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ABSTRACT

Surgery on Frames. (August 2008)
Nga Quynh Nguyen, B.S., Hanoi State University

Chair of Advisory Committee: Dr. David Larson

In this dissertation, we investigate methods of modifying a tight frame sequence
on a finite subset of the frame so that the result is a tight frame with better properties.
We call this a surgery on the frame. There are basically three types of surgeries:
transplants, expansions, and contractions. In this dissertation, it will be necessary to
consider surgeries on not-necessarily-tight frames because the subsets of frames that
are excised and replaced are usually not themselves tight frames on their spans, even
if the initial frame and the final frame are tight. This makes the theory necessarily
complicated, and richer than one might expect.

Chapter I is devoted to an introduction to frame theory. In Chapter II, we
investigate conditions under which expansion, contraction, and transplant problems
have a solution. In particular, we consider the equiangular replacement problem.
We show that we can always replace a set of three unit vectors with a set of three
complex unit equiangular vectors which has the same Bessel operator as the Bessel
operator of the original set. We show that this can not always be done if we require
the replacement vectors to be real, even if the original vectors are real. We also prove
that the minimum angle between pairs of vectors in the replacement set becomes
largest when the replacement set is equiangular. Iterating this procedure can yield a
frame with smaller maximal frame correlation than the original. Frames with optimal
maximal frame correlation are called Grassmannian frames and no general method
is known at the present time for constructing them. Addressing this, in Chapter 111

we introduce a spreading algorithm for finite unit tight frames by replacing vectors
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three-at-a-time to produce a unit tight frame with better maximal frame correlation
than the original frame. This algorithm also provides a “good” orientation for the
replacement sets. The orientation part ensures stability in the sense that if a selected
set of three unit vectors happens to already be equiangular, then the algorithm gives
back the same three vectors in the original order. In chapter IV and chapter V, we
investigate two special classes of frames called push-out frames and group frames.
Chapter VI is devoted to some mathematical problems related to the ”cocktail party

problem 7.
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CHAPTER I

INTRODUCTION TO FRAME THEORY

Frames for a Hilbert space were formally defined by Duffin and Schaeffer [9] in
1952 to study some deep problems in nonharmonic Fourier series. Their ideas did
not generate much general interest outside of nonharmonic Fourier series until the
landmark paper of Daubechies, Grossmann and Meyer [8] in 1986. Since then the
theory of frames began to be more widely studied. Recent references for frames and
the closely related topics of wavelets and wavelet frames that we have used include
[2],[4],5],[7],[11]. We have also used several textbooks and research monographs for
basis theory and notation in the subjects of operator theory [18],[21],[22], matrix
analysis [17],[27], and group representation [23].

Frames have traditionally been used in signal processing. Today, frames have
many useful applications in mathematics and engineering such as sampling theory,
image processing, data transmission with erasures, as well as operator theory. What
makes frames a useful tool in these areas is their overcompleteness, which allows rep-
resentations of vectors which are resiliant to additive noise, give stable reconstruction
after erasures, and give freedom to capture significant signal characteristics.

A frame for a Hilbert space H is a sequence {z,};ey in H, for a countable index
set J with the property that there exist positive constants 0 < A < B < oo such that

Allz|* <Y (@, 2;) < Blla|? (L1)
j€J

holds for every z € H. We call the largest A and the smallest B for which (VI.1)

This dissertation follows the style of STAM Journal on Control and Optimization.



holds the lower and upper frame bounds for the frame, repectively. A frame is called
tight when A = B, and a frame is Parseval when A = B = 1. If we only require the
right-hand side of the inequality (VI.1), then {z,},c; is called a Bessel sequence. In
the case that (VL.1) holds only for all the « € span{z; };¢, then we say that {z;} ey is
a frame sequence. In a finite dimensional space, a finite frame is just a finite spanning
set, and every finite set is a frame sequence. If all the frame vectors have the same
norm then we call it an equal-norm frame, and if the frame vectors are all norm one
we call it a unit norm frame. A set {z;};ey of unit norm vectors is called equiangular
if there is a constant ¢ € [0,1] such that |(zg, z;)| = ¢ when k # [ and strictly
equiangular if (xy, x;) = ¢ when k # [. The analysis operator Ox : H — (*(J) for a
Bessel sequence X = {x;},e5 is defined by
Ox(z) = Z(x, zj)e;, x€ H,
jel

where {e;} is the standard orthonormal basis for the ¢*(J)-sequence space. The
adjoint operator ©% : (?(J) — H of the analysis operator Oy is called the synthesis
operator. It is easy to check that ©% (> , ycje;) = > .cycja;. We can verify that
O%0x =) jey L @5, where x®y is the elementary tensor rank-one operator defined
by (x ®y)(h) = (h, y)x for h € H. The operator x ® z is a projection if and only if

[|lz|| = 1. If x = (a1, 22, ...,xk)T and y = (y1, o, ...,yk)T then

T Ty o Tk

TolY1 TolY2 - T1lk
TRy =

TEY1 TrY2 o Tk

The operator Sy = ©%0x : H — H is called the frame operator. For a Bessel

sequence X = {z,};e, we call the operator By = Zjej r;®x; the Bessel operator for



the sequence X. The operator Gx = Ox0% : *(J) — (*(J) is called the Grammian
operator. Tt is useful to note that [15], in a finite dimensional space, the Grammian

. . k .
matrix for a frame X = {x;}7_, is

(1, 21) (@2, 20) -+ (T, 71)
G- (1, 21) (@2, 21) -+ (T, 71)
(1, 21) (@2, 2) - (7%, 2p)

If n € N, we denote H,, the n dimensional Hilbert (real or complex) space.

We say that frames {z;};c; and {y;};ey on Hilbert spaces H, K, respectively, are
unitarily equivalent if there is a unitary operator U : H — K such that Ux; = y; for
all 7 € J. We say that they are similar if there is a bounded linear invertible operator
T : H — K such that T'x; = y; for all j € J. The following result tells us that every

frame is similar to a Parseval frame.

Lemma I.1. ([14]) Let X = {x;},e5 be a frame for a Hilbert space H with frame

operator Sx. Then {S)_(l/2$j}jej is a Parseval frame for H.

We can characterize a frame through its analysis operator, synthesis operator,

frame operator as follows.

Proposition I.2. ([3],[14]) Suppose {z;};e; is a sequence of vectors in a Hilbert space
H. The following are equivalent:

1){x;};ey is a frame for H.

2)The analysis operator © : H — ¢2(]) is linear, bounded, bounded from below.
3)The synthesis operator ©* : ¢*(J) — H is linear, bounded and surjective.
)

4)The frame operator S : H — H is positive, self-adjoint, invertible.

We also can characterize a Parseval frame through its analysis operator, synthesis

operator, frame operator and Grammian operator as follows.



Proposition 1.3. ([3],[6]) Suppose {z;},c5 is a sequence of vectors in a Hilbert space
H. The following are equivalent:

1){z;}jes is a Parseval frame for H

2)The analysis operator © is an isometry from H into £2(J).

3)The synthesis operator ©* : (2(J) — H is a partial isometry.

4)The frame operator S : H — H is the identity.

5)The Grammian operator G : (*(J) — ¢*(J) is an orthogonal projection with
range O(H).

One of the most important properties of a frame is the ability to recover every
element in the Hilbert space as a combination of a frame vectors. In [13], it is proved
that if X = {x,},cy is a frame for H then

x = Z(a:, z; VS ;= Z(a:, S~le;)a;
JjeJ Jel
for all z € H. The collection of vectors X* = {S'z;},¢; is called the canonical dual

frame of X.

Lemma I.4. Suppose X = {2;}¥_, and Y = {y;})_, are frames in H, and Gx, Gy
are their Grammian operators, respectively. Then Gx = Gy if and only if there is a

unitary operator U such that y; = Uz; for j =1,2,... k.

Proof. For the "only if ” part, define U = ©3.0x : H,, — H, where O is the analysis
operator for X and ©3. is the synthesis operator for the canonical dual frame Y* of

Y. We will prove that U is an unitary operator and y; = Ux; for all j.
For all z € H,, we have Uz = S%

i=1{7, x;)y; and so for any [,

k

U= (a1, 2;)y;

=1

Since Gx = Gy, (@, xj) = (yi, y; ) for I # j. Thus, Ux; = Z?Zl<yl, y; )y; =y for



all [.

We have ©3.0y-(z) = Z§:1<x, y;)y; = o for all z € H,, which implies that
030y« = I. Similarly, ©}.0y(z) = Z?Zlﬁs, y;)y; = = for all z € H, which
implies that 3.0y = I.

We have UU* = 03.0x0%0y+ = 0}.Gx0Oy+ = O}.GyOy« = 07.0y0] 0Oy =
I.I = I. Therefore, for all z € H,, ||U*z||* = |{UU*x, z)|| = ||z||*. So U*: H,, —
H,, is an isometry and injective operator which imply that U* is an unitary operator.
So U is an unitary operator as well.

For the ”if 7 part, since y; = Ux; for all j and each row vectors of ©x and Oy
are ;7 and y;7, respectively. So OxU* = Oy and Gy = 0y0} = OxU*UO% =

Ox0% = Gx. ]

The following lemma is well known.

Lemma I.5. If {z;} is a unit norm tight frame of k vectors in a n dimensional space

H,,, then the frame bound is % and we have

k

k
ZIj@Ij = — [
=1 "

where [ is the identity on H,,. So for a uniform norm orthogonal basis with norm b,

the frame bound is b2
We will need to use the following proposition which was shown in [10],[20].
Proposition 1.6. Let A € B(H) be a finite rank positive operator with integer trace

k. If k > rank(A), then A is the sum of k projections of rank one.

Proof. We will construct unit vectors 1, xs, ..., x} such that A = Z?Zl z; ® xj. The
proof uses induction on k. Let n = rank(A) and write H,, = ran(A). If k = 1, then

Ais a rank-1 projection. Assume that k > 2. Select an orthonormal basis {e;}7_,



for H,, such that A can be written on H,, as a diagonal matrix with positive entries
a > as... > a, > 0.

Case 1 : k£ > n. In this case, we have a; > 1 so we can take x;, = e;. Then
A— (z, ®@xy) = diag(ay — 1, ag, ..., a,) has positive diagonal entries, rank n, and trace
k — 1 > n. By the inductive hypothesis, the result holds.

Case 2 : k =n. We have a; > 1 and a,, < 1. Given any finite rank, self adjoint
R € B(H), let u,(R) denote the n-th largest eigenvalue of R counting multiplicity.
Note that p,(A — (e;1 ®e1)) > 0, un(A — (e, ®e€,)) < 0 and pp(A — (z®@x)) is a
continuous function of € H,,. Hence, there is y € H,, such that u,(A— (y®1y)) = 0.

Choose z, = y. Note that A — (2 ® xx) > 0 and
trace(A — (xp @ xy)) = n — 1,

rank(A — (zp, @ ap)) =n—1=k— 1.

Again, by the inductive hypothesis, the result holds.

In [13], the following proposition is proved.

Proposition 1.7. i) Let J be a countable (or finite) index set. If {e;};e5 is an
orthonormal basis for a Hilbert space K and P is the orthogonal projection from K
onto a closed subspace H, then {Pe;} ey is a Parseval frame for H.

ii) Suppose that {z;},c; is a Parseval frame for a Hilbert space H. Then there
exists a Hilbert space X' O H and and an orthonormal basis {e;};ey for K such that

x; = Pe;, where P is the orthogonal projection from K onto H.

Let T be a positive operator in B(H) and {e;};cy be an orthonormal basis for
H. Let v; = T"?e;. Then T = TY2(3 . je; ® e,)TV? = 3. (T %e;) ® (T"%¢;).

Thus every positive operator can be written in the form 7'= ) ._;v; ® v; where the

JeJ



sum is convergent in the strong operator topology. In this connection, the following

lemma proves useful.

Lemma 1.8. ([15]) Let T" be a positive operator on H. Suppose T' = Z]EJ v; ® vj,

where the series has either finitely or countably many terms and converges in the

strong operator topology. Then ran(T") = span{v;, }.

Proof. Let P be the orthogonal projection of H onto ran(T), and let P+ = I — P.

Then we have:
0=P'TP' =) Plu;® Pl
j€J

That Ptv; ® Prv; is a positive operator implies Prv; = 0 for all j. Thus v; €

P(H) =ran(T), so span{v;} C ran(T).

Now suppose that m is a proper subset of ran(7). Then we could find a
unit vector z € ran(T) that is perpendicular to each v;. Let z; = Tw; € ran(T) be
such that z; — 2, and let ) = 2 ® 2. Then Qz; — Qz = z. But for each j we also

have

Qz = QTw; =Y (w;, v)Qu =0

leJ

So this implies that z = 0, which is a contradiction.

O

For a unit norm frame {:Ej}le in H,, we define the mazimal frame correlation
M({z; 3 ) by M({z;}5)) = max{|(@m, 2)| : m # I}. A sequence of vectors
{a;}5_) in H, is called a Grassmannian frame if it is a solution to min{ M ({z;}¥_,)}
where the minimum is taken over all unit norm frames {xj}le in H,. In other
words, Grassmannian frame is the unit norm frame which makes the smallest angle
between vectors as large as possible. A compactness argument shows that Grass-

mannian frames exist. However, constructing Grassmannian frames can be difficult.



The concept of Grassmannian frames is related to various areas in mathematics and

engineering[24].
Theorem I1.9. ([24]) Let {x;}%_, be a unit frame in H,. Then

k—mn

M({xj};?:l) > m

Equality holds if and only if {x; }le is an equiangular tight frame.
Furthermore,

If H =R, equality can only hold if £ < w

If H = C, equality can only hold if k& < n?.

We call unit norm frames that meet the bound with equality optimal Grassman-
nian frames.

This dissertation will provide a spreading method which allows one to replace
three vectors of a given unit norm frames at a time to achieve a better distribution
which might lead to a construction of Grassmannian frames. To this end, I need to
consider the conditions under which I could make a replacement for a set of vectors to
get better properties. I call the replacement process a surgery on the frame. There are
basically three types of surgeries: transplants, expansions, and contractions. It will
be necessary to consider surgeries on not-necessarily-tight frames because the subsets
of frames that are excised and replaced are usually not themselves tight frames on

their spans, even if the initial frame and the final frame are tight. This makes the

theory necessarily complicated, and richer than one might expect.



CHAPTER II

THE (P,Q)-REPLACEMENT PROBLEM

Let {z,};e5 be a frame. If we remove p vectors from the frame and replace this
set with a set of ¢ vectors, we call the operation a (p, ¢)-replacement surgery on the
frame. We call the p vectors removed the "exised” set and the ¢ replacement vectors
the "replacement” set. There are three possibilities: p > ¢, p = q, p < q. It is clear
that if the excised and replaced sets have the same Bessel operator, then the frame
operator for the new frame is unchanged from the old frame operator. In this case
the frame bounds are unchanged and, in particular, if the original frame is tight then
the new frame is tight. In this chapter we consider only surgeries on tight frames.

Not all (p, q)-replacement surgeries we want to consider preserve the frame op-
erator. If {z;},c; is an equal-norm frame and if we want the new frame to also be
equal-norm, then unless we replaced the entire set, the new vectors must have the
same norm as the original. If the original frame is tight and we require the new frame
to be tight as well, then if p # ¢ the new frame bound must be different from the old
frame bound. This follows immediately from Lemma I.5. So the equal-norm tight
frame (p, q)-replacement problem will require change in frame bound unless p = g.
This will be true for the case p > ¢ (contraction) and p < ¢ (expansion). By scaling
an equal-norm frame we can assume that all frame vectors have norm one.

First we consider the possibilities to have a tight frame from an arbitrary sequence
of vectors which does not form a tight frame by inserting another set of vectors with
arbitrary norms into the sequence. It turns out that this can always be done if we

insert n — 1 vectors where n is the dimension of the space.

Lemma II.1. Suppose {x;}F_, is a sequence of vectors in C" with k& > 1 which does
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not form a tight frame. Then we can always find n — 1 vectors {y; ;‘:—11 such that the

sequence {z;}_; U{y;}7Z] is a tight frame.

Proof. Let B = Y0 2y ® ; and m = ||B||. Then mI — B is a positive, singular
operator with rank less than n. So we can find n — 1 vectors {y; ;‘;11 such that
mlI — B = Z;L:_ll y; ®y;. Therefore, {z;}}_, U{y;}/=] has the frame operator m/ and

forms a tight frame. O

However, if the vectors in the original set all have norm 1 and we want to find a
set of unit vectors such that by taking the union with the original set we have a unit

norm tight frame, then we may require more vectors than in the non-unit case.

Lemma I1.2. Let {;}}_, be a sequence of unit vectors in C" with & > 1 which does
not form a tight frame, and let B be its Bessel operator. If {y; }‘]’-:1 is a sequence of unit
vectors such that {a;};_, U{y,}1_, is a tight frame then ¢ > n||B|| — k. Conversely,
if ¢ > max{n||B|| — k,n} then we can find ¢ unit vectors to insert in the original set

to make a tight frame.

Proof. Suppose that ¢ < n||B|| — k. Since % < ||B]], we have >_7_ y; @ y; =
%I — Zle x; ® x; which is not a positive operator, a contradiction. Now suppose
that ¢ > max{n||B|| — k,n}. Then A = %I — Zle x; ® x; is a positive operator
with rank(A) < n < g = tr(A). Therefore, by proposition 1.6, there are unit vectors
{y;}j=1 such that 37, y; ® y; = %I — Zle 2 @ xp. So {a iz, U{y;}i-, is a tight

frame. O

1. The tight unit norm contraction problem (The case p > ¢q)

The following proposition will give the basic principle for the (p, ¢)-contraction prob-

lem.
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Lemma I1.3. Suppose that {z;}} | is a unit norm tight frame in H,. Necessary and
sufficient conditions in order to replace a subset of p vectors {x;},;cn, where M has

cardinality p, with q unit vectors {y, }? for p > ¢, such that the new sequence

m=1’

remains a tight frame are

Z:@@:@Z?I

jEM

and

rank(z T @z — Z%I) <

JEM

Proof. For the necessary condition, by Lemma 1.5, we have:

k
k
E T R®r = -1
n
=1

: k—p+q
S momt 3 men - AL
= le{l, kWM

By subtracting both sides of the above equations and changing sides, we have:

Zl’j@)l’j——[_zym@ym

JEM
S0 Y ien T @y > FAT and rank (Yo, 1y @ x; — PAT) < q.
For the sufficient condition, by Proposition 1.6, we can find ¢ unit vectors {y,, }? _;

such that

Zx]®x]_—1_zym®ym

jEM
Therefore, > 7 _ 1ym®ym+216{1 RN DT = p+q I and {ym fp—1 UL e, pm

is a tight frame. O

The above Lemma gives a practical way to test whether a solution of a (p, q)-

contraction problem exists.

Corollary I1.4. A necessary condition for the existence of a solution of a (p,q)-



12

contraction problem is that the exised set must span the entire space H,. In partic-

ular, p > n.

For p > n, a solution to a tight unit norm contraction problem may or may not

exist depending on the properties of a given frame .

Example .1. Let

V2 L \r __Q LT:C_ QLT
%’07%) ,SL’Q—( \/5,0,\/3> ) 3_(07\/57\/§>

Then {x1, x5, x3, x4} is a set of unit vectors. Note that by dilating this to

V2 b b V2l e V2L L V2L Ly
we obtain an orthogonal basis for R* with uniform norm -2 (and hence frame bound

V3
4/3). Thus {x1, a9, x3, 24} is a unit tight frame with frame bound 4/3. It is easy to

:1;‘1:( y Ly

I
sl

( )" ( N )", (0,

check that we can not remove any 2 vectors and replace with 1 vector but we can

always remove 3 vectors and replace with 2 other vectors.

Remark 1. Completely analysing the case p > n is an interesting problem for further

work.

2. The tight unit norm expansion problem (The case p < q)

Lemma II.5. Necessary and sufficient conditions for the existence of a solution to

the tight unit norm expansion problem are ¢ > n.

Proof. Suppose that ¢ > n. Without loss of generality, we can assume that we
remove {z;},_,. Denote B =37, x; ® x; + P I. Since B is positive operator and

rank(B) = n < ¢ = trace(B), by Proposition 1.6, there are unit vectors {y;};_, such
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that >/, y; ® y; = B. Therefore, we have:

Zyz@)yz—i—zxj@xj = Zx]®xj+ I—l—Zx]@x]

J=p+1 J=p+1

= Zx]®xj+ f

k
S Ay

n n

k _
_ kta-p

n

This shows that {y1, ..., Yg; Tp+1, ..., T } is @ unit norm tight frame.
Suppose ¢ < n and there exist unit vectors {y] _, such that Z 1Y ®y; = B.

Since rank(B) = n and rank(3_j_, y; ® y;) < n, we have a contradiction. O

3. The tight unit norm transpant problem (The case p = q)

Definition 1. 1) Let F' be a unit tight frame in a real or complex Hilbert space. A
subset A C F'is called rigid if whenever we replace A with another set A’ of the same
cardinality such that the new sequence is also unit tight frame then the vectors in
A’ are the same as those in A up to a permutation and a possible multiplication by
scalars of modulus 1

2) Suppose that {z;},e; and {y;};e; are Bessel sequences of vectors. We say
{y;}jer are geometrically equivalent to {z;};ey if there are scalars {d;};ey of modulus
1, a permutation II of J and a unitary U which commutes with Z;’.:l x; ® x; such
that y; = d;Uxpy;) for all j € J. We can easily check that geometrical equivalence is
an equivalence relationship.

3) Let F be a unit tight frame in a real or complex Hilbert space. A subset A C F’
is called stable if whenever we replace A with another set A’ of the same cardinality

such that the new sequence is also unit tight frame then A’ must be geometrically
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equivalent to A.

Singleton sets are rigid and therefore stable since in order to replace one element,
say, {z1} with another element {y;}, we will need z; ® x; = y; ® y; which implies
that z; = Ay;. Since ||z1|| = ||y1|] = 1, we get |A| = 1. Orthonomal sets are never
rigid because we always can replace them with another orthonomal set which spans
the same space. However, orthonomal sets are stable. A set that contains a non-rigid
set is non-rigid but a set that contains a non-stable set can be non-stable. For exam-
ple, the frame {Pe;}]_, is stable while {Pe;}3_, is not where {e;}]_; is the standard
orthonomal basis for R* and P is the orthogonal projection of R* onto R? spanned by

Z?:1 e;. A tight frame is not necessary stable. For example, it is easy to see that the

set of 5 vectors 1 = (1,0)7, 25 = (cos(%), sm(?’r)) , 3 = (cos(4E), sin(%”))T,m =
(cos(2), 8111(6;))T,x5 = (cos(¥), sin(%2 ) can be replaced by the set of 5 vec-

T T
tors by = (170)T>y2 = (071)Tay3 = <£7 ?) yYa = (Cos(lllgr) Sln(lllg)) Y5 =
(cos(XZ), sin(EE ))T and they are not geometrically equivalent. We will show later
that a set of three linearly independent vectors must be non-rigid. We will also show

that in the real case every set of 2 non-orthogonal linearly independent vectors must

be rigid but in the complex case, it is non-rigid.
Lemma I1.6. Let 21,25 € C? be arbitrary unit vectors. If B = 2; ® 21 + 79 ® 79

then eigenvalues of B are 1+ |(z, x2)]

Proof. Without loss of generality, we can assume that z; = (1,0)T, 2o = (o, 3)7

where |a|? + |8]? = 1. Then

1+ a?* of
ag |p)?

whose characteristic polynomial is 22 — 2z + |3]> = 0 and eigenvalues are 1 & |a| =
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].j:|<l’1,l’2>|. ]

It follows immediately the following result.

Corollary I1.7. If 21, 25, u1, us € C? are arbitrary unit vectors and o1 @z + 22 ®@xy =
(A1 ®U1 +UQ ®U2 then ‘<ZL’1, LU2>| = ‘<U1, U2>‘

Remark 2. The converse direction is not true. For example, we can check that

L1 = (170)Tax2 = (ﬁ Q)T7ul = (£> %)T7u2 = (@’ W)T have |<

R 2 T, Ta)| =

[{uq, ug)| but 71 ® &1 + T2 @ Ty # ug @ Uy + Uy ® ug
Lemma II1.8. If z,y, z, w are unit vectors in H,, then {z, w} is geometrically equiv-

alent to {z,y} ifandonlyif s @ r+yQRy=2® 2z +w  w.

Proof. Suppose that {z,w} is geometrically equivalent to {x,y}, that is there are
scalars di,ds of modulus 1, and a unitary U such that z = d;Ux,w = dyUy and
Ulz@r+y®y) = (z@x+y®y)U. Then z@z4+w@w = diUr@dUr+dUy®dUy =
UzRrz+y@y)U'=@r+yy)UU =20z +y®7y.

Suppose that t @ x +y ®y = 2 ® z + w ® w then by Lemma IL.7, |{z, w)| =
|{x, y)| which implies that (z,y) = d{z, w) where |d| = 1. Let t = dz then

(x,y)=(t, w). Two Grammian matrices
Gloyy =
and

Gty =
(w, t) 1

are equal which implies that {z,y} and {¢,w} are unitarily equivalent.

Corollary I1.9. Any set of 2 unit vectors in H,, is stable.
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The following lemma shows more details about the collection of sets of 2 unit

vectors which have the same Bessel operator. We will use it in section II.4.

Lemma II.10. The collection of all unit vectors u;, us € C? such that v @ u; +us ®

A

uy = B = where (31, (o are positive numbers and (G + (2 = 2 is

0 B2

{(ey/ %, et /1 — %)T, (e / %, —elwmatmy 1 %)T : @, w, p arbitrary}

Proof. Without loss of generality, we can assume that

up = (z1,e7 /1 = 22 uy = (29,774 /1 — 23T
where 1,75 > 0. Therefore, 22 + 22 = 31, e21y/1 — 22 + €7a9y/1 — 22 = 0. So
le?z14/1 — 23| = |eDwy4/1 — 23| and hence, x11/1 — 2% = x9¢/1 — x3. Since zy =
VB — 23, we have x1y/1 — 23 = /B — 23\/1 — B + 2}. By squaring both sides,

we have 22(1 — 2?) = (8 — 22)(1 — 1 + 2?) which implies that z; = /2. Therefore,

Ty = \/% and ew\/%\/l—%jLe”\/%\/l—% = 0. Since 0 < 3; < 2, we have
e + e = 0. It follows that § = v + 1. So u; = (y/2,e /1 - )T uy =

(\/2, -, /1 —2)T where 6§ is any angle. By Lemma IL8, if v, v, € C? are

unit vectors such that v; ® v; + va ® vy = B then there exist scalars ™, e™2, a

permutation IT of {1,2} and a unitary 2 x 2 matrix U which commutes with B such
that v; = " Uuryj). Since unitary matrix U commutes with the diagonal matrix B,

U must be diagonal as well. Therefore, the result follows immediately. O

Now we will prove some general lemmas.

Lemma II.11. Suppose B is a positive operator with rank n and u is unit vector in
H,, such that B —u ® u has rank n — 1. Then there is a unit vector x € H,, such that

|Bz|| = || BYx].
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Proof. Since B —u® u is singular, there is a unit vector x such that (B—u®u)z =0

which implies Bx = (z, u)u. Since B has full rank, Bx # 0. So (z,u) # 0

and u = (xlu>Bl’. Let p = (z,u). Hence, u = %Ba: and Br = (x,u)u =
(x, %BZE>%BZE = #(x, Bx)Bx. It implies that

nl = V(B 0y = (BB o) =\ (B2, Bif2e) = | BV
Since ||u|| = 1, we have ||Bz|| = |u|and hence, | Bz| = ||BY/%z]|. O

Lemma I1.12. i) Suppose B is a positive operator with rank n and u is a unit vector

1/24)| = 1 where the inverse

in ran(B). Then B — u ® w is singular if and only if || B~
is taken on ran(B).
ii) Suppose {u;}}7_; are linearly independent unit vectors and B = 7 u; ® u;.

Then u; € S; N BY%(S;) where S, is the unit sphere in H,,.

Proof. i) For the forward direction, by the proof of Lemma II.8, we have Bx =

(z, u)u and therefore, z = (z, u)B~'u which implies that
(z,u)=(z, u){B  u,u)=(z,u)|B"u?

Since (, u) # 0, || B~"2u|| = 1. For the backward direction, suppose that |lu = 1

and |B~'2u|| = 1. Then
(B—u®@u)B™ 'y = u—(u@u) B 'u = (1—(B~ u, u))u = (1—(B~Y?u, B™?u))u =0

Hence, (B —u® u)B~'u =0 and B — u ® u is singular.

ii) This follows directly from part i). O

Lemma I1.13. Suppose F'is a unit norm tight frame in R” and A is a non-orthogonal

subset of F' with cardinality 2. Then A is rigid.
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Proof. Suppose F' = {xj}le is a unit norm tight frame and A = {x;, 25} is a non-
orthogonal set which can be replaced by A" = {y1,y2} such that {yi,ys, z3, ..., z1}
is also a unit norm tight frame. By comparing the frame operators for the original
and the replaced tight frame, we get 71 ® 21 + 22 ® T2 = y1 @ Y1 + Y2 @ y2. Let
B =21 ®x1+1x3®xs. If 21, x5 are linearly dependent then x, = wz; for a scalar w of
modulus 1, 80 29 ® 19 = 11 @ x1. It follows that y1 ® y1 + Yo ® Yo = 221 ® 21 which is
rank-1 operator. Since y; @y +vy2 ®@ys > 0, y1, Yo are in its range. So y; = w1, Yo =
wexy Where wy, wy are scalars of modulus 1. Hence A is rigid. If x1,z9 are linearly
independent then so are y1, 5. By Lemma I1.12, 21, 25, y1, y2 € S; N BY2(S;). This is
the intersection of a circle of radius 1 and an ellipse centered at 0 in a two dimensional
real space. So there are vectors pi,ps such that {z1,x9, 1,92} = {E£p1, £p2}. It

implies that A is rigid. 0

Lemma II.14. Let F' = {x;};c; be a tight frame for C*. Then any subset of 2

non-orthogonal linearly independent vectors is non-rigid.

Proof. Let A be any subset of 2 non-orthogonal linearly independent vectors, say,
A ={z;,,z;,} and B be the Bessel operator, B = z;, ® z;, + z;, ® x;,. Suppose U is

a unitary operator in B(H) that commutes with B. Let y;, = Uxj,,y;j, = Uzxj,. Then
Yi QYjp T Yjo QY5 = Ul'jl ® ijl + U[L’j2 & Ul'jz

= Ulzj, @ 2;)U" + Uz, ® 25,)U"

= UBU"=B
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So {y;,,Yj,} is a replacement set for {x},,x;,}. Suppose

a100
B=10 a 0
0 0 0

with respect to an orthonomal basis {g1, ..., gn}. S0 B = 0191 @ g1 + 4292 ® g2 = 2}, ®
xj, 44,2, and therefore, x;,, x;, € span{gi, go}. Write z;, = (ay, a2,0,...,0)7, x;, =
(B1, B2, 0, ...,0)". Since {z,, x;,} are non-orthogonal, we have a; # as. Then the com-

mutant

{B} = {CeB(H):CB=BCC}
d 0 0
= 0 dy 0| :di,d2€ C,D isan arbitrary matrix

0 0 D

If U € {BY} then Uz, = (diay,ds, 0, ...,0)7, Uz, = (di 1, dafa, 0, ..., 0)7.

It is easy to check that for any complex numbers d; # +ds of modulus 1, the set
{(dyay, daa, 0, ..., 0)T, (d1 31, d2f32, 0, ..., 0)T'} is not a permutation with perhaps scalar
multiples of modulus 1 of the original set A. Thus, we can replace {zj,,xj,} with
{Uxj,,Uxj,} such that a new sequence is also tight frame.

O

Proposition II1.15. Suppose ' = {:)sj}le is a unit tight frame in H, and A is a
subset of F' consisting of 3 vectors or more. Then A is not rigid except when the

dimension of the space spanned by A is 1.

Proof. In order to prove that A = {1, 29,23} is not rigid, we will find a set A" =
{y1, Yo, y3 } different from A such that z1®x1+ 12012+ 13Q15 = 11 QY1 +Yo QY2 +Y3RYs3.

First consider the case A is a linear independent set. Then B = 21Rx14+22Rx2+13R1x3
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is a positive operator with full rank 3. Let y; be any element in
(81 N Bl/2(81)) \ {dll’l, dgl‘g, d3$3 . dj S (C, ‘dj‘ = 1,] = 1, 2, 3}

By Lemma II1.12, B — y; ® y; is singular. Moreover, B — y; ® y; is positive. Indeed,
assume y; = BY?u where u € S;. Therefore, for any z € R", we have ((B —
i ®@y)r, ) = (Br, ) — [z, y)]> = [|BY?z|* - [(x, BYu)? = || B"2z|]* —
|(BY2z, u)? but | BY?z, u)| < ||BY2x|||u|| = || BY?z|. So B —y; ®y; is positive.
Since B — y; ® y; is positive with rank 2 and trace 2, there exist unit vectors s, y3
such that B—1y; ®y; = y2®y>+y3®ys. Hence in this case A is not rigid. Now assume
that A spanning two dimensional space H,. Select an orthonormal basis e, es for Ho
such that B can be written as a diagonal matrix with positive entries Ay > Ay > 0.
Since trace(B) = 3, we have A\; + Ao =3 and A\; > 3/2. Let y; = e1. So B—1y; ® 1y
is positive operator with rank 2 and trace 2. As before, there exist unit vectors ys, y3
such that B —y1 ® y1 = y2 @ Yo + y3 @ y3. If dye; ¢ A for any scalar d; of modulus
1 then {yj}g?zl is a replacement set which is not a permutation with perhaps scalar
multiples of modulus 1 of A and so A is not rigid. If die; € A for some scalar d;
of modulus 1 then let [ be a positive number such that B —e; ® e; > I, and let
G > 0 be any nonzero real number such that for the vector y = \/1—76261 + Bes,
we have ||y ® y — e; ® e1]| < [ and no scalar multiple of y is contained in A. Then
B-y®y=(B-ea®e)+(e1®@e—yRy) >+ (e;1®e; —y®@y) > 0 because
e1®e; —y Ry is a self-adjoint operator of norm less than [. Let y; = y. So as above,

there are unit vectors s, y3 such that B — y1 @ y1 = y2 ® 2 + y3 ® y3.
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4. FEquiangular replacement

Equiangular tight frames have applications in signal processing, communications and
coding theory [24]. Recent literature for equiangular frames includes [16],[19],[25],[26].

We show that we can always replace a set of three unit vectors with a set of three
complex unit equiangular vectors which has the same Bessel operator as the Bessel
operator of the original set. We show that this can not always be done if we require

the replacement vectors to be real, even if the original vectors are real.

Proposition I1.16. Let ' = {xj}?:l be a unit norm tight frame in R", k > 3.
Let A C F with cardinality 3. Let B be the Bessel operator for A, that is, B =
Y{r®ax :x € A}. If two eigenvalues are equal then we can replace A with an
equiangular set of 3 unit vectors. The converse direction is also true: If A can be
replaced by an equiangular set of three "real” unit vectors, then B must have two
equal eigenvectors.

[Note: in the Proposition I1.17 we will show that this two equal eigenvalue re-

striction can be removed by using complex unit vectors.]

Proof. Let Ai, A2, A3 be the eigenvalues of B. Since B is positive trace 3, we have
A1, A2, A3 > 0 and A\ + Ay + A3 = 3. Since two eigenvalues of B are equal, we can
assume that A\ = Ao = 14+, \3 = 1—2a where 0 < o < 1/20r =1 < a <0. Let x; =
(1,0,0)7, 25 = (o, V1 —a2,0)7, 23 = (a, —a\/%l, v (i;z)i_)m))fp. We can check that

the operator ij:l(xj ® x;) has eigenvalues the same as eigenvalues of B. Therefore,

there is a unitary operator U such that B = UZ?:l(:cj @) U* = Z?:1(ij @Ux;).
Since the set {x1,z9,z3} is equiangular, so is {Uxy,Uxs, Uzs}. Therefore, we can
replace A with an equiangular set of 3 unit vectors {Uxy,Uzy, Uxs}. For the converse
direction, suppose B = Zj.’:l(xj ® ;) where z1, 9, 3 are unit vectors and there is

a constant ¢ such that |(xy, z;)| = ¢ for k # [. Then the Grammian matrix G is of
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the form
1 +c =c

G=|+4c 1 =£c
+c +c 1
which has two eigenvalues the same. Since the eigenvalues of B are equal to the
eigenvalues of G, two eigenvalues of B are equal.

O

For the complex case, we will prove that we can always replace any subset of
three vectors in a unit norm tight frame with an equiangular set of three unit vectors
such that the resulting sequence is also a unit norm tight frame. Moreover, we will
give a formula to calculate replacement vectors from the eigenvalues of the Bessel

operator for the original subset. First we will prove a general result.

Proposition I1.17. Let B be a positive operator of trace 3 with eigenvalues 0 < A\; <
A2 < A3. Then there is an equiangular set of three complex unit vectors wuq, us, us

such that B = Z?zl(uj ® u;)

Proof. Suppose that
A 00

B = 0 >\2 0
0 0 X3

with respect to an orthonomal basis e;, s, e5 for C3. So Z;’:l Aj = 3.

9 = (A 4+ A2+ A3)?
= (AT A 420 + (202 + 2003 + 2X0)3)

> (AMA2 + A As + A2ds) + (201 A2 + 20103 + 2X0)3)

3A A2 4+ 3A1 A3 + 323
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So )\1)\2 + )\1)\3 + )\2)\3 S 3. Let

. \/3 — MAs — MAz — Aoy
B 3

and
O AAA3 2= A — A3 — Ao

M
2

Obviously that ¢ € [0,1). We will prove that |[M| < ¢3. Indeed,

31 —=M)—(1=X)° = B=MAa— A3 —A)(1—N) —(1-X\)°
= 24+ XA — Ada — Ads — Aods AT (Mg + A3) — 3N+ N3
= 24+ M0 — Ao — Ads — Az + AT(3 = A\y) — 3N+ A
= 24 Mdods — Mo — A — Ao

= 2M
Also it is easy to check that

(1=A)2+ 1 =21 =)+ (1T =X)% = 1=+ (1 =2)(1 = X3) + (1= A3)?
= (1—=X)?+(1—=2)(1 = X3) + (1= A3)?

= 3¢

Therefore, (1—X;)3—3c*(1—\;) = (1—-X2)*=3c*(1—X2) = (1—X1)*—3c*(1—\;) which
is called m. So m = —2M. There are two posibilities: 1) 0 < A\; < Ay < 1,A3 > 1.
We have 3(1 — X9)2 < (1= A)2+ (1= X)) (1= Xg) + (1= X)? =3c® < 3(1 — \)?% So
1—-XN>c¢ 0<1—X<c Thenm=(1-X)[(1—-X2)? =3 <0. Let z=1- ).
Then ¢ < z < 1. So m(r) = 2* — 3c%z attains a minimum —2¢ at x* = c. Since
m(1) =1—3c% > —2¢3 for all ¢ € [0,1], we have —2¢3 <m < 0. So |[M| < 3.

2) A <1< A < s

We have 3(1 — X9)2 < (1= X)2 + (1= X2)(1 = A3) + (1 — A3)? = 3c® < 3(1 — A\3)%. So
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—c<1-X<0,1-X3 < —c. Thenm = (1—X)[(1—X2)>—3c*] > 0. Let z = 1—\3.
Then —1 < x < —c. So m(r) = 2% — 3c%x attains a maximum 2¢% at x = —c. Since
m(—1) = —1+ 3c¢® < 2¢3 for all ¢ € [0,1], we have 0 < m < 2¢%. So |[M| < 3.

Now let w be an angle such that cosw = C—Ag and let

up = (1,0,0)7 ug = (ce™™, V1 —2,0)"

Ceiw o 02 \/(1 _ 02)2 _ |C€iw _ C2|2
V1I=¢2 V1 —c?

Then (uy, ug) = (uy, ug) = (ug, ug) = c €. So {uy,us,uz} is an equiangular set

—iw

)T

ug=(ce

of three unit vectors. The Grammian matrix for {u;}3_; is

1 ce ce
G=lce™ 1 cew
ce W ce" 1

Then G has the characteristic polynomial

(1 =22 =321 =N +2Pcosw = (1-X)>—=3c1—\)+2M
= “NH+3N-3-3)N -3 +1+2M
= =X +307 = (M2 + Mg+ As)A + A

= (A= M)A = M)A - )

So G has eigenvalues {1, Ay, A3}. Since the eigenvalues of Z?Zl(u]— ® uj) are equal
to the eigenvalues of B, as the proof in the previous proposition, B is the Bessel

operator of an equiangular set of three unit vectors. O

We immediately obtain the following result.

Corollary II.18. Let F' be a unit norm tight frame of k vectors (k > 3) in C" and

A be any subset of I’ consisting of three vectors. Then we can replace A with an
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equiangular set of three unit vectors such that the new sequence is also unit norm

tight frame.

Remark 3. Suppose {xi,zy,x3} are three unit vectors in C" forming an equiangu-
lar set. We can find scalars of modulus one dj,ds,ds such that (dizi, dozs) =
(dyxy, d3rs) = (dywy, dszs). More precisely, if (x1, 25) = ae®, (xy, 23) =
ae”? {(xy, v3) = ae™ then d; = !O1+027203) g, — ¢/%1=03) 4, = 1. This is not nec-
essarily true if the set has more than three vectors in C" and if {x, 9, 23} are three

T
unit vectors in R™, n > 2. For example, let z; = (1,O,O)T,x2 = (?, %,0) , T3 =

T T

(g’%_%’ 5%/5) Ty = (?,—%—%, 5_1(\)/5) .We can check that ||z1]| =
|l = lwsll = [lzall = 1 and (21, 22) = (21, 23) = (@1, 24) = (22, 73) =
(w3, 24) = — (T2, T4) = % So {z1, 2, 23,4} is equiangular set in R but we can

not rescale so that {1, zs, x3, 24} is strictly equiangular in R3.
Any set of 3 unit vectors {1, x2,x3} which is not equiangular is not stable.

3 /

;&

Indeed, by Corollary I1.18, there exists {, 25, 23} which is equiangular and  >;_, 2

Tl = Z?:l x;®@x;. The stability implies that there are scalars {d;, d2, ds} of modulus
1, a permutation IT of {1,2,3} and a unitary U which commutes with Z;’:l T ® x;
such that y; = d;Uxn) for all j = 1,2,3. Hence [(z;, )| = [(2y,, 2y )| for
j # 1. This leads to a contradiction since {2}, x5, x4} is equiangular but {x1, zo, 3}

1S not.

We will characterize all equiangular sets of three unit vectors which have the

same Bessel operator.

Lemma II.19. Suppose X = {z;}?_; and Y = {y;}}_, are two sets of unit norm
vectors in C". If X and Y are equiangular sets with the same Bessel opeators Bx =

By then X and Y are geometrictly equivalent.

Proof. For the forward direction, by remark 2, we can assume that (z;, z5) =
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(21, 23) = (22, 73) =aand (y1, y2) = (Y1, y3) = (Y2, y3) = b for some complex
numbers a, b. Since the eigenvalues of the Grammian operator and Bessel operator
are the same and Bx = By, the eigenvalues of the Grammian operators Gy and Gy
are the same.

If three eigenvalues of the Grammian operator Gx are the same then By =
By =1 and so X and Y are orthonormal bases. Hence, X and Y are geometrically
equivalent.

Now assume that at least two eigenvalues of Gx are different. The characteristics

polynomial of Gx is
(1 —X)? = 3|al*(1 — A) +2]|al*Re(a) =0
and the characteristics polynomial of Gy is
(1—A)* = 3b]*(1 — \) + 2[b]*Re(b) = 0
Since these characteristics polynomials are the same, the following equation
(1 — N)(3[b]* — 3|al?) + 2|a|*Re(a) — 2|b|*Re(b) = 0

has at least two solutions. It follows that 3|b> — 3|a|*> = 0 and 2|a|?*Re(a) —
2|b|*Re(b) = 0. Hence, |a|] = |b| and Re(a) = Re(b) which imply that either a = b or
a="b.

If a = b then Gx = Gy and therefore X and Y are unitarily equivalent by lemma
[.4. Then there is some unitary operator U such that x; = Uy;,j = 1,2,3. We have
23:1 Y Ry, = 23:1 T;Qu; = U(Z;’:l y;®y;)U*. So U commutes with 23:1 T;Q1;.

If a = b then Gy 2001 = Gyryoyst- S0 {T3, 2o, 21} and {y1, Yo, y3} are unitarily
equivalent. Then there is some unitary operator U such that x3 = Uyy, x90 = Uys, 21 =

Uys. We have 23:1 Y Qy; = Z;’:l T, ®x; = U(Z;’:l y; @ y;)U*. So U commutes
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Wlth Z?:l l’j (29 Z’j.
]

We wish to characterize all sets of three linearly independent, unit vectors whose

Bessel operator is equal to a given positive invertible operator B.

Lemma I1.20. Suppose B is a positive invertible operator in B(H). Let Fp = {C €
B(H): OBC* = B}. Then Fz = {BY2UB~'/2 : U is an arbitrary unitary operator}

Proof. Let T € Fp and let A = TBY2. Then A* = BY?T* and AA* = B. So
|A*| = (AA*)Y2 = BY2. By polar decomposition A* = U|A*| = UBY? where U is an
unitary operator. Hence, U = A*B~Y/2 = B/2T*B~1/2 and T* = B~'/2UB"/? which

implies that 7' = BY2U*B~'/2. Now for any unitary operator U, we have
(B1/2UB—1/2)B(B—1/2U*Bl/2) — B
Therefore, BY2UB~/? ¢ Fy. O

Corollary I1.21. Suppose that {l’j}?zl are unit vectors in C* which are linearly
independent and B = 23:1 x; ® x;. Suppose that {y;}?_, are unit vectors in C®.
Then 2]3':1 y; ®y; = B if and only if {y;}*_; = {BY*UB™"/2z;}%_, where U is some

unitary operator from C? to C3.

Proof. For the "only if 7 part, since {:Ej};-’zl are unit vectors which are linearly in-
dependent, {yj};’zl are linearly independent as well. Then we can define uniquely a
map T : C* — C? such that y; = T(z;) for j = 1,2,3. Then B = Z?Zl Y, Qy; =
T(Z;’:l 2;@x;)T* = TBT*. Therefore, T € Sp and by lemma 11.20, T = BY/2UB~1/2

for some unitary operator U. Thus, y; = BY2UB~Y2z; for j = 1,2, 3.
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For the "if 7 part, if y; = Bl/2UB_1/2xj for j =1,2,3 then

3 3
Zy] ® y] — ZBl/zUB_l/zflfj ® Bl/zUB_l/zflfj
j=1

Jj=1

3
= (B?UB*)(>_x; @ z;)(BV2UB?)"
j=1

— (Bl/ZUB—l/Z)B(B—1/2U*BI/Q)
— Bl/2U(B_1/2BB_1/2)U*Bl/2

= BY?UUBY? =B
O

Lemma I1.22. Let ©; = (%1, 2;2,%;3)7 be a set of three non-zero linearly indepen-
dent vectors. Suppose that some off-diagonal element of A = 23:1 x; ® x; is zero.

Suppose also that the matrix

Ty T Ty
M= &y Ty s
T13 T2z T33

has the property that every row and column contains a zero element. Then either

.fl 1 .fg,,’fl 1 .fg or fg 1 ng.

Proof. Suppose that no pair in {77, 22, 23} is orthogonal. Since Z; # 0 for all j =
1,2,3, no column contains all 0. Since Z; are linearly independent, no row contains
all 0. Since 71, T2 are not orthogonal, at least one of the pairs of numbers {Z1;, Zo;} is
a nonzero pair (that is, both numbers are nonzero) for some j € {1,2,3}. Similarly,
at least one of the pairs of numbers {Zo, T3; } is a nonzero pair for some k € {1, 2, 3}
and at least one of the pairs of numbers {Z;,Z3} is a nonzero pair for some [ €

{1,2,3}. Since each row has a zero element, we have j # k # [. By permutting the
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orthonormal basis for the representation, without loss of generality, we can assume
that j = 1,k = 2,1 = 3. Thus, T11, To1, To2, T32, T13, T33 are nonzero. Again, since

each row has a zero element, Z3; = T12 = T93 = 0. We have

3
A == ij ®fj
7j=1

~ 3 ~ = 3 ~ =
|Z11]? Z]—:lﬂ?jlsz ijll"jl!)fjs
— 3 ~ =~ ~ 3 ~ =
= | XisiTpin (Bl X 3
3 ~ = 3 ~ = ~
D BT o Tpdp Tl

By hypothesis, some off-diagonal element of A is zero, say, Aj» = 0. Then
S @iy = 0. From &5 = F15 = 0, we have #75 = 0. Therefore, either 5 = 0
or 9y = 0, a contradiction. Hence, some pair in {z; }3?:1 must be orthogonal.

A similar argument shows that if any A; = 0 for j # I, then some pair in {Z; o

must be orthogonal. O

Lemma II1.23. The intersection Sy, of an ellipsoid Epey = {(z,y,2)T € C*:
ol L W L =R — 1} and the unit sphere S = {(x,y,2)T € C3: |22 + |y|2 + |22 = 1}

is connected if it is nonempty where a > b > ¢ > 0.

Proof. If a > b > ¢ > 1 then @ - % + @ < |z* + |y|* + |2|* and the equality
holds only if (z,y,2)" =0 ¢ S. So Sfapey = 0. Similarly, if 1 > a > b > ¢ > 0
then Sgopep = 0 as well. So a > 1 and ¢ < 1. Note that if (z,y,2)T € Spupe

ey — Jylei217, 2 = [2]eM where

then ([, |yl |27 € Siup Suppose = = [z]e
0 < a,B8,7 < 1. Then v(t) = (we "ot ye=@H6t »o=2I0t) s 3 continuous path
connecting (z,y, z)T and (|z], |y|,|2])T where 0 <t < 1.

Let S{J;,b,c} ={(z,y,2)" € Staper 1 .Y,z > 0} C Sapey NR® C (Efapey NR3) N

(S NR3). Since the intersection between the real unit sphere and the real ellipsoid

is the union of two curves and only one of them contains positive points, i.e. points
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with all positive coordinates, SE; by 18 connected. O

More precisely, we will give a formula for the continuous path connecting two
points in S{J; bey i Lemma I1.23

Suppose (#,9,2)T € Sa’b - We want to express &, 2 in terms of 7. We have

S22 52
z
L g
a b c
i’2 22 ,3)2
So —+—=1-— ?,iz + 2% =1 — 42 and therefore, § < min{v/b, 1}.

It follows that, if # -(1- y—;) >0,iey <4/ (lb__cc)b, then

f=x

We have 32 = 1 — % — #2 which implies that if 2 < 1 — ¢2, i.e, § < 1/ <2 then

— a—b

N
N

+ 5

=

Q= =
Q|>—‘Q|‘Q>

Thus, for any § < K = min {\/l_), 1, \/(lb__cc)b, \/(‘Z__lb)b}, we have

Now let (o, 9o, 20)7, (21,91, 21)T € Sa,b,c}. By the above argument, 0 < 7o, 7; < K.

Let 0 <t <1andg(t)=(1—1%)Jo+ty;. Then 0 < g(¢t) < K. Let

_1 + 1_ Q(t)2 + g(t)z
[i’(t) :\/ c - c b

1
a
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Then (£(t),9(t), 2(t)) is a continuous path in Sf;bc} connecting (Zo, 9o, 20)7 and
(21,91, 21)"

To summarize, let (zo, Yo, 20)", (1, Y1, 21)" € Stap,ep. Write

2l 1211 1211
0 ﬁO,ZOZ‘Z0|€ 70

Ty = |$0‘€ Yo = |y0|€

i2IToy 21131 12lIy

S = |yle 21 = |zle

1 = |11le
where 0 < oy, B,7; <1 for j =1,2.

Let 2o = |xol, 90 = |¥ol, 20 = |20], Z1 = |21], 01 = |11, 21 = |21].

We define

alt) = (1 —t)ag +tay, B(t) = (1 — )Gy + t61,7(t) = (1 — )0 + tn

Let
g(t) = (1 =)o + tih
i(t) = \/ T_1
1-1_ 4 (t)? + §(t)?
2 _ a b a
2t = \/ T_1
and

x(t) = j(t)emna(t)’ y(t) = g)(t)eimﬁ(t), 2(t) = 2(t)6i21'['y(t)

Then p(t) = (x(t),y(t), 2(t))" € Stapey for 0 < ¢ <1 is a continuous path connecting
(w0, Yo, ZO)T and (iflayl,Zl)T-
The following proposition shows the path connectivity between sets of three unit

vectors which have the same Bessel operator.

Proposition I1.24. Given a positive operator B with eigenvalues A\; > Ay > A3 > 0

and A\ + A2 + A3 = 3. Suppose that {xj}g’-zl are unit vectors which are linearly
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independent and {z}3_, are unit vectors which are linearly independent in C" such

that Z;’:l T, QT = 23:1 2 @), = B. There are continuous paths {p;(t)}3_, of unit

vectors such that p;(0) = z;, p;(1) = 2, and Z;’.:l pi(t)®@p;(t) = Bforany 0 <t <1

Proof. Note that if
A 00

B=10 X 0
then 31 N 31/2(81) = S()q,)\z,)\s)‘

From Lemma 1112, {z;}3_, € & N BY*(8) and {«/}3_, C S N BY2(S)) as well.
Suppose that {fi, f2, f3} are corresponding eigenvectors which form an orthonormal

basis under which B can be written as

Therefore, (f1 fo f3)*B(fi fo f3) = B.

Let Lf‘j = (fl f2 f3)*xj and Lf‘; = (fl f2 f3)*LE‘; Then i’l,i'Q,i’g - S(>\17>\27>\3) and
3 ~
ij ®@1;=(fi f2 f3)'B(f1 f2 f3) =B

.. - o~y o~ 3 . - ~
Similarly, 27, 5, T5 € Sy, a0,1,) and ijl i @1, = B.

Let p1(t) be the continuous path in Lemma I1.23 which lies in S, x,.»,) and connects
#1 and ;. Then py(t) = (f1 fo f2)P1(t) € SINBY2(S,) is a continuous path connecting
z1 and o). Let A(t) = B—pi(t)@pi(t). Since py(t) € SiNBY2(S)), A(t) is a positive

operator which has rank 2, trace 2. For each 0 < ¢t < 1, let g1(%), g2(t) be the



orthonormal basis of eigenvectors of A(t) under which A(t) can be written as

wt) 0 0
Aty=| 0 w@® o0
0 0 0
Let
Ty = (91(0) 92(0) g5(0)) w2, 5 = (91(0) g2(0) g3(0)) 5
#y = (91(1) g2(1) gs(1))"ah, 35 = (g1(1) g2(1) g3(1))"4
Then

A0) = (91(0) g2(0) g3(0))"A(0)(92(0) 92(0) g5(0))
= (91(0) 92(0) g5(0))"(B — 21 ®21)(91(0) ¢2(0) ¢5(0))
= (91(0) 92(0) g5(0))" (22 ® 72 + 23 ® 23)(91(0) g2(0) g3(0))
= (91(0) 92(0) g5(0))"x2 @ 22(91(0) ¢2(0) g3(0))
+ (91(0) 92(0) g5(0))"xs @ 23(91(0) 92(0) g3(0))
= (91(0) 92(0) g3(0))"x2 @ (91(0) 92(0) g3(0)) 22
+ (91(0) 92(0) g5(0))"x5 @ (91(0) 92(0) g3(0)) 23

= TyQ@To+ T3 T3
Similarly, A(1) = ) ® &} + % ® 1.

Suppose that

P 512(0) eiw /512(0)
Ty = ety /1 — 512(0) 7:?;3 — _ei(w—a+,u) 1 — 512(0) .

0 0

33
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iod [ P1(1) iw [ B1(1)
67]@ 2 67/UJ 2

Ty = | e\ /1 — 517(1) By = | —eilw' =+ [1 517(1)
0 0
Let
alt) = (1 —=tha+ta, p(t) =1 —t)u+ty, wt)=(1—t)w+t'.
Let

za(t / ﬁl(t eiw(t) / ﬁlT(t)
Dot )i /1 —eiw®)—a®+p®) , /1 — ﬁlT(t)

0

Then po(t) ® po(t) + P2(t) ® pa(t) = A(t). Let

pa(t) = (91(t) g2(t) g3(t))p2(t), p3(t) = (91(t) ga(t) gs(t))ps(t)

Therefore, Z?:z p;(t) @ pj(t) = A(t) and so Z?lej(t) ® pj(t) = B. We can check

that po(t) is a continuous path connecting &5 and &}, and hence, py(t) is a continuous

path connecting x5 and 2. Similarly, ps(t) is a continuous path connecting z3 and
/

0

When two sets of three unit vectors are both equiangular, the following proposi-

tion shows that after a permutation, we can connect them by an equiangular path.

Proposition I1.25. Given a positive operator B with eigenvalues A\; > Ay > A3 > 0
and A\ + A2 + A3 = 3. Suppose that {xj}g’-zl are unit vectors which are linearly
independent, equiangular and {x; 5?21 are unit vectors which are linearly independent,

equiangular in C" such that Z?Zl T Qx; = Zj 25 @1 = B. There are continuous
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paths {p;(t)}5_, of equiangular unit vectors and a permutation II of {1,2,3} such

that p;(0) = zn(), p;(1) = 2 and 23:1 p;(t) @ p;(t) = B for any 0 <t < 1.

Proof. By Lemma I1.8, there are scalars {e}3_,, a permutation IT of {1,2,3} and
a unitary operator U which commutes with B such that ) = iUy for all
j =1,2,3. Let {f1, f, f3} be the orthonormal basis of eigenvectors of U such that U

can be written as
e“ 0 0
U=10 e 0
0 0 ev
Let 75 = (f1 fa f3)*z; and 2 = (f1 f2 f3)*2}. Then

T = (h f2 f3)' 7= (fi f2 fa)'e*i(fi fa f3)U(f1 fo f3) )

= MU (fl f2 f3) ) —eﬂjUxﬂ(

Therefore, 7/ = e Uinj). We have
3 3
Z@@@ = Zfl fo f3)'x; @ (f1 f2 f3)"x;
= (fi fo f3)*(zxj ®;)(f1 f2 [3)

j=1

= (fl fa f3)*B(f1 I f3)

Denote B = (fl f2 fg)*B(fl f2 fg) Since UB = BU, we have (fl f2 fg)U(fl f2 fg)*B =
B(f1 fo f3)U(f1 fo f3)* from which, it follows that

UB=U(fi fo fs)B(fr f f5) = (fi fo f3)"B(f1 fo f3)U = B
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For 0 <t <1, let

ezoet O 0
Uty=| o e o
0 0 et

Let p;(t) = €U (t)Zn(j). Then p;(t),j = 1,2,3 are continuous and §;(0) = Zr(;y and
p;(1) = e"iUZng) = & We have ||7;(t)]| = L [(pi(t), p2())] = {pa(t), ps(t))] =
[(p2(t), p3(t) )] and

Y i) @pi(t) = Y Ut)ang ® Ut)ing

j=1 =1

.

Let p;(t) = (f1 f2 f3)p;(t). Then |Ip;()[| = ||B;()]] = 1, {p;(t)}}=, is an equiangular

set and

3

3
> i) @pi(t) Z fi fo J3)Bi(0) @ (fu fo f)Bs(t) = (fi fo fo)B(fi fo f)" = B

j=1

We can check that p;(t), 7 = 1,2, 3 are continuous and

pi(0) = (f1 f2 fs)P;(0) = (f1 fo f3)Tng) = zng)
and similarly, p;(1) = zj. O

Remark 4. If X = {z;}%_, and Y = {y;}¥_, are geometrically equivalent then there
is a unitary operator U that is the product of a permutation and a diagonal unitary

such that

UGxU" =Gy

Lemma I1.26. Given a positive operator B of trace 3 with eigenvalues 0 < \; <
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A2 < A3. Suppose that {xj}?zl are unit vectors having B as the Bessel operator. Let
M({z;}3_,) be the maximal frame correlation for {;}?_,. Minimize M ({x;}}_))
over all set of three unit vectors with Bessel operator B. Then the maximal frame

. . 3 .
correlation is smallest when {z;};_, are equiangular.

Proof. Suppose that {w; };’:1 are three unit equiangular vectors with Bessel operator

B. Then [(w, we)| = |{wy, w3 )| = |{ug, uz)| = ¢ where

. \/3 — MA2 — Atds — Aoy
B 3

Assume that (x1, x9) = b, (21, 23) =d,(xy, x3) = e and |b| > |d| > |e|. Then the

characteristics polynomial of the Grammian operator Gy, s = for {z;}3_, is
(1= = (1 =XN)(Jb)* + |d]* + |e|?) + bed + dbe = 0
and the characteristics polynomial of the Grammian operator Gy,,s = for {w}2_, is
(1—X)*=3c*(1—\) +2c¢*cosw =0

where w is the angle defined in Proposition I1.17
Since two Grammian operators have the same eigenvalues, the above two char-
acteristics polynomials are the same. It follows that |b|>+|d|*+ |e|*> = 3¢?. Therefore,

3¢? < 3|b|? and ¢ < |b]. O

Therefore, each set of three unit vectors which do not lie in the same line can be
replaced with another set of three unit vectors which has the same Bessel operator
as the Bessel operator of the original set. In particular, we can always replace the
original set with an equiangular set of three unit vectors. Moreover, the minimum
angle between pairs of vectors in the replacement set becomes largest when the re-

placement set is equiangular. So iterating this procedure might lead to a construction



of Grassmannian frames.
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CHAPTER III
A SPREADING ALGORITHM FOR FINITE UNIT NORM TIGHT FRAMES

k
J=1

Suppose that {y;}7_, is a unit norm tight frame in C". We will replace vec-
tors three-at-a-time to produce a unit norm tight frame with better maximal frame
correlation than the original frame.

Suppose that yi, Yo, y3 are linearly independent unit vectors in C". We wish to
built an algorithm whose output is a set of three equiangular unit vectors with ”good”
direction in the sense that when the input is an equiangular set then the output is
exactly the input in the same order.

Step 1 : Gram-Schmidt them, obtaining an orthonormal basis {hy, hy, h3} for
span {y1,y2,y3}. Let 21,15, 23 be the coordinate vectors in C* for yy, ys, ys, respec-
tively.

Step 2. Let A = Z?:l zj®@z;. Compute the eigenvalues A1, A2, A3 of A. Suppose
A1 > Ay > A3 > 0. Compute an orthonormal basis {fi, fo, f3} of eigenvectors for A

corresponding to the eigenvalues Ai, Ao, As.

Step 3 : Let

. \/3 — MA2 — Aidg — Aoy
B 3

and
A 2= Ao — Az — Ao
N 2

M

and w = arccos ().
Let
up = (1,0,0)7 uy = (c e, V1 — ¢2,0)7
W e —c? /(1= 2)2 — |cel — 2|2

ik Vie

)T

us = (ce
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Step 4 : Let B = Zj?:l u; ® u;. Compute the eigenvalues of B and compute an
orthonormal basis {g1, g2, g3} of eigenvectors for B.

Step 5: Let W = (f1 fo f3).(g1 92 g3)*. Then W is a unitary matrix.

Step 6 : Let o} = Wuy,2h = Wuy, 24 = Wug in C*. Then ), x5, ¥4 are unit,
equiangular and 23:1 T @y = A

We want to orient 2,2}, x4 obtaining &, 2o, T3 such that when zy,xq,x3 are
equiangular, we have &; = z; for all j = 1,2, 3.

Step 7: Let Sy = AY28,(C3) N S1(C?) where S;(C?) is the unit sphere in C?.

Let {f; ?:1 be an orthonormal basis of eigenvectors of A such that A can be written

as
M 0 0
A=10 x 0
0 0 A

where A1 > Ay > A3 > 0 and \; + Xy + A3 = 3. We define
|2 2 L2
SaideNg) = {(:L’,y,Z)T cC?: u + M + u = 1} ﬂsl((cs)

Note that x1, 29,23 € Sa.

Step 8: For j =1,2,3, let ; = (fi fo fs)"'x; and £;' = (fi fo f3)~'2). Then

f17f27f3 S 8()\1)\2,)\3) and fll,fQ’,f;;/ S S(>\1)\27>\3)' Therefore, 2?21 fj X fj — A —
Z?:l fj/ ® fj/.
Ifv= (xaya z>T S (C3 then we define |rU‘ = (|LE“, ‘y‘u ‘Z|)T S Ri

Step 9 : Let w; be the 2" such that
(|21 = [wn|l] = min{|[|7:] = |7;]|] : 5 = 1,2,3}

If there are more than one ;" satisfying this minimum condition choose the first one
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having ||#7 — @;'|| the smallest possible. Then let wy € {77/, ', 3"} \ {wn} for which
[[[2] = |2da||] = min{|[|Z2] — ||| : 7' # i}

If there are more than one #;" satisfying this minimum condition, we choose the one
having ||#5 — 2;'|| the smaller. Then let w3 be the remaining vector in {z', 25', 75’}
Thus, Z?:l W @ W; = Z;’-:l @' ® £/ = A and {w;}2_, are unit, equiangular.
Define the phase arg(v) of a vector v € C as follows.

1, ifv=0;

arg(v) =
= if v #£ 0.

|v]

Write ©; = (251, 252, ¥53)T, w0; = (Wj1, wje, wjz)? for j = 1,2,3. We consider several
cases.

Case 1 Assume that the vectors |;|3_, are distinct.

Case (1.1) Assume all components of #; are different from 0.

Step 10.1.1 : We will construct a vector Z; such that |Z;| = |w;| which has
the same phase as #; as follows. Write 21 = (y1]211], v2|272], v3|713])T and w; =
(01]wh1], O2|wha|, d3|wns|) where |y;| =1 = |0;] for j =1,2,3.

Let 21 = (y1]wiil, y2|wiz|, vs|wis|)” and

$ 00
r=lo 2 o
0o o0
Then I' is an unitary matrix and 2; = ['wy. Let 23 = 'y, Z3 = ['ws. Then |w;| = |Z;].

Since Z;’:l w; ®1; = A and T' commutes with A, we have 23:1 2,02 = 23:1 I'i; @

I, = TAT* = A. Note that {z}}]?’:l are unit, equiangular.
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Step 11.1.1: Write Z; = (2j1, Zj2, 233)T . Let

_ CLT’g(i'Ql)CL’T’g(ZH) e — CLTg(i’31>a7"g(211>
CL’f’g(ggl)CL’f’g(fll)7 3 arg(égl)arg(i’u)

Vo

Let U7 = 21,02 = 11%9,0U3 = v323. Then {17]}5’:1 are unit, equiangular in C* and
Zj’:ﬂjj@ﬁj - 2]3‘:12]' ® Zj = A.

Step 12.1.1: Let ©; = (f1 fo f3)0; for j = 1,2,3. Then Z?Zlfj ® 2; = A and
{a;}2_, are unit, equiangular in C?.

Step 15.1.1 : Suppose that ©; = (o, 8;, 1;)*. Then y; = ajhy + Bihy + pjhs
for 7 = 1,2, 3 are three unit vectors in C" which are equiangular and Z?:l Y,y =
23:1 y; @ y;. Stop, the algorithm for Case (1.1) is complete.

Case(1.2) Assume 7 has a zero component and all components of 7 are different
from 0.

Step 10.1.2 : We will construct a vector Z; such that |2 = |ws| which has
the same phase as 75 as follows. Write ©y = (71]2%1], V2232, 3|733])T and wy, =
(01|w21], 02| wasl, d3|wig|) where |y;| =1 = |0;| for j =1,2,3.

Let 25 = (71|warl, y2|wazl, vs|was|)” and

0 0
F=lo 2 o
00 2

Then I' is an unitary matrix and 2, = I'y. Let 27 = 'y, Z3 = ['ws. Then |w;| =

Z;|. Dince W Qw; = N O A an commutes wi N, we have

il Since Y50 @ @y = 3@ @ 7' = Aand T tes with A, we h
20z =30 Tw,elw; = TAT* = A. Note that {Z;}3_, are uni , equiangular.
S %R °_ T @Ii; = TAD" = A. Note that {£}2_, t 1

Step 11.1.2: Write z; = (2j1, 2j2, 253)T . Let

o CLTg(,%Ql)CLT’g(i'H) o arg(égl)arg(i’gl)
= ~ ~ y V3 = = =
arg(Zq1)arg(Z11) arg(Ze)arg(Zs;)
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Let U7 = 121,09 = 25,03 = v323. Then {v}}i’:l are unit, equiangular in C* and
23:1@'@@ - Z?:lij ® Zj = A.

Step 12.1.2: Let 2 = (f1 fo f3)d; for j = 1,2,3. Then > ) | #; ® #; = A and
{a;}2_, are unit, equiangular in C®.

Step 13.1.2: Suppose that &; = (a;, B, ;)" Then v} = a;hy + Bihs + pjhs
for 5 = 1,2, 3 are three unit vectors in C" which are equiangular and 23:1 Y,y =
23:1 yj @ y;. Stop, the algorithm for Case (1.2) is complete.

Case(1.3) Assume #; and 2, have a zero component and all components of 73
are different from 0.

Step 10.1.3 : We will construct a vector Z3 such that |Z3] = |w3| which has
the same phase as 73 as follows. Write @3 = (71]231], V2232, 3|733])T and wz =
(01]wWs1|, 62| wWsa|, 63|was|) where |y;| =1 = |d;| for j =1,2,3.

Let Z3 = (71 |ws1], v2|wsal, v3wss|)” and

o0 0
F=lo 2 o
0 0 =

03
Then I' is an unitary matrix and 25 = I's. Let 2 = 'y, &2 = ['wy. Then |w;| =
|Z;|. Since 23:1 Wy @ Wy = Z;’:l i/ @7/ = A and T commutes with A, we have

23:1 Zi®%Z = Z?Zl Ii;@T'w; = TAT* = A. Note that {Z;}?_, are unit, equiangular.

Step 11.1.5: Write Z; = (2j1, 2j2, 253)T . Let

_ CLT’g(ggﬂ)CL’f’g(i‘n) e — arg(égl)arg(fi’gl)
CL’T’g(i‘:ﬂ)CLT’g(gn), 3 arg(fégl)arg(égl)

151

Let U7 = 121,09 = 122,03 = Z3. Then {17]}5’:1 are unit, equiangular in C* and
3 3 ~
DU ®U =305 ®%=A

Step 12.1.3: Let ©; = (f1 fo f3)0; for j = 1,2,3. Then Z?:ﬁfj ® 2; = A and
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{«;}3_, are unit, equiangular in C®.

Step 13.1.3 : Suppose that &; = (o , B, ;)" Then v} = a;hy + Bihs + pjhs
for j = 1,2, 3 are three unit vectors in C" which are equiangular and Z;’.:l Y,y =
Z?:l Y; ® y;. Stop, the algorithm for Case (1.3) is complete.

Case(1.4) Assume that 1, T, T3 each have at least one zero component and that
T11 # 0,T9 # 0,23 # 0.

Step 10.1.4 : Write 11 = y1|T11|, T21 = Y2|T21], Za1 = 73| Ta1], W11 = 61|11 ], W1 =
Oo|Wa1], w31 = 03|ws;| where |y;] =1 = |0;] for j = 1,2,3. Let z; = g—ju?j forj =1,2,3.
Note that {Z;}%_, are unit, equiangular and Z?:l 0% =A.

Step 11.1.4 : Let

. CLT’g(i‘ll)CL’f’g(glg) . CLTg(i’H)CLTg(élg)
Vy = - V3 = p =
arg(Z11)arg(T12) arg(z1)arg(T13)
and
1 0 0
v
0 0 L

Let 0; = I'z;. Then {v;}?_, are unit, equiangular and 23:1 %@z = A

Step 12.1.4 : Let & = (f1 fo f3)v; for j = 1,2,3. Then Y7 | #; ® 4; = A and
{a;}2_, are unit, equiangular in C®.

Step 13.1.4: Suppose that £; = (a;, 5, ;)" Then y; = ajhy + Bjhg + pujhs for
7 = 1,2,3 are three unit vectors in C" which are equiangular and Z?:l Y ®y; =
23:1 y; @ y;. Stop, the algorithm for Case (1.4) is complete.

Case(1.5) Assume that the hypotheses in Cases (1.1)-(1.4) all failed and &5 #
0, T2 # 0,239 # 0.

Step 10.1.5: Write T19 = v1|T12|, Toz = V2|Ta2|, Ts2 = V3|T32|, Wiz = 01|W1a], Wee =

52|’LZJ22|,’LZJ32 = 53|12132| where |’7]| =1= |(S]| fOI'j = 1, 2,3 Let 2]' = g—j’&[]a fOI‘j = 1, 2,3
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Note that {Z;}%_, are unit, equiangular and Z?:l 0% =A.

Step 11.1.5 : Let

. CLT’g(gn)CLT’g(I'lQ) . CLTg(i’m)a?"g(élg)
V= po V3 = p =
arg(Ty1)arg(Z12) arg(Zi2)arg(T13)
and
L 0 0
Vi
I'= 1 0
0 0 L
v3

Let 0; = I'z;. Then {7;}?_, are unit, equiangular and 23:1 %@z = A

Step 12.1.5 : Let & = (f1 fo f3)v; for j = 1,2,3. Then 7 | #; ® 4; = A and
{«;}2_, are unit, equiangular in C?.

Step 13.1.5 : Suppose that &; = (o, 5, ;)" Then y} = a;hy + Bihs + pjhs
for 7 = 1,2, 3 are three unit vectors in C" which are equiangular and Z?:l Y, Ry =
23:1 y; @ y;. Stop, the algorithm for Case (1.5) is complete.

Case(1.6) Assume that the hypotheses in Cases (1.1)-(1.5) all failed and &3 #
0,293 # 0,33 # 0.

Step 10.1.6: Write T13 = 71|13, Tz = V2| Tas|, T35 = 73| T33], Wiz = 01[wW3], Wa3 =
02| Wag|, W33 = 03|ws3| where |y;| =1 =d;| for j =1,2,3. Let z; = g—jzbj forj =1,2,3.
Note that {Z;}7_, are unit, equiangular and 23:1 5% =A.

Step 11.1.6 : Let

_arg(Zi)arg(73) _arg(Zi2)arg(a3)
V= ~ y Vo = ~ =
arg(T11)arg(Z13) arg(Z12)arg(Z13)
and
L 0 0
v
'=10 L 0
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Let 0; = I'Z;. Then {7;}3_, are unit, equiangular and Z?:l 5025 =A

Step 12.1.6 : Let ©; = (f1 fo f3)v; for j = 1,2,3. Then Zj.’:lfj ® z; = A and
{;}3_, are unit, equiangular in C®.

Step 13.1.6 : Suppose that ©; = (o, 5, 1;)". Then y; = a;hy + Bihs + pjhs
for j = 1,2, 3 are three unit vectors in C" which are equiangular and 23:1 Y@y =
23:1 Y; ® y;. Stop, the algorithm for Case (1.6) is complete.

Case(1.7) Assume that the hypotheses in Cases (1.1)-(1.6) all failed. Then we
do the following:

Step 12.1.7: Let & = (fi fo fs)i; for j = 1,2,3. Then Y.} | #; @ 4; = A and
{a;}2_, are unit, equiangular in C?.

Step 13.1.7: Suppose that &; = (a;, 5, 1;)". Then y} = a;hy + Bihs + pjhs
for 7 = 1,2, 3 are three unit vectors in C™ which are equiangular and Z?:l Y,y =
23:1 yj @ y;. Stop, the algorithm for Case (1.7) is complete.

Case 2 : There is one pair of vectors in {|71], |72, |73]} the same.

Case 2.1: |21| = |22| # |73].

Write
7 = (P, ey, it )T

Ty = (" x, €2y, i3 2)T

fg — (6i61£l?,, e’iﬁgy/’ 6iﬁgz/)T
Wy = (e |1y, €72 iyg), €51y 5])T
Wy = (6" Wy |, €°2[ oo, €3 |bas] )"

Wy = (P11, |, €72 |z, €73 |1g3]) "

Case 2.1.1 : 2/ #0,y #0,2 #0
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Let
e B1=51) 0 0
I'= 0 ¢i(B2—53) 0
0 0 ei(B3—B%)
Let 2; = I'w; for j = 1,2,3. Note that Z5 has the same phase as @5 and |w;| = ||

.. . 3 ~ - ~ - . .
Similar to previous cases, we have Y °_. 7. ® 27, = A and {Z;}3_, are unit, equiangular.
’ =177 J JJj=1 ’
Step 11.2.1.1: Write z; = (2j1, 2j2, 253)7 . Write 21 = (e ]211], €| 212, €3] 213] )T

1)If,ul—ozl:,ug—oz2:,ug—oz3thenlet

o arg(Zs1)arg(Toey) e arg(Zs1)arg(T1)
1 — ~ ~ s V2 — ~ ~
arg(Ts1)arg(Z11) arg(Zs1)arg(Za)
2) Otherwise let
b arg(Zs1)arg(T11) e arg(Zs1)arg(Tar)
1 — ~ ~ 9 2 — ~ ~
arg(Ts1)arg(Z11) arg(Zs1)arg(Za)

Let 0\ = 112,70 = 1», 05" = Z3. Then {v;'}3_, are unit, equiangular in C* and
3 3 - =
DU ®U =305 ®%=A
Step 12.2.1.1: Let v3 = v3'. Let v1 € {07/, 05’} be such that

|1 — 61| = min{||#, — o/|| : j = 1,2}

and v, be the remaining in {0y, 05, v3'}.

Step 13.2.1.1: Let & = (fi fo f3)0; for j =1,2,3. Then 37, 4; ® 4 = A and
{«;}2_, are unit, equiangular in C®.

Step 14.2.1.1 : Suppose that &; = (, 3;, 41;)". Then y} = a;hy + Biho + pjhs
for j = 1,2, 3 are three unit vectors in C" which are equiangular and Z?:l Y@y =
S0y ®y;. Stop.

Case 2.1.2: 2/ =2'=0

Step 12.2.1.2: Let #; = (f1 fo fs)w; for j =1,2,3. Then Y] | #; ® 4 = A and



48

{«;}3_, are unit, equiangular in C®.

Step 13.1.7: Suppose that &; = (o, B, ;)" Then v} = a;hy + Bihs + pjhs
for 7 = 1,2, 3 are three unit vectors in C™ which are equiangular and 23:1 Y,y =
Z?:l Y; @ yj. Stop.

Case 2.1.3: 2/ =0,2"#0,y #0

Step 10.2.1.3 : We will construct a vector Z3 such that |Z3| = |ws| which has the

same phase as T3 as follows. Let

ei(B1=p51) 0 0
F — 0 ei(62 _ﬁé) O
0 0 ei(—Cz-l-Cé-‘rﬁl -p1)

Let z; = T'w; for j = 1,2,3. Then |i;| = || and Y] % ® Z; = A. Note that
{2;}3_, are unit, equiangular.

Step 11.2.1.3 : Let

v = ez‘(91—9’1—51-|—ﬁi)7 Uy = ei(a1—a’1—51+ﬁi)

Let 07 = 112,09 = 2y, 03 = Z3. Then {17]-}?:1 are unit, equiangular and
SO ey =30 ,%50%=A

Step 12.2.1.3: Let & = (fi fa f3)0; for j =1,2,3. Then 3}, &; ® 4 = A and
{;}3_, are unit, equiangular in C®.

Step 13.2.1.3 : Suppose that &; = (ay, 3;, 41;)". Then y} = a;hy + Biha + pjhs
for 7 = 1,2, 3 are three unit vectors in C" which are equiangular and Z;’-:l Y,y =
Z?:l Y; ®y;. Stop.

Case 2.14: 2/ =0,y #0,2/ #0

Step 10.2.1.4 : We will construct a vector Z3 such that |Z3| = |w3| which has the
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same phase as T3 as follows. Let

et (C1=C1+B2—p3) 0 0
['= 0 et(B2—03) 0
0 0 ei(B3—B%)

Let % = I'iy; for j = 1,2,3. Then [;| = || and 3.7, %, ® Z; = A. Note that
{2;}3_, are unit, equiangular.

Step 11.2.1.4 : Let

i(62—05—PB2+064)

by = €l iz —ah —Ba+54)

y Vo =€

Let 01 = 112,09 = V92,03 = Z3. Then {f@}?zl are unit, equiangular and 2]3':1 0 ®
B=30 5®%=A

Step 12.2.1.4 : Let & = (fi fo f3)0; for j =1,2,3. Then 3}, &; ® 4; = A and
{;}3_, are unit, equiangular in C®.

Step 13.2.1.4 = Suppose that &; = (ay, 3;, 11;)". Then y} = a;hy + Biha + pjhs
for j = 1,2, 3 are three unit vectors in C" which are equiangular and 23:1 Y, Qu; =
Zj’:l Y; @ y;. Stop.

Case 2.1.5: ¢y =0,2"#0,2 #0

Step 10.2.1.5 : We will construct a vector Z3 such that |Z3| = |w3| which has the

same phase as T3 as follows. Let

67:(51 _ﬁi) O 0
I = 0 (¢ —C1+81—p1) 0
0 0 e (B3=03)

Let % = I'iyj for j = 1,2,3. Then [;| = || and 37, % ® Z; = A. Note that

~ 3 . .
{Zj}jzl are unit, equiangular.
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Step 11.2.1.5 : Let

01—-01—p1+57) i(a1—a)—p1+067)

V1:€Z( , Vg = ¢€

Let 01 = 112,09 = V92,03 = Z3. Then {173‘};":1 are unit, equiangular and Z;’:l 0 ®
U=30_1%5®%=A

Step 12.2.1.5: Let & = (fi fo f3)v; for j =1,2,3. Then Y7 | #; ® #; = A and
{«;}2_, are unit, equiangular in C®.

Step 13.2.1.5 : Suppose that 7; = (o, 8;, 1;)*. Then y; = ajhy + Bihy + pjhs
for 7 = 1,2, 3 are three unit vectors in C™ which are equiangular and Z?:l Y,y =
23:1 y; ®y;. Stop.

Case 2.2 |71| = |%3| # | 72|

Similar to Case 2.1

Case 2.3 : |Ta| = |23| # |71].

Similar to Case 2.1

First, we will prove that when {y;}?_, is equiangular in C", yj = y; for all j =
1,2,3. Since {y;}5_, is equiangular in C" , {x;}3_, is equiangular in C* and {z;}3_,

in C? is equiangular as well. First, we will show that when {z; }3?:1 is equiangular

in C", |wy| = |2] for j = 1,2,3. Because {«;}?_, and {z;'}3_, are equiangular and
have the same Bessel operator A, they are geometrically equivalent by Lemma (I1.19).
Therefore, there are scalars {d;}3_, of modulus 1, a permutation IT of {1,2,3} and a
unitary operator U which commutes with A such that T; = deéé’H(j) forall j =1,2,3.

Since A is diagonal matrix with A\; > Ay > A3 > 0 and U commutes with fl, U must be

w1 0 0
diagonal. Let U= [ 0w, 0 | where |wi| = |w2| = |ws| = 1. Hence, |7;| = |Z} ;.
0 0 w3

From the construction of w; we have |w;| = |7;].
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Now we will consider each case to see that y; = y; for all j = 1,2,3. Since in
cases (1.1)-(1.7), the steps 12 and 13 are the same, we will prove in each case v; = ;.
From that and #; = (f1 f2 f3)0; and z; = (fi f2 f3)2;, we have 2; = x;. It follows
immediately that y’ = y; by step 13.

For Case(1.1), if {z;}}_, is equiangular in C* then |7;| = |uw;| = || = |v;].
Since z; has the same phase as £; we have z; = 27 and so v; = 7. Since Z?:l Z; ®
Z; = 23:1 ©; ® #; = A, there exist scalars {d;}5_, of modulus 1, a permutation IT
of {1,2,3} and an unitary matrix ¢ commuting with A such that Z; = djhZng.

Because A is diagonal with Ay > Ay > A3 > 0 and ¢ commutes with A, ¢ must be

(03] 0 0

diagonal. Let vy = | 0 @y 0 | where a; are complex numbers of modulus 1. So
0 0 Q3

|7;5] = |2;| = |Zug)|- Since |21] # |22| # |23], Il = 1. Therefore, 2; = dyz; for

j =1,2,3. From z; = 77 and all components of z; are different from 0, it follows
that 1 = dja; = dyos = dyos. Thus, oy = oy = a3 = d; and we denote this number

a. So for j = 2,3, we have z; = d;az;. Hence,

dyar — arg(%gl) _ arg(Ze1)arg(T1y) _ l7 dyar = arg(Zs1)  arg(Zsi)arg(Ti1) _ 1

arg(Te1)  arg(Tar)arg(Zn) s arg(is1)  arg(Zs)arg(Zi) s
Thus, Uy = 192y = T3, U3 = 1323 = 3. Therefore, U; = ;.
For Case(1.2) and Case(1.3), by using the similar argument as Case(1.1), we
also have v; = ;.
For Case(1.4), if {a;}3_, is equiangular in C* then |z;| = |w;| = || = |v;] and
Tj=Zp = 07,7 =1,2,3. Since 23:1 ZiQ%Z = 23:1 @, ®%; = A, there exist scalars
{d;}3_, of modulus 1, a permutation IT of {1, 2, 3} and an unitary matrix ) commuting

with A such that Z; = dj9Iy;). Because A is diagonal with A\; > Ay > A3 > 0 and
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(03] 0 0

) commutes with A, ¢ must be diagonal. Let ¢ = | 0 ay 0 | where o are
0 0 Qa3

complex numbers of modulus 1. So |#;| = |Z;| = |Zn|. Since |@1| # |72| # |73,

IT = 1. Therefore, z; = d;3pz; for j =1,2,3. From Z1; # 0,Z91 # 0, 31 # 0, it follows
that 1 = dyay = dyay = dzay. Thus, di = dy = d3 = a7 and we denote this number

d. Hence,

arqg(z arqg(xy1)arg(z arqg(z arqg(xy1)arg(z
doy = g( 12) _ g( 11) 9( 12) — 1y, dos = 9( 13) _ 9( 11) 9( 13) — 1

arg(Z12)  arg(Zi1)arg(Zio) 7

arg(Z13)  arg(Z11)arg(Z13)
Thus, 01 = -Z13 = go-Z12 = T1p. Similarly, we have Ty = Ty, U3 = T3z and
Vj3 = Zj3,J = 1,2,3. Therefore, v; = ;.

For Case(1.5) and Case(1.6), by using the similar argument as Case(1.4), we
also have v; = ;.

For Case(1.7), suppose that {«;}7_, is an equiangular set. Let M be a matrix

whose columns are 7, that is,

T To1 Ta

M =10y Ty Is

T13 Toz T3
In the case (1.7), each column and each row has a zero element. By Lemma I1.22,
there exists a pair of vectors in {;}3_, is orthogonal which is impossible because
{fj};’:l must form an orthonormal basis for C* and so \; = XAy = A3 = 1 which
contradicts to the hypothesis that {\;}2_, are distinct. Hence, {«;}_; can not be an

equiangular set.

For Case(2.1.1), if {2;}3_, is equiangular in C® then |7;| = [w;] = || = |v;| =

~ / . ~ ~ ~ ~ ~ ~ ,
|0;'|. Since Z3 has the same phase as ©3 we have Z3 = 73 and so U3 = U3 = 7.
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Since Z?le}- ® Z = Z?:l ©; ® #; = A, there exist scalars {d;}3_, of modulus 1,

a permutation II of {1,2,3} and an unitary matrix ¢ commuting with A such that

Z; = djIr(;. Because A s diagonal with A\; > Ay > A3 > 0 and ¥ commutes with

(03] 0 0

A, ¥ must be diagonal. Let ¥ = | 0 @, 0 | where o; are complex numbers of
0 0 Qs

modulus 1. So |7;| = |Z;| = |Zn)|. Since |71| = |#2] # |73], II = 1 or II(1) =

2,11(2) = 1,11(3) = 3. From 23 = @3 and all components of 3 are different from 0, it
follows that 1 = dsa; = dsas = dsas. Thus, a3 = s = a3 = ds and we denote this
number .

If I = 1 then z; = d;9z; for j = 1,2,3. So for j = 1,2, we have z; = d;oz;.

Hence,

dla _ arg(én) _ CLTg(i’31>a7"g(211> _ l, dza _ arg(égl) o arg(i’gl)arg(,%gl) _ i

CLT’g(i‘H) arg(égl)arg(xu) 1%} CLT’g(i'Ql) a arg(égl)arg(xgl) 1]

Thus, v1" = 1z = #1,0" = 1wZy = @y Therefore, from the construction of v;, we
~ . ~ / . ~ . .
have v; = v;' = z; for all j = 1,2, 3.

If H(l) = 2, H(Q) = 1, H(?)) = 3 then Z~1 = dl()éfg, Z~2 = ngéfl, Z~3 = fg. Hence,

dar — arg(%ll) _ arg(Zs1)arg(Z11) _ l7 dyar — arg(Zyn)  arg(Zsi)arg(Za) _ 1

CLT’g(I'Ql) arg(égl)arg(xgl) 1%} CLT’g(i‘H) a arg(égl)arg(xn) 12

Since 0y = 1121 = @a, V' = iy = 1,03’ = Z3 = 73 and from the construction of v,
we have 0; = ;' = z; for all j =1,2,3.
For Case (2.1.2), suppose that {#;}3_, is equiangular in C*. Since 23:1 T;Q1; =

A, we have

ei(el—ez)xy + ei(al—oQ)xy + ei(ﬁl_ﬁ2)x/y/ — 0 (IIIl)

e!01703) g5  eilor—as) gy 4 8 B1=Bo) gl — ) (111.2)



67’(02_63)yz + ei(az_a3)yz + ei(62_63)ylzl = 0

2:172 -+ I/z = )\1
20" +y% = X
222 + 2/2 = )\3

From 2/ = 2/ = 0, it follows that y' = 1. From (IIL.4), (IIL.6), =

o4

(111.3)
(I11.4)
(I11.5)

(111.6)

\/g#o,z:

28 0. If y = 0 then 27 L 5. Since {z;}3_, is equiangular in C?, they form an

orthonomal basis in C? which in turn implies that \; = Ay = A3 = 1, a contradiction.

So  # 0. From (IIL1), (I11.2), (IIL.3), we have
i01=02) 4 gilam—a2) _ ()
eil01=0s) | pilar—as) _
il02=0s) | ilaz—as) _

From elementary geometry in the plane and (II1.7), we have

91—92:<1—|—2l1H, al—a2:H+§1—|—2m1H.

Similarly, from (II1.8) we have

91—93:(2—1-2121_[, Oé1—043:H+C2+2m2H.

From (II1.9), we have

92—93:(3—1-2131_[, Oé2—043:H+C3+2m3H.

(I11.7)

(I11.8)

(I11.9)

(111.10)

(IT1.11)

(111.12)

By subtracting the first equation of (II1.10) from the first equation of (III.11), we

have

Oy — 03 =Co— G +2(l— )T
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By subtracting the second equation of (I11.10) from the second equation of (III.11),
we have

ay —ag = C — (G +2(mg —my)Il

So we have a contradiction to (II1.12)

For Case 2.1.3, from (IIL6), z = 1/2 # 0. If 2 = 0 then from (IIL.1), we have
'y’ = 0, a contradiction. Similarly if y = 0 then from (III.1), we have 2’y = 0, a
contradiction. So z,y, z are nonzero.

By using the same argument as before, we have (II1.8),(I11.9) and (II1.11),(I11.12).

Thus,
oi(03+C2) - il +TT4C2) - _eilaz+G2) i1 !
T = ei(93+43)y , To = ei(aa+H+Ca)y = _ei(a3+63)y , T3 = eiﬁ2y/
et 2 ey ey 0

Since |w;| = |z;| for all j = 1,2,3 and 23:1 W; @ w; = A, by repeating the same

argument as for {Z; };’-:1, we have

01703 4 giler—as) — (I11.13)

ei02=03) 4 pilaa—as) — ¢ (II1.14)

0, — 0% = ¢ + 2111, o) — oy = I + ¢ + 2mi 1L (II1.15)

0y — 0y = (4 + 21511, iy — ajy = I+ ¢} + 2mi 1L (I11.16)
ci(O4+C8) _eilah+Ch) B
Wy = | @@y |,y = | —eitest@)y [,y = | eithy

=N/ s !
s » ez 0
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From the construction of Z;, we have Z3 = 73 and

—ei03+C3+B1—61) 1 — et +G+B1—61) o
Z = _ei(9é+C§+ﬁ2—5§)y , 2o = _6i(0¢§,+€§+52—5§)y
ei(gé—Cz-i-Cé-‘rﬁl —5{)2 61'(06'3—(24-{54-51 —5{)2

- 2 L - 2 .
Since Y 5_, Z; ® Z; = 35, ¥j ® ¥;, we have

9¢t(C2 —CS)xy — 2UG =3 +P1=F1—F2 +5§)xy

Therefore, ¢ — ¢} + 51 — By — B2 + 05 = (o — (3 + 2III. We have
—ei(03+(3+01-01) 4.
1z = | —i0s+GH0a—Oat01-01=P1+01)y

ei(eé —(2+¢+61—67) P

—etilagt+Gtar—al)
UoZo = _ei(a’3+cg+ﬁz—5§+a1—a’1—61+51)y
eilaz—Ct+Gtar—ay) o

Since
0+ Co+ 01— 0 = 05 + 0, — 0y +205TT+ 0y — 0] = 0y + 20511 = (o + 03 + 2(Iy + 1)1
and

054+ C+Pa— By +01 — 0 =B+ 0; = —CG—2LI++ 06— 0+60— 6+ 05
- _<2+C3_2l2]:[+91

= O3 -0 +C+0, =05+
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and

0 —G+G+60—00 = 05— CG+0]—05+ 2011+ 6, — 6,
== —(2 + 91 + 21;1_[

we have 141z; = 1. Similarly, 152y = 5.
Remark 5. i) We will prove that the case |71 = |7| = |73] can’t happen. Suppose
that 2, = (e?z, ey, )T 7y = (e!a, elo2y, el )T 73 = (efPra, P2y, P32)T
where x,y, z € R. Since Z;’:l T; QT = A, we have

g ey 4 ey g2y 4 Py o702y =

e02y.e703 5 4 g2y o703 5 | P2y o= 5 — )

o703, 4 el T8 5 4 Py T, —

Since {z; }§:1 are linearly independent, x, ¥y, z are nonzero numbers. So it follows that

el01=02) | ilar—az) 4 Li(B1—02) — (IIL.17)
eil01=63) | gilar—as) 4 i(B1—Ps) — (I11.18)
il02=0s) | pilaz—as) | i(B2=Ps) — (I11.19)

By multiplying (II1.17) by e(=%1+02) (II1.18) by (=%1+%:) (II1.19) by e(=%2+%:) e
have

1+ l2mrtonmaz) 4 (ill=brthi=0) — (11.20)
1 + els=brton—as) | ,i(0s—01+61-03) _ () (I11.21)

1 + ¢fomfetaaas) 4 ills=02t=s) — (111.22)
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Let M1 = 92-91+Q1-Q2,V1 = 92—914—61—/62. So 1+6i‘u1 —|—6iy1 = 0. By
elementary geometry in a plane, we have either pu; = % + 2410, v = % + 2m411 or

[ = % + 2411, 1y = % + 2m41I for 1, m; are integer numbers. So either

211 411
92—914—0(1—0(2:?—'—2111_[, 92—‘914‘51 52 —+2m1H
or
411 211
92—‘914‘0&1—0(2:?4‘2[11_[, 92—‘914‘51 52 —+2m1H

Similarly, we can prove that either

211 411
93-‘91"‘0&1-0&32?4‘2121_[,93—91—'—61 53 —+2m2H
or
411 211
93-91—}—0&1-0&3:?4—2[21_[, O3 — 01+ By — B3 = ——l——|—2m2H
and either
211 411
93-92—}—0&2-0&3:?4—2[31_[, O3 — Oy + Bo — B3 = ——|—2m3H
or
411 211
93-92—}—0&2-0&3:?4—2[31_[, O3 — Oy + Bo — B3 = ——|—2m3H
1) Suppose
211 H
92 — 91 + o — g = ? + 2l1H, 92 — 91 + ﬁl ﬁg — + 2m1H (11123)
211 411
93 - 91 + a1 — a3 = ? + 2[21_[, 93 — 91 + ﬁl ﬁg — + 2m2H (11124)
211 H
93 — 92 + o — a3 = ? + 2l3H, 93 — 92 + ﬁg ﬁg — + 2m3H (11125)

By subtracting the first equation of (II1.24) from the second equation of (I11.24), we

have 6 — B3 + a3 — g = % + 2(mgy — l3)II. On the other hand, by adding the first
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equation of (II1.23) to the first equation of (II1.25), we have a; — 0 + 03 — a3z =
A 4+ 2(1y + I3)I1. By subtracting this equation from the second equation of (IIL.24),

we have 31 — 3 + ag — a3 = 2(my — I — I3)II. So we have a contradiction.

2) Suppose
Oy — 01+ 1 —an = g + 20411, Oy — 01 + 31 — B = ? + 2my 1l (TIT1.26)
05 — 01+ a1 —az = ? + 2011, 03 — 6, + 51 — B3 = g + 2m,lI1 (I11.27)
05 — 02 + s — a3 = ? + 20311, O3 — Oy + B — (3 = g + 2mg3lIl (111.28)

By subtracting the first equation of (I11.27) from the second equation of (I11.27), we
have 31 — O3 + a3 — g = % + 2(mg — l5)II. On the other hand, by adding the first
equation of (II1.26) to the first equation of (II1.28), we have a; — 0 + 03 — a3z =
211 + 2(ly + I3)I1. By subtracting this equation from the second equation of (II1.27),
we have 0 — O3+ a3 — a1 = —% + 2(mg — I3 — I3)I1. So we have a contradiction.
For other cases we handle similarly. So |71| = |#2| = |73| can’t happen.
ii) We will prove that in Case 2.1, it is impossible that y' = 2z’ = 0. Indeed, since

s
> =1 T; ®a; = A, we have

e 01=02) 1y 1 iler—a2) gy, 1 GilBi=Ba) 0t — ) (I11.29)
ei01=03) 1.y piloar—as) oy Gi(B1=Bs) 1 1 ) (II1.30)
eiB2=05)y | piloa—as)y , y pi(Ba—s)yr 1 — ) (II1.31)
922 4 2 = A (LIL.32)
2% 1y = Ay (I11.33)
9222 4 7 = ), (I11.34)

Due to Ay > Ay > A3 > 0 and Zj.:l)\j:?)we have A\; > 1, \3 < 1.
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If y =2’ =0 then 2/ = 1. From (IIL.32), (IIL33), (IIL34), z = /21522 £ 0,y =
22 £0,z=4/22 # 0. From (I11.29), (IIL.30), (IIL.31), we have

ei(91—92) _'_ ei(al_oQ) — 0 (III35)
fi01=85)  ilon—as) _ ) (IIL.36)
ei(92—93) _'_ ei(a2_a3) — 0 (III37)

From elementary geometry in the plane and (I11.35), we have

B — 6y = (1 4+ 2011, oy — s = 11+ 1 + 2L (I11.38)
Similarly, from (0.36) we have

O — Oy = Co + 2011, oy — g = 11+ Co + 2oL (I11.39)
From (0.37), we have

By — 03 = Gy + 2011, an — ag =TT+ (3 + 2myllL (I11.40)

By subtracting the first equation of (II1.36) from the first equation of (II1.37), we
have

Oy — 03 =Co— G +2(lo— )T

By subtracting the second equation of (II1.36) from the second equation of (0.37), we
have

ay —asg = C — (G +2(mg —my)Il

So we have a contradiction to (II1.40).
Similarly, if 2 = ' = 0 then 2/ = 1. From (II1.6), since A\3 < 1 and 2’ = 1, we

have a contradiction.
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CHAPTER IV

PUSH-OUT FRAMES

Let J ={1,2,...,k} and {2} be a frame on a Hilbert space H,. We define a
push-out of {x;} ey to be a frame {z;};cy on H, &R (or H,, &C) of the form z; = x;Hb
for some fixed b # 0 in R (or b € C). Not every frame has a push-out which is a
frame. We call the frame {z,};c; which has a push-out frame to be a root frame.

Let F' = {z;}jey be a sequence of vectors in H,. A space D = span{z; — x; :
j # 1 € J} is called the difference space of F'. Let ép = dim(span(F') ©Dg). Then for
any finite sequence F, we have ép = 0 or 1 since Dp = span{z; —xz;: j # 1 € J} =

span{z; — 1 : j # 1 € J}. Therefore, span(zy, Dp) = span(F).

Remark 6. A sequence {z,};ey is a push-out frame on H, if and only if there is a 1-
dimensional subspace E of H,, such that Pgz; is a constant vector for all j € J. Indeed,
the forward direction is obvious. For the other direction, write Pgx; = w,j € J for
some w € H,. Let y; = Pprx; € PprH,. Then {y;};cy is a frame in Pg1 H, and
r; =Y; Dw.

Equivalently, a sequence {z;};ey is a push-out frame on H,, if and only if there
is a vector w # 0 in H, such that (z;, w) = constant ,Vj € J. To see this, let

E = span{w} and write Pgx; = %ﬁ

Lemma IV.1. A sequence F' is a push-out frame if and only if 0p = 1.
Proof. Since F'is a push-out frame if anf only if there is a vector w # 0 such that

(z;j,w) = (x;, w) for j # | which is equivalent to (z; —x;, w) = 0 for j # .

Therefore, Dr is a proper subspace of span(F).
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Example .2. 1) A basis & = {e;}}_; of H, is a push-out frame on H,, since e; can
not be written as a linear combination of {e; —e; : j =1,...,n}.

2) The standard orthonormal basis {e;, €3, e3} in R? is a push-out frame of the

Mercedes-Benz frame {é;, &, €3} in R? where ¢, = (\/g, 07, e = (—%, @)T,ég =
(—%, —?)T. (A Mercedes-Benz frame is a Parseval frame of three equal-norm vec-

tors whose angle between every pair of vectors is 120 degree.)

Remark 7. Let F(H,) be the set of all frames on H,,, R(H,) be the set of all root
frames on H,, P(H,) be the set of all push-out frames on H,. It is clear from the

above that F(H,) = R(H,) UP(H,) and R(H,) NP(H,) = 0.

Definition 2. A sequence of vectors is called an ultra tight root frame if it is a tight

root frame which has a push-out to a tight frame.
We can characterize all ultra tight root frames as follows.

Proposition IV.2. A frame F' = {z;},c; is an ultra tight root frame if and only if

it is a tight frame and >,y ; = 0.

Proof. Suppose that F' = {z;};e; is an ultra tight root frame. Then there exists
a push-out frame £ = {z;};ey on K = H, ® R (or H, & C). Thus, there is a
vector w # 0 in R (or C) such that Ptz; = z; and Pz; = w for all j € J where
P is the orthogonal projection on span{w}. Since F is a tight frame on H,, by
Lemma 1.5, we have Zjej z; ® v; = Mp, and since F' is a tight frame on K, we
have ZjeJ 2j @ z; = alg where Iy, , Ik are identities of H,,, K respctively. We have
alg = 3252 @2 = 2jer® @4 + 2 QW+ w305 + hw©w =
Mpy, + 30T @w+w® Y, 2+ kw@w. Forany x € Hy, alg () = My, (r) +
dicr T @w(r) +w® Y yri(z) + kw ®w(x). Since w L H, and z € H,, we have
Yier®j @w(x) = 0 = kw ® w(z) and hence, (o — Az = (x, Y} ;yx;)w. Since

w Lz, weget (¢« —ANx=0=(z, ) yz;)w for any x € H,. Therefore, « = A and
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(7, e57;) =0. Since z is arbitrary in H,, we have ), ;z; = 0.

Now suppose that {z;} ;7 is tight frame on H,, with frame bound A and ),y x; =
0. Then > ;c;z; ® ¥ = AMpy,. Let w = \/% Then . y(v; & w) ® (z; & w) =
DerTi @i+ T @w A w® Y px; + kw®w. Since Y px; = 0, we have
e O w) @ (7 ®w) =57 ®x; + kw@w = Mg, @Al = Ay @ 1). Let

z; = x; @ w. Then {z;};e5 is a tight push-out frame of {x;},cj. O

Definition 3. A frame {x;};¢y is called a scaled push-out (scaled oot frame) of a frame
{#;}jey if there are scalars w;, j € J of modulus 1 such that {w;x;};ey is a push-out

frame (a root frame) of {z;},cy.

Remark 8. 1)A frame {z,},e5 is a scaled push-out on H, if and only if it is a frame
and there is w # 0 in H,, such that |(z;, w)| = constant, Vj € J.

2)Suppose {z;j}jey is an equiangular uniform frame. Then it is a scaled push-
out frame. Indeed, let w = z;. Then |<‘Z|’|2|>‘ = ‘ﬂZHZ‘)' and therefore, |(z;, 21 )| =
|{z, z1)] for j #1.

3)A Parseval uniform frame {z;} of n 4+ 1 vectors in C™ is a scaled root frame

since by Proposition 1.7, there exists A1, Ag, ..., A\py1 in C” such that {z; & \;} is an
orthonormal basis in C"™'. Thus, |);| = ¢ for ¢ = \/1 — ||z;||? Vj. Let a; = )‘—CJ So
laj| = 1. Tt follows that {z; @ a;c} is an orthonormal basis for C"*!, so is {a,x; & c}.

Hence, {a;z;} is a root frame.

Example .3. A Parseval uniform frame of n 4+ 1 vectors in R™ may be a push-

out frame. Let x; = @(1,0,§)T,x2 = ?((—1,0,§)T,x3 = @(0,1,§)T,x4 =
4(0, -1, g)T Then {1, x9, x5, 24} is a Parseval uniform frame of four vectors in
R3 which is a push-out frame.

We also note that every frame that contains a root frame as a subset is a root frame.

Definition 4. A root frame is called minimal if no proper subset is root frame itself.
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Proposition IV.3. 1)A sequence F = {z; : i = 1, ..., k} is a minimal root frame in
R", k > n+ 1 if and only if span(F') = R" = D (the difference space) and no vector
in F' is convex combination of the rest.

2) A minimal root frame F' in R™ is a root frame that has a push-out to a basis.

3)A minimal root frame in R™ have cardinality n + 1.

Proof. 1) F is root frame if and only if span(F) = R®™ = Dp. Therefore, F is
minimal root frame if and only if there is ¢ # 0 such that dim(span{(z; ®c) : j =
1,2,...,k}) =n+1 and any subset of k — 1 vectors of A ={(z; ®c¢):j=1,2,....k}
spans a n-dimensional subspace. Equivalently, for every j, (z; @ ¢) is not a linear
combination of A\ {(z; @ ¢)}. That means, there does not exist a set of real scalars
{ar 1€ {1,2,...,k} \ {j}} such that (z; ® c) = >_,; a(z & c). It is equivalent to
say that for any j, x; can not be written as >, qjz; with 3, ;@ = 1, which is
equivalent to x; is not a convex combination of F'\ {z;} for any j.

2) Since F'is a minimal root frame, the above push-out frame A spans a (n+ 1)-
dimensional space and every proper subset of A spans a space of dimension less than
n + 1. Therefore, no proper subset of A is a basis for R"™!. Because every spanning
set for a finite dimensional space has a subset which is basis, A itself is a basis for
R+,

3) It follows directly from part 2. O

Proposition IV.4. 1) For any frames F = {z;}}_, in H, except bases, there are
scalars {a;}¥_, such that the scaled frame A = {Z}*_, is a root frame.
J
2)For any frames F' = {x;}¥_, in H, except frames contain zero vectors, there

are scalars {a;}_, such that the scaled frame A = { z—j}le is a push-out frame.

Proof. 1) If F is a basis then k = n and any push-out sequence of scaled basis

consisting of n vectors cannot span (n + 1)-dimensional space. Thus, a scaled basis
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is not a root frame. Suppose F' is a frame which is not a basis. Then span(F') = H,.
Let M be a k x n matrix whose rows are x;. Consider n column vectors y1, ¥y, ..., Yn
of M in k-dimensional space. Since k > n, there is a vector a = (aq,as, ...,a;) in
Hy, with a; # 0,Vj such that a & span{y:,y2, ..., yn}. Then {2—2}2“21 is a scaled frame
which is root frame.

2) It is obvious that if F' contains zero vectors, then any scaled frame also contains
zero vectors and hence can’t be a push-out frame. Now suppose F' is a frame for H,
but not a push-out frame with x; # 0,Vj. Then k > n. Let £ be a subspace of H,

with dimension n —1 which doesn’t contain vectors {z; }?:1- Let P be the orthogonal

k

projection onto £ and let a; = P*(x;),V j. Since £ doesn’t contain vectors {z;}*_,,

we have a; # 0,Vj. Hence {Z—j}le is a scaled frame which is a push-out of the frame

{PEY,. O

Proposition IV.5. Suppose F = {:)sj}le is a strictly equiangular root frame in R,,.

Then F' is a tight frame.

Proof. Suppose (z;, x;) = a,V j # l and ||z;|| =0,V j. Let S = Z?:l r; ®x;. Then

Sz; = axi+azs+ ...+ b0z + ...+ axy

Sz, = axy 4 axe + ...+ b2x; + ...+ axy,
By substracting two above equations, we get:
S(x; —x) = b*(x; — 2) +alv, — ;) = (b —a)(w; —2),V j £ .

Since F is a root frame for R, span{z; — 2, : j # [} =R,, S = (b* — a)I and hence
F is tight. O

Remark 9. 1) In R?, by multiplying by -1 and rotating if necessary, every unit norm

equiangular frame is a scalar multiple of a Mercedes-Benz frame which is tight and



66

[(z;, 2 )] = 3 for j # I but in C?, it is no longer true. Consider z; = (1,0)", z, =
T N\T

(%, z%) , T3 = (%, —% — ﬁ) which is a non-tight unit norm equiangular frame
in C? with [(z;, 2;)| = % for j # 1.

One natural question is that if every equal-norm equiangular frame of three vec-

tors in C? is geometrically equivalent to a push-out of a scalar multiple of a Mercedes-

Benz frame in C2. The answer is negative. One example of a non-tight equiangular

frame in C3 of three vectors is

o (L2 ) (LY
x1 = (—1,0,1) ,zg—(\/g,z\/gJ) , 3—<\/§, 7 \/6,1>

which is a push-out of a non-tight unit norm equiangular frame in C2.

T N\T
Example .4. Let 2, = (1,0)7, 2, = (%,z%) , X3 = (%, —% — ﬁ) :
11 i

Ty = <%, 75— %> . Then {z;}j_, is an equiangular frame in C* which is an

optimal Grassmannian frame since M({xj};*:l) = @

Remark 10. In an infinite dimensional separable Hilbert space, it is still true that
dx = 0 or 1 for any set X. However, any infinite Bessel sequence X = {;}32; which
spans an infinite dimensional space has d x = 0 because if there is some vector u # 0 in
span(X) and u L Dx, then (u, z; —x;) =0,V j # 1. So (u, z;) =,V j. It follows
that 372 [(u, 2;)> = 00 if ¢ # 0. Since X is a Bessel sequence, > 22, [(u, x;)|* <
00. So span(X) = Dx and thus, dx = 0.

In particular, any infinite frame is a root frame. But a Schauder basis X in an
infinite dimensional separable space H can have dx = 1. For example, let H be an
infinite dimensional space with othonormal basis {e;}%2, and let x; = j%e;,V j. Then
{z;}32, is a Schauder basis but not a frame. Let z = > 7%, ]e—; Then (x, z;) =
(z,x) =1,V j # 1 and therefore (z, z; —x;) = 0,Vj # [ and Span{z; — 2, : j #
[} # H. It implies that 0x = 1.
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CHAPTER V

GROUP FRAMES

Let G be a group and U(B(H)) be the group of all unitary operators on a Hilbert
space H. A unitary representation Il of G on H is a group homomorphism from G
into U(B(H)). In other words, for every g,h € G, Il(g),II(h) are unitary operators
on H such that II(¢g)II(h) = II(gh) and TI(g~!) = I1(g)~*.

Let IT: G — U(B(H)) be a unitary representation of G on H. If there is x € H
such that {II(g)x}4eq is a frame for H then the frame is called a group frame and the

vector is called a frame vector for G.

Lemma V.1. Suppose U is a countable group of unitary operators on H which has

a frame vector x, and let S be the frame operator of {Ux}. Then S commutes with

U.
Proof. We have:
S=>peuUz)® Uz) =>4, Uz z)U*
For every V € U,
VSV =3 VU(x @)UV =3 o, Uiz @)Uy = S.
where Uy = VU. So VS =S5V. O

We use the fact that every positive operator () has a unique positive square root
@Q'/? which commutes with every operator in B(H) that commutes with Q.

The left regular representation II; is a map from G to U((*(G)) defined by
I (g9)(&n) = & where g, h € G and {&;},ec is the standard orthonormal basis in
(@), that is, £,(h) =0 if h # g and £,(g) = 1.
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Lemma V.2. Suppose G is a countable group and {z,},e¢ is a frame indexed by G

for H satisfying

<xh91> Ihg2> = <$91’ 1'92) (V.1)

for all h,g1,92 € G. Let © be the analysis operator of the frame {z,},e¢. Then

ran(0) is invariant under 11, (G).

Proof. Using I (h){\;}gec = {Mn-14}gec for every sequence {\,}sec € (*(G) and

(V.1), we have for every h € G,

M (h)O(x) = To(W{(z, 24)}eec
= (@, 2h1g)}gec
= {{zn1g, Tn1g) oec
= {{z¢, 2g)}gec

= O(x2)

g

where ¢’ = hl. Therefore, since H = span({z,}4ec), O(H) is closed and Il (h) is
continuous, we have for every h € G, Il (h)(©(H)) C O(H).

0

Proposition V.3. Suppose {z,}4e¢ is a Parseval frame for H indexed by G and
for every gi1,g2,h € G, (V.1) holds. Then the frame is a group frame for a unitary

representation of G on H.

Proof. Let O be the analysis operator of {z,},ec and P be the orthogonal projection
from ¢*(G) onto the range of © which is a closed subspace of £*(G). Let {&,} be the
standard orthonormal basis of ¢2(G). Then range of © is invariant under I (G) :
(*(G) — *(G). Let e be the identity element of GG. Then for any g € G, since

I (g)P = Pl(g) we have Il (g)P& = PlI (9)¢ = P&, = PE,. Since {z,} is a
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Parseval frame, © is an isometry and z, = ©*|gm) P&, for all g € G where ©*|g(m)
is the adjoint operator of © restricted on the range of ©. Let p : G — U(B(H))
is defined by p(g) = ©*|lem)IlL(9)O. Then z, = O*|gm) P&y = O*|owm)lL(9)Pé =
O*om)IlL(9)O(x) because P, = O(z.). So x4, = p(g)(x) for any g € G and

therefore, {z,} is a group frame for a unitary representation p of G on H. 0J

Lemma V 4. If {z,},c¢ is a group frame for a unitary representation satisfying the
condition (V.1) then the corresponding canonical Parseval frame S~'/2(x,) where S

is the frame operator of {z,} also satisfy (V.1).

Proof. Suppose there are a unitary representation p and a vector x such that z, =

1

p(g)z. Since S commutes with p(g), S™' also commutes with p(g) for all g € G. So

S~12 commutes with p(g) for all g € G as well. Let y, = S~/2(x,). Then we have
yg = S p(g)x = p(g)S~/%z. Thus,

<yhg1 ) yhg2> = (p(hg1)5_1/2$, p(hgg)5_1/2l’>
= (p(h)p(g1)S™"?x, p(h)p(g2)S~"*x)
= (p(g1)S™"%x, p(g2)S~ " x)

= <yg1>yg1>
]

Remark 11. 1) If a frame {z,} indexed by a group G ({z,} is not necessary a group
frame) satisfies (V.1), the corresponding canonical Parseval frame S~Y/(z,) does not

necessarily satisfy (V.1). For example, consider a frame F' consisting of 4 vectors

1 V3 2 1 1 2 V3 1
= (1 T oo — (—2 0. 2T 4, = \/j__T :___\/j___
T ( 7070) y L2 ( 2707 9 ) , L3 (07 37 \/g) y Ly ( 27 37 9 _'_\/g)
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We have
(1, 29) = (22, x3) = (23, 24) = (4, x1) =—1/2
and
(9, x4) =(x1,23)=0".

So F satisfy the condition (V.1). But ( S™2z3, S71/2z,) = —1 while
(S=Y2x,, 871224 ) = —1/4. So the corresponding canonical Parseval frame does not
satisfy (V.1).

2)Note that if we drop the condition that {z,},ec is a Parseval frame then
the Proposition (V.3) fails. The frame F' in part 1 is not a Parseval frame, satisfying
condition (V.1). This is not a group frame because if there is a unitary representation

p and a vector z such that z; = p(j)x then S7V/2(z;) must satisfy (V.1) also by Lemma
(V.4) but S~Y/2(x;) does not.

Proposition V.5. If {z,},c¢ is a Parseval frame such that range ©x is invariant
under the left regular representation II;,(G) then we have (Zpg1, Tng2) = (Tg1, Tg2)
for every h, g1, go € G and there is a faithful unitary representation p of G on H such

that {z,},ec is a group frame.

Proof. Since ran(©y) is invariant under II;(G), we have PII;(G) = Il (G)P where
P is the orthogonal projection from ¢*(G) onto ran(©x). That {z,},cq is a Parseval

frame implies z, = P&, and hence

(Thgy s Thge) = (Plngys Plngy)
= (PIL(h)&, , PIIL(7)&, )
= (HL(h) P&, , HL(h)PEy,)
= (P&, P&,)

= <$91 ) $92>
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By Proposition (V.3), {z,},ec is a group frame and z, = p(g)z where p is a unitary
representation of G on H and z € H. Let M = ran(Oyx) and let ¢ = II.(G)|u.
Since I1,(G) : M — M is a unitary representation, so is ¢ : G — B(M). Define
¢ : G — B(H) by ¢(g) = ©*d(¢)® for any g € G. Note that ¢(g) = O*TI,(G)O. So
¢ is a unitary representation. It is obvious that ¢ is one to one. So ¢ is a faithful

representation. We want to prove that ¢(g)z. = z, for all g € G. We have
O(zy) = P& = PlL(g)é = PI1(g)é. = PTIL(g) Pé. = OO0 ()0, = Od(g)z.

So z, = ¢(g)xe. O

Remark 12. If we drop the condition that {z,} is a Parseval frame then Proposition
(V.3) is no longer true. We consider the following example. Let G = Z3, H =
R% 2o = (1,007, 2y = (0,-1)T, 29 = (=1,1)T. Then {xg,x1, 22} is a frame with
range Oy = span{(1,0,—1)7, (0, —1,1)"} which is invariant under the left regular
representation 1. (G). Since (xg, x1) # (x1,x2), this frame is not a group frame for
any unitary representation. However, if we consider a mapping p : G — B~1(R?)

defined by p(j) = A7 where A : R? — R? has a matrix representation

0 1
-1 -1

then p is a group representation (not unitary representation). Let x = (1,0)7. Then

z is a frame vector, that is, z; = p(j)x for all j € Zs.
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CHAPTER VI

COCKTAIL PARTY PROBLEM

The ”cocktail party problem” is the problem of how one can separate one sound
- perhaps a voice - from a group of other recorded sounds, perhaps a multitude of
voices at a cocktail party. Recently, Cassaza, Edidin and Balan [1] gave a solution to
this problem by constructing certain Parseval frames for a finite dimensional Hilbert
space which permits signal reconstruction from the absolute values of the frame co-
efficients. In this chapter, we will discuss the mathematics involved in the ”cocktail

party problem”.

Definition 5. 1) A frame {z;}_, in a n-dimensional Hilbert space H,, is said to have
|©|-property if the map g : H,, — C* defined by g(z) = (|(x, z;)|)F_, € C* is one to
one modulo multiples of scalar modulus 1, that is, if x,y € H,, and g(z) = g(y) then
x = Ay for some scalar A with |A\| = 1.

2) Let & be a basis for n-dimensional vector space X. A subspace M is said to be
oblique to £ if the map f : X — C" is one to one modulo multiples of scalar modulus
1 on M, where f is the nonlinear map defined by f(z) = (|a;|)j—; where (a;)7_, is

the coefficient vector of x with respect to &£.

Lemma VIL.1. A frame {z;}"_, for H, has |©|-property if and only if the range of

analysis operator © is oblique with respect to the standard orthonormal basis for C*

Proof. For the forward direction, assume that {z;}¥_, has |©]-property, M is the
range of analysis operator © and y1,yo € M with f(y1) = f(y2). So there exist
21,22 € H, such that y; = ©(21),y2 = O(22). Hence [(2z1, x;)| = [(22, z;)] for all

j=1,2,...,k and so g(z1) = g(z2) which implies z; = Azy with |A\| = 1. Therefore,
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y1 = M\y» and M is oblique with respect to the standard orthonormal basis for C¥.

Now assume that ran(©) is oblique with respect to the standard orthonormal
basis for C* and y;,y, € H™ such that g(y;) = g(y2) which implies |(y;, ;)| =
[(y2, ;)| for all j =1,2,..., k. Therefore, f(©(y1)) = f(O(y2)) and O(y1) = AO(y2)
with |A\| = 1. Since © is one to one, y; = Ays.

O

Remark 13. If N is a subspace of M and M is oblique with respect to £ then so is V.

Lemma VI.2. If some e¢; € £ is in M and if the dimension of M is greater than 2

then M is not oblique with respect to £.

Proof. Without loss of generality we can assume that e; € ENM. Let v = ) ¢je;
be a vector in M linearly independent to e;. By subtracting a scalar multiple of e;
if necessary, we can assume ¢; = 0. Then 1 = v+ e;,29 = v — ey are in M and

f(x1) = f(x2) but x1, x5 are linearly independent. O

Definition 6. 1) A subspace E C X is diagonal with respect to a basis £ if E is a
linear span of basis vectors from £. If I is a nonempty subset of {1,2,...,n}, denote
E; = span{e;,j € 1}.

2) If E, F are subspaces of X such that £ N F = {0}, we will say that E, I are
disjoint. A pair E, F' is called a nontrivial disjoint pairif ENF = {0}, E # {0}, F #
{0}

Lemma VI.3. If I, J are disjoint nonempty subsets of {1, 2, ..., n} such that MNE; #

{0} and M N E; # {0} then M is not oblique with respect to &.

Proof. Let u,v be nonzero vectors in M N E; and M N Ej, respectively. Let 1 =

u+v,x9 =u—v. Then f(z1) = f(xq) but x5 is not a scalar multiple of ;. O
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In the real case, Lemma (VI.3) has a converse. Therefore we can characterize

the obliqueness.

Proposition VI.4. Let X be a n dimensional real vector space with a basis £ and M
be a subspace of X. Then M is oblique with respect to £ if and only if for all diagonal
subspaces Ey either M N E; # {0} or M N Ere # {0} where I¢={1,2,....,n}\ [

Proof. The forward direction comes from Lemma (VI.3). Now suppose M is not
oblique with respect to £. Then there are x,y # 0 € M,z ¢ {£y} such thatf(z) =
f(y). We write x = ) aje;, y = > bje;, aj, b; € R. Then |a;| = |b;] for all j
and b; = aj or b = —a; forall j. Let L = {j : b; = a; # 0},J = {j : b; =
—a; # 0}, K ={j:bj =a; =0}. Thenx+y € E; # {0},z —y € E; # {0}. So
MNEL#{0}, MNE;# {0} which implies M N Er. # {0}, a contradiction. O

Lemma VI.5. Suppose that Ay, A; are positive operators and let A = A; + A,. If
x € H and Ax = 0 then A,z =0 = Asx.

Proof. Since 0 = (Az, x) = ( Az, )+ (Asx, v)and (Ajz, x) > 0,( Asx, x) > 0,

we have (Ajz, x) = 0= ( Asx, x) which implies
(AY’z, AP2) = 0= (A%, A%x)

. So ||AV2z]| = 0 = ||AY?z|| and A}z = 0 = A)?2. Then Az = A{(AV?2) =
0= AY*(AY?z) = Ay O

Proposition VI.6. Suppose that P, () are orthogonal projections with complemen-
tary rank in B(H), i.e. rank(Q) = dim(H ) — rank(P) for a finite dimensional Hilbert
space H. Then P(H)NQ(H) = {0} if and only if P 4 @ is an invertible operator in
B(H).
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Proof. Assume that P + @ is an invertible operator in B(H). Then (P + Q)(H) =
P(H)+ Q(H) = H. Since dimH = dim(P(H) + Q(H)) = dimP(H) + dim Q(H) —
dim (P(H)NQ(H)) = dimH — dim(P(H)NQ(H)), we have dim (P(H)NQ(H)) =0
which implies that P(H) N Q(H) = {0}.

Now suppose that P(H)NQ(H) = {0}. Then dimH = dim(P(H)+Q(H)) which
implies that P(H) + Q(H) = H. So P + Q is surjective and H = P(H) @ Q(H).
If (P + Q)(z) = 0 then by Lemma (VL5), P(z) = Q(z) = 0 and therefore z €
Q(H)NP(H) = {0}. So =0 and P+ Q is injective. Hence, P+ Q is invertible. [J

Corollary VI.7. If P, are orthogonal projections in a finite dimensional Hilbert
space H with complementary rank then P(H) N Q(H) = {0} if and only if det(P +

Q) > 0.

Proposition VI.8. If M is a n-dimensional subspace of a k-dimensional space H
then the set of all subspaces of H of dimension (k — n) that are disjoint from M is
open in the set of all subspaces of dimension (k —n) with the topology on subspaces
induced by metric d(M, L) = || Py — Pp|| where Py, P, are the orthogonal projections

onto M, L, respectively.

Proof. Suppose that N is a (k —n) dimensional subspace of H that is disjoint from
M. By Corollary (VI.7), det(Py; + Py) > 0. Since det is a continuous function, if
||Pw — Pn|| is small enough then det(Py + Py ) > 0. From [12], dim(Pw(H)) =
dim(Py(H)). Therefore, W is a subspace of dimension (k —n) that is disjoint from
M O

Lemma VI.9. Let X, Y be two closed subspaces of H. Then

d(X,Y) = max{sup{d(z,Y) : w € X, [|z[| <1}, sup{d(X,y) :y € Y, |]y[| < 1}}
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Proof. We have d(z,Y) = ||z — Pyz|| = ||(I — Py)z|| and

[-P
sup{d(z,Y):z € X, ||z|]| <1} = sup{w r#0e X}
Px)h
d(X,Y)=||Py — Px|| = sup{|| ||h||X ! h#OEH}
Py(I — Px)h|]2 + |[(I — Py) Pxh]2
_ Sup{m V(1 —Tx) MH( V)Pl WOEH}
2 2
. {mm Px)h|‘|‘h4"‘||(f Pr) Pl WOEX}
P
— Sup{w h%OEX}
|||
Letpy:sup{W:h#OeX and hence d(X,Y) > py.
I-P
Similarly, let px = sup {% ch#0¢€ Y} and hence d(X,Y) > py.

So d(X,Y) > max{px, py }.
Now we show that d(X,Y) < max{px, py}. From the definition of py, we have
||(I = Py)Pxhl|| < py||Pxhl|| for any h € H. So

I(1 = Py)Pxhl|[* < py||Pxhl[? (VL1)

for any h € H

On the other hand, we have

HPY(I_PX)hH2 = <PY(I_PX)h7PY(I_PX)h>
= <PY(I_PX)h7(I_PX)h>:<(]_PX>PY(]_PX>h7(]_PX>h>

< (I = Px)Py(I = Px)h|[.|[(I — Px)hl|
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By the definition of px, we have
I = Px)Py(I = Px)h|| < px||Py(I — Px)hl|

for any h € H

Therefore,
|Py (I — Px)h||*> < px||Py(I — Px)h||.||[(I — Px)h||

1Py (I = Px)hl| < px|(I = Px)hl| (VI.2)

From equation (VI.1) and (VI.2), we have

I( = Py)Pxh|*||Py(I = Px)R|[* < py||Pxhl]” + pk|I(I — Px)h||*
< (max{px, py ))%.(||Pxhl|* + [|(1 — Px)hl|*

< (max{px, py})*||n|
Thus, d(X,Y) < max{px, py} and d(X,Y) = max{px, py } O

Lemma VI.10. If M, E are subspaces of a k-dimensional Hilbert space H and
dim(M) = n,dim(E) = k — n then dim(M + E)* = dim(M N E).

Proof. Since (M + E)* = M*NE+ (MNE)* = M+ + E+, we have dim(M + E)* =
dim(M+ N EY) = dim(M*1) + dim(E+) — dim(M* + E4) = k — dim(M* + E4) =
k—dim(M N E)* = dim(M N E) O

Let {yi, ...,y } be an orthonormal basis for M N E and {z1,..., 2} be an or-
thonormal basis for (M + E)*. Let 0 < e < 1 and w; = y; + ez for j = 1,...,1. Let

81, ..., 5, be an orthonormal basis for (M N E)* in M. So {s1, ..., Su_1, Y1, ..., yi } is

an orthonormal basis for M.

Lemma VI.11. The set {s1, ..., Su_1,y1 + €21, ..., y; + €2} are linearly independent.
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Proof. Suppose Z;:{ a;s; + Zin:l b (Ym + €2m) = 0.
Then 32071 a;8; + Yy binbim = — vy bm€2m € M N ME.
Therefore, Z;L:_{ a;s; + Ein:l bmYm = 0 and a; = b, = 0 for all j, m. O

Proposition VI.12. Given 0 < € < 1 and let w; = y;+ez; for j =1,...,1. Let M bea
subspace spanning by {s1, ..., S,_;, w1, ..., w;}. Then MNE = {0} and d(M, M) < 2e.

Proof. Suppose z € M N E. Then z can be written as

n—l l l
T = Z a;s; + Z b Ym + Z b €mZm
j=1 m=1 m=1
!

Since Y20 bmémzm € (M+E): = MNEY andz € E, wehave (z, Y20 bpémzm ) =
0. Since Z;L:_{ a;s; + Zinzl bmYm € M and an:1 br€mzm € M+ N E+ C M*, we
have 0 = (z, 320 bémzm) = So0 | |bm|?€2, which implies that b,, = 0 for all
m = 1,...,1. Therefore, x = Z;:{ ajs; € (M NE):N(MNE) and hence z = 0. So
MNE ={0}.

Consider the Hausdorff distance between two closed unit balls BM ,B{‘Z . Let

T € B{‘;f. Then
n—I l l
x = Zaij + Z brYm + Z bm€2m
j=1 m=1 m=1
and [|z][2 = Y077 aj[P+ 30y bl + Yy [bm|?€* < 1 which implies that S0 [b,|* <

1. We have

n—I l l n—I l
d(z,BY") < d(z a;jsj + Z bmYm + Z bm€2m, Z a;sj + Z bn¥m)
Jj=1 m=1 m=1 j=1 m=1

l l
= 1D bmezmll = O bml?e)? <€
m=1 m=1

Suppose z € BM. Let z = Z;L:_{ a;s; + S bmym. Then ||z]]? = Z?:_{ |la;|* +
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S |bm|> < 1 which implies that 320 [b,]? < 1. Let dp = by(1 — €2) for m =
1ol
Therefore, |dp,| < |bm| and 320 |dl? < 320 |bm|? < 1. We have

l l dm 1 l l l l
; b = mz::l = ? = aap m; d|? > (1+€%) m; \do|? = mz::l d;+e2;dg

Let y = Z;L:_{ ajs; + S0 dotm + S0 dpmezy. Then

n—I l l n—I l
P = laP+ > di+e Y di <> a4+ ) bnl* <1
Jj=1 m=1 m=1 j=1 m=1

and so y € B{V[. Then

l l
d(z, BY") <d(z,y) = > |bm—dul*+ €Y |dn]’
m=1 m=1

l l

= D bl + D |dul

m=1 m=1

< 4 < 2

O

Corollary VI1.13. Suppose M is a n-dimensional subspace of a k-dimensional Hilbert
space H. Then the set of all (k — n)-dimensional subspaces of H that are disjoint

from M is open, dense in the set of all (kK — n)-dimensional subspaces.
Proof. Tt comes directly from Proposition (VI.8) and Proposition (VI.12). O

Corollary VI.14. The set of all (k—n)-dimensional subspaces of H which are disjoint
from every diagonal subspace of n-dimension with respect to a fixed orthonormal basis

{e;}s_, is open, dense in the set of all (k — n)-dimensional subspaces of H.
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Proof. 1t comes directly from Baire Category Theorem and the fact that the number

of diagonal subspace of n-dimension with respect to the basis {e; };?:1 is finite. O

Lemma VI.15. Suppose E, I are closed subspaces of a Hilbert space H. Let O p
be the angle between E and F' defined by:

cos(Op r) = sup {cos(Oy5) }

where sup is taken over [, s which are a 1-dimensional subspaces of F and F, respec-
tively. Then cos(Og r) = ||PQ|| where P, @ are the orthogonal projection onto E, F',

respectively.

Proof. We have

1PQI[ = sup{||[PQx[| : z € H, [[z]| = 1}
> sup{[[PQu][: w € F, |[x|[ = 1}

= sup{||Pz||:x € F,||z|| = 1}

(Px, Px)

= supy—————:x € F||lz|]|=1
{ [Pl
Pz

= sup (—,:):)::EGF,||x||:1}
{ [|P]]

= sup{[{u, v)|:u€ EveF || =|v|=1}

= cos(Ogr)
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Conversely,
|PQ|| = sup{||PQz||:z € H,|z|| =1}
= sup{||Py||:y € F,|ly|]| < 1}
(Py,y)
= supq 5y € Byl <1
{ || Pyl|
(Py,y)
< sup{—:yeF\{O},Hyng
[ Pyl].|[yll
(Py,y)
< sup{izyeF\{O}
[ Pyl].|[yll
< sup{[(u,v)|:u€ E,veFl|lul=||=1}
= cos(Og.r)
Thus, |[PQ|| = cos(Op,r) O

Proposition VI.16. Let H be a real k-dimensional Hilbert space with an orthonor-
mal basis £ = {ej}le. Let n < g Then the set of n-dimensional subspaces which

are oblique with respect to £ is dense in the set of n-dimensional subspaces.

Proof. . Let M be any n-dimensional subspaces. Given 1 > ¢ > 0. By Corollary
(VI.13), there is a n-dimensional subspace N that is disjoint from all diagonal (k—n)-
dimensional subspaces and d(N, M) < e. Let J be any subset of {1,2,...,k}. If both
|J| > k—nand |J°| > k —n, then k = |J| + |J°| > 2k — 2n > k, a contradiction. So
either |J| < k—mnor [J¢] < k—n. If |J| < k—mn. then let I be a subset of {1,2, ..., k}
that contains J with |I| = k—n. Then E; C E; and NNE; = {0} which implies that
NN E; ={0}. Similarly, if | J¢| < k —n we can find a subset [ that contains J¢ with
|I| =k —n. Then Eje C E;y and N N E;y = {0} which implies that N N E;. = {0}.
Thus, either NN E; = {0} or NN Eje = {0} and N is oblique with respect to £ by
Proposition (VI.4). O
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Definition 7. 1) Let {x;}¥_, be a frame in H,. We say that {z;}_, has the n-
independent property if every subset of {x; }§:1 of cardinality n is linearly independent.

2) Let £ = {e;}¥_, be an orthonormal basis of a finite dimensional Hilbert space
H. A subspace M of dimension n in H is said to have the n-independent property

relates to & if every subset of n vectors in {Pye;}h_, is a basis for M.

One simple example of a frame with n-independent property is harmonic frames.

Suppose that {xj}le is a frame in H,, that does not have the n-independent
property. Then there exist {z;,,...,z;,} which are linearly dependent. Let M be the
range of the analysis operator of {x;}5_; and {e;}i_, be the standard orthonormal
basis for C¥. Then z; = ©*Pe; where P is the orthogonal projection onto M.

If " _ aj,x;, =0 for nontrivial coefficients then Y " _ a; ©*Pe; =0 and
S a;,,Pej,, = 0 since ©F is invertible on M. So Y. _ a;.e;, € M*+. Let G =
span{e;,, } _;. Then G is a n-dimensional diagonal subspace such that GNM+ # {0}.
Proposition VI.17. A frame {:Ej}é‘?zl in H, has the n-independent property if and

only if M+ has {0} intersection with every diagonal subspace of dimension n.

Proof. The backward direction comes from the discussion above. Assume that {z;}%_,
has n-independent property and there is a diagonal subspace G of dimension n
such that G N M+ # {0}. Let 0 # x € GN M* and G = span{e;, }"_;. Sup-
pose x = Y ' _ aj ej with a; mnot all zero. Then P(}." _ aj e;.) = 0 and

" _a; ©*Pe; = 0 which implies that " .a; x; = 0. So {z; }"_, is lin-
m=1 "Im Jm m=1 "Im*Im Im Sm=1

early dependent, a contradiction. O

Corollary VI.18. A subspace M has n-independent property with respect to & if
and only if M+ has {0} intersection with every n-dimensional diagonal subspace of

H.

Proof. 1t follows from Proposition (VI.17). O
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Lemma VI.19. Let n < k. Suppose S is a collection of (k—n)-dimensional subspaces
of a k-dimensional Hilbert space H which is open and dense in the collection of all
(k — n)-dimensional subspaces of H. Let St = {S+: S € S}. Then St is open and

dense in the collection of all n-dimensional subspaces of H.

Proof. Suppose M+ € S*. Then M € S*. Since S is open, there is an € > 0 such
that for any subspace N satisfying d(N, M) < €, we have N € S.

Since
d(N,M) = ||Py — Pyl|| = ||[(I = Py) = (I = Pu)|| = [|Pyr — Pye|| = d(N*, M)

S+ is open.

Let M be any n-dimensional subspace and ¢ > 0 given. Since S is dense, there
is a subspace N € S such that d(N, Nt) < e. Thus, N* € St and d(N+, M) =
d(N, M*) < e. Therefore, S is dense. O

Corollary VI.20. The collection of n-dimensional subspaces of a k-dimensional
Hilbert space H with n-independent property with respect to some orthonormal basis

£ of H is an open, dense in the collection of all n-dimensional subspaces of H.
Proof. 1t follows from Proposition (VI.17), Corolarry (VI.18), Lemma (VI.19). O

Definition 8. Two closed subspaces F, I of a Hilbert space H is said to be equivalent
(E ~ F) if and only if dim(E) = dim(F), dim(E+) = dim(F+)
Proposition VI.21. Given closed subspaces E, F' of a Hilbert space H. Then there

is an invertible 7' € B(H) such that F' = T'E if and only if E' ~ F' if and only if there

is an unitary operator U : H — H such that = UFE

Proof. Suppose that E ~ F. Then dim(E) = dim(F),dim(E*) = dim(F*). We
have H = E® E+ = F & F+. Since dim(E) = dim(F), there is an invertible
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linear bounded operator T} : E — F'. Similarly, there is an invertible linear bounded
operator Ty : B+ — F*.

Let T : H — H bedifined by Tz = Tyy1+Toys where x = y1+ys, 71 € E,ys € E*.
Therefore, ||yi|| < ||z|], ||y2]] < ||z||. If z € E then Tx = Tyx € F, so T(E) C F. Let
y € F then there is « € E such that y = Ti(z). So Tz = Tyx = y and T(E) = F.
From the definition of T, we imply that T is a linear bounded map.

If Tw = 0 = Thy, +Toys then Tyy, = —Toys € FNEFL = {0} and Tyy, = Toys = 0.
Therefore, y; = yo = 0 and 2 = 0 which implies that T is injective. So T is invertible
in B(H).

Now assume that there is an invertible operator T' € B(H) such that F' = TE.
Then dim(E) = dim(F). If z € E* then for every y € F, we have (Tx,y) =
(z,T*y) = 0 and so Tz € F* which implies that T(E+) C F*. Let y € F* be
arbitrary. There exists 2 € H such that y = Tx. Let x = w+t where w € E,t € E+.
We have Tw =Tx — Tt € FY N F and so Tw = 0. Since T is invertible, w = 0 and
r € E+. Thus, T(EY) = F*.

By polar decomposition theorem, there is a unitary operator U : £ — F' such

that 7' = U|T| which makes the proof completed. O

If a frame {z; }5?:1 in H,, has n-independent property then we can find a projection
P of rank 0 < I < n such that {Pxz;}_, does not have (n — I)-independent property.
For example, we choose the range of projection is the orthogonal complement of
{z )20

However, “most ” of the projections of rank n — [ on H,, are projections such

that the frame image has (n — [)-independent property

Proposition VI.22. Suppose that a frame {z;}*_, in H,, has n-independent property

and 0 < [ < n. Then the set of projections P with rank n—[ on H, such that {Pz;}*_,
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has (n — [)-independent property is open and dense in the set of all projections of

rank n — [ on H,,.

Proof. Since X = {:L’j}f:l has n-independent property, every subset of n elements in
X is linearly independent. Therefore, every subset of n — [ elements in X is linearly
independent. If Py is a projection of rank n — [ on H, such that {Pz;}}_, has
(n — I)-independent property then 32" a; Pyx; = 0 if and only if a;, = 0 for

n—I

»_, is any subset of n — [ elements in X. This is

all m = 1,...,n — [ where {z;,,
equivavent to M+ Nspan{z;, }»t = {0}.

By Corollary (VI.13), the set of all subspaces M~ of dimension k — n + [ which
are disjoint from a subspace spanned by a subset of n — [ elements of X is open and
dense in the set of all subspaces of dimension k —n +[. By Baire Category Theorem
and the number of subspaces spanned by a subset of n — [ elements of X is finite, the
set of all subspaces M+ of dimension k — n + [ which are disjoint from all subspaces
spanned by a subset of n—[ elements of X is open and dense in the set of all subspaces
of dimension k —n+1[. Therefore, the set of subspaces M of dimension n — ([ such that
M+ is disjoint from subspaces spanned by a subset of n —[ elements of X is open and
dense in the set of all subspaces of dimension n — [. Thus, the set of projections P
with rank n — [ on H,, such that {ij}?zl has (n — [)-independent property is open

and dense in the set of all projections of rank n — [ on H,,. O

Remark 14. If {x;}5_, is a frame in H, with n-independent property then it is not
necessary that a push-out of {z;}*_, has (n + 1)-independent property. For ex-
ample, {z; = (1,2)7, 2, = (1,3)T,23 = (1,4)7,24 = (4,5)T} is a frame in R?
with 2-independent property but a push-out {z; = (1,2,1)7, 2, = (1,3,1)T, 23 =
(1,4, )T, 2, = (4,5,1)T} is a frame which does not have 3-independent property.

Moreover, any push-out of {xj}ﬁle does not have 3-independent property.
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Lemma VI.23. If T € B(H) is a self-adjoint operator then Ker(T) = KerT?) and

ran(7?) = ran(7T).

Proof. We have ran(T) = Ker(T)*, ran(72) = Ker(7?)*. Is is obvious that Ker(T') C
Ker(T?). If x € Ker(T?) then T%(z) = 0 and 0 = (T?(x), z) = (Tx, Tz ). Thus,

Tz =0 and x € Ker(T). Hence Ker(T') = Ker(T?) and ran(7?) = ran(T). O

In a finite dimensional space H, ran(T’) and ran(7?) are finite dimensional
subspaces which are closed. Therefore, ran(T) = ran(7?). However, in an infi-
nite dimensional space, ran(7T) may be different from ran(7?). For example, let

T : I2(N) — I?(N) be defined by

1 0 0 0 0
01/2 0 0 0
T:
0 0 1/3 0 0
0 0 0 1/4 0

Let x = (1,1/2,1/3,...)7. Then x € [*(N). If there is y = (y1,¥2,y3....)7 € I*(N)

1 1 11
such that T'(x) = T?(y) then T?(y) = (yi, 192 ¥ )T =T() = (1, 19 N
Therefore, y; = y» = y3 = .... = 1, a contradiction to y € I*(N).

Lemma VI1.24. Suppose P,@Q € B(H) are orthogonal projections onto closed sub-
spaces and ||P — Q|| < & for some § < 1/2. Let A = QP + Q*P*. Then A is

invertible.

Proof. Assume that Az = 0. Then 0 = (QPxz + Q+Ptz, QPz) = ||QPx|]>. So
QPx =0 = Q+Ptx. We have

Q|| = [|QQz — QP[] <||Q[[.[|Q — Pl|.[|=[| < &.]]«]]



87

Similarly,
1Q 2|l = Q" Q" x — Q-Praf| < [|Q7IIIQ" — P|.||=]] < 4[|

Therefore,

12l = [1Q=|I” + [|Q~lI* < 26%[|«]|* < [|«]|*

Hence, = 0 and A is injective. Similarly we can prove that PQ + P+Q* is injective.
If there is y # 0 such that (y, Az ) = 0 for every x then ( A*y, z) = 0 for every
x and so A*y = 0. Since A* = PQ + P+Q*" is injective, y = 0, a contradiction. So A

is surjective. ]

Lemma VI1.25. Suppose P,@Q € B(H) are orthogonal projections onto closed sub-
spaces. Then ||(PQP)Y? — P|| < ||PQP — P||.

Proof. Let T = (PQP)'2. Then T? = PQP = P?PQP = P?*T? and PT? = T?P.
Therefore, PT = TP and (PT)* = P*I"* which implies that 7% = (PT)?. Since T
is positive, PT = T. Thus, P(PQP)Y? = (PQP)'/2. Similarly, P+ (PtQ+P+)Y/? =
(P+Q*P)Y/2. We have

(PQP)Y? — P)((PQP)Y*+1) = PQP + (PQP)Y? — P(PQP)/?> — P = PQP — P

Let S = (PQP)Y2 4+ I. Then S > I and S is invertible. Since ||[(PQP)Y?||* =
|PQP|| < 1,||S]| < [|(PQP)Y?||+1<2. S0 1< S <2l and 31 < S <. Hence
1Sl < 1.

We have

1(PQP)Y? = P|| = [|(PQP — P)S7Y|| < ||[PQP — P|LIIS7"|| < ||[PQP — P|
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Lemma VI1.26. Suppose P,@Q € B(H) are orthogonal projections onto closed sub-
spaces. Then

(PQP)Y? < P, and (PQ*PH)Y/? < P+

Proof. Let T = (PQP)"2. Then from the proof of Lemma (VI.25), PT = T. So
T=T*=(PT) =T*P*=TP. Thus, PI' = TP =T which imples that (PT)P =
TP =T. Therefore, P(PQP)'?P = (PQP)'2. We have, for every v € H,

(P(PQP)Y?Pz ., z) = ((PQP)Y*Pxz, Pz)
< |[(PQP)'?|||Px||> = ||PQP||'/>.|| Px|)?
< ||P:z:||2 = (Pz, )

Thus, P(PQP)Y2P < P and (PQP)Y2 < P. Similarly, (PrQtPH)Y2 < pL. O

Lemma VI1.27. Suppose P,Q € B(H) are orthogonal projections onto closed sub-
spaces and A = QP + Q+P+. Let A = U|A| be the polar decomposition of A. If
|P— Q|| <& <1/2then [|U—1I|| < £
Proof. We have

A"A = (QP+Q P (QP+Q PY) = (PQ+P*Q")(QP+Q"P*) = PQP+P Q" P+

Since

(PQP)'(PTQTPT) = ((PQP)*(PTQ*P"))"

= (PTQPH)(PQP)'”
which imples that

(PJ_QJ_PJ_)I/Q(PQP)l/Z _ (PQP)l/Z(PJ_QJ_PJ_)l/Z
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and hence,

(PHQPH)2(PQP)'?)? = (PQP)(PHQP) =0
Therefore, (PQP)Y?(P+Q+P*)'/? =0 and
(PJ_QJ_PJ_>1/2(PQP)1/2 — ((PQP>1/2(PJ_QJ_PJ_>1/2>* =0

We have
(PQP)Y? + (PYQ*P*)'/?)’ = PQP + PYQ P = A"A

which implies that
|A] = (A" A4)'2 = (PQP)"? + (PrQ*PH)'?
It follows that
I—|Al = (P = (PQP)"?) + (P* = (PXQ=PH)"%) > 0
By Lemma (VI.25), we have

1= 1Al < |IP = (PQP)2|| + ||P* — (PQ P)V2]
< [|PQP - P||+[|P=Q~P — PH||

= |IP(Q = P)P||+[|PH(Q" = PH)PH)|

IA

1Q = Pl +1Q" — PH||=2/|Q - P]| <20

Therefore, o(I — |A]) C [0,25] and o(|A]) C [1 — 26,1] which implies o(|A|7!) C

1, =5;]. Thus,

o(JA7t = 1) C [0, =25 — 1] and [||A] 7 = I]| < =5 — 1= 2
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Hence,

1A=TI|| = [|QP+Q"P"— (P + P

< QP =Pl +|Q-P~ — Pl

= Q- P)P|+]l(@ — PH)Q]

< lQ-Pll+ Q" — P =2|Q - P|| < 26

From A = U|A| and A is invertible, it follows that U = A|A|~!. We have
U—-T=AA'—T=A-DIA " +(A=1)
and therefore,
1 20 46

—I|| < [|A=TI|.|||AI oI < =
10 = I < [[A = ZILIA + AT = Il < 2002+ 755 = T35

5
So [lU—1I|| < %5 =
Lemma VI1.28. Suppose P, Q,U are operators in Lemma (VI.27). Then UPU* = Q)

Proof. By the polar decomposition theorem, there is a unique partial isometry U
such that QP = U|QP| with Ker(U;) = Ker(|QP|),ran(U;) = ran(QP) and there
is a unique partial isometry U, such that Q1P+ = U,|QtP*| with Ker(Uy) =
Ker(|Q*P+|), ran(U) = ran(Q* ).

Note that

IQP| = ((QP)"(QP))"? = (PQQP)'/* = (PQP)"?

and similarly,

|QJ_PJ_| _ (PJ_QJ_PJ_)I/2

Since ran(QP) C ran(Q),ran(Q+P*) C ran(Q*) and QP + QP+ is invertible,
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we have
H =ran(QP + Q*+P*) C ran(QP) + ran(Q*-P*) C ran(Q) +ran(Q*) = H
which implies that ran(QP) = ran(Q), ran(Q+P+) = ran(Q'). Thus,

ran(U,) = Tan(QP) = tan(Q) = ran(Q)

We have Ker(U;) = Ker(|QP|) = Ker((PQP)Y?) = Ker(PQP). Similarly,
Ker(Uy) = Ker(P+Q+P1).
From P|QP| = |QP], it follows that U; P|QP| = QP which implies QU; P|QP| =

QP.
Now we will prove that Ker(QU; P) = Ker(U;). Since Ker(U;) = Ker(PQP) and

ran(U;) = ran(@), we have

z € Ker(QU,P) <= QU Pz =0 <= U, Px € ran(Q") Nran(Q) <= U, Pz =0
<= Pz e Ker(U,) <= Pz € Ker(PQP) <= PQPPz =0

<= PQPxr=0<+= x € Ker(PQP) < z € Ker(U)

By the uniqueness, QU; P = U,. Similarly, QtU, P+ = Us.

Since PH(P+Q+P4)Y2 = (PLQ+P4)Y2, and so ran((PQ*+P+)1/2 C ran(P),
we have U, |Q+ P*| = Uy (P+Q*+ P12 = U, P(P+Q*+ P+)'/? = 0. Similarly, U,|QP| =
0.

(U + Do)|A] = (Uy+ Us)((PQP)'? + (PQPH)'?)
= (U1 + U)(|QP| +|Q*PH)

= QP+Q'Pt=A4

So U+Us = A|A|™Y. Then U = U+ U, = QU P+Q* U, P+ and UP = QU P = QU.
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Hence UP = QU and UPU* = Q. O

Theorem VI1.29. Suppose P,@Q € B(H) are orthogonal projections and given 0 <
€ < 1/2. Then there is 0 < § < 1/2 such that whenever ||P — Q|| < § there exists a

unitary operator U € B(H) with ||U — Iy|| < € and @ = UPU*.

Proof. Let § = 5. Then it follows directly from Lemmas (VI.27), (VI.28). O

Proposition VI.30. Suppose X = {:Ej}le is a Parselval frame for H,, and € > 0 is
given. Let M C CF be the range of the analysis operator Ox of X. There is a § > 0
such that whenever E is a subspace in C* such that d(E, M) < § then there exists a
Parselval frame Z = {z;}¥_, for H, such that ran(©;) = E and ||z; — z;|| < € for all
J.
Proof. Let ; = Ox(z;) € M. Then z; = Py(e;) where {e;}¥_, is the standard
orthonormal basis for C¥. Then X = {a;}¥_, is a Parseval frame for M. Let ¢ be the
number satisfying Theorem (VI.29) and § < §. Assume that E is a subspace in C*
such that d(E, M) < 4. So ||Pg — Py|| < 6. Let §j; = Pg(e;). Then YV = {g;}i_ isa
Parseval frame for £. We have ||y; — Z;|| = ||Pe(e;) — Pu(e))|| < ||Pe — Pul| < 9.
By Theorem (VI.29), there is a unitary operator U in B(C*) such that ||U —I|| <
5 and Py = UPgU*. Therefore, PyyU = UPg and U is a unitary operator from
E onto M. Let Z; = Uyj;. Then Z = {Z}s_, is a Parseval frame for M with
ran(0;) = ran(Oy) = E.

Since Y is a Parseval frame, ||7;|| < 1, and we have

- - - - - - - - - - - € €
125 =211 < l25=gill+1g5 =241 = |25 =gl |+ =Ugsl| < SHI=UlLIgill < 5+5 =€

So ([ — 5| < e.

Note that both X and Z are Parseval frames for M and W = ©%| is a unitary
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operator from M onto H,. Then Wz; = z;. Let z; = WZ;. Thus, Ox(z;) =
W*(z;) = z;. We have Z = {z;}i_, is a Parseval frame for H, and ||z; — z|| =
IWa; = Wl = 11 — 5] < e for all 5

Now we will prove that ©, = U*©x. For any x € H,,, we have

k
Oz(z) = Z (z, z)e Z , Ox(25) )e;

N ‘
= > _(6x(), 5)es = > (Ox(2), Ugj)e;
k
= Z(U*@X(ZIT), y~] >€j = Z<U*@X(z)> PEej>6j

= Y (PpU"Ox(z), ¢ )e; = PpU*Ox ()
j=1

Thus, O, = U*Ox and ran(Oy) = E O

Corollary VL31. Suppose X = {z;}_, is a Parselval frame for H, and ¢ > 0 is
given. Let M C C* be the range of the analysis operator ©x of X. There exists
a & > 0 such that whenever E is a subspace in C* such that d(E, M) < § then
there exists a Parselval frame Z = {z;}¥_, for H, such that ran(€;) = E and

||@Z — @XH < €.
Proof. 1t follows from the proof of the Proposition (VI.30) and
18z — Ox[| = [[U"Ox — Ox|| < [[U" = I|[[|Ox|| = [|U" = I]| <e
]

Let H be a Hilbert space, F;(H) be the set of all frames for H indexed by J. Let
X =A{a;}jes and Y = {y;}jep in Fy(H). Define d(X,Y) = [[Ox — Oy|[, do(X,Y) =
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sup{||z; — y;ll - j € I}, do(X,Y) = (3¢5l — y5[[*)"2. From Lemma L4, if X,Y
are Parseval frames for H with the same index set J then X is unitarily equivalent
to Y (that means, there is a unitaty operator U such that UX = Y) if and only
if 0x0% = Px = Py = 6y05. So if fJ(H) is the set of all equivalence classes
of Parseval frames for H indexed by J then we can define a metric on fJ(H ) by

d([X],[Y]) = [[Px = Py||.

Corollary VI.32. The set of Parseval frames of k vectors in n-dimensional space
which has n-independent property is dense in the set of Parseval frames of k vectors

in n-dimensional space.

Proof. Assume that X = {x;}_, is a Parseval frame for H, and e > 0 be given. Let
M = ran(©x). Then M is a n-dimensional subspace of C*. Let § be the number in
the proof of Proposition (VI.30). By Corollary (VI.20), there exists a n-dimensional
subspace E of C* with n-independent property with respect to the orthornomal basis
£ = {e;})_, of C¥ such that d(E, M) < §. So every subset of n vectors in { Pg(e;)}r_,
is linearly independent. Following the proof of the Proposition (VI.30), {y;}_, has
n-independent property. Then {Z;}5_, and {z;}¥_, also have this property. Thus,

{zj}é‘?zl is a Parseval frame with d(Z, X) < € and has n-independent property. O

Corollary VI.33. Let n < g The set of Parseval frames of k vectors in a real
Hilbert space H,, which has |©|-property is dense in the set of all Parseval frames of

k vectors in H.

Proof. Let X = {x;}%_, is a Parseval frame for H, and e > 0 be given. Let ¢ be the
number in the proof of the Proposition (VI.30), there exists a n-dimensional subspace

E of C* which is oblique with respect to the orthornomal basis € = {e;}}_, of C* such
that d(E, M) < § where M = ran(Ox). By Corollary (VI.31), there is a Parseval
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frame Z = {z;}}_, for H, such that ran(©;) = E and d(Z,X) < e. By Lemma

(VI.1), the frame Z has |O|-property. O

Lemma VI.34. If {z; }?:1 is a frame for R,, (k > n) with the n-independent property
then there are \; € R such that {x; ® )\;} is a frame in R™"! with the (n + 1)-

independent property

Proof. Suppose x; = (xj1, Tj9, ..., 2j,)" and A be an x k matrix with n column vectors
xj for j = 1,2,... k. Let J C {1,2,...,k} be a set with cardinality n and Aj; be a
n x n matrix with n column vectors x; for j € J. Since {x; };‘?:1 has the n-independent
property, each n x n matrix Ay has determinant different from 0.

A sequence of numbers {)\j}g?zl such that y; = (z;1, %9, ..., Tjn, \j)T for j =
1,2,...,k forms a frame in R"™! with the (n + 1)-independent property must satisfy
that any (n + 1) x (n + 1) matrix By where I C {1,2,...,k} is a set with cardinality
(n+ 1) consisting of (n+ 1) column vectors y;,7 € I has determinant different from 0.

We have det(Br) = > Aj det(Anjy) # 0. So there are finite linear constrained
conditions on the sequence {);}5_,. Note that det(Ap;;) # 0 for all j € I. Hence,

the existence of such a sequence {\; };‘?:1 is obvious. O

Suppose that {z;}¥_, is a frame with the n-independent property in R". A
vector A = (X\;)T € RF is said to be “good” if {z; ® \;} is a frame in R"™! with the
(n + 1)-independent property.

If \is “good” then tA is “good” for any ¢ # 0. In fact, every (n+ 1) x (n+ 1)
matrix in the proof of the Lemma (VI.34) has determinant different from 0. Then
every (n+ 1) x (n + 1) matrix coming from replacing the last row A with ¢\ has
determinant increasing ¢ times and hence, also has determinant different from 0.

However, if A\{, Ay are “good” then it is not necessary that A; + Ay is “good”. For

example A and —\ are “good” but A — A =0 is not “good”.
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Lemma VI.35. Suppose that {z; }9?:1 is a frame with the n-independent property

in R™. The set of “good” vectors is open and dense in R*.

Proof. The proof is similar to the proof of the Lemma (VI.34) and based on the fact

that the determinant function is continuous. O



97

CHAPTER VII

CONCLUSIONS

In this dissertation, we investigated several aspects of frame theory. The top-
ics include the (p, ¢)-replacement problem for surgery on frames, push-outs frames,
frames generated by the action of a group on a single generator vector, a spreading
algorithm for finite unit tight frames, and the mathematics involved in the ”cock-
tail party problem”. Motivations for this investigation and counter examples were
also included. Some topics that are partially treated in this dissertation are worthy
of further investigation. Can the spreading algorithm of Chapter III converge to a
Grassmannian frame? More work could be done on convergence properties of the algo-
rithm. A computational method for checking whether a given frame is Grassmannian

would be needed here.
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