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ABSTRACT

Estimation of Clock Parameters and Performance Benchmarks for Synchronization

in Wireless Sensor Networks. (August 2008)

Qasim Mahmood Chaudhari,

B.E., National University of Sciences and Technology, Rawalpindi, Pakistan

M.S., University of Southern California, Los Angeles

Co–Chairs of Advisory Committee: Dr. Erchin Serpedin
Dr. Khalid Qaraqe

Recent years have seen a tremendous growth in the development of small sensing

devices capable of data processing and wireless communication through their embed-

ded processors and radios. Wireless Sensor Networks (WSNs) are ad hoc networks

consisting of such devices gaining importance due to their emerging applications. For

a meaningful processing of the information sensed by WSN nodes, the clocks of these

individual nodes need to be matched through some well defined procedures. This

dissertation focuses on deriving efficient estimators for the clock parameters of the

network nodes for synchronization with the reference node and the estimators variance

thresholds are obtained to lower bound the maximum achievable performance.

For any general time synchronization protocol involving a two way message ex-

change mechanism, the BLUE-OS and the MVUE of the clock offset between them is

derived assuming both symmetric and asymmetric exponential network delays. Next,

with the inclusion of clock skew in the model, the joint MLE of clock offset and skew

under both the Gaussian and the exponential delay model and the corresponding al-

gorithms for finding these estimates are presented. Also, for applications where even

clock skew correction cannot maintain long-term clock synchronization, a closed-form
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expression for the joint MLE for a quadratic model is obtained.

Although the derived MLEs are not computationally very complex, two compu-

tationally efficient algorithms have been proposed to estimate the clock offset and

skew regardless of the distribution of the delays. Afterwards, extending the idea of

having inactive nodes in a WSN overhear the two-way timing message communication

between two active (master and slave) nodes, the MLE, the BLUE-OS, the MVUE

and the MMSE estimators for the clock offsets of the inactive nodes located within

the communication range of the active nodes are derived, hence synchronizing with

the reference node at a reduced cost.

Finally, focusing on the the one-way timing exchange mechanism, the joint MLE

for clock phase offset and skew under exponential noise model and the Gibbs Sampler

for a receiver-receiver protocol is formulated and found via a direct algorithm. Lower

and upper bounds for the MSE of JMLE and Gibbs Sampler are introduced in terms

of the MSEs of the MVUE and the conventional BLUE, respectively.
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CHAPTER I

INTRODUCTION

A. Time Synchronization in Distributed Systems

In distributed systems, maintaining the logical clocks of the computers in such a way

that they are never too far apart is one of the most complex problems of computer

engineering. Whether it is the disciplining of computer clocks with the devices syn-

chronized to a GPS satellite or a Network Time Protocol (NTP) time server over the

Internet, it is possible to equip some primary time servers for the purpose of syn-

chronizing a much larger number of secondary servers and clients connected through

a common infrastructure. In order to do this, a distributed network clock synchro-

nization protocol is required through which a server clock can be read, the readings

to other clients can be transmitted and each client clock can be adjusted as required.

In such a distributed synchronization approach, the participating devices exchange

timing information with their chosen reference at regular intervals and adjust their

logical clocks accordingly.

A computer clock in general has two components, namely a frequency source and

a means of accumulating timing events (consisting of a clock interrupt mechanism and

a counter implemented in software). The implementation of the computer clock in

the operating system and the programming interface differ between operating systems

and hardware platforms. However, the basic source of timing are an uncompensated

quartz crystal oscillator and the clock interrupts it generates. Theoretically, two

clocks would remain synchronized if their offsets are set equal and their frequency

sources run at the same rate. However, practical clocks are set with limited precision

ÃThe journal model is IEEE Transactions on Automatic Control.
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and the frequency sources run at slightly different rates. In addition, the frequency of

a crystal oscillator varies due to initial manufacturing tolerance, aging, temperature,

pressure and other factors. Because of these inherent instabilities, distributed clocks

must regularly be synchronized to keep them running close to each other.

Clock synchronization is important for many applications such as Internet delay

measurements, cellular networks, data security algorithms, MAC protocols like Time

Division Multiple Access (TDMA), IP telephony, ordering of updates in database sys-

tems, etc. During the last two decades, many clock synchronization protocols have

been proposed such as [1], [2], [3], etc. The Network Time Protocol (NTP) [1] is

a protocol for synchronizing the clocks of computer systems over packet-switched,

variable-latency data networks and it represents the Internet standard for time syn-

chronization. It is a layered client-server architecture based on the UDP message

passing which synchronizes computer clocks in a hierarchical way using the offset de-

lay estimation method. NTP’s sender-receiver synchronization architecture is widely

accepted in designing time synchronization algorithms and consists of the same two-

way timing message exchange mechanism targeted in most of this dissertation.

A protocol based on the remote clock reading method was put forward by [2],

which handles unbounded message delays between processes. In [3], the time trans-

mission protocol is used by a node to communicate the time on its clock to a target

node, which subsequently estimates the time in the source node by using message

timestamps and message delay statistics.

For ad-hoc communication networks, the time synchronization protocol [4] rep-

resents one of the pioneering contributions in this area. The protocol is based on

generating timestamps to record the time at which an event of interest occurred. The

timestamps are updated by each node using its local clock and the time transforma-

tion method, where the final timestamp is expressed in terms of an interval with a
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lower bound and an upper bound.

B. Time Synchronization in Wireless Sensor Networks

Recent technological advances have made it possible to design miniature devices (sen-

sors) capable of performing onboard sensing, computing and communication tasks.

A Wireless Sensor Network (WSN) consists of a large number of such tiny devices,

called nodes, that are connected in an ad hoc manner without assuming any cen-

tralized infrastructure [5]. Since the WSN nodes are deployed in an ad hoc fashion

and mostly left without any maintenance and battery replacement for their lifetimes,

they are usually cheap and hence unreliable. Therefore, all the design aspects of a

sensor network concentrate on minimizing energy utilization [6]-[8]. With as peculiar

characteristics as limited energy sources, high density of node deployment and cheap

and unreliable sensor nodes, sensor networks are designed to perform complex tasks

such as:

• Environment: Flood detection, forest fire monitoring and ecological and biolog-

ical habitats.

• Military: Presence of hazardous materials, monitoring equipment and ammu-

nition.

• Science: Deep sea exploration, study of cosmic radiation.

• Civil: Surveillance for security in shopping malls and banks, traffic monitoring.

For successfully performing most of their applications, time synchronization in

wireless sensor networks is very important due to a number of reasons:

• Sensor nodes need to coordinate their operations and collaborate to achieve a

complex sensing task. Data fusion is an example of such coordination in which
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data collected at different nodes are aggregated into a meaningful result. For

example, in a vehicle tracking application, sensor nodes report the location and

time at which they sense the vehicle to a sink node that in turn combines this

information to estimate the location sand velocity of the vehicle. Clearly, if the

sensor nodes are not synchronized, the estimates will be inaccurate. Similarly,

the integration of voice, video or environmental data from different sensors and

its processing in a meaningful way requires the node to be synchronized in time.

• Scheduling algorithms such as TDMA can be used to share the transmission

medium in the time domain to eliminate transmission collisions and conserve

energy.

• Time synchronization enables all the nodes in the network to assume efficient

duty cycling operation, i.e., coordinated sleep and wake up modes. For exam-

ple, sensor may go into power saving mode by turning off their sensors and/or

transceivers. When running in these modes, they should sleep and wake up at

coordinated times, such that radio receiver of a node is not turned off when

it has to participate in a pre-assigned activity. This requires precise timing

between sensor nodes.

• Moreover, many localization, security and tracking protocols also demand the

nodes to timestamp their messages and sensing events.

There are a few methods through which the accuracy of the nodes’ clocks can be

improved, e.g., using GPS to synchronize the hardware clocks to a global reference,

using precise clock boards for the nodes, etc. But these solutions prove to be fairly

expensive or inappropriate when the nodes have to be low-cost and energy efficient. In

addition, the sensor nodes may be left unattended for a long period of time, e.g., on the
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ocean floor or in deep space. Also, the conventional network synchronization protocols

cannot be employed due to the WSN constraints mentioned above [9]. Hence, there is

a need for time synchronization protocols specifically designed to the characteristics

of WSNs to make them operate under a common time scale.

Time synchronization in WSNs requires designing a protocol in which the nodes

exchange messages with each other to adjust their clocks to a common reference.

At the same time, it is highly desirable to extract information about their relative

frequency, called clock skew, from the same set of message exchange, because imper-

fections in quartz crystals and environmental conditions cause different nodes to run

at different frequencies. Clock skew adjustment guarantees not only a more accu-

rately synchronized network, but also helps in maintaining this synchronization for a

longer period. Hence, it significantly reduces the resynchronization period, i.e., the

time interval after which the clock difference among the nodes exceeds some set lim-

its and the network has to resynchronize itself, resulting in tremendous reduction in

communication overheads and corresponding energy savings for the whole network.

To deal efficiently with the specific requirements associated with the long-term

operation of WSNs, quite a few synchronization protocols have been designed in

the past few years. Reference Broadcast Synchronization (RBS) [10] is a pioneering

work based on the post-facto receiver-receiver synchronization. In RBS, a reference

broadcast message is sent by a node to two or more neighboring nodes which record

their own local clocks at the reception of broadcasted message. After collecting a few

readings, the nodes exchange their observations and a linear regression approach is

used to estimate their relative clock offset and skew. Timing Synch Protocol for Sensor

Networks (TPSN) [11] is a conventional sender-receiver protocol which assumes two

operational stages: the level discovery phase followed by the synchronization phase.

During the level discovery phase, WSN is organized in the form of a spanning tree,
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and the global synchronization is achieved by enabling each node to get synchronized

with its parent (the node located in the adjacent upper level) by means of a message

exchange mechanism through adjusting only its clock offset. Timing Synchronization

protocol for High Latency acoustic networks (TSHL) [12] combines both of these

approaches in two stages. The first stage is similar to RBS while the second stage is

similar to TPSN, and it is particularly suitable for networks involving high message

delays, e.g., underwater acoustic networks. Flooding Time Synchronization Protocol

(FTSP) [13] also combines the two approaches in the sense that the beacon node

sends its timestamps within the reference broadcast messages.

All of the above mentioned protocols have their own benefits and limitations.

Choosing a protocol which corrects only the clock offset (such as TPSN [11]) results

in more utilization of power since synchronization has to be done frequently at regular

intervals to prevent the clock skew drift the two clocks too far apart. For example,

re-synchronization must be performed after every few minutes in TPSN for applica-

tions using Berkeley motes [14]. On the other hand, an assumption of simultaneous

reception of reference broadcasts is necessary in protocols which correct both the

clock offset and skew (such as RBS [10] and FTSP [13]), which is not only a simplifi-

cation of the correct model but also not applicable in some cases, e.g., in underwater

acoustic sensor networks [12].

C. Sources of Error in Time Synchronization

A description of sources of variability was first described by [15], and extended by [16]

incorporating physical layer jitter. A brief overview of the sources of non-determinism

and hence errors were presented in [12] as below.

1. Send Time: The delay in the packet traversal from the message assembly at the
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application layer all the way down to MAC layer.

2. Access Time: The waiting time for accessing the channel after reaching the

MAC layer. This is the most significant factor and highly variable according to

the specific MAC protocol. The access time is nondeterministic and varies up

to hundreds of milliseconds.

3. Interrupt Handling Time: The delay between the radio chip raising and the

microcontroller responding to an interrupt. It can be an issue if interrupts are

disabled on the microcontroller.

4. Transition and Reception Time: The delay in sending or receiving the entire

length of the packet over the channel. Largely deterministic, a function of

bandwidth and packet size.

5. Propagation Time: The delay, for a particular symbol of the message, in travers-

ing all the way to the receiver. The propagation time can be deterministic if

the speed of propagation is assumed constant, and endpoint location is known.

6. Encoding and Decoding Time: The time taken by the radio chip to encode/decode

and transform a part of the message to/from electromagnetic waves. This time

is deterministic and is in the order of hundred microseconds [3].

7. Byte Alignment Time: The delay because of the different byte alignment at the

receiver. This time is deterministic and can be computed on the receiver side

from the bit offset and the speed of the radio wave.

8. Receive Time: Time for the incoming message to traverse up till the receiver

application. It is highly variable and varies for each (stack,OS) pair.
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Existing time synchronization schemes focus on eliminating or accounting for

these sources of error. Schemes typically differ due to differing assumptions, in which

sources of variation are dominant in different domains, and due to different approaches

to eliminate the sources of error.

D. Contributions of This Research

In 2002, [17] presented a detailed analysis of clock offset estimation for a general

sender-receiver protocol assuming a symmetric exponential delay model. It was im-

plicitly argued that for a known fixed delay τ and exponential delay parameter λ, the

MLE of clock offset does not exist because the likelihood function does not possess

a unique maximum with respect to the clock offset. However, in 2005, it was proved

by [18] that for τ unknown, irrespective of λ being known or unknown, the MLE

of the clock offset does exist and coincides with a previously proposed estimator in

[19] based on experimental data. The current dissertation substantially extends this

research on time synchronization problem as follows.

In Chapter II, the BLUE-OS of the clock offset between two nodes for a sender-

receiver timing exchange paradigm are derived assuming both symmetric and asym-

metric exponential network delays. The Rao-Blackwell-Lehmann-Scheffé theorem is

then exploited to obtain the MVUE for the clock offset and is shown to coincide

with the BLUE-OS. In addition, it is found that the MVUE of the clock offset in the

presence of symmetric network delays also coincides with the MLE. Finally, in the

presence of asymmetric network delays, although the MLE is biased, it is shown to

achieve lesser MSE than the MVUE in the region around the point where the bidi-

rectional network link delays are symmetric and hence its merit as the most versatile

estimator is fairly justified.
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Chapter III focuses on analyzing and deriving the MLEs and the corresponding

CRLBs for the conventional clock offset model in a sender-receiver timing exchange

assuming Gaussian model for the noise. Next, the joint MLE and corresponding

CRLB using a more realistic linear clock offset and skew model assuming Gaussian

random delays are also obtained. The MLEs for the clock offset only case, and both

the clock offset and skew case, under exponential delay assumption are then derived

and the corresponding algorithms for finding these estimates are also presented in

detail.

Although the MLEs are robust and have a computational complexity still im-

plementable, simpler algorithms even with the sacrifice of some performance grade,

are more suited to low power constraints of WSNs. Therefore, Chapter IV discusses

two simplified schemes to estimate both the clock offset and skew requiring negligible

computations. The first scheme utilizes the first and the last sample of the observa-

tions and the estimators are derived under both the Gaussian and exponential delay

models, while the second scheme fits a line between two points at minimum distance

apart regardless of the actual delay distribution involved. The simulation results for

a comparison of performance with the MLE are also presented.

Extending the idea of having inactive nodes in a WSN overhear the two-way tim-

ing message communication between two active (master and slave) nodes, Chapter V

derives the MLE for the clock offsets of the inactive nodes located within the commu-

nication range of the active nodes by assuming an exponential link delay modeling,

hence synchronizing with the reference node at essentially zero cost. A vital impli-

cation of this work is that the performance of the sender-receiver protocols, whose

main disadvantage has always been categorized as the high communication overhead

in WSN scenarios due to their point-to-point rather than the broadcast nature, can

be compared with that of receiver-receiver protocols on equal grounds. In addition,
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the CRLBs for both the active and inactive nodes are also obtained as a performance

benchmark.

Chapter VI advances the results from Chapter V in two domains: First, the

BLUE-OS is derived by applying general least-squares theory to an ordered sample.

The MVUE is also obtained by the application of Rao-Blackwell-Lehmann-Scheffé

theorem, which is shown to coincide with the BLUE-OS. In addition, since the MSE

is usually selected as the performance criterion in estimation theory, which can be

further decreased by adding slight bias to an estimator at a cost of reduced variance,

an MMSE estimator with expected loss independent of the clock offset and fixed delay

is also derived outperforming the MVUE. Second, the results presented there are gen-

eralized by addressing the problem for both symmetric and asymmetric exponential

delays, since the practical message exchange involves asymmetry in general for each

direction.

Since many applications require long-term synchronization among the nodes, and

experiments have shown that a quadratic model of clock variations can better capture

the dynamics of the actual clock model involved, the MLE for all the clock parameters

in a two-way timing exchange model with exponential delays are derived in Chapter

VII.

Focusing on a receiver-receiver protocol, Chapter VIII then obtains the joint MLE

for the clock offset and skew under exponential noise model. The Gibbs Sampler is

also proposed for joint clock offset and skew estimation and shown to provide superior

performance relative to JML-estimator. Lower and upper bounds for the MSEs of

the JML-estimator and Gibbs Sampler are introduced in terms of the MSE of the

MVUE and the conventional BLUE, respectively.

Finally, Chapter IX summarizes the results of the dissertation with concluding

remarks and also formulates some possible future research directions. It should be
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noted that the results presented in this dissertation are applicable to a wide range of

time transfer problems either directly or through some minor extensions.
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CHAPTER II

BLUE-OS AND MVUE FOR CLOCK OFFSET

Assuming both symmetric and asymmetric exponentially distributed network link

delays, this chapter focuses on finding the BLUE-OS and the MVUE for the clock

offset between two nodes and evaluates their performance in terms of the MSE, which

is chosen as the performance criterion throughout this dissertation. The timing ex-

change mechanism between the two nodes is the same classical two-way message

exchange mechanism adopted in protocols such as NTP [1], TPSN [11], etc. The

main contributions of this chapter are as follows.

1. A relatively unnoticed estimation scheme in engineering literature, the BLUE-

OS, is investigated in the context of clock offset and relevant clock offset esti-

mators are derived.

2. The Rao-Blackwell-Lehmann-Scheffé theorem is then used to derive the MVUE

and it is shown that the MVUE coincides with the BLUE-OS. Therefore, in the

class of unbiased estimators, BLUE-OS is the optimal solution and no other

estimator can be found with lesser MSE (or variance, which is the same as MSE

in the unbiased case) than the MVUE. For the sake of completion, the clock

offset estimators are also derived in two scenarios, namely when the mean of the

exponential link delays is known and unknown for each direction, respectively.

3. A short commentary on whether the MVUE is the best possible solution as

compared to the other estimators such as the MLE is presented. It is shown

that in the most practical scenario, i.e., asymmetric link delays with unknown

exponential means, the MLE derived in the presence of symmetric link delays,

although biased for asymmetric link delays, it outperforms the MVUE in terms
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of the achievable MSE in the region around the point of link symmetry.

A. The System Architecture

Adopting the classical approach of sender-receiver synchronization for performing a

timing handshake between a pair of nodes, the uplink and downlink timing message

exchanges between two clocks A and B are shown in Fig. 1. The messages T1,k and

T4,k represent the times measured by the local clock of node A, while the messages T2,k

and T3,k represent the times measured by the local clock of node B (which is also the

reference). The synchronization procedure starts at time T1,1 and at each successive

message exchange round k, node A sends a synchronization packet containing the

timestamp T1,k to node B which records its reception time as T2,k. At T3,k, node

B sends an acknowledgement packet back to node A containing the timestamps T2,k

and T3,k, which is delivered and timestamped at time T4,k in accordance with node

A clock. This process between the two nodes is repeated N times, where N stands

for the required number of samples. It should be noted that N is a function of the

target synchronization accuracy and the price the protocol is willing to invest in the

form of network resources.

Based on the above pairwise synchronization message exchange mechanism, the

clock offset measurement model can be represented in terms of these two equations:

T2,k = T1,k + τ + φ + Xk,

T4,k = T3,k + τ − φ + Yk.

For simplification, the above equations will be rewritten as

Uk = τ + φ + Xk,

Vk = τ − φ + Yk,
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2,kT
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φ

Fig. 1. A sender-receiver timing message exchange paradigm.

where Uk , T2,k − T1,k and Vk , T4,k − T3,k. The quantity τ symbolizes the fixed

portions of the delays assumed to be symmetric for each direction, Xk and Yk denote

the variable portions of delays and assume exponential distributions with means α

and β, respectively, and φ stands for the clock offset of reference node B with respect

to node A.

Network delay modeling has always been an active research topic for the last

decades. Out of the proposed probability density function models to capture the

distribution of the network delays, the Weibull, exponential, Gamma, and log-normal

distributions [20] - [22] have received the greatest attention. There are various reasons

behind choosing the exponential distribution for the purpose of this study. Reference

[23] collected several traces of delay measurements on the Internet and MBone [24]

for more than a month using constant length UDP packets whose payloads consisted

of a sequence number and a timestamp sent out at periodic intervals. The expo-

nential distribution provided quite a satisfactory fit for the measurements obtained

in the experiment. In addition, a single-server M/M/1 queue can fittingly represent

the cumulative link delay for point-to-point hypothetical reference connections, where
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the random delays are independently modeled as exponential random variables [17].

Moreover, [17] proposed five different clock offset estimation algorithms such as the

median round delay, the minimum round delay, the minimum link delay, the median

phase and the average phase, amongst which the minimum link delay algorithm has

been experimentally demonstrated to be superior than the rest [19]. Reference [18]

later mathematically proved that this algorithm yields the maximum likelihood es-

timate under exponential link delays. All these results confirm that the assumption

of exponential distribution for network delays is a sufficiently adequate model for

experimental observations.

In [18], it was argued that for an unknown τ , irrespective of the symmetric

exponential distribution mean α = β , λ being known or unknown, the MLE of the

vector parameter ΦS
MLE = [τ φ λ] is given by

ΦS
MLE =




τ̂S
MLE

φ̂S
MLE

λ̂S
MLE




=
1

2




U(1) + V(1)

U(1) − V(1)

U + V − (
U(1) + V(1)

)




, (2.1)

where the subscript S represents the symmetric delay case, U(1) and V(1) denote the

minimum order statistics and U and V represent the sample average of the data

{Uk}N
k=1 and {Vk}N

k=1, respectively. When λ is known, the MLE of {τ, φ} remains the

same.

Next, the BLUE-OS and MVUE are derived for both asymmetric and symmetric

cases, assuming known and unknown exponential delay means.

B. Best Linear Unbiased Estimation Using Order Statistics (BLUE-OS)

Deriving regular BLUE for a problem yields suboptimal results in general, since the

class of unbiased estimators, within which the search is performed, is restricted to be
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linear. In the case when the noise is normally distributed, the direct application of

BLUE provides the optimal solution by virtue of the Gauss-Markov theorem. But

for other distributions, including the exponential distribution as is the case with

modeling framework adopted in this chapter, the application of BLUE is not of much

significance. However, for a general location-scale distribution, [25] suggested a new

technique based on the derivation of BLUE using order statistics instead of just the

raw observations. Such a technique will be applied herein to the target scenario as

follows.

Let the order statistics of the observations {Uk}N
k=1 and {Vk}N

k=1 be denoted as

{U(k)}N
k=1 and {V(k)}N

k=1, respectively. Define

U ′
k , 1

α
(Uk − τ − φ) ,

V ′
k , 1

β
(Vk − τ + φ) ,

which are a set of independent observations on the standardized variate and hence

their distribution is parameter-free. The order statistics of U ′
k and V ′

k are denoted by

U ′
(k) and V ′

(k), respectively. The following relations hold:

E
[
U(k)

]
= τ + φ + αE

[
U ′

(k)

]
, E

[
V(k)

]
= τ − φ + βE

[
V ′

(k)

]
,

var
[
U(k)

]
= α2var

[
U′

(k)

]
, var

[
V(k)

]
= β2var

[
V′

(k)

]
,

cov
[
U(k)U(j)

]
= α2cov

[
U ′

(k)U
′
(j)

]
, cov

[
V(k)V(j)

]
= β2cov

[
V ′

(k)V
′
(j)

]
.

Now using standard results from [26], the statistics of the ordered samples can be
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expressed as

E
[
U ′

(k)

]
= E

[
V ′

(k)

]
=

k∑
i=1

1

(N − i + 1)
,

var
[
U ′

(k)

]
= var

[
V ′

(k)

]
=

k∑
i=1

1

(N − i + 1)2
,

cov
[
U ′

(k)U
′
(j)

]
= cov

[
V ′

(k)V
′
(j)

]
=

k∑
i=1

1

(N − i + 1)2
.

As a result, the N ×N symmetric positive-definite covariance matrix C for both U ′
(k)

and V ′
(k) takes the form:

C =




1
N2

1
N2 · · · 1

N2

1
N2

1
N2 + 1

(N−1)2
· · · 1

N2 + 1
(N−1)2

...
... · · · ...

1
N2

1
N2 + 1

(N−1)2
· · · ∑N

k=1
1

(N−k+1)2




.

A simple exercise utilizing Gauss-Jordan elimination yields the following closed-form

expression for the inverse of the covariance matrix:

C−1 =




N2 + (N − 1)2 −(N − 1)2 0 · · · 0

−(N − 1)2 (N − 1)2 + (N − 2)2 −(N − 2)2 · · · 0

0 −(N − 2)2 (N − 2)2 + (N − 3)2 · · · 0

...
...

... · · · ...

0 0 0 · · · 1




.

The BLUE-OS will be next derived separately for both symmetric and asymmet-

ric network delays.
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1. Symmetric Link Delays

The symmetric network delay assumption holds true for some realistic scenarios,

specially when the nodes have a direct communication link between them and the

topology of the network is constant. In this case, α = β , λ. Consider the BLUE-OS

ΦS
BLUE−OS , [τ φ λ]T , which is a linear function of an ordered set of observations

{U(k)}N
k=1 and {V(k)}N

k=1. Let z , [U(1) U(2) · · · U(N) V(1) V(2) · · · V(N)]
T . Then, it is

straightforward to notice that

E [z] =




1 1 · · · 1 1 1 · · · 1

1 1 · · · 1 −1 −1 · · · −1

1
N

1
N

+ 1
N−1

· · · ∑N
k=1

1
(N−k+1)

1
N

1
N

+ 1
N−1

· · · ∑N
k=1

1
(N−k+1)




T

×




τ

φ

λ




= QΦS
BLUE−OS,

where z is the 2N×1 ordered data vector, Q is a known matrix of dimension 2N×3 and

ΦS
BLUE−OS is the 3× 1 vector of unknown parameters. The above linear relationship

lends the problem to be solved by the Gauss-Markov theorem as follows:

Φ̂S
BLUE−OS =

(
QTCz

−1Q
)−1

QTCz
−1z.

Since {U(k)}N
k=1 and {V(k)}N

k=1 are independent data sets, Cz is now given by

Cz = λ2



C 0

0 C


 ,
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and its inverse can be expressed as

Cz
−1 =

1

λ2



C−1 0

0 C−1


 .

It follows that

QTCz
−1Q =

1

λ2




2N2 0 2N

0 2N2 0

2N 0 2N




,

and its inverse is

(
QTCz

−1Q
)−1

=
λ2

2N (N − 1)




1 0 −1

0 N−1
N

0

−1 0 N




. (2.2)

This yields the multiplicative factor of z as

(
QTCz

−1Q
)−1

QTCz
−1 =

1

2N (N − 1)




N2 − 1 −1 · · · −1 N2 − 1 −1 · · · −1

N (N − 1) 0 · · · 0 −N (N − 1) 0 · · · 0

N −N2 N · · · N N −N2 N · · · N




.
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Therefore, the BLUE-OS in the symmetric exponential network delays case is given

by

Φ̂S
BLUE−OS =




τ̂S
BLUE−OS

φ̂S
BLUE−OS

λ̂S
BLUE−OS




=
1

2N (N − 1)




(N2 − 1) U(1) −
N∑

k=2

U(k) + (N2 − 1) V(1) −
N∑

k=2

V(k)

N (N − 1) U(1) −N (N − 1) V(1)

(N −N2) U(1) +
N∑

k=2

U(k) + (N −N2) V(1) +
N∑

k=2

V(k)




=
1

2 (N − 1)




N
(
U(1) + V(1)

)− (
U + V

)

(N − 1)
(
U(1) − V(1)

)

N
{(

U + V
)− (

U(1) + V(1)

)}




, (2.3)

with U and V representing the sample averages of the data sets {Uk}N
k=1 and {Vk}N

k=1,

respectively, and which coincide with the sample averages of ordered observations

{U(k)}N
k=1 and {V(k)}N

k=1, respectively. Note that the BLUE-OS of the clock offset

matches the MLE in (2.1).

2. Asymmetric Link Delays

In many broadband and wireless channels, and ad-hoc networks with time-varying

topologies, the symmetric network delay assumption does not hold and applying the

same results derived under the symmetric assumption is suboptimal. Therefore, a

study for deriving the efficient estimators in this case is of paramount importance.

Let ΦA
BLUE−OS , [τ φ α β]T , then the linear model based on the ordered observations
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can be expressed as

E [z] =




1 1 · · · 1 1 1 · · · 1

1 1 · · · 1 −1 −1 · · · −1

1
N

1
N

+ 1
N−1

· · · ∑N
k=1

1
(N−k+1)

0 0 · · · 0

0 0 · · · 0 1
N

1
N

+ 1
N−1

· · · ∑N
k=1

1
(N−k+1)




T

×




τ

φ

α

β




= QΦA
BLUE−OS,

where z is again a 2N × 1 concatenated vector of ordered data U(k) and V(k), Q is a

known matrix of dimension 2N × 4 and ΦA
BLUE−OS is the 4 × 1 vector of unknown

parameters. Since the model has been shown to be linear in terms of the ordered

observations, the BLUE-OS is now given by

Φ̂A
BLUE−OS =

(
QTCz

−1Q
)−1

QTCz
−1z,

where Cz is the joint covariance matrix for U(k) and V(k). Due to their mutual inde-

pendence, Cz can be expressed as

Cz =




α2C 0

0 β2C


 ,

and its inverse can be written as

Cz
−1 =

1

α2β2




β2C−1 0

0 α2C−1


 .



22

Based on the above expression, it follows that

QTCz
−1Q =




(α−2 + β−2)N2 (α−2 − β−2)N2 α−2N β−2N

(α−2 − β−2)N2 (α−2 + β−2)N2 α−2N −β−2N

α−2N α−2N α−2N 0

β−2N −β−2N 0 β−2N




and its inverse takes the form

(
QTCz

−1Q
)−1

=
1

2N (N − 1)




1
2
(α2 + β2) 1

2
(α2 − β2) −α2 −β2

1
2
(α2 − β2) 1

2
(α2 + β2) −α2 β2

−α2 −α2 2Nα2 0

−β2 β2 0 2Nβ2




(2.4)

Consequently,

(
QTCz

−1Q
)−1

QTCz
−1 =

1

2N (N − 1)

[
A B

]
,

where the matrices A and B are defined as

A =




N2

α2

(
α2+β2

2
+ α2−β2

2

)
− 1 −1 · · · −1

N2

α2

(
α2−β2

2
+ α2+β2

2

)
− 1 −1 · · · −1

2N − 2N2 2N · · · 2N

0 0 · · · 0




,

B =




N2

β2

(
α2+β2

2
− α2−β2

2

)
− 1 −1 · · · −1

N2

β2

(
α2−β2

2
− α2+β2

2

)
+ 1 1 · · · 1

0 0 · · · 0

2N − 2N2 2N · · · 2N




.
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It follows from the above equations that

(
QTCz

−1Q
)−1

QTCz
−1 =

1

2N (N − 1)




N2 − 1 −1 · · · −1 N2 − 1 −1 · · · −1

N2 − 1 −1 · · · −1 −(N2 − 1) 1 · · · 1

2N − 2N2 2N · · · 2N 0 0 · · · 0

0 0 · · · 0 2N − 2N2 2N · · · 2N




,

which implies

Φ̂A
BLUE−OS =




τ̂A
BLUE−OS

φ̂A
BLUE−OS

α̂A
BLUE−OS

β̂A
BLUE−OS




=
1

2N (N − 1)




(N2 − 1) U(1) −
N∑

k=2

U(k) + (N2 − 1) V(1) −
N∑

k=2

V(k)

(N2 − 1) U(1) −
N∑

k=2

U(k) − (N2 − 1) V(1) +
N∑

k=2

V(k)

2NU(1) − 2N2U(1) + 2N
N∑

k=2

U(k)

2NV(1) − 2N2V(1) + 2N
N∑

k=2

V(k)




=
1

2 (N − 1)




N
(
U(1) + V(1)

)− (
U + V

)

N
(
U(1) − V(1)

)− (
U − V

)

2N
(
U − U(1)

)

2N
(
V − V(1)

)




. (2.5)

C. Minimum Variance Unbiased Estimation (MVUE)

In parameter estimation, very often the ultimate goal is to find the estimator that

achieves the minimum MSE, and it is usually the criterion of choice. However, it is well
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known in theory that the optimal MSE estimators are usually not realizable. Since the

MSE is the sum of estimator variance and squared bias, a technique chosen to attain

realizable yet best estimators is to constrain the bias to be zero (since the dependance

of minimum MSE estimator on the unknown parameter typically comes from the

bias). Therefore, restricting the possible estimators to be unbiased and then finding

the estimator with the smallest variance for all values of the unknown parameter

yields the optimal solution within the class of unbiased estimators. Therefore, we will

resort on the concept of MVUE.

The “turn-the-crank” procedure to derive the MVUE in estimation theory is

based on the Rao-Blackwell-Lehmann-Scheffé theorem. First, the likelihood function

should be factored according to Neymann-Fisher factorization theorem yielding the

sufficient statistics T. Then, it should be determined if the sufficient statistics are

complete. Finally, either for any unbiased estimator θ̌, θ̂ = E[θ̌|T] should be evalu-

ated, or a function g(T) of the sufficient statistics should be found such that θ̂ = g(T)

is an unbiased estimator, producing θ̂ as the MVUE. The approach that we will follow

next relies on similar steps.

1. Asymmetric Link Delays

Starting with the asymmetric case, the likelihood function for the clock offset as a

function of observations {Uk}N
k=1 and {Vk}N

k=1 is given by

L (τ, φ, α, β) = α−N exp

[
− 1

α

N∑

k=1

{Uk − τ − φ}
]
. β−N exp

[
− 1

β

N∑

k=1

{Vk − τ + φ}
]
.

I
[
U(1) − τ − φ

]
. I

[
V(1) − τ + φ

]
, (2.6)
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where I[·] denotes the unit step function. Exploiting the fact that the raw sample

mean and the ordered sample mean are actually the same, (2.6) can be factored as

L(τ, φ, α, β) = g1

(
N∑

k=1

U(k), τ, φ, α

)
g2

(
N∑

k=1

V(k), τ, φ, β

)
g3(U(1), τ, φ)g4(V(1), τ, φ)×

h1(Uk, Vk)

where

g1

(
N∑

k=1

U(k), τ, φ, α

)
= α−Ne

− 1
α

N∑
k=1

(U(k)−τ−φ)
, g3

(
U(1), τ, φ

)
= I

[
U(1) − τ − φ

]
,

g2

(
N∑

k=1

V(k), τ, φ, β

)
= β−Ne

− 1
β

N∑
k=1

(V(k)−τ+φ)
, g4

(
V(1), τ, φ

)
= I

[
V(1) − τ + φ

]
,

h1 (Uk, Vk) = 1.

In the above relations, h1(Uk, Vk) is independent of the unknown vector parameter

ΦA−U
MVUE = [τ φ α β]T , whereas g1(

∑N
k=1 U(k), τ, φ, α), g2(

∑N
k=1 V(k), τ, φ, β), g3(U(1), τ, φ)

and g4(V(1), τ, φ) are functions depending on the data through T = {∑N
k=1 U(k), U(1),

∑N
k=1 V(k), V(1)}. Therefore, according to Neyman-Fisher factorization theorem, T is

a sufficient statistic for ΦA−U
MVUE.

Since dim(T) = dim(ΦA−U
MVUE), it is easier to determine the MVUE directly from

T without having to evaluate E[Φ̌A−U
MVUE|T] by finding a 4×1 vector function Φ̂A−U

MVUE

such that E[Φ̂A−U
MVUE] = ΦA−U

MVUE, provided that T is a complete sufficient statistic.

Finding the probability density function (pdf) of T is required to prove that T is

complete but the problem of finding this pdf is a little complex, because
∑N

k=1 U(k)

and U(1), and similarly
∑N

k=1 V(k) and V(1), are not independent.

The joint pdf of U(1), U(2), · · ·, U(N) is given by

p
(
U(1), U(2), · · ·, U(N)

)
= N !α−Ne

− 1
α

N∑
k=1
{U(k)−τ−φ}

.

N∏

k=1

I
[
U(k) − τ − φ

]
, (2.7)
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whereas the pdf of the minimum order statistic U(1) is also exponential with mean

α/N . Now consider the transformation

zk = (N − k + 1)
(
U(k) − U(k−1)

)
, k = 1, 2, · · ·, N,

where U(0) = τ + φ. Since
∑N

k=1(U(k) − τ − φ) =
∑N

k=1 zk and the Jacobian of the

transformation is N !, a substitution in (2.7) reveals that

p (z1, z2, · · ·, zN) = α−Ne
− 1

α

N∑
k=1

zk

.

N∏

k=1

I [zk] ,

i.e., zk are independent exponential random variables with similar mean α. In addi-

tion, since each zk ∼ exp(α), each zk assumes a Gamma distribution zk ∼ Γ(1, α),

too. Using the relationship
∑N

k=1(U(k) − U(1)) =
∑N

k=2 zk, and the fact that each of

z2, z3, · · ·, zN is independent of z1 (and hence of U(1), since z1 = N(U(1) − τ − φ)),
∑N

k=1(U(k) − U(1)) ∼ Γ(N − 1, α) and is independent of U(1).

By a similar reasoning, it can be deduced that
∑N

k=1(V(k) − V(1)) ∼ Γ(N − 1, β)

and is independent of V(1). Therefore, the one-to-one function T′ = {∑N
k=1(U(k) −

U(1)), U(1),
∑N

k=1(V(k) − V(1)), V(1)} of T is also sufficient for estimating ΦA−U
MVUE be-

cause the sufficient statistics are unique within one-to-one transformations [27]. Con-

sequently, T′ comprises of four independent random variables, that in terms of the

three-parameter Gamma distribution assume the distributions:

r =
N∑

k=1

(U(k) − U(1)) ∼ Γ (N − 1, α, 0) , s =
N∑

k=1

(V(k) − V(1)) ∼ Γ (N − 1, β, 0) ,

U(1) ∼ Γ (1, α/N, τ + φ) , V(1) ∼ Γ (1, β/N, τ − φ) .

Note that the domains of r and s are controlled by U(1) and V(1), respectively.

Next, it has to be checked whether T′, or equivalently T, is complete. Completeness

implies that there is but one function of T that is unbiased. Let g(T′) be a function
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of T′ such that E[g(T′)] = ΦA−U
MVUE. Suppose that there exists another function h for

which E[h(T′)] = ΦA−U
MVUE is also true. Then,

E [g (T′)− h (T′)] = E [π (T′)] = 0 ∀ ΦA−U
MVUE

where π(T′) , g(T′)−h(T′) and the expectation is taken with respect to p(T′;ΦA−U
MVUE).

As a result,

∫ ∫ ∫ ∫

RU(1),V(1)

π
(
r, U(1), s, V(1)

)
.

α−(N−1)

Γ (N − 1)
rN−2e−

r
α .

N

α
e−

N
α {U(1)−τ−φ}.

β−(N−1)

Γ (N − 1)
sN−2e−

s
β .

N

β
e−

N
β {V(1)−τ+φ} dr dU(1) ds dV(1) = 0 ∀ ΦA−U

MVUE

where RU(1),V(1)
is the region defined by I[U(1)− τ −φ] and I[V(1)− τ −φ]. The above

relation can be expressed as

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
π

(
r, U(1), s, V(1)

)
. rN−2sN−2e

−
{

r
α

+
NU(1)

α
+ s

β
+

NV(1)
β

}

dr dU(1) ds dV(1) = 0 ∀ ΦA−U
MVUE

The expression on the left above is the four-dimensional Laplace transform of the

function π(T′). It follows from the uniqueness theorem for two-sided Laplace trans-

form that π(T′) = 0 almost everywhere, resulting in g(T′) = h(T′) and hence there

is only one unbiased function of T′. This proves that the statistic T′, or equivalently

T, is complete for estimating ΦA−U
MVUE when the links are asymmetric and both α and

β are unknown.

Finally, the complete sufficient statistic T is also minimal owing to Bahadur’s

theorem [28] which states that if T, taking values in <k, is sufficient for ΦA−U
MVUE and

boundedly complete, then T is minimal sufficient.

What remains is finding an unbiased estimator for ΦA−U
MVUE as a function of T,

which is the MVUE according to the Rao-Blackwell-Lehmann-Scheffé theorem. At
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first, it may seem difficult to find four unbiased functions of T for each of τ , φ, α and

β just by inspection. But note that BLUE-OS Φ̂A
BLUE−OS in (2.5) is also an unbiased

function of T. Hence, it is concluded that the BLUE-OS is also the MVUE.

Φ̂A−U
MVUE =




τ̂A−U
MV UE

φ̂A−U
MV UE

α̂A−U
MV UE

β̂A−U
MV UE




=
1

2 (N − 1)




N
(
U(1) + V(1)

)− (
U + V

)

N
(
U(1) − V(1)

)− (
U − V

)

2N
(
U − U(1)

)

2N
(
V − V(1)

)




. (2.8)

The covariance matrix of this estimator is given by (2.4) and hence minimum vari-

ances of the clock offsets, fixed and mean delay parameters are given by its diagonal

elements, whereas the total mean square error for the vector parameter Φ̂A−U
MVUE is

the trace of this matrix.

As a result, the MVUE for the desired parameter, the clock offset, for asymmetric

unknown network delays is expressed as

φ̂A−U
MV UE =

1

N − 1

[
N

U(1) − V(1)

2
− U − V

2

]
, (2.9)

and its variance or MSE is written as

var
(
φ̂A−U

MVUE

)
=

1

4N (N − 1)

(
α2 + β2

)
.

Similarly, the MVUE of the fixed delay τ and mean link delays α and β are the

same as in (2.5). For the sake of completion, the MVUE is also given when α and β

are known. It is straightforward to see from (2.6) that U(1) and V(1) are the complete

minimal sufficient statistic for estimating τ and φ. The only unbiased functions of
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{U(1), V(1)} yielding ΦA−K
MVUE are

Φ̂A−K
MVUE =




τ̂A−K
MV UE

φ̂A−K
MV UE


 =

1

2




(
U(1) − α

N

)
+

(
V(1) − β

N

)
(
U(1) − α

N

)− (
V(1) − β

N

)


 . (2.10)

2. Symmetric Link Delays

In the symmetric case when α = β , λ, the likelihood function for the clock offset as

a function of observations {Uk}N
k=1 and {Vk}N

k=1 is

L (τ, φ, λ) = λ−2N exp

[
−1

λ

N∑

k=1

{Uk + Vk − 2τ}
]
. I

[
U(1) − τ − φ

]
.

I
[
V(1) − τ + φ

]
. (2.11)

Apparently, for unknown λ, it seems that {∑N
k=1 Uk, U(1),

∑N
k=1 Vk, V(1)} are again

the sufficient statistics for the estimation of ΦS−U
MVUE = [τ φ λ]T . But then they have

already generated two unbiased clock offset estimators, given by (2.3) and (2.5).

Naturally, this question arises: since the same sufficient statistics have been proved

complete, how can they yield two unbiased estimators? The answer to this lies in the

consistency of science when we note that (2.11) can be factored as

L (τ, φ, α, β) = g1

(
N∑

k=1

U(k),

N∑

k=1

V(k), τ, λ

)
g2

(
U(1), τ, φ

)
g3

(
V(1), τ, φ

)
h1 (Uk, Vk) ,

where

g1

(
N∑

k=1

U(k),

N∑

k=1

V(k), τ, λ

)
= λ−2N exp

[
−1

λ

N∑

k=1

{Uk + Vk − 2τ}
]
,

g2

(
U(1), τ, φ

)
= I

[
U(1) − τ − φ

]
, g3

(
V(1), τ, φ

)
= I

[
V(1) − τ + φ

]
, h1 (Uk, Vk) = 1.

It turns out that T = {∑N
k=1(Uk + Vk), U(1), V(1)} is the actual minimal sufficient

statistic instead of {∑N
k=1 Uk, U(1),

∑N
k=1 Vk, V(1)} according to Neymann-Fisher Fac-

torization theorem. Consequently, the clock offset estimator in (2.5) is not even a
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choice to consider for not being a function of T.

Now proceeding similarly as before,
∑N

k=1(Uk + Vk) is dependent on both U(1)

and V(1). As a result, T can be transformed into T′ = {∑N
k=1(Uk − U(1) + Vk −

V(1)), U(1), V(1)}. It is evident from the reasoning in the last subsection that
∑N

k=1(Uk−
U(1) + Vk − V(1)) is Gamma distributed with parameters (2(N − 1), λ). Hence, T′ is

a combination of three independent random variables, which in terms of the three

parameter Gamma distribution assume the distributions

r =
∑N

k=1(Uk − U(1) + Vk − V(1)) ∼ Γ (2 (N − 1) , λ, 0) ,

U(1) ∼ Γ (1, λ/N, τ + φ) , V(1) ∼ Γ (1, λ/N, τ − φ) .

Next, defining g(T′) and h(T′) as functions of T′ such that E[g(T′)] = E[h(T′)] =

ΦS−U
MVUE,

E [g (T′)− h (T′)] = E [π (T′)] = 0 ∀ ΦS−U
MVUE

where the expectation is taken with respect to pT′(T
′;ΦS−U

MVUE). As a result, since

the domain of r and s are controlled by U(1) and V(1), respectively

∫ ∫ ∫

RU(1),V(1)

π
(
r, U(1), V(1)

)
.

λ−{2(N−1)}

Γ [2 (N − 1)]
r2N−3e−

r
λ .

(
N

λ

)2

e−
N
λ {U(1)+V(1)−2τ}.

dr dU(1) dV(1) = 0 ∀ ΦS−U
MVUE

where RU(1),V(1)
is the region defined by I[U(1) − τ − φ] and I[V(1) − τ − φ]. It follows

that

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
π

(
r, U(1), V(1)

)
. r2N−3e−

N
λ { r

N
+U(1)+V(1)} dr dU(1) dV(1) = 0 ∀ ΦS−U

MVUE

From the uniqueness theorem for the two-sided Laplace transform, it follows that

π(T′) = 0 almost everywhere, resulting in the completeness of T′, or equivalently T.

Hence, T is also the minimal sufficient statistics from Bahadur’s theorem and the
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MVUE is the same as Φ̂S
BLUE−OS in (2.3) expressed as

Φ̂S−U
MVUE =




τ̂S−U
MV UE

φ̂S−U
MV UE

λ̂S−U
MV UE




=
1

2 (N − 1)




N
(
U(1) + V(1)

)− (
U + V

)

(N − 1)
(
U(1) − V(1)

)

N
{(

U + V
)− (

U(1) + V(1)

)}




. (2.12)

The covariance matrix of this estimator is given by (2.2) and the diagonal elements

represent the variance of each individual unknown parameter, whereas the trace of this

matrix is the total mean square error or variance for the vector parameter ΦS−U
MVUE.

Hence, the MVUE for the clock offset, in the case of symmetric unknown network

delays, is expressed as

φ̂S−U
MV UE =

U(1) − V(1)

2
, (2.13)

and its variance or MSE is

var
(
φ̂S−U

MVUE

)
=

λ2

2N2
.

Furthermore, the MVUEs for the fixed delay τ and mean link delay λ under the

symmetric assumption match the ones in (2.3). Finally, following a similar procedure,

when λ is known, the sufficient statistics are U(1) and V(1) and the MVUE is

Φ̂S−K
MVUE =




τ̂S−K
MV UE

φ̂S−K
MV UE


 =

1

2




U(1) + V(1)

U(1) − V(1)


 . (2.14)

D. Explanatory Remarks

Summarizing the results derived so far, Tables I and II show the MVUE for the clock

offset for the possible combinations of symmetries/asymmetries in the network delays

and knowledge of the mean link delay parameters from equations (2.8), (2.10), (2.12)

and (2.14).
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Table I. The MVUE for the clock offset for known mean link delay

Clock Offset Delay Mean Known

MVUE
(
U(1) − V(1)

)
/2

Symmetric Delays MSE λ2/2N2

Remarks Same as MLE

MVUE
[(

U(1) − α
N

)− (
V(1) − β

N

)]
/2

Asymmetric Delays MSE (α2 + β2)/4N2

Remarks Bias-compensated MLE

Table II. The MVUE for the clock offset for unknown mean link delay

Clock Offset Delay Mean Unknown

MVUE
(
U(1) − V(1)

)
/2

Symmetric Delays MSE λ2/2N2

Remarks Same as MLE and BLUE-OS

MVUE
[
N

(
U(1) − V(1)

)− (
U − V

)]
/2 (N − 1)

Asymmetric Delays MSE (α2 + β2)/4N(N − 1)

Remarks Same as BLUE-OS
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It is evident from Tables I and II that in practical scenarios where the means

of the exponentially distributed delays are unknown, the MVUE is given by (2.9) or

(2.13) depending on whether the network delays are asymmetric or symmetric. A

natural question arises at this stage: which estimator is better when these network

delays are slightly asymmetric. To answer this question, note that the MVUE is not

always the best estimator, it is only the best among unbiased estimators. If some

estimator is devised having reduced variance with relatively lesser resultant increase

in squared bias, then it can outperform the MVUE in the MSE sense. Hence, for the

asymmetric unknown mean link delays case, we will compare the MSE of the MLE

in (2.1) with the MVUE in (2.9) as follows:

MSE
(
φA−U

MV UE

)
=

1

4N(N − 1)

(
α2 + β2

)
(2.15)

MSE (φMLE) =
1

4N2

(
α2 + β2

)
+

1

4N2
(α− β)2

=
1

2N2

(
α2 + β2 − αβ

)
. (2.16)

Notice that though φMLE is biased in the most realistic setting, i.e., asymmetric

unknown mean link delays, in accordance with (2.15) and (2.16), it outperforms the

MVUE under the condition

1

4N(N − 1)

(
α2 + β2

)
>

1

2N2

(
α2 + β2 − αβ

)
,

which can be expressed equivalently as:

N

2
− 1 <

αβ

(α− β)2 , f(α, β). (2.17)

The above relations bring into attention a number of remarks. First, (2.17)

provides the number of timing synchronization messages N to be exchanged given

α and β, up to which the MLE has lesser MSE than the MVUE for asymmetric
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link delays. It also suggests that though the MLE is equal to the MVUE only in

the symmetric link delays case, it attains lesser MSE in the asymmetric case in the

region around the point α = β. As the asymmetry of the link increases, i.e., |α − β|
tends to drift away from zero, the MVUE starts outperforming the MLE. The exact

point where their performance is the same can be easily derived from (2.17). The two

respective MSEs are drawn in Fig. 2, where N and α are held constant at 15 and 2,

respectively, while β is varied across α through the relation β = (α− r/2) : (α+ r/2).

For this plot, the range r is chosen to be 4 and the step size is r/70. It shows that the

MSE of MLE actually decreases when β initially approaches α because the chosen

α = 2 is a small value and hence the MSE rise due to a slight increase in β is overcome

by the fall in the MSE due to the smaller |α−β| (for larger values of α, this fall does

not occur). It is clear that around the region where α = β (illustrated by the solid

line in Fig. 2), the MLE outclasses the MVUE and then a further increase in β again

results in higher asymmetry thus making the MVUE the better choice. Second, it

is evident from (2.15) and (2.16) that for a constant N , and increasing α and/or β,

the MLE again exhibits better performance than the MVUE, and hence should be

preferred over MVUE in networks with large delays. Third, (2.17) shows that for any

α 6= β, N can be made large enough to surpass the expression on the right hand side.

This fact is also clear from Fig. 3, where the same plot is drawn with N ranging from

15 to 20. Notice that although the MSEs of both estimators decrease with N , the two

lines representing the intersections of the MSE curves manifest decreasing separation

between them. This result corroborates the fact that MVUE overtakes the MLE after

a certain number of observations. Fourth, it apparently seems that for a constant N ,

estimating α and β utilizing (2.8) and (2.12) and plugging in (2.17) might be a good
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Fig. 2. Mean square error of the MLE (2.1) and the MVUE (2.9) for asymmetric

unknown delays with constant N = 15.

idea for adaptively selecting between the MVUE and MLE as

N

2
− 1

MV UE
≷

MLE

α̂A−U
MV UEβ̂A−U

MV UE(
α̂A−U

MV UE − β̂A−U
MV UE

)2 = f(α̂A−U
MV UE, β̂A−U

MV UE).

However, since f(α̂, β̂) processes nonlinearly the estimates, a considerable ampli-

fication of estimation errors occurs which affects the quality of the resultant f(α̂, β̂).

In other words, even having access to α̂MLE and β̂MLE does not help to estimate accu-

rately f̂(α, β), despite the fact that the MLE is functionally invariant. Nevertheless,

such a technique can be used when the asymmetry between the delays is large, since

the incorrect choice appears only around the region where the two MSE curves (as in

Fig. 2) intersect with each other. These findings are very important in the context of

WSNs where energy resources are limited and the number of synchronization packet

exchanges is rather small. Even in the traditional centralized or ad-hoc networks,
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Fig. 3. Mean square error of the MLE (2.1) and the MVUE (2.9) for asymmetric

unknown delays with different values of N .

it should be noted that for an α fairly close to β, the MLE gives better results no

matter by how much magnitude N is increased. In addition, when the topology of the

network does not remain constant for longer periods of time as in ad-hoc networks,

different delay environments are present during different synchronization cycles and

choosing between the MVUE and the MLE according to each situation yields a better

solution.

Based on the above observations, it should be emphasized that the problem

under study provides an excellent textbook example about the worth of the MLE in

real world scenarios. It is not only relatively easier to derive, but it also performs

outstandingly well in comparison to other laboriously obtained optimal (in some

sense) estimators. This justifies the reason why it has been the most widely used

estimator to date in engineering applications.
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As a final remark, note that the primary interest of this research was on deriving

the estimates for the clock offset but as a byproduct, the estimates of both fixed

and variable link delays have also been obtained in (2.8) and (2.12), where their

BLUE-OS matches again the MVUE. This outcome is also helpful since end-to-end

delay measurements are frequently used in analyzing network performance and usually

there is no provision inside the network to provide end-systems with information

about the current status of the network. For example, packet delay statistics are

important in examining the performance and reliability of the Internet, but it has no

mechanism for providing feedback on network congestion to end-systems at the IP

layer. Moreover, these results are also useful for end-system protocols and applications

that behave adaptively based on their control on the observed network performance.

Lastly, the estimates of fixed and variable delays are also important in other areas

such as continuous-media applications, e.g., audio and video applications need to

absorb the delay jitter perceived at the receiver for smooth playout of the original

stream (see [29] and [30]). For better performance of such applications, determining

the correct amount of buffering, and the reconstruction of the original timing plays a

significant role.

E. Summary

The MLE of the clock offset from timing message exchanges between two clocks

were derived in [18] when the fixed delays are symmetric and the variable delays

in each direction have an exponential distribution with an unknown mean. In this

chapter, the BLUE-OS of the clock offset between two nodes are derived assuming

both symmetric and asymmetric exponential network delays. The Rao-Blackwell-

Lehmann-Scheffé theorem is then exploited to obtain the MVUE for the clock offset
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and is shown to coincide with the BLUE-OS. In addition, it is found that the MVUE

of the clock offset in the presence of symmetric network delays also coincides with

the MLE. Finally, in the presence of asymmetric network delays, although the MLE

is biased, it is shown to achieve lesser MSE than the MVUE in the region around the

point where the bidirectional network link delays are symmetric and hence its merit

as the most versatile estimator is fairly justified.
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CHAPTER III

CLOCK OFFSET AND SKEW ESTIMATION*

Advancing one step further, we now turn our attention to a more accurate model

defining the relationship between two clocks by the addition of clock skew. In practice,

the time synchronization problem in WSNs generally involves two steps: synchroniz-

ing the nodes in the network to one common absolute time by adjusting clock phase

offset (clock offset) among the nodes, and correcting the clock frequency offset (clock

skew) relative to a certain standard frequency. The second step is required because

the imperfections in the quartz crystal and environmental conditions induce different

clocks run at slightly different frequencies. Actually, the effect of clock skew is the

main reason why clock offset keeps drifting away. Hence, adjusting clock skew guar-

antees long-term reliability of synchronization, and therefore reduces network-wide

energy consumption in synchronization procedures. Indeed, developing long-term

and network-wide time synchronization protocols that are energy-efficient represents

one of the key strategies for the successful deployment of long-lived WSNs. The main

contributions of this chapter are as follows.

1. The MLE and the corresponding CRLB for the conventional clock offset model

in a general sender-receiver protocol assuming Gaussian model for the noise are

derived.

*Parts of this chapter are reprinted with permissions from “Novel Clock Phase
Offset and Skew Estimation Using Two-Way Timing Message Exchanges for Wireless
Sensor Networks” by Kyoung-Lae Noh, Qasim M. Chaudhari, Erchin Serpedin and
Bruce Suter, IEEE Transactions on Communications, Volume 55, Issue 4, April 2007
Page(s): 766 - 777 and “On Maximum Likelihood Estimation of Clock Offset and Skew
in Networks With Exponential Delays”, by Qasim M. Chaudhari, Erchin Serpedin and
Khalid Qaraqe, IEEE Transactions on Signal Processing, Volume 56, Issue 4, April
2008 Page(s): 1685 - 1697.
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2. The joint MLE and corresponding CRLB using a more realistic linear clock

offset and skew model assuming Gaussian random delays are obtained.

3. The CRLB for the clock offset for exponential delay model is derived as a

performance threshold.

4. The joint MLE for the clock offset and skew under the exponential delay model

is obtained and the corresponding algorithms to find these estimators are also

described in detail.

A. Gaussian Delay Model

As explained earlier, several pdf models have been proposed for random network

delays. Even for an unknown delay distribution, the final error is a sum of many

independent random components described in Chapter I. Exploiting the Central Limit

theorem, which asserts that the pdf of the sum of a number of independent and

identically distributed (iid) random variables approaches that of a Gaussian random

variable, the Gaussian model in our study will be appropriate if the delays are thought

to be the addition of a few such independent random processes. For example, suppose

that the actual errors are uniformly distributed around a mean delay value, then the

sum of just two such errors closely resembles Gaussian pdf. In addition, the Gaussian

distribution for the phase offset errors is reported by a few authors, such as [10],

based on the laboratory tests. In this section, we derive the MLE and the CRLB for

both the clock offset only and the clock offset and skew models under Gaussian delay

assumption.
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1. Maximum Likelihood Clock Offset Estimation

Assuming no clock skew at this stage and utilizing the same mechanism as in Chapter

II, we compute the MLE and CRLB for the clock offset using the two-way timing

message exchange model. Since the set of delay observations {Xk}N
k=1 and {Yk}N

k=1 are

independently and normally distributed with the same mean µ and variance σ2 based

on Gaussian assumption, the likelihood function based on the observations {Xk}N
k=1

and {Yk}N
k=1 is given by

L
(
φ, µ, σ2

)
=

(
2πσ2

)−N
e
− 1

2σ2

[
N∑

k=1
(Uk−τ−φ−µ)2+

N∑
k=1

(Vk−τ+φ−µ)2

]

.

Differentiating the log-likelihood function gives

∂ ln L (φ)

∂φ
= − 1

2σ2

[
N∑

k=1

(2φ− 2 (Uk − τ − µ)) +
N∑

k=1

(2φ + 2 (Vk − τ − µ))

]

= − 1

σ2

[
N∑

k=1

(2φ− (Uk − Vk))

]
. (3.1)

Hence, the MLE of clock offset is given by

φ̂ = arg max
φ

[ln L (φ)] =

N∑
k=1

(Uk − Vk)

2N
=

U − V

2
. (3.2)

Consequently, the MLE of clock offset can be obtained by finding the means of ob-

servations {Uk}N
k=1 and {Vk}N

k=1.

2. Cramer-Rao Lower Bound for Clock Offset

The regularity condition [27] holds for the given estimate since the expected value

of (3.1) is 0. Thus, the CRLB for the MLE can be obtained by differentiating (3.1)

w.r.t. φ, which gives

∂2 ln L (φ)

∂φ2
= −2N

σ2
.



42

5 10 15 20 25 30 35
10

−2

10
−1

Exponential Delay Model

Number of Observations

V
ar

ia
nc

e

 

 
MLE of clock offset
CRLB

σ = 1

Fig. 4. CRLB and variance of the MLE of clock offset for the Gaussian delay model

(σ = 1).

Hence the CRLB for the MLE is given by

var(φ̂) ≥ −E

[
∂2 ln L (φ)

∂φ2

]−1

=
σ2

2N
. (3.3)

Fig. 4 shows the result of the computer simulation when σ is 1. It can be seen that

the variance of estimate is proportional to σ2 and inversely proportional to N .

3. Joint Maximum Likelihood Estimation of Clock Offset and Skew

Since every oscillator has its unique clock frequency, the clock offset between two

nodes generally keeps increasing. Therefore, a fixed value model for clock time dif-

ference as above is not sufficient for some practical situations. Hence, estimating the

difference of clock frequencies between two nodes (i.e., clock skew) increases synchro-

nization accuracy and guarantees long-term reliability. In this section, we derive the

joint MLE for clock offset and skew based on the two-way timing message exchange
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2,kT
3,kT

Fig. 5. Two-way timing message exchange model having clock offset and skew.

model with Gaussian delays.

The theory applied thus far for finding the MLE and CRLB for the clock offset

(assuming no clock skew) can be extended to find the joint MLE and CRLB for a

more general clock model. Fig. 5 shows the effect of clock offset (φ) and skew (ω) on

timing message exchanges between two nodes. Here, timestamps in the kth message

exchange T1,k and T4,k are measured by local clock of Node A, and T2,k and T3,k are

measured by local clock of Node B, respectively. Node A transmits a synchronization

packet, containing the level and ID of Node A and the value of timestamp T1,k, to

Node B. Node B receives it at T2,k and transmits an acknowledgement packet to

Node A at T3,k. This packet contains the level and ID of Node B and the value of

timestamps T1,k, T2,k, and T3,k. Then Node A finally receives the packet at T4,k.

Taking T1,1 be the reference time, the timestamp at Node B in the kth uplink

message T2,k, is given by

T2,k = (T1,k + τ + Xk) ω + φ, (3.4)
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and the timestamp at Node B in the kth downlink message T3,k, is represented by

T3,k = (T4,k − τ − Yk)ω + φ. (3.5)

Assuming {Xk}N
k=1 and {Yk}N

k=1 are zero mean independent Gaussian distributed RVs

with variance σ2, then the joint PDF of X , {Xk}N
k=1 and Y , {Yk}N

k=1 is given by

fX,Y (x,y) =
(
2πσ2

)−N
e
− 1

2σ2

N∑
k=1

[(
T2,k−φ

ω
−T1,k−τ

)2
+

(
T4,k−τ−T3,k−φ

ω

)2
]

.

Further assuming that the fixed portion of delay τ is known and ω′ , 1/ω, then

the likelihood function for (φ, ω′, σ2), based on observations {T1,k}N
k=1 , {T2,k}N

k=1,

{T3,k}N
k=1, and {T4,k}N

k=1, is given by

L
(
φ, ω′, σ2

)
=

(
2πσ2

)−N
e
− 1

2σ2

N∑
k=1

{
[ω′(T2,k−φ)−(T1,k+τ)]

2
+[ω′(φ−T3,k)+(T4,k−τ)]

2
}

.

Differentiating the log-likelihood function with respect to φ gives

∂ ln L (φ, ω′, σ2)

∂φ
= − 1

σ2

N∑

k=1

[
ω′2 (2φ− T2,k − T3,k) + ω′ (T1,k + T4,k)

]
. (3.6)

Hence, in the given clock skew model, the joint MLE of clock offset φ̂ can be obtained

by

φ̂ =

∑N
k=1 [ω̂′ (T2,k + T3,k)− (T1,k + T4,k)]

2Nω̂′
(3.7)

Note that, for the clock skew model with Gaussian random delays, there is an addi-

tional term which is depending on ω̂, and this result reduces to (3.2) when ω̂ is one.
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Similarly, differentiating the log-likelihood function with respect to ω′ gives

∂ ln L (φ, ω′, σ2)

∂ω′
= − 1

σ2

{
N∑

k=1

ω′
[
(T2,k − φ)2 + (T3,k − φ)2

]

−
N∑

k=1

[(T1,k + τ)(T2,k − φ) + (T4,k − τ)(T3,k − φ)]

}
. (3.8)

Thus, the estimate ω̂′ maximizing the log-likelihood function is given by

ω̂′ =

∑N
k=1

[
(T1,k + τ)(T2,k − φ̂) + (T4,k − τ)(T3,k − φ̂)

]

∑N
k=1

[
(T2,k − φ̂)2 + (T3,k − φ̂)2

] .

Hence, the joint MLE of clock skew ω̂ is given by

ω̂ =

∑N
k=1

[
(T2,k − φ̂)2 + (T3,k − φ̂)2

]

∑N
k=1

[
(T1,k + τ)(T2,k − φ̂) + (T4,k − τ)(T3,k − φ̂)

] . (3.9)

In the sequel, the joint MLE of φ and ω can be obtained by plugging the expression

of φ̂ (3.7) into that of ω̂ (3.9), which implies

ω̂ =

N∑
k=1

(T2,k + T3,k)− 2Nφ̂

N∑
k=1

(T1,k + T4,k)

=

N∑
k=1

[
(T2,k − φ̂)2 + (T3,k − φ̂)2

]

N∑
k=1

[
(T1,k + τ)(T2,k − φ̂) + (T4,k − τ)(T3,k − φ̂)

] .

(3.10)

Then (3.10) can be rewritten as

N∑

k=1

(T1,kT2,k + T3,kT4,k + (T2,k − T3,k)τ)
N∑

k=1

(T2,k + T3,k) + 2N
N∑

k=1

(T1,k + T4,k)φ̂
2

−
[

N∑

k=1

(T2,k + T3,k)
N∑

k=1

(T1,k + T4,k) + 2N
N∑

k=1

(T1,kT2,k + T3,kT4,k + (T2,k − T3,k)τ)

]
φ̂

=
N∑

k=1

(T1,k + T4,k)
∑N

k=1
(T 2

2,k + T 2
3,k) + 2N

N∑

k=1

(T1,k + T4,k)φ̂
2

−2
N∑

k=1

(T2,k + T3,k)
N∑

k=1

(T1,k + T4,k)φ̂.



46

After some manipulations, the joint MLE of clock offset and skew is given by

φ̂GML =

N∑
k=1

(T1,k + T4,k)
N∑

k=1

(T 2
2,k + T 2

3,k)−
N∑

k=1

(T2,k + T3,k)Q

N∑
k=1

(T2,k + T3,k)
N∑

k=1

(T1,k + T4,k)− 2NQ

, (3.11)

ω̂GML =

−2N

[
N∑

k=1

(T1,k + T4,k)
N∑

k=1

(T 2
2,k + T 2

3,k)−Q
N∑

k=1

(T2,k + T3,k)

]

N∑
k=1

(T1,k + T4,k)

[
N∑

k=1

(T2,k + T3,k)
N∑

k=1

(T1,k + T4,k)− 2NQ

]

+

N∑
k=1

(T2,k + T3,k)

N∑
k=1

(T1,k + T4,k)

, (3.12)

where Q ,
∑N

k=1 (T1,kT2,k + T3,kT4,k + (T2,k − T3,k)τ). Note that the joint MLE de-

pends on the value of the fixed portion of delays τ , which is assumed to be known

in this section. Although it is achievable, we do not consider τ as another unknown

(nuisance) parameter due to its highly nonlinear and complex results.

Finally, notice that numerous authors use a linear regression model for the rela-

tionship between the clocks of two nodes, i.e., (eliminating known τ)

T2,k = T1,kω + φ + Xk, k = 1, · · ·, N,

which is a restrictive assumption, since ω has its effect on the clock of the second node

during the occurrence of the message delay until the message is timestamped on its

reception. This is particularly important in the networks where the message delays

are large, e.g., underwater acoustic networks. We assert that using more realistic

model as in (3.4) and (3.5) results in superior performance of the synchronization

protocol. To show the effect on MSE by using the more realistic model, we have

simulated the MSE of two clock offset estimators, one of which is derived based on

the correct model while the other is the standard least squares solution based on
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Fig. 6. MSE of clock offset estimate φ̂ as a function of variance of delay.

linear regression and are shown in Fig. 6. It is clear that using the more realistic

model results in a lower MSE of the clock offset estimate.

4. Cramer-Rao Lower Bound for Clock Offset and Skew

The CRLB for the vector parameter θ = [φ, ω]T can be derived from the 2× 2 Fisher

information matrix I(θ) by taking its inverse. From (3.6) and (3.8), the 2nd order

derivatives of the log-likelihood function with respect to φ and ω′ are found as

∂2 ln L (φ, ω′, σ2)

∂φ2
= −2Nω′2

σ2
,

∂2 ln L (φ, ω′, σ2)

∂ω′2
= − 1

σ2

N∑

k=1

[
(T2,k − φ)2 + (T3,k − φ)2

]
,

∂2 ln L (φ, ω′, σ2)

∂φω′
= − 1

σ2

N∑

k=1

(2ω′φ− ω′T2,k + T1,k − ωT3,k − T4,k).
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Taking the negative expectations yields

−E

[
∂2 ln L (φ, ω′, σ2)

∂φ2

]
=

2Nω′2

σ2
,

−E

[
∂2 ln L (φ, ω′, σ2)

∂ω′2

]
=

1

σ2

N∑

k=1

EXk,Yk

[
(Xk + T1,k + τ)2 + (Yk − T4,k + τ)2

ω′2

]

(a)
=

∑N
k=1

(
(T1,k + τ)2 + (T4,k − τ)2 + 2σ2

)

σ2ω′2
,

−E

[
∂2 ln L (φ, ω′, σ2)

∂φω′

]
= − 1

σ2

N∑

k=1

EXk,Yk
[2ω′ (2φ− T2,k − T3,k) + T1,k + T4,k]

(b)
=

N

σ2

(
T1 + T4

)
,

where (a) and (b) are due to Xk = ω′(T2,k − φ)− (T1,k + τ) and Yk = ω′(φ− T3,k) +

(T4,k − τ). Therefore, the Fisher information matrix becomes

I (θ) =



−E

[
∂2 ln L(φ,ω′,σ2)

∂φ2

]
−E

[
∂2 ln L(φ,ω′,σ2)

∂φω′

]

−E

[
∂2 ln L(φ,ω′,σ2)

∂ω′φ

]
−E

[
∂2 ln L(φ,ω′,σ2)

∂ω′2

]


 ,

=
1

σ2




2Nω2 N
(
T1 + T4

)

N
(
T1 + T4

)
1

ω′2
∑N

k=1

[
(T1,k + τ)2 + (T4,k − τ)2 + 2σ2

]


(3.13)

Now the CRLB can be obtained by taking the inverse of the [k, k]th element of the

Fisher information matrix (i.e., var(θ̂k) ≥ [I−1(θ)]ii), and the inverse I−1(θ) is given

by

I−1(θ) = σ2




V

ω′2N
[
2V−N(T1+T4)

2
] −(T1+T4)

2V−N(T1+T4)
2

−(T1+T4)
2V−N(T1+T4)

2
2ω′2

2V−N(T1+T4)
2


 , (3.14)

where V =
∑N

k=1

[
(T1,k + τ)2 + (T4,k − τ)2 + 2σ2

]
. Consequently, from the result in

[27], the CRLBs of clock offset and skew for the Gaussian delay model are respectively
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given by

var(φ̂GML) ≥ σ2ω2V

N
[
2V −N

(
T1 + T4

)2
] , (3.15)

var(ω̂GML) ≥
(

∂ω

∂ω′

)2

· 2σ2ω′2

2V −N
(
T1 + T4

)2

=
2σ2ω2

2V −N
(
T1 + T4

)2 . (3.16)

B. Exponential Delay Model

A detailed justification of modeling the network delays as coming from an exponential

distribution was presented in Chapter II. Since the MLE for the clock offset under

exponential delays has been derived in [18], we derive the corresponding CRLB for the

clock offset in the next section. Afterwards, the joint MLE for both the clock offset

and skew is obtained and the corresponding algorithms for finding those estimates

are also presented.

1. Cramer-Rao Lower Bound for Clock Offset

It was proven in [18] that the MLE of φ exists when τ is unknown and exhibits the

same form as the estimator proposed in [19], which is given by

φ̂ =
U(1) − V(1)

2
, (3.17)

where N stands for the number of observations of delay measurements and the sub-

script (1) denotes the first order statistic of the corresponding data set. In this section,

we proceed towards obtaining the CRLB for this clock offset under exponential delay

model.
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Note that (3.17) can be rewritten as

φ̂ =
U(1) − V(1)

2
= φ +

X(1) − Y(1)

2
,

where X(1) and Y(1) denote the corresponding order statistics of {Xk}N
k=1 and {Yk}N

k=1,

respectively. Let Z , X(1)−Y(1), then the pdf of Z can be found as follows. Since the

order statistics X(1) and Y(1) are independent, fZ(z) can be found by transforming

a joint distribution using the dummy variable S = Y(1). From the assumptions, the

PDF of the uplink and downlink delays, Xk and Yk, are given by

fXk
(x) =

1

λ1

e
− x

λ1 x ≥ 0,

fYk
(y) =

1

λ2

e
− y

λ2 y ≥ 0.

It is well known that the pdfs of the order statistics X(1) and Y(1) are given by

fX(1)
(x) = N (1− FXi

(x))N−1 fXi
(x) =

N

λ1

e
− N

λ1
x

x ≥ 0,

fY(1)
(x) = N (1− FYi

(y))N−1 fYi
(y) =

N

λ2

e
− N

λ2
y

y ≥ 0.

Since the Jacobian of this transformation is 1, a joint distribution of RVs Z and S is

given by

fZ,S (z, s) = fX(1),Y(1)
(z + s, s) = fX(1)

(z + s) · fY(1)
(s)

=
N2

λ1λ2

e
− N

λ1
z
e
−N

(
λ1+λ2
λ1λ2

)
s

z ≥ −s, s ≥ 0. (3.18)

Integrating (3.18) with respect to s yields

fZ (z) =





N
(λ1+λ2)

e
− N

λ1
z

z > 0

N
(λ1+λ2)

e
N
λ2

z
z < 0

. (3.19)
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Fig. 7. CRLB and variance of the MLE of clock offset for the exponential delay model

(α = 1).

Let W , U(1) − V(1), then the PDF of W as a function of φ is given by

fw (w; φ) =





N
(λ1+λ2)

e
− N

λ1
(w−2φ)

w > 2φ

N
(λ1+λ2)

e
N
λ2

(w−2φ)
w < 2φ

. (3.20)

Note that the estimate φ̂ will be biased when uplink and downlink delays are asym-

metrically distributed, i.e., λ1 6= λ2. Thus, to derive the CRLB for the estimator, the

delays are assumed to be symmetric, which yields λ1 = λ2 = α. Now (3.20) can be

rewritten as

fW (w; φ) =
N

2α
e−

N
α
|w−2φ|.

Differentiating the logarithm of (3.20) with respect to φ gives

∂ ln fW (w; φ)

∂φ
=





2N
α

w > 2φ

−2N
α

w < 2φ
, (3.21)
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Fig. 8. Variances of both MLEs of clock offset for exponential and Gaussian delays

(α = 1 and σ = 0.5).

where the regularity condition of the CRLB holds since (3.21) is finite and the ex-

pected value of (3.21) is 0. Calculating the expected value of the square of (3.21)

gives

E

[(
∂ ln fW (w; φ)

∂φ

)2
]

=
4N2

α2
.

Therefore, the CRLB of clock offset, φ̂, is given by

var(φ̂) ≥ E

[(
∂ ln fW (w; φ)

∂φ

)2
]−1

=
α2

4N2
. (3.22)

Fig. 7 shows the simulation results corresponding to the variance and CRLB of

the MLE when α is 1. It can be seen that the variance of estimate goes to zero as N

increases (asymptotically efficient), and is proportional to α2.
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In Fig. 8, the variances of both MLEs are compared in exponential and normal

random delay channels, respectively. It can be seen that the performance of the ML

clock offset estimator is strongly dependent on the type of random delay models.

2. Joint Maximum Likelihood Estimation of Clock Offset and Skew

From the timing message exchange model described in (3.4) and (3.5) but with ex-

ponential delays, the general form of the likelihood function is given by

L (α, τ, ω, φ) = α−2N . exp

[
− 1

α

{
N∑

k=1

T2,k − T3,k

ω
−

N∑

k=1

(T1,k − T4,k)− 2Nd

}]
×

N∏

k=1

I

[
T2,k − φ

ω
− T1,k − τ ≥ 0; T4,k − T3,k − φ

ω
− τ ≥ 0

]
, (3.23)

where the indicator function I[·] is defined as

I[τ ≥ 0] =





1, τ ≥ 0

0, τ < 0
.

Note that the τ is always positive since it represents the delay (fixed), while ω is also

always positive because it has been realistically assumed that none of the clocks is

either standing still (ω = 0) or running backward (ω < 0). An ideal value of ω = 1

means that the clock is running at the standard rate. Also, notice that when ω = 1,

the MLE of clock offset φ was derived by [18] and takes the form

φ̂ =
1

2

[
min

1≤k≤N
(T2,k − T1,k)− min

1≤k≤N
(T4,k − T3,k)

]
. (3.24)

From here onwards, without losing any generalization, we will assume that α

is known. This is because even if α is unknown, due to the form of the reduced

likelihood function L(τ, ω, φ) as shown in [18], the MLE (τ̂ , ω̂, φ̂) remains the same.

When ω 6= 1, in maximizing the likelihood for this model over the set Θ = {(τ, φ, ω) :
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τ > 0,−∞ < φ < ∞, ω > 0}, four different cases will be considered:

Case I: τ known, φ known.

Case II: τ unknown, φ known.

Case III: τ known, φ unknown.

Case IV: τ unknown, φ unknown.

An important remark needs to be mentioned here. A preliminary examination

of Cases I and II (i.e., when φ is known) is necessary because it gives insight into

the shape of the support region over which the likelihood function is nonzero. As it

is the case with exponential models, the MLEs for the location parameters will be

found by taking effectively into account the boundary conditions. For the first two

cases, the support of the likelihood region is a 2-D region and it is relatively easier to

find the parameters on the boundary maximizing the likelihood function. Finding the

MLEs for Cases III and IV (i.e., when φ is unknown) requires the visualization of the

likelihood function support region in 3-D and getting a somewhat primitive knowledge

of the 2-D support region for the likelihood function in Cases I and II greatly helps

in preparing our intuition and solving the more complex 3-D optimization problem.

Therefore, we next proceed with a stepwise approach by considering these four cases

separately one-by-one.

a. Case I: τ known, φ known

Without losing any generalization, the likelihood function in this case can be obtained

by making φ = 0 in (3.23). From the form of the likelihood function, we can see that

it is nonzero only over a certain support region defined by the limits of the indicator

function I[.]. Since τ is fixed and known, the set of constraints in (3.23), namely
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τ > 0, ω > 0 and

τ ≤ T2,k

ω
− T1,k, k = 1, · · ·, N, (3.25)

τ ≤ T4,k − T3,k

ω
, k = 1, · · ·, N, (3.26)

can be equivalently put in the form:

τ > 0, ω > 0,

T3,k

T4,k − τ
≤ ω ≤ T2,k

T1,k + τ
, k = 1, · · ·, N. (3.27)

Fig. 9 shows various upper-bounds (3.25) and (3.26) of the likelihood support region

in the plane (τ , ω), and the solid line is the region over which the likelihood function

has to be maximized. It is evident from the figure that for a known fixed τ , the

likelihood function depends on the unknown ω only and is maximized by taking ω
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Algorithm 1 Finding ω̂ for τ known, φ known

1: Find ωk =
T3,k

T4,k−τ
, for k = 1, · · ·, N ;

2: j = arg max
k

{ωk};
3: ω̂ = ω̂j;

as small as possible. This is because the factor
N∑

k=1

(T2,k − T3,k) in (3.23) is always

negative. Therefore, the smallest value of ω over the solid line, as shown in Fig. 9, is

the MLE ω̂, which coincides with one of the curves τ = T4,k − T3,k/ω, k = 1, · · ·, N .

Let j (1 ≤ j ≤ N) denote the index of the curve on which the MLE is achieved.

Thus, from (3.27), j = arg max
k

{T3,k/(T4,k − τ)} and

ω̂ =
T3,j

T4,j − τ
.

The index j, which gives the set of timestamps {T3,j, T4,j} required for finding

the MLE, is the one which gives the minimum possible ω̂ over the allowable region.

Since τ is known, we can find j, and hence the corresponding ω̂, by Algorithm 1.

Algorithm 1 utilizes the fact that the solid line cuts all the curves T4,k − T3,k/ω,

k = 1, · · ·, N but the likelihood function is zero beyond its intersection with the first

curve, which is the maximum of these intersections and therefore gives the MLE.

Note that in doing so, a total number of N values need to be compared. To simplify

the exposition, in what follows we will use the terminology the curves T4,k − T3,k/ω,

k = 1, · · ·, N , instead of the curves τ = T4,k − T3,k/ω, k = 1, · · ·, N .

b. Case II: τ unknown, φ known

The likelihood function in this case is similar to Case I, but with one major difference:

the fixed delay τ is unknown. The shaded region in Fig. 10 is the subset of Θ over

which the likelihood function is nonzero. It can be described in terms of the following
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shown to the left in this figure is the sign of the term 2NT3,j−
N∑
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(T3,k − T2,k)

for each j = 1, · · ·, N .

constraints:

τ > 0, ω > 0,

τ ≤ T2,k

ω
− T1,k, k = 1, · · ·, N, (3.28)

τ ≤ T4,k − T3,k

ω
, k = 1, · · ·, N. (3.29)

This likelihood function in (3.23) is maximized by making its argument:

ξ =
N∑

k=1

T2,k − T3,k

ω
−

N∑

k=1

(T1,k − T4,k)− 2Nd, (3.30)

as small as possible. Although Fig. 10 shows only the support region and not the
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likelihood function itself, ξ can be linked to this figure by rewriting it in the form

ξ =
N∑

k=1

(
T2,k

ω
− T1,k

)
+

N∑

k=1

(
T4,k − T3,k

ω

)
− 2Nd,

and noting that for any ω = ω′, ξ is the sum of the ordinates of all points on the

curves (T2,k/ω − T1,k), k = 1, · · ·, N , and (T4,k − T3,k/ω), k = 1, · · ·, N , intercepting

the vertical line ω = ω′, minus 2N times τ̂ (which is the intersection of ω = ω′ with

either min
1≤k≤N

(T2,k/ω − T1,k) or min
1≤k≤N

(T4,k − T3,k/ω) as proved in Lemma 1 below).

Utilizing the fact that ξ depends on two parameters, ω and τ , we will now derive the

MLE with the help of the following four lemmas:

Lemma 1. The MLE τ̂ lies on either min
1≤k≤N

(T2,k/ω − T1,k) or min
1≤k≤N

(T4,k − T3,k/ω),

i.e., on the boundary of the support region.

Proof. This can be proved by contradiction. Let us assume that the τ̂ does not

lie on the boundary, but somewhere else inside the support region. Then for some

minimizing ω̂, ξ can be further decreased by increasing τ̂ to the top of the allowable

region (which coincides with one of the the above mentioned curves) for the same ω̂,

hence a contradiction.

Lemma 2. The MLE τ̂ lies either on the uppermost vertex formed by the intersection

of the curves min
1≤k≤N

(T2,k/ω − T1,k) and min
1≤k≤N

(T4,k − T3,k/ω) (shown as point A in Fig.

11) or on one of the vertices formed by the intersection of the curves (T4,k − T3,k/ω),

k = 1, · · ·, N (shown as points B, C, etc. in Fig. 11).

Proof. It is straightforward to notice from (3.30) that when T2,k = T3,k, for all k, ξ

can be minimized by making τ as large as possible, which is the intersection of the

curves min
1≤k≤N

(T2,k/ω − T1,k) and min
1≤k≤N

(T4,k − T3,k/ω). Hence, the MLE (τ̂ , ω̂) is

τ̂ =
T2,iT4,j − T1,iT3,j

T2,i + T3,j

, (3.31)
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and

ω̂ =
T2,i + T3,j

T1,i + T4,j

, (3.32)

where the i, j represent the indices of min
1≤k≤N

(T2,k/ω − T1,k) and min
1≤k≤N

(T4,k − T3,k/ω),

respectively, intersecting at the maximum τ̂ (which is the uppermost vertex shown

as point A in Fig. 11). Note that in order to find this MLE, a total number of N2

intersections have to be compared.

When T2,k 6= T3,k, for some k, the problem becomes a little involved. From

Lemma 1, we know that τ̂ lies somewhere on the boundary of the support region.

Notice further that according to (3.30) in order to minimize ξ it is necessary to select

τ as large as possible and ω as small as possible.

Suppose that τ̂ lies on min
1≤k≤N

(T2,k/ω − T1,k) and let i = arg min
1≤k≤N

(T2,k/ω − T1,k)

corresponding to the maximum τ (i.e., point A in Fig. 11), then from (3.30) ξ can

be written as

ξ =
N∑

k=1

T2,k − T3,k

ω
−

N∑

k=1

(T1,k − T4,k)− 2N

(
T2,i

ω
− T1,i

)
,

=
1

ω

N∑

k=1

(T2,k − T3,k − 2T2,i)−
N∑

k=1

(T1,k − T4,k − 2T1,i) . (3.33)

Since the term
N∑

k=1

(T2,k − T3,k − 2T2,i) is always negative, ξ can be minimized by

taking ω as small as possible on min
1≤k≤N

(T2,k/ω − T1,k). Hence, τ̂ and ω̂ in this general

case are equal to or less than the MLE given by (3.31) and (3.32), respectively (i.e.,

either on point A shown in Fig. 11 or to the left of it). An alternative justification for

the fact that τ̂ and ω̂ are equal to or less than the MLE given by (3.31) and (3.32),

respectively, is to assume by contradiction that τ̂ lies on min
1≤k≤N

(T2,k/ω − T1,k), with

i = arg min
1≤k≤N

(T2,k/ω − T1,k), which does not correspond to the maximum τ (i.e., not on

the curve passing through point A in Fig. 11). According to (3.33), ξ is minimized by
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Fig. 11. Zoomed in version of the support region of the likelihood function.

choosing ω as small as possible. Taking into account the continuity of ξ with respect

to ω and τ , one can show that ξ is monotonically decreasing as long as ω is decreased

until it reaches the value corresponding to the point A.

Now suppose that τ̂ lies on min
1≤k≤N

(T4,k − T3,k/ω) and let j = arg min
1≤k≤N

(T4,k − T3,k/ω)

corresponding to the maximum τ (i.e., point A in Fig. 11), then ξ can be written as

ξ =
N∑

k=1

T2,k − T3,k

ω
−

N∑

k=1

(T1,k − T4,k)− 2N

(
T4,j − T3,j

ω

)
,

=
1

ω

N∑

k=1

(T2,k − T3,k + 2T3,j)−
N∑

k=1

(T1,k − T4,k + 2T4,j) . (3.34)

From (3.34), it is clear that ξ can be minimized by taking the largest possible ω if
N∑

k=1

(T2,k − T3,k + 2T3,j) is positive and by taking the smallest possible ω if
N∑

k=1

(T2,k − T3,k + 2T3,j)
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is negative as depicted by Fig. 11. Hence, for

2NT3,j >

N∑

k=1

(T3,k − T2,k) ,

MLE is again given by (3.31) and (3.32). And for

2NT3,j <

N∑

k=1

(T3,k − T2,k) ,

MLE is given by the intersection of the curves (T4,m − T3,m/ω) and (T4,n − T3,n/ω)

(denoting the intersections of the curves τ = T4,k − T3,k/ω and τ = T4,l − T3,l/ω as

τ k,l, and τ k,l satisfy the constraints (3.28) and (3.29)), where

(m,n) = arg max
k,l

{τ k,l | 2NT3,k <

N∑
r=1

(T3,r − T2,r) ; 2NT3,l >

N∑
r=1

(T3,r − T2,r)}.
(3.35)

Basically, the indices (m,n) in (3.35) identify the first vertex of the support region

located to the left of the vertex A for which a change of sign occurs in 2NT3,n −
N∑

r=1

(T3,r − T2,r). In Fig. 4, this vertex is represented by the point B, and the MLE

(τ̂ , ω̂) in this case is given by

τ̂ = T4,m − T3,m(T4,m − T4,n)

T3,m − T3,n

, (3.36)

and

ω̂ =
T3,m − T3,n

T4,m − T4,n

, (3.37)

Lemma 3. To the left of the point where min
1≤k≤N

(T2,k/ω − T1,k) and min
1≤k≤N

(T4,k − T3,k/ω)

intersect (i.e., point A shown in Fig. 11), the boundary of the support region is formed

by the curves (T4,k − T3,k/ω), k = 1, · · ·, N in such a way that as ω increases, a curve

(T4,m − T3,m/ω) forms the new boundary of the support region after intersecting the
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curve (T4,n − T3,n/ω) if and only if m < n.

Proof. The curve (T4,N − T3,N/ω) starts as the most negative for small ω and ends

up as the largest positive asymptotically approaching T4,N as ω increases. Similarly,

the curve (T4,1 − T3,1/ω) starts as the least negative for small ω and ends up as

the smallest positive asymptotically approaching T4,1 as ω increases. All the curves

(T4,k − T3,k/ω) k = 1, · · ·, N , are arranged in descending order for small ω and in

ascending order for large ω and they intersect each other somewhere around the true

value of ω. Since the slope of each curve (T4,k − T3,k/ω), k = 1, · · ·, N is T3,k/ω
2,

the slope of the curve with index m is lesser than the slope of the curve with index

n if m < n. Therefore, as ω increases, a curve can form the new boundary of the

support region by intersecting another curve only if its index is lower than the previous

one.

Lemma 4. The MLE (τ̂ , ω̂), whether (3.31) and (3.32) or (3.36) and (3.37), is

unique.

Proof. Note that the likelihood function is continuous on the boundary of the support

region because different curves intersect each other on the vertices due to which there

will be no jumps in ξ and subsequently in the likelihood function. Now considering

the fact that 2NT3,j >
N∑

k=1

(T3,k − T2,k) for j = N , let

q = arg max
j

{T3,j | 2NT3,j <

N∑

k=1

(T3,k − T2,k)}.

Then it must also be true that 2NT3,j <
N∑

k=1

(T3,k − T2,k) ∀ j < q, i.e., for

j = 1, · · ·, q − 1 and 2NT3,j >
N∑

k=1

(T3,k − T2,k) ∀ j > q, i.e., for j = q + 1, · · ·, N . Fig.

10 shows the sign of the term 2NT3,j −
N∑

k=1

(T3,k − T2,k) for each j = 1, · · ·, N . There
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Algorithm 2 Finding ω̂ and τ̂ for τ unknown, φ known

1: Find τ k,l =
T2,kT4,l−T1,kT3,l

T2,k+T3,l
; ωk,l =

T2,k+T3,l

T1,k+T4,l
; ∀ k = 1, ···, N and ∀ l = 1, ···, N.

2: (i, j) = arg min
k,l

{τ k,l};

3: if 2NT3,j >
N∑

k=1

(T3,k − T2,k) then

4: τ̂ = τ i,j; ω̂ = ωi,j;

5: else

6: k = j;

LABEL:

7: Find τ k,l = T4,k − T3,k(T4,k−T4,l)

T3,k−T3,l
; ωk,l =

T3,k−T3,l

T4,k−T4,l
; ∀ l = 1, · · ·, N.

8: m = k; n = arg max
l

{ωk,l | ωk,l < ωi,j};

9: if 2NT3,n >
N∑

k=1

(T3,k − T2,k) then

10: τ̂ = τm,n; ω̂ = ωm,n;

11: else

12: k = n;

13: goto LABEL;

14: end if

15: end if

will always be just one change, if any, in the sign of this term from positive to negative.

Therefore, ξ can be minimized by making ω as large as possible on (T4,q+1 − T3,q+1/ω)

and as small as possible on the curve (T4,q − T3,q/ω) (or on (T2,i/ω − T1,i) if there is

no such q) as shown in Fig. 10.

This fact, combined with Lemma 3, proves that the intersection of the curves

forming the MLE is always unique.

It should be noted that under the most likely scenario, when Node B is sending
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its timestamps to Node A after short delays, MLE will be given by (3.31) and (3.32),

but in the usually unlikely scenario of Node B waiting a long period of time before

sending one of its timestamps to Node A, (3.36) and (3.37) can be the MLE only

if 2NT3,j <
N∑

k=1

(T3,k − T2,k). Note that in this case, in addition to previous N2

intersections, N − 1 more intersections have to be compared for each j satisfying

2NT3,j <
N∑

k=1

(T3,k − T2,k). The whole procedure for finding this MLE is summarized

in Algorithm 2. This algorithm proceeds in precisely the same steps as described

above.

Now that we have obtained some insight into this problem for φ known, we next

proceed with the situation when φ is unknown.

c. Case III: τ known, φ unknown

The likelihood function in this case is the same as (3.23), where τ is fixed and known.

The region over which the likelihood function is nonzero is given by indicator function

I[.] in (3.23) and shown in Fig. 12. This 3-D support region is dramatically more

complex than what we observed in the first two cases. It is also evident from (3.23)

that ξ is the same as in previous cases and the likelihood function can again be

maximized by minimizing ξ. Since
N∑

k=1

(T2,k − T3,k) is always negative and τ is given,

ξ can be minimized by taking ω as small as possible. To find this minimum ω, we

take a horizontal slice from this 3-D support region at the constant τ . This gives an

aerial view of the 2-D region shown in Fig. 13 highlighting the relation between ω

versus φ for the known τ . Therefore, in accordance with (3.23), we can express the

support of the likelihood function in the form of the following constraints:

−∞ < φ < ∞, (3.38)

T3,k − φ

T4,k − τ
≤ ω ≤ T2,k − φ

T1,k + τ
; k = 1, · · ·, N. (3.39)
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These constraints can be viewed as ω being a monotonically decreasing function of φ

∀ k due to the positivity of (T1,k + τ) and (T4,k− τ), and the shaded region is the one

which satisfies these constraints.

Lemma 5. Of all the intersections of (T2,k − φ)/(T1,k + τ) with (T3,k − φ)/(T4,k − τ),

only two points satisfy the constraints (3.38) and (3.39) in a way that they represent

the starting and ending points of the support region and the point with minimum ω is

the one with maximum φ.

Proof. Consider the curves (T2,k−ψ)/(T1,k +τ) with (T3,k−ψ)/(T4,k−τ) as a function

of ψ in order to avoid confusion between the actual unknown parameter φ and the

variable with respect to which the above functions are drawn. Now utilizing (3.4)
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and (3.5), we can write

T2,k − ψ

T1,k + τ
=

(
1 +

Xk

T1,k + τ

)
ω +

φ− ψ

T1,k + τ
, k = 1, · · ·, N,

T3,k − ψ

T4,k − τ
=

(
1− Yk

T4,k − τ

)
ω +

φ− ψ

T4,k − τ
, k = 1, · · ·, N.

It is clear that when ψ = φ, (T2,k − ψ)/(T1,k + τ) > (T3,k − ψ)/(T4,k − τ) ∀ k.

Therefore, a support region does exist where the constraints (3.38) and (3.39) are

satisfied. Now the slopes and y-intercepts of the straight lines (T2,k − ψ)/(T1,k + τ)

are − (T1,k + τ)−1 and [1 + Xk(T1,k + τ)−1] ω + φ(T1,k + τ)−1 respectively, and the

slopes and y-intercepts of the straight lines (T3,k − ψ)/(T4,k − τ) are − (T4,k − τ)−1

and [1− Yk(T4,k − τ)−1] ω + φ(T4,k − τ)−1 respectively. The y-intercepts can attain

any value depending on the random delays Xk, Yk and the sign and magnitude of φ,

but there is a set pattern in the slopes of these lines. According to the model (see
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Fig. 5), it is always true that

(T1,1 + τ)−1 > (T4,1 − τ)−1 > (T1,2 + τ)−1 > · · · · · >

(T4,N−1 − τ)−1 > (T1,N + τ)−1 > (T4,N − τ)−1.

This is because T1,1 < T4,1 < T1,2 < · · · · · < T4,N−1 < T1,N < T4,N . Due to

the alternating slopes, the lines (T2,k − ψ)/(T1,k + τ) and (T3,k − ψ)/(T4,k − τ) for

every k intersect each other on at least one point. According to the order of the

slopes, both to the left and right of ψ = φ, the support region ends after the first

intersection. Therefore, there are exactly two points, (φ′, ω′)1 and (φ′, ω′)2, which

define the starting and ending point of the support region. In addition, the point

corresponding to minimum ω′ is the one with maximum φ′ since all the straight lines

always have negative slopes.

We can minimize ξ by taking the intersection of min
1≤k≤N

(T2,k − φ)/(T1,k + τ) and

max
1≤k≤N

(T3,l − φ)/(T4,l − τ) at minimum possible ω̂, which gives the MLE (φ̂, ω̂) as

φ̂ =
T3,j(T1,i + τ)− T2,i(T4,j − τ)

(T1,i + τ)− (T4,j − τ)
,

ω̂ =
T2,i − T3,j

(T1,i + τ)− (T4,j − τ)
,

where the indices (i, j) are the ones whose intersection gives the minimum allowed ω̂.

Algorithm 3 presents in detail the steps that are required for finding this MLE.

Algorithm 3 first finds all the intersections and chooses two candidate points

(φ′, ω′)1 and (φ′, ω′)2 such that ω′ ≤ (T2,k − φ′)/(T1,k + τ) ∀ k and ω′ ≥ (T3,l −
φ′)(T4,l − τ) ∀ l. These are the starting and ending points of the nonzero likelihood

region as proved in Lemma 5 above and the point with minimum ω (which corresponds

to the one with maximum φ) is chosen.
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Algorithm 3 Finding φ̂ and ω̂ for τ known, φ unknown

1: Find φk,l =
T3,l(T1,k+τ)−T2,k(T4,l−τ)

(T1,k+τ)−(T4,l−τ)
; ωk,l =

T2,k−T3,l

(T1,k+τ)−(T4,l−τ)
; ∀ k = 1, · · ·, N and

∀ l = 1, · · ·, N ;

2: (i, j) = {(k, l) | ωk,l ≤ T2,r−φk,l

T1,r+τ
∀ r and ωk,l ≥ T3,r−φk,l

T4,r−τ
∀ r};

3: (m,n) = {(k, l) | (k, l) 6= (i, j), ωk,l ≤ T2,r−φk,l

T1,r+τ
∀ r and ωk,l ≥ T3,r−φk,l

T4,r−τ
∀ r};

4: ω̂ = min{ωi,j, ωm,n}; φ̂ = max{φi,j, φm,n};

d. Case IV: τ unknown, φ unknown

In this case, all of τ, φ and ω are unknown and have to be jointly estimated. The

likelihood function in this case is the same as in (3.23) but τ is unknown. The region

where the likelihood function is nonzero can be expressed in the form of the following

constraints:

−∞ < φ < ∞, τ > 0, ω > 0,

τ ≤ T2,k − φ

ω
− T1,k, k = 1, · · ·, N, (3.40)

τ ≤ T4,k − T3,k − φ

ω
, k = 1, · · ·, N. (3.41)

Within the constraint τ > 0, (T2,k − φ)/ω − T1,k are monotonically decreasing

functions of φ and ω ∀ k, and T4,k−(T3,k−φ)/ω are monotonically increasing functions

of φ and ω ∀ k as shown in Fig. 12. It is clear from the same figure that the nonzero

likelihood region is similar in shape to a dome if we look at it standing on (φ, ω)

plane. Lemma 1 asserts that the MLE (τ̂ , φ̂, ω̂) should lie somewhere on the ceiling

of this dome. The lines on (φ, ω) plane, on which the intersections of the surfaces lie

are given by

φ =
1

2
[(T2,k + T3,l)− ω(T1,k + T4,l)] , k = 1, · · ·, N ; l = 1, · · ·, N, (3.42)
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or equivalently

ω =
T2,k + T3,l − 2φ

T1,k + T4,l

, k = 1, · · ·, N ; l = 1, · · ·, N. (3.43)

Note that putting ω = 1 (the case when there is no clock skew) in (3.42) and

taking the minimum results in the MLE φ̂ in (3.24) derived by [18]. Although τ is a

function of both φ and ω, it can be written as a function of either φ only or ω only

by utilizing this linear relationship between these two parameters. Fig. 14 shows the

imaginary 2-D region where τ is drawn as a function of ω only and Fig. 15 shows the

imaginary 2-D region where τ is drawn as a function of φ only. Note that these are

actually 3-D plots, but the points on the bottom two axes (φ, ω) are replaced with

(1
2
[(T2,k + T3,l)− ω(T1,k + T4,l)] , ω) and (φ, (T2,k + T3,l − 2φ)/(T1,k + T4,l)) in Fig. 14

and Fig. 15, respectively.

Over the line (3.42), τ is given by
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τ ≤ 1

2

[
T2,k − T3,l

ω
+ (T4,l − T1,k)

]
, k = 1, · · ·, N ; l = 1, · · ·, N. (3.44)

Note that putting ω = 1 and taking the min results in MLE τ̂ given by [18]. And

over the line (3.43), τ is given by

τ ≤ T2,kT4,l − T1,kT3,l + φ(T1,k − T4,l)

T2,k + T3,l − 2φ
, k = 1, · · ·, N ; l = 1, · · ·, N. (3.45)

A closer look at (3.45) reveals that its RHS goes to −∞ or +∞ respectively at

φ = (T2,i + T3,j)/2 according to the negative or positive sign of the numerator. But

the constraint τ > 0 automatically restricts the nonzero likelihood region well before

even the first discontinuity of this kind as shown in Fig. 15.

Estimating τ and ω: Consider the set of N2 curves given in (3.44) and plot-

ted in Fig. 14. Since the signs of T2,k − T3,l and T4,l − T1,k are always oppo-

site, N(N − 1)/2 of these curves have positive numerator in the term involving ω
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and negative constant term, while the remaining N(N + 1)/2 have negative nu-

merator in the term involving ω and positive constant term. Based on this ob-

servation, (3.44) can be written in the form of two sets of inequalities such that

(T2,k − T3,l) > 0 for one set and (T2,k − T3,l) < 0 for the other as shown in Fig.

14. Then the current scenario assumes quite a similar form to the set of con-

straints (3.28) and (3.29). Therefore, initially a total of [N(N − 1)/2] [N(N + 1)/2] =

N2(N2 − 1)/4 intersections (denoted by τ k,l,m,n in Algorithm 4) are to be com-

pared. Lemmas 1, 2, 3 and 4 are then similarly true for these sets of inequali-

ties and the MLEs can be derived by following a similar procedure. Let us denote

{ min
1≤k,l≤N

1
2
[(T2,k − T3,l)/ω + (T4,l − T1,k)] | (T2,k − T3,l) > 0} as (T2,i − T3,j)/2ω +

(T4,j − T1,i)/2 and { min
1≤k,l≤N

1
2
[(T2,k − T3,l)/ω + (T4,l − T1,k)] | (T2,k − T3,l) < 0} as

(T2,m−T3,n)/2ω + (T4,n−T1,m)/2. Then if
N∑

k=1

[T2,k − T3,k − (T2,m − T3,n)] is positive,

the MLE (τ̂ , ω̂) is the intersection of this curve with the one discussed above, i.e.,

τ̂ =
1

2

[
(T2,i − T3,j)((T1,i − T1,m) + (T4,n − T4,j))

(T2,i − T2,m) + (T3,n − T3,j)
+ (T4,j − T1,i)

]
,

and

ω̂ =
(T2,i − T2,m) + (T3,n − T3,j)

(T1,i − T1,m) + (T4,n − T4,j)
, (3.46)

Otherwise, if
N∑

k=1

[T2,k − T3,k − (T2,m − T3,n)] is negative, then the MLE is the

intersection of the curves (T2,p−T3,q)/2ω + (T4,q−T1,p)/2 and (T2,r−T3,s)/2ω + (T4,s−
T1,r)/2 (denoting the intersections of the curves in (3.44) as τ k,l,m,n, ∀ (k, l, m, n), and

τ k,l,m,n satisfy the constraints (3.40) and (3.41)), where

(p, q, r, s) = arg max
k,l,m,n

{τ k,l,m,n | N(T3,l − T2,k) <

N∑

k=1

(T3,k − T2,k) ;

N(T3,n − T2,m) >

N∑

k=1

(T3,k − T2,k)}.
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Algorithm 4 Finding φ̂, ω̂ and τ̂ for τ unknown, φ unknown

1: (m,n) = (1, N);

LABEL:

2: Find τ k,l,m,n = 1
2

[
(T2,k−T3,l)((T1,k−T1,m)+(T4,n−T4,l))

(T2,k−T2,m)+(T3,n−T3,l)
+ (T4,l − T1,k)

]
; ωk,l,m,n =

(T2,k−T2,m)+(T3,n−T3,l)

(T1,k−T1,m)+(T4,n−T4,l)
; ∀ (k, l) 6= (m,n);

3: (p, q) = arg min
k,l

{τ k,l,m,n}
4: if T2,p − T3,q > 0 then

5: τ̂ = τ p,q,m,n; ω̂ = ωp,q,m,n; φ̂ = 1
2
[(T2,p + T3,q)− ω̂(T1,p + T4,q)];

6: else

7: if N(T2,p − T3,q) >
N∑

k=1

(T3,k − T2,k) then

8: τ̂ = τ p,q,m,n; ω̂ = ωp,q,m,n; φ̂ = 1
2
[(T2,p + T3,q)− ω̂(T1,p + T4,q)];

9: else

10: Remove (m,n) curve;

11: (m, n) = (p, q);

12: goto LABEL;

13: end if

14: end if

Hence, here the MLE (τ̂ , ω̂) is

τ̂ =
1

2

[
(T2,p − T3,q)((T1,p − T1,r) + (T4,s − T4,q))

(T2,p − T2,r) + (T3,s − T3,q)
+ (T4,q − T1,p)

]
,

and

ω̂ =
(T2,p − T2,r) + (T3,s − T3,q)

(T1,p − T1,r) + (T4,s − T4,q)
, (3.47)

The complete procedure for finding the MLE is described in Algorithm 4. Al-

though a modified Algorithm 2 can be used in this case, we present this alternative
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algorithm for the sake of completion. It starts from the curve for which (T2,m − T3,n)

is minimum, i.e., (T2,1 − T3,N) and then compares its intersections with other curves.

It keeps on replacing this curve with the one giving the next minimum τ k,l,m,n within

the constraints until the MLE is found according to the procedure described before.

Estimating φ: A simpler and easier to implement method is estimating φ̂ by

noting that for every τ as a function of ω (and hence the one minimizing ξ), there is

a corresponding φ according to (3.42). Therefore, the MLE is

φ̂ =
1

2
[(T2,i + T3,j)− ω̂(T1,i + T4,j)] , (3.48)

or

φ̂ =
1

2
[(T2,p + T3,q)− ω̂(T1,p + T4,q)] , (3.49)

depending on whether ω̂ is given by (3.46) or (3.47). The reason for not following

the same procedure as in finding ω̂ by using (3.43) is that the problem becomes

computationally complex. First, the likelihood function assumes quite a complicated

form after plugging (3.43) and (3.45) into (3.23). Second, the intersection φ̂ of the

curves in (3.43) has to be found by solving quadratic equations with large coefficients.

To be exact, φ̂ is the solution of

2φ̂2[(T1,r − T1,p) + (T4,s − T4,q)] + φ̂[(T1,p − T4,q)(T2,r + T3,s)−

(T1,r − T4,s)(T2,p + T3,q)] + [T2,pT2,r(T4,q − T4,s) +

T2,pT3,s(T4,q + T1,r)− T2,rT3,q(T4,s + T1,p)− T3,qT3,s(T1,r − T1,p)] = 0,

where the indices p, q, r, s are the ones minimizing ξ. It has two solutions and the

solution which gives

φ̂ < min(T2,i + T3,j)/2, i = 1, · · ·, N ; j = 1, · · ·, N,
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is accepted to satisfy the constraints set by I[.] in (3.23). Hence, (3.48) or (3.49)

should be chosen to estimate φ on the grounds of lesser computational complexity.

It should be noted that τ̂ will be the same in both approaches when we estimate it

jointly with ω̂ and φ̂ whether by expressing it in terms of ω only or in terms of φ only.

Algorithm 4 also includes the step for estimating φ.

C. Summary

In this chapter, we have first derived the MLE and the CRLB for both the clock offset

only and clock offset and skew cases under Gaussian noise assumption. Subsequently,

the CRLB for the well-known MLE of clock offset in TPSN assuming no clock skew,

under exponentially distributed delays is obtained. Afterwards, the MLEs of both

the clock offset and skew for any general time synchronization protocol involving a

two-way message exchange mechanism are derived assuming exponential delays and

the complete algorithms used for finding these MLEs are also presented.



75

CHAPTER IV

COMPUTATIONALLY SIMPLIFIED SCHEMES FOR ESTIMATION OF CLOCK

OFFSET AND SKEW*

Although MLE derived in previous sections is not computationally very complex,

WSNs can still benefit from some simplified schemes to estimate the clock parameters

specially when the synchronization accuracy constraints are not extremely stringent

but the energy conservation constraints are. In addition, for estimating both the clock

offset and skew in Gaussian noise case, the knowledge of fixed portions of delay τ was

required, which is usually not available beforehand. Therefore in this chapter, two

simple algorithms have been proposed to estimate the clock offset and skew regardless

of the distribution of the delays which are very suitable for low power demanding

WSN regime. The proposed estimators can be implemented using simple steps and

present remarkably low complexity. These estimators and the derived performance

bounds are targeting practical applications, and are of much significance due to their

robustness to the actual delay distribution involved. The main contributions of this

chapter are as follows.

1. In the first scheme, first the clock skew is estimated using only the first and last

data sample, since the difference between timestamps is the highest between

those two for any distribution, and then maximum likelihood like estimators

*Parts of this chapter are reprinted with permissions from “Novel Clock Phase
Offset and Skew Estimation Using Two-Way Timing Message Exchanges for Wireless
Sensor Networks” by Kyoung-Lae Noh, Qasim M. Chaudhari, Erchin Serpedin and
Bruce Suter, IEEE Transactions on Communications, Volume 55, Issue 4, April 2007
Page(s): 766 - 777 and “On Maximum Likelihood Estimation of Clock Offset and Skew
in Networks With Exponential Delays”, by Qasim M. Chaudhari, Erchin Serpedin and
Khalid Qaraqe, IEEE Transactions on Signal Processing, Volume 56, Issue 4, April
2008 Page(s): 1685 - 1697.
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and Cramer-Rao like lower bounds are derived for the clock skew. Subsequently,

the data is processed to remove the effect of skew and then the clock offset is

estimated, which just requires a few computations.

2. The second scheme fits a line between two points, the differences between the

first and the fourth timestamps, that are at a minimum distance apart, yielding

both the clock offset and skew regardless of the underlying actual distribution.

A. Using the First and the Last Data Sample

Exploiting the fact that the clock difference between two wireless terminals is mono-

tonically increasing (or temporary decreasing then increasing) based on the linear

clock skew model adopted in this chapter, the clock difference will be maximized

between the first and last timestamps. From this intuition, novel and practical clock

skew estimators can be developed by using the first and last observations of timing

message exchanges. Indeed, the proposed ML-Like Estimator (MLLE) maximizes

the likelihood function based on the reduced set of observations (the first and last

timestamps).

From (3.4), subtracting T2,1 from T2,N gives

T2,N − T2,1 = (T1,N − T1,1 + XN −X1) ω. (4.1)

Similarly from (3.5), subtracting T4,1 from T4,N gives

T3,N − T3,1 = (T4,N − T4,1 + Y1 − YN) ω. (4.2)

Define the differences of the first and last timestamps as D(1) ,
∑

N
k=2D1,k = T1,N −

T1,1, D(2) ,
∑

N
k=2D2,k = T2,N − T2,1, D(3) ,

∑
N
k=2D3,k = T3,N − T3,1, and D(4) ,

∑
N
k=2D4,k = T4,N − T4,1, respectively. Then (4.1) and (4.2) can be rewritten respec-
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tively as

D(2) =
(
D(1) + P

)
ω,

D(3) =
(
D(4) −R

)
ω,

where P , XN − X1 and R , YN − Y1. Next, we analyze this simplified form to

derive the MLLE and the CRLB like lower bounds for the clock skew.

1. Gaussian Delay Model

Since XN , X1, YN , and Y1 are i.i.d. normal distributed RVs with variance σ2, P and

R become zero mean normal distributed RVs with variance 2σ2, respectively. Then

the joint PDF of P and R is given by

fP,R (p, r) =
1

4πσ2
e−

1
4σ2 (p2+r2).

Hence, the likelihood function becomes

L
(
ω′, σ2

)
=

1

4πσ2
e−

1
4σ2 [D2

(2)
(ω′−β)2+D2

(3)
(ω′−γ)2],

where ω′ = 1/ω, β , D(1)/D(2) and γ , D(4)/D(3). Differentiating the log-likelihood

function with respect to ω′ yields

∂2 ln L (ω′, σ2)

∂ω′2
= − 1

2σ2

[
D2

(2) (ω′ − β) + D2
(3) (ω′ − γ)

]
.

Thus the proposed MLLE for the Gaussian delay model (GMLLE) is given by

ω̂GMLLE =
1

ω̂′
=

D2
(2) + D2

(3)

D(1)D(2) + D(3)D(4)

. (4.3)

Again, similar procedures can be applied to derive a lower bound for the GMLLE.
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The 2nd order derivative of the log likelihood function becomes

∂2 ln L (ω′, σ2)

∂ω′2
= −

D2
(2) + D2

(3)

2σ2
. (4.4)

The expected value of (4.4) is given by

E

[
∂2 ln L (ω′, σ2)

∂ω′2

]
= −

E
[
D2

(2) + D2
(3)

]

2σ2
= −

D2
(1) + D2

(4) + 4σ2

2σ2
.

Finally, the lower bound of the GMLLE is given by

var(ω̂GMLLE) ≥
(

∂ω
∂ω′

)2

−E
[

∂2 ln L(ω′,σ2)
∂ω′2

] =
2σ2ω2

D2
(1) + D2

(4) + 4σ2
. (4.5)

Note that the complexity of the MLLEs is far less than that of the GMLE. In

fact, for the GMLE, the number of required multiplications and additions are about

4N +6 and 10N , respectively. While, both MLLEs require only a few multiplications

and additions (less than 5) regardless of the number of beacons N . Moreover, for the

GMLE, the fixed portion of delays τ must be also estimated, which requires additional

computations.

2. Exponential Delay Model

For exponential delays, XN , X1, YN , and Y1 are assumed to be i.i.d. exponentially

distributed RVs with mean α. Therefore, P and R become zero mean Laplace dis-

tributed RVs with variance 2α2, respectively. Thus, the joint PDF of P and R is

given by

fP,R (p, r) =

(
1

2α

)2

e−
1
α

(|p|+|r|).

The likelihood function becomes

L (ω, α) =

(
1

2α

)2

e
− 1

α

(∣∣∣∣
D(2)

ω
−D(1)

∣∣∣∣+
∣∣∣∣D(4)−

D(3)
ω

∣∣∣∣
)

.



79

Substituting 1/ω , ω′, the likelihood function can be rewritten as

L (ω′, α) =

(
1

2α

)2

e−
1
α(D(2)|ω′−β|+D(3)|ω′−γ|),

where β , D(1)/D(2) and γ , D(4)/D(3). Then ω̂′ maximizing the likelihood function

is given by

ω̂′ = arg min
ω′

(
D(2) |ω′ − β|+ D(3) |ω′ − γ|) ,

ω̂′ = arg min
ω′

2∑
i=1

Ki

∣∣ω′ − δ(i)

∣∣, (4.6)

where the order statistics
{
δ(i)

}2

i=1
are generated from the given observations {β, γ}

and Ki is the distance either (D(2) or D(3)). Let ĵ = arg min
j

∑
2
i=1Ki

∣∣δ(j) − δ(i)

∣∣, then

the proposed clock skew can be derived from the solution of the equation (4.6), which

is given by

ω̂′ = arg min
ω′

2∑
i=1

Ki

∣∣ω′ − δ(i)

∣∣ = arg min
ω′

h(ω′),

where h(ω′) ,
∑

2
i=1Ki

∣∣ω′ − δ(i)

∣∣. Now divide the region of order statistics
{
δ(i)

}2

i=1

into 3 different regions as in Fig. 16, then the function h(ω′) in the 1st region becomes

h(ω′) = −
2∑

i=1

Kiω
′ +

2∑
i=1

Kiδ(i) ω′ ≤ δ(1) (region 1) .

Since Ki is always positive, the corresponding estimate ω̂′ is given by

ω̂′ = arg min
ω′

h(ω′) = δ(1) (region 1) .

Similarly, in the 2nd region, the function h(ω′) becomes

h(ω′) = (K1 −K2) ω′ +
(
K2δ(2) −K1δ(1)

)
δ(1) < ω′ ≤ δ(2) (region 2) .
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Fig. 16. Regions of the order statistics {δ(i)}2
i=1.

Hence the estimate ω̂′ is given by

ω̂′ = arg min
ω′

h(ω′) =





δ(1) K1 > K2

δ(2) K1 < K2

any value K1 = K2

δ(1) < ω′ ≤ δ(2) (region 2) .

Finally, the function h(ω′) in the final 3rd region is given by

h(ω′) =
2∑

i=1

Kiω
′ −

2∑
i=1

Kiδ(i) δ(2) < ω′ (region 3) .

So the estimate ω̂′ in this region is

ω̂′ = arg min
ω′

h(ω′) = δ(2) (region 3) .

Consequently, the estimate ω̂′ can be determined by choosing an adequate value be-

tween the order statistics
{
δ(i)

}2

i=1
. The median of

{
δ(i)

}2

i=1
maximizes the likelihood

function and minimizes the mean square error of the estimate. Therefore, the MLE
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of clock skew ω̂ for the exponential delay model is given by

ω̂EMLLE =





D2

D1
, D2 > D3

D3

D4
, D2 < D3

1
2

(
D2

D1
+ D4

D3

)
, D2 = D3

(4.7)

Now we are interested in the lower bound of the EMLLE to evaluate its asymp-

totic behavior. The derivative of the log likelihood function becomes

∂ ln L (ω′, α)

∂ω′
=

D(2)

α
sgn (ω′ − β) +

D(3)

α
sgn (ω′ − γ) . (4.8)

Then the expected value of the square of (4.8) is given by

E

[(
∂ ln L (ω′, α)

∂ω′

)2
]

= EP,R

[
D2

(2) + D2
(3) + 2D(2)D(3)sgn (ω′ − β) sgn (ω′ − γ)

α2

]

(c)
=

D2
(1) + D2

(4) + 4α2

α2
,

where (c) is due to the fact that P and R are independent. Therefore, the lower

bound of the EMLLE is given by

var(ω̂EMLLE) ≥
(

∂ω
∂ω′

)2

E

[(
∂2 ln L(ω′,α)

∂ω′2

)2
] =

α2ω2

D2
(1) + D2

(4) + 4α2
. (4.9)

In fact, we have followed the same steps used in CRLB derivation since the same

reasoning and proof can be also applied to the lower bound derivation for the MLLE.

3. Combination of Clock Offset and Skew Estimation

Since the proposed MLLEs are only for estimating clock skew ω, we still need to

estimate clock offset φ for a complete clock synchronization. Considering the given

clock skew model, T2,k and T4,k are known values and ω can be estimated using the
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MLLE, the sets of delay observations between two nodes can be recomposed by

U ′
k = T2,k − ω̂T1,k (= τ ′ + φ + X ′

k) , (4.10)

V ′
k = ω̂T4,k − T3,k (= τ ′ − φ + Y ′

k) , (4.11)

where X ′
k = ωXk, Y ′

k = ωYk, and τ ′ = ωτ , respectively. Notice that it can be applied

to the same clock offset estimator as in (3.2) and (3.17) for Gaussian and exponential

delay models, respectively. Thus, substituting the sets of delay observations gives the

following clock offset estimators:

φ̂ =
min

1≤k≤N
U ′

k − min
1≤k≤N

V ′
k

2
(exponential delays), (4.12)

φ̂ =
U ′

k − V ′
k

2
(Gaussian delays). (4.13)

Consequently, the proposed joint clock offset and skew estimators consist of the fol-

lowing steps:

1. Estimate clock skew using the proposed MLLE either ω̂EMLLE or ω̂GMLLE ac-

cording to the type of random delays.

2. Recompose the sets of delay observations U ′
k and V ′

k as shown in (4.10) and

(4.11).

3. Estimate clock time offset using the estimator either (4.12) or (4.13) correspond-

ing to the given delay model.

In fact, the proposed MLLEs require multiple message exchanges in a sync period

(N > 1) to obtain the set of distances ({D(k)}4
k=1). However, these estimators can be

applied not only within the same sync period, but also throughout several consecutive

sync periods. In other words, a new set of observations in the next sync period can

be substituted for the set of timestamps of the initial message exchange ({Tk,N}4
k=1)
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in the initial sync period. This substitution can be sequentially performed thereafter.

Therefore, the proposed MLLEs can be also applied to the single message exchange

model (N = 1) like TPSN without further modifications. The performance of the

MLLEs are analyzed in the following section.

4. Simulation Results

Fig. 17 compares the variance (mean square error) of the GMLLE with the joint

GMLE of clock skew and corresponding CRLB when σ is 1. It can be seen that the

GMLLE performs close to the GMLE when the number of observations N is small

(typically N is small in WSNs for the sake of energy efficiency), and its variance

goes to zero as the number of observations increases (consistent and asymptotically

efficient). Note that the GMLLE works well without the knowledge of the fixed

portion of delays τ , whereas the same is required by the joint GMLE.

Fig. 18 shows the variance of the EMLLE with the joint GMLE in exponential

random delay channels when α is 1. It can be seen that again the proposed MLLE

is consistent and comparable to the GMLE. The consistency of the proposed MLLEs

can be also checked from (4.9) and (4.5) since their lower bounds become 0 as N

increases.

In order to evaluate the robustness of estimators, Fig. 19 compares the perfor-

mance of the GMLE with the MLLEs in standard Gamma distributed (one of the

most widely used RVs for modeling random queuing delay) random delay channels

when γ is 2. Actually, both MLLEs exhibit similar performance compared to the

GMLE regardless of the type of random delays. This is due to the fact that the

performance of the MLLE is dominated by the set of distances ({D(k)}4
k=1), which

does not vary much with respect to the type of random delays.

Fig. 20 compares the performance of the proposed clock offset estimator (4.13)
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Fig. 17. Variance of the MLE of the Gaussian delay model (GMLE) and the Gaussian

MLLE (GMLLE) for Gaussian random delays (σ = 1).
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Fig. 18. Variance of the GLME and the exponential MLLE (EMLLE) for exponential

random delays (α = 1).
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Fig. 19. Variance of the GLME and the MLLEs for Gamma random delays (γ = 2).

with the joint Gaussian MLE of clock offset derived in (3.11) in Gaussian delay model

when σ = 0.5. It can be seen that the joint MLE overperforms the proposed estimator

due to the help of the prior knowledge of τ and the complete set of timestamps.

B. Fitting the Line Between Two Points at Minimum Distance Apart

In this section, we present an easier to implement algorithm which requires less num-

ber of computations at the expense of increased MSE, and has the most desirable

feature of independence with respect to the actual delay distribution incurred. The

intuition behind the idea is that (3.4) and (3.5) can be rewritten as

T2,k = T1,kω + φ + (τ + Xk)ω,

T3,k = T4,kω + φ− (τ + Yk)ω.
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Fig. 20. Variance of the joint ML clock offset estimate and the proposed estimator for

Gaussian random delays (σ = 0.5).

Notice that since ω, τ , Xk and Yk are all positive, the points T2,k, k = 1, · · ·, N
will always be above the line T1,kω+φ and the points T3,k, k = 1, · · ·, N will always be

below the line T4,kω + φ. Hence, a good estimate of ω and φ can be formed by fitting

a line between the observations such that T2,k, k = 1, · · ·, N are above the fitted line

and T3,k, k = 1, · · ·, N are below it. The strategy we have devised for a good estimate

is to join the two points P1 and P2, where P1 corresponds to 1
2

min
1≤k≤N

{T4,k − T1,k}
and P2 corresponds to 1

2
min

1≤k≤N,k 6=i
{T4,k − T1,k}. Representing their indices by i and j,

respectively, we have

P1 = {1

2
(T4,i − T1,i),

1

2
(T2,i + T3,i)},

and

P2 = {1

2
(T4,j − T1,j),

1

2
(T2,j + T3,j)},
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Fig. 21. The estimated fit with the original curve.

i.e., P1 and P2 correspond to the first two order statistics of the data set 1
2
(T4,k−T1,k),

k = 1, · · ·, N . The line formed by joining those two points is shown in Fig. 21 along

with the true curve. Hence, the estimate (ω̂, φ̂) can be expressed as

ω̂ =
(T2,i + T3,i)/2− (T2,j + T3,j)/2

(T1,i + T4,i)/2− (T1,j + T4,j)/2
,

φ̂ = (T2,i + T3,i)/2− ω̂(T1,i + T4,i)/2.

When P1 and P2 fall very close to each other, it may happen that the fitted line

exits from its boundaries and a part of it becomes either greater than some T2,k or

less than some T3,k. In that case, we propose to join the minimum point P1 with one

of the boundary points {T2,1, T2,N , T3,1, T3,N} depending on which of them has the

shortest distance from the initial fitted line. This algorithm is extremely simple since
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Algorithm 5 Fitting the line to estimate ω and φ

1: i = arg min
k

1
2
{T4,k − T1,k};

2: j = arg min
k, k 6=i

1
2
{T4,k − T1,k};

3: ω̂ =
(T2,i+T3,i)/2−(T2,j+T3,j)/2

(T1,i+T4,i)/2−(T1,j+T4,j)/2
; φ̂ = (T2,i + T3,i)/2− ω̂(T1,i + T4,i)/2;

4: if (T2,1 < φ̂ + ω̂T1,1) or (T2,N < φ̂ + ω̂T1,N) then

5: m = arg min
k

{|T2,k − φ̂− ω̂T1,k|, |T3,k − φ̂− ω̂T4,k|}, k = 1, N ;

6: ω̂ =
(T2,i+T3,i)/2−(T2,m+T3,m)/2

(T1,i+T4,i)/2−(T1,m+T4,m)/2
; φ̂ = (T2,i + T3,i)/2− ω̂(T1,i + T4,i)/2;

7: end if

it just involves finding the first two order statistics from a set of N observations and

checking the boundary conditions for the two extreme points. If the fitted line violates

the boundary condition, the estimator is again formed by the same simple formula

but with a point having different time index. Since this point is on the boundary, the

procedure does not have to be repeated and there are no loops involved as before.

The whole procedure for finding these estimates is described in Algorithm 5.

Some additional advantages of using Algorithm 5 are that φ can also be estimated

by the y intercept of the fitted line and importantly, τ does not need to be known.

1. Simulation Results

We have simulated the performance of the MLE for fixed delay τ = 2, clock offset

φ = −10, exponential delay parameter α = 2 and for two different clock skews

ω = 1.0007 and ω = 1.003. The reason of choosing different clock skews is to show

a comparison of these algorithms on the performance for various actual parameters.

We compare the performance of our proposed algorithm with the most general (and

similar) case when (τ, φ, ω) have to be jointly estimated. Fig. 22 plots the Mean

Square Error of both clock skew estimators for ω = 1.0007 and ω = 1.003 against
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Fig. 22. Comparison of the proposed algorithm with case IV.

the number of message exchanges. It is clear from Fig. 22 that although the MLE

performs better than the proposed algorithm, it can still be adopted with the sacrifice

of some performance in the scenarios where energy conservation is the main issue of

concern. Hence, in the light of the accuracy energy trade-off for attaining such a

gain in performance by deploying MLE, we assert that the proposed algorithm is

very suitable for WSNs. Moreover, there is not any significant difference between the

Mean Square Error of the MLE and that of the proposed algorithm for different set

of actual parameters and hence it is suited to different types of sensor nodes used

today.

To check the robustness of our proposed algorithm against possible model mis-

matches, we have plotted the performance of the MLE in the most general Case IV

and our proposed algorithm in Fig. 23 when the actual random delays come from
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random delays.

the widely used Gamma distribution instead of the exponential distribution. Fig.

23 shows the Mean Square Error of both of these algorithms against the number of

observations when the random delays were simulated as Gamma random variables

with shape parameter 2 and scale parameter 1. It is interesting to observe that the

difference between their performance still remains on the same scale as in Fig. 22.

Therefore, the proposed algorithm is not only computationally simple and easy to

implement but also robust to different environments.

2. Computational Complexity Comparison

Table III presents the number of operations required for the simplified algorithm in

this section and the 4 algorithms used for deriving the MLE in Chapter III. Note

that these numbers have been calculated by considering the necessary simplifications

(e.g., storing the output of an operation if it is to be used later). In addition, the
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operation count for Algorithm 2 and Algorithm 4 is given assuming no cycles. When

their respective conditional statements become true, the code will jump around in the

loop and the operation count will be multiplied by the number of cycles. Moreover, it

must be kept in mind that the division is the most complex algorithm to implement in

a DSP and the number of division operations must be given the highest weight while

choosing between different algorithms. Finally, the operation count of our proposed

algorithm is given for the worst case scenario, the probability of which is very low. For

usual operation, its complexity will only be 3N + 11 additions, N + 4 multiplications

and 1 division.

For a comparison, observe that even for a small number of observations, e.g., 10,

Algorithm 4 requires 916 additions, 205 multiplications and 200 divisions. On the

other hand, the proposed algorithm requires only 61 additions, 20 multiplications and

2 divisions for 10 observations in the worst case. As the number of observations N

increases, the difference between their operation counts increases significantly while

the difference between their MSE decreases, making it a more viable option for large

N . However, it must be remembered that in the light of the results by [31], who

have reported that the energy required to transmit 1 bit over 100 meters (3 Joules)

is equivalent to the energy required to execute 3 millions of instructions, employing

the MLE to achieve clock synchronization in a WSN is still a practical option.

C. Summary

In this chapter, two different computationally simple schemes have been proposed

to estimate the clock parameters. The first technique utilizes the first and the last

data sample to estimate the clock skew and uses this estimate for finding the clock

offset. These novel ML-like estimators have been put forward for both Gaussian and
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Table III. Computational complexity of each algorithm

Additions Multiplications Divisions

Algorithm 1 2N − 1 0 N

Algorithm 2 (1 cycle) 5N2 + 5N 2N2 + 4 2N2 + 2N

Algorithm 3 4N3 + 5N2 + 2 2N2 2N3 + 2N2

Algorithm 4 (1 cycle) 9N2 + N + 6 2N2 + 5 2N2

Proposed Algorithm 3N + 31 N + 10 2

exponential random delays and require no prior knowledge of τ . The second technique

fits a line between minimum distance points and the clock offset and skew estimates

are its intercept and slope, respectively. Simulation results are drawn and commented

on, showing good performance by these simple estimators.
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CHAPTER V

ENERGY EFFICIENT ESTIMATION OF CLOCK OFFSET FOR INACTIVE

NODES

Researchers have proposed various protocols targeting the clock synchronization in

WSNs mainly based on packet synchronization techniques (see [32] - [34] for alterna-

tive schemes) which are divided into three fundamental approaches: sender-receiver

synchronization (e.g., [4], [11], [35], [36], [37]), receiver-receiver synchronization (e.g.,

[10], [38], [39], [40]) or a hybrid of both (e.g., [13]). The two opposite requirements of

closely synchronizing the network with a minimum number of RF transmissions and

with high accuracy can be efficiently addressed using the approach suggested by [13],

where multiple inactive nodes can hear the synchronization messages transmitted by

the master node in one-way timing cells exchange mechanism. Advancing the utility

of this one-way mechanism, [13] proposed the synchronization of nodes present in the

communication range of the master node (broadcasting the timing beacons), where

each node receiving the timing cells transmitted by the master node estimates its

own clock parameters and synchronizes with the master node accordingly. However,

the similar situation pertaining to the two-way timing exchange mechanism, i.e., the

framework where the nodes, located in the common broadcast region of a master and

slave node, can overhear the time synchronization packets between them and exploit

the acquired information for achieving clock synchronization, largely remained unno-

ticed until [41] shed some light on it. Note that although the idea of sender-receiver

synchronization is quite old and is most famously being used in NTP [1] for a long

time, it is due to the wireless nature of communication channels in sensornets that the

technique of synchronization of silent nodes located in their common broadcast region

can be exploited. Therefore, the clock synchronization requirements can be reason-
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ably met without paying any price on the network lifetime (i.e., without exchanging

additional messages for clock synchronization purposes and thereby reducing battery

life) or nodes hardware (e.g., by improving the quality of the quartz crystals or by

utilizing more expensive power efficient batteries). The main contributions of this

chapter are as follows.

1. It derives the MLE for the clock offset of the silent nodes, which are only

receiving the timing cells exchanged by the master-slave pair, and proves the

uniqueness of the MLE. One very important implication of this work is that

the performance of the sender-receiver protocols, whose main disadvantage has

always been categorized as the high communication overhead in WSN scenarios

due to their point-to-point rather than the broadcast nature, can be compared

with that of receiver-receiver or hybrid protocols on equal grounds.

2. The CRLBs for the clock offsets of both the active and silent nodes are derived

and used as benchmarks to assess the performance of the estimators.

A. Problem Formulation

Consider a WSN consisting of several sensor nodes as shown in Fig. 24, which dy-

namically elect a master node m through any master election algorithm proposed in

the literature, and whose time is chosen as the reference time subsequently for the

rest of that synchronization cycle. Depending on the sender-receiver synchronization

protocol employed for operation, node m chooses another node p as the slave node at

the start of the synchronization cycle. Let φp denote the clock offset of node p with

respect to node m. As illustrated in Fig. 24, node m transmits timing cell 1 over

the wireless channel to node p which responds by transmitting timing cell 2 to node

m. The timestamps sm→p
j and rp→m

j are recorded by node m at pre-transmission and
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m p

q

Fig. 24. A WSN with two active nodes m and p exchanging timing cells with silent

nodes like q, located within the common broadcast region of the active nodes

m and p.

post-reception of timing cells 1 and 2, respectively. Similarly, node p records rm→p
j

and sp→m
j according to its own time reference (offset from node m by φp) at post-

reception and pre-transmission of timing cells 1 and 2, respectively. N such timing

cells are exchanged between m and p and the first of them sm→p
1 is chosen as the

initial reference time.

Now observe from Fig. 24 that if the transmission range of sensor nodes can

roughly be modeled as lying within a hexagon, then a few other nodes, e.g., node

q whose clock offset with respect to node m is φq, lie within the intersection of the

broadcast regions of nodes m and p. Without taking part in any communication and

hence conserving considerable power, node q and other similar nodes can listen to

the whole message exchange flying through the air between nodes m and p. For this

reason, let all the transmitted messages be represented by the transmitter’s index

only without any reference to the receiving node so that sm→p
j and sp→m

j in the above
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Fig. 25. A two-way timing cell exchange mechanism between nodes m and p with node

q overhearing them.

paragraph now change to sm
j and sp

j respectively. As illustrated in Fig. 25, assume

that node q timestamps the timing cells coming from nodes m and p as rm→q
j and

rp→q
j , respectively. Notice that node q is also receiving the packets rm→p

j , sent by node

m and timestamped by node p, along with sp
j because node p is required to send this

information back to node m inside the packet containing sp
j .

During the interval between the pre-transmission and post-reception records of a

timing cell, there are different kinds of incurred link delay uncertainties in the radio

message delivery, which might assume magnitudes greater than the required preci-

sion of time synchronization. Therefore, it is very important to dig deeper into the

exact nature and significance of all the components comprising these sources of error.

Taking into account even the minutest details, [13] classified all the link delay un-

certainties incurred by the message as either deterministic or nondeterministic. The

sources of delays such as send time, channel access time, interrupt handling time,

receive time, etc., are nondeterministic and can range from around 5 µs to 500 ms.

On the other hand, there are deterministic sources of delays such as encoding time,

transmission time, propagation time, reception time, decoding time, byte alignment



97

time, etc., which can range from 0 µs to 20 ms. Besides [13], numerous other au-

thors have divided the link delay uncertainties in deterministic and nondeterministic

components such as [18], [17]. Interested readers are also encouraged to go through

references [15] and [16] for a detailed study of network delays and their breakdown in

detail.

For the discussion in this chapter, we have assumed that the deterministic part

of link delays is unknown but same for all the nodes receiving the messages from

nodes m and p. This is because usually the nodes in a WSN share the same hardware

specifications and characteristics and hence undergo similar transmission, reception,

encoding, decoding and byte alignment times. In addition, the propagation time

of RF waveforms is less than 1 µs for ranges under 300 meters which implies that

for nodes lying close by at short distances from each other, the difference in the

propagation time of the same message will be even less than a few nano seconds.

Therefore, instead of τm→p, τm→q, or τ p→q, the deterministic part of link delays is

denoted as τ in this chapter.

Lastly, the nondeterministic or random link delays, zm→p
j , zm→q

j and zp→q
j , have

been modeled as coming from an exponential distribution with similar means. The

complete discussion on the justifications behind this can be found in Chapter II.

The following equations summarize the model depicted above for j = 1, · · ·, N .

rm→p
j = sm

j + φp + τ + zm→p
j ,

rm→q
j = sm

j + φq + τ + zm→q
j ,

rp→q
j = sp

j − φp + φq + τ + zp→q
j ,

where zm→p
j , zm→q

j and zp→q
j are independent and identically distributed exponential

random variables with the same mean λ. Rearranging the equations and introducing
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the notations Uj , rm→p
j − sm

j , Vj , rm→q
j − sm

j and Wj , rp→q
j − sp

j yields

Uj = φp + τ + zm→p
j , (5.1)

Vj = φq + τ + zm→q
j , (5.2)

Wj = φq − φp + τ + zp→q
j . (5.3)

Having formulated the problem and the associated model completely, next we

will present a procedure for estimating the clock offsets of these silent nodes based

on the ML technique at an essentially negligible cost of a few computations.

B. Maximum Likelihood Estimation

Based on the equations (5.1), (5.2) and (5.3), the likelihood function can be expressed

as

L (λ, τ, φp, φq) = λ−3N . exp

[
−1

λ

N∑
j=1

{Uj + Vj + Wj − 2φq − 3τ}
]
.

N∏
j=1

I [Uj − φp − τ ] .
N∏

j=1

I [Vj − φq − τ ] .
N∏

j=1

I [Wj − φq + φp − τ ] , (5.4)

where the 3N unit step functions I[.] are defined as being equal to 1 if their argument

is positive and 0 otherwise, and represent the support constraints for the likelihood

function. Now since these constraints do not depend on λ, the likelihood function

will be maximized by λ̂ for all the fixed values of (τ, φp, φq) by forcing the derivative

of the log-likelihood function to be zero,

∂ ln L (λ, τ, φp, φq)

∂λ
=

−3N

λ
+

1

λ2

N∑
j=1

{Uj + Vj + Wj − 2φq − 3τ} = 0,
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Fig. 26. Support region of the reduced likelihood function L′(τ, φp, φq)

which implies

λ̂ =
1

3N

N∑
j=1

{Uj + Vj + Wj − 2φq − 3τ} .

Plugging the above value of λ̂ back in (5.4) and exploiting the fact that the indexed

values in the unit step functions are independent of the unknown parameters yields

the reduced likelihood function

L′ (τ, φp, φq) = e−3N .

[
1

3N

N∑
j=1

{Uj + Vj + Wj − 2φq − 3τ}
]−3N

.

I
[
U(1) − φp − τ

]
. I

[
V(1) − φq − τ

]
. I

[
W(1) − φq + φp − τ

]
, (5.5)

where the subscript (1) denotes the minimum order statistics of the corresponding

observations, i.e., U(1), V(1) and W(1) are the minimum values of {Uj}N
j=1, {Vj}N

j=1 and

{Wj}N
j=1, respectively.

It is clear that the reduced likelihood function L′(τ, φp, φq) can be maximized

by minimizing the expression
∑N

j=1{Uj + Vj + Wj − 2φq − 3τ}, which subsequently
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becomes the cost function f0(τ, φq). Since this cost function is linear in both φq and

τ , the maximum can not be found through its differentiation and hence must be

searched over the boundary of its support region. Therefore, let us closely analyze

this support region by writing the constraints in the following form:

τ > 0, (5.6)

τ ≤ U(1) − φp, (5.7)

τ ≤ V(1) − φq, (5.8)

τ ≤ W(1) − φq + φp. (5.9)

Fig. 26 draws the 3-D support region of the reduced likelihood function over

which it has to be maximized, where τ is drawn as a function of φp and φq. A 2-D

aerial view of this support region is drawn in Fig. 27, which illustrates the lines on

the (φp, φq) plane where the intersections of the curves (5.6) - (5.9) lie. Fig. 27 is

further broken down into 7 regions as shown in Fig. 28 and both of them (Figs. 27

and 28) highlight three sets of lines: solid, dashed and dotted. Each of these three

sets is explained in detail in the following discussion.

• Solid Lines: Observe that the base of this support region is formed by the

intersection of (5.6) with the surfaces {(5.7), (5.8), (5.9)} respectively. Hence,

slicing horizontally this 3-D region in Fig. 26 at τ = 0 reveals the 2-D view of

this base B formed by

B =





φp = U(1), −∞ < φq ≤ V(1),

φq = W(1) + φp, −∞ < φq ≤ V(1),−∞ < φp ≤ V(1) −W(1),

φq = V(1), V(1) −W(1) ≤ φp ≤ U(1).

(5.10)

The border of this base B is illustrated as solid lines in Figs. 27 and 28, and

f0(τ, φq) is constrained to remain inside of it.
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Fig. 27. An aerial 2-D view of the support region

• Dashed Lines: As explained above and shown in Fig. 26, the walls of the

support region are formed by the three distinct surfaces (5.7), (5.8) and (5.9).

The lines on the (φp, φq) plane, on which their respective intersections lie, are

depicted as three dashed lines in Figs. 27 and 28 and summarized in Table IV.

Also explained by this table and shown in Fig. 28, it is the point P1 = (V(1) −
W(1), 2V(1) − U(1) −W(1)) on (φp, φq) plane, where all the above three surfaces

meet each other, that is of paramount importance for the study considered

herein.

• Dotted Lines: For simplifying the derivation of the MLE and proving that it is

unique, dotted lines are drawn in Fig. 28 in order to further break the base B

into easier-to-work-with geometrical figures.

Note that in maximizing L′(τ, φp, φq) over the set Φ = {(τ, φp, φq) : τ > 0, |φp| <
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Table IV. Intersections of surfaces (5.7) - (5.9)

Surfaces Contour of Intersection on (φp, φq) plane

(5.7) & (5.8) Line φq = V(1) − U(1) + φp

(5.8) & (5.9) Line φp = V(1) −W(1)

(5.7) & (5.9) Line φq = W(1) − U(1) + 2φp

(5.7) & (5.8) & (5.9) Point
(
V(1) −W(1), 2V(1) − U(1) −W(1)

)

Fig. 28. A breakdown of the support region in 7 parts
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∞, |φq| < ∞}, four different cases need to be considered with reference to point P1

and the point P3 = (U(1), V(1)) in Fig. 27.

1.
[
(V(1) −W(1) < U(1))

⋂
(2V(1) − U(1) −W(1) < V(1))

]
: This is the case drawn

in Fig. 28 and it will suffice to derive the MLE considering it, since the other

possible case is handled in a similar fashion.

2.
[
(V(1) −W(1) > U(1))

⋂
(2V(1) − U(1) −W(1) > V(1))

]
: In this case, boundaries

of the support region and the intersections of the surfaces are drawn by a mirror

image or 1800 rotation of Figs. 27 and 28. The MLE remains exactly the same

and its derivation follows similar arguments as in Case 1.

3.
[
(V(1) −W(1) < U(1))

⋂
(2V(1) − U(1) −W(1) > V(1))

]
: This case is not possible

since 2V(1)−U(1)−W(1) > V(1) implies V(1)−W(1) > U(1), which is in contradiction

with the first condition V(1) −W(1) < U(1).

4.
[
(V(1) −W(1) > U(1))

⋂
(2V(1) − U(1) −W(1) < V(1))

]
: This is also not possible

due to a similar reason as mentioned in Case 3 above.

The following result is introduced to ease the derivation of the MLE.

Theorem 1: The MLE lies on the edge of the support region, i.e., somewhere on

the ceiling of any of the surfaces (5.7) - (5.9).

Proof: Suppose that the MLE lies anywhere inside the support region at a

point C(τ̂ , φ̂p, φ̂q). Now for the same (φ̂p, φ̂q), f0(τ̂ , φ̂q) can further be minimized by

increasing τ̂ until it touches the edge of the overlying surface.

Having considered all the possibilities for the data and having divided the base

B into the regions Ra, Rb, · · ·, Rg, each of these regions will be individually analyzed

to derive the MLE and prove its uniqueness with the help of Theorem 1. From here

onwards, to avoid labeling too many equations and hence keeping the presentation
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simple, τ in inequalities (5.7), (5.8) and (5.9) will be denoted by τU , τV and τW ,

respectively.

Region Ra

Boundary Evaluation: As shown in Fig. 28, the base of the region Ra is a triangle

formed by the vertices P1 = (V(1)−W(1), 2V(1)−U(1)−W(1)), P2 = (V(1)−W(1), V(1)) and

P3 = (U(1), V(1)). To find the surface marking the boundary of this region, consider

any point Sa in this region (shown in Fig. 28) whose abscissa is at distance x from

abscissa(P1) and ordinate is at distance y from ordinate(P1). Therefore, Sa is the

point with coordinates (V(1) −W(1) + x, 2V(1) − U(1) −W(1) + y). Notice that x ≥ 0,

y ≥ 0 is always true since both of them are mere Euclidean distances. In addition,

the relation y ≥ x always holds true within Ra because the point Sa lies between the

lines φq = V(1)−U(1) +φp and φp = V(1)−W(1). To satisfy the constraints (5.7) - (5.9)

simultaneously, plug the coordinates of Sa in them such that

τU ≤ U(1) − V(1) + W(1) − x,

τV ≤ U(1) − V(1) + W(1) − y,

τW ≤ U(1) − V(1) + W(1) + x− y.

It is clear from above that τV ≤ τW since x ≥ 0. Also, τV ≤ τU since y ≥ x here.

Therefore, the surface τ ≤ V(1) − φq forms the boundary of the support region in Ra.

The main points of the above discussion are summarized in Table V.

Parameter Estimation: To derive the MLE in region Ra, consider the minimiza-

tion of cost function f0(τ, φq) =
∑N

j=1{Uj +Vj +Wj−2φq−3τ}. By virtue of Theorem

1 and the above boundary evaluation study, the MLE lies on the surface τ ≤ V(1)−φq.

To see the variation in f0(τ, φq) on this surface, substitute τ = V(1) − φq to get the

modified cost function f ′0(τ, φq) =
∑N

j=1{Uj + Vj + Wj − 3V(1) + φq}, which depends
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Table V. Boundary evaluation of region Ra

Major Properties of Region Ra

Border V(1) −W(1) ≤ φp

⋂
V(1) − U(1) + φp ≤ φq ≤ V(1)

Coordinates of Point S
(
V(1) −W(1) + x, 2V(1) − U(1) −W(1) + y

)

Region Characteristic x, y ≥ 0, y ≥ x

Surfaces (5.7) - (5.9) τU ≤ U(1) − V(1) + W(1) − x

τV ≤ U(1) − V(1) + W(1) − y

τW ≤ U(1) − V(1) + W(1) + x− y

Remarks τV ≤ τW since x ≥ 0; τV ≤ τU since y ≥ x

Boundary Surface τ ≤ V(1) − φq

only on φq. It is clear that f ′0(τ, φq) can be minimized by choosing φ̂q as small as

possible on this particular surface, which corresponds to the point P1 in Ra. Hence,

the MLE in Ra is given by

Φ̂MLE =




φ̂p

φ̂q

τ̂




=




V(1) −W(1)

2V(1) − U(1) −W(1)

U(1) + W(1) − V(1)




. (5.11)

Region Rb

Boundary Evaluation: Following the same procedure as employed for region Ra,

and summarized in Table VI, it is found that τ ≤ U(1) − φp is the boundary surface

of the support region in Rb.

Parameter Estimation: According to Theorem 1, the MLE lies on the surface

τ ≤ U(1) − φp. Substituting this into the cost function f0(τ, φq) yields f ′0(τ, φq) =
∑N

j=1{Uj + Vj + Wj − 3U(1) + 3φp − 2φq}. Now in this case, f ′0(τ, φq) varies on the

boundary surface in Rb with both φp and φq, where the minimum φp (due to the
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Table VI. Boundary evaluation of region Rb

Major Properties of Region Rb

Border φp ≤ U(1)

⋂
2V(1) − U(1) −W(1) ≤ φq ≤ V(1) − U(1) + φp

Coordinates of Point S
(
V(1) −W(1) + x, 2V(1) − U(1) −W(1) + y

)

Region Characteristic x, y ≥ 0, y ≤ x

Surfaces (5.7) - (5.9) τU ≤ U(1) − V(1) + W(1) − x

τV ≤ U(1) − V(1) + W(1) − y

τW ≤ U(1) − V(1) + W(1) + x− y

Remarks τV ≤ τW since x ≥ 0; τU ≤ τV since y ≤ x

Boundary Surface τ ≤ U(1) − φp

positive sign) corresponds to the point P1, but the maximum φq (due to the negative

sign) corresponds to the point P3.

For deriving the MLE, consider a point Sb anywhere in the region Rb at a distance

of
√

x2 + y2 from the point P1 and with the coordinates (V(1)−W(1) +x, 2V(1)−U(1)−
W(1) + y). It is evident that within this region, x ≥ y. Now relating f ′0(τ, φq) to the

point Sb through the boundary surface yields

f ′0 (τ, φq) =
N∑

j=1

{
Uj + Vj + Wj − 3U(1) + 3(V(1) −W(1) + x)

−2(2V(1) − U(1) −W(1) + y)
}

∝ 3x− 2y.

Since the maximum value y can achieve in Rb is x, it implies 3x−2y ≥ 3x−2x = x.

Hence, the minimization problem of f ′0(τ, φq) is equivalent to minimization of 3x−2y

which in turn is proportional to minimization of x. It is clear from Fig. 28 that x

achieves its minimum value at point P1. It can also be verified by considering the
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region Rb as a sum of vertical segments starting on the line φq = 2V(1)−U(1)−W(1) and

ending on the line φq = V(1)−U(1) + φp, having infinitesimal distances between them.

Since φp is constant on each such vertical line segment, f ′0(τ, φq) can be minimized

by the greatest possible φq, which coincides with the line φq = V(1) − U(1) + φp. This

gives a set of points on this line for which the minimum should be searched, which

in turn can be found by noting that f ′0(τ, φq) is proportional to 3φp − 2φp = φp on

the line φq = V(1) − U(1) + φp, which corresponds to the minimum φp, and hence the

point P1.

Therefore, the MLE in Rb is the same as in Ra given by expression in (5.11).

Region Rc

Boundary Evaluation: Working along similar lines as before, Table VII summa-

rizes the boundary evaluation problem in region Rc. The boundary surface of the

support region here is enveloped by τ ≤ U(1) − φp.

Table VII. Boundary evaluation of region Rc

Major Properties of Region Rc

Border V(1) −W(1) ≤ φp ≤ U(1)

⋂
φq ≤ 2V(1) − U(1) −W(1)

Coordinates of Point S
(
V(1) −W(1) + x, 2V(1) − U(1) −W(1) − y

)

Region Characteristic x, y ≥ 0,

Surfaces (5.7) - (5.9) τU ≤ U(1) − V(1) + W(1) − x

τV ≤ U(1) − V(1) + W(1) + y

τW ≤ U(1) − V(1) + W(1) + x + y

Remarks τV ≤ τW since x ≥ 0; τU ≤ τV since x, y ≥ 0

Boundary Surface τ ≤ U(1) − φp

Parameter Estimation: Finding the MLE in region Rc is straightforward. Due to

the above boundary evaluation study and Theorem 1, f ′0(τ, φq) is given by
∑N

j=1{Uj +
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Vj + Wj − 3U(1) +3φp − 2φq}. Clearly, it can be minimized by making φp as small

as possible and φq as large as possible, both of which conditions are satisfied by the

point P1. Hence, the MLE in Rb is again given by (5.11).

Region Rd

Boundary Evaluation: As summarized in Table VIII, the boundary surface in

region Rd is τ ≤ U(1) − φp.

Table VIII. Boundary evaluation of region Rd

Major Properties of Region Rd

Border φp ≤ V(1) −W(1)

⋂
φq ≤ W(1) − U(1) + 2φp

Coordinates of Point S
(
V(1) −W(1) − x, 2V(1) − U(1) −W(1) − y

)

Region Characteristic x, y ≥ 0, y ≥ 2x

Surfaces (5.7) - (5.9) τU ≤ U(1) − V(1) + W(1) + x

τV ≤ U(1) − V(1) + W(1) + y

τW ≤ U(1) − V(1) + W(1) − x + y

Remarks τW ≤ τV since x ≥ 0; τU ≤ τW since y ≥ x + x ⇒ y − x ≥ x

Boundary Surface τ ≤ U(1) − φp

Parameter Estimation: In region Rd again, f ′0(τ, φq) is proportional to 3φp−2φq.

Although the maximum φq corresponds to the point P1, the minimum φp does not,

requiring a closer look at the region. Now consider a point Sd anywhere in Rd whose

abscissa and ordinate are V(1) − W(1) − x and 2V(1) − U(1) − W(1) − y, respectively.

Over the point Sd and its neighborhood, f ′0(τ, φq) is given by

f ′0 (τ, φq) =
N∑

j=1

{
Uj + Vj + Wj − 3U(1) + 3(V(1) −W(1) − x)

−2(2V(1) − U(1) −W(1) − y)
}

,

∝ −3x + 2y.
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Since y ≥ 2x in Rd and hence the minimum value y can achieve is 2x, −3x+2y ≥
−3x + 2(2x) = x. Therefore, minimization of f ′0(τ, φq) corresponds to minimization

of −3x + 2y which subsequently requires minimization of x. Recall that x, y ≥ 0,

consequently resulting in the coordinates of point P1 being the MLE for (φp, φq).

Regions Re and Rf

Boundary Evaluation: Tables IX and X show that the surface τ ≤ W(1) +φp−φq

is the envelope of the support region in both Re and Rf . Notice that these two regions

could have been combined as one larger region because both the boundary surface

and the MLE (as shown in the next subsection) are the same for Rf and Re. This has

not been pursued due to the difference in the boundary evaluation procedure, since

τW ≤ τU ≤ τV in Re, but τW ≤ τV ≤ τU in Rf .

Table IX. Boundary evaluation of region Re

Major Properties of Region Re

Border W(1) − U(1) + 2φp ≤ φq ≤ V(1) − U(1) + φp

Coordinates of Point S
(
V(1) −W(1) − x, 2V(1) − U(1) −W(1) − y

)

Region Characteristic x, y ≥ 0, x ≤ y ≤ 2x

Surfaces (5.7) - (5.9) τU ≤ U(1) − V(1) + W(1) + x

τV ≤ U(1) − V(1) + W(1) + y

τW ≤ U(1) − V(1) + W(1) − x + y

Remarks τU ≤ τV since x ≤ y; τW ≤ τU since y ≤ x + x ⇒ y − x ≤ x

Boundary Surface τ ≤ W(1) + φp − φq

Parameter Estimation: In these two regions, the MLE lies on the surface τ ≤
W(1)+φp−φq, which is plugged into f0(τ, φq) to yield f ′0(τ, φq) =

∑N
j=1{Uj +Vj +Wj−

3W(1) −3φp + φq}. Again, the maximum φp (owing to the negative sign) in these two

regions yields the point P1 as the solution. However, the minimum φq (owing to the
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Table X. Boundary evaluation of region Rf

Major Properties of Region Rf

Border V(1) − U(1) + φp ≤ φq ≤ W(1) + φp

⋂
φq ≤ 2V(1) − U(1) −W(1)

Coordinates of Point S
(
V(1) −W(1) − x, 2V(1) − U(1) −W(1) − y

)

Region Characteristic x, y ≥ 0, y ≤ x

Surfaces (5.7) - (5.9) τU ≤ U(1) − V(1) + W(1) + x

τV ≤ U(1) − V(1) + W(1) + y

τW ≤ U(1) − V(1) + W(1) − x + y

Remarks τV ≤ τU since y ≤ x; τW ≤ τV since x ≥ 0

Boundary Surface τ ≤ W(1) + φp − φq

positive sign) corresponds to the open areas of Re and Rf where φq → −∞. Therefore,

consider a point Sef somewhere in any of these two regions with the coordinates

(V(1)−W(1)−x, 2V(1)−U(1)−W(1)− y). Over this point Sef and its vicinity, f ′0(τ, φq)

can be written as

f ′0 (τ, φq) =
N∑

j=1

{
Uj + Vj + Wj − 3W(1) − 3(V(1) −W(1) − x)

+(2V(1) − U(1) −W(1) − y)
}

∝ 3x− y.

Note that minimizing f ′0(τ, φq) is now equivalent to minimizing the expression

3x− y. Using the relationship y ≤ 2x in these two regions, x can achieve a minimum

value of y/2 which implies 3x− y ≥ 3y/2− y = y/2. A positive coefficient, 1/2, with

y above implies that it should be chosen as small as possible, which is achieved on

point P1. Therefore, the MLE in these two cases is also given by the relation (5.11).

Region Rg
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Boundary Evaluation: From Table XI, it is clear that the boundary surface on

Rg is τ ≤ W(1) + φp − φq.

Table XI. Boundary evaluation of region Rg

Major Properties of Region Rg

Border φp ≤ V(1) −W(1)

⋂
2V(1) − U(1) −W(1) ≤ φq ≤ W(1) + φp

Coordinates of Point S
(
V(1) −W(1) − x, 2V(1) − U(1) −W(1) + y

)

Region Characteristic x, y ≥ 0,

Surfaces (5.7) - (5.9) τU ≤ U(1) − V(1) + W(1) + x

τV ≤ U(1) − V(1) + W(1) − y

τW ≤ U(1) − V(1) + W(1) − x− y

Remarks τW ≤ τU since x, y ≥ o; τW ≤ τV since x ≥ 0

Boundary Surface τ ≤ W(1) + φp − φq

Parameter Estimation: In this region, the modified cost function f ′0(τ, φq) is again

proportional to the expression −3φp + φq. It is evident that φp should be maximized

and φq should be minimized for the minimization of f ′0(τ, φq), both of which can be

accomplished by choosing the point P1.

In conclusion, the MLE (φ̂p, φ̂q, τ̂) for each region Ra − Rg is given by the ex-

pressions (5.11), and hence it is unique.

In the next section, we turn our attention to deriving the Cramer-Rao Lower

Bound (CRLB) for any unbiased estimator of the clock offsets φp and φq.

C. Cramer-Rao Lower Bound

In practical applications, it is extremely useful to know in advance the best perfor-

mance an estimator might achieve by deriving a lower bound for it. In addition to



112

providing information on how well the estimator can perform, it helps the researchers

in finding an unbiased estimator that has the minimum possible variance among all

unbiased estimators. Also, it places a benchmark against which different estimators

can be compared to rank the finest one(s), without undergoing an empirical proce-

dure. In this particular problem, finding the CRLB is helpful for both φ̂p and φ̂q.

For φ̂q, it can obviously set the performance benchmark for any unbiased estimator of

clock offset when a node like q is silently listening to the timing cell exchange between

a pair of nodes in the vicinity; whereas for φ̂p, it can compare whether the clock offset

of an active node like p, estimated by an inactive node like q, can perform better

than the one which node p itself can estimate during a two-way timing cell exchange

with reference node m using the observations sm
j , rm→p

j , sp
j and rp→m

j (derived in [18]).

If that is indeed the case, then any of the inactive nodes, say q, can transmit this

new estimate φ̂p to node p for improved performance, albeit at the cost of one extra

communication.

The CRLB theorem states that if the regularity conditions are satisfied, i.e.,

E[∂ ln L(θ)/∂θ] = 0 for all θ, the variance of any unbiased estimator θ̂ must satisfy

the relationship

var(θ̂) ≥ I−1 (θ) ,

where I(θ) is the quantity known as Fisher Information defined as

I (θ) = −E

[
∂2 ln L (θ)

∂θ2

]
= E

[(
∂ ln L (θ)

∂θ

)2
]

.

Clearly, the domain of the likelihood function (a product of independent PDFs

and hence a PDF itself) depends on both unknown parameters φp and φq due to

which the order of differentiation and integration in the regularity condition can not

be interchanged and hence CRLB can not be found by employing the likelihood
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function. However, there is an alternative technique available for deriving the CRLB

which exploits the PDF of the estimator itself as explained below.

1. CRLB for φ̂q

Working on φ̂q first, note that from (5.11),

φ̂q = 2V(1) − U(1) −W(1)

= 2
(
τ + φq + zm→q

(1)

)
−

(
τ + φp + zm→p

(1)

)
−

(
τ + φq − φp + zp→q

(1)

)

= φq + 2zm→q
(1) − zm→p

(1) − zp→q
(1) . (5.12)

Notice that φ̂q is an unbiased function of φq, since

E
[
φ̂q

]
= E

[
2V(1) − U(1) −W(1)

]
= φq + 2

λ

N
− λ

N
− λ

N
= φq,

and its variance is

var
(
φ̂q

)
= E

[(
φ̂q − φq

)2
]

= E

[(
2zm→q

(1) − zm→p
(1) − zp→q

(1)

)2
]

= 6
λ2

N2
, (5.13)

where the fact that the first order statistics zm→p
(1) , zm→q

(1) and zp→q
(1) are also exponential

random variables with mean λ/N and variance λ2/N2The PDF of φ̂q can be derived

as follows. Consider (5.12) which can be written as

φ̂q − φq = 2zm→q
(1) −

(
zm→p
(1) + zp→q

(1)

)
= g − h, (5.14)

where g = 2zm→q
(1) and h = zm→p

(1) + zp→q
(1) for simplicity. It is straightforward to show

that the PDF of the first order statistic zm→p
(1) from the observation set

{
zm→p

j

}N

j=1
(and
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correspondingly that of zm→q
(1) and zp→q

(1) ) is given as

fzm→p
(1)

(
zm→p
(1)

)
= N

[
1− Fzm→p

j

(
zm→p
(1)

)]N−1

. fzm→p
j

(
zm→p
(1)

)

=
N

λ
exp

[
−N

λ
zm→p
(1)

]
zm→p
(1) ≥ 0, (5.15)

where fzm→p
j

and Fzm→p
j

are the PDF and CDF of the exponential random variables

zm→p
j , respectively. Therefore, the PDFs of the first order statistics zm→p

(1) , zm→q
(1) and

zp→q
(1) are also exponential with mean λ/N . Now turning to (5.14) and using (5.15),

it is clear that

fG(g) =
N

2λ
exp

[
−N

2λ
g

]
I [g] . (5.16)

Since zm→p
(1) and zp→q

(1) are the first order statistics of independent data sets
{
zm→p

j

}N

j=1
and

{
zp→q

j

}N

j=1
, respectively, these are also independent with the dis-

tribution (5.15). To find the PDF of h, note that

fH (h) =

∫ ∞

−∞
fzm→p

(1)

(
h− zp→q

(1)

)
. fzp→q

(1)

(
zp→q
(1)

)
. I

[
h− zp→q

(1)

]
. I

[
zp→q
(1)

]
dzp→q

(1)

=
N2

λ2

∫ h

0

exp

[
−N

λ

(
h− zp→q

(1)

)]
. exp

[
−N

λ
zp→q
(1)

]
dzp→q

(1)

=
N2

λ2
h exp

[
−N

λ
h

]
I [h] , (5.17)

which is a Gamma distribution with shape parameter 2 and scale parameter λ/N .

We conclude that φ̂q − φq is equal to the difference between an exponential random

variable and a Gamma random variable, both of which are independent and positive

valued. Therefore, g − h can acquire any value from −∞ to ∞ and the final PDF of

φ̂q can be derived using (5.16) and (5.17) as follows.
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For φ̂q ≤ φq, we have

fφ̂q

(
φ̂q

)
=

N3

2λ3

∫ ∞

−∞
exp

[
−N

2λ

(
φ̂q − φq + h

)]
I

[
φ̂q − φq + h

]
h exp

[
−N

λ
h

]
I [h] dh

=
N3

2λ3
exp

[
−N

2λ

(
φ̂q − φq

)] ∫ ∞

−(φ̂q−φq)

h exp

[
−3N

2λ
h

]
dh

=
N3

2λ3
exp

[
−N

2λ

(
φ̂q − φq

)] [
exp

[
3N

2λ

(
φ̂q − φq

)] (
−2λ(φ̂q − φq)

3N
+

4λ2

9N2

)]

=
2N

9λ
exp

[
N

λ

(
φ̂q − φq

)]
− N2

3λ2

(
φ̂q − φq

)
exp

[
N

λ

(
φ̂q − φq

)]

=
N

3λ

[
2

3
− N

λ

(
φ̂q − φq

)]
exp

[
N

λ

(
φ̂q − φq

)]
.

And for φ̂q ≥ φq, we infer that

fφ̂q

(
φ̂q

)
=

N3

2λ3

∫ ∞

−∞
exp

[
−N

2λ

(
φ̂q − φq + h

)]
h exp

[
−N

λ
h

]
I [h] I

[
φ̂q − φq + h

]
dh

=
N3

2λ3
exp

[
−N

2λ

(
φ̂q − φq

)] ∫ ∞

0

h exp

[
−3N

2λ
h

]
dh

=
N3

2λ3
exp

[
−N

2λ

(
φ̂q − φq

)] [
4λ2

9N2

]

=
2N

9λ
exp

[
−N

2λ

(
φ̂q − φq

)]
.

Therefore, the PDF of fφ̂q

(
φ̂q

)
can now be expressed as

fφ̂q

(
φ̂q

)
=





N
3λ

[
2
3
− N

λ

(
φ̂q − φq

)]
exp

[
N
λ

(
φ̂q − φq

)]
φ̂q ≤ φq

2N
9λ

exp
[
−N

2λ

(
φ̂q − φq

)]
φ̂q ≥ φq

.

To check if it is indeed a valid PDF, note that

2N

9λ

∫ 0

−∞
exp

[
N

λ

(
φ̂q − φq

)]
d

(
φ̂q − φq

)
=

2

9
,

−N2

3λ2

∫ 0

−∞

(
φ̂q − φq

)
exp

[
N

λ

(
φ̂q − φq

)]
d

(
φ̂q − φq

)
=

1

3
,

2N

9λ

∫ ∞

0

exp

[
−N

2λ

(
φ̂q − φq

)]
d

(
φ̂q − φq

)
=

4

9
,
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which sum up to 1. Finally, to verify its unbiasedness, note that

E
[
φ̂q

]
=

N

3λ

∫ φq

−∞
φ̂q

[
2

3
− N

λ

(
φ̂q − φq

)]
exp

[
N

λ

(
φ̂q − φq

)]
dφ̂q

+
2N

9λ

∫ ∞

φq

φ̂q exp

[
−N

2λ

(
φ̂q − φq

)]
dφ̂q

=

(
−N

3λ
φq

2 +
2

3
φq − 2λ

3N
+

2

9
φq +

N

3λ
φq

2 − 1

3
φq − 2λ

9N

)
+

(
4

9
φq +

8λ

9N

)

= φq.

Clearly, it is not differentiable at the point φ̂q = φq, but exploiting its continu-

ity at this point
(
fφ̂q

(φq+) = fφ̂q
(φq−) = 2N/9λ

)
, its domain is independent of φq.

Differentiating ln fφ̂q

(
φ̂q

)
with respect to φq yields

∂ ln fφ̂q

(
φ̂q

)

∂φq

=





N

λ[ 2
3
−N

λ (φ̂q−φq)]
− N

λ
φ̂q ≤ φq

N
2λ

φ̂q ≥ φq

. (5.18)

Taking its expected value results in

E


∂ ln fφ̂q

(
φ̂q

)

∂φq


 =

∫ φq

−∞

N

λ

N

3λ
exp

[
N

λ

(
φ̂q − φq

)]
dφ̂q

−
∫ φq

−∞

N

λ

N

3λ

[
2

3
− N

λ

(
φ̂q − φq

)]
exp

[
N

λ

(
φ̂q − φq

)]
dφ̂q

+

∫ ∞

φq

N

2λ

2N

9λ
exp

[
−N

2λ

(
φ̂q − φq

)]
dφ̂q

=
N

3λ

∫ φq

−∞


 N

3λ
+

N2
(
φ̂q − φq

)

λ2


 exp

[
N

λ

(
φ̂q − φq

)]
dφ̂q

+
N2

9λ2

∫ ∞

φq

exp

[
−N

2λ

(
φ̂q − φq

)]
dφ̂q

= −2N

9λ
+

2N

λ
= 0.

Having satisfied both the requirements (unbiasedness and regularity condition),

the license to proceed towards deriving the CRLB is available in this case now. Dif-
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ferentiating (5.18) again with respect to φq,

∂2 ln fφ̂q

(
φ̂q

)

∂φ2
q

=




−N2

λ2

[
2
3
− N

λ

(
φ̂q − φq

)]−2

φ̂q ≤ φq

0 φ̂q ≥ φq

.

Taking the expectation on both sides gives

E


∂2 ln fφ̂q

(
φ̂q

)

∂φ2
q


 = −N3

3λ3

∫ φq

−∞

[
2

3
− N

λ

(
φ̂q − φq

)]−1

exp

[
N

λ

(
φ̂q − φq

)]
dφ̂q .

A change of variable t = N/λ
(
φ̂q − φq

)
− 2/3 implies

E


∂2 ln fφ̂q

(
φ̂q

)

∂φ2
q


 =

N2

3λ2
e2/3

∫ −2/3

−∞
t−1etdt

=
N2

3λ2
e2/3 Ei(−2/3) (5.19)

= −0.258664
N2

λ2
,

where Ei(x) is the well known Exponential Integral Function defined as

Ei(x) =




− ∫∞

−x
t−1e−t dt =

∫ x

−∞ t−1et dt, x < 0

− lim
ε→+0

[∫ −ε

−x
t−1e−t dt +

∫∞
ε

t−1e−t dt
]
, x > 0

.

In (5.19) above, the value of Ei(−2/3) has been computed as −0.398409 and

e2/3 = 1.947734. Therefore, CRLB for φq is given by the expression

CRLB
(
φ̂q

)
= 3.866

λ2

N2
. (5.20)

Note that the variance of φ̂q is inversely proportional to the square of the number

of observations N2 and hence decreases very rapidly as the nodes exchange more
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messages. Having derived the Fisher information, observe from (5.18) that

∂ ln fφ̂q

(
φ̂q

)

∂φq

6= I (φq)
(
φ̂q − φq

)
,

=
N2

3.866λ2

(
2V(1) − U(1) −W(1) − φq

)
.

Two points are worth commenting here. First, the MLE is not efficient, since

it does not satisfy the relation an efficient estimator necessarily fulfills. Second, an

efficient estimator for the problem targeted in this chapter does not exist owing to the

rule: if an efficient estimator exists, the maximum likelihood procedure will produce

it. Consequently, it is shown in Chapter VI that for symmetric delays, no unbiased

estimator can be found having a lower variance than the MLE, and hence it is also

the MVUE.

2. CRLB for φ̂p

Since the domain of the likelihood function in (5.4) depends on φp, it can not be uti-

lized for finding the CRLB. Working with the PDF of φ̂p using (5.11), and proceeding

in a similar way as before, we have

φ̂p = V(1) −W(1) = τ + φq + zm→q
(1) −

(
τ + φq − φp + zp→q

(1)

)
,

= φp + zm→q
(1) − zp→q

(1) .

The mean and variance of φ̂p, are given respectively by

E
[
φ̂p

]
= E

[
φp + zm→q

(1) − zp→q
(1)

]
= φp +

λ

N
− λ

N
= φp,

E

[(
φ̂p − φp

)2
]

= E

[(
zm→q
(1) − zp→q

(1)

)2
]

= 2
λ2

N2
.

Having confirmed the unbiasedness of this estimator, since the difference between

two exponential random variables with mean λ/N is a Laplacian random variable with
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mean 0, fφ̂p
(φp) can be written as

fφ̂p
(φp) =





N
2λ

exp
[

N
λ

(
φ̂p − φp

)]
φ̂p ≤ φp

N
2λ

exp
[
−N

λ

(
φ̂p − φp

)]
φ̂p ≥ φp

.

It is evident that the PDF is symmetric around φp and hence E[(∂ ln fφ̂p
(φp)/∂φp)] =

0. Differentiating both sides with respect to φp and taking the expectation of its

square,

E




(
∂ ln fφ̂p

(φp)

∂φp

)2

 =

N2

λ2
,

and hence the CRLB for φ̂p can be expressed as

CRLB
(
φ̂p

)
=

λ2

N2
,

where again the variance is inversely proportional to N2. Since this CRLB is slightly

greater than the CRLB for φ̂p derived as λ2/4N2 in [42], it can be concluded that

instead of the silent nodes like q estimating φp and communicating this estimate

to node p, node p should estimate φ̂p by itself using the two-way timing message

exchange with the reference node m.

D. Simulation Results

Computer simulations have been performed to illustrate the Mean Square Error

(MSE) (or variance, since the estimators are unbiased) and CRLB for the estima-

tors φ̂p and φ̂q, where the mean of the exponential link delays has been chosen as

1. Fig. 29 shows this comparison on a logarithmic scale where the MSE of both

estimators decreases with the square of the number of observations. This is due to

the positive only nature of the link delays justifiably modeled as exponential random
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Fig. 29. Simulations illustrating the MSE of φ̂q and φ̂p on a logarithmic scale for λ =

1.

variables. Had these delays been obeying a symmetric PDF like Gaussian, the MSE

would have fallen proportional to the number of data points, instead of its square.

In addition, notice from Fig. 29 that there is a constant difference between the MSE

of the active and inactive nodes due to the plot being drawn on a logarithmic scale.

If the curves are plotted on a normal scale instead, the difference between the MSE

diminishes as the number of observations increases since the clock offset estimators of

both types of nodes are inversely proportional to N2. In conclusion, the scheme sur-

faces as an attractive choice more so when its cost-free quality is taken into account.
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E. Summary

This chapter extends the idea based on inactive nodes overhearing a two-way timing

cell exchange mechanism between the reference node and a randomly selected node by

deriving the maximum likelihood estimator for the clock offset of the inactive nodes

assuming the link delays obeying an exponential distribution. Since these nodes

do not have to transmit any messages to other nodes, this clock synchronization

approach is basically cost free with respect to energy conservation. For the clock

offset estimator, Cramer-Rao lower bound has also been derived as a measure of its

performance threshold. In addition, it has been proved that the clock offset estimator

assumed by the active node itself, which exchanges timing cells with the reference

node, performs better than the clock offset estimator assumed by a listening node.

The MLE is shown not to achieve the CRLB and hence no efficient estimator exists

for the concerned problem.
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CHAPTER VI

SOME IMPROVED AND GENERALIZED ESTIMATION SCHEMES FOR

CLOCK SYNCHRONIZATION OF INACTIVE NODES

In the previous chapter, the MLE for the clock offset and mean link delays of the

inactive node were derived under symmetric exponential delay model. This chapter

not only presents better estimation techniques as compared to the MLE, but also

addresses the problem under the more realistic asymmetric delay model. The main

contributions of this chapter are as follows.

1. The generalized least square theory is applied on the order statistics of the syn-

chronization packets to obtain the BLUE-OS of the clock offsets of the inactive

node and the mean link delays, which is the optimal solution in the class of

linear unbiased estimators.

2. The restriction of the estimates being linear is then removed to derive the MVUE

of the same parameters, and no other unbiased estimator with minimum vari-

ance can be found.

3. Since the MSE can be decreased by adding a little bias to the estimator with the

eventual effect of reduced variance dominating the increased bias, the Minimum

Mean Square Error (MMSE) estimator with expected loss independent of clock

offset and fixed delay is also obtained, thus further improving the synchroniza-

tion quality.



123

Based on the same model with equal α, β and γ, the MLE derived in the Chapter

V is expressed as

Φ̂S =




φ̂q

φ̂p

τ̂




=




2V(1) − U(1) −W(1)

V(1) −W(1)

U(1) − V(1) + W(1)




, (6.1)

where the subscript S points to the estimates being driven for symmetric link delays

and (1) denotes the minimum order statistics of their respective data sets.

A. Asymmetric Exponential Link Delays

In most communications and wireless channels, and ad-hoc networks with time-

varying topologies, the network delays are asymmetric in nature. Therefore, a study

for deriving the efficient estimators in this case is of paramount importance. Let

the order statistics of the observations {Uk}N
k=1, {Vk}N

k=1 and {Wk}N
k=1 be denoted as

{U(k)}N
k=1, {V(k)}N

k=1 and {W(k)}N
k=1, respectively. Transforming the data set as

U ′
k , 1

α
(Uk − φp − τ) ,

V ′
k , 1

β
(Vk − φq − τ) ,

W ′
k , 1

γ
(Wk − φq + φp − τ) ,

makes it a set of independent observations on the standardized variate and hence

the distribution becomes parameter-free. The order statistics of U ′
k, V ′

k and W ′
k are
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denoted by U ′
(k), V ′

(k) and W ′
(k), respectively. Now it is straightforward to see that

E
[
U(k)

]
= φp + τ + αE

[
U ′

(k)

]
, var

[
U(k)

]
= α2var

[
U′

(k)

]
,

cov
[
U(k)U(j)

]
= α2cov

[
U ′

(k)U
′
(j)

]
,

E
[
V(k)

]
= φq + τ + βE

[
V ′

(k)

]
, var

[
V(k)

]
= β2var

[
V′

(k)

]
,

cov
[
V(k)V(j)

]
= β2cov

[
V ′

(k)V
′
(j)

]
,

E
[
W(k)

]
= φq − φp + τ + γE

[
W ′

(k)

]
, var

[
W(k)

]
= γ2var

[
W′

(k)

]
,

cov
[
W(k)W(j)

]
= γ2cov

[
W ′

(k)W
′
(j)

]
.

Next, the statistics of the ordered samples (see [26]) can be expressed as

E
[
U ′

(k)

]
= E

[
V ′

(k)

]
= E

[
W ′

(k)

]
=

k∑
i=1

1

(N − i + 1)
.

var
[
U ′

(k)

]
= var

[
V ′

(k)

]
= var

[
W ′

(k)

]
=

k∑
i=1

1

(N − i + 1)2
.

cov
[
U ′

(k)U
′
(j)

]
= cov

[
V ′

(k)V
′
(j)

]
= cov

[
W ′

(k)W
′
(j)

]
=

k∑
i=1

1

(N − i + 1)2
.

Therefore, the N ×N symmetric positive-definite covariance matrix C for each

of U ′
(k), V ′

(k) and W ′
(k) takes the form:

C =




1
N2

1
N2 · · · 1

N2

1
N2

1
N2 + 1

(N−1)2
· · · 1

N2 + 1
(N−1)2

...
... · · · ...

1
N2

1
N2 + 1

(N−1)2
· · ·

N∑
k=1

1
(N−k+1)2




.

The inverse of this covariance matrix can be found by the application of Gauss-
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Jordan elimination as

C−1 =




N2 + (N − 1)2 −(N − 1)2 0 · · · 0

−(N − 1)2 (N − 1)2 + (N − 2)2 −(N − 2)2 · · · 0

0 −(N − 2)2 (N − 2)2 + (N − 3)2 · · · 0

...
...

... · · · ...

0 0 0 · · · 1




.

Now we proceed towards estimating the clock parameters and mean link delays

as follows.

1. Best Linear Unbiased Estimation Using Order Statistics

It is well known that the derivation of regular BLUE for a problem yields suboptimal

results in general, since the class of unbiased estimators, within which the search is

performed, is restricted to be linear. In the case when the noise is normally dis-

tributed, the direct application of BLUE provides the optimal solution by virtue of

the Gauss-Markov theorem. But for other distributions, including the exponential

distribution as is the case with modeling framework adopted in this chapter, the ap-

plication of BLUE is not of much significance. However, for a general location-scale

distribution, [25] suggested a new technique based on the derivation of BLUE using

order statistics instead of just the raw observations. This technique is used in the

scenario addressed in this chapter.

Let ΦA , [φq φp τ α β γ]T , where the subscript A denotes the relevance of

estimators to asymmetric link delays and z , [U(1) U(2) · · ·U(N) V(1) V(2) · · ·V(N)

W(1) W(2) · · ·W(N)]
T , then the linear model based on the ordered observations can
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be expressed as

E [z] =

[
C1 C2 C3

]T

ΦA = QΦA,

where

C1 =




0 0 · · · 0

1 1 · · · 1

1 1 · · · 1

1
N

1
N

+ 1
N−1

· · ·
N∑

k=1

1
(N−k+1)

0 0 · · · 0

0 0 · · · 0




, C2 =




1 1 · · · 1

0 0 · · · 0

1 1 · · · 1

0 0 · · · 0

1
N

1
N

+ 1
N−1

· · ·
N∑

k=1

1
(N−k+1)

0 0 · · · 0




,

C3 =




1 1 · · · 1

−1 −1 · · · −1

1 1 · · · 1

0 0 · · · 0

0 0 · · · 0

1
N

1
N

+ 1
N−1

· · ·
N∑

k=1

1
(N−k+1)




.

where z is a 3N × 1 concatenated vector of ordered data U(k), V(k) and W(k),

Q is a known matrix of dimension 3N × 6 and ΦA is the 6 × 1 vector of unknown

parameters. Since the model has been shown to be linear in terms of the ordered

observations, the BLUE can be expressed as

Φ̂A =
(
QTC−1

z Q
)−1

QTC−1
z z,

where Cz is the joint covariance matrix for U(k), V(k) and W(k). Due to the mutual
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independence between these data sets, Cz can be written as

Cz =




α2C 0 0

0 β2C 0

0 0 γ2C




,

and its inverse can be written as

C−1
z =




α−2C−1 0 0

0 β−2C−1 0

0 0 γ−2C−1




.

Based on the above expression, it follows that

QTC−1
z Q =



(β−2 + γ−2) N2 −γ−2N2 (β−2 + γ−2) N2 0 β−2N γ−2N

−γ−2N (α−2 + γ−2) N2 (α−2 − γ−2) N2 α−2N 0 −γ−2N

(β−2 + γ−2) N2 (α−2 − γ−2) N2 (α−2 + β−2 + γ−2) N2 α−2N β−2N γ−2N

0 α−2N α−2N α−2N 0 0

β−2N 0 β−2N 0 β−2N 0

γ−2N −γ−2N γ−2N 0 0 γ−2N




and its inverse takes the form

(
QTC−1

z Q
)−1

=



E1 E2

E3 E4


 , (6.2)

where

E1 =
1

N (N − 1)




α2 + 4β2 + γ2 2β2 + γ2 − (α2 + 2β2 + γ2)

2β2 + γ2 β2 + γ2 − (β2 + γ2)

− (α2 + 2β2 + γ2) − (β2 + γ2) α2 + β2 + γ2




,
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E2 =
1

N (N − 1)




α2 −2β2 γ2

0 −β2 γ2

−α2 β2 −γ2




, E3 =
1

N (N − 1)




α2 0 −α2

−2β2 −β2 β2

γ2 γ2 −γ2




,

E4 =
1

(N − 1)




α2 0 0

0 β2 0

0 0 γ2




.

Consequently,

(
QTC−1

z Q
)−1

QTC−1
z =

1

N (N − 1)

[
D1 D2 D3

]
,

where the matrices D1, D2 and D3 are defined as

D1 =




− (N2 − 1) 1 · · · 1

0 0 · · · 0

N2 − 1 −1 · · · −1

−N (N − 1) N · · · N

0 0 · · · 0

0 0 · · · 0




, D2 =




2 (N2 − 1) −2 · · · −2

N2 − 1 −1 · · · −1

− (N2 − 1) 1 · · · 1

0 0 · · · 0

−N (N − 1) N · · · N

0 0 · · · 0




,

D3 =




− (N2 − 1) 1 · · · 1

− (N2 − 1) 1 · · · 1

N2 − 1 −1 · · · −1

0 0 · · · 0

0 0 · · · 0

−N (N − 1) N · · · N




.
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It follows from the above equations that

Φ̂A =
1

N (N − 1)


− (N2 − 1) U(1) +
N∑

k=2

U(k) + 2 (N2 − 1) V(1) − 2
N∑

k=2

V(k) − (N2 − 1) W(1) +
N∑

k=2

W(k)

(N2 − 1) V(1) −
N∑

k=2

V(k) − (N2 − 1) W(1) +
N∑

k=2

W(k)

(N2 − 1) U(1) −
N∑

k=2

U(k) − (N2 − 1) V(1) +
N∑

k=2

V(k) + (N2 − 1) W(1) −
N∑

k=2

W(k)

−N (N − 1) U(1) + N
N∑

k=2

U(k)

−N (N − 1) V(1) + N
N∑

k=2

V(k)

−N (N − 1) W(1) + N
N∑

k=2

W(k)




=
1

N − 1




N
(
2V(1) − U(1) −W(1)

)− (
2V − U −W

)

N
(
V(1) −W(1)

)− (
V −W

)

N
(
U(1) − V(1) + W(1)

)− (
U − V + W

)

N
(
U − U(1)

)

N
(
V − V(1)

)

N
(
W −W(1)

)




. (6.3)

2. Minimum Variance Unbiased Estimation

The ultimate goal in parameter estimation is often to find the estimator that achieves

the minimum MSE, which explains why it is usually the criterion of performance.

However, it is well known in theory that the optimal MSE estimators are not realizable

in general. The MSE for an arbitrary parameter θ is given by the following expression.

MSE(θ̂) = E

[(
θ̂ − θ

)2
]

= var(θ̂) + Bias2(θ̂).
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It is evident that the MSE is composed of two components, namley the estimator

variance and squared bias. In the light of above, a technique chosen to attain realiz-

able yet best estimators is to constrain the bias to be zero (since the dependance of

minimum MSE estimator on the unknown parameter typically comes from the bias).

Therefore, restricting the possible estimators to be unbiased and then finding the es-

timator with the smallest variance for all values of the unknown parameter yields the

optimal solution within the class of unbiased estimators. Hence, we proceed towards

deriving the MVUE for the clock offset and mean link delays for the problem at hand.

In this chapter, the MVUE is obtained based on the Rao-Blackwell-Lehmann-

Scheffé theorem, which outlines the following steps to work on. First, the likelihood

function is factored according to Neymann-Fisher factorization theorem which gives

the sufficient statistics T. Second, the completeness of the sufficient statistics is

checked. In case it is complete, any of the following two approaches yields the desired

result θ̂ as the MVUE: either for any unbiased estimator θ̌, θ̂ = E[θ̌|T] is evaluated, or

a function g(T) of the sufficient statistics is found such that θ̂ = g(T) is an unbiased

estimator. The MVUE in the current scenario has been obtained through working on

similar lines.

In the asymmetric delays case, the likelihood function for the clock offset as a

function of observations {Uk}N
k=1, {Vk}N

k=1 and {Wk}N
k=1 from (5.1), (5.2) and (5.3) is

given by

L (φq, φp, τ, α, β, γ) = (αβγ)−N e−
∑N

k=1[ 1
α

(Uk−φp−τ)+ 1
β

(Vk−φq−τ)+ 1
γ
(Wk−φq+φp−τ)] ×

I
[
U(1) − φp − τ

]
I

[
V(1) − φq − τ

]
I

[
W(1) − φq + φp − τ

]
, (6.4)

where I[·] denotes the unit step function. Exploiting the fact that the raw sample
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mean and the ordered sample mean are actually the same, (6.4) can be factored as

L (φq, φp, τ, α, β, γ) = g1

(
N∑

k=1

U(k), φp, α

)
g2

(
N∑

k=1

V(k), φq, β

)
g3

(
N∑

k=1

W(k), φq, φp, γ

)

g4

(
U(1), φp, τ

)
g5

(
V(1), φq, τ

)
g6

(
W(1), φq, φp, τ

)
h1(τ, α, β, γ)

where

g1

(
N∑

k=1

U(k), φp, α

)
= e−

1
α

∑N
k=1(U(k)−φp), g4

(
U(1), φp, τ

)
= I

[
U(1) − φp − τ

]
,

g2

(
N∑

k=1

V(k), φq, β

)
= e−

1
β

∑N
k=1(V(k)−φq), g5

(
V(1), φq, τ

)
= I

[
V(1) − φq − τ

]
,

g3

(
N∑

k=1

W(k), φq, φp, γ

)
= e−

1
γ

∑N
k=1(W(k)−φq+φp),

g6

(
W(1), φq, φp, τ

)
= I

[
W(1) − φq + φp − τ

]
, h1 (τ, α, β, γ) = (αβγ)−N eNτ[ 1

α
+ 1

β
+ 1

γ ].

In the above relations, g1(
∑N

k=1 U(k), φp, α), g2(
∑N

k=1 V(k), φq, β), g3(
∑N

k=1 W(k), φq,

φp, γ), g4(U(1), φp, τ), g5(V(1), φq, τ) and g6(W(1), φq, φp, τ) are functions depending on

the data only through T = {∑N
k=1 U(k), U(1),

∑N
k=1 V(k), V(1),

∑N
k=1 W(k),W(1)}. There-

fore, according to the Neyman-Fisher factorization theorem, T is a sufficient statistic

for ΦA.

Since dim(T) = dim(ΦA), we have to find a 6× 1 vector function Φ̂A such that

E[Φ̂A] = ΦA, provided that T is a complete sufficient statistic. Since the pdf of T is

required to check if T is complete, and
∑N

k=1 U(k) and U(1),
∑N

k=1 V(k) and V(1), and
∑N

k=1 W(k) and W(1) are not independent, we proceed as follows.

Considering into account only the data set {V(k)}N
k=1 first, it is evident that the

pdf of the minimum order statistic V(1) is exponential with mean β/N , whereas the
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joint pdf of V(1), V(2), · · ·, V(N) is given by

f
(
V(1), V(2), · · ·, V(N)

)
= N !β−Ne

− 1
β

N∑
k=1
{V(k)−φq−τ}

.

N∏

k=1

I
[
V(k) − φq − τ

]
. (6.5)

Now consider the transformation as in [26],

ηk = (N − k + 1)
(
V(k) − V(k−1)

)
, k = 1, 2, · · ·, N,

where V(0) = φq + τ . Since
∑N

k=1(V(k) − φq − τ) =
∑N

k=1 ηk and the Jacobian of the

transformation is N !, a substitution in (6.5) reveals that

p (η1, η2, · · ·, ηN) = β−Ne
− 1

β

N∑
k=1

ηk

.

N∏

k=1

I [ηk] ,

i.e., ηk are independent exponential random variables with similar mean β. In ad-

dition, since each ηk ∼ exp(β), each ηk also assumes a Gamma distribution ηk ∼
Γ(1, β). Using the relationship

∑N
k=1(V(k) − V(1)) =

∑N
k=2 ηk, and the fact that each

of η2, η3, · · ·, ηN is independent of η1 (and hence of V(1), since η1 = N(V(1) − φq − τ)),
∑N

k=1(V(k) − V(1)) ∼ Γ(N − 1, β) and is independent of V(1).

By a similar reasoning, it can be deduced that
∑N

k=1(U(k) − U(1)) ∼ Γ(N − 1, α)

and
∑N

k=1(W(k)−W(1)) ∼ Γ(N − 1, γ), and are independent of U(1) and W(1), respec-

tively. Therefore, the one-to-one function T′ = {∑N
k=1(U(k) −U(1)), U(1),

∑N
k=1(V(k) −

V(1)), V(1),
∑N

k=1(W(k) − W(1)),W(1)} of T is also sufficient for estimating ΦA be-

cause the sufficient statistics are unique within one-to-one transformations. Con-

sequently, T′ comprises of six independent random variables, which in terms of the
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three-parameter Gamma distribution are given by

u =
N∑

k=1

(U(k) − U(1)) ∼ Γ (N − 1, α, 0) , U(1) ∼ Γ (1, α/N, φp + τ)

v =
N∑

k=1

(V(k) − V(1)) ∼ Γ (N − 1, β, 0) , V(1) ∼ Γ (1, β/N, φq + τ)

w =
N∑

k=1

(W(k) −W(1)) ∼ Γ (N − 1, γ, 0) , W(1) ∼ Γ (1, γ/N, φq − φp + τ)

Note that the domains of u, v and w are controlled by U(1), V(1) and W(1),

respectively. Next, it has to be checked whether T′, or equivalently T, is complete.

Completeness implies that there is but one function of T that is unbiased. Let g(T′)

be a function of T′ such that E[g(T′)] = ΦA. Suppose that there exists another

function h for which E[h(T′)] = ΦA is also true. Then,

E [g (T′)− h (T′)] = E [π (T′)] = 0 ∀ ΦA

where π(T′) , g(T′)− h(T′) and the expectation is taken with respect to p(T′;ΦA).

As a result,

∫ ∫ ∫ ∫ ∫ ∫

R{U(1),V(1),W(1)}

π
(
u, U(1), v, V(1), w, W(1)

)
.

α−(N−1)

Γ (N − 1)
uN−2e−

u
α .

N

α
e−

N
α {U(1)−φp−τ}.

β−(N−1)

Γ (N − 1)
vN−2e−

v
β .

N

β
e−

N
β {V(1)−φq−τ}. γ−(N−1)

Γ (N − 1)
wN−2e−

w
γ .

N

γ
e−

N
γ {W(1)−φq+φp−τ}

du dU(1) dv dV(1) dw dW(1) = 0 ∀ ΦA

where RU(1),V(1),W(1)
is the region defined by I[U(1) − φp − τ ], I[V(1) − φq − τ ] and

I[W(1) − φq + φp − τ ]. The above relation can be expressed as

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
π

(
u, U(1), v, V(1), w, W(1)

)
. (uvw)N−2 .

e
−

{
u+NU(1)

α
+

v+NV(1)
β

+
w+NW(1)

γ

}

. du dU(1) dv dV(1) dw dW(1) = 0 ∀ ΦA
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The expression on the left above is the six-dimensional Laplace transform of

the function π(T′). It follows from the uniqueness theorem for two-sided Laplace

transform that π(T′) = 0 almost everywhere, leading to the conclusion that g(T′) =

h(T′) and hence there is only one unbiased function of T′. This proves that the

statistic T′, or equivalently T, is complete for estimating ΦA when the links are

asymmetric and all of α, β and γ are unknown.

Finally, the complete sufficient statistic T is also minimal owing to Bahadur’s

theorem which states that if T, taking values in <k, is sufficient for ΦA and boundedly

complete, then T is minimal sufficient.

Consequently, finding an unbiased estimator for ΦA as a function of T yields the

MVUE now, according to the Rao-Blackwell-Lehmann-Scheffé theorem. Apparently,

it seems difficult to find six unbiased functions of T for each of φq, φp, τ , α, β and

γ just by inspection. But note that ordered BLUE Φ̂A in (6.3) is also an unbiased

function of T. Hence, it is concluded that the BLUE based on ordered data is also

the MVUE.

Φ̂A =




φ̂q

φ̂p

τ̂

α̂

β̂

γ̂




=
1

N − 1




N
(
2V(1) − U(1) −W(1)

)− (
2V − U −W

)

N
(
V(1) −W(1)

)− (
V −W

)

N
(
U(1) − V(1) + W(1)

)− (
U − V + W

)

N
(
U − U(1)

)

N
(
V − V(1)

)

N
(
W −W(1)

)




.

The covariance matrix of this estimator is given by (6.2) and hence minimum

variances of the clock offsets, fixed and mean delay parameters are given by its diag-

onal elements, whereas the total mean square error for the vector parameter Φ̂A is

the trace of this matrix.
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As a result, the MVUE for the desired parameter, the clock offset of the inactive

nodes, for asymmetric unknown network delays is expressed as

φ̂q =
1

(N − 1)

[
N

(
2V(1) − U(1) −W(1)

)− (
2V − U −W

)]
,

and its variance, equal to its MSE, is

var(φ̂q) =
1

N (N − 1)

(
α2 + 4β2 + γ2

)
.

3. Minimum Mean Square Error Estimation

Finding the MMSE estimator is not a straightforward task in any scenario, but [43]

described a method to find the estimator for linear functions of the location and scale

parameters with smallest mean square error among estimators with expected loss

independent of the location parameters (clock offset and fixed portion of delay in the

current problem). Since the derived MMSE estimator is a function of MVUE which

as already been found in the previous section, we can proceed to deriving the MMSE

estimator expressions for the clock offset, fixed delays and mean variable delays.

Generalizing the scalar case in [43] to a vector parameter case, for any distribution

depending on location and scale parameters only, let ∆ , [φq φp τ ]T and Ξ , [α β γ]T .

If the unique joint minimum variance unbiased estimator is denoted by [∆̂ Ξ̂], and

their covariance matrix is given by (6.2), then the unique joint minimum mean square

error with expected loss invariant under transformations of location and scale is

∆̂A
MMSE = ∆̂A

MVUE − E2J
−1

(
I + E4J

−1
)−1

Ξ̂A
MVUE,

Ξ̂A
MMSE =

(
I + E4J

−1
)−1

Ξ̂A
MVUE,
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where

J =




α2 0 0

0 β2 0

0 0 γ2




.

It is evident that

(
I + E4J

−1
)−1

=
N − 1

N
I

As a result,

E2J
−1

(
I + E4J

−1
)−1

Ξ̂A
MVUE =

1

N (N − 1)

N − 1

N




1 −2 1

0 −1 1

−1 1 −1




N

N − 1




U − U(1)

V − V(1)

W −W(1)




=
1

N (N − 1)




U − U(1) − 2
(
V − V(1)

)
+ W −W(1)

− (
V − V(1)

)
+ W −W(1)

− (
U − U(1)

)
+ V − V(1) −

(
W −W(1)

)




Therefore, the MMSE estimators of the clock offsets, fixed delay parameter can

be written as

∆̂A
MMSE = ∆̂A

MVUE − E2 (I′ + E4)
−1

Ξ̂A
MVUE,

=
1

N (N − 1)




(N2 − 1)
(
2V(1) − U(1) −W(1)

)− (N − 1)
(
2V − U −W

)

(N2 − 1)
(
V(1) −W(1)

)− (N − 1)
(
V −W

)

(N2 − 1)
(
U(1) − V(1) + W(1)

)− (N − 1)
(
2U − V + W

)




=
1

N




(N + 1)
(
2V(1) − U(1) −W(1)

)− (
2V − U −W

)

(N + 1)
(
V(1) −W(1)

)− (
V −W

)

(N + 1)
(
U(1) − V(1) + W(1)

)− (
U − V + W

)




,
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where the MMSE estimator for mean variable link delays is

Ξ̂A
MMSE =

(
I + E4J

−1
)−1

Ξ̂A
MVUE =

N − 1

N

N

N − 1




U − U(1)

V − V(1)

W −W(1)




=




U − U(1)

V − V(1)

W −W(1)




.

Therefore, the MMSE estimator for the clock offset of the inactive node is ex-

pressed as

φ̂q =
1

N

[
(N + 1)

(
2V(1) − U(1) −W(1)

)− (
2V − U −W

)]
,

and its mean square error is given by

MSE(φ̂q) =
N + 1

N3

(
α2 + 4β2 + γ2

)
,

which clearly outperforms the MVUE.

B. Symmetric Exponential Link Delays

The symmetric network delay assumption holds true for some realistic scenarios, e.g.,

when the nodes have a direct communication link between them and the topology of

the network is constant. In this case, α = β = γ , λ.

1. Best Linear Unbiased Estimation Using Order Statistics

Consider the BLUE based on ordered data ΦS , [φq φp τ λ]T , which is a linear

function of an ordered set of observations {U(k)}N
k=1, {V(k)}N

k=1 and {W(k)}N
k=1. Let
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z , [U(1) U(2) · · ·U(N) V(1) V(2) · · ·V(N) W(1) W(2) · · ·W(N)]
T . Then, it is evident that

E [z] =

[
A1 A2 A3

]T

ΦS = QΦS,

where z is the 3N×1 ordered data vector, ΦS is the 4×1 vector of unknown parameters

and Q is a known matrix of dimension 3N × 4 composed of

A1 =




0 0 · · · 0

1 1 · · · 1

1 1 · · · 1

1
N

1
N

+ 1
N−1

· · ·
N∑

k=1

1
(N−k+1)




, A2 =




1 1 · · · 1

0 0 · · · 0

1 1 · · · 1

1
N

1
N

+ 1
N−1

· · ·
N∑

k=1

1
(N−k+1)




,

A3 =




1 1 · · · 1

−1 −1 · · · −1

1 1 · · · 1

1
N

1
N

+ 1
N−1

· · ·
N∑

k=1

1
(N−k+1)




.

The Gauss-Markov theorem yields the estimator Φ̂S as

Φ̂S =
(
QTC−1

z Q
)−1

QTC−1
z z.

Since {U(k)}N
k=1, {V(k)}N

k=1 and {W(k)}N
k=1 are independent data sets, Cz and its

inverse C−1
z are now given by

Cz = λ2




C 0 0

0 C 0

0 0 C




, C−1
z =

1

λ2




C−1 0 0

0 C−1 0

0 0 C−1




.
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It follows that

QTC−1
z Q =

1

λ2




0 2N2 −N2 0

2N2 −N2 2N2 2N

3N2 0 2N2 3N

3N 0 2N 3N




,

and its inverse is

(
QTC−1

z Q
)−1

=
λ2

N2




6 3 −4 0

3 2 −2 0

−4 −2 9N−8
3(N−1)

− N
3(N−1)

0 0 − N
3(N−1)

N2

3(N−1)




. (6.6)

As a result,

(
QTC−1

z Q
)−1

QTC−1
z =

[
B1 B2 B3

]
,

where B1, B2 and B3 are defined as

B1 =




−1 0 · · · 0

0 0 · · · 0

1 + 1
3N

− 1
3N(N−1)

· · · − 1
3N(N−1)

−1
3

1
3(N−1)

· · · 1
3(N−1)




,

B2 =




2 0 · · · 0

1 0 · · · 0

1
3N
− 1 − 1

3N(N−1)
· · · − 1

3N(N−1)

−1
3

1
3(N−1)

· · · 1
3(N−1)
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B3 =




−1 0 · · · 0

−1 0 · · · 0

1 + 1
3N

− 1
3N(N−1)

· · · − 1
3N(N−1)

−1
3

1
3(N−1)

· · · 1
3(N−1)




.

Therefore, the BLUE using order statistics in the symmetric exponential network

delays case is given by

Φ̂S =

=




2V(1) − U(1) −W(1)

V(1) −W(1)

(
1 + 1

3N

) (
U(1) + W(1)

)
+

(
1

3N
− 1

)
V(1) − 1

3N(N−1)

N∑
k=2

(
U(k) + V(k) + W(k)

)

−1
3

(
U(1) + V(1) + W(1)

)
+ 1

3(N−1)

N∑
k=2

(
U(k) + V(k) + W(k)

)




=




2V(1) − U(1) −W(1)

V(1) −W(1)

1
3(N−1)

{
3N

(
U(1) + W(1) − V(1)

)
+ 2

(
2V(1) − U(1) −W(1)

)− (
U + V + W

)}

N
3(N−1)

{(
U + V + W

)− (
U(1) + V(1) + W(1)

)}



(6.7)

with U and V representing the sample averages of the data sets {Uk}N
k=1 and {Vk}N

k=1,

respectively, and are the same as the sample averages of ordered observations {U(k)}N
k=1

and {V(k)}N
k=1. Note that the BLUE of the clock offset based on order statistics

matches the MLE of the clock offset in (6.1).

2. Minimum Variance Unbiased Estimation

In the symmetric case when α = β = γ , λ, the likelihood function for the clock

offset as a function of observations {Uk}N
k=1, {Vk}N

k=1 and {Wk}N
k=1 from (5.1), (5.2)
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and (5.3) can be expressed as

L (φq, φp, τ, λ) = λ−3N . e
− 1

λ

N∑
k=1

[Uk+Vk+Wk−2φq−3τ ]
.

I
[
U(1) − φp − τ

]
. I

[
V(1) − φq − τ

]
. I

[
W(1) − φq + φp − τ

]
.

Note that due to the equality of the sample mean for both raw and ordered

observations, the likelihood function above can be factored as

L (φq, φp, τ, λ) = g1

(
N∑

k=1

U(k),

N∑

k=1

V(k),

N∑

k=1

W(k), λ

)
g2

(
U(1), φp, τ

)
.

g3

(
V(1), φq, τ

)
g4

(
W(1), φq, φp, τ

)
h1 (φq, τ, λ) ,

where

g1

(
N∑

k=1

U(k),

N∑

k=1

V(k),

N∑

k=1

W(k), λ

)
= e

− 1
λ

N∑
k=1

[U(k)+V(k)+W(k)]
,

g2

(
U(1), φp, τ

)
= I

[
U(1) − φp − τ

]
, g3

(
V(1), φq, τ

)
= I

[
V(1) − φq − τ

]
,

g4

(
W(1), φq, φp, τ

)
= I

[
W(1) − φq + φp − τ

]
, h1 (φq, τ, λ) = λ−3Ne

N
λ

[2φq+3τ ].

It is evident that T = {∑N
k=1(U(k) + V(k) + W(k)), U(1), V(1),W(1)} are the min-

imal sufficient statistic according to Neymann-Fisher Factorization theorem. Now

proceeding similarly as before,
∑N

k=1(U(k) + V(k) + W(k)) is dependent on U(1), V(1)

and W(1). As a result, T can be transformed into T′ = {∑N
k=1(U(k) − U(1) + V(k) −

V(1)+W(k)−W(1)), U(1), V(1),W(1)}. It can be concluded from the discussion in the last

section that
∑N

k=1(U(k)−U(1) + V(k)− V(1) + W(k)−W(1)) is Gamma distributed with

parameters (3(N − 1), λ). Hence, T′ is a combination of four independent random

variables, which in terms of the three parameter Gamma distribution are

q =
∑N

k=1(U(k) − U(1) + V(k) − V(1) + W(k) −W(1)) ∼ Γ (3 (N − 1) , λ, 0) ,

U(1) ∼ Γ (1, λ/N, φp + τ) , V(1) ∼ Γ (1, λ/N, φq + τ) ,W(1) ∼ Γ (1, λ/N, φq − φp + τ) .
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Next, defining g(T′) and h(T′) as functions of T′ such that E[g(T′)] = E[h(T′)] =

ΦS,

E [g (T′)− h (T′)] = E [π (T′)] = 0 ∀ ΦS

where the expectation is taken with respect to p(T′;ΦS). As a result, since the

domain of q is also dictated by U(1), V(1) and W(1),

∫ ∫ ∫ ∫

RU(1),V(1),W(1)

π
(
q, U(1), V(1), W(1)

)
.

λ−3(N−1)

Γ [3 (N − 1)]
q3N−4e−

q
λ .

(
N

λ

)3

e−
N
λ {U(1)+V(1)+W(1)−2φq−3τ}. dq dU(1) dV(1) dW(1) = 0 ∀ ΦS

where RU(1),V(1),W(1)
is the region defined by I[U(1) − φp − τ ], I[V(1) − φq − τ ] and

I[W(1) − φq + φp − τ ]. It follows that

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
π

(
q, U(1), V(1),W(1)

)
. q3N−4e−

N
λ { q

N
+U(1)+V(1)+W(1)}

dq dU(1) dV(1) dW(1) = 0 ∀ ΦS

From the uniqueness theorem for the two-sided Laplace transform, it follows that

π(T′) = 0 almost everywhere, resulting in the completeness of T′, or equivalently T.

Hence, T is also the minimal sufficient statistics from Bahadur’s theorem and the

MVUE is the same as Φ̂S in (6.7) expressed as

Φ̂S =




2V(1) − U(1) −W(1)

V(1) −W(1)

1
3(N−1)

{
3N

(
U(1) + W(1) − V(1)

)
+ 2

(
2V(1) − U(1) −W(1)

)− (
U + V + W

)}

N
3(N−1)

{(
U + V + W

)− (
U(1) + V(1) + W(1)

)}




,

The covariance matrix of this estimator is given by (6.6) and the diagonal ele-

ments represent the variance of each individual unknown parameter, whereas the trace

of this matrix is the total mean square error or variance for the vector parameter ΦS.
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Hence, the MVUE for the clock offset of the inactive node, in the case of sym-

metric unknown network delays, is expressed as

φ̂q = 2V(1) − U(1) −W(1),

and its variance can be written as

var (φq) =
6λ2

N2
.

3. Minimum Mean Square Error Estimation

Proceeding similarly as before, let ∆S
MMSE , [φq φp τ ]T and ΞS

MMSE , λ. If the

unique joint minimum variance unbiased estimator is denoted by [∆̂S
MVUE Ξ̂S

MVUE],

and their covariance matrix from (6.6) is given by



E1 E2

E3 E4


 ,

where

E1 =
λ2

N2




6 3 −4

3 2 −2

−4 −2 9N−8
3(N−1)




, E2 =
λ2

N2




0

0

− N
3(N−1)




.

E3 =
λ2

N2

[
0 0 − N

3(N−1)

]
, E4 =

λ2

3(N − 1)
,
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then the unique joint minimum mean square error with expected loss invariant under

transformations of location and scale is

∆̂S
MMSE = ∆̂S

MVUE −
1

λ2
E2

(
1 +

1

λ2
E4

)−1

Ξ̂S
MVUE,

=




2V(1) − U(1) −W(1)

V(1) −W(1)

τ̂S
MV UE + 1

3(N−1)(3N−2)
λ̂S

MV UE




and

Ξ̂S
MMSE =

(
1 +

1

λ2
E4

)−1

Ξ̂S
MVUE

=
N

3N − 2

[(
U + V + W

)− (
U(1) + V(1) + W(1)

)]
.

It is evident from above that the MMSE estimator for the desired clock offset

parameter of the inactive nodes is the same as the MLE, ordered BLUE and the

MVUE for the symmetric exponential link delay model.

C. Summary

In this chapter, three different parameter estimation schemes, namely best linear un-

biased estimation using ordered observations, minimum variance unbiased estimation

and minimum mean square error estimation with expected loss independent of clock

offsets and fixed link delay, are employed to accomplish the goal of accurately syn-

chronizing a wireless sensor network. The results provided here not only apply the

above mentioned better schemes to the clock synchronization problem as compared

to the MLE derived previously in Chapter V, but also generalize its scope by taking

into account asymmetric link delays scenario. In addition, it is shown that under

symmetric delay case, the BLUE based on ordered data, the MVUE and the MMSE
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estimators coincide with the MLE. These findings are very useful in the realm of wire-

less sensor networks, where many applications demand tight synchronization among

the clocks of the nodes while keeping the spent power at the bare minimum.
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CHAPTER VII

CLOCK DRIFT ESTIMATION FOR ACHIEVING LONG-TERM

SYNCHRONIZATION*

Until now, various schemes have been proposed for estimating the clock offset

and skew. However, estimating the clock of a node using a linear model is useful only

for short-term applications, examples of which are object tracking and surveillance.

But it is not sufficient for some applications having stringent and long term clock

synchronization requirements such as efficient duty cycling and synchronized sampling

because they spend a lot of energy for resynchronization during a given long enough

time interval.

To elaborate more on this point, consider the following examples. FTSP has to

resynchronize the nodes in the network every minute to achieve 90 µs synchronization

error, even though it is the most efficient time synchronization protocol reported thus

far and implemented on real testbeds yielding very good results [13]. In addition, the

Center for Embedded Networked Sensing (CENS) deployment at James Reserves [45]

uses RBS to synchronize the nodes after every 5 minutes and the shooter localization

system [44] implements FTSP to synchronize once every 45 seconds. Due to these

reasons, even though RBS and FTSP estimate the clock skew alongside clock offset

using linear regression, they are insufficient in practice for achieving long term syn-

chronization since they are confined to estimating up to the parameter of first order

(clock skew) only. Hence, for achieving this goal of long term synchronization, a bet-

*Part of this chapter is reprinted with permission from “Clock Estimation for
Long-Term Synchronization in Wireless Sensor Networks with Exponential Delays”
by Qasim M. Chaudhari and Erchin Serpedin, EURASIP Journal on Advances in
Signal Processing, Volume 2008, Article ID 219458, 6 pages, 2008.
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ter modeling of clock relationship with the reference node is required. In this section,

this problem is targeted through extending the linear model between two clocks to a

quadratic one and then the clock parameters of clock offset, skew and drift are jointly

estimated.

Estimating this second order parameter of the model, called clock drift, is im-

portant in light of the reasons mentioned above and finding the MLE is attractive

due to its optimal properties for a large number of observations as mentioned before.

It should be noted here that although the estimation of clock parameters using a

quadratic model is computationally more demanding than using the linear model, it

helps in maintaining long-term synchronization among the nodes and subsequently

less frequent communications and power saving. Since it has been reported in [31]

that the energy required to transmit 1 bit over 100 meters (3 Joules) is equivalent to

the energy required to execute 3 millions of instructions, a trade-off between spend-

ing reduced communication energy on the cost of more computational energy through

estimating the long-term drift as well as the offset and the skew between clocks of

two nodes is an option worth adopting.

A. Problem Formulation

Now for a similar two-way timing cells exchange as before but with addition of the

new quadratic terms is given by

T2,r = T 2
1,rϕ + T1,rω + φ + τ + Xr,

T3,r = T 2
4,rϕ + T4,rω + φ− τ − Yr,
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where Xr and Yr are modeled as exponential random variables. Based on the above

model, the likelihood function can be written as

L (τ, φ, ω, ϕ) = α−2N .e
− 1

α

N∑
i=1

(T 2
4,r−T 2

1,r)ϕ+
N∑

i=1
{(T4,r−T1,r)ω+(T2,r−T3,r)−2τ}

N∏
i=1

I
[
+T2,r − T 2

1,rϕ− T1,rω − φ− τ ≥ 0
] N∏

i=1

I
[−T3,r + T 2

4,rϕ + T4,rω + φ− τ ≥ 0
]
.

We assume that the clocks can neither stop nor run backwards, which implies that

the clock skew ω � 0 and hence always positive. The actual values of practical clock

skew is usually close to 1. Finally, for the simplification of derivation, ϕ has been

assumed to be positive. Following a similar procedure mentioned herein, a negative

value of ϕ will result in the same closed form expression of the MLE.

B. The Estimation Procedure

The constraints present in the likelihood function (7.1) can be expressed equivalently

as

τ > 0, ϕ > 0, ω > 0,

∞ > φ > −∞,

τ ≤ +T2,i − T 2
1,iϕ− T1,iω − φ, i = 1, · · ·, N (7.1)

τ ≤ −T3,j + T 2
4,jϕ + T4,jω + φ, j = 1, · · ·, N (7.2)

These constraints can be viewed as 2N 4-D curves due to the four unknowns.

The 3-D region where the two sets of N curves in (7.1) and (7.2) intersect each other

yields φ in terms of ω and ϕ as

2φ = (T2,i + T3,j)− (T 2
1,i + T 2

4,j)ϕ− (T1,i + T4,j)ω, i, j = 1, · · ·, N (7.3)
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Plugging it back in (7.1), the sets of constraints can now be written as

τ ≤ T2,i − T 2
1,iϕ− T1,iω − 1

2

[
(T2,i + T3,j)− (T 2

1,i + T 2
4,j)ϕ− (T1,i + T4,j)ω

]
,

i, j = 1, · · ·, N

or equivalently,

2τ ≤ (T2,i − T3,j) + (T 2
4,j − T 2

1,i)ϕ + (T4,j − T1,i)ω, i, j = 1, · · ·, N (7.4)

The above inequalities in (7.4) represent a 3-D region due to three unknowns

consisting of N2 surfaces forming the boundary of the support region. To find this

boundary of the support region as a function of ϕ only, the intersection of these

surfaces in (7.4) with each other are

ω =
[(T2,k − T3,l)− (T2,i − T3,j)] +

[
(T 2

4,l − T 2
1,k)− (T 2

4,j − T 2
1,i)

]
ϕ

(T4,j − T1,i)− (T4,l − T1,k)
,

= ua + vaϕ, (7.5)

where

ua =
(T2,k − T3,l)− (T2,i − T3,j)

(T4,j − T1,i)− (T4,l − T1,k)
,

va =
(T 2

4,l − T 2
1,k)− (T 2

4,j − T 2
1,i)

(T4,j − T1,i)− (T4,l − T1,k)
,

and a is a simplified index notation as a function of the indices (i, j, k, l). Now

plugging (7.5) into (7.4) yields the support region in terms of τ as a function of ϕ
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only as

2τ ≤ (T2,m − T3,n) + (T4,n − T1,m)
(T2,p − T3,q)− (T2,m − T3,n)

(T4,n − T1,m)− (T4,q − T1,p)

+ (T 2
4,n − T 2

1,m)ϕ + (T4,n − T1,m)
(T 2

4,q − T 2
1,p)− (T 2

4,n − T 2
1,m)

(T4,n − T1,m)− (T4,q − T1,p)
ϕ.

=
(T4,n − T1,m)(T2,p − T3,q)− (T2,m − T3,n)(T4,q − T1,p)

(T4,n − T1,m)− (T4,q − T1,p)

+
(T4,n − T1,m)(T 2

4,q − T 2
1,p)− (T 2

4,n − T 2
1,m)(T4,q − T1,p)

(T4,n − T1,m)− (T4,q − T1,p)
ϕ.

= wb + zbϕ, (7.6)

where

wb =
(T4,n − T1,m)(T2,p − T3,q)− (T2,m − T3,n)(T4,q − T1,p)

(T4,n − T1,m)− (T4,q − T1,p)
,

zb =
(T4,n − T1,m)(T 2

4,q − T 2
1,p)− (T 2

4,n − T 2
1,m)(T4,q − T1,p)

(T4,n − T1,m)− (T4,q − T1,p)
,

and b is again a simplified index notation as a function of the indices (m,n, p, q). Now

the final form and uniqueness of the MLE can be proved by the following theorem.

Lemma 6. The MLE (ϕ̂, τ̂ , ω̂, φ̂) is unique and is given by that intersection of two

curves on the boundary of the support region in (7.6) where the term
N∑

r=1

{
(T 2

4,r − T 2
1,r)

+ va(T4,r − T1,r)} −Nzb is negative for one curve and positive for the other.

Proof. The MLE (ϕ̂, τ̂ , ω̂, φ̂) can be derived by the following observations.

1. It is clear that the MLE lies on the boundary of the support region. This is be-

cause for any τ lying somewhere within the support region, the likelihood func-

tion (7.1) can be further increased by increasing τ until it reaches the boundary

of the support region.

2. Maximizing the likelihood function in (7.1) is equivalent to minimizing the expo-

nential function argument Φ =
N∑

r=1

[
(T 2

4,r − T 2
1,r)ϕ + (T4,r − T1,r)ω + (T2,r − T3,r)
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− 2τ ] in the likelihood function expression. Therefore, plugging (7.5) and (7.6)

into the expression for Φ, it can be written in the form of a set φa,b depending

on indices a and b as

φa,b =
N∑

r=1

[
(T 2

4,r − T 2
1,r)ϕ + (T4,r − T1,r)(ua + vaϕ) + (T2,r − T3,r)− (wb + zbϕ)

]
,

∝
[

N∑
r=1

{(T 2
4,r − T 2

1,r) + va(T4,r − T1,r)} −Nzb

]
ϕ.

3. Starting from zb corresponding to min
b
{wb} and evaluating φa,b on each subse-

quent zb on the boundary of the support region, observe that for each particu-

lar segment, φa,b can be minimized by taking the largest possible ϕ̂ if the term
N∑

r=1

{
(T 2

4,r − T 2
1,r) + va(T4,r − T1,r)}−Nzb is negative and by taking the smallest

possible ϕ̂ if
N∑

r=1

{
(T 2

4,r − T 2
1,r) + va(T4,r − T1,r)}−Nzb is positive.

4. Since the boundary of the support region is formed by the curves in (7.6) in an

order of decreasing slopes {zb}, the intersection where the sign of
N∑

r=1

{
(T 2

4,r − T 2
1,r)

+ va(T4,r − T1,r)} − Nzb (and hence the sign of φa,b) changes from negative to

positive occurs only once. Therefore, the MLE must be unique.

5. Let c = min
a
{va} and s = {a}\ c. Now comparing φc,b and φs,b on the boundary

of the support region yields the following three options.

• The signs of both φs,b and φc,b change at the same intersection of curves in

(7.6). In this case, φc,b < φs,b since vc < vs.

• The sign change for φs,b occurs at an intersection of the curves in (7.6) to

the right of the intersection where the sign change for φc,b occurs. This is

not possible because for the same zb, φs,b must have a sign change at or to

the left of the intersection where the same occurs for φc,b.

• The sign of φs,b changes at an intersection of curves in (7.6) which is to the
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left of the intersection where the sign change for φc,b occurs. Now even on

intersection 1, φc,b < φs,b since vc < vs. Due to the continuity of φc,b (and

hence the continuity of the likelihood function) on the support region, φc,b

can be further decreased by increasing ϕ until it touches the intersection

2. Therefore, a = c should be used to find the index b corresponding to

the minimum of the set φc,b.

6. Finally, in the light of above observations, by checking the sign of the expression
N∑

r=1

{
(T 2

4,r − T 2
1,r) + vc(T4,r − T1,r)}−Nzb for each b, we conclude that the MLE

ϕ̂ can be expressed as

ϕ̂ =

[
D(4,n)(1,m)D(2,p)(3,q) −D(2,m)(3,n)D(4,q)(1,p)

D(4,n)(1,m) −D(4,q)(1,p)

−D(4,j)(1,i)D(2,k)(3,l) −D(2,i)(3,j)D(4,l)(1,k)

D(4,j)(1,i) −D(4,l)(1,k)

]
/

[
D(4,j)(1,i)D

2
(4,l)(1,k) −D2

(4,j)(1,i)D(4,l)(1,k)

D(4,j)(1,i) −D(4,l)(1,k)

−
D(4,n)(1,m)D

2
(4,q)(1,p) −D2

(4,n)(1,m)D(4,q)(1,p)

D(4,n)(1,m) −D(4,q)(1,p)

]
, (7.7)

where the difference of any two timestamps are denoted by their indices as

D(,)(,) (e.g., T4,n − T1,m as D(4,n)(1,m)) and the square of timestamps as D2
(,)(,)

(e.g., T 2
4,j − T 2

1,i as D2
(4,j)(1,i)). where the indices {i, j, k, l, m, n, p, q} correspond

to the two set of curves in (7.6) for which the sign of
N∑

r=1

{
(T 2

4,r − T 2
1,r) +

vc(T4,r − T1,r)}−Nzb changes from negative to positive. Consequently, plugging

ϕ̂ in (7.6), (7.5) and (7.3), we can write τ̂ , ω̂, φ̂ as
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τ̂ =
1

2

D(4,j)(1,i)D(2,k)(3,l) −D(2,i)(3,j)D(4,l)(1,k)

D(4,j)(1,i) −D(4,l)(1,k)

+
1

2

D(4,j)(1,i)D
2
(4,l)(1,k) −D2

(4,j)(1,i)D(4,l)(1,k)

D(4,j)(1,i) −D(4,l)(1,k)

ϕ̂,

ω̂ =
D(2,k)(3,l) −D(2,i)(3,j)

D(4,j)(1,i) −D(4,l)(1,k)

+

[
D2

(4,l)(1,k) −D2
(4,j)(1,i)

]

D(4,j)(1,i) −D(4,l)(1,k)

ϕ̂,

φ̂ =
T2,i + T3,j − (T 2

1,i + T 2
4,j)ϕ̂− (T1,i + T4,j)ω̂

2
.

Algorithm 6 presents in detail the steps required to find this MLE (ϕ̂, τ̂ , ω̂, φ̂).

As N becomes large, clock drift estimation becomes particularly useful for capturing

the clock dynamics in a better way. The complete procedure for finding this MLE

(ϕ̂, τ̂ , ω̂, φ̂) is explained in Algorithm 6. Algorithm 6 starts from the curve in (7.6) for

which w has the least value. It selects the intersection of this curve with the neighbor-

ing curve intersecting it, and it checks the sign change condition of
N∑

r=1

{
(T 2

4,r − T 2
1,r)

+ vc(T4,r − T1,r)}−Nzb. If the condition is not satisfied, the first curve is discarded

and the same procedure is repeated for the second curve and so on until the same

condition is satisfied.

C. Summary

Using a quadratic model for the relationship between the clocks of two nodes with a

two-way timing message exchange mechanism, we have derived the MLE for the clock

offset, skew, drift and the fixed delay between the two nodes. In addition, complete

steps for the algorithm required to find this MLE are also presented.



154

Algorithm 6 ML estimation for ϕ̂, τ , ω̂, and φ̂

1: Compute the set {va} and {zb};
2: c = min

a
{va};

3: (i, j, k, l) −→ min{wb};
LABEL:

4: ϕm,n,p,q =
[

D(4,n)(1,m)D(2,p)(3,q)−D(2,m)(3,n)D(4,q)(1,p)

D(4,n)(1,m)−D(4,q)(1,p)

−D(4,j)(1,i)D(2,k)(3,l)−D(2,i)(3,j)D(4,l)(1,k)

D(4,j)(1,i)−D(4,l)(1,k)

]
/[

D(4,j)(1,i)D
2
(4,l)(1,k)

−D2
(4,j)(1,i)

D(4,l)(1,k)

D(4,j)(1,i)−D(4,l)(1,k)

−D(4,n)(1,m)D
2
(4,q)(1,p)

−D2
(4,n)(1,m)

D(4,q)(1,p)

D(4,n)(1,m)−D(4,q)(1,p)

]
;

5: (e, f, g, h) = arg min
m,n,p,q

{ϕm,n,p,q};

6: if

[
N∑

r=1

{D2
(4,r)(1,r) + vcD(4,r)(1,r)} −Nzb

]i,j,k,l

×
[

N∑
r=1

{D2
(4,r)(1,r) + vcD(4,r)(1,r)} −Nzb

]e,f,g,h

< 0 then

7: ϕ̂ = ϕe,f,g,h;

τ̂ = 1
2

D(4,f)(1,e)D(2,g)(3,h)−D(2,e)(3,f)D(4,h)(1,g)

D(4,f)(1,e)−D(4,h)(1,g)

+ 1
2

D(4,f)(1,e)D
2
(4,h)(1,g)

−D2
(4,f)(1,e)

D(4,h)(1,g)

D(4,f)(1,e)−D(4,h)(1,g)
ϕ̂,

ω̂ =
D(2,g)(3,h)−D(2,e)(3,f)+[D2

(4,h)(1,g)
−D2

(4,f)(1,e)]
D(4,f)(1,e)−D(4,h)(1,g)

,

φ̂ = 1
2

[
T2,e + T3,f − (T 2

1,e + T 2
4,f )ϕ̂

]

− 1
2
[(T1,e + T4,f )ω̂];

8: else

9: Discard (i, j, k, l) curve;

10: (i, j, k, l) = (e, f, g, h);

11: goto LABEL;

12: end if
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CHAPTER VIII

JOINT SYNCHRONIZATION OF CLOCK OFFSET AND SKEW IN A

RECEIVER-RECEIVER PROTOCOL*

Turning our attention in this chapter towards a general receiver-receiver protocol

in which a master node sends reference broadcasts to the neighboring nodes, the joint

MLE for clock phase offset and skew under exponential noise model is formulated

and found via a direct algorithm. The Gibbs Sampler is also proposed for joint clock

phase offset and skew estimation and shown to provide superior performance relative

to JMLE. Lower and upper bounds for the mean-square errors (MSE) of JMLE and

Gibbs Sampler are introduced in terms of the MSE of the MVUE and the conventional

BLUE, respectively.

A. Modeling Assumptions

In a general receiver-receiver protocol, a transmitter node broadcasts N synchro-

nization signals and the receiver nodes put time-stamps on these signals. Then, for

efficient implementation, the receivers pass the data consisting of the time-stamps to

the transmitter where the clock offsets and skews between different pairs of nodes are

calculated. By the help of this protocol, two of the main error sources of clock syn-

chronization are eliminated, which are uncertainties at Send Time and Access Time.

Furthermore, the difference between propagation times is negligible compared to the

uncertainty at Receive Time, which becomes the only error source. Therefore, the ith

*Part of this chapter is reprinted with permission from “On the Joint Synchro-
nization of Clock Offset and Skew in RBS-Protocol” by Ilkay Sari, Erchin Serpedin,
Kyoung-Lae Noh, Qasim M. Chaudhari and Bruce Suter, IEEE Transactions on Com-
munications, Volume 56, Issue 5, May 2008, Page(s): 700 - 703.



156

time-stamps at the receivers X and Y are given by

X[i] = T1 + θx + βxτ [i] + vx,λx [i], Y [i] = T1 + θy + βyτ [i] + vy,λy [i], (8.1)

where T1 stands for the time on the transmitter when it sends the first synchronization

signal, θx and βx stand for the offset and skew between the clocks of the receiver X

and the transmitter, τ [i] stands for the difference between T1 and the time of ith

synchronization signal (with respect to the transmitter’s clock) and vx,λx [i] stands

for the exponential iid (independently and identically distributed) noise (with mean

1/λx), with i = 1, . . . , N . The parameters to be estimated, the offset and skew

between the clocks of the nodes X and Y , are given by the following equations:

Θ = θx − θy , β = βx − βy . (8.2)

B. JML Estimation of the Offset and Skew

The estimation of clock skew becomes more important in the context of energy-

constrained sensor networks. [46] shows that under uniform noise, there are infinite

solutions for ML estimation. Besides, the support of likelihood function is not convex

which leaves out the possibility of taking the mean of all equally likely solutions. In

this letter, we will consider the case described in (8.1). As long as the two parameter

sets {θx, βx, λx} and {θy, βy, λy} do not have a direct relationship and the noise sources

in different nodes are independent (both of which are realistic assumptions), we can

find the JML-estimator for Θ and β without loss of any information by estimating

the parameters (θx, βx) and (θy, βy) separately and plugging these estimates back into

(8.2). Thus, we will concentrate on the estimation of θx and βx. First of all, for

simplicity, we will assume that τ [i] = i − 1 and T1 = 0, then the likelihood function
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becomes

L(θx, βx) =
N∏

i=1

λxe
−λx(X[i]−(θx+(i−1)βx)I(X[i]≥θx+(i−1)βx)

= λN
x e−λxN(X−f)

N∏
i=1

I(X[i]≥fi) , (8.3)

where f(θx, βx) = θx + N−1
2

βx, fi(θx, βx) = θx + (i − 1)βx, X stands for the sample

mean of observations X[i] (i = 1, . . . , N), and I(x≥a) denotes the indicator function,

being equal to 1 when x ≥ a and being 0 elsewhere.

Note that in (8.3), the multiplication of indicator functions defines a convex

region (S) on the parameter space (θx, βx), with S = {(θx, βx) :
⋂N

i=1 fi(θx, βx) ≤
X[i]}. S has k vertices {sj}k

j=1 and k+1 edges (1 ≤ k ≤ N−1). Specifically, the shape

of this region and the value of k will strongly depend on the ordering of X[1], ...X[N ].

On this region, we have to maximize the objective function, f(θx, βx) = θx + N−1
2

βx.

Since 0 < N−1
2

< N − 1, the support of the solution is guaranteed to be a closed-

Fig. 30. S and the solution s1.

convex region on the boundary of S. If N = 2m, the solution will be one of the

vertices sj and if N = 2m− 1 the solution will assume possibly a segment of the line
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fm : θx + (m− 1)βx (or again one of the vertices sj, depending on the ordering of the

observations). Fig. 30 illustrates these remarks for N = 2 and X[2] > X[1]. In this

illustrative example, since f attains its maximum on s1 amongst all points on S, s1

gives the JML estimation of θx and βx. Before proceeding any further, we have to

clarify one more point. In derivations up to now, we assumed that λx and λy were

both known. However, if we assume they are unknown and use the reduced likelihood

function for (θx, βx) as in [18], it is straightforward to show that we end up with the

same JML solution.

C. Application of Gibbs Sampler

Although it is possible to find the exact solution for the ML-estimate as explained

above, we will also apply the Gibbs Sampler to jointly estimate the parameters.

Although by using the Gibbs Sampler it is possible to find an approximate JML es-

timation which is arbitrarily close to the exact one, there are some more important

advantages that the Gibbs Sampler will provide us. First of all, it can be shown that

the JML estimation (θ̂x,ML, β̂x,ML) is biased for finite N . (As an example consider

the case in Fig. 30, E[θ̂x,ML] = E[X[1]] = E[θx + vx,λx [1]] = θx + 1/λx.) For this

reason, we need to look for an MVUE estimator. However, the Neyman-Fisher fac-

torization theorem provides mini((X[i]−θx +(i−1)βx)) as sufficient statistics, which

is not independent of the parameters to be estimated. On the other hand, if we use

the Gibbs Sampler at the end we do not have just a single point estimate but the

posterior distribution for the parameters to be estimated as the output. Then, we

can either find the JML-estimator or set the corresponding estimator as the mean

value of the posterior distribution of the parameter, which will automatically per-

form the marginalization and will give better results with reduced bias and variance.



159

Another appealing feature of the Gibbs Sampler is its straightforward extendability

for additional unknown parameters. For example, it is possible that λx is unknown

or in addition to the clock phase offset and skew we could have clock drifts: γx and

γy. Although very important, due to the limited space we did not consider such a

scenario in this letter. The drifts will be observed on RHS (right-hand side) of (8.1)

as additional terms: τ 2[i]γx and τ 2[i]γy. Definitely, it is straightforward to adapt the

Gibbs Sampler to these scenarios.

Before applying it, we will briefly give some information about the Gibbs Sam-

pling. Assume that we have the data vector z and we want to estimate some param-

eters Φ = [φ1, φ2, ..., φM ]T . For any kind of statistical inference we want to use the

joint posterior distribution of the parameters p(Φ|z) ∝ p(z|Φ)p(Φ) (in point estima-

tion, prior distribution p(Φ) is chosen as noninformative). When it is hard to carry

out mathematical derivations on the posterior, we stick to Monte-Carlo methods, i.e.,

to draw as many samples as possible from the posterior so that the inference we make

using these samples will be arbitrarily close to the exact solution. When it is hard

to draw from the joint posterior directly, MCMC (Markov Chain Monte-Carlo) type

of iterative methods will be used. That resumes to setting up a Markov chain whose

stationary distribution is the joint posterior we need. One convenient way to do this

is to use Gibbs Sampling in which we iteratively draw samples from one-dimensional

conditionals p(φi|z,Φi), where Φi is an (M − 1)×1 vector with entries {φj}j 6=i. Under

mild conditions, these one dimensional conditional distributions uniquely determine

the joint posterior distribution [47].

Specifically, the general algorithm for Gibbs Sampling with initial values Φ(0) =

[φ
(0)
1 , ..., φ

(0)
M ] is to iterate the following:

• Draw φ
(1)
1 from p(φ1|z, φ(0)

2 , ..., φ
(0)
M )
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• Draw φ
(1)
2 from p(φ2|z, φ(1)

1 , φ
(0)
3 , ..., φ

(0)
M )

...

• Draw φ
(1)
M from p(φM |z, φ(1)

1 , ..., φ
(1)
M−1).

After a threshold value t, the set {Φ(t), Φ(t+1), ...} behaves like samples from the joint

posterior of the parameters.

One important point is that the joint posterior distribution should be proper.

Otherwise the Gibbs Sampler always converges to some local points, but not necessar-

ily to a meaningful one [48]. For this reason to assure that the posterior is proper, in

application of Gibbs Sampler to the point estimation, priors are not directly chosen as

flat, but they are chosen from conjugate families and then their parameters arranged

so as to have noninformative priors. However in our case, the likelihood function

itself can be used as posterior distribution, since its integral is always bounded and

positive-valued which makes it proper. We do not need to use any other type of priors

but flat. Then in our case, using (8.3), the procedure becomes

• Draw θ
(1)
x from ∝ eλxNθxI(θx ≤ mini(X[i]− (i− 1)β

(0)
x ))

• Draw β
(1)
x from ∝ eλx

N(N−1)
2

βxI(βx ≤ mini(
X[i]−θ

(1)
x

i−1
)).

For θt+1
x , we will draw a sample from the exponential distribution with parameter λxN ,

multiply it with -1 and add mini(X[i] − (i − 1)β
(t)
x ) to it. The procedure for βt+1

x is

similar. Note that if λx were unknown, we would utilize the Gamma distribution to

draw for λ
(t+1)
x .

D. Performance Bounds and Simulations

In this part, we will look at the performances of the Gibbs Sampler and the JML-

estimator. However, it will be useful to have some benchmarks with whom to compare
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their performances. First we will look for lower bounds. Since the likelihood function

does not satisfy the regularity conditions required by CRLB (Cramer-Rao Lower

Bound), calculating CRLBs is dropped out of the list. One possible lower bound can

be found by assuming that all the parameters are known but the one to be bounded,

which reduces the problem to the well-known derivation of the bound for a single

unknown parameter in exponential noise. Then we can find the MVUE both for the

phase offset and skew in closed forms. For θx, it is derived that the MVUE becomes

θ̂x,MV UE = mini(X[i]− (i− 1)βx)− 1

Nλx

, (8.4)

and the MSE of the estimator equals 1/(Nλx)
2. For βx, the likelihood function is

L(βx) = Ceλx
N(N−1)

2
βxΠN

i=2I(βx ≤ X[i]− θx

i− 1
). (8.5)

By Factorization Theorem, mini(
X[i]−θx

i−1
) is sufficient statistics and it is straightfor-

ward to show that it is also complete. This result can be established by following the

similar lines of proof as it is done in [49] for θx. Then, by Lehmann-Scheffe Theorem,

the MVUE for the skew when the offset and λx are known takes the form:

β̂x,MV UE = mini(
X[i]− θx

i− 1
)− 2

λxN(N − 1)
. (8.6)

The MSE of the estimator (8.6) is equal to the variance of Z = mini=2,3,...,N(X[i]−θx

i−1
).

Thus, we first need to determine the distribution of Z. From the theory of order

statistics, the distribution of the minimum of a sample set is given by F (z) = 1 −
(1 − F2(z))(1 − F3(z))...(1 − FN(z)), where Fi(z) = Pr(X[i]−θx

i−1
≤ z) = Pr(vx,λx [i] ≤

(i− 1)(z − βx)) = (1− eλx(i−1)(z−βx))I(z ≥ βx). Then the distribution becomes

F (z) = 1− eλx(ziβx)(1+2+...+N−1) = 1− eλx(z−βx)
N(N−1)

2 , (8.7)
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which is an exponential distribution with the scale parameter λxN(N−1)
2

and the

location parameter βx. The MSE of β̂x,MV UE equals the variance of Z which is

4/(λxN(N−1))2. Therefore, we do not expect the MSE of joint estimator for (θx, βx)

to decay faster than ∝ (1/N2, 1/N4).

We will also consider the BLUE, since it will represent an upper bound. Here,

the same notation is used as [46] except that X is replaced with A (A , [1,x],

where 1 = [1, 1, · · ·, 1]T and x = [0, 1, · · ·, N − 1]T ) to prevent possible confu-

sion. Since noise is not zero-mean in our model unlike [46], we need to subtract

1/λx from the resulting linear estimate of θx so as to end up with the BLUE.

Then we have [θ̂x,BLUE, β̂x,BLUE]T = (ATA)−1ATX− [ 1
λx

, 0]T . It is known that

var([θ̂x,BLUE, β̂x,BLUE]T ) = diag{1/λ2
x(A

TA)−1} ∝ [1/N, 1/N3]T . The MSE of the
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Fig. 31. MSE for θ̂x,BLUE, θ̂x,JML, θ̂x,GIBBS, and θ̂x,MV UE.

Gibbs Sampler and the JML-estimator for θx = 1 and βx = 0.01 with λx = 103 (which

makes var(vx,λx) = 10−6), are presented in Figs. 31 and 32, respectively. In these sim-
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ulations, the initial values of clock parameters are chosen as zeros. These figures also
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Fig. 32. MSE for β̂x,BLUE, β̂x,JML, β̂x,GIBBS and β̂x,MV UE.

include the lower and upper bounds presented above. The MSE are plotted against

the number of synchronization signals from 4 to 36. It is interesting to note that the

MSE of the Gibbs Sampler and the JML-estimator behave like the lower bound, i.e.,

decay rates on the order of ∝ 1/N2 and ∝ 1/N4, respectively. Note also that the

Gibbs Sampler performs better with MSE-values around 40% for θx and 25% for βx

compared to the corresponding values of JML-estimator. We should also note that

the convergence of the Gibbs Sampler is achieved after a number of iterations on

the order of N . To shed some light on the sensitivity of the Gibbs Sampler to the

prior mismatch, we have also provided some simulation results for the mismatched

prior knowledge. This is important for engineers and system designers in order to

make proper choice of estimator for their considered systems. Fig. 31 and Fig. 32

show the performance of Gibbs Sampler where we have modeled actual prior as a
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truncated Gaussian while the assumed prior in the Gibbs Sampler is uniform. For

prior of offset, truncation points have been chosen as 0 and 10 whereas the mean and

Standard Deviation of parent Gaussian distribution as 5 and 2 respectively. And for

prior of skew, truncation points are chosen as 0 and 1 whereas the mean and Standard

Deviation of parent Gaussian distribution as 0.5 and 0.25 respectively.

One drawback of the Gibbs Sampler is definitely its computational complexity.

The computational complexity of Gibbs Sampler is affected by the random number

generations in each iteration and the number of iterations necessary to converge.

Although the Gibbs Sampler clearly requires more computations, the required level

of precision can be achieved by lesser number of signal transmissions. Hence, there is

a tradeoff between the complexity and the gains achieved by Gibbs Sampler.

E. Summary

Under the exponential noise model, it has been proved that the JMLE of the skew

and the phase offset exists and is either unique or a line segment depending on the

magnitudes of the observed data samples. At worst, the support of all equally likely

solutions is a closed-convex set (a line segment). The setting was convenient to

apply Gibbs Sampler which further increased the performance of JML-estimator. The

performances of both estimators (JML and Gibbs Sampler) scale with the same power-

law (with respect to the number of synchronization signals N). Lower and upper-

bounds for the performance of JML and Gibbs Sampler estimators were also presented

in terms of the MSE-performances of MVUE estimator and BLUE, respectively.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

Clock synchronization among the nodes in WSNs is a challenging task due to con-

flicting requirements of increased accuracy and restricted power consumption. This

dissertation targets the clock synchronization problem in a general sender-receiver

and receiver-receiver timing packet exchange scenario. The best linear unbiased esti-

mate (using order statistics) of the clock offset between two nodes has been derived

for both symmetric and asymmetric exponential link delay circumstances. The min-

imum variance unbiased estimate is also obtained, and compared with the maximum

likelihood estimator to find the superior estimator at various regions of asymmetry.

Then the MLEs of both the clock offset and skew for any general time synchronization

protocol involving a two way message exchange mechanism are derived assuming both

Gaussian and exponential delays and the algorithms used for finding these MLEs are

also detailed. With sacrificing some performance, two reduced complexity schemes

are proposed to estimate the clock parameters in an economical way. The maximum

likelihood, best linear unbiased, minimum variance unbiased and minimum mean

square error estimators are then derived for the inactive nodes overhearing a timing

exchange between a pair of nodes. Afterwards, a procedure to estimate the clock

drift is also presented for increased accuracy and longer synchronization period. Fi-

nally, the joint maximum likelihood estimator is derived in a general receiver-receiver

setting and Gibbs Sampler is applied to increase the accuracy.

There are several future research directions that can be investigated. First, re-

examination of this problem utilizing modern statistical inference techniques such

as bootstrap and jackknife is an motivating area worth exploring. The methodol-

ogy adopted in this dissertation can be extended to analyze other time synchro-
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nization protocols for both single hop and multihop cases. In addition, finding the

CRLBs for the clock offset and skew estimators derived here represents an impor-

tant open research problem. However, it must be noted that the CRLB in this

case can not be derived by the same procedure as in Chapter III. The reason is

that min
1≤k≤N

(T2,k/θB − T1,k) and min
1≤k≤N

(T4,k − T3,k/θB) in Case II intersecting at op-

timal (d̂, θ̂B) (and similar curves in other cases) do not correspond to min
1≤k≤N

Xk and

min
1≤k≤N

Yk respectively. In addition, all the order statistics from an exponential distri-

bution, except the first, do not have exponential distribution. Additionally, exploring

the effects of violation of iid assumption for the random delays, missing data points

due to communication losses, or quantization errors are interesting open problems.

This work might also formulate a very good justification for adopting a Bayesian

estimation framework where the currently inactive nodes observe a two-way timing

cell exchange mechanism as usual, and adopting a Bayesian approach for estimating

their clock offset using the current estimator PDF as prior might considerably im-

prove the synchronization accuracy. Moreover, by modeling the relationship between

two clocks with the addition of higher order terms such as clock skew, the parameters

for long term synchronization can be estimated and used to increase the lifetime of

the network. Lastly, formulating a procedure through which the timing error accu-

mulation over a series of hops encompassing the whole network could be quantified

is an idea worth exploring.
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