

Then {x1, x2, x3, x4} is a set of unit vectors. Note that by dilating this to

(

√
2√
3
, 0,

1√
3
,

1√
3
)T , (−

√
2√
3
, 0,

1√
3
,

1√
3
)T , (0,

√
2√
3
,

1√
3
,− 1√

3
)T , (0,−

√
2√
3
,

1√
3
,− 1√

3
)T

we obtain an orthogonal basis for R4 with uniform norm 2√
3

(and hence frame bound

4/3). Thus {x1, x2, x3, x4} is a unit tight frame with frame bound 4/3. It is easy to

check that we can not remove any 2 vectors and replace with 1 vector but we can

always remove 3 vectors and replace with 2 other vectors.

Remark 1. Completely analysing the case p ≥ n is an interesting problem for further

work.

2. The tight unit norm expansion problem (The case p < q)

Lemma II.5. Necessary and sufficient conditions for the existence of a solution to

the tight unit norm expansion problem are q ≥ n.

Proof. Suppose that q ≥ n. Without loss of generality, we can assume that we

remove {xj}p
j=1. Denote B =

∑p
j=1 xj ⊗ xj + q−p

n
I. Since B is positive operator and

rank(B) = n ≤ q = trace(B), by Proposition I.6, there are unit vectors {yl}q
l=1 such
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that
∑q

l=1 yl ⊗ yl = B. Therefore, we have:

q
∑

l=1

yl ⊗ yl +
k
∑

j=p+1

xj ⊗ xj =

p
∑

j=1

xj ⊗ xj +
q − p

n
I +

k
∑

j=p+1

xj ⊗ xj

=
k
∑

j=1

xj ⊗ xj +
q − p

n
I

=
k

n
I +

q − p

n
I

=
k + q − p

n
I.

This shows that {y1, ..., yq, xp+1, ..., xk} is a unit norm tight frame.

Suppose q < n and there exist unit vectors {yj}q
j=1 such that

∑q
j=1 yj ⊗ yj = B.

Since rank(B) = n and rank(
∑q

j=1 yj ⊗ yj) < n, we have a contradiction.

3. The tight unit norm transpant problem (The case p = q)

Definition 1. 1) Let F be a unit tight frame in a real or complex Hilbert space. A

subset A ⊂ F is called rigid if whenever we replace A with another set A′ of the same

cardinality such that the new sequence is also unit tight frame then the vectors in

A′ are the same as those in A up to a permutation and a possible multiplication by

scalars of modulus 1.

2) Suppose that {xj}j∈J and {yj}j∈J are Bessel sequences of vectors. We say

{yj}j∈J are geometrically equivalent to {xj}j∈J if there are scalars {di}j∈J of modulus

1, a permutation Π of J and a unitary U which commutes with
∑3

j=1 xj ⊗ xj such

that yj = djUxΠ(j) for all j ∈ J. We can easily check that geometrical equivalence is

an equivalence relationship.

3) Let F be a unit tight frame in a real or complex Hilbert space. A subset A ⊂ F

is called stable if whenever we replace A with another set A′ of the same cardinality

such that the new sequence is also unit tight frame then A′ must be geometrically
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equivalent to A.

Singleton sets are rigid and therefore stable since in order to replace one element,

say, {x1} with another element {y1}, we will need x1 ⊗ x1 = y1 ⊗ y1 which implies

that x1 = λy1. Since ||x1|| = ||y1|| = 1, we get |λ| = 1. Orthonomal sets are never

rigid because we always can replace them with another orthonomal set which spans

the same space. However, orthonomal sets are stable. A set that contains a non-rigid

set is non-rigid but a set that contains a non-stable set can be non-stable. For exam-

ple, the frame {Pej}4
j=1 is stable while {Pej}3

j=1 is not where {ej}4
j=1 is the standard

orthonomal basis for R4 and P is the orthogonal projection of R4 onto R3 spanned by

∑4
j=1 ej . A tight frame is not necessary stable. For example, it is easy to see that the

set of 5 vectors x1 = (1, 0)T , x2 =
(

cos(2π
5

), sin(2π
5

)
)T
, x3 =

(

cos(4π
5

), sin(4π
5

)
)T
, x4 =

(

cos(6π
5

), sin(6π
5

)
)T
, x5 =

(

cos(8π
5

), sin(8π
5

)
)T

can be replaced by the set of 5 vec-

tors y1 = (1, 0)T , y2 = (0, 1)T , y3 =
(√

2
2
,
√

2
2

)T

, y4 =
(

cos(11π
12

), sin(11π
12

)
)T
, y5 =

(

cos(19π
12

), sin(19π
12

)
)T

and they are not geometrically equivalent. We will show later

that a set of three linearly independent vectors must be non-rigid. We will also show

that in the real case every set of 2 non-orthogonal linearly independent vectors must

be rigid but in the complex case, it is non-rigid.

Lemma II.6. Let x1, x2 ∈ C2 be arbitrary unit vectors. If B = x1 ⊗ x1 + x2 ⊗ x2

then eigenvalues of B are 1 ± |〈 x1 , x2 〉|

Proof. Without loss of generality, we can assume that x1 = (1, 0)T , x2 = (α, β)T

where |α|2 + |β|2 = 1. Then

B =







1 + |α|2 αβ̄

ᾱβ |β|2







whose characteristic polynomial is x2 − 2x + |β|2 = 0 and eigenvalues are 1 ± |α| =
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1 ± |〈 x1 , x2 〉|.

It follows immediately the following result.

Corollary II.7. If x1, x2, u1, u2 ∈ C2 are arbitrary unit vectors and x1⊗x1+x2⊗x2 =

u1 ⊗ u1 + u2 ⊗ u2 then |〈 x1 , x2 〉| = |〈 u1 , u2 〉|.

Remark 2. The converse direction is not true. For example, we can check that

x1 = (1, 0)T , x2 = (
√

2
2
,
√

2
2

)T , u1 = (
√

3
2
, 1

2
)T , u2 = (

√
6−

√
2

4
,
√

6+
√

2
4

)T have |〈 x1 , x2 〉| =

|〈 u1 , u2 〉| but x1 ⊗ x1 + x2 ⊗ x2 6= u1 ⊗ u1 + u2 ⊗ u2

Lemma II.8. If x, y, z, w are unit vectors in Hn then {z, w} is geometrically equiv-

alent to {x, y} if and only if x⊗ x+ y ⊗ y = z ⊗ z + w ⊗ w.

Proof. Suppose that {z, w} is geometrically equivalent to {x, y}, that is there are

scalars d1, d2 of modulus 1, and a unitary U such that z = d1Ux,w = d2Uy and

U(x⊗x+y⊗y) = (x⊗x+y⊗y)U . Then z⊗z+w⊗w = d1Ux⊗d1Ux+d2Uy⊗d2Uy =

U(x⊗ x+ y ⊗ y)U∗ = (x⊗ x+ y ⊗ y)UU∗ = x⊗ x+ y ⊗ y.

Suppose that x ⊗ x + y ⊗ y = z ⊗ z + w ⊗ w then by Lemma II.7, |〈 z , w 〉| =

|〈 x , y 〉| which implies that 〈 x , y 〉 = d〈 z , w 〉 where |d| = 1. Let t = dz then

〈 x , y 〉 = 〈 t , w 〉. Two Grammian matrices

G{x,y} =







1 〈 x , y 〉

〈 y , x 〉 1







and

G{t,w} =







1 〈 t , w 〉

〈w , t 〉 1







are equal which implies that {x, y} and {t, w} are unitarily equivalent.

Corollary II.9. Any set of 2 unit vectors in Hn is stable.
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The following lemma shows more details about the collection of sets of 2 unit

vectors which have the same Bessel operator. We will use it in section II.4.

Lemma II.10. The collection of all unit vectors u1, u2 ∈ C2 such that u1⊗u1 +u2 ⊗

u2 = B̃ =







β1 0

0 β2






where β1, β2 are positive numbers and β1 + β2 = 2 is

{(eiα

√

β1

2
, eiµ

√

1 − β1

2
)T , (eiω

√

β1

2
,−ei(ω−α+µ)

√

1 − β1

2
)T : α, ω, µ arbitrary}

Proof. Without loss of generality, we can assume that

u1 = (x1, e
−iθ
√

1 − x2
1)

T , u2 = (x2, e
−iγ
√

1 − x2
2)

T

where x1, x2 ≥ 0. Therefore, x2
1 + x2

2 = β1, e
iθx1

√

1 − x2
1 + eiγx2

√

1 − x2
2 = 0. So

|eiθx1

√

1 − x2
1| = |eiγx2

√

1 − x2
2| and hence, x1

√

1 − x2
1 = x2

√

1 − x2
2. Since x2 =

√

β1 − x2
1, we have x1

√

1 − x2
1 =

√

β1 − x2
1

√

1 − β1 + x2
1. By squaring both sides,

we have x2
1(1−x2

1) = (β1 −x2
1)(1−β1 + x2

1) which implies that x1 =
√

β1

2
. Therefore,

x2 =
√

β1

2
and eiθ

√

β1

2

√

1 − β1

2
+ eiγ

√

β1

2

√

1 − β1

2
= 0. Since 0 < β1 < 2, we have

eiθ + eiγ = 0. It follows that θ = γ + Π. So u1 = (
√

β1

2
, e−iθ

√

1 − β1

2
)T , u2 =

(
√

β1

2
,−e−iθ

√

1 − β1

2
)T where θ is any angle. By Lemma II.8, if v1, v2 ∈ C2 are

unit vectors such that v1 ⊗ v1 + v2 ⊗ v2 = B̃ then there exist scalars eiν1, eiν2 , a

permutation Π of {1, 2} and a unitary 2 × 2 matrix U which commutes with B̃ such

that vj = eiνjUuΠ(j). Since unitary matrix U commutes with the diagonal matrix B̃,

U must be diagonal as well. Therefore, the result follows immediately.

Now we will prove some general lemmas.

Lemma II.11. Suppose B is a positive operator with rank n and u is unit vector in

Hn such that B−u⊗u has rank n− 1. Then there is a unit vector x ∈ Hn such that

‖Bx‖ = ‖B1/2x‖.
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Proof. Since B−u⊗u is singular, there is a unit vector x such that (B−u⊗u)x = 0

which implies Bx = 〈 x , u 〉u. Since B has full rank, Bx 6= 0. So 〈 x , u 〉 6= 0

and u = 1
〈 x , u 〉Bx. Let µ = 〈 x , u 〉. Hence, u = 1

µ
Bx and Bx = 〈 x , u 〉u =

〈 x , 1
µ
Bx 〉 1

µ
Bx = 1

|µ|2 〈 x , Bx 〉Bx. It implies that

|µ| =
√

〈Bx , x 〉 =
√

〈B1/2B1/2x , x 〉 =
√

〈B1/2x , B1/2x 〉 = ‖B1/2x‖

Since ‖u‖ = 1, we have ||Bx|| = |µ|and hence, ‖Bx‖ = ‖B1/2x‖.

Lemma II.12. i) Suppose B is a positive operator with rank n and u is a unit vector

in ran(B). Then B − u⊗ u is singular if and only if ‖B−1/2u‖ = 1 where the inverse

is taken on ran(B).

ii) Suppose {uj}n
j=1 are linearly independent unit vectors and B =

∑n
j=1 uj ⊗ uj.

Then uj ∈ S1 ∩ B1/2(S1) where S1 is the unit sphere in Hn.

Proof. i) For the forward direction, by the proof of Lemma II.8, we have Bx =

〈 x , u 〉u and therefore, x = 〈 x , u 〉B−1u which implies that

〈 x , u 〉 = 〈 x , u 〉〈B−1u , u 〉 = 〈 x , u 〉‖B−1/2u‖2

Since 〈 x , u 〉 6= 0, ‖B−1/2u‖ = 1. For the backward direction, suppose that ‖u‖ = 1

and ‖B−1/2u‖ = 1. Then

(B−u⊗u)B−1u = u−(u⊗u)B−1u = (1−〈B−1u , u 〉)u = (1−〈B−1/2u , B−1/2u 〉)u = 0

Hence, (B − u⊗ u)B−1u = 0 and B − u⊗ u is singular.

ii) This follows directly from part i).

Lemma II.13. Suppose F is a unit norm tight frame in Rn and A is a non-orthogonal

subset of F with cardinality 2. Then A is rigid.
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Proof. Suppose F = {xj}k
j=1 is a unit norm tight frame and A = {x1, x2} is a non-

orthogonal set which can be replaced by A′ = {y1, y2} such that {y1, y2, x3, ..., xk}

is also a unit norm tight frame. By comparing the frame operators for the original

and the replaced tight frame, we get x1 ⊗ x1 + x2 ⊗ x2 = y1 ⊗ y1 + y2 ⊗ y2. Let

B = x1⊗x1 +x2⊗x2. If x1, x2 are linearly dependent then x2 = wx1 for a scalar w of

modulus 1, so x2 ⊗ x2 = x1 ⊗ x1. It follows that y1 ⊗ y1 + y2 ⊗ y2 = 2x1 ⊗ x1 which is

rank-1 operator. Since y1⊗y1 +y2⊗y2 ≥ 0, y1, y2 are in its range. So y1 = w1x1, y2 =

w2x1 where w1, w2 are scalars of modulus 1. Hence A is rigid. If x1, x2 are linearly

independent then so are y1, y2. By Lemma II.12, x1, x2, y1, y2 ∈ S1∩B1/2(S1). This is

the intersection of a circle of radius 1 and an ellipse centered at 0 in a two dimensional

real space. So there are vectors p1, p2 such that {x1, x2, y1, y2} = {±p1,±p2}. It

implies that A is rigid.

Lemma II.14. Let F = {xj}j∈J be a tight frame for Cn. Then any subset of 2

non-orthogonal linearly independent vectors is non-rigid.

Proof. Let A be any subset of 2 non-orthogonal linearly independent vectors, say,

A = {xj1 , xj2} and B be the Bessel operator, B = xj1 ⊗ xj1 + xj2 ⊗ xj2 . Suppose U is

a unitary operator in B(H) that commutes with B. Let yj1 = Uxj1 , yj2 = Uxj2 . Then

yj1 ⊗ yj1 + yj2 ⊗ yj2 = Uxj1 ⊗ Uxj1 + Uxj2 ⊗ Uxj2

= U(xj1 ⊗ xj1)U
∗ + U(xj2 ⊗ xj2)U

∗

= UBU∗ = B
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So {yj1, yj2} is a replacement set for {xj1 , xj2}. Suppose

B =













a1 0 0

0 a2 0

0 0 0













with respect to an orthonomal basis {g1, ..., gn}. So B = a1g1 ⊗ g1 +a2g2⊗ g2 = xj1 ⊗

xj1+xj2⊗xj2 and therefore, xj1, xj2 ∈ span{g1, g2}. Write xj1 = (α1, α2, 0, ..., 0)T , xj2 =

(β1, β2, 0, ..., 0)T . Since {xj1 , xj2} are non-orthogonal, we have a1 6= a2. Then the com-

mutant

{B}′ = {C ∈ B(H) : CB = BC}

=



































d1 0 0

0 d2 0

0 0 D













: d1, d2 ∈ C,D is an arbitrary matrix























If U ∈ {B}′ then Uxj1 = (d1α1, d2α2, 0, ..., 0)T , Uxj2 = (d1β1, d2β2, 0, ..., 0)T .

It is easy to check that for any complex numbers d1 6= ±d2 of modulus 1, the set

{(d1α1, d2α2, 0, ..., 0)T , (d1β1, d2β2, 0, ..., 0)T} is not a permutation with perhaps scalar

multiples of modulus 1 of the original set A. Thus, we can replace {xj1 , xj2} with

{Uxj1 , Uxj2} such that a new sequence is also tight frame.

Proposition II.15. Suppose F = {xj}k
j=1 is a unit tight frame in Hn and A is a

subset of F consisting of 3 vectors or more. Then A is not rigid except when the

dimension of the space spanned by A is 1.

Proof. In order to prove that A = {x1, x2, x3} is not rigid, we will find a set A′ =

{y1, y2, y3} different fromA such that x1⊗x1+x2⊗x2+x3⊗x3 = y1⊗y1+y2⊗y2+y3⊗y3.

First consider the case A is a linear independent set. Then B = x1⊗x1+x2⊗x2+x3⊗x3
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is a positive operator with full rank 3. Let y1 be any element in

(S1 ∩B1/2(S1)) \ {d1x1, d2x2, d3x3 : dj ∈ C, |dj| = 1, j = 1, 2, 3}.

By Lemma II.12, B − y1 ⊗ y1 is singular. Moreover, B − y1 ⊗ y1 is positive. Indeed,

assume y1 = B1/2u where u ∈ S1. Therefore, for any x ∈ Rn, we have 〈 (B −

y1 ⊗ y1)x , x 〉 = 〈Bx , x 〉 − |〈 x , y1 〉|2 = ‖B1/2x‖2 − |〈 x , B1/2u 〉|2 = ‖B1/2x‖2 −

|〈B1/2x , u 〉|2 but |〈B1/2x , u 〉| ≤ ‖B1/2x‖‖u‖ = ‖B1/2x‖. So B− y1 ⊗ y1 is positive.

Since B − y1 ⊗ y1 is positive with rank 2 and trace 2, there exist unit vectors y2, y3

such that B−y1⊗y1 = y2⊗y2+y3⊗y3. Hence in this case A is not rigid. Now assume

that A spanning two dimensional space H2. Select an orthonormal basis e1, e2 for H2

such that B can be written as a diagonal matrix with positive entries λ1 ≥ λ2 > 0.

Since trace(B) = 3, we have λ1 + λ2 = 3 and λ1 ≥ 3/2. Let y1 = e1. So B − y1 ⊗ y1

is positive operator with rank 2 and trace 2. As before, there exist unit vectors y2, y3

such that B − y1 ⊗ y1 = y2 ⊗ y2 + y3 ⊗ y3. If d1e1 /∈ A for any scalar d1 of modulus

1 then {yj}3
j=1 is a replacement set which is not a permutation with perhaps scalar

multiples of modulus 1 of A and so A is not rigid. If d1e1 ∈ A for some scalar d1

of modulus 1 then let l be a positive number such that B − e1 ⊗ e1 ≥ lI, and let

β > 0 be any nonzero real number such that for the vector y =
√

1 − β2e1 + βe2,

we have ||y ⊗ y − e1 ⊗ e1|| < l and no scalar multiple of y is contained in A. Then

B − y ⊗ y = (B − e1 ⊗ e1) + (e1 ⊗ e1 − y ⊗ y) ≥ lI + (e1 ⊗ e1 − y ⊗ y) ≥ 0 because

e1 ⊗ e1 − y⊗ y is a self-adjoint operator of norm less than l. Let y1 = y. So as above,

there are unit vectors y2, y3 such that B − y1 ⊗ y1 = y2 ⊗ y2 + y3 ⊗ y3.
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4. Equiangular replacement

Equiangular tight frames have applications in signal processing, communications and

coding theory [24]. Recent literature for equiangular frames includes [16],[19],[25],[26].

We show that we can always replace a set of three unit vectors with a set of three

complex unit equiangular vectors which has the same Bessel operator as the Bessel

operator of the original set. We show that this can not always be done if we require

the replacement vectors to be real, even if the original vectors are real.

Proposition II.16. Let F = {xj}k
j=1 be a unit norm tight frame in Rn, k ≥ 3.

Let A ⊂ F with cardinality 3. Let B be the Bessel operator for A, that is, B =
∑{x ⊗ x : x ∈ A}. If two eigenvalues are equal then we can replace A with an

equiangular set of 3 unit vectors. The converse direction is also true: If A can be

replaced by an equiangular set of three ”real” unit vectors, then B must have two

equal eigenvectors.

[Note: in the Proposition II.17 we will show that this two equal eigenvalue re-

striction can be removed by using complex unit vectors.]

Proof. Let λ1, λ2, λ3 be the eigenvalues of B. Since B is positive trace 3, we have

λ1, λ2, λ3 ≥ 0 and λ1 + λ2 + λ3 = 3. Since two eigenvalues of B are equal, we can

assume that λ1 = λ2 = 1+α, λ3 = 1−2α where 0 ≤ α ≤ 1/2 or −1 < α ≤ 0. Let x1 =

(1, 0, 0)T , x2 = (α,
√

1 − α2, 0)T , x3 = (α,−α
√

1+α√
1−α

,

√
(1+α)(1−2α)√

(1−α)
)T . We can check that

the operator
∑3

j=1(xj ⊗ xj) has eigenvalues the same as eigenvalues of B. Therefore,

there is a unitary operator U such that B = U
∑3

j=1(xj ⊗xj)U
∗ =

∑3
j=1(Uxj ⊗Uxj).

Since the set {x1, x2, x3} is equiangular, so is {Ux1, Ux2, Ux3}. Therefore, we can

replace A with an equiangular set of 3 unit vectors {Ux1, Ux2, Ux3}. For the converse

direction, suppose B =
∑3

j=1(xj ⊗ xj) where x1, x2, x3 are unit vectors and there is

a constant c such that |〈 xk , xl 〉| = c for k 6= l. Then the Grammian matrix G is of
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the form

G =













1 ±c ±c

±c 1 ±c

±c ±c 1













which has two eigenvalues the same. Since the eigenvalues of B are equal to the

eigenvalues of G, two eigenvalues of B are equal.

For the complex case, we will prove that we can always replace any subset of

three vectors in a unit norm tight frame with an equiangular set of three unit vectors

such that the resulting sequence is also a unit norm tight frame. Moreover, we will

give a formula to calculate replacement vectors from the eigenvalues of the Bessel

operator for the original subset. First we will prove a general result.

Proposition II.17. Let B be a positive operator of trace 3 with eigenvalues 0 ≤ λ1 ≤

λ2 ≤ λ3. Then there is an equiangular set of three complex unit vectors u1, u2, u3

such that B =
∑3

j=1(uj ⊗ uj)

Proof. Suppose that

B =













λ1 0 0

0 λ2 0

0 0 λ3













with respect to an orthonomal basis e1, e2, e3 for C3. So
∑3

j=1 λj = 3.

9 = (λ1 + λ2 + λ3)
2

= (λ2
1 + λ2

2 + λ2
3) + (2λ1λ2 + 2λ1λ3 + 2λ2λ3)

≥ (λ1λ2 + λ1λ3 + λ2λ3) + (2λ1λ2 + 2λ1λ3 + 2λ2λ3)

= 3λ1λ2 + 3λ1λ3 + 3λ2λ3
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So λ1λ2 + λ1λ3 + λ2λ3 ≤ 3. Let

c =

√

3 − λ1λ2 − λ1λ3 − λ2λ3

3

and

M =
λ1λ2λ3 + 2 − λ1λ2 − λ1λ3 − λ2λ3

2

Obviously that c ∈ [0, 1). We will prove that |M | ≤ c3. Indeed,

3c2(1 − λ1) − (1 − λ1)
3 = (3 − λ1λ2 − λ1λ3 − λ2λ3)(1 − λ1) − (1 − λ1)

3

= 2 + λ1λ2λ3 − λ1λ2 − λ1λ3 − λ2λ3 + λ2
1(λ2 + λ3) − 3λ2

1 + λ3
1

= 2 + λ1λ2λ3 − λ1λ2 − λ1λ3 − λ2λ3 + λ2
1(3 − λ1) − 3λ2

1 + λ3
1

= 2 + λ1λ2λ3 − λ1λ2 − λ1λ3 − λ2λ3

= 2M

Also it is easy to check that

(1 − λ1)
2 + (1 − λ1)(1 − λ2) + (1 − λ2)

2 = (1 − λ1)
2 + (1 − λ1)(1 − λ3) + (1 − λ3)

2

= (1 − λ2)
2 + (1 − λ2)(1 − λ3) + (1 − λ3)

2

= 3c2

Therefore, (1−λ1)
3−3c2(1−λ1) = (1−λ2)

3−3c2(1−λ2) = (1−λ1)
3−3c2(1−λ1) which

is called m. So m = −2M . There are two posibilities: 1) 0 ≤ λ1 ≤ λ2 ≤ 1, λ3 ≥ 1.

We have 3(1− λ2)
2 ≤ (1− λ1)

2 + (1− λ1)(1− λ2) + (1− λ2)
2 = 3c2 ≤ 3(1− λ1)

2. So

1− λ1 ≥ c, 0 ≤ 1− λ2 ≤ c. Then m = (1− λ2)[(1− λ2)
2 − 3c2] ≤ 0. Let x = 1− λ1.

Then c ≤ x ≤ 1. So m(x) = x3 − 3c2x attains a minimum −2c3 at x = c. Since

m(1) = 1 − 3c2 ≥ −2c3 for all c ∈ [0, 1], we have −2c3 ≤ m ≤ 0. So |M | ≤ c3.

2) λ1 ≤ 1 ≤ λ2 ≤ λ3.

We have 3(1− λ2)
2 ≤ (1− λ2)

2 + (1− λ2)(1− λ3) + (1− λ3)
2 = 3c2 ≤ 3(1− λ3)

2. So
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−c ≤ 1−λ2 ≤ 0, 1−λ3 ≤ −c. Then m = (1−λ2)[(1−λ2)
2−3c2] ≥ 0. Let x = 1−λ3.

Then −1 ≤ x ≤ −c. So m(x) = x3 − 3c2x attains a maximum 2c3 at x = −c. Since

m(−1) = −1 + 3c2 ≤ 2c3 for all c ∈ [0, 1], we have 0 ≤ m ≤ 2c3. So |M | ≤ c3.

Now let ω be an angle such that cosω = M
c3

and let

u1 = (1, 0, 0)T , u2 = (c e−iω,
√

1 − c2, 0)T

u3 = (c e−iω,
ceiω − c2√

1 − c2
,

√

(1 − c2)2 − |ceiω − c2|2√
1 − c2

)T

Then 〈 u1 , u2 〉 = 〈 u1 , u3 〉 = 〈 u2 , u3 〉 = c eiω. So {u1, u2, u3} is an equiangular set

of three unit vectors. The Grammian matrix for {ui}3
i=1 is

G =













1 c eiω c eiω

c e−iω 1 c e−iω

c e−iω c eiω 1













Then G has the characteristic polynomial

(1 − λ)3 − 3c2(1 − λ) + 2c3 cosω = (1 − λ)3 − 3c2(1 − λ) + 2M

= −λ3 + 3λ2 − (3 − 3c2)λ− 3c2 + 1 + 2M

= −λ3 + 3λ2 − (λ1λ2 + λ1λ3 + λ2λ3)λ+ λ1λ2λ3

= −(λ− λ1)(λ− λ2)(λ− λ3)

So G has eigenvalues {λ1, λ2, λ3}. Since the eigenvalues of
∑3

j=1(uj ⊗ uj) are equal

to the eigenvalues of B, as the proof in the previous proposition, B is the Bessel

operator of an equiangular set of three unit vectors.

We immediately obtain the following result.

Corollary II.18. Let F be a unit norm tight frame of k vectors (k ≥ 3) in Cn and

A be any subset of F consisting of three vectors. Then we can replace A with an
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equiangular set of three unit vectors such that the new sequence is also unit norm

tight frame.

Remark 3. Suppose {x1, x2, x3} are three unit vectors in Cn forming an equiangu-

lar set. We can find scalars of modulus one d1, d2, d3 such that 〈 d1x1 , d2x2 〉 =

〈 d1x1 , d3x3 〉 = 〈 d2x2 , d3x3 〉. More precisely, if 〈 x1 , x2 〉 = aeiθ1 , 〈 x2 , x3 〉 =

aeiθ2 , 〈 x1 , x3 〉 = aeiθ3 then d1 = ei(θ1+θ2−2θ3), d2 = ei(θ1−θ3), d3 = 1. This is not nec-

essarily true if the set has more than three vectors in Cn and if {x1, x2, x3} are three

unit vectors in Rn, n ≥ 2. For example, let x1 = (1, 0, 0)T , x2 =
(√

5
5
, 2

√
5

5
, 0
)T

, x3 =
(√

5
5
, 1

2
−

√
5

10
,
√

5+
√

5
10

)T

, x4 =

(√
5

5
,−1

2
−

√
5

10
,
√

5−
√

5
10

)T

.We can check that ||x1|| =

||x2|| = ||x3|| = ||x4|| = 1 and 〈 x1 , x2 〉 = 〈 x1 , x3 〉 = 〈 x1 , x4 〉 = 〈 x2 , x3 〉 =

〈 x3 , x4 〉 = −〈 x2 , x4 〉 =
√

5
5

. So {x1, x2, x3, x4} is equiangular set in R3 but we can

not rescale so that {x1, x2, x3, x4} is strictly equiangular in R3.

Any set of 3 unit vectors {x1, x2, x3} which is not equiangular is not stable.

Indeed, by Corollary II.18, there exists {x′1, x′2, x′3} which is equiangular and
∑3

j=1 x
′
j⊗

x′j =
∑3

j=1 xj ⊗xj . The stability implies that there are scalars {d1, d2, d3} of modulus

1, a permutation Π of {1, 2, 3} and a unitary U which commutes with
∑3

j=1 xj ⊗ xj

such that yj = djUxΠ(j) for all j = 1, 2, 3. Hence |〈 xj , xl 〉| = |〈 x′Π(j) , x
′
Π(l) 〉| for

j 6= l. This leads to a contradiction since {x′1, x′2, x′3} is equiangular but {x1, x2, x3}

is not.

We will characterize all equiangular sets of three unit vectors which have the

same Bessel operator.

Lemma II.19. Suppose X = {xj}3
j=1 and Y = {yj}3

j=1 are two sets of unit norm

vectors in Cn. If X and Y are equiangular sets with the same Bessel opeators BX =

BY then X and Y are geometrictly equivalent.

Proof. For the forward direction, by remark 2, we can assume that 〈 x1 , x2 〉 =
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〈 x1 , x3 〉 = 〈 x2 , x3 〉 = a and 〈 y1 , y2 〉 = 〈 y1 , y3 〉 = 〈 y2 , y3 〉 = b for some complex

numbers a, b. Since the eigenvalues of the Grammian operator and Bessel operator

are the same and BX = BY , the eigenvalues of the Grammian operators GX and GY

are the same.

If three eigenvalues of the Grammian operator GX are the same then BX =

BY = I and so X and Y are orthonormal bases. Hence, X and Y are geometrically

equivalent.

Now assume that at least two eigenvalues of GX are different. The characteristics

polynomial of GX is

(1 − λ)3 − 3|a|2(1 − λ) + 2|a|2Re(a) = 0

and the characteristics polynomial of GY is

(1 − λ)3 − 3|b|2(1 − λ) + 2|b|2Re(b) = 0

Since these characteristics polynomials are the same, the following equation

(1 − λ)(3|b|2 − 3|a|2) + 2|a|2Re(a) − 2|b|2Re(b) = 0

has at least two solutions. It follows that 3|b|2 − 3|a|2 = 0 and 2|a|2Re(a) −

2|b|2Re(b) = 0. Hence, |a| = |b| and Re(a) = Re(b) which imply that either a = b or

a = b̄.

If a = b then GX = GY and therefore X and Y are unitarily equivalent by lemma

I.4. Then there is some unitary operator U such that xj = Uyj, j = 1, 2, 3. We have

∑3
j=1 yj⊗yj =

∑3
j=1 xj⊗xj = U(

∑3
j=1 yj⊗yj)U

∗. So U commutes with
∑3

j=1 xj⊗xj .

If a = b̄ then G{x3,x2,x1} = G{y1,y2,y3}. So {x3, x2, x1} and {y1, y2, y3} are unitarily

equivalent. Then there is some unitary operator U such that x3 = Uy1, x2 = Uy2, x1 =

Uy3. We have
∑3

j=1 yj ⊗ yj =
∑3

j=1 xj ⊗ xj = U(
∑3

j=1 yj ⊗ yj)U
∗. So U commutes



27

with
∑3

j=1 xj ⊗ xj .

We wish to characterize all sets of three linearly independent, unit vectors whose

Bessel operator is equal to a given positive invertible operator B.

Lemma II.20. Suppose B is a positive invertible operator in B(H). Let FB = {C ∈

B(H) : CBC∗ = B}. Then FB = {B1/2UB−1/2 : U is an arbitrary unitary operator}

Proof. Let T ∈ FB and let A = TB1/2. Then A∗ = B1/2T ∗ and AA∗ = B. So

|A∗| = (AA∗)1/2 = B1/2. By polar decomposition A∗ = U |A∗| = UB1/2 where U is an

unitary operator. Hence, U = A∗B−1/2 = B1/2T ∗B−1/2 and T ∗ = B−1/2UB1/2 which

implies that T = B1/2U∗B−1/2. Now for any unitary operator U , we have

(B1/2UB−1/2)B(B−1/2U∗B1/2) = B

Therefore, B1/2UB−1/2 ∈ FB.

Corollary II.21. Suppose that {xj}3
j=1 are unit vectors in C3 which are linearly

independent and B =
∑3

j=1 xj ⊗ xj . Suppose that {yj}3
j=1 are unit vectors in C3.

Then
∑3

j=1 yj ⊗ yj = B if and only if {yj}3
j=1 = {B1/2UB−1/2xj}3

j=1 where U is some

unitary operator from C3 to C3.

Proof. For the ”only if ” part, since {xj}3
j=1 are unit vectors which are linearly in-

dependent, {yj}3
j=1 are linearly independent as well. Then we can define uniquely a

map T : C3 → C3 such that yj = T (xj) for j = 1, 2, 3. Then B =
∑3

j=1 yj ⊗ yj =

T (
∑3

j=1 xj⊗xj)T
∗ = TBT ∗. Therefore, T ∈ SB and by lemma II.20, T = B1/2UB−1/2

for some unitary operator U . Thus, yj = B1/2UB−1/2xj for j = 1, 2, 3.



28

For the ”if ” part, if yj = B1/2UB−1/2xj for j = 1, 2, 3 then

3
∑

j=1

yj ⊗ yj =

3
∑

j=1

B1/2UB−1/2xj ⊗ B1/2UB−1/2xj

= (B1/2UB−1/2)(

3
∑

j=1

xj ⊗ xj)(B
1/2UB−1/2)∗

= (B1/2UB−1/2)B(B−1/2U∗B1/2)

= B1/2U(B−1/2BB−1/2)U∗B1/2

= B1/2UU∗B1/2 = B

Lemma II.22. Let x̃j = (x̃j1, x̃j2, x̃j3)
T be a set of three non-zero linearly indepen-

dent vectors. Suppose that some off-diagonal element of Ã =
∑3

j=1 xj ⊗ xj is zero.

Suppose also that the matrix

M =













x̃11 x̃21 x̃31

x̃12 x̃22 x̃32

x̃13 x̃23 x̃33













has the property that every row and column contains a zero element. Then either

x̃1 ⊥ x̃2, x̃1 ⊥ x̃3 or x̃2 ⊥ x̃3.

Proof. Suppose that no pair in {x̃1, x̃2, x̃3} is orthogonal. Since x̃j 6= 0 for all j =

1, 2, 3, no column contains all 0. Since x̃j are linearly independent, no row contains

all 0. Since x̃1, x̃2 are not orthogonal, at least one of the pairs of numbers {x̃1j , x̃2j} is

a nonzero pair (that is, both numbers are nonzero) for some j ∈ {1, 2, 3}. Similarly,

at least one of the pairs of numbers {x̃2k, x̃3k} is a nonzero pair for some k ∈ {1, 2, 3}

and at least one of the pairs of numbers {x̃1l, x̃3l} is a nonzero pair for some l ∈

{1, 2, 3}. Since each row has a zero element, we have j 6= k 6= l. By permutting the
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orthonormal basis for the representation, without loss of generality, we can assume

that j = 1, k = 2, l = 3. Thus, x̃11, x̃21, x̃22, x̃32, x̃13, x̃33 are nonzero. Again, since

each row has a zero element, x̃31 = x̃12 = x̃23 = 0. We have

Ã =
3
∑

j=1

x̃j ⊗ x̃j

=













|x̃11|2
∑3

j=1 x̃j1x̃j2

∑3
j=1 x̃j1x̃j3

∑3
j=1 x̃j2x̃j1 |x̃22|2

∑3
j=1 x̃j2x̃j3

∑3
j=1 x̃j3x̃j1

∑3
j=1 x̃j2x̃j1 |x̃33|2













By hypothesis, some off-diagonal element of Ã is zero, say, Ã12 = 0. Then
∑3

j=1 x̃j1x̃j2 = 0. From x̃31 = x̃12 = 0, we have x̃21x̃22 = 0. Therefore, either x̃21 = 0

or x̃22 = 0, a contradiction. Hence, some pair in {x̃j}3
j=1 must be orthogonal.

A similar argument shows that if any Ãjl = 0 for j 6= l, then some pair in {x̃j}3
j=1

must be orthogonal.

Lemma II.23. The intersection S{a,b,c} of an ellipsoid E{a,b,c} = {(x, y, z)T ∈ C3 :

|x|2
a

+ |y|2
b

+ |z|2
c

= 1} and the unit sphere S = {(x, y, z)T ∈ C3 : |x|2 + |y|2 + |z|2 = 1}

is connected if it is nonempty where a > b > c > 0.

Proof. If a > b > c > 1 then |x|2
a

+ |y|2
b

+ |z|2
c

≤ |x|2 + |y|2 + |z|2 and the equality

holds only if (x, y, z)T = 0 /∈ S. So S{a,b,c} = ∅. Similarly, if 1 > a > b > c > 0

then S{a,b,c} = ∅ as well. So a ≥ 1 and c ≤ 1. Note that if (x, y, z)T ∈ S{a,b,c}

then (|x|, |y|, |z|)T ∈ S{a,b,c}. Suppose x = |x|ei2Πα, y = |y|ei2Πβ, z = |z|ei2Πγ where

0 ≤ α, β, γ < 1. Then ν(t) = (xe−i2Παt, ye−i2Πβt, ze−i2Πγt) is a continuous path

connecting (x, y, z)T and (|x|, |y|, |z|)T where 0 ≤ t ≤ 1.

Let S+
{a,b,c} = {(x, y, z)T ∈ S{a,b,c} : x, y, z ≥ 0} ⊂ S{a,b,c} ∩ R3 ⊂ (E{a,b,c} ∩ R3) ∩

(S ∩ R3). Since the intersection between the real unit sphere and the real ellipsoid

is the union of two curves and only one of them contains positive points, i.e. points
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with all positive coordinates, S+
{a,b,c} is connected.

More precisely, we will give a formula for the continuous path connecting two

points in S+
{a,b,c} in Lemma II.23

Suppose (x̂, ŷ, ẑ)T ∈ S+
{a,b,c}. We want to express x̂, ẑ in terms of ŷ. We have

x̂2

a
+
ŷ2

b
+
ẑ2

c
= 1 = x̂2 + ŷ2 + ẑ2

So
x̂2

a
+
ẑ2

c
= 1 − ŷ2

b
, x̂2 + ẑ2 = 1 − ŷ2 and therefore, ŷ ≤ min{

√
b, 1}.

It follows that, if 1−ŷ2

c
− (1 − ŷ2

b
) ≥ 0, i.e ŷ ≤

√

(1−c)b
b−c

, then

x̂ =

√

−1 + 1
c
− ŷ2

c
+ ŷ2

b
1
c
− 1

a

We have ẑ2 = 1 − ŷ2 − x̂2 which implies that if x̂2 ≤ 1 − ŷ2, i.e, ŷ ≤
√

(a−1)b
a−b

, then

ẑ =

√

(1 − ŷ2) −
1−ŷ2

c
− (1 − ŷ2

b
)

1
c
− 1

a

=

√

1 − 1
a
− ŷ2

b
+ ŷ2

a
1
c
− 1

a

Thus, for any ŷ ≤ K = min

{√
b, 1,

√

(1−c)b
b−c

,
√

(a−1)b
a−b

}

, we have

x̂ =

√

−1 + 1
c
− ŷ2

c
+ ŷ2

b
1
c
− 1

a

ẑ =

√

1 − 1
a
− ŷ2

b
+ ŷ2

a
1
c
− 1

a

Now let (x̂0, ŷ0, ẑ0)
T , (x̂1, ŷ1, ẑ1)

T ∈ S+
{a,b,c}. By the above argument, 0 ≤ ŷ0, ŷ1 ≤ K.

Let 0 ≤ t ≤ 1 and ŷ(t) = (1 − t)ŷ0 + tŷ1. Then 0 ≤ ŷ(t) ≤ K. Let

x̂(t) =

√

−1 + 1
c
− ŷ(t)2

c
+ ŷ(t)2

b
1
c
− 1

a

ẑ(t) =

√

1 − 1
a
− ŷ(t)2

b
+ ŷ(t)2

a
1
c
− 1

a
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Then (x̂(t), ŷ(t), ẑ(t))T is a continuous path in S+
{a,b,c} connecting (x̂0, ŷ0, ẑ0)

T and

(x̂1, ŷ1, ẑ1)
T .

To summarize, let (x0, y0, z0)
T , (x1, y1, z1)

T ∈ S{a,b,c}. Write

x0 = |x0|ei2Πα0 , y0 = |y0|ei2Πβ0 , z0 = |z0|ei2Πγ0

x1 = |x1|ei2Πα1 , y1 = |y1|ei2Πβ1 , z1 = |z1|ei2Πγ1

where 0 ≤ αj , βj, γj < 1 for j = 1, 2.

Let x̂0 = |x0|, ŷ0 = |y0|, ẑ0 = |z0|, x̂1 = |x1|, ŷ1 = |y1|, ẑ1 = |z1|.

We define

α(t) = (1 − t)α0 + tα1, β(t) = (1 − t)β0 + tβ1, γ(t) = (1 − t)γ0 + tγ1

Let

ŷ(t) = (1 − t)ŷ0 + tŷ1

x̂(t) =

√

−1 + 1
c
− ŷ(t)2

c
+ ŷ(t)2

b
1
c
− 1

a

ẑ(t) =

√

1 − 1
a
− ŷ(t)2

b
+ ŷ(t)2

a
1
c
− 1

a

and

x(t) = x̂(t)ei2Πα(t), y(t) = ŷ(t)ei2Πβ(t), z(t) = ẑ(t)ei2Πγ(t)

Then p(t) = (x(t), y(t), z(t))T ∈ S{a,b,c} for 0 ≤ t ≤ 1 is a continuous path connecting

(x0, y0, z0)
T and (x1, y1, z1)

T .

The following proposition shows the path connectivity between sets of three unit

vectors which have the same Bessel operator.

Proposition II.24. Given a positive operator B with eigenvalues λ1 ≥ λ2 ≥ λ3 > 0

and λ1 + λ2 + λ3 = 3. Suppose that {xj}3
j=1 are unit vectors which are linearly
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independent and {x′j}3
j=1 are unit vectors which are linearly independent in Cn such

that
∑3

j=1 xj ⊗xj =
∑3

j=1 x
′
j ⊗x′j = B. There are continuous paths {pj(t)}3

j=1 of unit

vectors such that pj(0) = xj , pj(1) = x′j and
∑3

j=1 pj(t)⊗ pj(t) = B for any 0 ≤ t ≤ 1

Proof. Note that if

B =













λ1 0 0

0 λ2 0

0 0 λ3













then S1 ∩ B1/2(S1) = S(λ1,λ2,λ3).

From Lemma II.12, {xj}3
j=1 ⊂ S1 ∩ B1/2(S1) and {x′j}3

j=1 ⊂ S1 ∩ B1/2(S1) as well.

Suppose that {f1, f2, f3} are corresponding eigenvectors which form an orthonormal

basis under which B can be written as

B̃ =













λ1 0 0

0 λ2 0

0 0 λ3













.

Therefore, (f1 f2 f3)
∗B(f1 f2 f3) = B̃.

Let x̃j = (f1 f2 f3)
∗xj and x̃′j = (f1 f2 f3)

∗x′j . Then x̃1, x̃2, x̃3 ∈ S(λ1,λ2,λ3) and

3
∑

j=1

x̃j ⊗ x̃j = (f1 f2 f3)
∗B(f1 f2 f3) = B̃

Similarly, x̃′1, x̃
′
2, x̃

′
3 ∈ S(λ1,λ2,λ3) and

∑3
j=1 x̃

′
j ⊗ x̃′j = B̃.

Let p̃1(t) be the continuous path in Lemma II.23 which lies in S(λ1,λ2,λ3) and connects

x̃1 and x̃′1. Then p1(t) = (f1 f2 f3)p̃1(t) ∈ S1∩B1/2(S1) is a continuous path connecting

x1 and x′1. Let A(t) = B−p1(t)⊗p1(t). Since p1(t) ∈ S1∩B1/2(S1), A(t) is a positive

operator which has rank 2, trace 2. For each 0 ≤ t ≤ 1, let g1(t), g2(t) be the
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orthonormal basis of eigenvectors of A(t) under which A(t) can be written as

Ã(t) =













ν1(t) 0 0

0 ν2(t) 0

0 0 0













.

Let

x̂2 = (g1(0) g2(0) g3(0))∗x2, x̂3 = (g1(0) g2(0) g3(0))∗x3

x̂′2 = (g1(1) g2(1) g3(1))∗x′2, x̂
′
3 = (g1(1) g2(1) g3(1))∗x′3

Then

Ã(0) = (g1(0) g2(0) g3(0))∗A(0)(g1(0) g2(0) g3(0))

= (g1(0) g2(0) g3(0))∗(B − x1 ⊗ x1)(g1(0) g2(0) g3(0))

= (g1(0) g2(0) g3(0))∗(x2 ⊗ x2 + x3 ⊗ x3)(g1(0) g2(0) g3(0))

= (g1(0) g2(0) g3(0))∗x2 ⊗ x2(g1(0) g2(0) g3(0))

+ (g1(0) g2(0) g3(0))∗x3 ⊗ x3(g1(0) g2(0) g3(0))

= (g1(0) g2(0) g3(0))∗x2 ⊗ (g1(0) g2(0) g3(0))∗x2

+ (g1(0) g2(0) g3(0))∗x3 ⊗ (g1(0) g2(0) g3(0))∗x3

= x̂2 ⊗ x̂2 + x̂3 ⊗ x̂3

Similarly, Ã(1) = x̂′2 ⊗ x̂′2 + x̂′3 ⊗ x̂′3.

Suppose that

x̂2 =













eiα

√

β1(0)
2

eiµ

√

1 − β1(0)
2

0













, x̂3 =













eiω

√

β1(0)
2

−ei(ω−α+µ)

√

1 − β1(0)
2

0













.
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x̂′2 =













eiα′

√

β1(1)
2

eiµ′

√

1 − β1(1)
2

0













, x̂3 =













eiω′

√

β1(1)
2

−ei(ω′−α′+µ′)

√

1 − β1(1)
2

0













.

Let

α(t) = (1 − t)α + tα′, µ(t) = (1 − t)µ+ tµ′, ω(t) = (1 − t)ω + tω′.

Let

p̂2(t) =













eiα(t)

√

β1(t)
2

eiµ(t)

√

1 − β1(t)
2

0













, p̂3(t) =













eiω(t)

√

β1(t)
2

−ei(ω(t)−α(t)+µ(t))

√

1 − β1(t)
2

0













.

Then p̂2(t) ⊗ p̂2(t) + p̂2(t) ⊗ p̂2(t) = Ã(t). Let

p2(t) = (g1(t) g2(t) g3(t))p̂2(t), p3(t) = (g1(t) g2(t) g3(t))p̂3(t)

Therefore,
∑3

j=2 pj(t) ⊗ pj(t) = A(t) and so
∑3

j=1 pj(t) ⊗ pj(t) = B. We can check

that p̂2(t) is a continuous path connecting x̂2 and x̂′2 and hence, p2(t) is a continuous

path connecting x2 and x′2. Similarly, p3(t) is a continuous path connecting x3 and

x′3.

When two sets of three unit vectors are both equiangular, the following proposi-

tion shows that after a permutation, we can connect them by an equiangular path.

Proposition II.25. Given a positive operator B with eigenvalues λ1 ≥ λ2 ≥ λ3 > 0

and λ1 + λ2 + λ3 = 3. Suppose that {xj}3
j=1 are unit vectors which are linearly

independent, equiangular and {x′j}3
j=1 are unit vectors which are linearly independent,

equiangular in Cn such that
∑3

j=1 xj ⊗xj =
∑3

j=1 x
′
j ⊗x′j = B. There are continuous
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paths {pj(t)}3
j=1 of equiangular unit vectors and a permutation Π of {1, 2, 3} such

that pj(0) = xΠ(j), pj(1) = x′j and
∑3

j=1 pj(t) ⊗ pj(t) = B for any 0 ≤ t ≤ 1.

Proof. By Lemma II.8, there are scalars {eiµj}3
j=1, a permutation Π of {1, 2, 3} and

a unitary operator U which commutes with B such that x′j = eiµjUxΠ(j) for all

j = 1, 2, 3. Let {f1, f2, f3} be the orthonormal basis of eigenvectors of U such that U

can be written as

Ũ =













eiα 0 0

0 eiβ 0

0 0 eiγ













.

Let x̃j = (f1 f2 f3)
∗xj and x̃′j = (f1 f2 f3)

∗x′j . Then

x̃′j = (f1 f2 f3)
∗x′j = (f1 f2 f3)

∗eiµj (f1 f2 f3)Ũ(f1 f2 f3)
∗xΠ(j)

= eiµj Ũ(f1 f2 f3)
∗xΠ(j) = eiµj Ũ x̃Π(j)

Therefore, x̃′j = eiµj Ũ x̃Π(j). We have

3
∑

j=1

x̃j ⊗ x̃j =

3
∑

j=1

(f1 f2 f3)
∗xj ⊗ (f1 f2 f3)

∗xj

= (f1 f2 f3)
∗(

3
∑

j=1

xj ⊗ xj)(f1 f2 f3)

= (f1 f2 f3)
∗B(f1 f2 f3)

Denote B̂ = (f1 f2 f3)
∗B(f1 f2 f3). Since UB = BU , we have (f1 f2 f3)Ũ(f1 f2 f3)

∗B =

B(f1 f2 f3)Ũ(f1 f2 f3)
∗ from which, it follows that

Ũ B̂ = Ũ(f1 f2 f3)
∗B(f1 f2 f3) = (f1 f2 f3)

∗B(f1 f2 f3)Ũ = B̂Ũ
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For 0 ≤ t ≤ 1, let

Ũ(t) =













eiαt 0 0

0 eiβt 0

0 0 eiγt













.

Let p̃j(t) = eiµjtŨ(t)x̃Π(j). Then p̃j(t), j = 1, 2, 3 are continuous and p̃j(0) = x̃Π(j) and

p̃j(1) = eiµj Ũ x̃Π(j) = x̃′j . We have ||p̃j(t)|| = 1, |〈 p1(t) , p2(t) 〉| = |〈 p1(t) , p3(t) 〉| =

|〈 p2(t) , p3(t) 〉| and

3
∑

j=1

p̃j(t) ⊗ p̃j(t) =

3
∑

j=1

Ũ(t)x̃Π(j) ⊗ Ũ(t)x̃Π(j)

= Ũ(t)(
3
∑

j=1

x̃Π(j) ⊗ x̃Π(j))Ũ(t)∗

= Ũ(t)B̂Ũ(t)∗ = B̂

Let pj(t) = (f1 f2 f3)p̃j(t). Then ||pj(t)|| = ||p̃j(t)|| = 1, {pj(t)}3
j=1 is an equiangular

set and

3
∑

j=1

pj(t) ⊗ pj(t) =

3
∑

j=1

(f1 f2 f3)p̃j(t) ⊗ (f1 f2 f3)p̃j(t) = (f1 f2 f3)B̂(f1 f2 f3)
∗ = B.

We can check that pj(t), j = 1, 2, 3 are continuous and

pj(0) = (f1 f2 f3)p̃j(0) = (f1 f2 f3)x̃Π(j) = xΠ(j)

and similarly, pj(1) = x′j .

Remark 4. If X = {xj}k
j=1 and Y = {yj}k

j=1 are geometrically equivalent then there

is a unitary operator U that is the product of a permutation and a diagonal unitary

such that

UGXU
∗ = GY

Lemma II.26. Given a positive operator B of trace 3 with eigenvalues 0 ≤ λ1 ≤
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λ2 ≤ λ3. Suppose that {xj}3
j=1 are unit vectors having B as the Bessel operator. Let

M({xj}3
j=1) be the maximal frame correlation for {xj}3

j=1. Minimize M({xj}k
j=1)

over all set of three unit vectors with Bessel operator B. Then the maximal frame

correlation is smallest when {xj}3
j=1 are equiangular.

Proof. Suppose that {wj}3
j=1 are three unit equiangular vectors with Bessel operator

B. Then |〈w1 , w2 〉| = |〈w1 , w3 〉| = |〈 u2 , u3 〉| = c where

c =

√

3 − λ1λ2 − λ1λ3 − λ2λ3

3

Assume that 〈 x1 , x2 〉 = b, 〈 x1 , x3 〉 = d, 〈 x2 , x3 〉 = e and |b| ≥ |d| ≥ |e|. Then the

characteristics polynomial of the Grammian operator G{xi}3

i=1

for {xi}3
i=1 is

(1 − λ)3 − (1 − λ)(|b|2 + |d|2 + |e|2) + bed̄ + db̄ē = 0

and the characteristics polynomial of the Grammian operator G{wi}3

i=1
for {wi}3

i=1 is

(1 − λ)3 − 3c2(1 − λ) + 2c3 cosω = 0

where ω is the angle defined in Proposition II.17

Since two Grammian operators have the same eigenvalues, the above two char-

acteristics polynomials are the same. It follows that |b|2 + |d|2 + |e|2 = 3c2. Therefore,

3c2 ≤ 3|b|2 and c ≤ |b|.

Therefore, each set of three unit vectors which do not lie in the same line can be

replaced with another set of three unit vectors which has the same Bessel operator

as the Bessel operator of the original set. In particular, we can always replace the

original set with an equiangular set of three unit vectors. Moreover, the minimum

angle between pairs of vectors in the replacement set becomes largest when the re-

placement set is equiangular. So iterating this procedure might lead to a construction
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of Grassmannian frames.
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CHAPTER III

A SPREADING ALGORITHM FOR FINITE UNIT NORM TIGHT FRAMES

Suppose that {yj}k
j=1 is a unit norm tight frame in Cn. We will replace vec-

tors three-at-a-time to produce a unit norm tight frame with better maximal frame

correlation than the original frame.

Suppose that y1, y2, y3 are linearly independent unit vectors in Cn. We wish to

built an algorithm whose output is a set of three equiangular unit vectors with ”good”

direction in the sense that when the input is an equiangular set then the output is

exactly the input in the same order.

Step 1 : Gram-Schmidt them, obtaining an orthonormal basis {h1, h2, h3} for

span {y1, y2, y3}. Let x1, x2, x3 be the coordinate vectors in C3 for y1, y2, y3, respec-

tively.

Step 2 : Let A =
∑3

j=1 xj ⊗xj . Compute the eigenvalues λ1, λ2, λ3 of A. Suppose

λ1 > λ2 > λ3 > 0. Compute an orthonormal basis {f1, f2, f3} of eigenvectors for A

corresponding to the eigenvalues λ1, λ2, λ3.

Step 3 : Let

c =

√

3 − λ1λ2 − λ1λ3 − λ2λ3

3

and

M =
λ1λ2λ3 + 2 − λ1λ2 − λ1λ3 − λ2λ3

2

and ω = arccos(M
c3

).

Let

u1 = (1, 0, 0)T , u2 = (c e−iω,
√

1 − c2, 0)T

u3 = (c e−iω,
ceiω − c2√

1 − c2
,

√

(1 − c2)2 − |ceiω − c2|2√
1 − c2

)T
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Step 4 : Let B =
∑3

j=1 uj ⊗ uj. Compute the eigenvalues of B and compute an

orthonormal basis {g1, g2, g3} of eigenvectors for B.

Step 5 : Let W = (f1 f2 f3).(g1 g2 g3)
∗. Then W is a unitary matrix.

Step 6 : Let x′1 = Wu1, x
′
2 = Wu2, x

′
3 = Wu3 in C3. Then x′1, x

′
2, x

′
3 are unit,

equiangular and
∑3

j=1 x
′
j ⊗ x′j = A.

We want to orient x′1, x
′
2, x

′
3 obtaining x̂1, x̂2, x̂3 such that when x1, x2, x3 are

equiangular, we have x̂j = xj for all j = 1, 2, 3.

Step 7 : Let SA = A1/2S1(C
3) ∩ S1(C

3) where S1(C
3) is the unit sphere in C3.

Let {fj}3
j=1 be an orthonormal basis of eigenvectors of A such that A can be written

as

Ã =













λ1 0 0

0 λ2 0

0 0 λ3













where λ1 > λ2 > λ3 > 0 and λ1 + λ2 + λ3 = 3. We define

S(λ1,λ2,λ3) =

{

(x, y, z)T ∈ C
3 :

|x|2
λ1

+
|y|2
λ2

+
|z|2
λ3

= 1

}

⋂

S1(C
3)

Note that x1, x2, x3 ∈ SA.

Step 8 : For j = 1, 2, 3, let x̃j = (f1 f2 f3)
−1xj and x̃j

′ = (f1 f2 f3)
−1x′j . Then

x̃1, x̃2, x̃3 ∈ S(λ1,λ2,λ3) and x̃1
′, x̃2

′, x̃3
′ ∈ S(λ1,λ2,λ3). Therefore,

∑3
j=1 x̃j ⊗ x̃j = Ã =

∑3
j=1 x̃j

′ ⊗ x̃j
′.

If v = (x, y, z)T ∈ C3 then we define |v| = (|x|, |y|, |z|)T ∈ R3
+.

Step 9 : Let w̃1 be the x̃j
′ such that

|||x̃1| − |w̃1||| = min{|||x̃1| − |x̃j
′||| : j = 1, 2, 3}

If there are more than one x̃j
′ satisfying this minimum condition choose the first one
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having ||x̃1 − x̃j
′|| the smallest possible. Then let w̃2 ∈ {x̃1

′, x̃2
′, x̃3

′} \ {w̃1} for which

|||x̃2| − |w̃2||| = min{|||x̃2| − |x̃j
′||| : x̃j

′ 6= w̃1}

If there are more than one x̃j
′ satisfying this minimum condition, we choose the one

having ||x̃2 − x̃j
′|| the smaller. Then let w̃3 be the remaining vector in {x̃1

′, x̃2
′, x̃3

′}.

Thus,
∑3

j=1 w̃j ⊗ w̃j =
∑3

j=1 x̃j
′ ⊗ x̃j

′ = Ã and {w̃j}3
j=1 are unit, equiangular.

Define the phase arg(v) of a vector v ∈ C as follows.

arg(v) =















1, if v = 0;

v
|v| if v 6= 0.

Write x̃j = (x̃j1, x̃j2, x̃j3)
T , w̃j = (w̃j1, w̃j2, w̃j3)

T for j = 1, 2, 3. We consider several

cases.

Case 1 Assume that the vectors |x̃j|3j=1 are distinct.

Case (1.1) Assume all components of x̃1 are different from 0.

Step 10.1.1 : We will construct a vector z̃1 such that |z̃1| = |w̃1| which has

the same phase as x̃1 as follows. Write x̃1 = (γ1|x̃11|, γ2|x̃12|, γ3|x̃13|)T and w̃1 =

(δ1|w̃11|, δ2|w̃12|, δ3|w̃13|) where |γj| = 1 = |δj| for j = 1, 2, 3.

Let z̃1 = (γ1|w̃11|, γ2|w̃12|, γ3|w̃13|)T and

Γ =













γ1

δ1
0 0

0 γ2

δ2
0

0 0 γ3

δ3













Then Γ is an unitary matrix and z̃1 = Γw̃1. Let z̃2 = Γw̃2, z̃3 = Γw̃3. Then |w̃j| = |z̃j|.

Since
∑3

j=1 w̃j⊗w̃j = Ã and Γ commutes with Ã, we have
∑3

j=1 z̃j⊗ z̃j =
∑3

j=1 Γw̃j⊗

Γw̃j = ΓÃΓ∗ = Ã. Note that {z̃j}3
j=1 are unit, equiangular.
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Step 11.1.1 : Write z̃j = (z̃j1, z̃j2, z̃j3)
T . Let

ν2 =
arg(x̃21)arg(z̃11)

arg(z̃21)arg(x̃11)
, ν3 =

arg(x̃31)arg(z̃11)

arg(z̃31)arg(x̃11)

Let ṽ1 = z̃1, ṽ2 = ν2z̃2, ṽ3 = ν3z̃3. Then {ṽj}3
j=1 are unit, equiangular in C3 and

∑3
j=1 ṽj ⊗ ṽj =

∑3
j=1 z̃j ⊗ z̃j = Ã.

Step 12.1.1 : Let x̂j = (f1 f2 f3)ṽj for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and

{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.1.1 : Suppose that x̂j = (αj , βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop, the algorithm for Case (1.1) is complete.

Case(1.2) Assume x̃1 has a zero component and all components of x̃2 are different

from 0.

Step 10.1.2 : We will construct a vector z̃2 such that |z̃2| = |w̃2| which has

the same phase as x̃2 as follows. Write x̃2 = (γ1|x̃21|, γ2|x̃22|, γ3|x̃23|)T and w̃2 =

(δ1|w̃21|, δ2|w̃22|, δ3|w̃23|) where |γj| = 1 = |δj| for j = 1, 2, 3.

Let z̃2 = (γ1|w̃21|, γ2|w̃22|, γ3|w̃23|)T and

Γ =













γ1

δ1
0 0

0 γ2

δ2
0

0 0 γ3

δ3













Then Γ is an unitary matrix and z̃2 = Γw̃2. Let z̃1 = Γw̃1, z̃3 = Γw̃3. Then |w̃j| =

|z̃j |. Since
∑3

j=1 w̃j ⊗ w̃j =
∑3

j=1 x̃j
′ ⊗ x̃j

′ = Ã and Γ commutes with Ã, we have

∑3
j=1 z̃j⊗z̃j =

∑3
j=1 Γw̃j⊗Γw̃j = ΓÃΓ∗ = Ã. Note that {z̃j}3

j=1 are unit, equiangular.

Step 11.1.2 : Write z̃j = (z̃j1, z̃j2, z̃j3)
T . Let

ν1 =
arg(z̃21)arg(x̃11)

arg(x̃21)arg(z̃11)
, ν3 =

arg(z̃21)arg(x̃31)

arg(x̃21)arg(z̃31)
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Let ṽ1 = ν1z̃1, ṽ2 = z̃2, ṽ3 = ν3z̃3. Then {ṽj}3
j=1 are unit, equiangular in C3 and

∑3
j=1 ṽj ⊗ ṽj =

∑3
j=1 z̃j ⊗ z̃j = Ã.

Step 12.1.2 : Let x̂j = (f1 f2 f3)ṽj for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and

{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.1.2 : Suppose that x̂j = (αj , βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop, the algorithm for Case (1.2) is complete.

Case(1.3) Assume x̃1 and x̃2 have a zero component and all components of x̃3

are different from 0.

Step 10.1.3 : We will construct a vector z̃3 such that |z̃3| = |w̃3| which has

the same phase as x̃3 as follows. Write x̃3 = (γ1|x̃31|, γ2|x̃32|, γ3|x̃33|)T and w̃3 =

(δ1|w̃31|, δ2|w̃32|, δ3|w̃33|) where |γj| = 1 = |δj| for j = 1, 2, 3.

Let z̃3 = (γ1|w̃31|, γ2|w̃32|, γ3|w̃33|)T and

Γ =













γ1

δ1
0 0

0 γ2

δ2
0

0 0 γ3

δ3













Then Γ is an unitary matrix and z̃3 = Γw̃3. Let z̃1 = Γw̃1, z̃2 = Γw̃2. Then |w̃j| =

|z̃j |. Since
∑3

j=1 w̃j ⊗ w̃j =
∑3

j=1 x̃j
′ ⊗ x̃j

′ = Ã and Γ commutes with Ã, we have

∑3
j=1 z̃j⊗z̃j =

∑3
j=1 Γw̃j⊗Γw̃j = ΓÃΓ∗ = Ã. Note that {z̃j}3

j=1 are unit, equiangular.

Step 11.1.3 : Write z̃j = (z̃j1, z̃j2, z̃j3)
T . Let

ν1 =
arg(z̃31)arg(x̃11)

arg(x̃31)arg(z̃11)
, ν3 =

arg(z̃31)arg(x̃21)

arg(x̃31)arg(z̃21)

Let ṽ1 = ν1z̃1, ṽ2 = ν2z̃2, ṽ3 = z̃3. Then {ṽj}3
j=1 are unit, equiangular in C3 and

∑3
j=1 ṽj ⊗ ṽj =

∑3
j=1 z̃j ⊗ z̃j = Ã.

Step 12.1.3 : Let x̂j = (f1 f2 f3)ṽj for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and
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{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.1.3 : Suppose that x̂j = (αj , βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop, the algorithm for Case (1.3) is complete.

Case(1.4) Assume that x̃1, x̃2, x̃3 each have at least one zero component and that

x̃11 6= 0, x̃21 6= 0, x̃31 6= 0.

Step 10.1.4 : Write x̃11 = γ1|x̃11|, x̃21 = γ2|x̃21|, x̃31 = γ3|x̃31|, w̃11 = δ1|w̃11|, w̃21 =

δ2|w̃21|, w̃31 = δ3|w̃31| where |γj| = 1 = |δj| for j = 1, 2, 3. Let z̃j =
γj

δj
w̃j for j = 1, 2, 3.

Note that {z̃j}3
j=1 are unit, equiangular and

∑3
j=1 z̃j ⊗ z̃j = Ã.

Step 11.1.4 : Let

ν2 =
arg(x̃11)arg(z̃12)

arg(z̃11)arg(x̃12)
, ν3 =

arg(x̃11)arg(z̃13)

arg(z̃11)arg(x̃13)

and

Γ =













1 0 0

0 1
ν2

0

0 0 1
ν3













Let ṽj = Γz̃j. Then {ṽj}3
j=1 are unit, equiangular and

∑3
j=1 z̃j ⊗ z̃j = Ã.

Step 12.1.4 : Let x̂j = (f1 f2 f3)ṽj for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and

{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.1.4: Suppose that x̂j = (αj, βj , µj)
T . Then y′j = αjh1 + βjh2 + µjh3 for

j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop, the algorithm for Case (1.4) is complete.

Case(1.5) Assume that the hypotheses in Cases (1.1)-(1.4) all failed and x̃12 6=

0, x̃22 6= 0, x̃32 6= 0.

Step 10.1.5 : Write x̃12 = γ1|x̃12|, x̃22 = γ2|x̃22|, x̃32 = γ3|x̃32|, w̃12 = δ1|w̃12|, w̃22 =

δ2|w̃22|, w̃32 = δ3|w̃32| where |γj| = 1 = |δj| for j = 1, 2, 3. Let z̃j =
γj

δj
w̃j for j = 1, 2, 3.
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Note that {z̃j}3
j=1 are unit, equiangular and

∑3
j=1 z̃j ⊗ z̃j = Ã.

Step 11.1.5 : Let

ν1 =
arg(z̃11)arg(x̃12)

arg(x̃11)arg(z̃12)
, ν3 =

arg(x̃12)arg(z̃13)

arg(z̃12)arg(x̃13)

and

Γ =













1
ν1

0 0

0 1 0

0 0 1
ν3













.

Let ṽj = Γz̃j. Then {ṽj}3
j=1 are unit, equiangular and

∑3
j=1 z̃j ⊗ z̃j = Ã.

Step 12.1.5 : Let x̂j = (f1 f2 f3)ṽj for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and

{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.1.5 : Suppose that x̂j = (αj , βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop, the algorithm for Case (1.5) is complete.

Case(1.6) Assume that the hypotheses in Cases (1.1)-(1.5) all failed and x̃13 6=

0, x̃23 6= 0, x̃33 6= 0.

Step 10.1.6 : Write x̃13 = γ1|x̃13|, x̃23 = γ2|x̃23|, x̃33 = γ3|x̃33|, w̃13 = δ1|w̃13|, w̃23 =

δ2|w̃23|, w̃33 = δ3|w̃33| where |γj| = 1 = |δj| for j = 1, 2, 3. Let z̃j =
γj

δj
w̃j for j = 1, 2, 3.

Note that {z̃j}3
j=1 are unit, equiangular and

∑3
j=1 z̃j ⊗ z̃j = Ã.

Step 11.1.6 : Let

ν1 =
arg(z̃11)arg(x̃13)

arg(x̃11)arg(z̃13)
, ν2 =

arg(z̃12)arg(x̃13)

arg(x̃12)arg(z̃13)

and

Γ =













1
ν1

0 0

0 1
ν2

0

0 0 1












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Let ṽj = Γz̃j. Then {ṽj}3
j=1 are unit, equiangular and

∑3
j=1 z̃j ⊗ z̃j = Ã

Step 12.1.6 : Let x̂j = (f1 f2 f3)ṽj for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and

{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.1.6 : Suppose that x̂j = (αj , βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop, the algorithm for Case (1.6) is complete.

Case(1.7) Assume that the hypotheses in Cases (1.1)-(1.6) all failed. Then we

do the following:

Step 12.1.7 : Let x̂j = (f1 f2 f3)w̃j for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and

{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.1.7 : Suppose that x̂j = (αj , βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop, the algorithm for Case (1.7) is complete.

Case 2 : There is one pair of vectors in {|x̃1|, |x̃2|, |x̃3|} the same.

Case 2.1 : |x̃1| = |x̃2| 6= |x̃3|.

Write

x̃1 = (eiθ1x, eiθ2y, eiθ3z)T

x̃2 = (eiα1x, eiα2y, eiα3z)T

x̃3 = (eiβ1x′, eiβ2y′, eiβ3z′)T

w̃1 = (eiθ′
1 |w̃11|, eiθ′

2|w̃12|, eiθ′
3 |w̃13|)T

w̃2 = (eiα′

1 |w̃21|, eiα′

2|w̃22|, eiα′

3|w̃23|)T

w̃3 = (eiβ′

1|w̃31|, eiβ′

2|w̃32|, eiβ′

3|w̃33|)T

Case 2.1.1 : x′ 6= 0, y′ 6= 0, z′ 6= 0
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Let

Γ =













ei(β1−β′

1
) 0 0

0 ei(β2−β′

2
) 0

0 0 ei(β3−β′

3
)













Let z̃j = Γw̃j for j = 1, 2, 3. Note that z̃3 has the same phase as x̃3 and |w̃j| = |z̃j|.

Similar to previous cases, we have
∑3

j=1 z̃j⊗ z̃j = Ã and {z̃j}3
j=1 are unit, equiangular.

Step 11.2.1.1 : Write z̃j = (z̃j1, z̃j2, z̃j3)
T . Write z̃1 = (eiµ1 |z̃11|, eiµ2 |z̃12|, eiµ3|z̃13|)T

1) If µ1 − α1 = µ2 − α2 = µ3 − α3 then let

ν1 =
arg(z̃31)arg(x̃21)

arg(x̃31)arg(z̃11)
, ν2 =

arg(z̃31)arg(x̃11)

arg(x̃31)arg(z̃21)

2) Otherwise let

ν1 =
arg(z̃31)arg(x̃11)

arg(x̃31)arg(z̃11)
, ν2 =

arg(z̃31)arg(x̃21)

arg(x̃31)arg(z̃21)

Let ṽ1
′ = ν1z̃1, ṽ2

′ = ν2z̃2, ṽ3
′ = z̃3. Then {ṽj

′}3
j=1 are unit, equiangular in C3 and

∑3
j=1 ṽj

′ ⊗ ṽj =
∑3

j=1 z̃j ⊗ z̃j = Ã.

Step 12.2.1.1 : Let ṽ3 = ṽ3
′. Let ṽ1 ∈ {ṽ1

′, ṽ2
′} be such that

||x̃1 − ṽ1|| = min{||x̃1 − ṽj
′|| : j = 1, 2}

and ṽ2 be the remaining in {ṽ1
′, ṽ2

′, ṽ3
′}.

Step 13.2.1.1 : Let x̂j = (f1 f2 f3)ṽj for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and

{x̂j}3
j=1 are unit, equiangular in C3.

Step 14.2.1.1 : Suppose that x̂j = (αj, βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop.

Case 2.1.2 : x′ = z′ = 0

Step 12.2.1.2 : Let x̂j = (f1 f2 f3)w̃j for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and
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{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.1.7 : Suppose that x̂j = (αj , βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop.

Case 2.1.3 : z′ = 0, x′ 6= 0, y′ 6= 0

Step 10.2.1.3 : We will construct a vector z̃3 such that |z̃3| = |w̃3| which has the

same phase as x̃3 as follows. Let

Γ =













ei(β1−β′

1
) 0 0

0 ei(β2−β′

2
) 0

0 0 ei(−ζ2+ζ′
2
+β1−β′

1
)













Let z̃j = Γw̃j for j = 1, 2, 3. Then |w̃j| = |z̃j | and
∑3

j=1 z̃j ⊗ z̃j = Ã. Note that

{z̃j}3
j=1 are unit, equiangular.

Step 11.2.1.3 : Let

ν1 = ei(θ1−θ′
1
−β1+β′

1
), ν2 = ei(α1−α′

1
−β1+β′

1
)

Let ṽ1 = ν1z̃1, ṽ2 = ν2z̃2, ṽ3 = z̃3. Then {ṽj}3
j=1 are unit, equiangular and

∑3
j=1 ṽj ⊗ ṽj =

∑3
j=1 z̃j ⊗ z̃j = Ã.

Step 12.2.1.3 : Let x̂j = (f1 f2 f3)ṽj for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and

{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.2.1.3 : Suppose that x̂j = (αj, βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop.

Case 2.1.4 : x′ = 0, y′ 6= 0, z′ 6= 0

Step 10.2.1.4 : We will construct a vector z̃3 such that |z̃3| = |w̃3| which has the
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same phase as x̃3 as follows. Let

Γ =













ei(ζ1−ζ′
1
+β2−β′

2
) 0 0

0 ei(β2−β′

2
) 0

0 0 ei(β3−β′

3
)













Let z̃j = Γw̃j for j = 1, 2, 3. Then |w̃j| = |z̃j | and
∑3

j=1 z̃j ⊗ z̃j = Ã. Note that

{z̃j}3
j=1 are unit, equiangular.

Step 11.2.1.4 : Let

ν1 = ei(θ2−θ′
2
−β2+β′

2
), ν2 = ei(α2−α′

2
−β2+β′

2
)

Let ṽ1 = ν1z̃1, ṽ2 = ν2z̃2, ṽ3 = z̃3. Then {ṽj}3
j=1 are unit, equiangular and

∑3
j=1 ṽj ⊗

ṽj =
∑3

j=1 z̃j ⊗ z̃j = Ã.

Step 12.2.1.4 : Let x̂j = (f1 f2 f3)ṽj for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and

{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.2.1.4 : Suppose that x̂j = (αj, βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop.

Case 2.1.5 : y′ = 0, x′ 6= 0, z′ 6= 0

Step 10.2.1.5 : We will construct a vector z̃3 such that |z̃3| = |w̃3| which has the

same phase as x̃3 as follows. Let

Γ =













ei(β1−β′

1
) 0 0

0 ei(ζ′
1
−ζ1+β1−β′

1
) 0

0 0 ei(β3−β′

3
)













Let z̃j = Γw̃j for j = 1, 2, 3. Then |w̃j| = |z̃j | and
∑3

j=1 z̃j ⊗ z̃j = Ã. Note that

{z̃j}3
j=1 are unit, equiangular.
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Step 11.2.1.5 : Let

ν1 = ei(θ1−θ′
1
−β1+β′

1
), ν2 = ei(α1−α′

1
−β1+β′

1
)

Let ṽ1 = ν1z̃1, ṽ2 = ν2z̃2, ṽ3 = z̃3. Then {ṽj}3
j=1 are unit, equiangular and

∑3
j=1 ṽj ⊗

ṽj =
∑3

j=1 z̃j ⊗ z̃j = Ã.

Step 12.2.1.5 : Let x̂j = (f1 f2 f3)ṽj for j = 1, 2, 3. Then
∑3

j=1 x̂j ⊗ x̂j = A and

{x̂j}3
j=1 are unit, equiangular in C3.

Step 13.2.1.5 : Suppose that x̂j = (αj, βj, µj)
T . Then y′j = αjh1 + βjh2 + µjh3

for j = 1, 2, 3 are three unit vectors in Cn which are equiangular and
∑3

j=1 y
′
j ⊗ y′j =

∑3
j=1 yj ⊗ yj. Stop.

Case 2.2 : |x̃1| = |x̃3| 6= |x̃2|.

Similar to Case 2.1

Case 2.3 : |x̃2| = |x̃3| 6= |x̃1|.

Similar to Case 2.1

First, we will prove that when {yj}3
j=1 is equiangular in Cn, y′j = yj for all j =

1, 2, 3. Since {yj}3
j=1 is equiangular in Cn , {xj}3

j=1 is equiangular in C3 and {x̃j}3
j=1

in C3 is equiangular as well. First, we will show that when {x̃j}3
j=1 is equiangular

in Cn, |w̃j| = |x̃j| for j = 1, 2, 3. Because {x̃j}3
j=1 and {x̃j

′}3
j=1 are equiangular and

have the same Bessel operator Ã, they are geometrically equivalent by Lemma (II.19).

Therefore, there are scalars {dj}3
j=1 of modulus 1, a permutation Π of {1, 2, 3} and a

unitary operator U which commutes with Ã such that x̃j = djUx̃
′
Π(j) for all j = 1, 2, 3.

Since Ã is diagonal matrix with λ1 > λ2 > λ3 > 0 and U commutes with Ã, U must be

diagonal. Let U =













ω1 0 0

0 ω2 0

0 0 ω3













where |ω1| = |ω2| = |ω3| = 1. Hence, |x̃j | = |x̃′Π(j)|.

From the construction of wj we have |w̃j| = |x̃j |.



51

Now we will consider each case to see that y′j = yj for all j = 1, 2, 3. Since in

cases (1.1)-(1.7), the steps 12 and 13 are the same, we will prove in each case ṽj = x̃j .

From that and x̂j = (f1 f2 f3)ṽj and xj = (f1 f2 f3)x̃j , we have x̂j = xj . It follows

immediately that y′j = yj by step 13.

For Case(1.1), if {x̃j}3
j=1 is equiangular in C3 then |x̃j| = |w̃j| = |z̃j| = |ṽj|.

Since z̃1 has the same phase as x̃1 we have z̃1 = x̃1 and so ṽ1 = x̃1. Since
∑3

j=1 z̃j ⊗

z̃j =
∑3

j=1 x̃j ⊗ x̃j = Ã, there exist scalars {dj}3
j=1 of modulus 1, a permutation Π

of {1, 2, 3} and an unitary matrix ψ commuting with Ã such that z̃j = djψx̃Π(j).

Because Ã is diagonal with λ1 > λ2 > λ3 > 0 and ψ commutes with Ã, ψ must be

diagonal. Let ψ =













α1 0 0

0 α2 0

0 0 α3













where αj are complex numbers of modulus 1. So

|x̃j | = |z̃j | = |x̃Π(j)|. Since |x̃1| 6= |x̃2| 6= |x̃3|, Π = 1. Therefore, z̃j = diψx̃j for

j = 1, 2, 3. From z̃1 = x̃1 and all components of x̃1 are different from 0, it follows

that 1 = d1α1 = d1α2 = d1α3. Thus, α1 = α2 = α3 = d̄1 and we denote this number

α. So for j = 2, 3, we have z̃j = djαx̃j . Hence,

d2α =
arg(z̃21)

arg(x̃21)
=
arg(z̃21)arg(x̃11)

arg(x̃21)arg(z̃11)
=

1

ν2
, d3α =

arg(z̃31)

arg(x̃31)
=
arg(z̃31)arg(x̃11)

arg(x̃31)arg(z̃11)
=

1

ν3

Thus, ṽ2 = ν2z̃2 = x̃2, ṽ3 = ν3z̃3 = x̃3. Therefore, ṽj = x̃j .

For Case(1.2) and Case(1.3), by using the similar argument as Case(1.1), we

also have ṽj = x̃j .

For Case(1.4), if {x̃j}3
j=1 is equiangular in C3 then |x̃j| = |w̃j| = |z̃j| = |ṽj | and

x̃j1 = z̃j1 = ṽj1, j = 1, 2, 3. Since
∑3

j=1 z̃j ⊗ z̃j =
∑3

j=1 x̃j ⊗ x̃j = Ã, there exist scalars

{dj}3
j=1 of modulus 1, a permutation Π of {1, 2, 3} and an unitary matrix ψ commuting

with Ã such that z̃j = djψx̃Π(j). Because Ã is diagonal with λ1 > λ2 > λ3 > 0 and
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ψ commutes with Ã, ψ must be diagonal. Let ψ =













α1 0 0

0 α2 0

0 0 α3













where αj are

complex numbers of modulus 1. So |x̃j| = |z̃j | = |x̃Π(j)|. Since |x̃1| 6= |x̃2| 6= |x̃3|,

Π = 1. Therefore, z̃j = diψx̃j for j = 1, 2, 3. From x̃11 6= 0, x̃21 6= 0, x̃31 6= 0, it follows

that 1 = d1α1 = d2α1 = d3α1. Thus, d1 = d2 = d3 = ᾱ1 and we denote this number

d. Hence,

dα2 =
arg(z̃12)

arg(x̃12)
=
arg(x̃11)arg(z̃12)

arg(z̃11)arg(x̃12)
= ν2, dα3 =

arg(z̃13)

arg(x̃13)
=
arg(x̃11)arg(z̃13)

arg(z̃11)arg(x̃13)
= ν3

Thus, ṽ12 = 1
ν2

z̃12 = 1
dα2

z̃12 = x̃12. Similarly, we have ṽ22 = x̃22, ṽ32 = x̃32 and

ṽj3 = x̃j3, j = 1, 2, 3. Therefore, ṽj = x̃j .

For Case(1.5) and Case(1.6), by using the similar argument as Case(1.4), we

also have ṽj = x̃j .

For Case(1.7), suppose that {x̃j}3
j=1 is an equiangular set. Let M be a matrix

whose columns are x̃j , that is,

M =













x̃11 x̃21 x̃31

x̃12 x̃22 x̃32

x̃13 x̃23 x̃33













In the case (1.7), each column and each row has a zero element. By Lemma II.22,

there exists a pair of vectors in {x̃j}3
j=1 is orthogonal which is impossible because

{x̃j}3
j=1 must form an orthonormal basis for C3 and so λ1 = λ2 = λ3 = 1 which

contradicts to the hypothesis that {λj}3
j=1 are distinct. Hence, {x̃j}3

j=1 can not be an

equiangular set.

For Case(2.1.1), if {x̃j}3
j=1 is equiangular in C3 then |x̃j| = |w̃j| = |z̃j| = |ṽj | =

|ṽj
′|. Since z̃3 has the same phase as x̃3 we have z̃3 = x̃3 and so ṽ3 = ṽ3

′ = x̃3.
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Since
∑3

j=1 z̃j ⊗ z̃j =
∑3

j=1 x̃j ⊗ x̃j = Ã, there exist scalars {dj}3
j=1 of modulus 1,

a permutation Π of {1, 2, 3} and an unitary matrix ψ commuting with Ã such that

z̃j = djψx̃Π(j). Because Ã is diagonal with λ1 > λ2 > λ3 > 0 and ψ commutes with

Ã, ψ must be diagonal. Let ψ =













α1 0 0

0 α2 0

0 0 α3













where αj are complex numbers of

modulus 1. So |x̃j | = |z̃j| = |x̃Π(j)|. Since |x̃1| = |x̃2| 6= |x̃3|, Π = 1 or Π(1) =

2,Π(2) = 1,Π(3) = 3. From z̃3 = x̃3 and all components of x̃3 are different from 0, it

follows that 1 = d3α1 = d3α2 = d3α3. Thus, α1 = α2 = α3 = d̄3 and we denote this

number α.

If Π = 1 then z̃j = diψx̃j for j = 1, 2, 3. So for j = 1, 2, we have z̃j = djαx̃j .

Hence,

d1α =
arg(z̃11)

arg(x̃11)
=
arg(x̃31)arg(z̃11)

arg(z̃31)arg(x̃11)
=

1

ν1
, d2α =

arg(z̃21)

arg(x̃21)
=
arg(x̃31)arg(z̃21)

arg(z̃31)arg(x̃21)
=

1

ν2

Thus, ṽ1
′ = ν1z̃1 = x̃1, ṽ2

′ = ν2z̃2 = x̃2. Therefore, from the construction of ṽj , we

have ṽj = ṽj
′ = x̃j for all j = 1, 2, 3.

If Π(1) = 2,Π(2) = 1,Π(3) = 3 then z̃1 = d1αx̃2, z̃2 = d2αx̃1, z̃3 = x̃3. Hence,

d1α =
arg(z̃11)

arg(x̃21)
=
arg(x̃31)arg(z̃11)

arg(z̃31)arg(x̃21)
=

1

ν1
, d2α =

arg(z̃21)

arg(x̃11)
=
arg(x̃31)arg(z̃21)

arg(z̃31)arg(x̃11)
=

1

ν2

Since ṽ1
′ = ν1z̃1 = x̃2, ṽ2

′ = ν2z̃2 = x̃1, ṽ3
′ = z̃3 = x̃3 and from the construction of ṽj ,

we have ṽj = ṽj
′ = x̃j for all j = 1, 2, 3.

For Case (2.1.2), suppose that {x̃j}3
j=1 is equiangular in C3. Since

∑3
j=1 x̃j⊗x̃j =

Ã, we have

ei(θ1−θ2)xy + ei(α1−α2)xy + ei(β1−β2)x′y′ = 0 (III.1)

ei(θ1−θ3)xz + ei(α1−α3)xz + ei(β1−β3)x′z′ = 0 (III.2)
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ei(θ2−θ3)yz + ei(α2−α3)yz + ei(β2−β3)y′z′ = 0 (III.3)

2x2 + x′2 = λ1 (III.4)

2y2 + y′2 = λ2 (III.5)

2z2 + z′2 = λ3 (III.6)

From x′ = z′ = 0, it follows that y′ = 1. From (III.4), (III.6), x =
√

λ1

2
6= 0, z =

√

λ3

2
6= 0. If y = 0 then x̃1 ⊥ x̃3. Since {x̃j}3

j=1 is equiangular in C3, they form an

orthonomal basis in C3 which in turn implies that λ1 = λ2 = λ3 = 1, a contradiction.

So y 6= 0. From (III.1), (III.2), (III.3), we have

ei(θ1−θ2) + ei(α1−α2) = 0 (III.7)

ei(θ1−θ3) + ei(α1−α3) = 0 (III.8)

ei(θ2−θ3) + ei(α2−α3) = 0 (III.9)

From elementary geometry in the plane and (III.7), we have

θ1 − θ2 = ζ1 + 2l1Π, α1 − α2 = Π + ζ1 + 2m1Π. (III.10)

Similarly, from (III.8) we have

θ1 − θ3 = ζ2 + 2l2Π, α1 − α3 = Π + ζ2 + 2m2Π. (III.11)

From (III.9), we have

θ2 − θ3 = ζ3 + 2l3Π, α2 − α3 = Π + ζ3 + 2m3Π. (III.12)

By subtracting the first equation of (III.10) from the first equation of (III.11), we

have

θ2 − θ3 = ζ2 − ζ1 + 2(l2 − l1)Π
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By subtracting the second equation of (III.10) from the second equation of (III.11),

we have

α2 − α3 = ζ2 − ζ1 + 2(m2 −m1)Π

So we have a contradiction to (III.12)

For Case 2.1.3, from (III.6), z =
√

λ3

2
6= 0. If x = 0 then from (III.1), we have

x′y′ = 0, a contradiction. Similarly if y = 0 then from (III.1), we have x′y′ = 0, a

contradiction. So x, y, z are nonzero.

By using the same argument as before, we have (III.8),(III.9) and (III.11),(III.12).

Thus,

x̃1 =













ei(θ3+ζ2)x

ei(θ3+ζ3)y

eiθ3z













, x̃2 =













ei(α3+Π+ζ2)x

ei(α3+Π+ζ3)y

eiα3z













=













−ei(α3+ζ2)x

−ei(α3+ζ3)y

eiα3z













, x̃3 =













eiβ1x′

eiβ2y′

0













Since |w̃j| = |x̃j | for all j = 1, 2, 3 and
∑3

j=1 w̃j ⊗ w̃j = Ã, by repeating the same

argument as for {x̃j}3
j=1, we have

ei(θ′
1
−θ′

3
) + ei(α′

1
−α′

3
) = 0 (III.13)

ei(θ′
2
−θ′

3
) + ei(α′

2
−α′

3
) = 0 (III.14)

θ′1 − θ′3 = ζ ′2 + 2l′2Π, α
′
1 − α′

3 = Π + ζ ′2 + 2m′
2Π. (III.15)

θ′2 − θ′3 = ζ ′3 + 2l′3Π, α
′
2 − α′

3 = Π + ζ ′3 + 2m′
3Π. (III.16)

w̃1 =













ei(θ′
3
+ζ′

2
)x

ei(θ′
3
+ζ′

3
)y

eiθ′
3z













, w̃2 =













−ei(α′

3
+ζ′

2
)x

−ei(α′

3
+ζ′

3
)y

eiα′

3z













, w̃3 =













eiβ′

1x′

eiβ′

2y′

0












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From the construction of z̃j , we have z̃3 = x̃3 and

z̃1 =













−ei(θ′
3
+ζ′

2
+β1−β′

1
)x

−ei(θ′
3
+ζ′

3
+β2−β′

2
)y

ei(θ′
3
−ζ2+ζ′

2
+β1−β′

1
)z













, z̃2 =













−ei(α′

3
+ζ′

2
+β1−β′

1
)x

−ei(α′

3
+ζ′

3
+β2−β′

2
)y

ei(α′

3
−ζ2+ζ′

2
+β1−β′

1
)z













Since
∑2

j=1 z̃j ⊗ z̃j =
∑2

j=1 x̃j ⊗ x̃j , we have

2ei(ζ2−ζ3)xy = 2ei(ζ′
2
−ζ′

3
+β1−β′

1
−β2+β′

2
)xy

Therefore, ζ ′2 − ζ ′3 + β1 − β ′
1 − β2 + β ′

2 = ζ2 − ζ3 + 2lΠ. We have

ν1z̃1 =













−ei(θ′
3
+ζ′

2
+θ1−θ′

1
)x

−ei(θ′
3
+ζ′

3
+β2−β′

2
+θ1−θ′

1
−β1+β′

1
)y

ei(θ′
3
−ζ2+ζ′

2
+θ1−θ′

1
)z













ν2z̃2 =













−ei(α′

3
+ζ′

2
+α1−α′

1
)x

−ei(α′

3
+ζ′

3
+β2−β′

2
+α1−α′

1
−β1+β′

1
)y

ei(α′

3
−ζ2+ζ′

2
+α1−α′

1
)z













Since

θ′3 + ζ ′2 + θ1 − θ′1 = θ′3 + θ′1 − θ′3 + 2l′2Π + θ1 − θ′1 = θ1 + 2l′2Π = ζ2 + θ3 + 2(l′2 + l2)Π

and

θ′3 + ζ ′3 + β2 − β ′
2 + θ1 − θ′1 − β1 + β ′

1 = −ζ ′2 − 2l2Π + ζ ′3 + β2 − β ′
2 + θ1 − β1 + β ′

1

= −ζ2 + ζ3 − 2l2Π + θ1

= θ3 − θ1 + ζ3 + θ1 = θ3 + ζ3
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and

θ′3 − ζ2 + ζ ′2 + θ1 − θ′1 = θ′3 − ζ2 + θ′1 − θ′3 + 2l′2Π + θ1 − θ′1

= −ζ2 + θ1 + 2l′2Π

= θ3 + 2(l′2 − l2)Π

we have ν1z̃1 = x̃1. Similarly, ν2z̃2 = x̃2.

Remark 5. i) We will prove that the case |x̃1| = |x̃2| = |x̃3| can’t happen. Suppose

that x̃1 = (eiθ1x, eiθ2y, eiθ3z)T , x̃2 = (eiα1x, eiα2y, eiα3z)T , x̃3 = (eiβ1x, eiβ2y, eiβ3z)T

where x, y, z ∈ R. Since
∑3

j=1 x̃j ⊗ x̃j = Ã, we have

eiθ1x.e−iθ1y + eiα1x.e−iα2y + eiβ1x.e−iβ2y = 0

eiθ2y.e−iθ3z + eiα2y.e−iα3z + eiβ2y.e−iβ3z = 0

eiθ1x.e−iθ3z + eiα1x.e−iα3z + eiβ1x.e−iβ3z = 0

Since {x̃j}3
j=1 are linearly independent, x, y, z are nonzero numbers. So it follows that

ei(θ1−θ2) + ei(α1−α2) + ei(β1−β2) = 0 (III.17)

ei(θ1−θ3) + ei(α1−α3) + ei(β1−β3) = 0 (III.18)

ei(θ2−θ3) + ei(α2−α3) + ei(β2−β3) = 0 (III.19)

By multiplying (III.17) by ei(−θ1+θ2), (III.18) by ei(−θ1+θ3), (III.19) by ei(−θ2+θ3), we

have

1 + ei(θ2−θ1+α1−α2) + ei(θ2−θ1+β1−β2) = 0 (III.20)

1 + ei(θ3−θ1+α1−α3) + ei(θ3−θ1+β1−β3) = 0 (III.21)

1 + ei(θ3−θ2+α2−α3) + ei(θ3−θ2+β2−β3) = 0 (III.22)
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Let µ1 = θ2 − θ1 + α1 − α2, ν1 = θ2 − θ1 + β1 − β2. So 1 + eiµ1 + eiν1 = 0. By

elementary geometry in a plane, we have either µ1 = 2Π
3

+ 2l1Π, ν1 = 4Π
3

+ 2m1Π or

µ1 = 4Π
3

+ 2l1Π, ν1 = 2Π
3

+ 2m1Π for l1, m1 are integer numbers. So either

θ2 − θ1 + α1 − α2 =
2Π

3
+ 2l1Π, θ2 − θ1 + β1 − β2 =

4Π

3
+ 2m1Π

or

θ2 − θ1 + α1 − α2 =
4Π

3
+ 2l1Π, θ2 − θ1 + β1 − β2 =

2Π

3
+ 2m1Π.

Similarly, we can prove that either

θ3 − θ1 + α1 − α3 =
2Π

3
+ 2l2Π, θ3 − θ1 + β1 − β3 =

4Π

3
+ 2m2Π

or

θ3 − θ1 + α1 − α3 =
4Π

3
+ 2l2Π, θ3 − θ1 + β1 − β3 =

2Π

3
+ +2m2Π

and either

θ3 − θ2 + α2 − α3 =
2Π

3
+ 2l3Π, θ3 − θ2 + β2 − β3 =

4Π

3
+ 2m3Π

or

θ3 − θ2 + α2 − α3 =
4Π

3
+ 2l3Π, θ3 − θ2 + β2 − β3 =

2Π

3
+ 2m3Π

1) Suppose

θ2 − θ1 + α1 − α2 =
2Π

3
+ 2l1Π, θ2 − θ1 + β1 − β2 =

4Π

3
+ 2m1Π (III.23)

θ3 − θ1 + α1 − α3 =
2Π

3
+ 2l2Π, θ3 − θ1 + β1 − β3 =

4Π

3
+ 2m2Π (III.24)

θ3 − θ2 + α2 − α3 =
2Π

3
+ 2l3Π, θ3 − θ2 + β2 − β3 =

4Π

3
+ 2m3Π (III.25)

By subtracting the first equation of (III.24) from the second equation of (III.24), we

have β1 − β3 + α3 − α1 = 2Π
3

+ 2(m2 − l2)Π. On the other hand, by adding the first
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equation of (III.23) to the first equation of (III.25), we have α1 − θ1 + θ3 − α3 =

4Π
3

+ 2(l1 + l3)Π. By subtracting this equation from the second equation of (III.24),

we have β1 − β3 + α3 − α1 = 2(m2 − l1 − l3)Π. So we have a contradiction.

2) Suppose

θ2 − θ1 + α1 − α2 =
4Π

3
+ 2l1Π, θ2 − θ1 + β1 − β2 =

2Π

3
+ 2m1Π (III.26)

θ3 − θ1 + α1 − α3 =
2Π

3
+ 2l2Π, θ3 − θ1 + β1 − β3 =

4Π

3
+ 2m2Π (III.27)

θ3 − θ2 + α2 − α3 =
2Π

3
+ 2l3Π, θ3 − θ2 + β2 − β3 =

4Π

3
+ 2m3Π (III.28)

By subtracting the first equation of (III.27) from the second equation of (III.27), we

have β1 − β3 + α3 − α1 = 2Π
3

+ 2(m2 − l2)Π. On the other hand, by adding the first

equation of (III.26) to the first equation of (III.28), we have α1 − θ1 + θ3 − α3 =

2Π + 2(l1 + l3)Π. By subtracting this equation from the second equation of (III.27),

we have β1 − β3 + α3 − α1 = −2Π
3

+ 2(m2 − l1 − l3)Π. So we have a contradiction.

For other cases we handle similarly. So |x̃1| = |x̃2| = |x̃3| can’t happen.

ii) We will prove that in Case 2.1, it is impossible that y′ = z′ = 0. Indeed, since

∑3
j=1 x̃j ⊗ x̃j = Ã, we have

ei(θ1−θ2)xy + ei(α1−α2)xy + ei(β1−β2)x′y′ = 0 (III.29)

ei(θ1−θ3)xz + ei(α1−α3)xz + ei(β1−β3)x′z′ = 0 (III.30)

ei(θ2−θ3)yz + ei(α2−α3)yz + ei(β2−β3)y′z′ = 0 (III.31)

2x2 + x′2 = λ1 (III.32)

2y2 + y′2 = λ2 (III.33)

2z2 + z′2 = λ3 (III.34)

Due to λ1 > λ2 > λ3 > 0 and
∑3

j=1 λj = 3 we have λ1 > 1, λ3 < 1.
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If y′ = z′ = 0 then x′ = 1. From (III.32), (III.33), (III.34), x =
√

λ1−x′2
2

6= 0, y =
√

λ2

2
6= 0, z =

√

λ3

2
6= 0. From (III.29), (III.30), (III.31), we have

ei(θ1−θ2) + ei(α1−α2) = 0 (III.35)

ei(θ1−θ3) + ei(α1−α3) = 0 (III.36)

ei(θ2−θ3) + ei(α2−α3) = 0 (III.37)

From elementary geometry in the plane and (III.35), we have

θ1 − θ2 = ζ1 + 2l1Π, α1 − α2 = Π + ζ1 + 2m1Π. (III.38)

Similarly, from (0.36) we have

θ1 − θ3 = ζ2 + 2l2Π, α1 − α3 = Π + ζ2 + 2m2Π. (III.39)

From (0.37), we have

θ2 − θ3 = ζ3 + 2l3Π, α2 − α3 = Π + ζ3 + 2m3Π. (III.40)

By subtracting the first equation of (III.36) from the first equation of (III.37), we

have

θ2 − θ3 = ζ2 − ζ1 + 2(l2 − l1)Π

By subtracting the second equation of (III.36) from the second equation of (0.37), we

have

α2 − α3 = ζ2 − ζ1 + 2(m2 −m1)Π

So we have a contradiction to (III.40).

Similarly, if x′ = y′ = 0 then z′ = 1. From (III.6), since λ3 < 1 and z′ = 1, we

have a contradiction.
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CHAPTER IV

PUSH-OUT FRAMES

Let J = {1, 2, ..., k} and {xj}j∈J be a frame on a Hilbert space Hn. We define a

push-out of {xj}j∈J to be a frame {zi}j∈J on Hn⊕R (or Hn⊕C) of the form zj = xj⊕b

for some fixed b 6= 0 in R (or b ∈ C). Not every frame has a push-out which is a

frame. We call the frame {xj}j∈J which has a push-out frame to be a root frame.

Let F = {xj}j∈J be a sequence of vectors in Hn. A space DF = span{xj − xl :

j 6= l ∈ J} is called the difference space of F . Let δF = dim(span(F )⊖DF ). Then for

any finite sequence F , we have δF = 0 or 1 since DF = span{xj − xl : j 6= l ∈ J} =

span{xj − x1 : j 6= 1 ∈ J}. Therefore, span(x1,DF ) = span(F ).

Remark 6. A sequence {xj}j∈J is a push-out frame on Hn if and only if there is a 1-

dimensional subspace E ofHn such that PExj is a constant vector for all j ∈ J. Indeed,

the forward direction is obvious. For the other direction, write PExj = w, j ∈ J for

some w ∈ Hn. Let yj = PE⊥xj ∈ PE⊥Hn. Then {yj}j∈J is a frame in PE⊥Hn and

xj = yj ⊕ w.

Equivalently, a sequence {xj}j∈J is a push-out frame on Hn if and only if there

is a vector w 6= 0 in Hn such that 〈 xj , w 〉 = constant ,∀j ∈ J. To see this, let

E = span{w} and write PExj =
〈xj , w 〉

|w|
w
|w| .

Lemma IV.1. A sequence F is a push-out frame if and only if δF = 1.

Proof. Since F is a push-out frame if anf only if there is a vector w 6= 0 such that

〈 xj , w 〉 = 〈 xl , w 〉 for j 6= l which is equivalent to 〈 xj − xl , w 〉 = 0 for j 6= l.

Therefore, DF is a proper subspace of span(F ).
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Example .2. 1) A basis E = {ej}n
j=1 of Hn is a push-out frame on Hn since e1 can

not be written as a linear combination of {ej − e1 : j = 1, ..., n}.

2) The standard orthonormal basis {e1, e2, e3} in R3 is a push-out frame of the

Mercedes-Benz frame {ẽ1, ẽ2, ẽ3} in R2 where ẽ1 = (
√

2
3
, 0)T , ẽ2 = (− 1√

6
,
√

2
2

)T , ẽ2 =

(− 1√
6
,−

√
2

2
)T . (A Mercedes-Benz frame is a Parseval frame of three equal-norm vec-

tors whose angle between every pair of vectors is 120 degree.)

Remark 7. Let F(Hn) be the set of all frames on Hn, R(Hn) be the set of all root

frames on Hn, P(Hn) be the set of all push-out frames on Hn. It is clear from the

above that F(Hn) = R(Hn) ∪ P(Hn) and R(Hn) ∩ P(Hn) = ∅.

Definition 2. A sequence of vectors is called an ultra tight root frame if it is a tight

root frame which has a push-out to a tight frame.

We can characterize all ultra tight root frames as follows.

Proposition IV.2. A frame F = {xj}j∈J is an ultra tight root frame if and only if

it is a tight frame and
∑

j∈J
xj = 0.

Proof. Suppose that F = {xj}j∈J is an ultra tight root frame. Then there exists

a push-out frame E = {zj}j∈J on K = Hn ⊕ R (or Hn ⊕ C). Thus, there is a

vector w 6= 0 in R (or C) such that P⊥zj = xj and Pzj = w for all j ∈ J where

P is the orthogonal projection on span{w}. Since F is a tight frame on Hn, by

Lemma I.5, we have
∑

j∈J
xj ⊗ xj = λIHn

and since F is a tight frame on K, we

have
∑

j∈J
zj ⊗ zj = αIK where IHn

, IK are identities of Hn, K respctively. We have

αIK =
∑

j∈J
zj ⊗ zj =

∑

j∈J
xj ⊗ xj +

∑

j∈J
xj ⊗ w + w ⊗∑j∈J

xj + kw ⊗ w =

λIHn
+
∑

j∈J
xj ⊗ w + w ⊗∑j∈J

xj + kw ⊗ w. For any x ∈ Hn, αIK(x) = λIHn
(x) +

∑

j∈J
xj ⊗ w(x) + w ⊗∑j∈J

xj(x) + kw ⊗ w(x). Since w ⊥ Hn and x ∈ Hn, we have
∑

j∈J
xj ⊗ w(x) = 0 = kw ⊗ w(x) and hence, (α − λ)x = 〈 x , ∑j∈J

xj 〉w. Since

w ⊥ x, we get (α− λ)x = 0 = 〈 x , ∑j∈J
xj 〉w for any x ∈ Hn. Therefore, α = λ and
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〈 x , ∑j∈J
xj 〉 = 0. Since x is arbitrary in Hn, we have

∑

j∈J
xj = 0.

Now suppose that {xj}j∈J is tight frame onHn with frame bound λ and
∑

j∈J
xj =

0. Then
∑

j∈J
xj ⊗ xj = λIHn

. Let w =
√

λ
k
. Then

∑

j∈J
(xj ⊕ w) ⊗ (xj ⊕ w) =

∑

j∈J
xj ⊗ xj +

∑

j∈J
xj ⊗ w + w ⊗∑j∈J

xj + kw ⊗ w. Since
∑

j∈J
xj = 0, we have

∑

j∈J
(xj ⊕ w) ⊗ (xj ⊕ w) =

∑

j∈J
xj ⊗ xj + kw ⊗ w = λIHn

⊕ λ1 = λ(IH ⊕ 1). Let

zj = xj ⊕ w. Then {zj}j∈J is a tight push-out frame of {xj}j∈J.

Definition 3. A frame {xJ}j∈J is called a scaled push-out (scaled root frame) of a frame

{zj}j∈J if there are scalars wj , j ∈ J of modulus 1 such that {wjxj}j∈J is a push-out

frame (a root frame) of {zj}j∈J.

Remark 8. 1)A frame {zj}j∈J is a scaled push-out on Hn if and only if it is a frame

and there is w 6= 0 in Hn such that |〈 xj , w 〉| = constant, ∀j ∈ J.

2)Suppose {zj}j∈J is an equiangular uniform frame. Then it is a scaled push-

out frame. Indeed, let w = z1. Then
|〈 zj , z1 〉|
|zj ||z1| = |〈 zl , z1 〉|

|zl||z1| and therefore, |〈 zj , z1 〉| =

|〈 zl , z1 〉| for j 6= l.

3)A Parseval uniform frame {xj} of n + 1 vectors in Cn is a scaled root frame

since by Proposition I.7, there exists λ1, λ2, ..., λn+1 in Cn such that {xj ⊕ λj} is an

orthonormal basis in Cn+1. Thus, |λj| = c for c =
√

1 − ||xj ||2 ∀j. Let aj =
λj

c
. So

|aj| = 1. It follows that {xj ⊕ ajc} is an orthonormal basis for Cn+1, so is {ājxj ⊕ c}.

Hence, {ājxj} is a root frame.

Example .3. A Parseval uniform frame of n + 1 vectors in Rn may be a push-

out frame. Let x1 =
√

2
2

(1, 0,
√

2
2

)T , x2 =
√

2
2

((−1, 0,
√

2
2

)T , x3 =
√

2
2

(0, 1,
√

2
2

)T , x4 =
√

2
2

(0,−1,
√

2
2

)T . Then {x1, x2, x3, x4} is a Parseval uniform frame of four vectors in

R3 which is a push-out frame.

We also note that every frame that contains a root frame as a subset is a root frame.

Definition 4. A root frame is called minimal if no proper subset is root frame itself.
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Proposition IV.3. 1)A sequence F = {xi : i = 1, ..., k} is a minimal root frame in

Rn, k ≥ n+ 1 if and only if span(F ) = Rn = DF (the difference space) and no vector

in F is convex combination of the rest.

2) A minimal root frame F in Rn is a root frame that has a push-out to a basis.

3)A minimal root frame in Rn have cardinality n+ 1.

Proof. 1) F is root frame if and only if span(F ) = Rn = DF . Therefore, F is

minimal root frame if and only if there is c 6= 0 such that dim(span{(xj ⊕ c) : j =

1, 2, ..., k}) = n + 1 and any subset of k − 1 vectors of A = {(xj ⊕ c) : j = 1, 2, ..., k}

spans a n-dimensional subspace. Equivalently, for every j, (xj ⊕ c) is not a linear

combination of A \ {(xj ⊕ c)}. That means, there does not exist a set of real scalars

{al : l ∈ {1, 2, ..., k} \ {j}} such that (xj ⊕ c) =
∑

l 6=j al(xl ⊕ c). It is equivalent to

say that for any j, xj can not be written as
∑

l 6=j alxl with
∑

l 6=j al = 1, which is

equivalent to xj is not a convex combination of F \ {xj} for any j.

2) Since F is a minimal root frame, the above push-out frame A spans a (n+1)-

dimensional space and every proper subset of A spans a space of dimension less than

n + 1. Therefore, no proper subset of A is a basis for Rn+1. Because every spanning

set for a finite dimensional space has a subset which is basis, A itself is a basis for

Rn+1.

3) It follows directly from part 2.

Proposition IV.4. 1) For any frames F = {xj}k
j=1 in Hn except bases, there are

scalars {aj}k
j=1 such that the scaled frame A = {xj

aj
}k

j=1 is a root frame.

2)For any frames F = {xj}k
j=1 in Hn except frames contain zero vectors, there

are scalars {aj}k
j=1 such that the scaled frame A = {xj

aj
}k

j=1 is a push-out frame.

Proof. 1) If F is a basis then k = n and any push-out sequence of scaled basis

consisting of n vectors cannot span (n + 1)-dimensional space. Thus, a scaled basis
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is not a root frame. Suppose F is a frame which is not a basis. Then span(F ) = Hn.

Let M be a k × n matrix whose rows are xj . Consider n column vectors y1, y2, ..., yn

of M in k-dimensional space. Since k > n, there is a vector a = (a1, a2, ..., ak) in

Hk with aj 6= 0, ∀j such that a 6∈ span{y1, y2, ..., yn}. Then {xj

aj
}k

j=1 is a scaled frame

which is root frame.

2) It is obvious that if F contains zero vectors, then any scaled frame also contains

zero vectors and hence can’t be a push-out frame. Now suppose F is a frame for Hn

but not a push-out frame with xj 6= 0, ∀j. Then k > n. Let E be a subspace of Hn

with dimension n−1 which doesn’t contain vectors {xj}k
j=1. Let P be the orthogonal

projection onto E and let aj = P⊥(xj), ∀ j. Since E doesn’t contain vectors {xj}k
j=1,

we have aj 6= 0, ∀j. Hence {xj

aj
}k

j=1 is a scaled frame which is a push-out of the frame

{P (
xj

aj
)}k

j=1.

Proposition IV.5. Suppose F = {xj}k
j=1 is a strictly equiangular root frame in Rn.

Then F is a tight frame.

Proof. Suppose 〈 xj , xl 〉 = a, ∀ j 6= l and ||xj || = b, ∀ j. Let S =
∑k

j=1 xj ⊗xj . Then

Sxj = ax1 + ax2 + ... + b2xj + ...+ axk

Sxl = ax1 + ax2 + ... + b2xl + ... + axk

By substracting two above equations, we get:

S(xj − xl) = b2(xj − xl) + a(xl − xj) = (b2 − a)(xj − xl), ∀ j 6= l .

Since F is a root frame for Rn, span{xj − xl : j 6= l} = Rn, S = (b2 − a)I and hence

F is tight.

Remark 9. 1) In R2, by multiplying by -1 and rotating if necessary, every unit norm

equiangular frame is a scalar multiple of a Mercedes-Benz frame which is tight and
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|〈 xj , xl 〉| = 1
2

for j 6= l but in C2, it is no longer true. Consider x1 = (1, 0)T , x2 =
(

1√
3
, i

√
2√
3

)T

, x3 =
(

1√
3
,− 1√

3
− i√

6

)T

which is a non-tight unit norm equiangular frame

in C2 with |〈 xj , xl 〉| = 1√
3

for j 6= l.

One natural question is that if every equal-norm equiangular frame of three vec-

tors in C3 is geometrically equivalent to a push-out of a scalar multiple of a Mercedes-

Benz frame in C2. The answer is negative. One example of a non-tight equiangular

frame in C3 of three vectors is






x1 = (−i, 0, 1)T , x2 =

(

1√
3
, i

√
2√
3
, 1

)T

, x3 =

(

1√
3
,− 1√

2
− i√

6
, 1

)T







which is a push-out of a non-tight unit norm equiangular frame in C2.

Example .4. Let x1 = (1, 0)T , x2 =
(

1√
3
, i

√
2√
3

)T

, x3 =
(

1√
3
,− 1√

2
− i√

6

)T

,

x4 =
(

1√
3
, 1√

2
− i√

6

)T

. Then {xj}4
j=1 is an equiangular frame in C2 which is an

optimal Grassmannian frame since M({xj}4
j=1) =

√
3

3
.

Remark 10. In an infinite dimensional separable Hilbert space, it is still true that

δX = 0 or 1 for any set X. However, any infinite Bessel sequence X = {xj}∞j=1 which

spans an infinite dimensional space has δX = 0 because if there is some vector u 6= 0 in

span(X) and u ⊥ DX , then 〈 u , xj − xl 〉 = 0, ∀ j 6= l. So 〈 u , xj 〉 = c, ∀ j. It follows

that
∑∞

j=1 |〈 u , xj 〉|2 = ∞ if c 6= 0. Since X is a Bessel sequence,
∑∞

j=1 |〈 u , xj 〉|2 <

∞. So span(X) = DX and thus, δX = 0.

In particular, any infinite frame is a root frame. But a Schauder basis X in an

infinite dimensional separable space H can have δX = 1. For example, let H be an

infinite dimensional space with othonormal basis {ej}∞j=1 and let xj = j2ej, ∀ j. Then

{xj}∞j=1 is a Schauder basis but not a frame. Let x =
∑∞

j=1
ej

j2 . Then 〈 x , xj 〉 =

〈 x , xl 〉 = 1, ∀ j 6= l and therefore 〈 x , xj − xl 〉 = 0, ∀j 6= l and span{xj − xl : j 6=

l} 6= H . It implies that δX = 1.
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CHAPTER V

GROUP FRAMES

Let G be a group and U(B(H)) be the group of all unitary operators on a Hilbert

space H . A unitary representation Π of G on H is a group homomorphism from G

into U(B(H)). In other words, for every g, h ∈ G, Π(g),Π(h) are unitary operators

on H such that Π(g)Π(h) = Π(gh) and Π(g−1) = Π(g)−1.

Let Π : G→ U(B(H)) be a unitary representation of G on H . If there is x ∈ H

such that {Π(g)x}g∈G is a frame for H then the frame is called a group frame and the

vector is called a frame vector for G.

Lemma V.1. Suppose U is a countable group of unitary operators on H which has

a frame vector x, and let S be the frame operator of {Ux}. Then S commutes with

U .

Proof. We have:

S =
∑

U∈U(Ux) ⊗ (Ux) =
∑

U∈U U(x⊗ x)U∗.

For every V ∈ U ,

V SV ∗ =
∑

U∈U V U(x⊗ x)U∗V ∗ =
∑

U1∈U U1(x⊗ x)U∗
1 = S.

where U1 = V U . So V S = SV .

We use the fact that every positive operator Q has a unique positive square root

Q1/2 which commutes with every operator in B(H) that commutes with Q.

The left regular representation ΠL is a map from G to U(ℓ2(G)) defined by

ΠL(g)(ξh) = ξgh where g, h ∈ G and {ξg}g∈G is the standard orthonormal basis in

ℓ2(G), that is, ξg(h) = 0 if h 6= g and ξg(g) = 1.
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Lemma V.2. Suppose G is a countable group and {xg}g∈G is a frame indexed by G

for H satisfying

〈xhg1, xhg2〉 = 〈xg1, xg2〉 (V.1)

for all h, g1, g2 ∈ G. Let Θ be the analysis operator of the frame {xg}g∈G. Then

ran(Θ) is invariant under ΠL(G).

Proof. Using ΠL(h){λg}g∈G = {λh−1g}g∈G for every sequence {λg}g∈G ∈ ℓ2(G) and

(V.1), we have for every h ∈ G,

ΠL(h)Θ(xl) = ΠL(h){〈 xl , xg 〉}g∈G

= {〈 xl , xh−1g 〉}g∈G

= {〈 xh−1g′ , xh−1g 〉}g∈G

= {〈 xg′ , xg 〉}g∈G

= Θ(x′g)

where g′ = hl. Therefore, since H = span({xg}g∈G), Θ(H) is closed and ΠL(h) is

continuous, we have for every h ∈ G, ΠL(h)(Θ(H)) ⊆ Θ(H).

Proposition V.3. Suppose {xg}g∈G is a Parseval frame for H indexed by G and

for every g1, g2, h ∈ G, (V.1) holds. Then the frame is a group frame for a unitary

representation of G on H .

Proof. Let Θ be the analysis operator of {xg}g∈G and P be the orthogonal projection

from ℓ2(G) onto the range of Θ which is a closed subspace of ℓ2(G). Let {ξg} be the

standard orthonormal basis of ℓ2(G). Then range of Θ is invariant under ΠL(G) :

ℓ2(G) → ℓ2(G). Let e be the identity element of G. Then for any g ∈ G, since

ΠL(g)P = PΠL(g) we have ΠL(g)Pξe = PΠL(g)ξe = Pξge = Pξg. Since {xg} is a
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Parseval frame, Θ is an isometry and xg = Θ∗|Θ(H)Pξg for all g ∈ G where Θ∗|Θ(H)

is the adjoint operator of Θ restricted on the range of Θ. Let ρ : G → U(B(H))

is defined by ρ(g) = Θ∗|Θ(H)ΠL(g)Θ. Then xg = Θ∗|Θ(H)Pξg = Θ∗|Θ(H)ΠL(g)Pξe =

Θ∗|Θ(H)ΠL(g)Θ(xe) because Pξe = Θ(xe). So xg = ρ(g)(x) for any g ∈ G and

therefore, {xg} is a group frame for a unitary representation ρ of G on H .

Lemma V.4. If {xg}g∈G is a group frame for a unitary representation satisfying the

condition (V.1) then the corresponding canonical Parseval frame S−1/2(xg) where S

is the frame operator of {xg} also satisfy (V.1).

Proof. Suppose there are a unitary representation ρ and a vector x such that xg =

ρ(g)x. Since S commutes with ρ(g), S−1 also commutes with ρ(g) for all g ∈ G. So

S−1/2 commutes with ρ(g) for all g ∈ G as well. Let yg = S−1/2(xg). Then we have

yg = S−1/2ρ(g)x = ρ(g)S−1/2x. Thus,

〈 yhg1
, yhg2

〉 = 〈 ρ(hg1)S
−1/2x , ρ(hg2)S

−1/2x 〉

= 〈 ρ(h)ρ(g1)S
−1/2x , ρ(h)ρ(g2)S

−1/2x 〉

= 〈 ρ(g1)S
−1/2x , ρ(g2)S

−1/2x 〉

= 〈 yg1
, yg1

〉

Remark 11. 1) If a frame {xg} indexed by a group G ({xg} is not necessary a group

frame) satisfies (V.1), the corresponding canonical Parseval frame S−1/2(xg) does not

necessarily satisfy (V.1). For example, consider a frame F consisting of 4 vectors

x1 = (1, 0, 0)T , x2 = (−1

2
, 0,

√
3

2
)T , x3 = (0,

√

2

3
,− 1√

3
)T , x4 = (−1

2
,−
√

2

3
,−

√
3

2
+

1√
3
)
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We have

〈 x1 , x2 〉 = 〈 x2 , x3 〉 = 〈 x3 , x4 〉 = 〈 x4 , x1 〉 = −1/2

and

〈 x2 , x4 〉 = 〈 x1 , x3 〉 = 0 .

So F satisfy the condition (V.1). But 〈S−1/2x3 , S
−1/2x4 〉 = −1 while

〈S−1/2x1 , S
−1/2x2 〉 = −1/4. So the corresponding canonical Parseval frame does not

satisfy (V.1).

2)Note that if we drop the condition that {xg}g∈G is a Parseval frame then

the Proposition (V.3) fails. The frame F in part 1 is not a Parseval frame, satisfying

condition (V.1). This is not a group frame because if there is a unitary representation

ρ and a vector x such that xj = ρ(j)x then S−1/2(xj) must satisfy (V.1) also by Lemma

(V.4) but S−1/2(xj) does not.

Proposition V.5. If {xg}g∈G is a Parseval frame such that range ΘX is invariant

under the left regular representation ΠL(G) then we have 〈 xhg1 , xhg2 〉 = 〈 xg1 , xg2 〉

for every h, g1, g2 ∈ G and there is a faithful unitary representation ρ of G on H such

that {xg}g∈G is a group frame.

Proof. Since ran(ΘX) is invariant under ΠL(G), we have PΠL(G) = ΠL(G)P where

P is the orthogonal projection from ℓ2(G) onto ran(ΘX). That {xg}g∈G is a Parseval

frame implies xg = Pξg and hence

〈 xhg1
, xhg2

〉 = 〈Pξhg1
, P ξhg2

〉

= 〈PΠL(h)ξg1
, PΠL(h)ξg2

〉

= 〈ΠL(h)Pξg1
, ΠL(h)Pξg2

〉

= 〈Pξg1
, P ξg2

〉

= 〈 xg1
, xg2

〉
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By Proposition (V.3), {xg}g∈G is a group frame and xg = ρ(g)x where ρ is a unitary

representation of G on H and x ∈ H . Let M = ran(ΘX) and let φ̃ = ΠL(G)|M .

Since ΠL(G) : M → M is a unitary representation, so is φ̃ : G → B(M). Define

φ : G → B(H) by φ(g) = Θ∗φ̃(g)Θ for any g ∈ G. Note that φ(g) = Θ∗ΠL(G)Θ. So

φ is a unitary representation. It is obvious that φ is one to one. So φ is a faithful

representation. We want to prove that φ(g)xe = xg for all g ∈ G. We have

Θ(xg) = Pξg = PΠL(g)ξe = P 2ΠL(g)ξe = PΠL(g)Pξe = ΘΘ∗ΠL(g)Θxe = Θφ(g)xe

So xg = φ(g)xe.

Remark 12. If we drop the condition that {xg} is a Parseval frame then Proposition

(V.3) is no longer true. We consider the following example. Let G = Z3, H =

R2, x0 = (1, 0)T , x1 = (0,−1)T , x2 = (−1, 1)T . Then {x0, x1, x2} is a frame with

range ΘX = span{(1, 0,−1)T , (0,−1, 1)T} which is invariant under the left regular

representation ΠL(G). Since 〈x0, x1〉 6= 〈x1, x2〉, this frame is not a group frame for

any unitary representation. However, if we consider a mapping ρ : G → B−1(R2)

defined by ρ(j) = Aj where A : R2 → R2 has a matrix representation







0 1

−1 −1







then ρ is a group representation (not unitary representation). Let x = (1, 0)T . Then

x is a frame vector, that is, xj = ρ(j)x for all j ∈ Z3.
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CHAPTER VI

COCKTAIL PARTY PROBLEM

The ”cocktail party problem” is the problem of how one can separate one sound

- perhaps a voice - from a group of other recorded sounds, perhaps a multitude of

voices at a cocktail party. Recently, Cassaza, Edidin and Balan [1] gave a solution to

this problem by constructing certain Parseval frames for a finite dimensional Hilbert

space which permits signal reconstruction from the absolute values of the frame co-

efficients. In this chapter, we will discuss the mathematics involved in the ”cocktail

party problem”.

Definition 5. 1) A frame {xj}k
j=1 in a n-dimensional Hilbert space Hn is said to have

|Θ|-property if the map g : Hn → Ck defined by g(x) = (|〈 x , xl 〉|)k
l=1 ∈ Ck is one to

one modulo multiples of scalar modulus 1, that is, if x, y ∈ Hn and g(x) = g(y) then

x = λy for some scalar λ with |λ| = 1.

2) Let E be a basis for n-dimensional vector space X. A subspace M is said to be

oblique to E if the map f : X → Cn is one to one modulo multiples of scalar modulus

1 on M , where f is the nonlinear map defined by f(x) = (|aj|)n
j=1 where (aj)

n
j=1 is

the coefficient vector of x with respect to E .

Lemma VI.1. A frame {xj}k
j=1 for Hn has |Θ|-property if and only if the range of

analysis operator Θ is oblique with respect to the standard orthonormal basis for Ck

Proof. For the forward direction, assume that {xj}k
j=1 has |Θ|-property, M is the

range of analysis operator Θ and y1, y2 ∈ M with f(y1) = f(y2). So there exist

z1, z2 ∈ Hn such that y1 = Θ(z1), y2 = Θ(z2). Hence |〈 z1 , xj 〉| = |〈 z2 , xj 〉| for all

j = 1, 2, ..., k and so g(z1) = g(z2) which implies z1 = λz2 with |λ| = 1. Therefore,
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y1 = λy2 and M is oblique with respect to the standard orthonormal basis for Ck.

Now assume that ran(Θ) is oblique with respect to the standard orthonormal

basis for Ck and y1, y2 ∈ Hn such that g(y1) = g(y2) which implies |〈 y1 , xj 〉| =

|〈 y2 , xj 〉| for all j = 1, 2, ..., k. Therefore, f(Θ(y1)) = f(Θ(y2)) and Θ(y1) = λΘ(y2)

with |λ| = 1. Since Θ is one to one, y1 = λy2.

Remark 13. If N is a subspace of M and M is oblique with respect to E then so is N .

Lemma VI.2. If some ej ∈ E is in M and if the dimension of M is greater than 2

then M is not oblique with respect to E .

Proof. Without loss of generality we can assume that e1 ∈ E ∩M . Let v =
∑

cjej

be a vector in M linearly independent to e1. By subtracting a scalar multiple of e1

if necessary, we can assume c1 = 0. Then x1 = v + e1, x2 = v − e1 are in M and

f(x1) = f(x2) but x1, x2 are linearly independent.

Definition 6. 1) A subspace E ⊂ X is diagonal with respect to a basis E if E is a

linear span of basis vectors from E . If I is a nonempty subset of {1, 2, ..., n}, denote

EI = span{ej , j ∈ I}.

2) If E,F are subspaces of X such that E ∩ F = {0}, we will say that E,F are

disjoint. A pair E,F is called a nontrivial disjoint pair if E ∩F = {0}, E 6= {0}, F 6=

{0}.

Lemma VI.3. If I, J are disjoint nonempty subsets of {1, 2, ..., n} such that M∩EI 6=

{0} and M ∩EJ 6= {0} then M is not oblique with respect to E .

Proof. Let u, v be nonzero vectors in M ∩ EI and M ∩ EJ , respectively. Let x1 =

u+ v, x2 = u− v. Then f(x1) = f(x2) but x2 is not a scalar multiple of x1.
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In the real case, Lemma (VI.3) has a converse. Therefore we can characterize

the obliqueness.

Proposition VI.4. Let X be a n dimensional real vector space with a basis E and M

be a subspace of X. Then M is oblique with respect to E if and only if for all diagonal

subspaces EI either M ∩ EI 6= {0} or M ∩ EIc 6= {0} where Ic = {1, 2, ..., n} \ I

Proof. The forward direction comes from Lemma (VI.3). Now suppose M is not

oblique with respect to E . Then there are x, y 6= 0 ∈ M,x /∈ {±y} such thatf(x) =

f(y). We write x =
∑

ajej , y =
∑

bjej , aj , bj ∈ R. Then |aj| = |bj | for all j

and bj = aj or bj = −aj for all j. Let L = {j : bj = aj 6= 0}, J = {j : bj =

−aj 6= 0}, K = {j : bj = aj = 0}. Then x + y ∈ EL 6= {0}, x − y ∈ EJ 6= {0}. So

M ∩EL 6= {0},M ∩ EJ 6= {0} which implies M ∩ ELc 6= {0}, a contradiction.

Lemma VI.5. Suppose that A1, A2 are positive operators and let A = A1 + A2. If

x ∈ H and Ax = 0 then A1x = 0 = A2x.

Proof. Since 0 = 〈Ax , x 〉 = 〈A1x , x 〉+〈A2x , x 〉 and 〈A1x , x 〉 ≥ 0, 〈A2x , x 〉 ≥ 0,

we have 〈A1x , x 〉 = 0 = 〈A2x , x 〉 which implies

〈A1/2
1 x , A

1/2
1 x 〉 = 0 = 〈A1/2

2 x , A
1/2
2 x 〉

. So ||A1/2
1 x|| = 0 = ||A1/2

2 x|| and A
1/2
1 x = 0 = A

1/2
2 x. Then A1x = A

1/2
1 (A

1/2
1 x) =

0 = A
1/2
2 (A

1/2
2 x) = A2x

Proposition VI.6. Suppose that P,Q are orthogonal projections with complemen-

tary rank in B(H), i.e. rank(Q) = dim(H)− rank(P ) for a finite dimensional Hilbert

space H . Then P (H) ∩Q(H) = {0} if and only if P +Q is an invertible operator in

B(H).



75

Proof. Assume that P + Q is an invertible operator in B(H). Then (P + Q)(H) =

P (H) + Q(H) = H . Since dimH = dim(P (H) +Q(H)) = dimP (H) + dim Q(H) −

dim (P (H)∩Q(H)) = dimH−dim(P (H)∩Q(H)), we have dim (P (H)∩Q(H)) = 0

which implies that P (H) ∩Q(H) = {0}.

Now suppose that P (H)∩Q(H) = {0}. Then dimH = dim(P (H)+Q(H)) which

implies that P (H) + Q(H) = H . So P + Q is surjective and H = P (H) ⊕ Q(H).

If (P + Q)(x) = 0 then by Lemma (VI.5), P (x) = Q(x) = 0 and therefore x ∈

Q(H)∩P (H) = {0}. So x = 0 and P +Q is injective. Hence, P +Q is invertible.

Corollary VI.7. If P,Q are orthogonal projections in a finite dimensional Hilbert

space H with complementary rank then P (H) ∩ Q(H) = {0} if and only if det(P +

Q) > 0.

Proposition VI.8. If M is a n-dimensional subspace of a k-dimensional space H

then the set of all subspaces of H of dimension (k − n) that are disjoint from M is

open in the set of all subspaces of dimension (k − n) with the topology on subspaces

induced by metric d(M,L) = ||PM −PL|| where PM , PL are the orthogonal projections

onto M,L, respectively.

Proof. Suppose that N is a (k − n) dimensional subspace of H that is disjoint from

M . By Corollary (VI.7), det(PM + PN) > 0. Since det is a continuous function, if

||PW − PN || is small enough then det(PM + PW ) > 0. From [12], dim(PW (H)) =

dim(PN(H)). Therefore, W is a subspace of dimension (k − n) that is disjoint from

M

Lemma VI.9. Let X, Y be two closed subspaces of H . Then

d(X, Y ) = max{sup{d(x, Y ) : x ∈ X, ||x|| ≤ 1}, sup{d(X, y) : y ∈ Y, ||y|| ≤ 1}}
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Proof. We have d(x, Y ) = ||x− PY x|| = ||(I − PY )x|| and

sup{d(x, Y ) : x ∈ X, ||x|| ≤ 1} = sup{||(I − PY )x||
||x|| : x 6= 0 ∈ X}

d(X, Y ) = ||PY − PX || = sup

{ ||(PY − PX)h||
||h|| : h 6= 0 ∈ H

}

= sup

{

√

||PY (I − PX)h||2 + ||(I − PY )PXh||2
||h|| : h 6= 0 ∈ H

}

≥ sup

{

√

||PY (I − PX)h||2 + ||(I − PY )PXh||2
||h|| : h 6= 0 ∈ X

}

= sup

{ ||(I − PY )h||
||h|| : h 6= 0 ∈ X

}

Let ρY = sup

{ ||(I − PY )h||
||h|| : h 6= 0 ∈ X

}

and hence d(X, Y ) ≥ ρY .

Similarly, let ρX = sup

{ ||(I − PX)h||
||h|| : h 6= 0 ∈ Y

}

and hence d(X, Y ) ≥ ρX .

So d(X, Y ) ≥ max{ρX , ρY }.

Now we show that d(X, Y ) ≤ max{ρX , ρY }. From the definition of ρY , we have

||(I − PY )PXh|| ≤ ρY ||PXh|| for any h ∈ H . So

||(I − PY )PXh||2 ≤ ρ2
Y ||PXh||2 (VI.1)

for any h ∈ H

On the other hand, we have

||PY (I − PX)h||2 = 〈PY (I − PX)h , PY (I − PX)h 〉

= 〈PY (I − PX)h , (I − PX)h 〉 = 〈 (I − PX)PY (I − PX)h , (I − PX)h 〉

≤ ||(I − PX)PY (I − PX)h||.||(I − PX)h||
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By the definition of ρX , we have

||(I − PX)PY (I − PX)h|| ≤ ρX ||PY (I − PX)h||

for any h ∈ H

Therefore,

||PY (I − PX)h||2 ≤ ρX ||PY (I − PX)h||.||(I − PX)h||

||PY (I − PX)h|| ≤ ρX ||(I − PX)h|| (VI.2)

From equation (VI.1) and (VI.2), we have

||(I − PY )PXh||2||PY (I − PX)h||2 ≤ ρ2
Y ||PXh||2 + ρ2

X ||(I − PX)h||2

≤ (max{ρX , ρY })2.(||PXh||2 + ||(I − PX)h||2

≤ (max{ρX , ρY })2.||h||2

Thus, d(X, Y ) ≤ max{ρX , ρY } and d(X, Y ) = max{ρX , ρY }

Lemma VI.10. If M,E are subspaces of a k-dimensional Hilbert space H and

dim(M) = n, dim(E) = k − n then dim(M + E)⊥ = dim(M ∩ E).

Proof. Since (M +E)⊥ = M⊥∩E⊥, (M ∩E)⊥ = M⊥ +E⊥, we have dim(M +E)⊥ =

dim(M⊥ ∩ E⊥) = dim(M⊥) + dim(E⊥) − dim(M⊥ + E⊥) = k − dim(M⊥ + E⊥) =

k − dim(M ∩ E)⊥ = dim(M ∩E)

Let {y1, ..., yl} be an orthonormal basis for M ∩ E and {z1, ..., zl} be an or-

thonormal basis for (M + E)⊥. Let 0 < ǫ < 1 and wj = yj + ǫzj for j = 1, ..., l. Let

s1, ..., sn−l be an orthonormal basis for (M ∩ E)⊥ in M . So {s1, ..., sn−l, y1, ..., yl} is

an orthonormal basis for M .

Lemma VI.11. The set {s1, ..., sn−l, y1 + ǫz1, ..., yl + ǫzl} are linearly independent.
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Proof. Suppose
∑n−l

j=1 ajsj +
∑l

m=1 bm(ym + ǫzm) = 0.

Then
∑n−l

j=1 ajsj +
∑l

m=1 bmym = −∑l
m=1 bmǫzm ∈M ∩M⊥.

Therefore,
∑n−l

j=1 ajsj +
∑l

m=1 bmym = 0 and aj = bm = 0 for all j,m.

Proposition VI.12. Given 0 < ǫ < 1 and let wj = yj+ǫzj for j = 1, ..., l. Let M̃ be a

subspace spanning by {s1, ..., sn−l, w1, ..., wl}. Then M̃ ∩E = {0} and d(M̃,M) < 2ǫ.

Proof. Suppose x ∈ M̃ ∩ E. Then x can be written as

x =
n−l
∑

j=1

ajsj +
l
∑

m=1

bmym +
l
∑

m=1

bmǫmzm

Since
∑l

m=1 bmǫmzm ∈ (M+E)⊥ = M⊥∩E⊥ and x ∈ E, we have 〈 x , ∑l
m=1 bmǫmzm 〉 =

0. Since
∑n−l

j=1 ajsj +
∑l

m=1 bmym ∈ M and
∑l

m=1 bmǫmzm ∈ M⊥ ∩ E⊥ ⊂ M⊥, we

have 0 = 〈 x , ∑l
m=1 bmǫmzm 〉 =

∑l
m=1 |bm|2ǫ2m which implies that bm = 0 for all

m = 1, ..., l. Therefore, x =
∑n−l

j=1 ajsj ∈ (M ∩ E)⊥ ∩ (M ∩ E) and hence x = 0. So

M̃ ∩E = {0}.

Consider the Hausdorff distance between two closed unit balls BM
1 , B

M̃
1 . Let

x ∈ BM̃
1 . Then

x =
n−l
∑

j=1

ajsj +
l
∑

m=1

bmym +
l
∑

m=1

bmǫzm

and ||x||2 =
∑n−l

j=1 |aj|2+
∑l

m=1 |bm|2+
∑l

m=1 |bm|2ǫ2 ≤ 1 which implies that
∑l

m=1 |bm|2 <

1. We have

d(x,BM
1 ) ≤ d(

n−l
∑

j=1

ajsj +
l
∑

m=1

bmym +
l
∑

m=1

bmǫzm,
n−l
∑

j=1

ajsj +
l
∑

m=1

bmym)

= ||
l
∑

m=1

bmǫzm|| = (
l
∑

m=1

|bm|2ǫ2)1/2 < ǫ

Suppose x ∈ BM
1 . Let x =

∑n−l
j=1 ajsj +

∑l
m=1 bmym. Then ||x||2 =

∑n−l
j=1 |aj |2 +
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∑l
m=1 |bm|2 ≤ 1 which implies that

∑l
m=1 |bm|2 ≤ 1. Let dm = bm(1 − ǫ2) for m =

1, ..., l.

Therefore, |dm| < |bm| and
∑l

m=1 |dm|2 <
∑l

m=1 |bm|2 ≤ 1. We have

l
∑

m=1

|bm|2 =

l
∑

m=1

| dm

1 − ǫ2
|2 =

1

(1 − ǫ2)2

l
∑

m=1

|dm|2 ≥ (1+ǫ2)

l
∑

m=1

|dm|2 =

l
∑

m=1

d2
m+ǫ2

l
∑

m=1

d2
m

Let y =
∑n−l

j=1 ajsj +
∑l

m=1 dmym +
∑l

m=1 dmǫzm. Then

||y||2 =

n−l
∑

j=1

|aj |2 +

l
∑

m=1

d2
m + ǫ2

l
∑

m=1

d2
m ≤

n−l
∑

j=1

|aj|2 +

l
∑

m=1

|bm|2 ≤ 1

and so y ∈ BM̃
1 . Then

d(x,BM̃
1 ) ≤ d(x, y) =

l
∑

m=1

|bm − dm|2 + ǫ2
l
∑

m=1

|dm|2

= ǫ4
l
∑

m=1

|bm|2 + ǫ2
l
∑

m=1

|dm|2

< ǫ4 + ǫ2 < 2ǫ

Corollary VI.13. Suppose M is a n-dimensional subspace of a k-dimensional Hilbert

space H . Then the set of all (k − n)-dimensional subspaces of H that are disjoint

from M is open, dense in the set of all (k − n)-dimensional subspaces.

Proof. It comes directly from Proposition (VI.8) and Proposition (VI.12).

Corollary VI.14. The set of all (k−n)-dimensional subspaces ofH which are disjoint

from every diagonal subspace of n-dimension with respect to a fixed orthonormal basis

{ej}k
j=1 is open, dense in the set of all (k − n)-dimensional subspaces of H .
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Proof. It comes directly from Baire Category Theorem and the fact that the number

of diagonal subspace of n-dimension with respect to the basis {ej}k
j=1 is finite.

Lemma VI.15. Suppose E,F are closed subspaces of a Hilbert space H . Let ΘE,F

be the angle between E and F defined by:

cos(ΘE,F ) = sup {cos(Θl,s)}

where sup is taken over l, s which are a 1-dimensional subspaces of E and F , respec-

tively. Then cos(ΘE,F ) = ||PQ|| where P,Q are the orthogonal projection onto E,F ,

respectively.

Proof. We have

||PQ|| = sup{||PQx|| : x ∈ H, ||x|| = 1}

≥ sup{||PQx|| : x ∈ F, ||x|| = 1}

= sup{||Px|| : x ∈ F, ||x|| = 1}

= sup

{〈Px , Px 〉
||Px|| : x ∈ F, ||x|| = 1

}

= sup

{

〈 Px

||Px|| , x 〉 : x ∈ F, ||x|| = 1

}

= sup{|〈 u , v 〉| : u ∈ E, v ∈ F, ||u|| = ||v|| = 1}

= cos(ΘE,F )
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Conversely,

||PQ|| = sup{||PQx|| : x ∈ H, ||x|| = 1}

= sup{||Py|| : y ∈ F, ||y|| ≤ 1}

= sup

{〈Py , y 〉
||Py|| : y ∈ F, ||y|| ≤ 1

}

≤ sup

{ 〈Py , y 〉
||Py||.||y|| : y ∈ F \ {0}, ||y|| ≤ 1

}

≤ sup

{ 〈Py , y 〉
||Py||.||y|| : y ∈ F \ {0}

}

≤ sup{|〈 u , v 〉| : u ∈ E, v ∈ F, ||u|| = ||v|| = 1}

= cos(ΘE,F )

Thus, ||PQ|| = cos(ΘE,F )

Proposition VI.16. Let H be a real k-dimensional Hilbert space with an orthonor-

mal basis E = {ej}k
j=1. Let n ≤ k

2
. Then the set of n-dimensional subspaces which

are oblique with respect to E is dense in the set of n-dimensional subspaces.

Proof. . Let M be any n-dimensional subspaces. Given 1 > ǫ > 0. By Corollary

(VI.13), there is a n-dimensional subspace N that is disjoint from all diagonal (k−n)-

dimensional subspaces and d(N,M) < ǫ. Let J be any subset of {1, 2, ..., k}. If both

|J | > k − n and |Jc| > k − n, then k = |J | + |Jc| > 2k − 2n ≥ k, a contradiction. So

either |J | ≤ k−n or |Jc| ≤ k−n. If |J | ≤ k−n. then let I be a subset of {1, 2, ..., k}

that contains J with |I| = k−n. Then EJ ⊆ EI and N ∩EI = {0} which implies that

N ∩EJ = {0}. Similarly, if |Jc| ≤ k− n we can find a subset I that contains Jc with

|I| = k − n. Then EJc ⊆ EI and N ∩ EI = {0} which implies that N ∩ EJc = {0}.

Thus, either N ∩ EJ = {0} or N ∩ EJc = {0} and N is oblique with respect to E by

Proposition (VI.4).
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Definition 7. 1) Let {xj}k
j=1 be a frame in Hn. We say that {xj}k

j=1 has the n-

independent property if every subset of {xj}k
j=1 of cardinality n is linearly independent.

2) Let E = {ej}k
j=1 be an orthonormal basis of a finite dimensional Hilbert space

H . A subspace M of dimension n in H is said to have the n-independent property

relates to E if every subset of n vectors in {PMej}k
j=1 is a basis for M .

One simple example of a frame with n-independent property is harmonic frames.

Suppose that {xj}k
j=1 is a frame in Hn that does not have the n-independent

property. Then there exist {xj1, ..., xjn
} which are linearly dependent. Let M be the

range of the analysis operator of {xj}k
j=1 and {ej}k

j=1 be the standard orthonormal

basis for Ck. Then xj = Θ∗Pej where P is the orthogonal projection onto M .

If
∑n

m=1 ajm
xjm

= 0 for nontrivial coefficients then
∑n

m=1 ajm
Θ∗Pejm

= 0 and

∑n
m=1 ajm

Pejm
= 0 since Θ∗ is invertible on M . So

∑n
m=1 ajm

ejm
∈ M⊥. Let G =

span{ejm
}n

m=1. Then G is a n-dimensional diagonal subspace such that G∩M⊥ 6= {0}.

Proposition VI.17. A frame {xj}k
j=1 in Hn has the n-independent property if and

only if M⊥ has {0} intersection with every diagonal subspace of dimension n.

Proof. The backward direction comes from the discussion above. Assume that {xj}k
j=1

has n-independent property and there is a diagonal subspace G of dimension n

such that G ∩ M⊥ 6= {0}. Let 0 6= x ∈ G ∩ M⊥ and G = span{ejm
}n

m=1. Sup-

pose x =
∑n

m=1 ajm
ejm

with ajm
not all zero. Then P (

∑n
m=1 ajm

ejm
) = 0 and

∑n
m=1 ajm

Θ∗Pejm
= 0 which implies that

∑n
m=1 ajm

xjm
= 0. So {xjm

}n
m=1 is lin-

early dependent, a contradiction.

Corollary VI.18. A subspace M has n-independent property with respect to E if

and only if M⊥ has {0} intersection with every n-dimensional diagonal subspace of

H .

Proof. It follows from Proposition (VI.17).
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Lemma VI.19. Let n < k. Suppose S is a collection of (k−n)-dimensional subspaces

of a k-dimensional Hilbert space H which is open and dense in the collection of all

(k − n)-dimensional subspaces of H . Let S⊥ = {S⊥ : S ∈ S}. Then S⊥ is open and

dense in the collection of all n-dimensional subspaces of H .

Proof. Suppose M⊥ ∈ S⊥. Then M ∈ S⊥. Since S is open, there is an ǫ > 0 such

that for any subspace N satisfying d(N,M) < ǫ, we have N ∈ S.

Since

d(N,M) = ||PN − PM || = ||(I − PN) − (I − PM)|| = ||PN⊥ − PM⊥|| = d(N⊥,M⊥)

S⊥ is open.

Let M be any n-dimensional subspace and ǫ > 0 given. Since S is dense, there

is a subspace N ∈ S such that d(N,N⊥) < ǫ. Thus, N⊥ ∈ S⊥ and d(N⊥,M) =

d(N,M⊥) < ǫ. Therefore, S is dense.

Corollary VI.20. The collection of n-dimensional subspaces of a k-dimensional

Hilbert space H with n-independent property with respect to some orthonormal basis

E of H is an open, dense in the collection of all n-dimensional subspaces of H .

Proof. It follows from Proposition (VI.17), Corolarry (VI.18), Lemma (VI.19).

Definition 8. Two closed subspaces E,F of a Hilbert space H is said to be equivalent

(E ∼ F ) if and only if dim(E) = dim(F ), dim(E⊥) = dim(F⊥)

Proposition VI.21. Given closed subspaces E,F of a Hilbert space H . Then there

is an invertible T ∈ B(H) such that F = TE if and only if E ∼ F if and only if there

is an unitary operator U : H → H such that F = UE

Proof. Suppose that E ∼ F . Then dim(E) = dim(F ), dim(E⊥) = dim(F⊥). We

have H = E ⊕ E⊥ = F ⊕ F⊥. Since dim(E) = dim(F ), there is an invertible
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linear bounded operator T1 : E → F . Similarly, there is an invertible linear bounded

operator T2 : E⊥ → F⊥.

Let T : H → H be difined by Tx = T1y1+T2y2 where x = y1+y2, y1 ∈ E, y2 ∈ E⊥.

Therefore, ||y1|| ≤ ||x||, ||y2|| ≤ ||x||. If x ∈ E then Tx = T1x ∈ F , so T (E) ⊂ F . Let

y ∈ F then there is x ∈ E such that y = T1(x). So Tx = T1x = y and T (E) = F .

From the definition of T , we imply that T is a linear bounded map.

If Tx = 0 = T1y1+T2y2 then T1y1 = −T2y2 ∈ F∩F⊥ = {0} and T1y1 = T2y2 = 0.

Therefore, y1 = y2 = 0 and x = 0 which implies that T is injective. So T is invertible

in B(H).

Now assume that there is an invertible operator T ∈ B(H) such that F = TE.

Then dim(E) = dim(F ). If x ∈ E⊥ then for every y ∈ F , we have 〈 Tx , y 〉 =

〈 x , T ∗y 〉 = 0 and so Tx ∈ F⊥ which implies that T (E⊥) ⊂ F⊥. Let y ∈ F⊥ be

arbitrary. There exists x ∈ H such that y = Tx. Let x = w+ t where w ∈ E, t ∈ E⊥.

We have Tw = Tx− Tt ∈ F⊥ ∩ F and so Tw = 0. Since T is invertible, w = 0 and

x ∈ E⊥. Thus, T (E⊥) = F⊥.

By polar decomposition theorem, there is a unitary operator U : E → F such

that T = U |T | which makes the proof completed.

If a frame {xj}k
j=1 inHn has n-independent property then we can find a projection

P of rank 0 < l < n such that {Pxj}k
j=1 does not have (n− l)-independent property.

For example, we choose the range of projection is the orthogonal complement of

{xj}n−l
j=1.

However, “most ” of the projections of rank n − l on Hn are projections such

that the frame image has (n− l)-independent property

Proposition VI.22. Suppose that a frame {xi}k
i=1 in Hn has n-independent property

and 0 < l < n. Then the set of projections P with rank n−l onHn such that {Pxi}k
i=1
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has (n − l)-independent property is open and dense in the set of all projections of

rank n− l on Hn.

Proof. Since X = {xj}k
j=1 has n-independent property, every subset of n elements in

X is linearly independent. Therefore, every subset of n− l elements in X is linearly

independent. If PM is a projection of rank n − l on Hn such that {Pxj}k
j=1 has

(n − l)-independent property then
∑n−l

m=1 ajm
PMxjm

= 0 if and only if ajm
= 0 for

all m = 1, ..., n − l where {xjm
}n−l

m=1 is any subset of n − l elements in X. This is

equivavent to M⊥ ∩ span{xjm
}n−l

m=1 = {0}.

By Corollary (VI.13), the set of all subspaces M⊥ of dimension k − n + l which

are disjoint from a subspace spanned by a subset of n− l elements of X is open and

dense in the set of all subspaces of dimension k− n+ l. By Baire Category Theorem

and the number of subspaces spanned by a subset of n− l elements of X is finite, the

set of all subspaces M⊥ of dimension k − n + l which are disjoint from all subspaces

spanned by a subset of n−l elements of X is open and dense in the set of all subspaces

of dimension k−n+ l. Therefore, the set of subspaces M of dimension n− l such that

M⊥ is disjoint from subspaces spanned by a subset of n− l elements of X is open and

dense in the set of all subspaces of dimension n − l. Thus, the set of projections P

with rank n− l on Hn such that {Pxj}k
j=1 has (n− l)-independent property is open

and dense in the set of all projections of rank n− l on Hn.

Remark 14. If {xj}k
j=1 is a frame in Hn with n-independent property then it is not

necessary that a push-out of {xj}k
j=1 has (n + 1)-independent property. For ex-

ample, {x1 = (1, 2)T , x2 = (1, 3)T , x3 = (1, 4)T , x4 = (4, 5)T} is a frame in R2

with 2-independent property but a push-out {x̃1 = (1, 2, 1)T , x̃2 = (1, 3, 1)T , x̃3 =

(1, 4, 1)T , x̃4 = (4, 5, 1)T} is a frame which does not have 3-independent property.

Moreover, any push-out of {xj}4
j=1 does not have 3-independent property.
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Lemma VI.23. If T ∈ B(H) is a self-adjoint operator then Ker(T ) = KerT 2) and

ran(T 2) = ran(T ).

Proof. We have ran(T ) = Ker(T )⊥, ran(T 2) = Ker(T 2)⊥. Is is obvious that Ker(T ) ⊂

Ker(T 2). If x ∈ Ker(T 2) then T 2(x) = 0 and 0 = 〈 T 2(x) , x 〉 = 〈 Tx , Tx 〉. Thus,

Tx = 0 and x ∈ Ker(T ). Hence Ker(T ) = Ker(T 2) and ran(T 2) = ran(T ).

In a finite dimensional space H , ran(T ) and ran(T 2) are finite dimensional

subspaces which are closed. Therefore, ran(T ) = ran(T 2). However, in an infi-

nite dimensional space, ran(T ) may be different from ran(T 2). For example, let

T : l2(N) → l2(N) be defined by

T =



















1 0 0 0 .... 0

0 1/2 0 0 .... 0

0 0 1/3 0 .... 0

0 0 0 1/4 .... 0



















Let x = (1, 1/2, 1/3, ....)T . Then x ∈ l2(N). If there is y = (y1, y2, y3....)
T ∈ l2(N)

such that T (x) = T 2(y) then T 2(y) = (y1,
1

4
y2,

1

9
y3, ....)

T = T (x) = (1,
1

4
,
1

9
, ....)T .

Therefore, y1 = y2 = y3 = .... = 1, a contradiction to y ∈ l2(N).

Lemma VI.24. Suppose P,Q ∈ B(H) are orthogonal projections onto closed sub-

spaces and ||P − Q|| < δ for some δ < 1/2. Let A = QP + Q⊥P⊥. Then A is

invertible.

Proof. Assume that Ax = 0. Then 0 = 〈QPx + Q⊥P⊥x , QPx 〉 = ||QPx||2. So

QPx = 0 = Q⊥P⊥x. We have

||Qx|| = ||QQx−QPx|| ≤ ||Q||.||Q− P ||.||x|| < δ.||x||
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Similarly,

||Q⊥x|| = ||Q⊥Q⊥x−Q⊥P⊥x|| ≤ ||Q⊥||.||Q⊥ − P⊥||.||x|| < δ.||x||

Therefore,

||x||2 = ||Qx||2 + ||Q⊥x||2 < 2δ2||x||2 < ||x||2

Hence, x = 0 and A is injective. Similarly we can prove that PQ+P⊥Q⊥ is injective.

If there is y 6= 0 such that 〈 y , Ax 〉 = 0 for every x then 〈A∗y , x 〉 = 0 for every

x and so A∗y = 0. Since A∗ = PQ+ P⊥Q⊥ is injective, y = 0, a contradiction. So A

is surjective.

Lemma VI.25. Suppose P,Q ∈ B(H) are orthogonal projections onto closed sub-

spaces. Then ||(PQP )1/2 − P || ≤ ||PQP − P ||.

Proof. Let T = (PQP )1/2. Then T 2 = PQP = P 2PQP = P 2T 2 and PT 2 = T 2P .

Therefore, PT = TP and (PT )2 = P 2T 2 which implies that T 2 = (PT )2. Since T

is positive, PT = T . Thus, P (PQP )1/2 = (PQP )1/2. Similarly, P⊥(P⊥Q⊥P⊥)1/2 =

(P⊥Q⊥P⊥)1/2. We have

((PQP )1/2 − P )((PQP )1/2 + I) = PQP + (PQP )1/2 − P (PQP )1/2 − P = PQP − P

Let S = (PQP )1/2 + I. Then S ≥ I and S is invertible. Since ||(PQP )1/2||2 =

||PQP || ≤ 1, ||S|| ≤ ||(PQP )1/2|| + 1 ≤ 2. So I ≤ S ≤ 2I and 1
2
I ≤ S−1 ≤ I. Hence

||S−1|| ≤ 1.

We have

||(PQP )1/2 − P || = ||(PQP − P )S−1|| ≤ ||PQP − P ||.||S−1|| ≤ ||PQP − P ||
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Lemma VI.26. Suppose P,Q ∈ B(H) are orthogonal projections onto closed sub-

spaces. Then

(PQP )1/2 ≤ P, and (P⊥Q⊥P⊥)1/2 ≤ P⊥

Proof. Let T = (PQP )1/2. Then from the proof of Lemma (VI.25), PT = T . So

T = T ∗ = (PT )∗ = T ∗P ∗ = TP . Thus, PT = TP = T which imples that (PT )P =

TP = T . Therefore, P (PQP )1/2P = (PQP )1/2. We have, for every x ∈ H ,

〈P (PQP )1/2Px , x 〉 = 〈 (PQP )1/2Px , Px 〉

≤ ||(PQP )1/2||.||Px||2 = ||PQP ||1/2.||Px||2

≤ ||Px||2 = 〈Px , x 〉

Thus, P (PQP )1/2P ≤ P and (PQP )1/2 ≤ P . Similarly, (P⊥Q⊥P⊥)1/2 ≤ P⊥.

Lemma VI.27. Suppose P,Q ∈ B(H) are orthogonal projections onto closed sub-

spaces and A = QP + Q⊥P⊥. Let A = U |A| be the polar decomposition of A. If

||P −Q|| < δ < 1/2 then ||U − I|| < 4δ
1−2δ

Proof. We have

A∗A = (QP+Q⊥P⊥)∗(QP+Q⊥P⊥) = (PQ+P⊥Q⊥)(QP+Q⊥P⊥) = PQP+P⊥Q⊥P⊥

Since

(PQP )1/2(P⊥Q⊥P⊥) = ((PQP )1/2(P⊥Q⊥P⊥))∗

= (P⊥Q⊥P⊥)(PQP )1/2

which imples that

(P⊥Q⊥P⊥)1/2(PQP )1/2 = (PQP )1/2(P⊥Q⊥P⊥)1/2
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and hence,

((P⊥Q⊥P⊥)1/2(PQP )1/2)2 = (PQP )(P⊥Q⊥P⊥) = 0

Therefore, (PQP )1/2(P⊥Q⊥P⊥)1/2 = 0 and

(P⊥Q⊥P⊥)1/2(PQP )1/2 = ((PQP )1/2(P⊥Q⊥P⊥)1/2)∗ = 0

We have

((PQP )1/2 + (P⊥Q⊥P⊥)1/2)2 = PQP + P⊥Q⊥P⊥ = A∗A

which implies that

|A| = (A∗A)1/2 = (PQP )1/2 + (P⊥Q⊥P⊥)1/2

It follows that

I − |A| = (P − (PQP )1/2) + (P⊥ − (P⊥Q⊥P⊥)1/2) ≥ 0

By Lemma (VI.25), we have

||I − |A||| ≤ ||P − (PQP )1/2|| + ||P⊥ − (P⊥Q⊥P⊥)1/2||

≤ ||PQP − P || + ||P⊥Q⊥P⊥ − P⊥||

= ||P (Q− P )P || + ||P⊥(Q⊥ − P⊥)P⊥)||

≤ ||Q− P || + ||Q⊥ − P⊥|| = 2||Q− P || ≤ 2δ

Therefore, σ(I − |A|) ⊆ [0, 2δ] and σ(|A|) ⊆ [1 − 2δ, 1] which implies σ(|A|−1) ⊆

[1, 1
1−2δ

]. Thus,

σ(|A|−1 − I) ⊆ [0, 1
1−2δ

− 1] and |||A|−1 − I|| ≤ 1
1−2δ

− 1 = 2δ
1−2δ
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Hence,

||A− I|| = ||QP +Q⊥P⊥ − (P + P⊥)||

≤ ||QP − P || + ||Q⊥P⊥ − P⊥||

= ||(Q− P )P ||+ ||(Q⊥ − P⊥)Q⊥||

≤ ||Q− P || + ||Q⊥ − P⊥|| = 2||Q− P || ≤ 2δ

From A = U |A| and A is invertible, it follows that U = A|A|−1. We have

U − I = A|A|−1 − I = (A− I)|A|−1 + (|A|−1 − I)

and therefore,

||U − I|| ≤ ||A− I||.|||A|−1|| + |||A|−1 − I|| ≤ 2δ
1

1 − 2δ
+

2δ

1 − 2δ
=

4δ

1 − 2δ

So ||U − I|| ≤ 4δ
1−2δ

Lemma VI.28. Suppose P,Q, U are operators in Lemma (VI.27). Then UPU∗ = Q

Proof. By the polar decomposition theorem, there is a unique partial isometry U1

such that QP = U1|QP | with Ker(U1) = Ker(|QP |), ran(U1) = ran(QP ) and there

is a unique partial isometry U2 such that Q⊥P⊥ = U2|Q⊥P⊥| with Ker(U2) =

Ker(|Q⊥P⊥|), ran(U2) = ran(Q⊥P⊥).

Note that

|QP | = ((QP )∗(QP ))1/2 = (PQQP )1/2 = (PQP )1/2

and similarly,

|Q⊥P⊥| = (P⊥Q⊥P⊥)1/2

Since ran(QP ) ⊆ ran(Q), ran(Q⊥P⊥) ⊆ ran(Q⊥) and QP +Q⊥P⊥ is invertible,
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we have

H = ran(QP +Q⊥P⊥) ⊆ ran(QP ) + ran(Q⊥P⊥) ⊆ ran(Q) + ran(Q⊥) = H

which implies that ran(QP ) = ran(Q), ran(Q⊥P⊥) = ran(Q⊥). Thus,

ran(U1) = ran(QP ) = ran(Q) = ran(Q)

We have Ker(U1) = Ker(|QP |) = Ker((PQP )1/2) = Ker(PQP ). Similarly,

Ker(U2) = Ker(P⊥Q⊥P⊥).

From P |QP | = |QP |, it follows that U1P |QP | = QP which implies QU1P |QP | =

QP .

Now we will prove that Ker(QU1P ) = Ker(U1). Since Ker(U1) = Ker(PQP ) and

ran(U1) = ran(Q), we have

x ∈ Ker(QU1P ) ⇐⇒ QU1Px = 0 ⇐⇒ U1Px ∈ ran(Q⊥) ∩ ran(Q) ⇐⇒ U1Px = 0

⇐⇒ Px ∈ Ker(U1) ⇐⇒ Px ∈ Ker(PQP ) ⇐⇒ PQPPx = 0

⇐⇒ PQPx = 0 ⇐⇒ x ∈ Ker(PQP ) ⇐⇒ x ∈ Ker(U1)

By the uniqueness, QU1P = U1. Similarly, Q⊥U2P
⊥ = U2.

Since P⊥(P⊥Q⊥P⊥)1/2 = (P⊥Q⊥P⊥)1/2, and so ran((P⊥Q⊥P⊥)1/2 ⊆ ran(P⊥),

we have U1|Q⊥P⊥| = U1(P
⊥Q⊥P⊥)1/2 = U1P (P⊥Q⊥P⊥)1/2 = 0. Similarly, U2|QP | =

0.

(U1 + U2)|A| = (U1 + U2)((PQP )1/2 + (P⊥Q⊥P⊥)1/2)

= (U1 + U2)(|QP | + |Q⊥P⊥|)

= QP +Q⊥P⊥ = A

So U1+U2 = A|A|−1. Then U = U1+U2 = QU1P+Q⊥U2P
⊥ and UP = QU1P = QU .
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Hence UP = QU and UPU∗ = Q.

Theorem VI.29. Suppose P,Q ∈ B(H) are orthogonal projections and given 0 <

ǫ < 1/2. Then there is 0 < δ < 1/2 such that whenever ||P − Q|| < δ there exists a

unitary operator U ∈ B(H) with ||U − IH || < ǫ and Q = UPU∗.

Proof. Let δ = ǫ
4+3ǫ

. Then it follows directly from Lemmas (VI.27), (VI.28).

Proposition VI.30. Suppose X = {xj}k
j=1 is a Parselval frame for Hn and ǫ > 0 is

given. Let M ⊆ Ck be the range of the analysis operator ΘX of X. There is a δ > 0

such that whenever E is a subspace in Ck such that d(E,M) < δ then there exists a

Parselval frame Z = {zj}k
j=1 for Hn such that ran(ΘZ) = E and ||xj − zj || < ǫ for all

j.

Proof. Let x̃j = ΘX(xj) ∈ M . Then x̃j = PM(ej) where {ej}k
j=1 is the standard

orthonormal basis for Ck. Then X̃ = {x̃j}k
j=1 is a Parseval frame for M . Let δ be the

number satisfying Theorem (VI.29) and δ < ǫ
2
. Assume that E is a subspace in Ck

such that d(E,M) < δ. So ||PE − PM || < δ. Let ỹj = PE(ej). Then Ỹ = {ỹj}k
j=1 is a

Parseval frame for E. We have ||ỹj − x̃j || = ||PE(ej) − PM(ej)|| ≤ ||PE − PM || < δ.

By Theorem (VI.29), there is a unitary operator U in B(Ck) such that ||U−I|| <
ǫ
2

and PM = UPEU
∗. Therefore, PMU = UPE and U is a unitary operator from

E onto M . Let z̃j = Uỹj . Then Z̃ = {z̃j}k
j=1 is a Parseval frame for M with

ran(ΘZ̃) = ran(ΘỸ ) = E.

Since Ỹ is a Parseval frame, ||ỹj|| ≤ 1, and we have

||x̃j−z̃j || ≤ ||x̃j−ỹj ||+||ỹj−z̃j || = ||x̃j−ỹj||+||ỹj−Uỹj || < δ+||I−U ||.||ỹj|| <
ǫ

2
+
ǫ

2
= ǫ

So ||x̃j − z̃j|| < ǫ.

Note that both X̃ and Z̃ are Parseval frames for M and W = Θ∗
X |M is a unitary
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operator from M onto Hn. Then Wx̃j = xj . Let zj = Wz̃j. Thus, ΘX(zj) =

W ∗(zj) = z̃j . We have Z = {zj}k
j=1 is a Parseval frame for Hn and ||xj − zj || =

||Wx̃j −Wz̃j|| = ||x̃j − z̃j || < ǫ for all j.

Now we will prove that ΘZ = U∗ΘX . For any x ∈ Hn, we have

ΘZ(x) =

k
∑

j=1

〈 x , zj 〉ej =

k
∑

j=1

〈ΘX(x) , ΘX(zj) 〉ej

=

k
∑

j=1

〈ΘX(x) , z̃j 〉ej =

k
∑

j=1

〈ΘX(x) , Uỹj 〉ej

=

k
∑

j=1

〈U∗ΘX(x) , ỹj 〉ej =

k
∑

j=1

〈U∗ΘX(x) , PEej 〉ej

=

k
∑

j=1

〈PEU
∗ΘX(x) , ej 〉ej = PEU

∗ΘX(x)

= U∗ΘX(x)

Thus, ΘZ = U∗ΘX and ran(ΘZ) = E

Corollary VI.31. Suppose X = {xj}k
j=1 is a Parselval frame for Hn and ǫ > 0 is

given. Let M ⊆ Ck be the range of the analysis operator ΘX of X. There exists

a δ > 0 such that whenever E is a subspace in Ck such that d(E,M) < δ then

there exists a Parselval frame Z = {zj}k
j=1 for Hn such that ran(ΘZ) = E and

||ΘZ − ΘX || < ǫ.

Proof. It follows from the proof of the Proposition (VI.30) and

||ΘZ − ΘX || = ||U∗ΘX − ΘX || ≤ ||U∗ − I||.||ΘX|| = ||U∗ − I|| < ǫ

Let H be a Hilbert space, FJ(H) be the set of all frames for H indexed by J. Let

X = {xj}j∈J and Y = {yj}j∈J in FJ(H). Define d(X, Y ) = ||ΘX − ΘY ||, d∞(X, Y ) =
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sup{||xj − yj|| : j ∈ J}, d2(X, Y ) = (
∑

j∈J
||xj − yj||2)1/2. From Lemma I.4, if X, Y

are Parseval frames for H with the same index set J then X is unitarily equivalent

to Y (that means, there is a unitaty operator U such that UX = Y ) if and only

if ΘXΘ∗
X = PX = PY = ΘY Θ∗

Y . So if F̃J(H) is the set of all equivalence classes

of Parseval frames for H indexed by J then we can define a metric on F̃J(H) by

d([X], [Y ]) = ||PX − PY ||.

Corollary VI.32. The set of Parseval frames of k vectors in n-dimensional space

which has n-independent property is dense in the set of Parseval frames of k vectors

in n-dimensional space.

Proof. Assume that X = {xj}k
j=1 is a Parseval frame for Hn and ǫ > 0 be given. Let

M = ran(ΘX). Then M is a n-dimensional subspace of Ck. Let δ be the number in

the proof of Proposition (VI.30). By Corollary (VI.20), there exists a n-dimensional

subspace E of Ck with n-independent property with respect to the orthornomal basis

E = {ej}k
j=1 of Ck such that d(E,M) < δ. So every subset of n vectors in {PE(ej)}k

j=1

is linearly independent. Following the proof of the Proposition (VI.30), {ỹj}k
j=1 has

n-independent property. Then {z̃j}k
j=1 and {zj}k

j=1 also have this property. Thus,

{zj}k
j=1 is a Parseval frame with d(Z,X) < ǫ and has n-independent property.

Corollary VI.33. Let n ≤ k
2
. The set of Parseval frames of k vectors in a real

Hilbert space Hn which has |Θ|-property is dense in the set of all Parseval frames of

k vectors in H .

Proof. Let X = {xj}k
j=1 is a Parseval frame for Hn and ǫ > 0 be given. Let δ be the

number in the proof of the Proposition (VI.30), there exists a n-dimensional subspace

E of Ck which is oblique with respect to the orthornomal basis E = {ej}k
j=1 of Ck such

that d(E,M) < δ where M = ran(ΘX). By Corollary (VI.31), there is a Parseval
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frame Z = {zj}k
j=1 for Hn such that ran(ΘZ) = E and d(Z,X) < ǫ. By Lemma

(VI.1), the frame Z has |Θ|-property.

Lemma VI.34. If {xj}k
j=1 is a frame for Rn (k > n) with the n-independent property

then there are λj ∈ R such that {xj ⊕ λj} is a frame in Rn+1 with the (n + 1)-

independent property

Proof. Suppose xj = (xj1, xj2, ..., xjn)T and A be a n×k matrix with n column vectors

xj for j = 1, 2, ..., k. Let J ⊂ {1, 2, ..., k} be a set with cardinality n and AJ be a

n×n matrix with n column vectors xj for j ∈ J. Since {xj}k
j=1 has the n-independent

property, each n× n matrix AJ has determinant different from 0.

A sequence of numbers {λj}k
j=1 such that yj = (xj1, xj2, ..., xjn, λj)

T for j =

1, 2, ..., k forms a frame in Rn+1 with the (n + 1)-independent property must satisfy

that any (n + 1) × (n + 1) matrix BI where I ⊂ {1, 2, ..., k} is a set with cardinality

(n+1) consisting of (n+1) column vectors yi, i ∈ I has determinant different from 0.

We have det(BI) =
∑

j∈I
λj det(AI\{j}) 6= 0. So there are finite linear constrained

conditions on the sequence {λj}k
j=1. Note that det(AI\{j}) 6= 0 for all j ∈ I. Hence,

the existence of such a sequence {λj}k
j=1 is obvious.

Suppose that {xj}k
j=1 is a frame with the n-independent property in Rn. A

vector λ = (λj)
T ∈ Rk is said to be “good” if {xj ⊕ λj} is a frame in Rn+1 with the

(n+ 1)-independent property.

If λ is “good” then tλ is “good” for any t 6= 0. In fact, every (n + 1) × (n + 1)

matrix in the proof of the Lemma (VI.34) has determinant different from 0. Then

every (n + 1) × (n + 1) matrix coming from replacing the last row λ with tλ has

determinant increasing t times and hence, also has determinant different from 0.

However, if λ1, λ2 are “good” then it is not necessary that λ1 +λ2 is “good”. For

example λ and −λ are “good” but λ− λ = 0 is not “good”.
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Lemma VI.35. Suppose that {xj}k
j=1 is a frame with the n-independent property

in Rn. The set of “good” vectors is open and dense in Rk.

Proof. The proof is similar to the proof of the Lemma (VI.34) and based on the fact

that the determinant function is continuous.
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CHAPTER VII

CONCLUSIONS

In this dissertation, we investigated several aspects of frame theory. The top-

ics include the (p, q)-replacement problem for surgery on frames, push-outs frames,

frames generated by the action of a group on a single generator vector, a spreading

algorithm for finite unit tight frames, and the mathematics involved in the ”cock-

tail party problem”. Motivations for this investigation and counter examples were

also included. Some topics that are partially treated in this dissertation are worthy

of further investigation. Can the spreading algorithm of Chapter III converge to a

Grassmannian frame? More work could be done on convergence properties of the algo-

rithm. A computational method for checking whether a given frame is Grassmannian

would be needed here.
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