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ABSTRACT

Genomic Applications of Statistical Signal Processing. (August 2008)

Wentao Zhao,

B.S., Tsinghua University;

M.S., Tsinghua University;

M.E., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Erchin Serpedin
Dr. Edward R. Dougherty

Biological phenomena in the cells can be explained in terms of the interactions among

biological macro-molecules, e.g., DNAs, RNAs and proteins. These interactions can

be modeled by genetic regulatory networks (GRNs). This dissertation proposes to

reverse engineering the GRNs based on heterogeneous biological data sets, including

time-series and time-independent gene expressions, Chromatin ImmunoPrecipatation

(ChIP) data, gene sequence and motifs and other possible sources of knowledge. The

objective of this research is to propose novel computational methods to catch pace

with the fast evolving biological databases.

Signal processing techniques are exploited to develop computationally efficient,

accurate and robust algorithms, which deal individually or collectively with various

data sets. Methods of power spectral density estimation are discussed to identify

genes participating in various biological processes. Information theoretic methods are

applied for non-parametric inference. Bayesian methods are adopted to incorporate
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several sources with prior knowledge. This work aims to construct an inference system

which takes into account different sources of information such that the absence of some

components will not interfere with the rest of the system.

It has been verified that the proposed algorithms achieve better inference accu-

racy and higher computational efficiency compared with other state-of-the-art schemes,

e.g. REVEAL, ARACNE, Bayesian Networks and Relevance Networks, at presence

of artificial time series and steady state microarray measurements. The proposed al-

gorithms are especially appealing when the the sample size is small. Besides, they are

able to integrate multiple heterogeneous data sources, e.g. ChIP and sequence data,

so that a unified GRN can be inferred. The analysis of biological literature and in

silico experiments on real data sets for fruit fly, yeast and human have corroborated

part of the inferred GRN. The research has also produced a set of potential control

targets for designing gene therapy strategies.
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CHAPTER I

INTRODUCTION

The mystery of various living organisms has been revealed gradually by generations

of biologists. The cell was discovered by Robert Hooke through a microscope and was

recorded in his book Micrographia in 1665. Matthias Jakob Schleiden and Theodor

Schwann in 1839 established the cell theory and described the cell as the structural

and functional unit of life forms. In the 1860s, Gregor Mendel disclosed concepts

of modern genetics when he hybridized pea plants and studied the inheritance of

traits. Later in 1936, Warren Weaver coined the name of molecular biology. Since

then, the life phenomena have been explored at the most fundamental levels with

the participation of physicists and chemists. James Watson and Francis Crick in

1953 discovered the double helix structure of Deoxyribonucleic acid (DNA). Quickly

in 1957 Crick presented the central dogma, which exposed the information transfer

process from the hereditary material, i.e. genes on the DNA strand, to the structural

and mechanical compounds, namely protein.

The birth of genomic molecular biology brought forth the explosion of interdis-

ciplinary biotechnology. The accelerating evolvement of experimental methods was

accompanied by high throughput data, which provided further insights into the op-

eration of biological processes. Mathematical and engineering methods came to play

quantitative roles in the analysis of the output data and prediction of outcomes. As a

major component of the current information technology revolution, statistical signal

processing techniques are playing a major role in the analysis of genomic data. In this

chapter, the biological background of the research work conducted in this disserta-

The journal model is IEEE Transactions on Automatic Control.
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tion is briefly reviewed so that the key contributions of the signal processing methods

are identified. Also, the research methodology is formulated and the computational

framework is introduced.

A. Biological Background of Genetic Regulatory Networks

The hereditary information of living organisms is encoded in the double helix of De-

oxyribonucleic acid (DNA), which is characterized by two entwined strands composed

of sequences of four nucleo-bases, namely, adenine (A), guanine (G), cytosine (C) and

thymine (T). The double helix is maintained by hydrogen bonds between bases at-

tached to the two strands in such a way that adenine on one chain is always paired

with thymine on the other chain, while guanine is always paired with cytosine. Not

all DNA segments bear information. Those encoding functional products are genes.

The DNA is folded to form chromosomes, which are found in nucleus in eukaryotes

or cytoplasm in prokaryotes. The entire genetic information on the chromosomes is

referred to as genome.

The functions of living cells are achieved via proteins, which are three-dimensional

polymers composed of twenty different amino acids. They catalyze biochemical reac-

tions as enzymes, maintain cell shape as cytoskeleton and also play mechanical and

signaling roles. The order of amino acids on the protein chain is determined by the

corresponding gene’s nucleotide sequence. This transfer of sequential information is

termed as the central dogma of molecular biology: the DNA can be transcribed into

messenger Ribonucleic acid (mRNA), which serves as the template to translate into

protein.

The mechanism governing the above gene expression procedure underlies all cel-

lular processes. Early studies have reported that gene expressions are predominantly
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regulated at transcription level by regulatory proteins, which receive exterior sig-

nals, relay information and serve as intracellular factors. Signals, e.g., the increased

concentration of glucose, propagate along the signal transduction pathways with the

involvement of enzymes. Signal-communicated transcription factors, activators and

repressers influence the target gene’s expression. In prokaryote, a transcription factor

can bind to the promoter region of DNA, and prevents the RNA polymerase from

attaching to DNA, thus forbidding transcription and acting as a repressor. On the

contrary, a transcription factor can also recruit RNA polymerase and helps to change

the closed DNA double helix into an open complex, and therefore it might func-

tion as an activator. In eukaryotes, a transcription factor can unwind nucleosome

to make the gene accessible for transcription. Some other transcription factors can

recruit histone-modifying enzymes to help the transcription machinery bind to the

promoter.

Actually the regulation mechanism remains mostly unknown and extremely com-

plicated. Later findings verified that the gene expression can also be controlled by

RNA molecules, which can inhibit the expression of homologous genes. Regulation can

also take place at post-transcriptional stages, e.g., through splicing and translation.

Since we can view participating enzymes and RNAs as products of their associated

genes, a network can be constructed for a genetic process to account for the inter-

actions between regulatory factors and their target genes. Such a map constitutes

a genetic regulatory network (GRN) and shield details of the regulation machinery.

GRNs systematically explain how genes and their products cooperatively participate

in molecular-biological processes and straightforwardly illustrate their logical inter-

actions.

The effects of GRNs can be observed both in phenotype and genotype. The

rapidly evolving gene technologies are providing us with various experimental meth-
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ods, which are capable of measuring gene expressions at transcription and translation

stages. The large amount of data produced thereafter has attracted extensive research

on the reverse engineering problem, i.e., the inference of GRN. Learning GRN not

only enables the possibility of understanding the function of organisms at the molec-

ular level but it also helps to infer potential control targets for designing intelligent

therapies and drugs.

B. Heterogeneous Experimental Data

In the middle of 1990s the birth of DNA microarrays equipped the industry with the

capability to simultaneously measure the concentration of genome-wide mRNA ex-

pressions, which are quantifications of gene expressions and reflect gene transcription

rates. There are two types of DNA microarray data: time series and time indepen-

dent (or steady state). The time series data are obtained by temporally sampling the

measurement process, while time independent data sets are obtained by recording the

gene expressions from independent sources, e.g., different individuals, tissues, exper-

iments, etc. Available data share three characteristics. Firstly, most data sets are of

small sample size, usually not more than 50 data points. Large sample sizes are not

financially affordable due to high cost of gene chips. For time course experiments, the

cell cultures lose their synchronization and render data meaningless after a period of

time. Secondly, many time points are missing and time course data are usually un-

evenly sampled. Thirdly, most data sets are customarily corrupted by experimental

noise and the produced uncertainty should be addressed in a stochastic framework.

Formidable costs, ethical concerns and implementation issues obstruct the collection

of large time series data sets. Currently, about 70% of the data sets are time in-

dependent [1]. The microarray experiments can also be designed and conducted in
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controlled conditions. One popular technique is RNA inference, which can shut-off a

specific gene using its corresponding double strand RNA (dsRNA).

The advent of in vivo Chromatin Immuno-Precipitation (ChIP) assays has en-

abled to test whether a protein acting as a transcription factor binds to a specific

DNA segment. Hence, ChIP assays serve as a promising mechanism to examine the

regulatory relationships. In ChIP experiments, the protein is immobilized on the

chromatin, and then the chromatin is broken into DNA fragments. The DNA-protein

complexes are immunoprecipitated by using antibodies corresponding to the tested

protein. Afterwards the DNA bound by the protein in question can be isolated and

identified by using a cDNA microarray chip. The whole process is also called a ChIP-

chip experiment, and inherits several disadvantages. The protein to be tested has to

possess a specific antibody, which might not be synthesized, discovered or known. In

addition, the transcriptional regulation is a complex process that is expressed in sev-

eral different aspects. The binding of the transcription factor to the promoter region

of the target gene is the most pristine mode. Especially for eukaryotic organisms,

some regulatory bindings take place in a region far away from the regulated gene.

This fact makes the binding information questionable for determining the regulation

relationships. Furthermore, the experimental results are represented by p-values and

the determination of the binding relationship is achieved through threshold compar-

ison. However, the selection of the p-value threshold introduces a dilemma. A high

threshold not only identifies the most probable binding relationships but also might

miss many true relationships with lower p-values, while a low threshold infers more

relationships, among which more might be false alarms. A good trade-off is not easy

to make. Besides, the cost has to be taken into consideration. Generally ChIP-chip

experiments are very expensive and testing thousands of proteins is not affordable.

Multiple genome sequencing projects have been accomplished or are currently
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under way for such organisms as E. coli, yeast, fruit fly, bee, mouse, cattle and human.

The genome data are stored in databases in terms of a sequence of letters, which are

selected from the alphabet A, T, C, G corresponding to the four nucleotides. The

sequence data might yield information about the binding motifs, i.e., the sequence

pattern on the target genes regulatory region. This data can be exploited to further

refine our knowledge about the regulation at molecular level.

Biological experiments also produce various other sources of information which

may be of interest. The protein experiments using mass spectrometry or protein

microarrays provide insights about the protein-protein interactions, which somehow

help to explain co-regulations. The well-established knowledge of some biological

processes in certain organisms might not only serve as a prior knowledge but might

also be used as a benchmark in evaluating the performance of the proposed schemes. A

cross-species comparison is also highly desirable since similar regulation mechanisms

are expected to be conserved along the family tree of evolution. If a gene is conserved

in both humans and mice, then the knowledge of the genes pathway in the mouse will

be an excellent reference for the study of human genetic diseases.

A variety of data and knowledge sources are generally available through public

databases. For example, the yeast database at Stanford University (http://www.

yeastgenome.org/) provides up-to-date microarray and sequence data sets. At Texas

A&M University, genome data for honey bee and bovine can be accessed through

http://racerx00.tamu.edu/. Other sources of information are coming from our

collaborators: Translational Genomic Research Institute (TGEN) at Phoenix and

M.D. Anderson Cancer Center at Houston.
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C. Mathematical Models of Genetic Regulatory Networks

Thus far, multiple models have been proposed for capturing the gene interactions.

Boolean networks [2] model regulatory relations in terms of combinatorial logic cir-

cuits, while probabilistic Boolean networks (PBNs), e.g. [3] and [4], are composed of

a finite number of constituent Boolean networks, each of which corresponding to a

contextual condition determined by the variables outside the model. The immediate

extension of PBNs to any finite quantization is represented by the class of Bayesian

networks, e.g. [5] and [6], which model the non-temporal probabilistic dependency

relations among genes. The dynamic Bayesian networks (DBNs), e.g. [7] and [8],

extend the class of Bayesian networks to the time domain by modeling the tempo-

ral stochastic relationships among genes. In this regard, Relevance networks [9] are

undirected graphs that account for significant statistical relationships among genes.

Specifically, Bayesian networks present a long history for modeling the causal

relationships [10]. It constrains the structural model to be an acyclic graph. Un-

fortunately such a constraint does not reflect always the true characteristics of gene

regulatory networks since feedbacks or loops are common motifs in genetic regulation.

Several fundamental relationships have been established recently between the class of

PBNs and the class of DBNs [11]. However, with the exception of some one-to-many

mappings between the two classes, a complete understanding of the relationships

between the two classes is not yet available.

Herein, we will be working towards establishing a unified GRN model which

assumes continuous values for each variable (gene), presence of cycles and oriented

edges. In addition, the specific structure of GRN will be refined based on the type of

available data.
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D. Current Inference Approaches

The existing inference schemes can be coarsely categorized based on their different

features with respect to the type of modeling framework and data source. Until

recently, microarray gene expressions served as the main data source. However, recent

developments suggested the acute need for data fusion methods that account for

heterogeneous data sources. Next, a short overview of the most representative GRN

inference algorithms will be presented.

Kim et al. [12] proposed the concept of coefficient of determination (CoD) to

identify the predictor set of the target gene based on the gene expression profiles. The

method was validated by simulations on a set of genes undergoing genotoxic stress.

Zhou etal. [13] exploited the reversible jump Markov Chain Monte Carlo algorithm to

determine the model order and parameters. Pal et al. [14] proposed two schemes for

constructing Boolean networks based on the concept of attractor states. The inferred

Boolean networks were then employed to construct probabilistic Boolean networks

(PBN).

Butte and Kohane designed a relevance network (RN) by exploiting the mutual

information to represent the interaction significance between two genes [9]. In [9],

two genes were considered to be relevant if their mutual information assumed a larger

value than a pre-specified threshold and an undirected edge was laid between them.

The proposed scheme was run on the Yeast data set and the inferred networks were

examined by comparing them with experimental results reported in the biological

literature. It was shown that genes located in the same relevance network shared

similar biological functions or participated in the same biological process.

Chow-Liu algorithm [15] approached the inference problem by finding the max-

imum spanning tree in which the edge weights stood for the mutual information
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between the expression profiles of the two genes. However, Chow-Liu algorithm loses

validity if the underlying model is a cyclic graph. In addition, when the graph is

densely connected, this scheme might miss too many edges.

Margolin et al. [16] proposed the Algorithm for the Reconstruction of Accurate

Cellular Networks (ARACNE) based on the information provided by independent

microarray samples. ARACNE inferred the direct connectivity among genes using

the mutual information and data processing inequality (DPI). ARACNE assumes first

a fully connected graph and a pre-defined mutual information threshold. Whenever

the mutual information between two genes X and Y , i.e., I(X;Y ), is less than the

pre-specified threshold, it disconnects the two genes. Next, if in the preliminary graph

there exists another gene Z so that I(X;Y ) < min(I(X;Z), I(Y ;Z)), then ARACNE

will disconnect X and Y . ARACNE relies on the critical assumption that the gene

interactions could be described by Markov chains. ARACNE was run on the synthetic

networks generated by Mendes in 2003. The performance was evaluated favorably in

terms of precision and specificity. ARACNE was also simulated in the presence of the

human B-cell data. The inferred B-cell network was compared with those previously

identified through biochemical methods. The published targets of hub gene c-MYC

were found to be mostly c-MYCs direct neighbors in the reconstructed network.

Liang et al. proposed the REVerse Engineering Algorithm (REVEAL) to recon-

struct Boolean networks from time series microarray data [17]. REVEAL compared

the mutual information, defined between the possible predictor set and the target

gene, with the entropy of the target gene. When these two quantities matched, the

predictor set was determined. To evaluate the performance of REVEAL, a set of

synthetic Boolean networks were created and the state transitions were generated

without noise. The false alarm error did not occur due to the absence of noise, and

only miss errors were illustrated with respect to the sample size.
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Friedman et al. employed Bayesian Networks to model genetic networks [5].

Bayesian Networks are directed acyclic graphs hence they lose efficacy in the presence

of feedbacks which are common motifs in the biological world. Heuristic search was

exploited in finding the best-fit network. The in silico experiment was conducted on

the Spellman’s Yeast data set [18]. The inherent temporal information of the data

set was ignored. The recovered network was compared with the network inferred

from a randomized data set in terms of the distribution of confidence estimates for

Markov chain parameters and order features. It was shown that the proposed scheme

recovered different patterns for experimental Yeast data, measured by Spellman et

al. [18], and randomized data, respectively. This discrepancy was attributed to

the genetic regulations and the found pattern was treated as true positive. Chen

et al. [19] improved and simplified the learning of Bayesian networks by exploiting

mutual information and identifying the ordering of nodes. The proposed scheme

was simulated on Bayesian networks, i.e., the ASIA network [20] and the ALARM

network [21]. The false negatives, false positives and false orientation errors were

tabulated. The algorithm was also run on the yeast data [18] and inferred genetic

networks were discussed. Pe’er et al. [22] improved the inference of Bayesian networks

by enforcing biologically motivated constraints and reducing the search space. The

proposed scheme, referred to as MinReg, was tested on synthetic data from a known

network. The two types of error, false alarms and misses, were used to corroborate

the algorithm performance. The scheme was further run on yeast and mouse data

sets.

Murphy and Mia extended the Bayesian network modeling framework to dynamic

Bayesian networks (DBNs) so that the genetic model structure allowed directed cycles

and exploitation of temporal data [23]. Zou and Conzen [24] assumed the transcrip-

tional time lag to be a variable and the regulator genes are allowed to change their
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expressions prior to their targets. Also, the regulators were constrained to the dis-

covered transcription factors. Therefore, the search space was largely reduced and

the computational efficiency was greatly improved. The approach was simulated on

the yeast data reported by Chou et al. [25]. The inferred network was compared

with the results reported in the cell cycle regulation literature, and specificity and

mis-orientation errors were tabulated. Instead of quantizing the gene expressions,

Kim et al. [26] proposed a continuous DBN model. The proposed algorithm was sim-

ulated on Spellman et al.’s yeast data set. The recovered network was also compared

with the cell cycle pathway reported in the KEGG database [27] and the metabolic

pathway reported by DeRisi et al. [28].

The inference of genetic networks is currently moving toward the integration of

heterogeneous data sources. Bar-Joseph et al. [29] proposed the genetic regulatory

modules (GRAM) algorithm to combine the gene expression data with transcription

factor binding location data. GRAM clustered genes into modules with similar ex-

pressions. Alternatively, Bernard [30] treated the binding location data as the prior

knowledge for the inference of dynamic Bayesian networks. The proposed algorithm

was simulated on stochastic Boolean networks. The Hamming distance between the

inferred and synthetic networks were plotted. Based on the Saccharomyces Genome

Database http://www.yeastgenome.org, a “gold standard” network was constructed

to represent the true scenario of the cell cycle. The scheme was then simulated on

Spellman et al.’s time series data [18] and Lee et al.’s binding location data [31].

Applications based on the integration of other data sources include protein-protein

interaction data [32] and sequence data [33]. Data fusion has also been proposed for

other inference purposes, e.g., discovery of regulatory motifs through the combina-

tion of gene expression and DNA sequence knowledge [34],[35], and protein function

prediction [36].
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The objective of this dissertation is to design a computational framework that

excels in inference accuracy, computing complexity, and configuration flexibility.

E. Proposed Methodology

1. Graphical Models

Graphical models have been exploited to represent the structure of genetic networks.

Generally, the network structure can be represented by a graph G(V ;E), where V

denotes the set of vertices (genes) and E stands for the set of edges (regulation

relationships). Since proteins and RNAs regulating the target gene are products

of their associated genes, alternatively we view these Protein-DNA and RNA-DNA

interactions as gene-gene interactions.

If gene X regulates gene Y , graphically such a relation is represented in terms

of an oriented edge X → Y , where X is a parent or predecessor of Y and Y is

considered a child or successor of X. All genes that present incidence edges with

gene X represent the set of parental genes of X, and are compactly denoted in terms

of the notation ΠX . For instance, if gene X is regulated cooperatively by genes Y

and Z, then ΠX = {Y, Z}. Similarly, the notation ΞX is used to represent the set of

successor genes which are regulated by gene X. If gene X regulates simultaneously

only the genes Y and Z, then ΞX = {Y, Z}.

If two genes X and Y interact with each other but the regulation orientation can

not be determined, an undirected edge is laid between the two genes as X − Y . In

many models a direct connectivity between two genes X and Y in the graph stands

for a vague biological relationship, which might represent a broad class of relation-

ships such as both genes X and Y are regulating or regulated by a common gene,

X directly regulates Y, or X indirectly regulates Y by means of several intermedi-
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ate genes. Although our inference is also based on statistical relationships, we are

aiming to capture the direct regulation relationships as accurately as possible so that

the real genetic regulation machinery is discovered and the above mentioned distinct

relationships are differentiated.

Associated with a specific gene X is the regulation function fX(ΠX), which

denotes the expression value for gene X determined by the values of the genes in

the set of predecessors ΠX . For simplicity, the shorthand notation fX will be used

since ΠX is uniquely determined in the biological world. The function fX might be

a simple logic function as proposed by Kauffman [2]. It could also be chosen from a

set of candidate functions as considered in the probabilistic Boolean network (PBN)

framework [3]. Alternatively, fX can be specified in the form of a contingency table

if X assumes discrete values, e.g. [5], [37] and [38] or in the form of a probability

distribution function if X is a continuous variable. Linear and non-linear differential

equations are also accepted for modeling the kinetics of molecular level reactions,

which in general assume much intense computations, e.g. [39]–[42]. We assume that

all the parameters are recorded in the parameter set Θ, as opposed to the graph

structure notation G.

A sequence of consecutive oriented edges constitutes a directed path. If there

is no directed path which starts and ends at the same vertex, in other words the

graph contains no loops, the graph is called a directed acyclic graph (DAG). DAGs

lie at the basis of Bayesian networks, which are commonly employed to model causal

relationships [10]. Bayesian networks were not chosen in our study due to several

reasons. Firstly, there exist many Markov equivalent Bayesian networks which fit the

observational data equally well, share the same connectivity structure but differ in the

connectivity orientations. Secondly, Bayesian networks do not allow loops, which are

common in many real biological processes. We will allow the presence of cycles and
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also accommodate undirected graphs. The inference of the direct connectivity has to

differentiate between X-Z-Y and X-Y. In the former case gene X interacts with gene

Y through an intermediate gene Z, while in the latter case gene X directly interacts

with gene Y.

2. Computational Framework

The goal of the proposed computation framework is to preserve with high accuracy

only the direct connectivity among the participating genes, maintain a low complex-

ity in network inference, and when a false-alarm connectivity is produced between

two genes, the two falsely connected genes are located closely enough in the actual

network. The computation procedure does not need to be changed much for different

combination of knowledge and data owing to the structured computing flowchart.

Fig. 1 illustrates the general computational procedure by using a combination of

ChIP-chip and microarray steady state data. The two rows of operations correspond

to two types of data. The left segment is conducted by biologists, who present the

data in terms of spreadsheets. For each type of data, prior knowledge is integrated to

preprocess the data and the proposed inference schemes are then applied. Finally, the

genetic regulatory network is inferred. The integration of data is achieved through

Bayesian methods along with information theoretic approaches. Parameterized and

non-parametric approaches will both be tested and compared in terms of performance

and efficiency. When a new data source is available, we hope that only one extra row

of data and associated operations will be needed so that the whole framework remains

unchanged.
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Fig. 1. Computation flowchart for combining two data sources
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3. Nonparametric and Bayesian Methods

Nonparametric methods do no impose specific assumptions on the form and range

of the stochastic variables. Therefore, they are attractive when not much knowledge

is available about the underlying biological processes. Information theoretical quan-

tities, such as entropy and mutual information [43], are employed to measure the

significance of gene interactions, and the Minimum Description Length principle [44]

is exploited to rule out the intermediary interactions. Information theoretic quanti-

ties will be constructed based on multivariate entropy estimates. In turn the entropy

estimation depends on the mass or density estimators. Recent progress in the area

of estimating information theoretic quantities has led to a number of alternatives for

estimating the entropy, e.g. [45]–[47]. Note that usually it is the rank of the mutual

information that accounts for the connectivity. Therefore, the desired estimator has

to exhibit small variance and acceptable bias.

The Bayesian methodology is also proposed to jointly analyze the available data

sets and to establish a confidence measure for gene interactions. The Bayesian schemes

proposed in this dissertation possess four key features which make them different from

the existing algorithms. First, most of the current schemes recover a unique genetic

network represented by a graph which best fits the observed data in a certain metric,

while the proposed approaches determine the posterior probabilities for all gene-pair

interactions and avoid to make a dichotomous decision that classifies each gene inter-

action as being either connected or disconnected. The proposed approaches can be

easily transformed into dichotomous schemes by only preserving the highly probable

gene interactions. Second, the proposed approaches will assume continuous-valued

variables and treat discrete values as special cases. This prevents the information

loss incurred by data quantization and represents an advantage compared with the
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discrete-valued networks. Third, the proposed connectivity score is oriented and has

a very clear meaning, in the sense of posterior probabilities, while the existing scores

are vague and lack orientation information. Fourth, in the proposed approaches the

system kinetics is assumed to be nonlinear, while linear models are commonly utilized

for the purpose of simplification. Besides, the proposed schemes establish a general

framework whose components can be customized to fit the nature of the underlying

biological system.

4. Performance Evaluation and Method Validation

There are two types of inference errors. The type 1 errors are false positives (FP)

and are also called false alarms. If the inference algorithm determines an interaction

for two vertices X and Y in the inferred graph, denoted as X → Y ∈ Ê, but there is

no such edge in the synthetic graph, i.e., X → Y /∈ E, then an FP is produced. The

number of FPs, represented by NFP , can be counted as follows:

NFP =
∑

∀X,Y

(
(X → Y ∈ Ê)

⋂
(X → Y /∈ E)

)
,

where
⋂

stands for the logic and operator. The type 2 errors are false negatives (FN)

and also named misses. If the inference does not discover the connectivity X → Y

which resides in the synthetic network, an FN is generated. The number of FNs,

depicted by NFN , is given by:

NFN =
∑

∀X,Y

(
(X → Y ∈ E)

⋂
(X → Y /∈ Ê)

)
.

Correct inference can also be divided into two categories. If X → Y ∈ Ê and

X → Y ∈ E, the correctness is defined as a true positive (TP). Its summation,
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annotated by NTP , is:

NTP =
∑

∀X,Y

(
(X → Y ∈ Ê)

⋂
(X → Y ∈ E)

)
.

On the other hand, if X → Y /∈ Ê and X → Y /∈ E, such correctness is called a true

negative (TN). The number of TNs, represented by NTN , is defined as follows:

NTN =
∑

∀X,Y

(
(X → Y /∈ Ê)

⋂
(X → Y /∈ E)

)
.

Different performance metrics are proposed in the literature. The three most

popular metrics are considered here. The first metric, referred to as the Hamming

distance, is the summation of all the inference errors and is given by

Hamming distance = NFP +NFN .

The Hamming distance is widely accepted as a good measure of the distance between

two graphs.

The second metric is called the sensitivity, and is defined as:

Sensitivity =
NTP

NTP +NFN
.

The sensitivity describes the inference algorithm’s ability to identify the regulation

relationships among genes. The third metric is called the specificity, and it assumes

the form:

Specificity =
NTN

NTN +NFP
.

The specificity represents the inference algorithm’s capability to avoid falsely con-

necting two unrelated genes.

The error rates are usually estimated through simulation on artificial networks.
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In the first step a set of network structures are randomly created and their param-

eters are set to conform to the assumptions governing the system kinetics. Then

the synthesized networks are sampled in transient states or in steady states. Some

experiments, e.g., RNAi, can be emulated by forcing some specific nodes to assume

fixed values. Later the proposed schemes are applied on artificial data sets and the

inferred networks are compared with the original networks so that both the inference

errors and corrections can be identified and counted. Various platforms have been set

up to provide benchmarks in evaluating the inference performance, e.g. [48] and [49].

We will use these third party softwares to prove the consistent superior performance

of the proposed schemes.

The established networks, e.g., [31], [50] and [51], which are verified through

biological experiments, can serve as benchmarks. The public databases, e.g., http:

//www.pubmed.org and TRANSFAC, represent excellent references. By exploiting

the real-world data sets, the proposed methodology is desired to not only confirm

the biologists results and discoveries, but also provide a systematic view of the gene

interactions and potential control targets.

F. Organization of the Dissertation

The following chapters are organized as described below.

Chapter II discusses the identification of periodically expressed genes as an exam-

ple to constrain the research target within a specific cellular process. The power spec-

tral density estimation methods are compared in the case of non-uniformly sampled

data. The performance is evaluated via a combination of experimental knowledge. A

list of genes for Drosophila melanogaster are proposed to be cyclicly expressed.

Chapter III recognizes the challenge of genetic network inference in the presence
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of time independent microarray measurements. Information theoretic quantities are

exploited and their estimation methods are discussed. Two algorithms are proposed

and they are compared with other state-of-the-art schemes based on third-party arti-

ficial genetic networks.The proposed algorithms are also applied on realistic biological

measurements, such as the cutaneous melanoma data set, and biological meaningful

results are inferred.

Chapter IV addresses the problem of inferring genetic regulatory networks from

time series gene-expression profiles. Based on the Minimum Description Length

(MDL) principle, it proposes a network inference algorithm to recover not only the

direct gene connectivity but also the regulating orientations. Simulation results show

that the algorithm achieves good performance in the case of synthetic networks and

excels in efficiency, accuracy, robustness and scalability. Given a time series data

set for Drosophila melanogaster, the paper proposes a genetic regulatory network

involved in Drosophila’s muscle development.

Chapter V proposes a novel approach for reconstruction of genetic regulatory

networks in light of heterogeneous data sets, particularly measurements from DNA

microarrays and chromatin immunoprecipitation (ChIP) assays. Built within the

framework of Bayesian statistics and computational Monte Carlo techniques, the

proposed approach presents the posterior probabilities between interacting genes. A

genetic regulatory network for Saccharomyces cerevisiae is inferred based on published

real data sets and biological meaningful results are discussed.

Chapter VI extends the current work with three other applications: applying

reversible jump Markov Chain Monte Carlo to incorporate sequence information,

identifying cell cycle genes based on prior experimental knowledge, and clustering

gene expressions in frequency domain.

Chapter VII summarizes the dissertation and proposes potential future research
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targets.

G. Main Contributions

The main contributions are summarized as follows:

• Established the Bayesian framework to combine heterogeneous data sources for

the inference of genetic regulatory networks (GRN).

• Designed the GRN inference schemes based on information theoretic quantities

for time independent microarray measurements.

• Developed the GRN inference schemes based on minimum description length

principle (MDL) for time course microarray measurements.

• Evaluated applicability and efficiency of the power spectral density methods for

non-uniform biological observations.

• Presented the scheme to identify genes involved in specific biological processes,

particularly cell cycle.

• Proposed control targets and summarized network features for the inferred

GRNs based on real data sets.
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CHAPTER II

IDENTIFICATION OF PERIODICALLY EXPRESSED GENES ∗

A. Problem Overview

Multiple genome projects have been accomplished. These include the human genome,

which consists of approximately 25,000 genes, the fruit fly genome, which is composed

of around 14,000 protein-coding genes, and yeast genome, which contains about 6,000

genes. For an organism, all its genes in the genome cooperate systematically to

function as a living body. At the molecular level, the research has to be confined

to some relatively independent cellular processes, such as metabolism, cell cycle and

response to stimulus. The regulation mechanisms behind these processes involve

tens to hundreds of key genes, which are greatly reduced to subsets of all the genes

located in the genome. The underlying genetic networks are therefore possible to

be computationally recovered from the gene expression observations based on the

current computing resources and methods. Fortunately the fast advancing signal

processing literature has provided various methods to identify genes participating in

specific biological processes, such as cell cycle and circadian rhythm, which control

the accurate timing of biological cycles.

Particularly, the eukaryotic cell cycle is an echelon of molecular-level events that

lead to cell division into two daughter cells. The wrongly regulated cell cycle leads to

tumor formation. Besides, the cells expose their DNA during division, hence allowing

∗Part of the data reported in this chapter is reprinted from “Detecting Periodic
Genes from Irregularly Sampled Gene Expressions: A Comparison Study,” by W.
Zhao, K. Agyepong, E. Serpedin and E. R. Dougherty, 2008, EURASIP Journal
on Bioinformatics and System Biology, Open Access 2008 by Hindawi Publishing
Corporation.
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themselves controllable via genetic therapy. Therefore, the cell cycle has been a hot

topic for cancer research. At the transcription level, the events of the cell division

can be quantitatively observed by measuring the concentration of messenger RNA

(mRNA). To achieve this goal, in the microarray experiments high-throughput gene

chips are exploited to measure genome-wide gene expressions sequentially at discrete

time points.

Extensive genome-wide time course microarray experiments have been conducted

on organisms such as Saccharomyces cerevisiae (budding yeast) [18], human Hela [52],

and Drosophila melanogaster (fruit fly) [53]. Budding yeast in [18] has served as the

predominant data source for various statistical methods in search of periodically ex-

pressed genes, mainly due to its pioneering publication and relatively larger sample

size compared with its peers. By assuming the signal in the cell cycle to be a sim-

ple sinusoid, Spellman et al. [18] and Whitfield et al. [52] performed a Fourier

transformation on the data sampled with different synchronization methods, while

Giurcaneanu [54] explored the stochastic complexity of the detection mechanism of

periodically expressed genes by means of generalized Gaussian distributions. Ahdes-

maki et al. [55] implemented a robust periodicity testing procedure also based on

the non-Gaussian noise assumption. Alternatively, Luan and Li [56] employed guide

genes and constructed cubic B-spline based periodic functions for modeling, while Lu

et al. [57] employed up to third harmonics to fit the data and proposed a periodic

normal mixture model. Power spectral density estimation schemes have also been

employed. Wichert et al. [58] applied the traditional periodogram on various data

sets. Jakobsson et al. [59] compared Capon and robust Capon methods in terms of

their ability to identify a predetermined frequency using evenly sampled data sets,

under the assumption of a known period. Lichtenberg et al. [60] compared [18], [56]

and [57] while proposing a new score by combining the periodicity and regulation
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magnitude. The majority of these works dealt with evenly sampled data. When

missing data points were present, either the vacancies were filled by interpolation in

time domain, or the genes were discarded if there were more than 30% data samples

missing.

Biological experiments generally output unequally spaced measurements. The ma-

jor reasons are experimental constraints and event-driven observation. The rate of

measurement is directly proportional to the occurrence of events. Therefore, an anal-

ysis based on unevenly sampled data is practically desired, although technically it

is more challenging. While providing modern spectral estimation methods for sta-

tionary processes with complete and evenly sampled data [61], the signal processing

literature has witnessed an increased interest in analyzing unevenly sampled data

sets, especially in astronomy, in the last decades. The harmonics exploited in discrete

Fourier transform (DFT) are no longer orthogonal for uneven sampling. However,

Lomb [62] and Scargle [63] demonstrated that a phase shift suffices to make the sine

and cosine terms orthogonal. The Lomb-Scargle scheme has been exploited in ana-

lyzing the budding yeast data set by Glynn et al. [64]. Schwarzenberg-Czerny [65]

employed one way analysis of variance (AoV) and formulated an AoV periodogram

as a method to detect sharp periodicities. However, it relies on an infeasible biologi-

cal assumption, i.e., the observation duration covers many cycles. Along this line of

research, Ahdesmaki [66] proposed to use robust regression techniques, while Stoica

[67] updated the traditional Capon method to cope with the irregularly sampled data.

Wang et al. [68] reported a novel technique, referred to as the missing-data amplitude

and phase estimation (MAPES) approach, which estimates the missing data and spec-

tra iteratively through the Expectation Maximization (EM) algorithm. In general,

Capon and MAPES methods possess a better spectral resolution than Lomb-Scargle

periodogram. In this chapter, we analyze the performance of three of the most repre-
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sentative spectral estimation methods: Lomb-Scargle periodogram, Capon method,

and the MAPES technique in the presence of missing samples and irregularly spaced

samples. The following questions are to be answered in this study: do technically

more sophisticated schemes, such as MAPES, achieve a better performance on real

biological data sets than simpler schemes, and is the sacrifice in efficiency by these

advanced methods justifiable?

B. Methods for Periodicity Identification

In this section the Lomb-Scargle periodogram, Capon method and MAPES approach

are introduced and compared in terms of their features and implementation complex-

ity.

1. Lomb-Scargle Periodogram

The deployment of Fourier transform and traditional periodogram relies on evenly

sampled data, which are projected on orthogonal sine and cosine harmonics. The un-

even sampling ruins this orthogonality. Hence, the Parseval’s theorem fails, and there

exists a power discrepancy between the time and frequency domains. When analyzing

astronomical data, which in general are collected at uncontrollable observation times,

Lomb [62] found that a phase-shift of the sine and cosine functions would restore the

orthogonality among harmonics. Scargle [63] complemented the Lomb’s periodogram

by exploiting its distribution. Since then the established Lomb-Scargle periodogram

has been exploited in numerous fields and applications, including bioinformatics and

genomics (see e.g., Glynn [64]).

Given N time-series observations (tl, yl), l = 0, . . . , N − 1, where t stands for the

time tag and y denotes the sampled expression of a specific gene, the normalized
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Lomb-Scargle periodogram for that gene expression at angular frequency ω is

ΦLS(ω)=
1

2σ̂2





(∑N−1
l=0 [yl − ȳ]cos[ω(tl − τ)]

)2

∑N−1
l=0 cos2[ω(tl − τ)]

+

(∑N−1
l=0 [yl − ȳ]sin[ω(tl − τ)]

)2

∑N−1
l=0 sin2[ω(tl − τ)]



 ,

(2.1)

where ȳ and σ̂2 stand for the mean and variance of the sampled data, respectively,

and τ is defined as:

τ =
1

2ω
atan

(∑N−1
l=0 sin(2ωtl)∑N−1
l=0 cos(2ωtl)

)
. (2.2)

For evenly sampled data, the sampling interval ∆ can be expressed as

∆ = tl+1 − tl =
tN−1 − t0
N − 1

, l = 0, . . . , N − 2. (2.3)

The highest frequency, namely the Nyquist frequency, is 1/(2∆). Beyond this limit,

the computed spectra repeat. For unevenly sampled data, a straightforward way to

introduce the Nyquist frequency is by keeping the definition as in the evenly sam-

pled case, i.e., using the averaged sampling interval defined in the second equality of

Equation (2.3), as is employed in Glynn’s work [64]. Actually, Eyer in [69] proved

that the highest frequency is much larger than 1/(2∆). Let δ be the greatest common

divisor (gcd) for all intervals tk − tl (k 6= l), then the highest frequency that should

be searched is given by

fmax =
ωmax
2π

=
1

2δ
. (2.4)

The number of probing frequencies is denoted by

Ñ =
tN−1 − t0

δ
+ 1, (2.5)
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and the frequency grid can be defined in terms of the following equation

ωlδ =
2π

Ñ
l, l = 0, . . . , Ñ − 1. (2.6)

Notice further that the spectra on the front and rear halves of the frequency grid are

symmetric since the microarray experiments output real values.

Lomb-Scargle periodogram represents an efficient solution in estimating the spectra

of unevenly sampled data. Our simulation results verify its superior performance for

biological data with small sample size and various unevenly sampled patterns.

2. Capon Method

Capon method represents a modern power spectral estimation technique that yields

better spectral resolution compared with traditional periodogram [61]. The origi-

nal Capon method tries to design a filter-bank by taking properties of its data into

account. Assuming N observations are equally spaced with a sampling interval ∆,

at a frequency ω, the Capon filter is designed so that the power of the filter’s out-

put is minimized while the frequency ω is passed without distortion. Solving this

optimization problem provides the spectrum estimate at frequency ω as

ΦC(ω) =
1

aH(ω∆)R−1a(ω∆)
, (2.7)

where the R stands for the data covariance matrix with a dimension N0, which is also

the bandwidth of the Capon filter. The ancillary vector is defined as follows

a(ω) =
(
1 ejω · · · ejω(N0−1)

)T
. (2.8)

Note that we have not included in this spectrum estimate a scaling factor. However,

the absence of this scaling factor does not affect periodicity analysis for the genes.

Therefore, we neglect this scaling factor. The bandwidth parameterN0 can not exceed
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⌊(N−1)/2⌋ to guarantee an inverse R−1. The larger the N0, the better the resolution

of the obtained spectra.

Recently, the Capon method has been updated to cope with the presence of irreg-

ular samples [67]. The same frequency grid denoted in Equation (2.6) is employed.

The sampling interval ∆ has to be changed to δ, the greatest common divisor between

any two sampling times. In order to take advantage of the best resolution, N0 is set

to be equal to ⌊(Ñ − 1)/2⌋, where Ñ is defined in Equation (2.5). In our simulation,

an estimate of the autocorrelation matrix R̂ can be obtained from the Lomb-Scargle

periodogram. It can be represented by

R̂ =
1

Ñδ

Ñ−1∑

l=0

a(ωlδ)a
H(ωlδ)ΦLS(ωl). (2.9)

The Capon method is slightly more computationally complex than Lomb-Scargle

periodogram, and it usually achieves a better performance in terms of resolution

provided there are sufficient samples. However, for highly corrupted biological data

with small sample size, this is not true.

3. MAPES Method

Regular sampling can be treated as a case of missing data as long as the sampling

time tags share a greatest common divisor. This constraint is satisfied in most bio-

logical experiments and published data sets. The missing-data amplitude and phase

estimation (MAPES) method, proposed in [68], is a non-parametric spectral estima-

tion approach. It is robust to error modeling and it deals with arbitrary data-missing

patterns as opposed to gapped or periodically gapped data, and achieves a better

spectral resolution in the sense of resolving closely spaced spectral lines. However,

the exploitation of the expectation maximization (EM) algorithm sacrifices its com-

putational efficiency.
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The data, yl, l = 0, . . . , Ñ , are assumed to be sampled uniformly, however, only

N data points are available and there are Ñ − N missing data points. Noticeably

Ñ still conforms to the definition in Equation (2.5). The gene expression signal with

frequency ω can be modeled as

yl = α(ω)ejωl + εl(ω), l = 0, . . . , Ñ − 1, ω ∈ [0, 2π], (2.10)

where α(ω) represents the complex amplitude of the sinusoidal component and εl(w)

denotes the residual term. The probing frequencies still follow Equation (2.6). Em-

ploying the EM algorithm, MAPES tries to iteratively assess the missing data, and

meanwhile to update the estimation of spectra and error.

The data vector y = (y0, · · · , yÑ−1)
T can be partitioned into L overlapping subvec-

tors, each with dimension M × 1, and L = Ñ −M + 1. These subvectors constitute

the enhanced data vector ỹ (LM × 1), which assumes the following expression

ỹ =





ỹ0

...

ỹL−1




= Uγ + Vµ, (2.11)

where γ (N × 1) and µ ((Ñ − N) × 1) represent the available and missing data,

respectively, and U (LM×N) and V (LM×(Ñ−N)) denote their selection matrices,

respectively. Alternatively, given U,V and ỹ, the data vectors γ, µ can be computed

in the least-squares (LS) sense as follows

γ = (UTU)−1UT ỹ = Ũ†ỹ, where Ũ† = (UTU)−1UT , (2.12)

µ = (VTV)−1VT ỹ = Ṽ†ỹ, where Ṽ† = (VTV)−1VT . (2.13)
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The residual vector and its covariance matrix are next defined

el(ω) = (εl(ω) εl+1(ω) · · · εl+M−1(ω))T , (2.14)

Q(ω) = E
(
el(ω)eHl (ω)

)
, (2.15)

where E(·) denotes the expectation operator, and in practice is replaced by a sample

mean estimator. The following two notations are also required by the definition of

MAPES power spectral estimator:

ρ(ω) =





ejω0a(ω)

...

ejω(L−1)a(ω)




, (2.16)

D(ω) =





Q(ω) 0

. . .

0 Q(ω)




. (2.17)

In the ith EM iteration, the probability density function (PDF) of the missing data

vector µ conditioned on the available data γ and other context parameters is complex

Gaussian with mean and variance denoted by (b,K) as follows

bi(ω) = ŨT
ρ(ω)αi(ω)+ŨTDi(ω)Ṽ

(
ṼTDi(ω)Ṽ

)−1(
γ−ṼT

ρ(w)αi(w)
)
, (2.18)

Ki(ω) = ŨTDi(ω)Ũ− ŨTDi(ω)Ṽ
(
ṼTDi(ω)Ṽ

)−1

ṼTDi(ω)Ũ. (2.19)

Then the estimates for spectral magnitude α(ω) and residual matrix Q are updated
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in terms of equations

αi+1(ω) =
aH(ω)S−1(ω)Z(ω)

aH(ω)S−1(ω)a(ω)
, (2.20)

Qi+1(ω) = S(ω) + (αi+1(ω)a(ω)− Z(ω)) (αi+1(ω)a(ω)− Z(ω))H , (2.21)

where the auxiliary matrices are defined as follows





z0

...

zL−1




= Uγ + Vb(ω), (2.22)

Z(ω) =
1

L

L−1∑

l=0

zle
−jωl, (2.23)

S(ω) =
1

L

L−1∑

l=0

Γl +
1

L

L−1∑

l=0

zlz
H
l − Z(ω)ZH(ω). (2.24)

In (2.24), Γ0, · · · ,ΓL−1 are M ×M sub-block matrices located on the main diagonal

of matrix UKUT.

Finally, the MAPES power spectral density estimator can be expressed as

ΦMAPES(ω) =
|α(ω)|2

Ñ
. (2.25)

Actually, in our in silico experiments, assuming Ñ ≤ 50, MAPES yields an estimate

of power spectral about two orders of magnitude more computational time (roughly

about one hundred times slower) than Lomb-Scargle and Capon methods. Also,

the simulation results do not indicate any performance improvement for MAPES in

terms of the ability to discover published cell cycle genes. A more detailed comparison

between these schemes will be presented in the simulation section.
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4. Periodicity Test

Based on the obtained power spectral density, each gene is to be classified as ei-

ther cyclic or non-cyclic. The null hypothesis is usually formed to assume that the

measurements are generated by a Gaussian noise stochastic process. For a general

periodogram or power spectral density estimator Φ(ω), Fisher’s test can be exploited

to examine the significance of the detected peak. The Fisher’s test statistic is defined

as

T =
max1≤k≤N0

Φ(ωk)

N−1
0

∑
1≤k≤N0

Φ(ωk)
, (2.26)

where N0 = ⌊(Ñ − 1)/2⌋ since the spectra on the defined frequency grid are symmet-

ric. The p-value for detecting the largest peak is given by [70]

P (T > t) = 1− e−N0e−t

. (2.27)

A rejection of the null hypothesis based on a p-value threshold implies the power

spectral density contains a frequency with magnitude substantially greater than the

average value. This indicates that the time series data contain a periodic signal and

the corresponding gene is cyclic in expression. Notice also that a more accurate

estimation method for the p-values can be found in Fisher [71] or Brockwell [72]. The

rank of genes ordered by their p-values is of additional importance and it helps to

hedge the risk of dichotomous decisions.

For the Lomb-Scargle periodogram, ΦLS(ω) is exponentially distributed under the

null hypothesis [63], a result which is also exploited in [64]. However, this expo-

nential distribution is not applicable for a general power spectral density. Therefore,

Fisher’s test is employed to perform the comparison among different spectral schemes.

Our simulation results also show that for Lomb-Scargle periodogram, the gene ranks
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generated by Fisher’s test do not differ much from that produced by the exponen-

tial distribution. Finally, we remark that other periodicity detection tests exist, as

indicated by the robust Fisher test [55], the likelihood ratio test and the χ2 test [70].

5. Multiple Testing Correction

In order to prevent the false positives from overwhelming the true positives, the

multiple testing correction, as proposed in [73] and [74], is performed to control the

false discovery rate (FDR). For each of the n measured genes, the periodicity is tested

and a p-value is generated. All p-values are sorted in ascending order with the smallest

ith p-value denoted by p(i). Assume an estimate of the number of non-cyclic genes

among all n genes is n̂0, and the testing procedure preserves the k genes with the

smallest p-values, then an estimate of FDR can be expressed as

F̂DRk =
p(k)n̂0

k
, (2.28)

where the numerator is an estimate of the number of false positives. Since generally

periodic genes only occupy a small portion of all genes, n̂0 is set to n directly in

our simulation. Such an action brings a slightly larger estimate. There exist other

statistical methods to estimate n̂0, e.g., [74].

The F̂DR is not a monotonic function of k, the number of preserved genes. This

property makes it tough to choose a p-value threshold. To combat this, the q-value

proposed in [73], is defined as follows:

qk = min
k≤j≤n

F̂DRj. (2.29)

The q-value is a monotonically increasing function with respect to k. The FDR can

be controlled via specifying the q-value threshold as τ , through which the number of



34

genes to preserve can then be derived as

k = max
1≤j≤n

qj ≤ τ. (2.30)

C. Simulation Results

Our in silico experiments are first performed on the Saccharomyces cerevisiae (bud-

ding yeast) data set. The Lomb-Scargle, Capon and MAPES are compared. Then

we proceed to analyze the Drosophila melanogaster (fruit fly) data set.

1. Simulation on Saccharomyces Cerevisiae

The performance of the three schemes is evaluated based on the Saccharomyces cere-

visiae (budding yeast) data set reported by Spellman et al. [18]. In the biological ex-

periments the mRNA concentrations of more than 6,000 Open Reading Frames (ORF)

were measured for the yeast strains synchronized by using four different methods,

namely, α factor, cdc15, cdc28 and elutriation. The data set contained 73 sampling

points, while several observations were missing for some genes.

The current literature provides prior knowledge about the yeast cell cycle genes.

Spellman et. al. [18] enumerated 104 cell cycle genes that were verified in previous

biological experiments, while Lichtenberg et al. [75] summarized 105 genes that were

not involved in the cell cycle. By exploiting these two control sources, we can evaluate

the true and false positives generated by the three spectral estimation methods.

The comparison procedure is as follows: based on the given data set, the three

schemes are run in such a manner to preserve a pre-specified number of genes. These

genes are marked as cell-cycle genes and are compared with two control gene sets,

from which the number of positives is counted. If a preserved gene also exists in

the gene set which has been verified to be cell cycle regulated, this hit is counted
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as a true positive. On the other hand, if the preserved gene appears in the gene set

which has been corroborated not to be involved in the cell cycle, this hit is counted

as a false positive. Notice that since we expect the non-cell-cycle genes to be the

majority of all measured genes, but the verified non-cell-cycle genes are only a small

portion of all the genes, the false positives from verified non-cell-cycle genes only

provide a reference but not a significant knowledge of the false positives. Because the

three algorithms perform similarly for all four data sets, only simulation outcomes

for cdc15 are presented here to exemplify the general results. The cdc15 data set

contained 24 time points sampled from t0 = 10 minute to tN−1 = 290 minute. The

greatest common divisor (gcd) for all time intervals is δ = 10 minutes. Therefore,

N = 24 and Ñ = 29. The bandwidth N0 of Capon method is 14 while the subvector

length M of MAPES is equal to N0. All three schemes, i.e., Lomb-Scargle, Capon

and MAPES, are applied on the data set.

The in silico results based on the cdc15 data set are illustrated in Fig. 2. When

the number of preserved genes increases, all three schemes increase their ability to

identify more cell cycle genes with more false discoveries as a trade-off. Lomb-Scargle

achieves the best performance in terms of identifying the highest number of true

positives and producing the lowest number of false positives, while MAPES exhibits

the worst performance with respect to these two metrics.

To test the algorithm performance on highly corrupted data, two in silico exper-

iments are performed. First, one third of all measurements are randomly set to be

missing. The results are organized in Fig. 3. Second, a gene’s sampled data are added

with Gaussian noise of mean 0 and variance equal to half the variance of the gene’s

measurements. The outcomes of the artificially generated noisy data are presented

in Fig. 4. Compared with Fig. 2, all of them identify less verified genes due to the

artificially added noise or missed data. The false positives are controlled at a low
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Fig. 2. Performance comparison based on the cdc15 data set.

level. The three algorithms behave in a similar pattern with respect to the increasing

number of preserved genes.

Above all, Lomb-Scargle scheme always identifies the largest number of cell cycle

genes that have been verified in previous biological experiments. Due to its simplicity,

we recommend the use of this simplest method.

2. Simulation on Drosophila melanogaster

The Drosophila melanogaster (fruit fly) is selected as our research target because it

is a well-studied, relatively simple organism with a short generation time and only 4

pairs of chromosomes. In addition, 75% of human diseases have their counterparts in

fruit fly, and 50% of fruit fly proteins have their mammalian analogs [76]. These make

the fruit fly an excellent model for the research of human diseases. In the literature for

the fruit fly most of the research work was conducted through experimental biological

methods, and the computational analysis tools have not been fully explored for the
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Fig. 3. Performance comparison assuming one third of measurements are randomly set

to be missing.
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detection of periodically expressed genes. Our in silico experiments are performed on

the fruit fly data set published by Arbeitman et al. [53]. With the usage of cDNA

microarrays, the RNA expression levels of 4028 genes were measured. These stand

for about one-third of all found fruit fly genes.

In Arbeitman’s experiments 75 sequential sampling points were observed, starting

right after fertilization and through embryonic, larval, pupal and early days of adult-

hood. The time series data during the embryonic stage are analyzed. The embryonic

stage gives us insight into the developmental process, i.e., how the fruit fly grows from

a zygote to a complex organism with cell specialization. The embryonic data takes

the instant of egg lay as the time origin. 30 time points were sampled from t0 = 0.5

hour to tN−1 = 23.5 hours. The greatest common divisor (gcd) for all time intervals

is δ = 0.5 hour. Therefore, N = 30 and Ñ = 47. The best candidate, Lomb-Scargle

algorithm is applied on the data set.

The top 144 genes with the smallest p-values are selected and conferred to be

periodic with the highest confidence. These genes are listed in Appendix A. To

remove the effects of the DC component, the first two frequency probes are filtered

out. The q-value is controlled to be less than 0.2. The majority of genes are associated

with a periodicity of about 20 hours, we hypothesize that a portion of them are related

to the circadian rhythm. The cell cycle genes are not fully detectable because in the

embryonic stage the cells proliferates very fast (minutes). However, the implemented

sampling rate was not fast enough to capture the phenomenon in the cell cycle.

3. Discussion on Synchronization Effects

In order to measure a valid sample, the cell culture has to be synchronized, in other

words, all cells within the culture should be homogeneous in all aspects, e.g., cell size,

DNA, RNA, protein and other cellular contents, and should also mimic the unper-
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turbed cell cycle. Cooper in [77] argued that the ideal synchronization is a mission

impossible due to the different dimensions, like cell size and DNA content, that can not

be controlled at the same time. Therefore, current popular synchronization methods,

like serum starvation and thymidine block, are only one-dimensional synchronization

techniques and fail to achieve a truly global synchronization. Cooper also argued it

was fully possible that the discovered periodicity was completely caused by chance or

by the specific employed synchronization method. The available fruit fly data set was

sampled with the synchronization yielded by the Cryonics method. Cryonics is the

low temperature preservation method of tissues in which all cell activities are believed

to be halted. The cells frozen with liquid nitrogen are compared with control cells,

that were fomaldehyde fixed, to ensure that the cells were at the expected develop-

mental stages during sampling. This synchronization method differentiates itself from

the one-dimensional methods employed in [18, 52], which have been shown in [77] to

present cell cultures that are not actually representative of the cell cycle. Though

the damage caused by the freezing was not known, the fly’s development assumed

true synchronization with the control cells at every developmental check point. This

provided enough evidence to consider Arbeitman’s data set out of the scope of the

issues raised in [77]. Therefore, one can claim with confidence that any discovered

periodicity will not have risen from chance fluctuations alone.
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CHAPTER III

STEADY STATE MICROARRAY DATA ANALYSIS ∗

A. Problem Overview

Currently, about 70% of the available data sets continue to be time independent due

to various reasons such as financial, ethical and practical implementation issues en-

countered in implementing time course experiments [1]. This impediment represents

a strong motivation for developing network inference techniques that exploit the time

independent data sets. Since the time independent data sets do not present explicit

temporal information, in general it is difficult to infer accurately the regulation rela-

tionships. However, it is still possible to infer the direct connectivity between genes

due to the inherent properties of the biological system under investigation.

Multiple inference algorithms have been proposed for capturing the gene interac-

tions based on steady state gene expressions. These include [78] for Boolean network

models, [13] for probabilistic Boolean networks, [5] and [79] for Bayesian networks and

relevance networks [9]. There are also a bunch of scheme in the social science litera-

ture to mine the relationships between variables [38] and [80]. The existing machine

learning techniques have to be tailored and improved before they can be applied to

solve bioinformatics challenges which are significantly different from the traditional

learning problems encountered in sociology, industry and other areas.

Score based schemes, e.g., [5], represent a class of computationally intense methods

∗Part of the data reported in this chapter is reprinted with permission from “In-
ferring Connectivity of Genetic Regulatory Networks Using Information Theoretic
Criteria,” by W. Zhao, E. Serpedin and E. R. Dougherty, 2008, IEEE/ACM Trans-
action on Computational Biology & Bioinformatics, vol. 5, no. 2, pp. 262–274,
Copyright 2008 by IEEE.
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for inference of gene regulatory networks. When heuristic searching approaches are

employed for network structure optimization, the efficiency of the inference is greatly

impaired and only small scale networks can be inferred. ARACNE [16] represents

one of the most recently proposed algorithms in this regard and that infers the direct

connectivity among genes using the mutual information as a metric. As reported,

ARACNE achieves a better accuracy and high efficiency for large scale networks.

However, ARACNE relies on the critical assumptions that gene interactions can be

described by Markov chains and the data processing inequality holds [43]. In ad-

dition, determination of the significance threshold for mutual information plays an

important role and its incorrect specification might induce significant errors, in which

case ARACNE falsely connects two distantly separated genes.

By exploiting the conditional mutual information, novel algorithms are designed

in this chapter to accommodate more general scenarios. The goal of the proposed

algorithms is to preserve with high accuracy only the direct connectivity among the

participating genes, maintain a low complexity in network inference, and when a false-

alarm connectivity is produced between two genes, the two falsely connected genes

are located closely enough in the actual network. Two algorithms are developed along

these lines. The first algorithm is for precise inference of direct connectivity. Based

on it, an alternative simplified algorithm is proposed, where the connectivity confi-

dence among genes is represented by the so called direct connectivity metric (DCM).

DCM is a continuous-valued function that exploits the mutual information and con-

ditional mutual information of gene expressions and provides a more comprehensive

description of the connectivity degree between genes, as opposed to the dichotomy of

being connected or disconnected. The performance of the proposed inference algo-

rithms is evaluated in the case of several artificial networks. The inference algorithm

is then applied on the realistic data sets produced by measurements on cutaneous
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melanoma. A network containing 470 genes and the WNT5A pathway are recovered

using the proposed algorithms. The obtained results are compared with the existing

state-of-the-art results, and research target genes are proposed.

B. Algorithm Formulation

The genetic regulation takes place at all stages including transcription, splicing and

translation. However, since our inference is based on the microarray data and reg-

ulation takes place predominantly at the transcription initiation stage, we constrain

these genetic interactions at the transcription stage. In other words, by exploiting

the information provided by mRNA transcript data, the proposed network inference

algorithms model only the gene-to-gene interactions. Such a modeling framework

assumes a large scale modeling of the gene interactions, and not a detailed molecular

scale modeling of the interactions among various macromolecules [81], [82]. Since the

mutual information represents a consistent measure of the correlation between two

random variables even in the presence of nonlinear dependencies, the proposed infor-

mation theoretic algorithms present a wide applicability area and the inferred con-

clusions truly reflect the dependencies present in measurement data. The un-oriented

graphical model, as depicted in Chapter I, is exploited to represent the structure of

genetic networks. Although the inference is also based on statistical relationships,

we are aiming to capture the direct regulation relationships as accurately as possi-

ble. Next, the concepts of mutual information, conditional mutual information and

direct connectivity metric are introduced, and the network inference algorithms are

formulated.
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1. Information Theoretic Quantities

The information theoretic quantity entropy is a measure of the uncertainty present

in the values assumed by a random variable [43]. For a discrete random variable X,

which might be either a vector or a scalar, the entropy H(X) is defined by

H(X) = −
∑

x∈X

[p(x) · log p(x)], (3.1)

where p(x) denotes the probability mass function, and X stands for the alphabet of

X. The entropy of a discrete variable is always non-negative. For a continuous-valued

random variable X, the differential entropy h(X) is defined as

h(X) = −

∫

x∈SX

[f(x) · log f(x)]dx, (3.2)

where f(x) denotes the probability density function, and SX represents the support

of X. The differential entropy is also denoted as h(f) and can take negative values.

Therefore, some discrete network inference algorithms, e.g., REVEAL [17], can not

be deployed for continuous-valued gene expression data unless the data are quantized

and the associated information loss is tolerated.

The mutual information is in general used as a powerful criterion for measuring the

dependence between two random variables (RVs) X and Y . For two discrete-valued

RVs, the mutual information is expressed as

I(X;Y ) =
∑

X ,Y

[p(x, y) · log
p(x, y)

p(x) · p(y)
] (3.3)

= H(X) +H(Y )−H(X, Y ),
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while for two continuous-valued RVs it takes the expression:

I(X;Y ) =

∫

SX

∫

SY

[f(x, y) · log
f(x, y)

f(x) · f(y)
]dxdy (3.4)

= h(X) + h(Y )− h(X, Y ).

Both discrete and continuous versions of I(X;Y ) are non-negative and assume the

value zero if and only if X and Y are independent. Continuous-valued RVs should be

employed to describe the original DNA microarray data, while discrete-valued RVs

are used to model quantized expression data.

If gene X interacts with gene Y , in the steady state it is hypothesized that the

expression values ofX and Y show a strong dependence. This is partially evidenced by

the study of chemical kinetics. When the chemical reaction achieves the equilibrium,

the concentrations of all participating complexes can be modeled by an equation and

they depend on each other. Therefore, if I(X;Y ) assumes a very small value, it can be

reasonably inferred that X and Y are disconnected in the genetic regulatory network.

However, the opposite statement does not hold. Given a large I(X;Y ), X and Y can

be either directly connected or connected through an intermediate gene. Considering

a scenario where three genes X, Z and Y are positioned in a chain X → Z → Y . In

this case all three pairs (X,Y ),(X,Z) and (Y ,Z) present mutual information greater

than zero. If only the mutual information is used to evaluate the connectivity, it is

highly possible that the inference might provide a false alarm edge X − Y .

ARACNE [16] employs the data processing inequality (DPI) to remove the indirect

connectivity. Taking into account both orientations, the DPI states the following

result: if X, Z and Y form a Markov chain, i.e., X → Z → Y or X ← Z ← Y then

I(X;Y ) ≤ min[I(X;Z), I(Y ;Z)] . (3.5)
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If DPI is satisfied, ARACNE infers that X and Y are disconnected.

The DPI works for the chain scenario but loses validity in other general cases.

For example, assume a diverging scenario where two genes X and Y share the same

regulator Z, i.e., X ← Z → Y . All three pairs (X,Y ),(X,Z) and (Y ,Z) present

positive mutual information but there is no definite inequality between them. This

diverging case is common in scale-free networks where some hub genes regulate several

downstream genes. To deal with such cases we exploit the concept of conditional

mutual information. Its discrete-valued version is defined as

I(X;Y |Z) =
∑

X ,Y ,Z

[p(x, y, z) · log
p(x, y|z)

p(x|z) · p(y|z)
], (3.6)

where p(x, y|z), p(x|z) and p(y|z) are conditional probability mass functions. The

continuous-valued version of conditional mutual information is defined in the form of

I(X;Y |Z) =

∫

SX

∫

SY

∫

SZ

[f(x, y, z) · log
f(x, y|z)

f(x|z) · f(y|z)
]dxdydz, (3.7)

where f(x, y|z), f(x|z) and f(y|z) stand for conditional probability density functions.

The conditional mutual information can be expressed alternatively by the summa-

tion of different entropies [43]:

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) (3.8)

= H(X,Z)−H(Z)− (H(X, Y, Z)−H(Y, Z))

= H(X,Z) +H(Y, Z)−H(Z)−H(X, Y, Z).

For continuous-valued case, the notation H(·) is often represented in terms of h(·). In

both the diverging and chain scenarios, given the intermediate or hub gene Z, genes

X and Y become independent, and therefore, the conditional mutual information

I(X;Y |Z) tends to be zero.
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2. Entropy Estimation

Since both mutual information and conditional mutual information can be represented

as a summation of entropies, the (conditional) mutual information estimators will be

constructed based on multivariate entropy estimates. In turn the entropy estimation

depends on the mass or density estimators.

The gene expressions are quantized into q-level discrete values, which are prede-

termined by the data nature or quantization process. For example, for q = 3, the

values {−1, 0, 1} represent the gene expression levels: repressed, normal and induced,

respectively. In general, it is assumed that the q-level quantization admits the alpha-

bet Aq = {0, 1, · · · , q − 1}. Then, the probability mass function from m samples

{s1, · · · , sm} is estimated as:

p̂(x = v) =
1

m

m∑

k=1

1{v}(sk) , (3.9)

where 1{·}(·) stands for the indicator function, defined as

1A(s) =






1 if s ∈ A,

0 if s /∈ A.
(3.10)

By plugging (3.9) into (3.1), and substituting the entropy estimates into (3.3) and

(3.8), the estimates of mutual information and conditional mutual information are

obtained for the discrete case.

Estimation of (conditional) mutual information of continuous-valued RVs is also

divided into two steps. Kernel density estimation methods are first applied for ob-

taining the empirical density function as follows. If m samples {s1, · · · , sm} are
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collected, then a general approach is given by

f̂(x) =
1

m

m∑

i=1

K
(
H−1(x− si)

)

det(H)
, (3.11)

where K stands for the multivariate kernel function and det(·) stands for determinant

function. H represents the bandwidth matrix, and is a key parameter in density

estimation. For simplicity, a diagonal bandwidth matrix H and multiplicative kernel

K are used. Assuming x = (x1, · · · , xd)
T , we have

H = diag(h1, · · · , hd), K(u) = K(u1, · · · , ud) =

d∏

j=1

K(uj). (3.12)

By plugging (3.12), equation (3.11) takes the form:

f̂(x) = f̂(x1, · · · , xd) =
1

m

m∑

i=1

( d∏

j=1

1

hj
K(
xj − si,j
hj

)
)
. (3.13)

The kernel K can be selected as Gaussian, Epanechnikov, cosine functions etc.

The bandwidth vector (h1, · · · , hd)
T can be specified according to the rule-of-thumb

criteria in [83].

By substituting the density estimates into the differential entropy and by computing

the integral, estimates of differential entropy are obtained and a natural estimator of

entropy is given by

ĥ(fX) = −
1

m

m∑

i=1

log
(
f̂(xi)

)
. (3.14)

We remark that the recent progress in the area of estimating information theoretic

quantities has lead to a number of alternatives for estimating the entropy: [45], [84].

In the proposed algorithms, it is the rank of the mutual information that accounts

for the connectivity. Therefore, the desired estimator has to exhibit small variance

and acceptable bias.
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3. Inference Algorithm

Our inference algorithm utilizes both mutual information and conditional mutual

information. In the first step, the continuous-valued expressions of each gene X(·) are

rank-transformed. For example, let x1, x2, · · · , xm stand for m observations of gene

X’s expression. If xi (i ∈ [1, m]) is the k-th smallest from the m values, then xi is

reassigned the value k/m. Only ranks of data are preserved. Therefore, outliers with

incredible large values are removed and the negative preprocessing effects are reduced.

The same technique is also used in [16]. Then all pairwise mutual information terms

I(Xi;Xj) are calculated and stored into the mutual information matrix M. Let Mi,j

stand for the entry (i, j) of matrix M. If Mi,j is less than a threshold tM ,Xi is assumed

disconnected from Xj . Otherwise, we have to proceed to evaluate all the conditional

mutual information terms given any other gene Xk. If Xk is a gene belonging to a

totally different biological process, the conditional mutual information I(Xi;Xj|Xk)

approximates the mutual information I(Xi;Xj) and both assume large values. On

the contrary, if Xk is an intermediate or hub gene between Xi and Xj, I(Xi;Xj|Xk)

assumes a small value. Hence, given any other gene if the least conditional mutual

information is greater than a threshold tS, it can be inferred thatXi connects Xj. The

inference algorithm is formulated as the Algorithm 1 and it returns the connectivity

matrix C, in which a null entry means disconnection.

Contrary to optimization-based schemes, which randomly generate candidate net-

works and select the best one with the highest score, the proposed algorithm does not

involve any heuristic search procedure and is non-parametric. These properties are

especially appealing for inference of large scale networks with unknown kinetics. A

major difficulty of the algorithm is to specify appropriate values for the two thresh-

olds tM and tS. Similar difficulties exist in other schemes such as relevance networks
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Input gene expression data set;1:

Initialize n,M ∈ ℜn×n,L ∈ ℜ1×n,C ∈ {0, 1}n×n, tM , tS ;2:

Preprocess the input data set, perform rank transformation3:

for i = 1 to n− 1 do4:

for j = i + 1 to n do5:

Mi,j ⇐ I(Xi;Xj);6:

if Mi,j < tM then7:

Ci,j = 0,Cj,i = 0;8:

else9:

Ci,j = 1,Cj,i = 1;10:

for k = 1 to n and k 6= i, j do11:

Lk ⇐ I(Xi;Xj |Xk);12:

if Lk < tS then13:

Ci,j = 0,Cj,i = 0;14:

Break;15:

end16:

end17:

end18:

end19:

end20:

Return C.21:

Algorithm 1: Connectivity Inference Algorithm

[9] and ARACNE [16]. One possible approach is to learn these thresholds from past

knowledge or simulations. For example, we can run simulations on data produced by

biologically verified genetic networks and determine the thresholds which optimize

the performance of the algorithm. Because of the various sample sizes, data pro-

cessing techniques and volatile biological phenomena, the predetermined thresholds

may still not be reliable. Another disadvantage of the algorithm is that it recovers

all the relationships within the dichotomy of being either connected or disconnected.

However, in practice, it is more desirable to evaluate the significance of the recovered

connectivity, i.e., given any two genes X and Y , with how much confidence can the

connectivity X − Y be recovered. The concept is similar to the hypothesis test: not

simply accept or reject the null hypothesis, but provide a p-value as a measure of how
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much evidence we have against the null hypothesis. This kind of approach helps to

hedge the bet.

4. Direct Connectivity Metric and Simplified Algorithm

The inference of direct connectivity between two genes X and Y is based on two

information theoretic criteria, the mutual information I(X;Y ), and the least condi-

tional mutual information given any other gene Z, i.e., minZ∈V−XY
I(X;Y |Z), where

V−XY stands for the whole gene set excluding the genes X and Y . Therefore, the

direct connectivity metric (DCM) can be defined as a function g(·, ·) of these two

parameters

η(X;Y ) = g
(
I(X;Y ), min

Z∈V−XY

I(X;Y |Z)
)
, (3.15)

where η(X;Y ) represents the DCM between X and Y . Larger DCM values are asso-

ciated with a higher confidence level on the hypothesis that the inferred relationship

assumes a direct connectivity.

Specifically, the Algorithm 1 infers a pair of genes to be either connected or dis-

connected. Hence, the DCM is binary valued, i.e., η(X;Y ) ∈ {0, 1}, and the DCM

function g(·, ·) is defined as

g(a, b) = 1(tM ,∞)(a) · 1(tS ,∞)(b). (3.16)

The intuition behind the design of the DCM function is the observation that when

both the mutual information and the least conditional mutual information assume

large values, the two genes are more likely to be directly connected. Therefore, we

propose g(·, ·) to be the product of its arguments:

g(a, b) = a · b. (3.17)
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Input gene expression data set, specify e the expected number of connections;1:

Initialize n,M ∈ ℜn×n, S ∈ ℜn×n, L ∈ ℜ1×n, C ∈ {0, 1}n×n;2:

Preprocess the input data set, perform rank transformation3:

for i = 1 to n do4:

for j = i + 1 to n do5:

Mi,j ⇐ I(Xi;Xj);6:

for k = 1 to n and k 6= i, j do7:

Lk ⇐ I(Xi;Xj |Xk);8:

end9:

Si,j ⇐ mink Lk;10:

ηj,i = ηi,j = g(Mi,j , Si,j);11:

end12:

end13:

ηa = reshape(η, 1, n × n), change the matrix η into an array;14:

ηb = sort(ηa) in descending order;15:

∀i, j ∈ {1 · · · n} if ηi,j > ηb(e) then16:

Ci,j = Cj,i = 1;17:

end18:

else19:

Ci,j = Cj,i = 0;20:

end21:

return C.22:

Algorithm 2: Simplified Algorithm. Function names conform to Matlab.

The genetic regulatory networks are usually sparse. The average degree of each

vertex, i.e., the average number of edges connected with each vertex shows statistical

stability. Relevant statistics can be found in various works on genetic networks such

as [50] and [51]. Therefore, given a large scale genetic regulatory network with a

specific number of genes, the amount of network edges can be predetermined within

a small range. In addition, biologists desire to examine first the connectivity that

present high confidence and then proceed with less confident connectivity. Hence, we

can only consider an expected number of edges corresponding to the highest DCM’s.

The second algorithm, formulated as the Algorithm 2, associates each gene pair (X,Y )

with a DCM and returns a specified number of edges.
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C. Simulation Results

The proposed simulation results include two main constitutive parts. The perfor-

mance of the proposed algorithms is first tested on a set of data created by artificial

networks, which are connected graphs. The algorithms are then applied on a realistic

cutaneous malignant melanoma data set to propose meaningful intervention targets.

1. Simulation on Synthetic Data Sets

a. Refined Performance Definition

By representing the synthetic and inferred graphs as G(V,E) and Ĝ(V̂, Ê), respec-

tively, the performance of an algorithm is evaluated based on the differences between

G and Ĝ, as is defined in Chapter I. Type I errors, i.e., false alarms, can be further

grained into sub-categories in terms of actual vertex distance. If the inference algo-

rithm creates in Ĝ a false-alarm connection X−Y , in G, X and Y may be separated

by n hops with n ≥ 2. The distance, i.e., the number of hops of the shortest path

between vertices X and Y in graph G can be expressed by dG(X, Y ), then an n-order

(n-hop) false-alarm edge X−Y is specified by X−Y ∈ Ê and dG(X, Y ) = n (n ≥ 2).

The artificial graphs used in the simulation are all connected graphs, i.e., there is

always an undirected path between any two nodes. Hence, dG(X, Y ) assumes a small

number. If the graph is unconnected, we can specify a somewhat large value to

dG(X, Y ). Owing to the small world property of the genetic network, this value

could be relatively small, e.g., less than 6. When false-alarm edges are produced, it

is desired that the inference algorithm constrains the false alarms within low-order

sub-categories.

A novel comprehensive performance metric is introduced here to measure the dif-

ference between two graphs G(V,E) and Ĝ(V̂, Ê). The distance from graph G to
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Ĝ is defined by

D(G, Ĝ) =

∑
X−Y ∈Ê,X−Y /∈E dG(X, Y ) +

∑
X−Y ∈E,X−Y /∈Ê 1

|E|
, (3.18)

where the first summation of the numerator corresponds to all false-alarm edges,

the second summation counts the miss errors, and the denominator represents the

number of edges in graph G. It has to be noted that the metric D is not symmetric

with respect to its two arguments. A good algorithm assumes a small D, provides a

reduced number of misses, recovers as many as possible of the true (real) connections,

and the possible false alarms belong to the lowest order (2-hop) sub-category. When

the algorithm is applied on a realistic data set, we can not compute this performance

metric since the actual genetic network is unknown as it represents the inference

target. Therefore, there is no need to worry about its computational burden and it

should not be counted into the complexity of the proposed algorithm.

b. Simulation Results and Discussion

Four algorithms are compared in this section. These algorithms are: the proposed

two algorithms, ARACNE [16] and relevance network method [9], which employs

only the mutual information as a connectivity metric. Algorithms are simulated on

the artificial scale-free networks generated by Mendes [48] and Bulcke [49]. Steady

state data for Mendes networks are provided by Margolin and are also used in the

simulation of ARACNE. Each Mendes network contains 100 genes and 200 oriented

interactions, while 100 genes and 164 oriented interactions are created for Bulcke’s

network model. The thresholds in the four algorithms have to be tuned in order

to get the specified numbers of inferred edges. Particularly in our Algorithm 1, we

simply set the two thresholds to the same value and change them jointly so that the

number of inferred edges matches the expected number of edges in the graph. The
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comparisons are categorized into the following aspects.

Comprehensive Performance Metric. It can be seen in Fig. 5(a) that the pro-

posed algorithms and ARACNE outperform the relevance network method [9] when

the number of inferred edges is less than 120. When the number of inferred edges keeps

increasing to larger values, the performance of ARACNE deteriorates and becomes

inferior to the relevance network method and to our two proposed schemes. ARACNE

has to specify a proper mutual information threshold so that its performance locates

in the head portion. In the full range, the proposed two schemes achieve or approxi-

mate the best performance. Fig. 5(b) presents performance results for Bulcke’s data

set. ARACNE exhibits poorer performance relative to the proposed schemes and

relevance network method in the whole range of simulation. The proposed schemes

still achieve or approximate the best performance.

True Connections. The four algorithms exhibit contrasting ability in inferring

the direct connectivity for different data sets. For Margolin’s data set, as shown in

Fig. 6(a), when the number of inferred edges is less than 50, the proposed algorithms

and ARACNE perform much better than the relevance network method and most of

recovered edges are true connections. Algorithm 1 and ARACNE are the best and

Algorithm 2 approximates the best. When the number of inferred edges increases,

the difference between algorithms is not that pronounced. For Bulcke’s data set, as

shown in Fig. 6(b), all four algorithms are not successful in recovering the direct

connectivity in the whole range of inferred edges. In this case, most of the inferred

edges are false alarms.

False Alarms. Although the four algorithms perform inconsistently for the two

data sets, the proposed algorithms and relevance network method always produce less

higher-order false alarms than ARACNE. For Margolin’s data set, as shown in Fig.

7(a), the proposed algorithms and ARACNE start to produce false alarms when more
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Fig. 5. Comparison of algorithms in terms of the comprehensive performance metric.

(a) Proposed algorithms achieve the best performance metric and ARACNE

performs well in the head portion. (b) Proposed algorithms and relevance

network method are better than ARACNE in terms of the performance metric.
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Fig. 6. Comparison of algorithms in terms of the number of correctly inferred con-

nections. (a) Proposed algorithms and ARACNE are better in inferring the

direct connectivity for Margolin’s data set. (b) All schemes perform similarly

in recovering the direct connectivity for Bulcke’s data set.



57

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Num. of inferred edges

P
ro

po
rt

io
n 

of
 2

−
ho

p 
fa

ls
e 

al
ar

m
s 

(F
A

) 
in

 a
ll 

F
A

s

Algorithm 1
Algorithm 2
Relevance network
Aracne

(a) Number of 2-hop false alarms relative to the

total number of false alarms for Margolin’s data

30 40 50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Num. of inferred edges

P
ro

po
rt

io
n 

of
 2

−
ho

p 
fa

ls
e 

al
ar

m
s 

(F
A

) 
in

 a
ll 

F
A

s

Algorithm 1
Algorithm 2
Relevance network
Aracne

(b) Number of 2-hop false alarms relative to the

total number of false alarms for Bulcke’s data

Fig. 7. Comparison of algorithms in terms of false alarms. (a) ARACNE creates

higher-order false alarms, while the other three schemes create lower-order

false alarms for Margolin’ data set. (b) ARACNE creates higher-order false

alarms, while the other three schemes create lower-order false alarms.
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than 45 edges are inferred. However, most of the false alarms in the Algorithm 2 and

the relevance network are 2-hop false alarms, while ARACNE falsely connects many

vertices which are actually separated by more than 2 hops. For Bulcke’s data set,

as shown in Fig. 7(b), the difference among the proposed algorithms, the relevance

network and ARACNE still holds. Nearly all false alarms in the proposed algorithms

and relevance network method are 2-hop false alarms, while an increased portion of

false alarms in ARACNE are higher-order false alarms.

It has to be noted that there exist structures that can never be correctly inferred by

the present computational methods. A simple example is a network that consists of 3

genes X, Y and Z. X regulates both Y and Z via the linear equations Y = 2X, and

Z = 0.5X. In such a scenario, any valid method will recover a triangle instead of the

true diverging case Y ← X → Z. In these cases, false-alarm edges are mapped into

co-expressions or co-regulations, in which case falsely connected nodes X and Y are

actually separated by 2 hops. Such a semantic caveat is also described in [85]. The

proposed schemes aim to differentiate direct regulations from co-expressions. When

such endeavor fails, they are still successful in maintaining the connected vertices to

be located closely in the actual networks.

The two artificial network generators differ in their modeling assumptions. Mendes

randomly generates network topologies, while Bulcke derives topologies from estab-

lished large scale genetic networks. They are also distinct in choosing interaction

types and setting transition parameters. The two algorithms share the Michaelis-

Menten and Hill enzyme kinetics which employ differential equations to model gene

interactions. It is unknown yet which generator is more prone to be realistic. The pro-

posed schemes consistently achieve or approximate the best performance. ARACNE

runs at a risk of creating high order false alarms, while the relevance network method

is not good for discovering direct connectivity. The Algorithm 2 is advantageous for
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simplifying the specification of thresholds and providing a more accurate metric for

direct connectivity than mutual information. The DCM can also be interpreted as a

metric for assessing the distance between two vertices. A large DCM means the two

vertices are directly interacting, while a small DCM means more hops between the

two vertices. Therefore, the DCM can be used as an alternative distance metric for

mutual information.

Merging the results of these different algorithms constitutes an interesting open

problem. A simple solution in this direction is to consider a majority voting scheme

among the results produced by these algorithms. Such a merging can be easily

achieved for algorithms assuming dichotomous decisions. However, the Algorithm

2 assumes a metric to assess the significance of gene interactions. This metric can

not be easily combined with other algorithms proposed in the literature. Therefore,

the fusion of multiple data sources and inference algorithms remains an open research

topic, which will be discussed in Chapter V.

2. Simulation on Melanoma Data Set

The algorithms are simulated on the cutaneous malignant melanoma data set [86],

which contains the expressions of 527 genes from 31 patients. Two proposed algo-

rithms generate similar results and the network inferred by Algorithm 2 is presented.

A big picture containing 470 genes and 500 connections is shown in Fig. 8. The

distribution of vertex degree d, i.e., the number of edges connected with each vertex,

is shown in Table I. The figure shows a proneness towards scale-free networks rather

than random (Erdos-Renyi) networks since a large proportion of edges are connected

with the hub genes, which are listed also in Table I. These hub genes constitute the

backbone of the network and they are potential control targets.

The algorithm are also useful for recovering specific gene pathways, which contain
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Fig. 8. Genetic regulatory network of 470 key genes. Standing alone genes are removed

from the figure and duplicated genes are combined into a single vertex. Con-

nections with top 500 DCM’s are preserved. The direct connectivity metric

(DCM) is represented by line’s thickness and greyness. A thicker and blacker

line corresponds to a greater DCM value.
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Table I. Vertex degree statistic for 470-gene network

degree d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d ≥ 6

genes 57 204 121 74 43 14 14

hub genes ALS2CR3 THBS2 SDCCAG33 LTBP1 SCG2 IL8

(d ≥ 5) C1orf29 DDX21 PTPRZ1 CCND1 NFKBIA CDH1

COPEB PSME1 NID2 RGS2 FEN1 HP1BP74

PSMB10 IPWS C20orf130 ABCC2 C5orf13

CHS1 HIP1 LRRC17 IGFBP5 PBX1

Table II. Vertex degree statistic for WNT5A pathway

degree d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d ≥ 6

genes 13 30 30 20 16 2 6

hub genes THBS1 Hs28792 FN1 SLC1A5

(d ≥ 5) SERPINB2 NR4A3 SNCA PLAUR

gene interactions around key genes and provide integrated functions for the cell.

WNT5A has been recognized as a key gene in the metastatic melanoma [87]. It affects

cell motility and invasion. 20 neighbors of WNT5A are selected according to their

high mutual information with WNT5A. Similarly, for each neighbor, 20 neighboring

genes are selected. A second-order pathway is constructed for WNT5A and 117 genes

are included. The recovered pathway is shown in Fig. 9 and the degree statistic is

shown in Table II.
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Fig. 9. WNT5A pathway. 104 Genes with large mutual information with WNT5A

and its neighbors are displayed. Connections with the top 130 DCM’s are pre-

served. The direct connectivity metric (DCM) is represented by line’s thickness

and greyness. The thicker and blacker edges correspond to interactions with

greater DCM values.
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An examination of hub genes can be indicative of biological phenomena. Three

genes, P laur (plasminogen activator, urokinase receptor, alias uPAR), Serpinb2

(Plasminogen activator inhibitor type 2, alias PAI − 2) and Fn1 (fibronectin 1)

form a thick-lined triangle which is located near WNT5A in the network. P laur

plays a key role in tumor cell invasion, survival and metastasis in a variety of cancers

[88]. Serpinb2 is found to be an inhibitor of P laur in the quantitative research of

breast cancer kinetics [89]. The algorithm verified the direct connectivity between

P laur and Serpinb2. Fn1 is related to cell growth and differentiation, and partic-

ipates in the anti-tumor activity [90]. From the network viewpoint, a simultaneous

control posed on the triangle P laur − Serpinb2 − Fn1 is proposed here for further

anti-tumor research.

Other three important hub genes are Thbs1 (thrombospondin 1, alias TSP1),

SLC1A5 (solute carrier family 1 member 5, alias ASCT2) and NR4A3 (nuclear

receptor subfamily 4, group A, member 3, alias NOR − 1). Thbs1 is a critical regu-

lator of vasculature formation [91] and has been studied in a variety of mouse model

systems as an inhibitor of tumorigenesis. Thbs1 is strongly connected with Fn1 in

the recovered network. The co-regulation of Fn1 and Thbs1 was identified in the

study dedicated to human ovarian cancer suppression [92]. SLC1A5 is associated to

metabolism. It is responsible for glutamine uptake in hepatoma cells and its expres-

sion is necessary for the growth of liver cancer [93]. NR4A3 exerts transcriptional

functions through its activation and induction of downstream pathways. It is also

reported as a factor of cell apotosis and carcinogenesis [94].

It can be seen that most hub genes assume important roles in the carcinoma and

they have been research targets for different tumor therapies. What is presented

here is a systematic view of the gene interactions. Genes cooperatively participate

in the biological processes and bestow cells integrated functions. A simultaneous
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control on multiple hub genes could maintain a stable system and constitute a cocktail

therapy, which may intervene into the cancerous organism from different aspects, e.g.,

cutting off the nutrition provision by inhibiting the vasculature formation, repressing

metastasis by shutting down the cancerous cell proliferation. A perturbation on a

single gene might also be cautiously conducted to produce cascade effects.
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CHAPTER IV

TIME SERIES MICROARRAY DATA ANALYSIS ∗

A. Problem Overview

This chapter infers the structure of genetic regulatory networks by using time-course

microarray data. To capture gene regulations, this chapter assumes a probabilistic

network modeling framework compatible with the family of models represented by

dynamic Bayesian networks (DBNs) and probabilistic Boolean networks (PBNs). As

opposed to PBNs, where gene interactions are modeled explicitly in terms of binary

or multi-valued logical functions, the proposed probabilistic model represents gene

interactions in terms of probability tables. In addition, the proposed probabilistic

network can be viewed as the transition network present in DBNs. In sum, all of

these models can be considered as sharing similar basic features.

The strength of temporal relationships will be evaluated by using a cross-time mu-

tual information metric. The minimum description length (MDL) principle [44] is

utilized to determine a threshold that helps differentiate between strong and weak

relationships. The MDL principle helps also to achieve a good trade-off between the

network model complexity and the accuracy of data fitting. The proposed network

inference algorithm is comprised of two components: encoding of the model, i.e., the

network, and encoding of the time series data. After combining the network and data

coding complexities, a general criterion is obtained for constructing the network so

as to contain only direct and oriented interactions. The convergence of the proposed

∗Part of the data reported in this chapter is reprinted with permission from “Infer-
ring gene regulatory networks from time series data using the minimum description
length principle,” by W. Zhao, E. Serpedin and E. R. Dougherty, 2006, Bioinformat-
ics, vol. 22, pp. 2129–2135, Copyright 2006 by Oxford University Press.
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MDL-based network inference algorithm is corroborated by the excellent recovery of

the topology of some artificial networks and through the error rate plots obtained

through extensive simulations on data sets produced by synthetic networks. When

applied on real drosophila time series data sets, the proposed network inference al-

gorithm corroborates some of the findings of Arbeitman et al. [53], and offers novel

insights into the regulatory mechanisms that lie at the basis of embryonic segmenta-

tion and muscle development in drosophila melanogaster.

Historically, Tabus and Astola 2001 [95], were the first to report some preliminary

results on the potential of the MDL principle in learning gene-expression networks;

however, their work is limited to using the MDL principle in the prediction of gene

expressions, while the present paper focuses on the more general task of learning

the network structure. The mutual information has been exploited in the Reveal

algorithm proposed by Liang et al. [17]. In contrast to Reveal, the proposed algo-

rithm removes the critical assumption that all genes have to be observed, utilizes

only pairwise mutual information, achieves better performance in the presence of

reduced number of samples, improves greatly the computational efficiency, and re-

quires reduced computing capabilities even in the presence of large scale networks.

These information-theoretic approaches possess several attractive features: low com-

putational complexity, novel ideas for quantifying efficiently the dependencies among

a large number of genes and efficient testing (estimation) of various relationships

among information-theoretic quantities (entropy, mutual information).
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B. Systems and Methods

1. Genetic Network Formulation

Given a set of genes, an oriented graph G(V,E), where V denotes the set of vertices

and E represents the set of oriented edges, is used to map the gene interactions.

Each vertex represents a specific gene and at a specific time is associated with a gene

expression value. This chapter assumes discrete-valued gene expression levels but no

specific limit on the number of quantization levels is enforced. Each edge of the graph

denotes a directed regulation (i.e., an oriented edge with a precise temporal regulation

implication). Recall the notation ΠX is used to represent the set of predecessors which

regulate gene X. Similarly, the notation ΞX is used to represent the set of successor

genes which are regulated by gene X.

Associated with a specific gene X is the regulation function fX(ΠX), which denotes

the expression value for gene X determined by the values of the genes in the set of

predecessors ΠX . For simplicity, the shorthand notation fX will be used since ΠX

is uniquely determined in the biological world. For instance, the Boolean relation if

either gene Y or gene Z is induced, gene X will be induced can be represented by

fX = y + z (with + denoting the logical or (summation) operator).

The gene expression is affected by many internal and external factors, e.g., other

genes, environmental variables, and many other unknown factors. Since it is impos-

sible to account for all factors, all regulation functions are assumed probabilistic to

reflect this uncertainty. In addition, the gene expression values are assumed discrete-

valued and the probabilistic regulation functions are represented as look-up tables.

Suppose each gene expression is quantized into q levels. If X has n predecessors, i.e.,

|ΠX | = n, then the look-up table corresponding to regulating function fX contains

qn rows and q columns; hence, a total of qn+1 entries. Each entry corresponds to a
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Table III. Probability table for or

X:YZ 00 01 10 11

0 0.8 0.2 0.2 0.2

1 0.2 0.8 0.8 0.8

x = y + z with confidence 0.8

conditional probability. For instance, with the probability 0.8, X will be induced if

Y is induced and Z is repressed. By denoting the repression and induction as binary

values 0 and 1, respectively, the previous regulation function can be expressed in

terms of p(x = 1|yz = 10) = 0.8. Hence, the entry at row 3 and column 2 is filled

with the value 0.8. Considering the relationship fX = y + z with probability 0.8 and

fX = y + z with probability 0.2, where the over-line denotes negation, Table III can

be used to represent this probabilistic relationship.

All the functions are defined over the temporal domain, i.e., the expression values

for the set ΠX at time t determine the value for gene X at time t+1. For this reason

all functions must assume a time dependent form x(t + 1) = fX(ΠX(t)). Given

m time series samples xt, · · · , xt+m starting at time t, the information conveyed by

these samples is represented in terms of the joint probability function p(xt, · · · , xt+m).

Estimation of joint probability functions over short time periods k << m, i.e., p̂(xt),

p̂(xt,xt+1), · · · , p̂(xt, · · · ,xt+k), can be achieved with satisfactory precision, whereas

for longer time intervals it becomes more difficult.

In this chapter the concept of mutual information continues to be used to evaluate

the significance of regulation, and the significance threshold is determined using the

MDL principle. These two concepts (mutual information and MDL) lie at the basis
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of the proposed network inference algorithm.

2. Metric for Assessing Temporal Regulation

If gene Y regulates gene X at time slot t with a latency 1, Xt+1 has to depend on

Yt. Conversely, if gene X at time slot t + 1 is dependent on the gene expression Y

at a previous time slot t , we can infer that gene Y regulates gene X in time scale

1. The cross-time dependency is considered as the metric for assessing the temporal

regulation. The gene system is assumed to be event driven, i.e., all the regulations are

performed step by step and in each step all regulations happen only once. Therefore,

the latency parameter is set by default to a unit step.

Compared with the correlation coefficient, the mutual information is suitable for

nonlinear relations and represents a good metric for evaluating the dependency be-

tween two random variables [43]. Explicit time stamps are assumed in the mutual

information criterion for measuring the significance of gene Y regulating gene X in

one step:

I(Xt+1;Yt) =
∑

xt+1,yt

[p(xt+1, yt) · log
p(xt+1, yt)

p(xt+1) · p(yt)
], (4.1)

where p(xt+1, yt) and p(xt+1) are cross-time joint and marginal probabilities, respec-

tively. These probabilities are assumed time invariant. It is well known that the mu-

tual information I(X;Y ) between two arbitrary random variables X and Y is always

greater than or equal to zero, and it is zero if and only if X and Y are independent.

Large mutual information between Xt+1 and Yt supports the proposition that Y reg-

ulates X in one step with a high probability. In such a case, the inference algorithm

assumes an edge from Y to X on the graph. Assuming that the q-level quantization

of gene expressions admits the alphabet Aq = {0, 1, · · · , q−1}, the marginal and joint
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probabilities from m-sample time series {x1, · · · , xm} and {y1, · · · , ym} are given by:

p̂(x = j) =
1

m

m∑

t=1

1{j}(xt), (4.2)

p̂(xt+1 = i, yt = j) =
1

m− 1

m−1∑

t=1

1{ij}(xt+1yt), for i, j ∈ Aq. (4.3)

where 1{·}(·) still stands for the indicator function.

The mutual information can also be defined between two groups of genes rather than

a pair. Only pairwise mutual information is utilized in the proposed algorithm because

of the limitation of sample size and computational complexity. It is unlikely that the

number of time points available in expensive microarray measurements will rapidly

increase in the near future, therefore the estimation of multivariate probability is less

reliable when higher order statistics are employed. Besides, high order computations

request much more memory and CPU time, which is a huge burden even for mainframe

computers if very large scale networks have to be inferred.

Assume that all the cross-time mutual information between genes are collected

in the entries of the regulation matrix M, i.e., My,x = I(Xt+1;Yt). A key problem

that needs to be resolved is to find a proper threshold δ such that when My,x ≥ δ (or

Mx,y ≥ δ), then one can infer with high probability that Y regulatesX (orX regulates

Y ) and there is potentially an oriented edge from Y to X (or from X to Y ) in the

network graph. On the contrary, if My,x < δ and Mx,y < δ, there is no relationship

between X and Y , and hence, X and Y are disconnected. Then another followup

step assumes scanning of all candidate edges and trimming of all suspect connections

based on a reliable criterion. Another key issue concerns the construction of unbiased

and consistent estimators for mutual information in the presence of reduced number

of samples. Recent progress in estimating information theoretic quantities has led to

a number of good estimators in this regard, e.g. [45]-[47], [84] and [96].
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3. Minimum Description Length Principle

Given a network and a data set, the MDL principle is employed to evaluate simulta-

neously the goodness of fit of the network and data. Intuitively, the more complicated

the network is, the better the data would be fitted. However, very often models which

are over-fitted relative to the actual systems are selected, which give rise to numerous

errors. The merit of the MDL principle is that it achieves a good trade-off between

model complexity and fitness of the data. The MDL principle aims to minimize a

criterion L that consists of two parts: the model coding length LM and the data

coding length LD.

a. Network Coding Length

The proposed network model is an oriented graph. Its coding length is positively

proportional to the storage size of the graph. The proposed model’s data structure

involves arrays for predecessors and matrices for probability tables. For a vertex X,

it is required to maintain an array that records ΠX , and if di bits are used to code

an integer, di|ΠX | bits are necessary to encode the array that records ΠX . A matrix

should also be maintained for conditional probability. If df bits are used to represent a

floating point number and each vertex is q-level quantized with the alphabet Aq, then

dfq
|ΠX |(q − 1) bits are required to store the conditional probability table associated

with vertex X (the multiplicative factor q−1 being due to the fact that one degree of

freedom is lost because each row of the conditional probability table adds up to one).

Supposing that any of the n vertices in the network is indexed by Xi, the network

coding length (LM) can be expressed as:

LM = Γ
n∑

i=1

{di|ΠXi
|+ dfq

|Πxi
|(q − 1)}, (4.4)
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where Γ is a free parameter used to quantify the gap between the proposed network

coding length and the ideal information theoretic benchmark, as well as to offer an

additional control mechanism between model and data encoding complexities. In

other words, this free parameter can be used to ensure that the model encoding

mechanism is consistent with the data encoding mechanism. Notice further that the

model encoding scheme is not unique, and there are a number of additional unknown

factors (number of genes/regulation functions, selection of quantization levels and

floating point arithmetic) that might still affect the model and data coding lengths.

Normally, Γ should be a positive value less than one (0 < Γ < 1). As a flexible design

variable, Γ can be interpreted as a simple mechanism to balance the uncertainties

present in the MDL metric and to weight the relative influence of model and data

encoding complexities. Simulation results illustrate that this free parameter enables

also a customized trade-off between the two types of inference errors. Γ could be

learned from established genetic networks, and it could also be tuned via simulations.

The size of integer di is determined by the number of vertices |V|. For example,

the human genome contains about 25,000 genes and 16 bits are enough to code each

gene’s index. Therefore, di can be expressed as di = ⌈log2 |V|⌉, where ⌈·⌉ is the ceil

function. The size of floating number df is determined by the sample size m. If a large

sample size is available, then a relatively precise estimation of the probabilities can

be achieved. Consequently, each entry in the truth table presents a higher resolution,

and needs more bits to encode it. Practically df can be represented by df = ⌈log2m⌉.

As can be observed from the analytic dependencies present in (4.4), the network

coding length is biased in favor of outgoing edges. That is, each vertex is more likely

associated with a large successor set rather than a large predecessor set. However, this

feature is consistent with biological findings and does not represent a weakness of the

proposed probabilistic modeling framework. Guelzim [51] summarized that the num-
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ber of regulating genes per regulated gene decayed exponentially while the number of

regulated genes per regulating gene decayed in a power law and assumed a broader-

support distribution. It is also conjectured that multiple predecessors consume more

energy, hence make the coding length larger.

b. Data Encoding Length

Since the network is probabilistic, each gene can randomly commit any value in the

alphabet during the next time slot. The network is associated with a Markov chain,

which is used to model the transitions between states. These states are represented in

terms of the n-gene expression vector xt = (x1,t, · · · , xn,t)
T . The transition probability

p(xt+1|xt) can be derived as follows:

p(xt+1|xt) =

n∏

i=1

p(xi,t+1|ΠXi,t). (4.5)

The probability p(xi,t+1|ΠXi,t) can be obtained from the look-up table associated with

the vertex Xi and is assumed to be time invariant. Its estimation can be obtained in

a similar way to (4.2):

p̂(xi,t+1 = j|ΠXi,t) =
1

m− 1

m−1∑

t=1

1{j}(xi,t+1|ΠXi,t), for j ∈ Aq. (4.6)

Each state transition brings new information which is measured by the conditional

entropy:

H(xt+1|xt) = −log(p(xt+1|xt)). (4.7)

Therefore, given m time series sample points, {x1, · · · ,xm}, the total entropy is

LD = H(x1) +
m−1∑

j=1

H(xj+1|xj). (4.8)
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The term H(x1) in (4.8) is common for all models and can be omitted. The coding

length for the data is given by:

LD =

m−1∑

j=1

H(xj+1|xj). (4.9)

Once the coding lengths for the network LM and the sampling data LD are obtained,

the MDL criterion L is immediately obtained by summing up these two components,

L = LM + LD.

c. Comparison with Other Criteria

Akaike’s Information Criterion (AIC), and Bayesian Information Criterion (BIC) are

two alternative model selection criteria that are widely used the literature. They can

be expressed as follows:

AIC = − log ℓ(θ̂|x) +K, (4.10)

BIC = − log ℓ(θ̂|x) +
1

2
K logm, (4.11)

where θ̂ stands for the estimation of parameter vector, ℓ(·) represents the likelihood

function given the sample x, K abstracts the number of parameters and m denotes

the sample size. The log likelihood in essence equals the data encoding length term

in the proposed MDL criterion. The differences between them lie in the penalty part,

which specifies the model complexity. The AIC does not take into account the effect

of sample size while BIC and the proposed MDL absorb it into the penalty part.

Particularly, the proposed MDL criterion explicitly dissembles the complicated graph

parameters in terms of (4.4) and provides the flexibility in trading off the two types

of errors. The MDL and BIC criteria will share similar asymptotic features if the

parameter K is used to represent the network storage size.
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4. Network Inference Algorithm

Given m data points (x1, · · · ,xm), where each point consists of n gene expressions,

xk = (x1,k, · · · , xn,k)
T (k = 1, . . . , m), the first step in the network inference al-

gorithm is to evaluate the cross-time mutual information between any two genes,

I(Xi,t;Xj,t+1), and to fill up the corresponding entry Mi,j of matrix M. The next

step is determination of the dependency threshold δ with the least MDL metric L, a

step which is achieved over n2 iterations, equal to the maximum number of possible

connections among n vertices. Actually, the n2-complexity can be further reduced

to O(n) because of a generally accepted fact in the literature: the genetic regulatory

networks are sparse and the number of edges |E| grows linearly with the number of

vertices |V|. Such a statistic can be found for the yeast [51] and drosophila [50]. In

the ith iteration, the dependency threshold δ is assigned to be the ith largest value in

M. The edge Xi → Xj is treated as a potential connection, and Xi is put into ΠXj
, if

Mi,j ≥ δ; otherwise, the genes Xi and Xj are treated as not being connected, and the

set ΠXj
is left unchanged. Upon obtaining the predecessor set Π(·) for each vertex, by

using (4.6), the set of conditional probabilities can be estimated to fill up the corre-

sponding probability table T(·) for each vertex. Now all the network parameters have

been set up, and the network and data can be encoded to obtain Li = LM,i + LD,i.

After n2 (or O(n)) iterations, all the MDL metrics L′
is can be compared and the

network with the least L can be selected. This preliminary network might contain

false connections. Then in the last step, each edge is scanned and temporally deleted

to evaluate whether such a deletion is helpful to reduce the MDL metric. If it does,

then the edge is formally removed and the network is updated.

The network inference pseudo-code can be formulated in terms of the Algorithm

3, where lines 1-2 initialize all the variables, line 3 computes all the pair-wise mutual
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Input time series data set1:

Initialize n, M ∈ ℜn×n,∀j ∈ {1 · · · n},ΠXj
⇐ φ;2:

∀(j, k) ∈ {1 · · · n}2, Mj,k ⇐ I(Xj,t;Xk,t+1);3:

A⇐ reshape(M, 1, n2), change the matrix into an array;4:

A⇐ sort(A) in ascending order;5:

for i = 1 to n2
do6:

δ ⇐ A(n2−i+1);7:

∀(j, k) ∈ {1 · · · n}2, if Mj,k ≥ δ, then ΠXk
⇐ ΠXk

∪ {Xj};8:

∀j ∈ {1 · · · n}, Tj ⇐ p(xj,t+1|ΠXj ,t) by using (4.6);9:

compute LM,i, LD,i by using (4.4) and (4.9) respectively;10:

Li ⇐ LM,i + LD,i;11:

end12:

h⇐ argMiniLi;13:

restore network in hth loop, Lpre = Lh;14:

for i = 1 to n do15:

for j = 1 to n do16:

if j ∈ ΠXi
then17:

ΠXi
⇐ ΠXi

\ {Xj}, exclude Xj from predecessors;18:

update Ti ⇐ p(xi,t+1|ΠXi,t) by using (4.6); compute LM , LD by using19:

(4.4) and (4.9) respectively; L⇐ LM + LD; if L > Lpre then

ΠXk
⇐ ΠXk

∪ {Xj};20:

end21:

end22:

end23:

end24:

Return the inferred network.25:

Algorithm 3: Network Inference Algorithm

information terms, lines 4-5 sort the mutual information terms, lines 6-12 perform a

forward step by adding edges, lines 13-14 obtain the preliminary network, lines 15-27

perform a backward step by deleting possible false-alarm edges, and lines 22-24 restore

the network when the deletion is invalid. Note that all function names conform to

Matlab conventions.
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C. Results and Discussion

1. Simulation on Synthetic Networks

Next, the performance of the proposed network inference algorithm is evaluated on

synthetic random boolean networks. The Reveal algorithm proposed by Liang [17] is

used as a benchmark to illustrate the advantages of the proposed algorithm. Kevin

Murphy implemented Reveal in a toolbox, which can be downloaded at http://bnt.

sourceforge.net.

Fig.10 shows the performance for Reveal and the proposed algorithm with different

Γ configurations. Fig.10(a) stands for the performance in terms of the Hamming

distance. The proposed algorithm achieves much better performance when the sample

size is less than 60. Avoiding high-order mutual information terms makes the proposed

algorithm more accurate for small sample size. When larger sample sizes are observed,

the performance of the proposed algorithm is similar to that of Reveal. The Hamming

distance is not sensitive to different Γ configurations, and the performance curves for

different Γ overlap. Fig.10(b) demonstrates that the proposed algorithm produces less

false alarm errors than Reveal. The miss rate is sacrificed in trading for a smaller false

alarm rate when Γ is adjusted to a higher value. The functionality of free parameter

Γ is obvious and it serves as a good trade-off mechanism between the false alarms and

misses. Currently most biological measurements assume within 20 to 50 time points,

and the proposed algorithm possesses an attractive performance right in this range.

The Reveal algorithm assumes that all variables/genes can be observed. Such an

assumption does not hold in the biological world due to a number of factors. In

general, the biological systems are not autonomous and are always affected by envi-

ronmental variables. Many genes, e.g., non-coding genes, remain still undiscovered,

and hence no up-to-date microarray could measure all the genes. Finally, in gen-
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(b) False alarm errors

Fig. 10. The performance is obtained through averaging over 30 random networks and

each network contains 20 vertices and 30 edges. Performance metrics are

normalized over 30, the number of edges in synthetic networks.
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Fig. 11. Observability effects. The performance is obtained by randomly selecting 20

nodes and the associated edges from a larger scale network. The sample size

is kept to 100. The Hamming distance is normalized over the number of edges

present in synthetic networks.

eral a sub-network is constructed in representing a specific biological functionality.

This observability effect is examined by simulating the algorithms on artificial sub-

networks Gsub, which are constructed by randomly selecting nodes and the associated

edges from a larger scale network Gbig. Fig.11 explains the performance in terms of

Hamming distance for both Reveal and the proposed algorithm. The performance

advantage of the proposed algorithm is apparent: it is not that sensitive to the ob-

served proportion, i.e., the ratio of the number of vertices in the subnet |Vsub| over

the number of vertices in the larger network |Vbig|.

The proposed algorithm runs efficiently. It only employs pairwise mutual infor-

mation. For an n-gene network, n2 pairwise mutual information terms have to be

estimated. Given m samples, each mutual information estimation takes O(m) ad-

ditions and O(1) multiplications. However, if each gene is regulated by at most 3
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other genes, i.e., |ΠX | ≤ 3, Reveal has to estimate Ω(n4) mutual information terms,

which include pair-wise and higher order ones. This makes a big difference between

the two algorithms. In practice, on Pentium IV PC with 512MB memory and both

algorithms implemented in Matlab, for a network with 20 nodes, 30 edges, and 100

sample points, the proposed algorithm produces a fairly good result in 50 seconds

while Reveal requires more than 600 seconds. That is more than 10 times speedup

improvement.

Reveal can only deal with small networks (with less than 30 nodes on common

PCs) because the space complexity grows as Ω(n4), when max |ΠX | ≥ 3. When

n approaches a large value, Reveal will be out of the capacity of even mainframe

computers. However, the proposed algorithm can easily deal with a network with

hundreds of nodes and its storage size grows as much as O(n2). For larger networks,

we propose to divide the network into subnets and apply the algorithm on each subnet.

This divide and conquer technique relies on the fact that genetic networks are prone

to scale free, and the proposed algorithm is not susceptible to the observability effect.

The comparisons between Reveal and the proposed algorithm are summarized in

the Table IV.

2. Simulation on the Drosophila Data Set

Measuring 74 time points, Arbeitman et al. [53], have presented transcriptional

profiles for 4028 Drosophila genes through the four stages of the life cycle: embryonic,

larval, pupal and adulthood. We examine our algorithm using this data set and

propose a novel muscle development network.

In the first step, the original data set of ratios is quantized into binary values.

Let y(1), y(2), y(3), · · · , y(n−3), y(n−1), y(n) be the values of a specific gene expression
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Table IV. Performance comparison

Algorithm Reveal The proposed alg.

Small sample performance poor good

Asymptotic performance good good

Observability effect significant minor

Time Complexity / Efficiency Ω(n4) O(n2)

Largest network processable nodes< 30 nodes>> 100

The largest network is tested on a PC with 512MB memory and Pentium IV CPU.

ordered in ascending order. The smallest two values, y(1), y(2), and the largest two

values, y(n−1), y(n), are treated as outliers and discarded. The dynamic range is defined

as R = y(n−2) − y(3). The gene expressions are quantized as follows: the upper 50

percentile of the dynamic range R is treated as induced, while the lower 50 percentile

as repressed. If there is a missing time point, a simple linear interpolation is used,

i.e., the value of the missed time point is set to the mean of its two neighbors. When

the missing point is a start or end point, it is set as its nearest observed (neighbor’s)

value.

A set of genes is selected to construct a novel genetic regulatory network for the

muscle development process. The selected genes have been separately reported to

relate with muscle development in different works, e.g. [50], [53], and [97], but no

system level diagram exists yet. The inferred genetic network is shown in Fig. 12.

It can be seen in the Fig.12 that the gene muscle specific protein 300 (msp-300),

as its name indicates, is a hub gene and regulates myosin alkali light chain1 (mlc1),

myosin heavy chain (mhc), myosin 61F (myo61F ), paramyosin (prm), and upheld

(up). All these genes except up belong to the myosin family, which encodes the motor

proteins that move along actin filaments and are responsible for muscle contraction.



82

twi

Msp-300

sls

Mhc

prm

up

Mlc1

Myo61F

eve

wg

Mef2

dpp

Myo31DFflw

fln

gfl

Actn

tin

srp

how

Fig. 12. Muscle development network. 20 genes are chosen according to their appear-

ance in the literature. The free parameter Γ is 0.19 so that most nodes are

connected. The network is split into two domains: muscle motor genes and

muscle formation genes.

These myosin genes play important roles in cellular mechanics and stand nearby in

the network.

A loop is found with genes msp-300, twist (twi) and mlc1. The boolean relations

associated with this loop are: twi⇐ eve·mlc1, mlc1⇐ msp-300 and msp-300⇐ twi.

The network might be intervened by controlling eve and twi.

The genes flightin (fln), wingless (wg), myocyte enhancing factor 2 (mef2) and

decapentaplegic (dpp) form a separate domain from the domain centered around msp-

300. F ln has been shown as a major contributor to muscle development and function.
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Wg functions during metamorphosis to coordinate wing formation and dpp acts as a

morphogen critical for wing patterning [98]. Their cooperation and interactions can

be found in the work of [99].

The proposed algorithm provides a systematic view of the drosophila’s muscle devel-

opment. It detaches muscle mechanic genes from formation genes. Further biological

experiments are necessary for complete verification of this gene regulatory network.
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CHAPTER V

INTEGRATION OF HETEROGENEOUS DATA ∗

A. Problem Overview

Inference of gene regulatory networks based solely on the information provided by

microarray data is limited by a number of factors: number of available microarrays,

quality of data samples, experimental noise and errors (cross-hybridizations). It is also

known that post-transcriptional modifications and transcripts that are present at low

levels are generally not detectable by microarrays. Since the gene activity is measured

by the mRNA level, the underlying assumption is that there is a significant correlation

between the mRNA level and the amount of protein associated with mRNA. However,

the magnitude of such a correlation varies significantly depending on the type of

protein involved. Therefore, a combined approach which besides gene expression

data exploits additional data sources is likely to enhance the inference process.

The advent of in vivo Chromatin Immuno-Precipitation (ChIP) assays has enabled

to test whether a protein acting as a transcription factor binds to a specific DNA

segment. Hence, ChIP assays serve as a promising mechanism to examine the bind-

ing relationships. However, as discussed in Chapter I, the ChIP-chip experiments

also inherit some uncertainty concerning the regulation inference since in general the

binding is not equal to the regulation relationship.

A combination of both steady state microarray data and ChIP-chip data helps to

∗Part of the data reported in this chapter is reprinted from “Recovering Genetic
Regulatory Networks From Chromatin Immunoprecipitation (ChIP) and Steady State
Microarray Data,” by W. Zhao, E. Serpedin and E. R. Dougherty, 2008, EURASIP
Journal on Bioinformatics and System Biology, Open Access 2008 by Hindawi Pub-
lishing Corporation.
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make more accurate inferences. Intuitively, these two different types of data com-

plement the shortcomings of each other. This motivates us to propose a Bayesian

approach to analyze jointly both data sets and to establish a confidence measure of

gene interactions. The proposed scheme possesses six key features which make it

different from the existing algorithms. First, gene expression data in steady state are

considered, while time course data are used in other works like [17], [30] and [37].

Second, most of the current schemes recover a unique genetic network represented by

a graph which best fits the observed data in a certain metric, while the proposed ap-

proach determines the posterior probabilities for all gene-pair interactions and avoids

to make a dichotomous decision that classifies each gene interaction as being either

connected or disconnected. The proposed approach can be easily transformed into a

dichotomous scheme by only preserving the highly probable gene interactions. Third,

the underlying structural model is assumed to be a directed cyclic graph, which allows

cycles (feedback loops) and directed acyclic graphs are treated as special cases. This

contrasts to Bayesian networks, which are directed acyclic graphs. Feedback loops

are a common network motif in biological processes and their function is to yield the

necessary redundancy and stability for the system [2]. Therefore, methods based on

Bayesian networks, e.g., [38], [100] and [101], lose their validity in the inference of

cyclic graphs. Fourth, the proposed approach assumes continuous-valued variables,

and this prevents the information loss incurred by data quantization. This represents

an advantage compared with the discrete-valued networks such as [38], [100] and [101].

Fifth, the proposed connectivity score is oriented and has a very clear meaning, in the

sense of posterior probabilities, while the existing scores based on the mutual infor-

mation, e.g. [9], [16] and [15], are vague and lack orientation information. Sixth, in

the proposed approach the system kinetics are assumed to be nonlinear, while linear

models are commonly utilized for the purpose of simplification, e.g. [102] and [103].
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Besides, the proposed scheme establishes a general framework whose components can

be customized to fit the nature of the underlying biological system.

In this chapter system dynamics is presented to model the genetic expressions. The

p-values of ChIP-chip experiments are translated into regulation probabilities and the

inference algorithm is formulated through Bayesian analysis. The proposed algorithm

and other three schemes are simulated on a set of artificial networks. Performance

comparisons illustrate that the proposed algorithm exceeds in terms of several metrics.

The robustness of kinetics model is also discussed via simulations. Realistic data sets

are exploited in the proposed inference framework and a genetic network is presented

to account for the genetic response to environmental changes.

B. System Kinetics Modeling

Genetic regulatory networks can be represented by a parameterized graph (G,Θ),

where G and Θ stand for the graph structure and parameter set, respectively. The

graph structure qualitatively explains the direct gene interactions, while the param-

eter set quantitatively describes the system kinetics. General directed graphs (with

possibly cycles) will serve as our structural model since they are consistent with

the features exhibited by biological systems, in which loops account for system re-

dundancy and stability. Given the graph structure G, the parent set Π is specified

for any gene X. For conciseness, the subscript X associated with some variables is

omitted in the analysis procedure when the context has clearly specified the gene in

question. Next we discuss the system kinetics and parameters defined in Θ.

The system kinetics represents the dynamics that governs the gene’s mRNA concen-

trations in terms of gene-gene interactions. It can be modeled by a set of differential

equations (DE). A simplified form is a set of linear DEs. However, we accept the more
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complex model which was employed previously by [41] and [104] since it is much more

realistic and accounts for the expression saturation. Given a gene X, its parent set

Π can be further partitioned into two disjoint subsets: the activator set A and the

repressor set R, i.e., Π = A ∪ R and A ∩ R = φ. The kinetics of gene X can be

explained by the following differential equation:

dx

dt
= −λx+

δ +
∑|A|

i=1 a
αi

i

1 +
∑|A|

i=1 a
αi

i +
∑|R|

j=1 r
γj

j

, (5.1)

where x is the concentration of gene X’s transcriptional product, namely, mRNA.

The changing rate of gene X is controlled by its activating and repressing parents,

denoted individually by ai ∈ A and rj ∈ R. α and γ serve as the regulating factors

corresponding to each activator and repressor. α and γ assume positive values, and

hence can be modeled by a Gamma distribution with shape and scale parameters

(κ, β). Here we can unbiasedly assume that the activators and repressers share the

same Gamma distribution for their regulation factors. Other light-tail distributions,

such as Weibull and lognormal distributions, could also be employed. However, since

Gamma distribution is popular in modeling the reaction rate or molecular concentra-

tion [105], the Gamma distribution is chosen here. λ stands for the gene degradation

rate and the time scale can be properly chosen in order to normalize λ to the unit

value (λ = 1). δ represents the expression baseline rate, i.e., the expression rate for X

when there is neither activator nor repressor regulating the target gene X. Suppose

y represents the observation of x, then y assumes the form y = x + ε, where ε in-

corporates all noise sources and is modeled by an additive Gaussian random variable

with zero mean and variance σ2.

As the response to environmental changes or incitations, a mature biological system

always converges to a certain steady state, in which all genes stay in equilibrium and

do not change their expressions. In this context, the periodic processes, e.g. cell cycle
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and circadian rhythm, are excluded from our research interest. By setting dx/dt = 0

and λ = 1, the observation y of the steady-state gene expression for gene X can be

expressed as:

y =
δ +

∑|A|
i=1 a

αi

i

1 +
∑|A|

i=1 a
αi

i +
∑|R|

j=1 r
γj

j

+ ε. (5.2)

Given a parental structure Π for gene X, the parameters in Θ can be summarized

as follows:

1) For each parent π ∈ Π, a binary variable is demanded to specify whether the parent

is an activator or repressor. That is, 1A(π), where 1 is the indicator function and it

assumes the value 1 when π ∈ A, and 0 otherwise. It can be modeled by a Bernoulli

random variable with known success probability ρ.

2) For each activator a ∈ A and repressor r ∈ R, it is assumed that the regulating

factors α, γ ∼ Gamma(κ, β), where κ, β are known.

3) The baseline parameter δ is usually known.

4) The noise ε ∼ N(0, σ2), where σ2 can be set to a specific value or estimated.

It is worth to note that the choice of nonlinear differential equation and parameter

priors does not influence the flow of analysis. Our scheme stands for a general frame-

work and the detailed parameters can be easily customized to fit different scenarios.

There are various mathematical models for system kinetics, such as [39, 40, 106].

The kinetics in Equation (5.1) is chosen as our dynamic model because it possess the

property of saturation, a key idea of Michaelis-Menten kinetics [106]. Besides, it is

fairly simple and it also takes account of most other biological properties. Therefore,

in the simulation of the real data set, we are assuming the proposed kinetics is true.
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C. Inference Method

Consider a system composed of n genes indexed by {1, 2, · · · , n}. ChIP-chip experi-

ments can be conducted to examine whether gene i’s corresponding protein binds gene

j’s regulatory region. Usually this regulatory sequence is a promoter region which is

located within 600 base pairs upstream of the coding region of gene j. The experi-

mental results are represented in terms of p-values. In the first step, it is necessary

to translate the p-value p into the probability of existence of a regulation relationship

from gene i to gene j, which is denoted as P(i → j|p). This probability will act as

the prior knowledge to integrate gene expression data.

1. Incorporating ChIP-chip Data

The p-value is within the range of [0, 1]. After studying the properties of the microar-

ray data, Allison proposed to exploit mixed Beta distribution to model the p-value

[107]. If the transcription factor i regulates gene j, it is assumed that the ChIP-

chip experiment produces a p-value p which conforms to a Beta distribution with

parameters (φ, ζ),

f(p|i→ j) =
pφ−1(1− p)ζ−1

B(φ, ζ)
, (5.3)

where f(·) stands for the probability density function and B(·, ·) represents the Beta

function. On the other hand, if i does not regulate j, the p-value assumes a different

Beta distribution with parameters (ψ, ξ):

f(p|i 9 j) =
pψ−1(1− p)ξ−1

B(ψ, ξ)
. (5.4)

Based on the knowledge provided by established and verified genetic networks, one

can infer a prior knowledge about the probability of connectivity between arbitrary
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genes, denoted as η(i → j), ∀i, j. Such statistics regarding the network connectivity

can be found in the open literature, e.g., the data sets for yeast [51], and Drosophila

[50]. By applying Bayes theorem, we obtain

P(i→ j|p) =
ηB(ψ, ξ)pφ−1(1− p)ζ−1

ηB(ψ, ξ)pφ−1(1− p)ζ−1 + (1− η)B(φ, ζ)pψ−1(1− p)ξ−1
. (5.5)

For simplicity, a uniform distribution can be alternatively employed to account for

the p-value when i 9 j. In this case ψ = 1, ξ = 1 and (5.5) takes the form:

P(i→ j|p) =
ηpφ−1(1− p)ζ−1

ηpφ−1(1− p)ζ−1 + (1− η)B(φ, ζ)
. (5.6)

The determination of φ and ζ depends on the experimental knowledge of the ac-

curacy of selecting p-value thresholds. In the first step, a p-value threshold pt is

imposed, then the validity of all bindings with p-values less than pt is corroborated

by biological experiments. In this way, we can gain knowledge of the probability

P(i→ j|p < pt), which can be written in the form of

P(i→ j|p < pt) =
ηP(p < pt|i→ j)

ηP(p < pt|i→ j) + (1− η)P(p < pt|i 9 j)

=
η
∫ pt

0
pφ−1(1− p)ζ−1dp

η
∫ pt

0
pφ−1(1− p)ζ−1dp+ pt(1− η)B(φ, ζ)

.

Some works in the literature, e.g., [31], have made the observation that at a p-value

threshold of 0.001, the frequency of false positives is 6%-10%, i.e., P(i 9 j|p < pt) ∈

[6%, 10%]. Taking into account these special points, we can determine the pair (φ, ζ)

in a small range. In our case φ ≈ 0.1 and ζ ≈ 100. Finally, a table can be set up

to map the p-value into the edge existence probability, which can be computed only

once. It is an overhead for the computational system but it does not assume much

computational resource in the runtime.
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2. Exploiting Steady State Gene Expression Data

Assume that m observations of expression vector are obtained and stored in ma-

trix Dn×m. Next, we develop a computational approach to establish the posterior

probability of the regulation i → j, i.e., the probability of the existence of the edge

i→ j, which is represented by P(i→ j|D, p). This posterior can be obtained through

integration over the whole parental gene set and parameter space for gene j:

P(i→ j|D, p) =
∑

Πj

∫

Θj

f(i→ j,Πj ,Θj|D, p)dΘj

=
∑

Πj

∫

Θj

1Πj
(i)f(Πj,Θj|D, p)dΘj, (5.7)

where the function 1Πj
(i) is the indicator function, which takes 1 if i ∈ Πj and 0

otherwise. Applying Bayes theorem, f(Πj ,Θj|D, p) can be expressed as

f(Πj,Θj|D, p) =
f(D|Πj,Θj, p)f(Πj,Θj|p)

f(D|p)

=
f(D|Πj,Θj)f(Πj,Θj|p)

f(D)

=
f(D|Πj,Θj)f(Πj,Θj|p)∑

Πj

∫
Θj
f(D|Πj,Θj)f(Πj,Θj |p)dΘj

=
f(Dj|Dj̄,Πj,Θj)f(Πj,Θj|p)∑

Πj

∫
Θj
f(Dj |Dj̄,Πj,Θj)f(Πj,Θj |p)dΘj

, (5.8)

where Dj denotes the observations of gene Xj , and Dj̄ represents the collection of

all the observations pertaining to all genes excluding those of gene Xj. f(Πj,Θj|p)

denotes the probability density of the high-dimensional parental model given the

observation of ChIP-chip data. f(Dj |Dj̄,Πj,Θj) stands for the gene expression likeli-

hood given the parental values and the graphical model. It is a Gaussian distribution

with known variance and mean determined by the first part of (5.2). The second

equality in (5.8) holds because we believe the ChIP-chip experiment and steady state
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gene expression measurements are independent. By plugging (5.8) into (5.7), it can

be inferred that

P(i→ j|D, p) =

∑
Πj

∫
Θj

1Πj
(i)f(Dj |Dj̄,Πj,Θj)f(Πj,Θj |p)dΘj

∑
Πj

∫
Θj
f(Dj|Dj̄,Πj ,Θj)f(Πj,Θj|p)dΘj

. (5.9)

The integrations at the numerator and denominator of Equation (5.9) can not be

generally performed in closed-form expression. However, the Monte Carlo methods

enable to numerically evaluate the posterior probabilities. We can generate Monte

Carlo samples based on the model probability density f(Π,Θ|p) and the integration

can be obtained by averaging over these samples. Then the posterior probabilities

can be estimated by

P(i→ j|D, p) ≈

∑
Πj ,Θj

1Πj
(i)f(Dj|Dj̄,Πj ,Θj)∑

Πj ,Θj
f(Dj |Dj̄,Πj,Θj)

. (5.10)

Assuming that the selection of a parent as an activator is performed in an indepen-

dent manner, and that the selection of the regulation factor value is also performed

independently, the model probability density f(Π,Θ|p) can be further expanded by

using the chain rule:

f(Π,Θ|p) = f(Θ|Π)P(Π|p)

=

|A|∏

i=1

[ρf(αi)]

|R|∏

j=1

[(1− ρ)f(γj)]P(Π|p). (5.11)

Equation (5.11) conveys the idea that the random samples of graphical models can

be sequentially created and processed. First the network structure is created based

on the binding probability of gene regulation obtained in the ChIP-chip experiment,

then each parent is randomly assigned to represent an activator or repressor, and

finally regulation factors are generated.
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3. Algorithm Formulation

Our computational procedure can be briefly formulated in terms of the Algorithm

4, where the Matlab coding convention is used to write the pseudo-code. There

exist n genes in the system. An n × n matrix is created to represent the p-values

produced in the ChIP-chip experiment. We collect m steady state gene expression

samples. The output entry Cij stands for P(i→ j|D, p), andM denotes the number of

Monte-Carlo iterations. Lines 1 and 2 deal with the ChIP-chip experimental data and

translate p-values into the binding probabilities by using (5.5). The results are stored

in matrix B. Lines 3 and 4 perform the preprocessing of the gene expression data.

Let y(1), y(2), y(3), · · · , y(m−2), y(m−1), y(m) be the values of a specific gene expression

in ascending order. The smallest two values, y(1), y(2), and the largest two values,

y(m−1), y(m), are treated as outliers and discarded. The dynamic range is defined as

Range = y(m−2) − y(3). The gene expressions are normalized as follows: the smallest

two samples are assigned the null value and the largest two samples are assigned the

unit value; the intermediary samples y(i) are normalized as (y(i)−y(3))/Range; if there

is a missing sample, it is recovered through interpolation by gene’s mean expression.

Lines 12 through 16 implement the numerator of (5.10), and Line 17 computes the

denominator of (5.10).

The algorithm can be easily reorganized into a parallel form so that we can exploit

efficiently the distributed computational resources. The entries of output matrix

C represent the posterior probabilities of regulation relationships between any two

genes. It is directional (asymmetrical), and it possesses a clear probabilistic meaning

compared with other vague connectivity metrics, e.g., mutual information. It grants

the biologists the flexibility first to examine the most significant interactions, then

to proceed with less evidenced edges. Therefore, it is advantageous relative to a
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Input ChIP-chip data set pn×n;1:

Translate p-values to construct the binding probability matrix Bn×n.2:

Input gene expression data set Dn×m;3:

Normalize the expression data so that each expression is within the range of [0, 1];4:

Initialize n,L = 01×n, C = 0n×n; for k = 1 to M do5:

Randomly create a directed graph and the adjacency matrix J based on B;6:

for i = 1 to n do7:

For gene i’s parents specified in J(:, i), randomly assign them to be8:

activators or repressers;
For each parent, randomly create their regulation factor α or γ;9:

l ⇐ likelihood(Di|Dī,Πi,Θi);10:

for j = 1 to n do11:

if j ∈ Πi then12:

Cj,i = Cj,i + l;13:

end14:

end15:

L(i) = L(i) + l;16:

end17:

end18:

∀i, j, Cj,i = Cj,i/Li; Return C.19:

Algorithm 4: Inference of Connectivity Significance

purely dichotomous scheme, in which genes are treated as being either connected or

disconnected. A probability threshold can be imposed to change the algorithm into a

dichotomous classifier. Since the posterior probability has a universal meaning, this

threshold can be easily selected, usually within the range of [0.3,0.9]. A trade-off has

also to be made for different performance metrics.

D. Simulation Results

The simulation consists of two parts. In the first part artificial networks are created

and the performance of the proposed algorithm is compared with other representative

algorithms available in the literature, namely the relevance network (RN) method [9],

Chow-Liu algorithm [15] and ARACNE [16]. In the second part the algorithm is

tested on the real Saccharomyces cerevisiae (budding yeast) data set and a biologi-
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cally meaningful genetic network is inferred for the genetic response to environmental

changes.

1. Simulation on Artificial Networks

Based on gene expression data alone, the proposed algorithm is compared with other

three algorithms, i.e., Relevance network [9], ARACNE [16] and Chow-Liu [15]. Be-

cause RN, Chow-Liu and ARACNE algorithms all construct undirected graphs, we

have to disregard the orientation information inferred by the proposed algorithm. The

synthetic and inferred graphs are represented by G(V,E) and Ĝ(V, Ê) respectively.

The two graphs share the same set of vertices but differ in the set of edges.

a. Simulation on the Proposed Kinetics

A set of artificial networks are created based on the system dynamic Equation (5.1).

Each Network has 30 vertices and 60 oriented edges. Such a network scale is selected

for the consideration of the computational resources and the biological network that

we are going to infer. The steady state data are sampled by emulating the gene

knockout experiment. A gene’s expression is mandatorily forced to 0 while all other

genes are free to change their expressions. The initial values of the system are ran-

domly generated. When the system converges to the equilibrium, a Gaussian noise

N(0, 0.03) is added and a few samples are obtained. All genes are shut down one by

one. An extra in silico experiment is performed and no genes are shut down. These

samples correspond to the wild type strain.

Different numbers of steady-state samples were generated based on the adopted

system kinetics. The transcription factor is assumed to be an activator or repressor

with equal probability, i.e., ρ = 0.5. The baseline parameter δ = 0.5 and the Gamma

parameters of regulation factors are (κ = 16, β = 0.0625) so that the regulation factor
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has a unit mean. Chow-Liu algorithm creates a spanning tree; therefore, it preserves

only 29 edges, while the original synthetic network possesses 30 vertices and 60 edges.

In order to make comparisons, we tune the parameters for the other three schemes so

that the number of inferred edges is around 30. For the RN method, we keep the 30

edges with the highest mutual information. For ARACNE, the mutual information

threshold is adjusted. In our proposed algorithm, the posterior probability thresholds

are changed in the range of [0.3,0.9] so that approximately 30 edges are obtained. It

has to be noted that RN, ARACNE and Chow-Liu algorithms only preserve interac-

tions but disregard the interaction orientation. Therefore, in order to make consistent

comparisons, we have to sacrifice the orientation information offered by the proposed

algorithm. Besides, these three schemes have no capability of processing ChIP-chip

data. Therefore, we have to configure the proposed algorithm such that any two

nodes are associated with a small prior probability of connection (0.1). This reflects

the fact that the connection between two arbitrary nodes in the graph is very unlikely,

but not impossible. This also exemplifies how the algorithm works in the absence of

the ChIP-chip data.

Fig.13(a) compares the performance in terms of Hamming distance for the four

schemes assuming different sample sizes. The proposed method provides much better

inference accuracy because it achieves the lowest Hamming distance. Larger sample

size rewards a better inference precision. Chow-Liu’s algorithm and ARACNE do

not perform well. This can be attributed to the assumption of the network. Our

synthetic networks actually are cyclic networks in order to reflect the real world sce-

nario. However, cycles in the network ruin the inference precisions of Chow-Liu and

ARACNE. Fig.14(a) illustrates the impact of sample size on the sensitivity. The pro-

posed scheme outperforms the other three schemes. The sensitivities of all algorithms

are less than 0.5. This is mainly due to the constraint that we pose on the number
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Fig. 13. Performance comparison in terms of Hamming distance. (a) illustrates re-

sults based on the same kinetics model employed in both data synthesization

and network inference, while (b) represents results based on different kinetics

models employed in the simulation process.
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Fig. 14. Performance comparison in terms of sensitivity. (a) illustrates results based

on the same kinetics model employed in both data synthesization and net-

work inference, while (b) represents results based on different kinetics models

employed in the simulation process.
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Fig. 15. Performance comparison in terms of specificity. (a) illustrates results based

on the same kinetics model employed in both data synthesization and net-

work inference, while (b) represents results based on different kinetics models

employed in the simulation process.
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of inferred edges, i.e., 30 edges. If we relax the posterior probability threshold, the

sensitivity will be improved by sacrificing the specificity. Fig.15(a) depicts specificity

for all schemes. All of them have high specificities, which are all greater than 0.90.

The proposed scheme still exceeds. This high specificity is mainly due to the stringent

constraint posed on the number of inferred edges. When considering the orientation

of the edges, we find that 90% true positives inferred by the proposed algorithm are

actually oriented correctly. This represents a big advantage of the proposed algorithm

compared with the other three schemes.

b. Robustness of Inference

In the previous simulations, the proposed inference algorithm assumes the system

dynamic as depicted by Equation (5.1). Actually, for different biological processes,

there exist various mathematical models which achieve trade-offs between the sophis-

tication of the underlying molecular reaction and the simplification of the formula

description (see [40], [106] for model comparisons). Savageau [39] proposed an al-

ternative mathematical model to account for the gene control and various forms of

coupling among elementary gene circuits. This model can be denoted as

dx

dt
= λA

|A|∏

i=1

aαi

i − λR

|R|∏

j=1

r
γj

j , (5.12)

where the two new symbols λA and λR stand for the activation and degradation

coefficients, respectively, and all other symbols share the same meanings as in the

Equation (5.1).

Although the proposed inference framework can “plug and play” with different

models, it is still necessary to examine its robustness against the underlying model.

We evaluate this model dependence by following steps: configure the model as Equa-
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tion (5.12) and create a set of synthetic data, then apply the proposed algorithm

based on the dynamic Equation (5.1), finally determine the performance metrics for

different algorithms and compare the results with those in the previous section.

The simulation results are plotted in Figs. 13(b), 14(b) and 15(b). Each figure cor-

responds to a different performance metric. All algorithms exhibit different values for

performance values. This shows that the inference is dependent on the particular data

set and their underlying model. Compared with other three schemes, the proposed

algorithm still achieves good performance in terms of the three metrics. However, the

advantage of the proposed algorithm is not significant. ARACNE, Chow-Liu and the

relevance method performances do not degenerate much. This is attributed mainly to

the non-parametric nature of these three schemes. The persistent good performance

of the proposed algorithm is due to the fact that both dynamic models have to con-

vey the basic properties of the gene interaction kinetics, such as the activation and

repression effects and the coupling of the circuitry.

2. Simulation on Saccharomyces Cerevisiae Data Sets

Saccharomyces cerevisiae (yeast) has been extensively studied in the literature of

molecular biology because it is a unicellular eukaryotic organism, which shares simi-

lar cell structure with plants and animals. Also, yeast presents a short life cycle, which

makes the experiments to be easily conducted. Lee [31] performed the ChIP-chip ex-

periment, in which 141 transcription factors were tested for binding the inter-genetic

regions corresponding to 6270 genes. The gene expression data were published by

Mnaimneh [108], who created promoter shut-off strains for 2/3 of all essential genes.

The data set contains 215 steady state cDNA microarray samples. The model pa-

rameters are assumed the same as artificial networks.

The intracellular signalling pathway in response to environmental changes has been
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conserved through evolution. Therefore, a study of this biological subsystem on the

saccharomyces cerevisiae might help to decipher the cell survival mechanism of other

organisms. We select 30 genes which are annotated to participate in the stress re-

sponse process. The given ChIP-chip experiment did not provide full prior knowledge

between any two genes (nodes in the graph). We believe among these genes, there are

some genes whose protein products may also serve as transcription factors. There-

fore, if the binding between two genes was not tested in the ChIP-chip experiment, a

small probability value 0.1 is assigned as the prior knowledge. The proposed inference

algorithm leads to the genetic network illustrated in Fig. 16.

The inferred genetic regulatory network shows strong proneness toward a scale-free

network instead of a random network. Some genes possess especially high degree

of connectivity. Three hub genes CIN5, HSF1, MSN4 already connect with more

than 60% of all selected genes. Each of them has a connectivity degree no less

than 8 while on average each gene in the network is connected with no more than 4

genes. These hub genes constitute the backbone of the network and they are potential

control targets. This scale-free property is advantageous in maintaining the system

robustness because a failure in one subsystem will not be propagated to the whole

body.

Multiple works, e.g., [109], have identified MSN4 and MSN2 as two of the most

important genes in the response to environmental changes. A recent work [110] rec-

ognized the functionality of another crucial gene HSF1, which is a heat shock tran-

scription factor and functions in a different domain than the one corresponding to

MSN2/4. Our inferred network corroborates this experimental result by showing

that HSF1 and MSN2/4 regulate different set of genes except a weak connectivity

between HSF1 and MSN4. MSN2/4 are not conserved in humans, while HSF

genes have been preserved for various organisms such as Drosophila melanogaster,
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Fig. 16. Recovered genetic regulatory network for yeast stress response. The Monte

Carlo iterations are 1,000,000. Dashed edges represent interactions preserved

by using ChIP-chip data alone under the p-value threshold 0.001. Shadowed

vertices are transcription factors tested in the ChIP-chip experiment.
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chickens and mammals. Therefore, a study of the HSF1 pathway opens up the

possibility of understanding the mechanism that governs the survival of normal cells

under austere conditions.

CIN5 (Y AP4) and Y AP6 are two genes that play key roles in controlling the

resistance to drugs, e.g., cisplatin [111]. CAD1 (Y AP2), CIN5, Y AP1 and Y AP6

share a structure motif called basic leucine zipper (bZIP ) and they are located closely

in the network. However, they are not neighboring the other two bZIP genes: Y AP5

and Y AP7. It is hypothesized that although they have similar molecular structures,

their biological functionalities are in distinct domains.

Several edges, discovered by imposing a stringent p-value threshold 0.001 to the

location data, were persevered in our inferred network. These connections constitute

a small portion of the proposed network, and they are CIN5 → MSN1, CIN5 →

Y AP6, CIN5 → ROX1, Y AP1 → Y AP6, MAC1 → CUP9, CUP9 → Y AP6

and HAL9 → MSN4. Various evidences are found to corroborate the recovered

interactions, which can not be obtained by employing a stringent p-value for the

location data. For example, Y AP5 is recovered to directly regulate STE50. This

regulation relationship has also been reported in [112]. The relationship between

MSN2 and SCH9 is studied in [113] in the context of extending the life span.

It is worthwhile to note that gene expression data mainly provide statistical re-

lationships among genes, while location data offer physical binding interactions at

the molecular level. By combining the two data sources, we are aiming to refine the

inferred network to be biologically more meaningful. However, it also runs at a risk

of confusing statistical regulatory relationships with real binding interactions. When

such a case occurs, the proposed algorithm is capable of constraining the interacting

genes within the same biological process and common functional relationships. A

related discussion about the meaning of inferred network can also be found in [85].
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CHAPTER VI

MISCELLANEOUS APPLICATIONS AND DISCUSSIONS ∗

A. Integration of Sequence Knowledge

The high-throughput cDNA microarray technology has enabled the simultaneous

measurement of the mRNA concentrations. At the same time, multiple genome se-

quencing projects have been accomplished for such organisms as E. coli, yeast, fruit

fly and human. The inferred networks share a problem of explaining the recovered

interactions. That is, the interaction only has a statistical meaning but might have

no biological justifications. Concepts are easily confusing, such as co-regulation, co-

expression, direct regulation, indirect regulation. On the other hand, finding a binding

site on target gene’s regulatory region do not guarantee a transcription relationship

since this occurrence may happen exactly by chance. Taking into account the gene

expression, DNA sequence and binding site information together sheds new light on

making biologically more solid inferences.

In this chapter, the genetic regulatory network is inferred based on the integration

of these data sources, which helps to improve both specificity and sensitivity of the

inference. The transcription factors of a target gene are determined by applying

the reversible jump Markov chain Monte-Carlo (RJMCMC) algorithm to the linear

regression model. The scheme is simulated on yeast data and the results provide

some insight into the regulation mechanism associated with environmental changes.

∗Part of the data reported in this chapter is reprinted with permission from “Re-
covering Genetic Regulatory Networks from Multiple Data Sources,” by W. Zhao, E.
Serpedin and E. R. Dougherty, 2007, in Proceeding of 5th IEEE International Work-
shop on Genomic Signal Processing and Statistics (GENSIPS), Tuusula, Finland,
Copyright 2007 by IEEE.
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Our scheme is different from other schemes in that it integrates multiple sources of

knowledge in a specific way, poses no constraints on the network topology and data

quantification, and works well on observational data instead of controlled experiment

data.

1. Model Formulation

General directed graphs G (with possibly cycles) will serve as our structural model

since they are consistent with the features exhibited by biological systems, in which

loops account for system redundancy and stability. Given G, the parent set ΠX is

specified for any gene X, and the parameters for the system transcription model are

defined in Θ.

In a system with n genes indexed by {1, 2, · · · , n}, m observations of expression

vector are obtained and stored in matrix Dn×m. If gene i regulates gene j directly,

we assume such regulation take effects by gene i’s protein binding to its characteristic

binding site on gene j’s regulatory region. All genes’ regulatory regions are stored in

array Sn×1 and each entry of the array is a sequence with letters selected from the

alphabet {A, T, C,G} corresponding to four nucleotides. Generally a gene’s regulatory

region is located within L (e.g., L=600) bases upstream of the open reading frame

(ORF). The binding site of the transcription factor (TF) i is denoted by Bi and

contains around 5-12 bases. Consequently, gene j’s expression is controlled by its

TFs Πj. Our aim is to establish the posterior probability of the regulation from gene

i to gene j, which is represented by p(i→ j|D,S,B).

A linear model is adopted herein to represent the relationship between the target

gene j and its TFs Πj :
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Djl = β0j +
∑

i∈Πj

(Dil ·Kij · βij) + ǫ. (6.1)

where D·l denotes the gene expression of sample l, β0j is the base transcription level

without any TF, ǫ is the measurement noise and can be modeled by N(0, σ2), Kij

counts how many times the binding site of the TF i occurs on the regulatory region

of gene j. Kij is a function of the regulatory sequence of gene j, i.e., Sj, and the

transcription binding site of TF i, i.e., Bi. The Kij can be represented as follows:

Kij =

L−|Bi|+1∑

l=1

1{Bi}(Sj,l:l+|Bi|−1), (6.2)

where Sj,l:l+|Bi|−1 stands for bases present on the sequence Sj from position l to

position l + |Bi| − 1. 1A(x) is the indicator function which takes 1 if x ∈ A, and 0

otherwise.

Similar linear models has been employed by various works, e.g., [34]. As an enhance-

ment of these linear models, we incorporate the TFs’ expression with the binding site

since our data are coming from observational experiments instead of controlled ex-

periments. This linear model matches the intuition that the TFs controls the targets’

expression through the binding sites with appropriate TF concentration in vivo.

By substituting X l
ij for Djl · Kij and denoting X l

0j = 1, Equation (6.1) can be

transformed into the classical linear regression equation:

Djl =
∑

i∈{0}∪Πj

X l
ij · βij + ǫ = X l

·jβ·j + ǫ. (6.3)

Recovering the whole genetic network can be decomposed into finding TFs for each
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gene and that is a model selection problem. We use the reversible jump Markov chain

Monte-Carlo (RJMCMC) approach to perform the a-posteriori selection between dif-

ferent models or candidate parent sets, as suggested by Greens [114]. The RJMCMC

procedure for a specific gene can be summerized as follows:

1. At iteration t, create a new parent set Π⋆|Πt based on the proposal conditional

density g(·|Πt);

2. Create an augmenting variable U |(Πt,Θt,Π⋆) from a proposal distribution h(·

|Πt,Θt,Π⋆), define (Θ⋆, U⋆) = qt,⋆(Θ
t, U), where q is an invertible one-one map and

the relation |Πt|+ |U | = |Π⋆|+ |U⋆| holds;

3. for a proposed model Π⋆ with parameters Θ⋆, the Metropolis-Hastings ratio is

f(Π⋆,Θ⋆|y) · g(Πt|Π⋆) · h(u⋆|Π⋆,Θ⋆,Πt)

f(Πt,Θt|y) · g(Π⋆|Πt) · h(ut|Πt,Θt,Π⋆)
|J(t)|

where |J(t)| =
dqt,⋆(Θ, u)

d(Θ, u)
|(Θ,u)=(Θt,U) (6.4)

To simplify the computation of (6.4), priors can be chosen wisely as proposed in

[115]. No prior bias among models is imposed hence we have g(Π⋆|Πt) = g(Πt|Π⋆)

and g(Π⋆) = g(Πt). Besides, we have βΠt ∼ N(α, σ2VΠt) and νλ/σ2 ∼ χ2
ν , where α =

(β̂0, 0, · · · , 0), β̂0 = var(D) and ν, λ are two hyperparameters. VΠt is a diagonal matrix

with entries (s2
y, 1/s

2
1, ..., 1/s

2
|Πt|). After a series of manipulations, the Metropolis-

Hastings ratio is simplified into f(y|Π⋆)/f(y|Πt), where

y|Πt ∼ tν(Xα, (I +XVXT )). (6.5)

2. Simulation Results

The proposed RJMCMC is applied on the following real data sets: the microarray

gene expression data reported by Gasch and Spellman [109], the sequence and bid-

ing sites information downloaded from TRANSFAC and the Saccharomyces Genome
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Fig. 17. Genetic regulatory network of environment-response genes. Standing alone

genes are removed from the figure. The posterior threshold is chosen to be

0.5. Normal arrow head means activation while inverse arrow head stands for

repression.

Database at http://www.yeastgenome.org. Gasch and Spellman’s dataset contain

6152 genes and 137 samples. We choose a small subset of genes which are reported

to respond when changes in environmental conditions occur [31]. The inferred gene

regulatory network is shown in Fig. 17. The posterior threshold is set to 0.5, i.e.,

if the posterior connectivity probability is larger than 0.5, we assume a directed

connection. Standing alone genes are removed for conciseness. We found although

each gene’s sequence contains at least one TF’s binding site, when considering the

expression data, these matches do not have a biological function and may only be

inherited by chance. It shows that the techniques we employed are useful to reduce

false positives in recovering gene regulatory networks.

B. Identifying Cell Cycle Genes Based on Various Knowledge

The eukaryotic cell cycle is a series of molecular-level events that lead to cell divi-

sion into two daughter cells. Generally the division process presents critical forma-

tional stages known as: gap1 (G1), synthesis (S), gap2 (G2), and mitosis (M). The
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transcriptional events in the cell cycle can be quantitatively observed by measuring

the concentration of the messenger RNA (mRNA). Based on time series microarray

data, powerful approaches have been proposed to identify cell cycle genes [18] and

[52]–[60]. The majority of these works deal with evenly sampled data, though the bi-

ological experiments generally output unevenly spaced measurements. To cope with

this challenge, various schemes have been proposed in the signal processing literature

[62]–[68]. Among them, the technically more complicated techniques, e.g., Capon and

MAPES methods, aim to achieve a better spectral resolution than simpler methods,

e.g., Lomb-Scargle periodogram. However, for small sample sizes, the simpler Lomb-

Scargle appears to possess better performance in the presence of realistic biological

data.

Most of the algorithms proposed in the literature identify the cell cycle genes by

exploiting mathematical models to explain the gene’s time series pattern. Employ-

ing these models and statistical tests, the periodically expressed genes are normally

identified. Finally, the detected genes are compared with the genes that had been

experimentally discovered to participate in the cell cycle process. Notice that these

practically verified cell cycle genes only serve as a golden benchmark to evaluate the

performance of the proposed identification algorithms. They are not fully exploited

in the implementation of the identification algorithm. Notice also that most of the

existing algorithms fail to utilize all the available information. For example, the elu-

triation data provided in [18] was usually discarded when performing the spectral

analysis. In other experiments, some data sets were also disregarded due to either

loss of synchronization or non-stationarity. Herein, we propose a novel algorithm to

detect the cell cycle involved genes by integrating the gene expression analysis with

the valuable prior knowledge. The prior knowledge consists of two data sets, i.e., the

set of cell-cycle genes and the set of non-cell-cycle genes recognized in biological ex-
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periments. The cell-cycle genes are used to initialize the proposed algorithm and the

non-cell-cycle genes are employed to control the false positives. The expression anal-

ysis is composed of the spectral estimation technique and the computation of gene

expression distance. The underlying approach relies on the assumption that genes

expressing similarly with cell cycle genes are also likely to be cell cycle genes. This

assumption is actually exploited to apply the clustering schemes on the microarray

measurements in order to partition genes into different functional groups. The pro-

posed algorithm identifies potential cell cycle genes and guarantees that the verified

cell cycle genes will be included with 100% certainty into the output gene set, and at

the same time the verified non-cell-cycle genes are removed from the derived set with

100% certainty.

The proposed algorithm is composed of a spectral density analysis and a gene dis-

tance computation based on the time series microarray data. All existing spectral

analysis schemes can be incorporated into the proposed algorithm. However, the

Lomb-Scargle periodogram is recommended here due to its convenience of implemen-

tation and excellent performance for small sample size. The non-parametric Spear-

man’s correlation coefficient is accepted to construct the distance measure between

two genes.

1. Gene Distance Measure

A gene is identified to be a cell cycle gene if it satisfies two conditions: it passes the

periodicity test which is performed on the gene expression measurements as discussed

in Chapter II; or, it is within a small distance from the obtained cell cycle genes.

Various distance metrics have been proposed in the clustering literature to capture

the distance between genes. These include Pearson’s correlation, Euclidean distance,

city block distance, mutual information, etc. Because the biological observations are
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generally highly corrupted and the rank statistics tests usually behaves better in non-

parametric environments, we accept here the Spearman’s correlation coefficient as

the core of our distance measure. This distance is defined for two genes X and Y

between their expressions across all the available experiments:

d(X, Y ) = 1− |1−
6
∑n

i=1(xi − yi)

n(n2 − 1)
|, (6.6)

where (xi, yi) stand for the rank pair of the measurements of genes X and Y . The

parameter n counts the number of samples where both geneX and Y present available

observations. This distance measure always assumes values between 0 and 1.

2. Algorithm Formulation

The proposed algorithm is formulated as the Algorithm 5. Lines 1 to 4 accept inputs

and initialize the target cell cycle gene set with the spectral analysis results and the

prior cell cycle genes. Lines 5 to 14 represent the iterative accumulation part. They

iteratively insert into the potential cell cycle gene set the genes expressed similarly

as the genes within that set. Lines 15 to 24 stand for the false positive control part.

It also constructs the control set iteratively to suppress the potential false positives

by using the prior knowledge. Line 25 subtracts the control set from the established

target set and finalizes the cell cycle gene set. The simulation results on the yeast

data set showed that the iterative accumulation part has controlled the false positives

pretty well.

There are two thresholds that are to be specified. The first is the threshold for

the periodicity test. Practically all genes are ranked with respect to their periodicity

scores, e.g., CDC scores in [18] and maximum power spectral density, then a prede-

termined number of genes are conserved. Therefore, this threshold is actually a rank.

This rank threshold can be determined by comparing the spectral analysis results
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Input gene expression measurements, experimentally verified cell cycle genes1:

(denoted as G) and non-cell-cycle genes (represented as F );
Perform power spectral analysis on gene expression data;2:

Perform statistical tests so that the periodically expressed genes are recognized3:

and stored in set C;
G⇐ G ∪C, G′ ⇐ φ, F ′ ⇐ φ, specify the distance threshold t;4:

while G 6= G′
do /* iterative accumulation */5:

G′ ⇐ G;6:

for i = 1 to N do7:

for j = 1 to |G| do /* | · | represents set size */8:

if d(xi, gj) < t then /* d(·, ·) represents the distance between9:

two genes */

G′ ⇐ G′ ∪ {xi};10:

end11:

end12:

end13:

end14:

while F 6= F ′
do /* false positive control */15:

F ′ ⇐ F ;16:

for i = 1 to N do17:

for j = 1 to |F | do18:

if d(xi, gj) < t then19:

F ′ ⇐ F ′ ∪ {xi};20:

end21:

end22:

end23:

end24:

G⇐ G− F ;25:

Output G;26:

Algorithm 5: Identifying Cell Cycle Involved Genes
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with the prior knowledge. We are inclined to use a more stringent threshold, which

also represents a trade-off between the number of conserved genes and the number

of experimentally verified genes. The second threshold is the distance threshold. It

keeps decreasing along the iteration. The initial value is assigned to be 0.25, which

means high correlation by Cohen’s rule of thumb [116]. Each iteration decreases this

threshold by 0.05 until it reaches 0.1, then it remains constant at 0.1. This technique

in practice helps to prevent the amplification of false positives.

3. Simulation Results

We still use one of the most frequently referenced time series data set published

by Spellman [18]. Our prior knowledge was derived from two sources: Spellman [18]

revised 104 cell cycle genes that were verified in previous biological experiments, while

Lichtenberg [75] summarized 105 genes that were not involved in the cell cycle.

Spellman [18] designed a periodicity metric, namely CDC score, based on three out

of four experiments. We conserved the top 400 genes with high CDC scores as the

initialization set in the proposed algorithm. This means a more stringent test thresh-

old for the spectral analysis part. The algorithm left 722 genes marked as potential

cell cycle involved genes. All the detected 722 genes are hierarchically clustered in

Fig. 18. The hierarchical clustering was selected mainly because it was convenient

for visualization and it avoided to specify the number of desired clusters. It is worthy

to note that more advanced methods, e.g., self organizing map (SOM) [117] could

achieve a better clustering performance. Most clusters indicate a strong periodic-

ity pattern, as can be discerned by the red and green regions which are positioned

alternately. There is an exotic cluster, which exhibits fast oscillation in the cdc15

experiments. This cluster contains 130 genes that are illustrated in Fig.19. By exam-

ining the existing annotations for these genes, we found most of them either encode
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Fig. 18. Clustering analysis of identified Saccharomyces Cerevisiae genes. Gene ex-

pression levels are indicated by the heatmap. There are 722 genes identified

by the proposed algorithm to participate in the cell cycle. Most genes ex-

hibit strong periodicity, as indicated by alternately positioned red and green

regions.
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Fig. 19. The exotic clustering of identified Saccharomyces Cerevisiae genes. Gene ex-

pression levels are indicated by the heatmap. This cluster contains 130 genes.

The gene expressions in the cdc15 experiment oscillate between low and high

levels. Most of these genes are nucleolar genes.

nucleolar proteins or are involved in ribosome biogenesis. It has been verified that

ribosome biogenesis consumes up to 80% of proliferating energy and it is linked to

cell cycle in metazoan cells. However, in the yeast the ribosome biogenesis is not

regulated by the cell cycle in the same manner as in advanced organisms due to the

closed mitosis of the yeast [118]. Defects in nucleolar genes halt the cell at the Start

checkpoint [119]. The ribosome biogenesis controls the growth of the size and inhibits

the cell cycle until the cell has reached the corresponding size [120].

C. Clustering Genes Based on Spectral Information

Based on microarray measurements, clustering methods have been exploited to par-

tition genes into subsets. Members in each subset are assumed to share specific bio-
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logical function or participate in the same molecular-level process. They are termed

as co-expressed genes and are supposed to be located closely in the underlying ge-

netic regulatory networks. Eisen et al. [121] applied the hierarchical clustering to

partition yeast genes, Tamayo et al. [117] exploited the self-organizing map (SOM),

and Tavazoie et al. [122] employed K-means clustering to group gene expressions and

then search upstream DNA sequence motifs that contribute to the co-expression of

genes. Besides, Zhou et al. [123] designed a clustering strategy by minimizing the mu-

tual information between clusters. Also, Giurcaneanu [124] exploited the minimum

description length (MDL) principle to determine the number of clusters. Whether

technically advanced schemes represent better solutions for real biological data is still

under debate. However, usually most of the schemes provide valuable alternatives

and insights to each other. Therefore, it was recommended that several clustering

schemes be performed to analyze the same real data set [125] so that the difference

between clusterings would capture some patterns that otherwise would be neglected

by running only one method.

A straightforward application of clustering schemes will cause the loss of temporal

information inherent in the time series measurements. This shortcoming was noticed

by Tabus and Aastola [126], who proposed to fit the data by parametric models,

depicted in terms of linear dynamic systems, and the genes in the same cluster were

assumed to share common dynamics. The temporal relationships were also explored

via more complex models, i.e., genetic regulatory networks, which can be constructed

via more computationally-demanding algorithms, e.g., [17] and [37]. However, in

general, the network inference schemes deal only with relatively small scale networks

consisting of less than hundreds of genes. Genome wide analysis is beyond the com-

putational capability of these inference algorithms. Therefore, clustering methods

are usually exploited to partition genes, and the obtained subsets of genes serve as
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further research targets to obtain more accurate maps of the underlying biological

processes.

Based on time series data, modern spectral density estimation methods have been

exploited to identify periodically expressed genes, as discussed in a previous chapter.

This section proposes a novel clustering preprocessing procedure which combines the

power spectral density analysis with clustering schemes. Given a set of microarray

measurements, the power spectral density of each gene is first computed, then the

spectral information is fed into the clustering schemes. The members within the

same cluster will share similar spectral information, therefore they are supposed to

participate in the same temporally regulated biological process. The assumptions

underlying this statement rely on the following facts: if two genes X and Y are in

the same cluster, their spectral densities are very close to each other; in the time

domain, their gene expressions may just differ in their phases. The phases are usually

modeled to correspond to different stages of the same biological processes, e.g., cell

cycle or circadian rhythms. The proposed spectral-density-based clustering actually

differentiates the following two cases:

1. Gene X and Y’s expressions are uncorrelated in both time and frequency domains.

2. Gene X and Y’s expressions are uncorrelated in time domain, but gene X’s expres-

sion is a time-shifted version of gene Y’s expression.

In the traditional clustering schemes, the distances are the same for the above two

cases (both assuming large values). However, in the proposed algorithm, the 2nd

case is favorable and has a lower distance. Therefore, by exploiting the proposed

algorithm, the genes participating in the same biological process are more likely to be

grouped into the same cluster. Lomb-Scargle periodogram serves as the spectral den-

sity estimation tool since it is computationally simple and possesses higher accuracy

in the presence of unevenly measured and small size gene expression data sets.



119

The simulation results corroborate that the proposed approach achieves a better

clustering for hierarchical, K-means and self-organizing map (SOM) in most cases.

Besides, it constructs a significantly different partition relative to traditional clus-

tering strategies. When deploying the hierarchical or K-means clustering methods

based on the spectral density, the Euclidean and city block distance metrics appear

to be more appealing than the cosine or correlation distance metrics. The proposed

preprocessing technique is valuable since it provides additional information about the

temporal regulated genetic processes, e.g., cell cycle.
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CHAPTER VII

CONCLUSION

This dissertation is focused on the application of statistical signal processing tech-

niques into the emerging genomic area. The research can be categorized into three

interrelated subtopics, i.e., identification of genes involving in specific processes, infer-

ence of genetic regulatory networks based on microarray measurements, either steady

state or time series, and integration of heterogeneous data.

To identify specific functioning genes, particularly those in cellular cycles, three

of the most representative spectral analysis methods, namely, Lomb-Scargle, Capon

and missing-data amplitude and phase estimation (MAPES) methods, are compared

in terms of their performance for detecting the periodically expressed genes in Sac-

charomyces cerevisiae. Our in silico experiments revealed that the simplest methods,

in particular the Lomb-Scargle algorithm, outperforms the more sophisticated algo-

rithms: Capon and MAPES. This discrepancy between methods is mainly attributed

to the data features, such as the small sample size, large proportion of missing sam-

ples, and the presence of samples highly corrupted by noise. The computational

complexity sacrificed in MAPES for achieving high resolution is not justifiable in the

context of gene microarray data. In addition, a list of 149 Drosophila melanogaster

genes were identified to express periodically.

The inference of the genetic regulatory network (GRN) can be performed based on

time independent microarray observations. By exploiting information theoretic quan-

tities, two algorithms together with a novel direct connectivity metric (DCM) were

proposed. Simulation results show that the proposed algorithms present a satisfac-

tory performance in the case of artificial networks. The algorithms are further applied

on a realistic melanoma data set, and a 470-gene network and WNT5A pathway are
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recovered. The advantage of the proposed algorithms is that they not only recover

the connectivity information among genes, but they also assign to each connectivity

a confidence level. This provides biologists the opportunity to examine the inferred

interactions starting from the most probable and valuable connectivity.

For time course microarray observations, an algorithm has been designed and im-

plemented to reconstruct the GRN. The cross-time mutual information is employed

as a metric to discern the oriented connectivity. The MDL principle is used to find the

threshold for differentiating between regulation and non-regulation, and to design a

network model that achieves a good trade-off between modeling complexity and data

fitting accuracy. The proposed network inference algorithm is used for modeling reg-

ulatory pathways encountered in embryonic segmentation and muscle development

in drosophila melanogaster. The proposed network inference algorithm is practically

useful for recovering temporal regulations and can serve as an analysis tool for time

series data sets.

Novel biological technology brings new data everyday. A novel algorithm is pro-

posed to recover the GRN in the light of knowledge brought by transcriptional ki-

netics, ChIP-chip and gene microarray data. The analysis is based on the Bayesian

methodology and Monte Carlo techniques. The proposed scheme is useful to com-

pensate the shortcomings of utilization of only one data set alone. Our in silico

experiments corroborate that the algorithm outperforms in specificity, sensitivity and

Hamming distance relative to three state-of-the-art schemes. A budding yeast genetic

regulatory network is proposed to account for the stress response.

Other applications of signal processing techniques are also proposed. These include

applying the reversible jump Markov Chain Monte Carlo to incorporate sequence

and binding knowledge with microarray observations, identifying cell cycle genes by

combining prior experimental information, and clustering gene expressions in the
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frequency domain.

Through the course of the research, we have found that the difficulties come mainly

from three dimensions. First, most biological experiments create small sample size,

produce highly corrupted observations, and leave a large portion of crucial variables

unmeasured. This demands robust and efficient stochastic analysis. Besides, schemes

perform inconsistently under different circumstances. Second, biological validation

remains a problem. The in silico results are usually mathematical significant but

might not possess biological meaning. This has to be resolved via a more close

cooperation with biologists and medical staffs. Third, interdisciplinary research has

to be strengthened not only to incorporate different efforts in various academic areas,

e.g., mathematics, statistics and engineering, but also in different domains in biology,

e.g., sequence analysis, genetic network analysis, and protein structure determination.

Our research was initiated based on previous endeavors in genomic signal process-

ing. This work represents a bridge for potential future extensions. Several other

knowledge sources might be integrated into the current framework. For example,

protein-protein interactions are useful to identify co-binding regulations. Protein

structure knowledge can be exploited to categorize the proteins and find similar func-

tionality. A cross-species research is also highly desirable since similar regulation

mechanisms are expected to be conserved. If a gene is conserved in both humans and

mice, then the knowledge of the gene’s pathway in the mouse will be an excellent

reference for the study of human genetic diseases. Mathematically, stochastic differ-

ential equations can be exploited to investigate the genetic kinetics in the molecular

level. Various techniques, e.g., Ito integral and optimal stopping, can be applied for

implementing stochastic control.
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APPENDIX A

144 DROSOPHILA PERIODICALLY EXPRESSED GENES

Gene Name CG3140 CG6455 CG13279 CG5345 CG8684 CG5174

q-value 0.03 0.03 0.03 0.03 0.03 0.03

Gene Name CG11242 CG13319 CG10248 CG10621 CG9126 CG6673

q-value 0.03 0.03 0.03 0.03 0.03 0.03

Gene Name CG1091 CG14808 CG1471 CG5413 CG8357 CG6398

q-value 0.03 0.03 0.03 0.03 0.03 0.03

Gene Name CG4316 CG6714 CG7780 CG7469 CG10658 CG5466

q-value 0.03 0.03 0.04 0.04 0.04 0.04

Gene Name CG4928 CG8006 CG5253 CG2055 CG1408 CG7122

q-value 0.04 0.04 0.04 0.04 0.04 0.04

Gene Name CG9047 CG7717 CG3770 CG8250 CG7082 CG4144

q-value 0.04 0.04 0.04 0.04 0.05 0.05

Gene Name CG1523 CG17148 CG4443 CG8676 CG10602 CG9319

q-value 0.05 0.05 0.05 0.05 0.05 0.05

Gene Name CG4071 CG9796 CG9858 CG11771 CG11836 CG1514

q-value 0.06 0.07 0.07 0.07 0.07 0.07

Gene Name CG9216 CG4920 CG5871 CG11055 CG9763 CG9779

q-value 0.07 0.07 0.07 0.08 0.08 0.09

Gene Name CG1090 CG10997 CG6510 CG2867 CG8187 CG2060

q-value 0.09 0.09 0.09 0.09 0.09 0.09

Gene Name CG8947 CG7048 CG10916 CG3268 CG8739 CG8507

q-value 0.09 0.09 0.09 0.09 0.09 0.09
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Gene Name CG3992 CG12737 CG4759 CG9057 CG4608 CG7319

q-value 0.1 0.1 0.1 0.1 0.1 0.1

Gene Name CG2221 CG3239 CG2903 CG10277 CG18662 CG12177

q-value 0.1 0.1 0.11 0.11 0.11 0.11

Gene Name CG9089 CG3305 CG17818 CG10171 CG3365 CG8286

q-value 0.11 0.11 0.11 0.11 0.11 0.11

Gene Name CG12236 CG15309 CG3492 CG1021 CG9071 CG18627

q-value 0.11 0.11 0.12 0.12 0.12 0.12

Gene Name CG12263 CG1942 CG12131 CG9916 CG9581 CG2694

q-value 0.12 0.12 0.12 0.12 0.12 0.12

Gene Name CG11120 CG9848 CG15433 CG5486 CG10977 CG12251

q-value 0.12 0.12 0.12 0.12 0.12 0.12

Gene Name CG9392 CG1868 CG3756 CG6605 CG14045 CG1105

q-value 0.12 0.12 0.13 0.13 0.13 0.13

Gene Name CG7563 CG4905 CG1891 CG11591 CG9804 CG3262

q-value 0.13 0.13 0.13 0.14 0.14 0.14

Gene Name CG8954 CG3881 CG9140 CG11259 CG6302 CG7197

q-value 0.14 0.14 0.14 0.14 0.14 0.15

Gene Name CG3460 CG1980 CG1193 CG7359 CG18539 CG11010

q-value 0.15 0.15 0.15 0.15 0.15 0.15

Gene Name CG1583 CG17184 CG1462 CG4710 CG11440 CG4294

q-value 0.15 0.16 0.16 0.16 0.16 0.17

Gene Name CG1963 CG6433 CG4897 CG9769 CG5555 CG7841

q-value 0.17 0.17 0.17 0.17 0.18 0.18

Gene Name CG7096 CG6936 CG9553 CG4556 CG11186 CG3045

q-value 0.18 0.18 0.18 0.18 0.18 0.19



142

VITA

Wentao Zhao received the B.S. and M.S. degrees in Electrical Engineering from

the Tsinghua University, Beijing, China, in 1999 and 2002, respectively. He enrolled

in Department of Electrical and Computer Engineering at Texas A&M University in

College Station in June 2002 and obtained a Master degree in August 2005. He then

joined the Genomic Signal Processing group as a Ph.D. student under the supervision

of Dr. Erchin Serpedin and Dr. Edward. R. Dougherty. He was conferred the Ph.D.

degree in August 2008. His research interests included information theory and pattern

recognition in genomic signal processing.

His address is:

Zachry 214

Department of Electrical and Computer Engineering

Texas A&M University

College Station, Texas 77843-3128

The typist for this thesis was Wentao Zhao.


