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ABSTRACT

The Sign-Up Game, Sophisticated Learning

and Learning Variable Demand. (August 2008)

Megha Weerakoon Watugala, B.S., California Institute of Technology

Chair of Advisory Committee: Dr. John Van Huyck

This dissertation makes contributions in topics related to mechanism design and learn-

ing in game theoretic environments through three essays. The �rst essay deals with

the question of mechanism design in the principal-agent model. The main contribu-

tion of this essay is in extending the work by Piketty (1993). It prescribes a mechanism

in incomplete informational settings where the principal is able to implement �rst-

best contracts while extracting the entire surplus. Importantly, the mechanism is

such that the desired outcome can be uniquely obtained when agents play the action

that survives iterative elimination of dominated strategies. Furthermore, given the

mechanism, the desired outcome is shown to be a truth-revealing Nash equilibrium

which is also Pareto-e�cient. It is shown that the proposed mechanism also has the

feature that none of the agents prefer any of the other possible Nash Equilibria to

the status quo. It thus gives insights into possible mechanisms in �nite agent settings

that could improve upon the traditional second-best results.

In the second essay, a model of sophisticated learning is developed where it

assumes that a fraction of the population is sophisticated while the rest are adaptive
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learners. Sophisticated learners in the model try to maximize their cumulative payo�

in the entire length of the repeated game and are aware of the way adaptive learners

learn. Sophisticated learning contrasts other models of learning which typically tend

to maximize the payo� for the next period by extrapolating the history of play.

The sophisticated learning model is estimated on data of experiments on repeated

coordination games where it provides evidence of such learning behavior.

The third essay deals with the optimal pricing policy for a �rm in an oligopoly

that is uncertain about the demand it faces. The demand facing the oligopoly, which

can be learned through their pricing policy, changes over time in a Markovian fashion.

It also deduces the conditions in which learning (experimentation) is not achievable

and outlines the di�erent learning policies that are possible in other settings. The

model combines the monopoly learning literature with that of the literature on pric-

ing behavior of �rms over business cycles. The model has interesting insights on

the pricing behavior over business cycles. It predicts that prices jump as the belief

of a possible future boom rises over a certain threshold. The model also predicts

competition to be quite vigorous following a boom while �rms are predicted not to

experiment with their (pricing) policies for many periods following a bust.
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CHAPTER I

INTRODUCTION

Over the last century, the theory of games has become an important aspect of eco-

nomic thought. A game is a situation where there is strategic interaction between

individuals. That is, the payo� (outcome) to an agent is dependent not only on his

own action, but also on the action of the agents interacting with him. Game Theory

studies interactions in such settings. Almost all social interactions in our everyday

life exhibit strategic interdependence and, hence, have an aspect of a game in them.

This explains why Game Theory has had such a large in�uence on economic reasoning

and social science.

The interactions between a taxpayer and the government, an employee and the

employer, and a customer and a monopolist, all exhibit strategic interdependence.

The actions of agents in these types of situations are in�uenced by the rules set at

the outset. These types of scenarios are studied extensively in mechanism design. Un-

derstanding how rules, laws, contracts, etc. in�uence outcomes is the key to successful

institution and policy design.

The second chapter uses a mechanism design approach to investigate the alloca-

tion rule a monopolist should enforce among his buyers, given limited information on

This dissertation follows the style and format of the Journal of Economic Theory.
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his customers' demand characteristics. The classical solution to this sort of principal-

agent problem where a single principal is facing a single agent drawn randomly from

an underlying characteristics distribution, shows that the best the principal can do

is end up implementing second-best outcomes. Piketty (JET 1993) shows that in

the principal-agent problem with a �nite agent population, if the agent population's

underlying characteristics distribution is known, a mechanism can in fact be designed

to implement �rst-best allocations. The research of the second chapter �nds and

characterizes other incomplete informational settings, where the principal still ends

up implementing �rst-best contracts while extracting the entire surplus.

The third chapter investigates sophisticated learning. Experiments show that

sometimes these models cannot explain human behavior. For example, experiments

done on behavior on repeated games show that subjects do not initially play an equi-

librium and that play evolves with experience (see Van Huyck, Cook & Battalio 1997).

Such adaptive behavior is modeled by learning. Most learning models (reinforcement

and belief learning) use the history of play to deduce possible future actions even in

�nitely repeated games. Indeed, backward induction and subgame perfect equilibria,

both predict that players would take action in the present only in contemplating the

future dynamics of the repeated game. Such players in the learning literature would

be sophisticated players.

The third chapter �nds evidence for sophisticated learning in repeated coordi-

nation games. The learning model used assumes that a fraction of the population is
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adaptive, while the rest are sophisticated. Sophisticated learners in the model would

be aware of the way adaptive learners learn, and behave with the intention of max-

imizing their payo� in the entire length of the repeated game. The model explains

many behavior such as teaching and signaling regularly found in experiments with

repeated games. The data for estimation was obtained from experiments conducted

at the Economic Research Laboratory at Texas A&M University (Van Huyck, Cook

& Battalio 1997). The analysis reported in the third chapter �nd some evidence of

sophisticated learning.

The fourth chapter develops a model of learning in an duopoly setting. Firms

must learn stochastic demand, while interacting with another �rm. The duopolist

must learn demand through their pricing policy. Demand evolves as a Markovian

stochastic process. The chapter �nds the pricing policy in a grim-trigger strategy

setting and analyzes its properties. The model arbitrages the monopoly demand

learning literature with the oligopoly pricing literature. The model has interesting

insights on pricing behavior over business cycles. It predicts that prices jump when the

belief of a possible future boom crosses a certain threshold. This behavior is similar

to that of a monopoly. It also predicts competition to be quite vigorous following

a boom, while �rms are predicted not to experiment with their pricing policies for

many periods following a bust, which contrasts predicted behavior of a monopoly.

The need for the duopolists to learn about demand changes the duopolists pricing

behavior in the existing literature.
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CHAPTER II

IMPLEMENTING FIRST-BEST ALLOCATIONS IN THE PRINCIPAL-AGENTS

MODEL

A. Introduction

This chapter deals with the problem of adverse selection in the principal-agent model.

In the principal-agent problem, the principal is assumed only to know the distribution,

F(θ), of skills or tastes, θ, of the population. The problem boils down to the principal

constructing a sorting mechanism, given his information about the agents, to extract

as much rent as possible. For the simplest case, when the principal is dealing with one

agent, incomplete information on the part of the principal results in the well known

second-best contracts. Extensive work has been done to deduce conditions under

which we could improve on second-best allocations when many agents are involved.

Hammond (1979) and Guesnerie (1981) show with a continuum of agents, that if

characteristics of each agent are drawn independently from the same initial distribu-

tion, then the principal cannot improve on the classical contract schedules. Dierker

and Haller (1990) give the counterpart of this result in large �nite economies which

is based on the same independence assumption.

In the case where the number of agents is �nite, there are two common inter-
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pretations of the information (about the distribution F(θ)) available to the principal.

They are:

1. Each agent is drawn randomly from the underlying distribution F(θ).

2. F(θ) is the true realized distribution of the agent population in question.1

The latter is the more traditional interpretation.2 Piketty (1993) shows that when the

number of agents is �nite, under the second interpretation, the principal can design

a game whose unique Bayesian Nash Equilibrium (through iterative elimination of

strictly dominated strategies) yields �rst-best allocations. Thus, there is no loss

in e�ciency and the principal is able to extract all the rent. The fact that the

principal obtains the same rent as under the complete information setting makes

this an interesting result. However, the principal under the second interpretation,

in some sense, has more information than the �rst under interpretation. In the �rst

interpretation, since each agent is randomly drawn from the underlying distribution,

the principal has less information on the realized distribution of the agent population's

types. Indeed, in such a setting, it is possible for all the agents to be of the same

type. Such a setting being too broad, Piketty (1993) went to the other extreme

where the principal is completely aware of the realized type distribution of the agents

1That is, the principal knows how many agents of each type there are in the population
with certainty.

2See Maskin and Riley (1984).



6

in question. Here, the principal is aware of the number of agents of each possible type

with certainty.

Thus, depending on the information available to the principal, contrasting al-

locations result. If the agent types are drawn randomly from the distribution the

principal is aware of, then second-best allocations can result. On the other hand, if

the principal is aware of the number of agents of each type in the �nite agent pop-

ulation, he can design a mechanism (a game) which results in �rst-best allocations.

Given such solutions, what will happen to the allocations in other information set-

tings? Are there any other incomplete information settings where the principal can

design a mechanism to end up allocating �rst-best outcomes?

Riordan and Sappington (1988) and Cremer and McLean (1985, 1988) derive

conditions on the incomplete information structure in a �nite population in which

full extraction of surplus is possible. All these work assume that agents are risk

neutral. The results of Riordan and Sappington (1988) hinges on a public signal

received after signing the contracts that is correlated with the private information

of the agents. Riordan and Sappington derive necessary and su�cient conditions of

the public ex post signal for �rst-best outcomes to result. The result of Cremer and

McLean (1985, 1988) hinges on the principal's ability construct lotteries which the

agents have to accept when participating. Due to the presence of the lottery, agents

maximize their expected payo� and it is quite possible for some of them to end up

with a lower payo� than if they had not dealt with the principal (status quo) at all.
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This chapter deduces other incomplete information settings where the principal

is still able to design a game to implement �rst-best allocations while extracting all

the rent. The main feature of the information setting is that by an agent's revelation

of his type, the principal is able to better deduce the types of the remaining agents. It

also uses the fact that a self-interested agent has no concern for the information of the

other agents he reveals through his actions. Thus, manipulating this non-cooperative

behavior of the agents, the principal is able to design a game in certain settings where

agents would truthfully reveal themselves to obtain the desired results. Also, unlike

the results of Cremer and McLean, agents in the mechanisms proposed are guaranteed

to, ex post, prefer the truthful revealing outcome to the status quo.

B. The Model

Adverse selection in the principal-agent model is applicable to many situations3 and

we will illustrate our result through a simple application of a monopoly (the principal)

selling a single good to many buyers (the agents).4 The pro�t maximizing monopoly

is assumed to be able to produce the good at a constant marginal cost of c and will

3Price discrimination with quantity discounts (Goldman, Leland and Sibley (1984),
Roberts (1979), Spence (1977), Maskin and Riley (1984)), monopoly pricing of goods
of di�ering quality (Mussa and Rosen (1978)), optimal income taxation (Mirrlees
(1971)), monopoly pricing of insurance (Stiglitz (1997)) and labor contracts (Hart
(1983)).

4The description of the problem is motivated by the problem in �Monopoly with in-
complete information� of Maskin and Riley (1984).
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discriminate among the agents by o�ering them non-linearly priced bundles of the

good.

1. The Agents

The economy consists of the principal (monopoly) selling a good to a set of agents

(buyers)5 I = {1, ..., n}. The �nite set Θ = {θ1, ..., θr} capture the characteristics

(types) of the agents (w.l.o.g. let us assume that 0 < θ1 < ... < θr).

The utility of agent i ∈ I, of type θ(i), is given by

U ((q, T ) , θ(i)) =

∫ q

0

p (x, θ(i)) dx− T (2.1)

where q is the quantity of the good purchased while T is the payment (transfer

paid) to the monopolist. Viewing p (q, θ) to be an agent's inverse demand for the

good, the utility function thus takes the form of consumer surplus. Throughout we

will assume the standard assumptions on U (.) and p (.) as listed below so that the

functions are well-behaved for the problem at hand.

5The words principal and monopoly and the words agents and buyers and the words
contract and bundle will be used interchangeably for the rest of this chapter.
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Assumptions

1. For all θ ∈ Θ the demand price function p (q, θ) is decreasing in q for q ≤ qfb(θ)(
dp(q,θ)
dq
≤ 0
)
and p (q, θ) ≥ c i� q ≤ qfb(θ).

2. p (q, θ) is strictly increasing in θ
(
dp(q,θ)
dθ

> 0, or equivalently dU((q,T ),θ)
dθ

> 0
)
for

all θ ∈ Θ.

The �rst assumption says that for all agents, the marginal utility of an additional

good is non-increasing in the quantity of goods already purchased. Also it claims

that there are always possible gains from trade to be had and that there exist a

unique �rst-best quantity to be traded with each agent. The second assumption says

that agents of higher types are associated with higher demand. These conditions and

the way utility function has been set up imply that the slope of an agent's indi�erence

curve is

−∂U
∂q

/
∂U

∂T
= p (q, θ) . (2.2)

Thus, for any bundle (q, T ), the indi�erence curve for a buyer of a higher type has

a higher slope. This is the Spence-Mirrlees condition or the Single Crossing Condition.

Also note that U ((0, 0) , θ) = 0 which imply that staying out is normalized to the

(0, 0) bundle.
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2. The Principal

The principal's objective is to maximize the pro�ts made by selling the non-linearly

priced bundles to the agents.

i.e.

max
(qi,Ti),i∈I

Π =
n∑
i=1

Ti − c
n∑
i=1

qi (2.3)

a. The Incomplete Information Setting

The principal is not aware of the possible characteristics of an individual agent but

would have information on the realizable distribution F (θ) of characteristics in the

population. Let F (θ), also denoted by (µ(θ1), ..., µ(θr)), represent a possible realizable

distribution of the agent characteristics, where µ(θs) is the fraction of agents whose

characteristic is θs in the c.d.f. F (θ). Let the principal's knowledge of the actual

distribution (or the sample distribution) of characteristics of the population F (θ) be,

that it is going to be one from the set of possible distributions {F1(θ), ..., Fk(θ)}. This

will be common knowledge6. Thus, if the realized type distribution of the population

is Fa(θ) = (µa(θ1), ..., µa(θr)) then µa(θ1) fraction of individuals of the population are

of type θ1, µa(θ2) fraction of type θ2 and so on.

6Thus, the agents are aware of the principal's information. For the settings considered
here, results would hold even if the agents were fully aware of each agent's type. In
such a case, the only requirement is that the principal have the realized distribution.
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In Piketty (1993), this set of possible type distributions would be a singleton.

Also, if the agents were drawn randomly from some initial distribution, G(θ), the set

of possible distributions, {F1(θ), ..., Fk(θ)}, would be all possible type distributions

that could be realized from drawing agents from the initial distribution G(θ).

b. The New Incomplete Information Setting (NIIS)

Let the New Incomplete Information Setting (NIIS) be such that in the set of real-

izable type distributions {F1(θ), ..., Fk(θ)}, no two distributions �rst order stochasti-

cally dominate the other.

i.e.

@ two distinct distributions Fa(θ), Fb(θ) ∈ {F1(θ), ..., Fk(θ)}

where Fa(θs) ≥ Fb(θs) for all θs ∈ Θ.

This chapter will design a mechanism (a game) where �rst-best allocations will

result in the above setting while the principal extracts all the possible surplus. In

the NIIS, the principal has less information than if he had known the realized sample

distribution with certainty. However, in the NIIS, the principal has more information

than if the agents were randomly drawn from some distribution. The NIIS can be

viewed as a case where the agents are drawn from some distribution where certain

realizable type pro�les have been ruled out until the above criterion is met.
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3. The Mechanism and Implementation

The timing of the sequence of events is shown in Figure 1 is similar to that of the

standard principal-agent model.

Fig. 1. Timing of Events

The principal moves �rst. The principal lists r (= |Θ|) possible contracts, conve-

niently indexed θ1, ..., θr, for the agents to sign up for. The principal also announces

the contract implementation rule that is dependent on the �nal sign up distribution

of the population. The principal would intends contract θs for agents of type θs.

Next is the agent's move. Each agent signs up for a contract. This act can be

viewed as a message sent or as a type revelation by the agents. Let mi represent the

contract signed up for (or type revealed/the message sent) by agent i. Therefore, m ∈

(m1, ...,mn) ∈ M ≡ [Θ ∪ {0}]n is the sign up pro�le of the agents. This pro�le will

thus determine the resulting contracts according to the announced implementation
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rule. Thus, the contract implementation rule announced by the principal would be

some function h : M → Z where Z is a set of pro�les of bundles (q, T ) for all agents.

Let mi = 0 correspond to opting to stay out. If the agent opts to stay out, the

principal can no longer in�uence him. This is the outside option of the agent. Also,

let mtr
i denote truthful revelation by agent i (i.e. mtr

i = θ(i) ).

Let hi (mi,m−i) denote the bundle obtained by agent i when his revelation is mi

and the revelations of the others is the vector m−i. Once the agent makes a revelation

mi 6= 0, having opted not to stay out, he must go through with the contract/bundle,

hi (mi,m−i), designated by the mechanism.

Also, let the contract
(
qfb(θs), T

fb(θs)
)
denote the �rst-best bundle for an agent

with the characteristic θs where q
fb(θs) is the �rst-best quantity for the agent (i.e.

p
(
qfb(θs), θs

)
= c) and the payment, T fb(θs) is such that

U
((
qfb(θs), T

fb(θs)
)
, θs
)

= U ((0, 0) , θs) = 0. (2.4)

Thus, the bundle
(
qfb(θs), T

fb(θs)
)
is the perfect-price discriminating bundle a

monopoly with complete information would choose for an agent with the character-

istics θs.
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a. The Sign-Up Game

Let m ∈M be the revealed type pro�le or the sign up pro�le of the agents. Let this

sign up pro�le (distribution) of the population be represented by

P = (P (θ1), ..., P (θr)) where

P (θj) =
# {i ∈ I, s.t. mi = θj}

n
(2.5)

That is, P (θs) is the fraction of the population signing up for (revealing them-

selves as) θs. Let the principal allocate bundle
(
qfb(θs), T

fb(θs)
)
to all agents revealing

(signing up) themselves to be of type θs, if P (θs) = µj(θs) for all θs ∈ Θ for some j

s.t. Fj(θ) ∈ {F1(θ), ..., Fk(θ)}. Otherwise, the principal o�ers no bundles to all agents

(or in other words o�ers the bundle (0,0)).

Thus, bundles will only be implemented if the sign up (revelation) pro�le matches

with one of the possible characteristics pro�les. And if bundles are ever implemented,

they will be implemented so that each agent revealing themselves to be type θi, will

get the corresponding �rst-best bundle for agent of type θi .

Remark 1: In the Sign-Up Game, by signing up as a type θs, an agent might either

end up getting the bundle
(
qfb(θs), T

fb(θs)
)
or (0, 0).

Thus, the name Sign-Up Game is derived from the fact that agents can be viewed

as signing up for the �rst best bundle θs when they reveal themselves as such and
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since the game's outcome uses this �nal sign up (revelation) pro�le of the agents to

determine the �nal outcome.

As mentioned earlier, the set of possible realizable type distributions being a

singleton implies that the principal is aware of the actual realized type distribution

of the agents as with Piketty (1993). In such a setting the Sign-Up Game is similar

to the mechanism in Piketty (1993).

b. The ε-Sign-Up Game

The ε-Sign-Up Game is similar to the Sign-Up Game in all aspects except for all ε > 0

the principal allocates bundles
(
qfbi , T

fb
i − ε′

)
where he was allocating

(
qfbi , T

fb
i

)
in

the Sign-Up Game with

ε′ = min

[
ε, min
θs∈Θ−{θr}

U
((
qfb(θs+1), T fb(θs+1)

)
, θs
)]

(2.6)

Thus, in this setting, agents have an incentive (ε′ > 0) to obtain their corre-

sponding bundle than to staying out. The restriction of ε′ (eqn: 2.6) is to guarantee

that the incentive is not too big so as to make an agent prefer the bundle of a higher

type to staying out. As ε→ 0 this game becomes the Sign-Up Game. As always, the
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agents will still prefer the bundle of a lower type to his own.

C. Results

Proposition 1: If the principal implements a Sign-Up Game in the NIIS, truth

revealing is a Nash Equilibrium.

Proof If all the agents from a realized distribution Fa(θ) are truth revealing, the

fractions signed up for each bundle, P (θ), will match the fractions of the population

of Fa(θ) and thus the bundles they have signed up for will be implemented in their

�rst-best state.

i.e.

If mi = mtr
i for all i

hi
(
mtr
i ,m

tr
−i
)

=
(
qfb(θ(i)), T fb(θ(i))

)
and thus

U
((
qfb(θ(i)), T fb(θ(i))

)
, θ(i)

)
= 0 for all i.

For this not to be a Nash Equilibrium, an agent i ∈ I would �nd it bene�cial to,

sign up for some other bundle θj.

i.e. If this is not a Nash Equilibrium,

∃ θj s.t. hi
(
θj,m

tr
−i
)
�i hi

(
mtr
i ,m

tr
−i
)
for some i ∈ I.
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We know that for any agent i ∈ I, signing up for a bundle θj such that θj > θ(i),

would always result in the agent getting a non-positive payo� (zero if the bundle is

not implemented and a negative payo� if the bundle is implemented7).

i.e. From Remark 1

For θj > θ(i)

U
(
hi
(
θj,m

tr
−i
)
, θ(i)

)
≤ 0

since


U
((
qfb(θj), T

fb(θj)
)
, θ(i)

)
< 0 if the bundle is implemented

U ((0, 0) , θ(i)) = 0 if not

Thus, it is never bene�cial for an agent to reveal himself as a higher type.

Now, we only have to show that for all agents i ∈ I, it is not better to reveal

themselves as θj < θ(i), if everyone else is truthfully revealing themselves.

If an agent i ∈ I is better o� signing up for a bundle θj, (θj < θ(i)), then it must

be the case that this bundle is implemented (since not being implemented would yield

the same payo� of 0).

i.e.

If hi
(
θj,m

tr
−i
)
�i hi

(
mtr
i ,m

tr
−i
)
for some agent i ∈ I where θj < θ(i)

⇒ hi
(
θj,m

tr
−i
)

=
(
qfb(θj), T

fb(θj)
)

since U
((
qfb(θj), T

fb(θj)
)
, θ(i)

)
> 0 for θj < θ(i).

7Due to Assumption (ii) of U(.).
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Let this new sign up distribution8 be Fb(θ). If the bundles are being imple-

mented in the Sign-Up Game, this implies that the new sign up (revelation) dis-

tribution, Fb(θ), must be represented by one of the other possible distributions

(Fb(θ) ∈ {F1(θ), ..., Fk(θ)}).

Now let us look at distributions that correspond to Fa(θ) and Fb(θ).

The only di�erence is that one agent signing for bundle θ(i) in distribution Fa(θ)

has signed up for bundle θj to yield distribution Fb(θ) where θj < θ(i).

Therefore,

Fa(x) = Fb(x) for x < θj, distributions are identical for options x, x < θj.

Fa(x) < Fb(x) for θj ≤ x < θ(i), an extra agent has signed up for option θj.

Fa(x) = Fb(x) for θ(i) ≤ x, since all options k, k > θ(i) have the same number of

agents signed up

This implies that Fb(θ) stochastically dominate Fa(θ). A contradiction. There-

fore, there is no way an agent can be better o� by not truthful revealing himself if all

the other agents are. Thus, truth revealing is a Nash Equilibrium. �

In this case, since the principal is implementing �rst-best bundles and agents are

truth revealing, the �rst-best outcome is obtained and the principal is extracting the

entire surplus.

8When agent i is revealing himself as type θj while the rest are truthfully revealing.
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Proposition 2: If the principal implements a Sign-Up Game in the NIIS, it is not a

Nash Equilibrium for the population from the realized distribution Fa(θ) to sign up

according to one of the other possible distribution Fb(θ) ∈ {F1(θ), ..., Fk(θ)}.

Proof If the population reveals itself to be of a distribution of Fb(θ), all bundles

will be in their implemented state. We know then that, in this case, for this to be

an equilibrium, all agents of type θs must have to signed up for bundles θj such that

θj ≤ θs,

since U
((
qfb(θj), T

fb(θj)
)
, θs
)
> 0 for θj < θs

and U
((
qfb(θj), T

fb(θj)
)
, θs
)
< 0 for θj > θs.

Therefore, the fraction of bundles θj, s.t. θj ≤ θs available to be signed up in

Fb(θ), must at least accommodate agents of type θj, s.t. θj ≤ θs in Fa(θ), for all

θs ∈ Θ.

i.e. Fb(θs) ≥ Fa(θs) for all θs ∈ Θ, with the relation being strict for some θs since

Fb(θ) and Fa(θ) are di�erent distributions.

This implies that Fb(θ) (�rst order) stochastically dominate Fa(θ). A contradic-

tion.

Therefore, it can never be the case that a population from a realized distri-

bution Fa(θ), would be in equilibrium imitating to be of a distribution Fb(θ) ∈

{F1(θ), ..., Fk(θ)}. �
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This implies that in the NIIS, there can be no equilibrium in which agents can do

better than by truth revealing. Once the appropriate Sign-Up Game is announced,

unless there is a redistribution of wealth/payo� among the agents, the agents can not

do better even by colluding among a coalition of them. Thus, the truth revealing

equilibrium is Pareto superior to any other equilibrium.

Remark 2: This means that in the NIIS, if a population is in equilibrium with the

bundles in their implemented state, then it must be the case that the agents have

revealed their types truthfully. This is because bundles will only be implemented if

it corresponds to one of the possible distributions and the above proposition showed

that it is not an equilibrium for any population to have had revealed itself to be

another distribution of the possible realizable distributions {F1(θ), ..., Fk(θ)}. So if

they are in equilibrium with the bundles implemented, it must be the case that they

have revealed their types truthfully.

Remark 3: It follows from Remark 2 that in the NIIS, for the Sign-Up Game, in all

possible Nash Equilibria, the agents' payo� will be the same as the outside option.

This is simply because in the equilibrium when the bundles are implemented, the

principal extracts all the rent from each agent and in equilibria where bundles are

not implemented the agent's payo� is the same as opting to stay out.

Thus, if the principal decides to o�er ε > 0 for each agent if the bundles are

implemented, then the truth revealing equilibrium Pareto dominates (Pareto superior
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to) all other possible equilibria, since in all other possible equilibria, bundles being

not implemented, agents and the principal get a payo� of 0.

Proposition 3: If the principal implements an ε-Sign-Up Game, in the NIIS, (two

rounds of) iterative elimination of weakly dominated strategies yield the equilibrium

in which all agents truthfully reveal themselves. Thus, �rst-best outcomes result and

as ε→ 0 the principal extracts all the possible surplus.

Proof For all agents i ∈ I , the outside option (staying out) weakly dominates

obtaining a �rst-best bundle designed for a higher type θj, s.t. θj > θ(i). Therefore,

all strategies mi = θj > θ(i) can be eliminated.

In the ε-Sign-Up Game if all agents are truth revealing, all agents get an ε′ > 0.

From Proposition 2 we know that if agents are not truth revealing, for bundles to be

implemented, at least one agent i ∈ I must be revealing (signing up) himself to be of

a higher type (mi = θj > θ(i)) whose possibility we just eliminated.

Thus, the only bundle implementable strategy pro�le left is the truth revealing

one where agents get non-zero payo� (ε > 0), while all other strategies left (mi =

θj < θ(i)) always yield a zero payo�. Therefore, all strategies, mi = θj < θ(i), can be

eliminated in favor of truth revealing through weak dominance. Thus, we arrive at

truth revealing through iterative elimination of weakly dominated strategies. �

Thus, not only is the truth revealing equilibrium Pareto-superior it is also at-

tainable by two rounds of iterative elimination of weakly dominated strategies.
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Example 1:

Consumers utility function = q(θ − q)− T

Monopolist's marginal cost = 0

Table I. The First-Best Bundles for Agents of Di�erent Types (θ),

U((q, T ), θ(i)) = q(θ(i)− q)− T

θ First best qfb T fb

1 (low) 1
2

1
4

2 (mid) 1 1

3 (high) 11
2

21
4
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Table II. Payo� for Di�erent Agents for the Various First-Best Bundles

Bundle ( q, T ) U((q, T ), θi = 1) U((q, T ), θi = 2) U((q, T ), θi = 3)

( 1
2
, 1

4
) 0 1

2
1

( 1, 1 ) -1 0 1

( 11
2
, 21

4
) -3 -11

2
0

Possible Distributions

Let us assume that there are two agents and they will either both be of type θ = 2

or one each from θ = 1 and θ = 3. We can denote this by two distributions, D1 and

D2 as

D1 = (µ1(θ = 1), µ2(θ = 2), µ3(θ = 3)) = (0, 1, 0) and D2 =
(

1
2
, 0, 1

2

)
Each type of agent's �rst-best bundles are presented in Table I while their pay-

o�s from obtaining each of these bundles are presented in Table II. Note that the
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characteristics pro�le of the agents in the two scenarios do not �rst order stochasti-

cally dominates the other. The principal only has this information and will not know

whether the realized state is D1 or D2. Let us assume the principal implements a

ε−Sign-Up Game here.

Let us look at the ε-Sign-Up Game that the agents will be playing. That is, the

principal announces that the bundles will be implemented (in their �rst-best state)

only if the fractions signed up for all options correspond to either D1 or D2.

Table III. Case 1: The Sign-Up Game when the Realized State Is D1

Player 2 (mid type) θ = 2

Player 1

(mid type)

θ = 2

Stay

Out

m2 = 1 m2 = 2 m2 = 3

Stay

Out

0, 0 0, 0 0, 0 0, 0

m1 = 1 0, 0 0, 0 0, 0 1
2

+ ε′,−11
2

+ ε′

m1 = 2 0, 0 0, 0 ε′, ε′ 0, 0

m1 = 3 0, 0 −11
2

+ ε′, 1
2

+ ε′ 0, 0 0, 0
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Table IV. Case 2: The Sign-Up Game when the Realized State Is D2

Player 2 (high type) θ = 3

Player 1

(low type)

θ = 1

Stay

Out

m2 = 1 m2 = 2 m2 = 3

Stay Out 0, 0 0, 0 0, 0 0, 0

m1 = 1 0, 0 0, 0 0, 0 ε′, ε′

m1 = 2 0, 0 0, 0 −1 + ε′, 1 + ε′ 0, 0

m1 = 3 0, 0 −3 + ε′, 1 + ε′ 0, 0 0, 0

In the example above, if ε′ < 1, one can deduce how the agents could arrive

at the truth revealing equilibrium through iterative elimination of weakly dominated

strategies. However, in this example, when an agent realizes his type, he could �gure

out the other agent's type and thus the realized agent distribution. Therefore, this

is indeed a very special example, but the results hold for any case as long as the

realizable type distributions do not �rst order stochastically dominate each other.

Notice that in the above design, the probability of realizing the state D1 (Table

III) or the state D2 (Table IV) did not matter. This would not be the case with

traditional mechanism design. Traditionally, the principal would need to know the

underlying probability of realizing each of the possible types to go about creating the
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second-best outcomes. However, as long as the realizable type distributions do not

�rst order stochastically dominate another, a Sign-Up Game can be designed. In this

Sign-Up Game, if the agents choose strategies that survive iterative elimination of

weak dominance, �rst-best outcomes result and the principal obtains �rst-best rent.

D. Discussion

The Sign-Up Game o�ers an avenue to overcome loss of e�ciency in adverse selection

problems in certain settings. This chapter shows that for the ε-Sign-Up Game, if the

principal's information is a setting of the NIIS, rational agents choosing strategies

that survive iterative elimination of weakly dominated strategies result in a unique

Nash Equilibrium with �rst-best outcomes while the principal extracts all the surplus.

In traditional solutions of adverse selection problems a dominant strategy is avail-

able to the agents. Also, given the contract schedule, the outcome does not depend

on the actions of the other agents in such solutions. However, an agent's �nal payo�

in the Sign-Up Game depends on the actions of other agents. For �rst-best outcomes

to result in the ε-Sign-Up Game, agents are required to choose strategies that sur-

vive iterative elimination of weak dominance. Therefore, agent's rationality in not

choosing weakly dominated strategies need to be common knowledge. There has

been many discussions in the implementation theory literature on the use of di�er-

ent solution concepts: dominant strategy equilibrium (Gibbard (1973), Satterthwaite
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(1975)), Nash equilibrium (Maskin (1999)), sophisticated equilibrium (Farquharson

(1969)), undominated Nash equilibrium (Palfrey and Srivastava (1991)) etc. Having

a dominant strategy is ideal since in that case the agent's assumption of other agents'

rationality is not necessary. However, such a condition restricts implementation. The

use of iterative elimination of strictly dominated strategies to obtain a unique equi-

librium is also suitable since it need only assume that agents do not choose strictly

dominated strategies and assume that other agents also act likewise. This chapter uses

iterative elimination of weakly dominated strategies to arrive at the desired outcome.

Thus, agents here need to choose weakly dominant strategies and assume others fol-

low suit. The use of the solution concept of iterative elimination of weakly dominated

strategies is questionable if it could make agents choose a Pareto-inferior equilibrium.

Looking at the Sign-Up Game, one can deduce that the equilibrium thus obtained is

Pareto dominant to any other achievable Nash Equilibrium. Thus, in these Sign-Up

Games, agents face no dilemma in choosing equilibria through strategies that survive

iterative elimination of weakly dominance. Thus, the assumption on agents' behavior

used is not unnecessarily restrictive.

A crucial feature for the success of the Sign-Up Game is the information setting

it is used in. In the appropriate settings, if an agent truthfully reveal his type,

the principal is able to better infer the types of the remaining agents. Thus, each

agent's revelation gives the principal not only information about that particular agent

but also information on other agents. The principal thus uses this fact in designing
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the appropriate Sign-Up Game to manipulate the self-interested, non-cooperative

behavior of the agents.

In this chapter the Sign-Up Game in the NIIS setting does not implement any

contracts when the principal realizes that a single agent has deviated from truthful

revelation. Even in Piketty (1993), the principal could end up extracting less than

second-best rent even when a single agent does not choose his dominant strategy.

Hamilton and Slutsky (2004, 2007) propose a mechanism, in Piketty's setting, where

the principal extracts rent even in o�-equilibrium outcomes, while still extracting

�rst-best rent in the truth-revealing equilibrium. They have observed that the o�-

equilibrium outcomes that would result due to a single 'noise' player are very harsh

both to the principal and the other agents. They try to account for this 'noise' players'

irrational behavior, but in a theoretical setting, assuming rational behavior, such

behavior should be of little concern. Using the directives of Hamilton and Slutsky, it

could be possible to ensure that the principal does extract rent even in o�-equilibrium

outcomes in the NIIS. However, the exercise of this chapter is in showing settings in

which full rent can be extracted in the presence of rational agents.

In Cremer and McLean (1985, 1988), they derive conditions on the incomplete

information structure in a �nite population in which full extraction of surplus is

possible. They assume risk neutral agents and the result hinges on the principal's

ability to construct lotteries which the agents have to accept when participating.

Due do the presence of the lottery, agents maximize their expected payo� and it is
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quite possible for some of them to end up with a lower payo� than if they had not

dealt with the principal (status quo) at all. Also, they require that the agents have

the same information about the agents' types as the principal9. The results of the

current setting is quite di�erent. Risk attitudes of agents are irrelevant and agents

in the mechanisms proposed are guaranteed to, ex post, prefer the truthful revealing

outcome to the status quo. Additionally, in the mechanism proposed, agents will

prefer the truth revealing outcome to the status quo regardless of the actions of the

other agents. Therefore, if we assume agents have limited liability, the results of the

proposed mechanism would hold. Also, the results of Cremer and McLean and other

literature dealing with incomplete information depend on the ability of the principal

to attach probabilities to possible outcomes. However, to use the Sign-Up Game

in the NIIS, the principal needs only to know the possible realizable distributions

and does not need to be aware of any probability associated with any of them being

realized. This approach of analyzing incomplete information via possible realizable

states without taking their associated probability into account is indeed a novel one.

What does this say about a population of agents randomly drawn from a distri-

bution? Take a simple example of a population of n agents being randomly drawn

from a distribution, G = (Pr(θ = 1),Pr(θ = 2)) = (p, 1− p). One can easily see that

the possible realizable distributions �rst order stochastically dominate each other.

9In Cremer and McLean, if the principal's information on the agents' types is F (Θ),
then agent i after realizing his type, θi, would have the information F (Θ|θ (i) = θi),
on the other agents.
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Therefore, the Sign-Up Game with the above implementation rule would not be of

use here. In such settings, the question of whether the principal can better his rent

obtained by second-best allocations, through an implementation method in the vein

of the Sign-Up Game is ambiguous.
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CHAPTER III

SOPHISTICATED LEARNING IN REPEATED COORDINATION GAMES

A. Introduction

Life is full of repeated interactions with the same people. Our behavior in such situ-

ations is in�uenced by factors such as precedents, conventions, norms and an antici-

pation of future interactions. To understand the dynamics of repeated interactions,

laboratory experiments on an e�ective way. For example, coordination games have

multiple Nash equilibria. Coordination failure results when subjects do not imple-

ment a payo�-dominant equilibrium in the game. Studies of behavior in coordination

games have enabled us to understand coordination failure.

This chapter investigates sophisticated learning in coordination games. Coordi-

nation games describe many social interactions from behavior on the road to behavior

at home, school or work. It could model productivity in an assembly line to trade

negotiations among national economies. Coordination failure and the resulting e�-

ciency lost is the root of underperformance in many situations. Thus, understanding

how people behave in such situations or how people choose or converge to an equi-

librium is critical for the success and survival of organizations and to better design

mechanisms, institutions and public policy so as to overcome and avoid coordination
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failure.

If the same coordination game is played repeatedly, adaptive learning models

predict that players end up playing an equilibrium strategy. In this chapter, a model of

sophisticated learning is proposed and estimated on data from repeated coordination

game experiments from Van Huyck, Cook and Battalio (1997). The estimations �nd

that a fraction of the population can be classi�ed as sophisticated. Furthermore, the

model of sophisticated learning has the ability to explain other behaviors observed in

repeated games.

Reinforcement learning and belief learning are the two common forms of learning

studied. In reinforcement learning, (Erev & Roth (1998), Borgers & Sarin (2000)),

the player learns according to the history of his payo�s for each of his actions. In

belief learning, as in �ctitious play (Brown 1951), players try to learn the behavior of

the opponent in order to best respond to it. Thus, players in these learning models

try to maximize the payo� in the next period according to a learning rule exclusively

based on the history of play.

A drawback of such models is that players are assumed to be myopic, that is, to

not anticipate future interaction. They imply that players are unaware of the in�uence

of their current actions on future payo�s. Another drawback of these models is the

mutual inconsistencies in players' beliefs about their opponent. For example, if two

players are playing a game repeatedly, and they are both �ctitious play learners, their

assessment that the opponent is playing a �xed mixed strategy is incorrect (in most
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cases) since each player's strategy will be a series of best responses and not a �xed

mixed strategy.

The learning behavior analyzed in this chapter allows a fraction of the population

to be sophisticated. Sophisticated learning has been studied before1 in models of

�level-k� learning (Stahl 2000) and sophisticated EWA learning (Chong, Camerer and

Ho 2006). Thus, the term sophistication has generally been used in instances where

the agent has complex reasoning ability in regard to anticipation, recursive thinking,

better forecasting methods, etc.

Chong, Camerer and Ho (2006) consider a model of learning where a fraction of

the population learns according to self-tuning EWA, and the rest play sophisticatedly.

The sophisticated players assume that a certain fraction of the population are self-

tuning EWA learners, and the rest are sophisticated as themselves and best respond

to this belief taking into consideration the future e�ects of current play for the rest

of the game.

The model used in this chapter is similar to that of Chong, Camerer and Ho

(2006). As in Chong et al. (2006), a fraction of the population is assumed to follow

the self-tuning EWA learning rule. The self-tuning EWA learning rule is similar to

the EWA learning rule but has one free parameter. The rest of the parameters are

self-tuned according to the dynamics of play. Ho et. al. (2007) show that the self-

1see Selten (1991) and Milgrom and Roberts (1991) . For a review of sophisticated
learning see the chapter on Sophisticated Learning in 'The Theory of Learning in
Games' by Fudenberg and Levine (1998).
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tuning EWA model does as well as the EWA model in predicting behavior in new

games2. In Chong et. al., the sophisticated population assumes the same fraction of

sophisticated players throughout the game. However, if players' behavior is di�erent

depending on their type, then players may be able to deduce, with repeated play,

the type of their opponent from the actions they have taken thus far. Thus, a player

could have a more accurate belief about his opponent's type later in the game. Since a

player's chosen action is dependent on the beliefs about his opponent, it is important

that the model capture what the player learns about his opponent's type. In the

model below, the sophisticated population updates their belief about the fraction of

the population who are sophisticated by observing the history of play in a Bayesian

manner.

In this chapter a model of sophisticated learning is �t to data from the continental

divide game (Van Huyck, Cook & Battalio 1997) to test for sophisticated behavior.

It �nds that a fraction of the population can be classi�ed as sophisticated.

2They also show that self-tuning adds the most economic value, that is, subjects would
have earned more in an experimental session if they had followed the recommendations
of its theory.
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1. Teaching in Coordination Games

Teaching is when a player in�uences his opponent to take actions that are bene�cial

to either of the players or to the group as a whole. Coordination games are ideal for

testing teaching, because the best response in a coordination game is dependent on

the action of the opponent and if someone is playing with an adaptive learner, he

could, with enough play, in�uence his opponent's most attractive action.

There is evidence of such behavior. A fraction of the population trying to drag

the population out of an inferior equilibrium is observed in several experiments on

coordination games, which has been called as teaching or leading behavior. For

example, Brandts and Cooper (2006) observe this in their experiment on minimum-

e�ort games,

we often observe that a subset of the employees act as leaders, raising their

e�ort levels following a bonus rate hike and guiding the other employees

to higher e�ort levels.

This is evidence of teaching. The leaders here correspond to sophisticated players

while the laggards may be adaptive learners. Brandts and Cooper go on further to

say that

The success of this leadership by example depends both on the persistence

of leaders and on whether laggards, employees who do not initially increase

their e�ort, eventually respond by raising their e�orts.
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This is consistent with the idea that the rest of the population are adaptive

learners.

2. Speed of Convergence to Equilibria of Di�erent E�ciency

Van Huyck, Cook and Battalio (1997) notes that

the resistance to dynamics is most pronounced in the low sessions. Nat-

urally, subjects in a low session are more likely to resist the logic of the

myopic best response and �ctitious play dynamics than the subjects in

a high session, since the low sessions are converging to less e�cient out-

comes.

This fact suggests that players are acting sophisticatedly, that is, sophisticated

players realize that the faster they converge to the inferior equilibrium the more peri-

ods they will earn the low payo�s of the inferior equilibrium. Therefore, attempting

to resist the inevitable convergence might increase the overall payo� of the repeated

game since the payo�s obtained while converging to the inferior equilibrium could be

higher than that of the payo� of the inferior equilibrium.
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3. Other Insights of Sophistication

Sophisticated players update their beliefs about the likelihood of their opponents be-

ing sophisticated through the observed actions of their opponents. Thus, the ability

to observe everyone's actions would in�uence the observed behavior in a repeated

setting. The ability to observe the groups' actions not only facilitates belief forma-

tion but also helps a sophisticated player to e�ectively signal his presence to fellow

sophisticated players. In many coordination games experiments, a player's payo� is

dependent on an order statistic of his group (minimum e�ort games, median games,

etc.). Presumably, even though it is only the order statistic that is required to deter-

mine one's payo�, observing the action pro�le of all of the opponents would help in

overcoming coordination failure in repeated settings because it helps in belief forma-

tion and as a way to signal sophistication.

Brandts and Cooper (2006) investigate weak-link (minimum e�ort) games where

they test full-feedback (players observing all the actions of opponents) versus limited

feedback (players observing only the minimum e�ort of the game). They �nd that

when starting from coordination failure, the use of full feedback improves subjects'

ability to overcome coordination failure. Reinforcement learning certainly can not

explain such a phenomenon. However, this can be easily explained by the fact that

full feedback gives sophisticated players the ability to signal one's intent and presence

while also assisting in teaching the adaptive learners.
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Sophisticated players are aware of their ability to in�uence the future dynam-

ics of the game through their current actions. Increasing the number of players in

the population would weaken such ability and could hinder overcoming coordination

failure. This prediction is validated through the results of Van Huyck, Battalio and

Rankin (2007). The design of Van Huyck, Battalio and Rankin (2007) varies the order

statistic used in the coordination game's payo� matrix, to either 2 or 4 (second lowest

and fourth lowest), and the group size to either 5 or 7. Lower sized groups, with the

same order statistic, are observed to be more likely to overcome coordination failure.

This would be in accordance with the predictions of a sophisticated model since so-

phisticated players in a smaller group would have comparatively more in�uence than

one from a larger group.

If the intention of a sophisticated player is to decrease the e�ort level it could

be easily accomplished in a minimum e�ort game. However, in the same game, it

would be harder to increase the level of e�ort in the group. Thus, if higher e�ort

levels corresponded to higher payo� equilibria, overcoming coordination failure would

be tougher in games with lower order statistics. Van Huyck, Battalio and Rankin

(2007) �nd that groups playing games with high order statistics have a higher chance

of converging to more e�cient equilibria.
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B. The Model

We start with some standard notation. There are n players indexed by i (i ∈ {1, ..., n})

playing the game repeatedly for T periods indexed by t (t ∈ {1, ..., T}). The strat-

egy pro�le of player i, Si ={s1
i , ..., s

mi
i }, consists of mi discrete choices. Thus,

S = S1 × · · · × Sn is the strategy space of the game and s = {s1, ..., sn} ∈ S is

a strategy combination which consists of n strategies. A strategy combination for all

players except i is represented by s−i = {s1, ..., si−1, si+1, ..., sn} ∈ S−i, which thus

has a cardinality of m−i =
∏n

j=1,j 6=imj. Let sk−i denote the kth vector in S−i and(
sk−i
)
j
denote the strategy of player j in the strategy vector sk−i. Let si (t) denote the

strategy chosen by player i in period t while s−i (t) the strategy vector chosen by the

rest of the players. πi (si, s−i) is the scalar valued payo� function for player i and

thus player i's payo� in period t would be πi (si (t) , s−i (t)).

The model assumes two types of players playing the game. A fraction α of the

population are sophisticated players while the rest are self-tuning EWA learners. Self-

tuning EWA is chosen as the default since it is a hybrid of reinforcement and belief

learning. In self-tuning EWA, most of the parameters are deterministically tuned

by the experience of the players. Unlike EWA with its �xed parameters, self-tuning

EWA has the ability to change with the dynamics of repeated play. Thus, if indeed

players' learning behavior were di�erent in the latter stages from the outset of the

game, self-tuning EWA would tune itself to this di�erence.
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1. Self-tuning EWA Learners

The self-tuning EWA model is derived from the Experience-Weighted Attraction

(EWA) model of Camerer and Ho (1999). Each player i has a numerical attrac-

tion, Aji (t), for strategy j after updating experience of period t. A logistic stochastic

response function, P j
i (t+ 1) = eλA

j
i
(t)∑mi

k=1 e
λAk

i
(t)
, determines the choice probabilities in

period t+ 1. In the parametric EWA model, the attractions are updated as

Aji (t) =
N (t− 1) · φ · Aji (t− 1) +

[
δ + (1− δ) · I

(
sji , s

j
−i (t)

)]
· πi
(
sji , s

j
−i (t)

)
N (t− 1) · φ · (1− κ) + 1

(3.1)

The free parameters of the EWA model that are to be estimated are δ, λ, κ and

φ. However, in the self-tuning EWA model, κ is set to zero and speci�c functions

are de�ned for δ and φ. The parameter φ is replaced by φ (t), the change-detector

function which is de�ned by

φ (t) = 1− 1

2
Si (t) (3.2)

Here, Si (t) is the surprise index which captures the degree of change of the most

recent observation from the historical average. Thus, its de�ned by
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Si (t) =

m−i∑
k=1

(
hki (t)− I(sk−i, s−i (t))

)2
(3.3)

Here, hki (t) (=
∑t
τ=1 I(s

k
−i,s−i(t))

t
) is the historical frequencies of choices by other

players. In the self-tuning EWA3, the parameter δ of the EWA model is replaced by

the attention function, δij (t), de�ned by

δij (t) =


1 if π(sji , s−i (t)) ≥ πi(t)

0 otherwise

(3.4)

As the choice probabilities could be found through the attractions calculated

this way, the likelihood of observing a particular action pro�le by a self-tuning EWA

learner could thus be calculated.

2. Sophisticated Learners

A sophisticated learner chooses the action that maximizes his payo� in the repeated

game. With probability α a person in the population is sophisticated. Under rational

expectations, a fraction α of the population is expected to be sophisticated. In a

pool of players, if α = 0, then all players are adaptive learners. If α = 1, and the

3Refer to Ho, Camerer & Chong (2007) for a detailed account of the self-tuning EWA
model.
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sophisticated players are aware of this fact, it will result in a variant of an agent

quantal response equilibrium (AQRE). The sophisticated players are aware that a

fraction of the population is sophisticated as they are. The fact that sophisticated

players take the action in the current period that maximizes the payo� of the entire

repeated game implies that they take into account the e�ect of their present action

on the future behavior of adaptive learners. Thus, they could become teachers to the

adaptive learners.

Adaptive learners choose the action that maximizes the payo� in the next period.

Since sophisticated players are maximizing the payo� of the entire length of the

repeated game, they need not take the action that maximizes the payo� in the next

period. Sophisticated players take an action so as to in�uence the adaptive learners in

the expectation of getting higher payo�s in the future. This type of behavior, where

sophisticated players take an action which does not give them the highest payo� in the

next period, but do so to in�uence adaptive learners, will be referred to as teaching

behavior. Since teaching does not yield the higher payo� at present, teaching is costly

in the short run. So we will only observe teaching if the sophisticated players think

it is worthwhile in the long run.

If a cohort tends to drift towards a Pareto inferior equilibrium, there might be a

required critical fraction, αcr, which needs to be sophisticated in order to e�ectively

teach the rest of the population to prevent converging to that inferior equilibrium.

This is so because a small fraction of teachers might not be enough to in�uence the
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large adaptive learning population to turn the current trend. Thus, the belief that

a particular sophisticated player has about the fraction of the sophisticated players

in the population plays a big role in his behavior. If sophisticated player i's belief

about the fraction of sophisticated players, αi, is less than this critical fraction, αcr

(αi < αcr), then sophisticated player i might not use a teaching strategy since he

would not believe that there are enough sophisticated players to have a signi�cant

in�uence on the adaptive learners' behavior. However, if player i believes there is a

higher fraction of sophisticated players (αi > αcr ), he might use a teaching strategy

since he would believe that there are enough teachers to overcome coordination failure.

The sophisticated players are not aware of the identity of the other sophisticated

players. At the beginning of the game, they are aware that in general a fraction α

of the population is sophisticated. This is the probability the sophisticated players

associate with each player being sophisticated. The sophisticated players update

their belief of the fraction of sophisticated players in the population depending on the

outcomes observed in a Bayesian manner.

Unfortunately, as teaching is costly in the short-run, if a sophisticated player

believed that there were more than enough players to teach adaptive learners, he

might be tempted not to teach and try to free-ride and enjoy the bene�ts of others

teaching the adaptive learners. If we assume that players start the game with the

same priors, they would be starting with the same beliefs. Therefore, by symmetry,

they should have the same inclination for each action at the outset, and so it cannot
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be the case that a certain sophisticated player realizes that he could free-ride while the

others do not. The likely outcome is that the sophisticated players would choose an

action path that teaches the adaptive learners while making free-riding not worthwhile

for other sophisticated players. It would be a certain equilibrium in sophisticated

players' actions. That is, given the identical action paths of the sophisticated players,

a sophisticated player's best response would be to choose that action path itself.

Let αij (t) be the probability with which sophisticated player i anticipates player

j to be sophisticated at time period t by observing the history of play. Since the model

assumes only two types of players, (1− αij (t)) would be player i's probability that

player j is a self-tuning EWA learner. Let Ht be the history of the game up to time

period t. Let LjSoph (Ht) be the probability (likelihood) of observing the history of play

of player j in history Ht if he was sophisticated. Let LjEWA (Ht) be the probability

(likelihood) of observing the sequence of play by player j in history Ht if he was a self-

tuning EWA learner. Since, by assumption, player j has to be either a sophisticated

or a self-tuning EWA learner, player i's belief of player j being sophisticated at time

t, αij (t), will be, by Bayes' rule,

αij (t) =
αLjSoph (Ht)

αLjSoph (Ht) + (1− α)LjEWA (Ht)
(3.5)

Sophisticated players have an attraction to each action depending on their belief

about its expected payo�. Letting Aji (t) denote the attraction player i has for strategy
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j in period t, it is de�ned by,

Aji (t) =

m−i∑
k=1

P̃−i
(
sk−i, t+ 1

) [
π
(
sji , s

k
−i
)

+ Vi (t+ 1)
]
. (3.6)

P̃−i
(
sk−i, t+ 1

)
is the probability player i associates with observing sk−i in pe-

riod t + 1, while Vi (t+ 1) is the ex ante value of future payo�s the sophisticated

players believes to be attainable at time t given his current strategy choice. Letting

P̃j (sj, t+ 1) be the subjective probability of observing sj by player j in period t+ 1,

we get the relation:

P̃−i
(
sk−i, t+ 1

)
=

n∏
j=1,j 6=i

P̃j

((
sk−i
)
j
, t+ 1

)
. (3.7)

Given that αij (t) is the probability player i associates player with j to be so-

phisticated, let PSoph (sj, t+ 1) and PEWA (sj, t+ 1) be the probability of observing

sj in period t+1 by a sophisticated player and an adaptive learner respectively. Then

P̃j (sj, t+ 1) can be speci�ed as

P̃j (sj, t+ 1) = αij (t)PSoph (sj, t+ 1) + (1− αij (t))PEWA (sj, t+ 1) (3.8)

Thus, a player can deduce the probability of observing a strategy pro�le in the popu-
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lation by tracking the probability with which each player is a sophisticated learner or

an adaptive learner. Going back to eqn. 3.6, the term Vi (t+ 1), which represents the

present value of future payo�s from the current action, can be speci�ed recursively as

Vi (t) = max
Jt=

{
s
jt
i ,...,s

jT
i

}
m−i∑
k=1

(
P̃−i

(
sk−i, t

) [
π
(
sjti , s

k
−i
)

+ Vi (t+ 1 | S (t))
])
. (3.9)

Jt =
{
sjti , s

jt+1

i , ..., sjTi

}
is an action sequence from the current period to the end

of the game that is available to the sophisticated player. This is the sequence of actions

the sophisticated player believes would result in him obtaining the highest payo� for

the game. It is the presence of this value function that makes a player sophisticated.

The function enables a player to evaluate the possible bene�ts of teaching, free-riding,

myopically best responding and so on, given his current beliefs about his opponents.

The attraction to each action computed through the use of the recursive value

function determines sophisticated player i's choice probability according to the logit

rule,

Pi
(
sji , t+ 1

)
=

eλsA
j
i (t)∑mi

k=1 e
λsAki (t)

(3.10)

Given the rules of the sophisticated player's actions the model can now be esti-
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mated through a maximum likelihood procedure. The likelihood L, of observing the

actions of players in the repeated game thus would be

L =
n∏
i=1

[
α

T∏
t=1

PSoph (si (t)) + (1− α)
T∏
t=1

PEWA (si (t))

]
(3.11)

Estimations of the MLE were done using GAUSS with the help of the MAXLIK

procedure. As explained, a sophisticated player contemplates all possible strategy

combinations in future periods however unlikely they maybe. Using combinatorics

one could see that this could mean looking into millions of possibilities each period

for each player depending on the number of periods left and the number of actions

available to the players. To resolve this problem, several assumptions were made so

that a sophisticated player would narrow the possibilities to those that were more

likely to occur without hindering the estimation process4.

C. Data

The data used to �nd evidence of sophisticated learners is from the continental divide

experiments by Van Huyck, Cook & Battalio (1997). Undergraduate economics stu-

dents at Texas A&M University played game G in Table V repeated for 15 periods.

4Refer to the Appendix A for an overview and discussion of these assumptions.
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Each cohort consisted of 7 subjects and there is data available for 8 cohorts.

The stage game G has many interesting features. It has two symmetric equilibria,

one in which all players are choosing action three while the other is when all the

players are choosing action twelve. The equilibrium in which all players are choosing

action 3 yields each player 60 cents each period, while the other equilibrium yields 112

cents each period. Thus, the high action equilibrium Pareto dominates the low action

equilibrium. If players could choose the equilibrium (instead of their action), every

player would choose the high action equilibrium. However, due to risk considerations,

precedents set by initial play, and so on players may be unable to coordinate on the

e�cient equilibrium. An interesting feature of game G is that most learning rules

have two basins of attractions. Medians of {1, 2, 3, 4, 5, 6, 7} are attracted to the

ine�cient equilibrium while medians of {8, 9, 10, 11, 12, 13, 14} are attracted to the

e�cient equilibrium.
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Table V. Payo� Table of Game G

Median

choice

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 45 49 52 55 56 55 46 −59 −88 −105−117 −127 −135 −142

2 48 53 58 62 65 66 61 −27 −52 −67 −77 −86 −92 −98

3 48 54 60 66 70 74 72 1 −20 −32 −41 −48 −53 −58

4 43 51 58 65 71 77 80 26 8 -2 -9 −14 −19 −22

5 35 44 52 60 69 77 83 46 32 25 19 15 12 10

6 23 33 42 52 62 72 82 62 53 48 43 41 39 38

Your 7 7 18 28 40 51 64 78 75 69 66 64 63 62 62

Pick 8 −13 -1 11 24 37 51 69 83 81 80 80 80 81 82

9 −37 −24 −11 3 18 35 57 88 89 91 92 94 96 98

10 −65 −51 −37 −21 -4 15 40 89 94 98 101 104 107 110

11 −97 −82 −66 −49 −31 -9 20 85 94 100 105 110 114 119

12 −133 −117−100−82 −61 −37 −5 78 91 99 106 112 118 123

13 −173 −156−137−118−96 −69 −33 67 83 94 103 110 117 123

14 −217 −198−179−158−134−105−65 52 72 85 95 104 112 120

D. Results

Results are reported in Table VI. The column 'Sophisticated Learning' reports the

parameter estimates of the sophisticated model, while the 'Self-tuning EWA' column

reports the results when the data is �t assuming that all the players are adaptive

learners. Results indicate evidence in favor of the sophisticated model5. Sixteen

5χ2 (2) = 90 , p-value = 0.00.
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percent of the population are characterized as playing sophisticatedly. The λ of

the groups of players indicate the ability of the players to best respond given their

attractions to each action. The λ of the sophisticated players are signi�cantly higher

than that of the adaptive learners indicating that the sophisticated players are better

at choosing their desired action than the adaptive learners.

Table VI. Parameter Estimates Using Van Huyck, Cook & Battalio (1997)

Self-tuning EWA
Sophisticated

Learning

Soph. Learning

w. discounting

λEWA

5.37***

(0.0011)

6.00***

(0.229)

6.24***

(0.000)

α
0.160*

(0.111)

0.341***

(0.0889)

λSoph
15.0***

(2.59)

11.1***

(1.54)

δ
0.720***

(0.0959)

Log

Likelihood
-1357 -1312 -1302

No. of

observations
840 840 840

* 10% signi�cance, ** 5% signi�cance, ***1% signi�cance
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Discounting future payo�s is a common practice in economics. The model used

could also be modi�ed such that in eqn. 3.6, the value function is discounted by

0 ≤ δ ≤ 1.

Aji (t) =

m−i∑
k=1

P̃−i
(
sk−i, t+ 1

) [
π
(
sji , s

k
−i
)

+ δVi (t+ 1)
]
. (3.12)

If δ = 0, it would correspond to a �ctitious player while δ = 1 would represent

the original model. Any other value of δ, 0 < δ < 1, would represent a sophisticated

player discounting his predicted future payo�s in calculating his attractions to each

action. Such a model was estimated and its parameter estimates are reported in the

last column of Table VI. The estimates indicate that the presence of the discounting

factor �ts the data better6. δ could indeed be capturing the fact that sophisticated

players discount their predicted future payo�s in calculating their attractions.

The λs of the modi�ed model are consistent with the original sophisticated model.

Another observation is that the λs are consistently higher than in the basic adaptive

learning model. This suggests that there are two types of players evaluating their

attractions to actions di�erently7.

6χ2 (1) = 20 , p-value = 0.00.
7If players were (close to) best-responding using di�erent rules of �nding attractions
to each action, a correctly speci�ed model should be able to deduce the fractions of
players using each rule. Also, the λ estimates of such a model would be expected to
be high. If indeed players were using di�erent rules, estimating the model using a
representative model would result in low values of λ, since there would be too much
'noise' in the data which would correspond to λ = 0 players.
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E. Discussion

The results provide evidence of sophisticated players. Adding sophistication into the

model increases the number of free parameters to be estimated by two, one being the

fraction of sophisticated players in the population and the other free parameter is the

sophisticated player's precision parameter.

In the game investigated, players are modeled to strategize and teach using the

actions of the stage game. However, depending on the game being played, one can

think of many kinds of complicated, sophisticated strategy combinations or rules

players could learn to play. A nice example of such rule learning is learning to play

tit-for-tat in a repeated prisoner's dilemma game. Such behavior will require sophis-

tication and the degree of sophistication in such a scenario could be more complicated

than in the model used here.

The fraction of sophisticated players estimated in the population is lower than

the estimates obtained in Chong et. al. (2006). This could be due to several di�erent

features of the game used here. The continental divide game was chosen since it had

many actions available to the players, which meant that it is easier to distinguish

sophisticated players from the rest. However, the continental divide game uses the

median as the statistic to determine payo�s. It is di�cult to in�uence the median of

seven choices8. Sophisticated players distinguish themselves when they can in�uence

8For example, it is possible that any given player might not be able to make any
in�uence at all, as when the choices are { 1, 2, 3, 3, 3, 4, 5}.
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other players' actions by in�uencing other players' payo�s. If a sophisticated player

cannot in�uence the median (and/or believes so) his behavior could resemble that

of an adaptive learner. Having somewhat lost that ability it is quite possible that

the behavior of many 'would be sophisticated' players, believing they could not in�u-

ence the dynamics in the current setting, would resemble that of adaptive learners.

Therefore, this estimate is an indication of the fraction of the population who still

believed they could e�ect the trend of the game through their actions even in the

median action game.

Decreasing the number of players in the group increases the in�uence a particular

member has on the order statistic of the group, and thus would increase the in�uence

of a sophisticated player. It would be interesting to see if it is more likely for players

to reveal their sophistication when the in�uence they have is greater.

In the model used, the same degree of sophistication is assumed for all the sophis-

ticated players. Indeed the level of sophistication might vary among each individual

due to factors such as cognitive capacity, experience and a model could be speci-

�ed where sophisticated players di�er in their level of sophistication similar to that of

(Stahl (2000), Stahl & Wilson (1995)). However, given that the primary objective was

to �nd evidence of sophisticated behavior and given the low estimates of the fraction

of sophisticated players in the population such a di�erentiation was not warranted.

Since the model can be extended or re�ned in many ways, it opens the door for

many further investigations. Possible investigations include deciphering sophisticated
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players beliefs about their fellow opponents beliefs and sophisticated players belief

about their in�uence on others behavior in the game. It would also be interesting

to investigate whether sophistication increases with experience and whether certain

experiences increase one's propensity to be sophisticated.

In future studies it would also be important to design experiments in which

the model predicts a marked di�erence between sophisticated behavior and adaptive

behavior. This would make studying sophisticated learning much easier.
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CHAPTER IV

LEARNING ABOUT VARIABLE DEMAND IN A DUOPOLY

A. Introduction

This chapter investigates the dynamics involved in a setting where �rms of an oligopoly

have to learn their demand environment while taking into account the competitive

nature of the �rms. It extends the work of Rustichini and Wolinsky (1995), where

they deal with a monopoly that is uncertain about the demand it faces and learns

about the �uctuating demand over time through its pricing experience. The related

literature in monopoly demand learning include the work of Aghion, Bolton, Harris

and Jullien (1991), McLennan (1984), Easley and Kiefer (1988), Balvers and Cosi-

mano (1990, 1993), and Nyarko and Olson (1991). This literature mostly analyze

learning a �xed demand curve and thus the learning process boils down to the initial

uncertainty about it making them similar to the bandit problems studied by Berry

and Fristedt (1985) and Rothschild (1974).

In the model discussed in this chapter, demand is not a constant and it changes

over time in a Markovian fashion as in Rustichini and Wolinsky (1995). The state of

demand changes with time and so the �rms have to devise a strategy to check (learn)

their demand environment and thus the process of learning demand never ceases.
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In the case of a duopoly considered here, the �rms also have to take the strategic

implications of the setting into consideration.

The optimal pricing strategy for oligopolies has been studied extensively. The

impact of varying demand (business cycles) on collusive behavior has been of interest

in industrial organization and macroeconomics. First, largely based on pre-World

War II case studies, it was believed that collusion was more di�cult during economic

downturns, a position weakly supported by Suslow (1988) through data from many

case studies. Formal theoretical studies done by Rotemberg and Saloner (1986) under

a setting where demand is subject to (observable) i.i.d. shocks imply that it is more

di�cult to collude during booms (when the level of demand is high). This is due to

the simple reason that there are more economic pro�ts to be earned from deviating

during a boom than when demand is low, since, in the model, the expected future

pro�ts from punishment (from the grim trigger strategy) is the same regardless of the

level of demand in the period of defection.

Haltiwanger and Harrington (1991) extend the �uctuations in demand so that

demand follows a predetermined cycle. From their simulations, they conclude that the

oligopolies have the highest tendency to deviate from collusion when demand is falling

and a lower incentive to deviate when demand is rising. Thus, in the equilibrium

pricing strategy under collusion, given the same level of demand, price would be

higher when demand is rising than when demand is falling. The reason for this

conclusion can be attributed to the fact that there are more economic pro�ts to be
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earned by colluding when demand is rising which increases the incentive to collude

and possible prices that could be sustained. On the other hand, incentive to collude

decreases when demand falls since expected future pro�ts from collusion are now

relatively bleak which imply that prices might have to be shaded to be sustained.

One feature of their demand function is that it is fully deterministic. That is, though

demand is cyclic, �rms are fully aware of the future demand at any given time with

certainty.

This chapter extends both the literature on monopolistic learning by studying the

impact of introducing an additional �rm, and analyzes dynamic models of oligopolies

by introducing an environment where �rms learn the �uctuating demand through

their pricing policy.

B. The Model

The model is an extension of Rustichini and Wolinsky (1995), who considered learning

by a monopoly. The model proposed has two competing �rms in the market: a

duopoly market. By adding another �rm to the setup, �rms have to consider the

pricing policy for learning consumer demand characteristics against the pricing policy

under competition with the other �rm. In the setup, demand can only be learned

through increasing prices. Thus, the desire to learn would drive prices up while
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considerations of possible free-riding and competition would drive prices down. Since

the two factors a�ect pricing in opposing directions, it is interesting to see what the

equilibrium strategy would be.

The process is an in�nitely repeated game where time is discrete, labeled t =

1, 2, .... The demand the duopoly faces varies over time in a Markovian fashion. In

each period the duopoly faces a demand of two-units (normalized to two for conve-

nience) where the buyer's reservation price is dt. At the beginning of the period, the

two �rms, �rm 1 and �rm 2, simultaneously set their prices p1t and p2t. The consumer

will buy his two-units from the �rm quoting the lowest price if it is less than or equal

to his reservation price. If the prices quoted by the two �rms are equal and less than

or equal to the reservation price, the buyer will buy one-unit from each of the two

�rms. Thus, only if min (p1t, p2t) ≤ dt will the two units be sold. If we let Iit be the

number of units sold by �rm i at time t, then the revenue for �rm i at time t will be

Iitpit. The �rm's marginal cost of producing the good is normalized to zero.

The reservation price, dt, is assumed to take two values 1 and D > 1. It follows

a Markov process with transition probabilities1

Prob[dt+1 = 1|dt = D] = Prob[dt+1 = D|dt = 1] = α.

1Also represented in Figure 2.
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Fig. 2. Transition of Demand States

Here α is assumed to be less than 1
2
which makes it more likely for the next

period's demand to be the same as the current's. Thus, this increases the value of

getting to know the current demand. The �rms have perfect monitoring regarding

pricing and sales of the other �rm, so their beliefs on demand will be the same. If we

let wt denote the probability with which the �rms believe that dt = 1 at time t, it

will evolve as:
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wt+1 =



α if min (p1t, p2t) ∈ (1, D] &
∑

i Iit = 2

1− α if min (p1t, p2t) ∈ (1, D] &
∑

i Iit = 0

(1− α)wt + α (1− wt) if min (p1t, p2t) ≤ 1

Properties of the Markov process

1. The stationary probability of the above Markov process is (1
2
,1
2
). Therefore,

if the process's state is not observed for N consecutive periods, wt+N → 1
2
.

2. Also, since α < 1
2
, if wt > (<)1

2
and the process's state is not observed for N

consecutive periods, wt+N > (<)1
2
.

Firm i's discounted pro�t is
∑

δtpitIit, where δ < 1 is the discount rate, for a

sequence of prices pit and sales realizations Iit. At the beginning of period t the �rm

knows the history ht = [(p1, I1), ..., (pt−1, It−1)], where pt = (p1t, p2t) and It = (I1t, I2t).

Firm i chooses a pricing policy pit(ht) so as to maximize E[
∑
δtpitIit].

At any time t, the �rms engage in a price competition game. The only equilibrium

of this stage game is for �rms to quote a price of zero (the marginal cost), and this

will result in them obtaining zero pro�ts. However, in repeated play, many equilibria

are attainable. In particular, a grim trigger strategy pro�le with positive pricing
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(and pro�ts) through tacit collusion is sustainable when deviating results in minmax

payo�s of zero (the equilibrium of the stage game).

Claim 1. In repeated play, for δ ≥ δcrit, there exists an equilibrium pricing policy p∗

such that D ≥ p∗it(ht) = p∗(ht) ≥ 1 for all i (therefore Iit = It).

Proof.

2p∗(ht) is the maximum possible pro�t from deviating at time t. To sustain the

equilibrium, future discounted pro�ts from collusion must be higher than that of the

pro�ts obtained from deviation. So,

2p∗it ≤
∞∑
T=t

δT−tp∗iT IiT ⇒ p∗it ≤
∞∑

T=t+1

δT−tp∗iT IiT

which is satis�ed for all δ ≥ δcrit since p∗t ≤ D and the right hand side is an

in�nite sum with p∗t ≥ 1 for all t.

In the equilibrium pricing policy suggested above, the symmetric pricing imply

that the �rms will sell no units or a maximum of one unit each at any time.
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Claim 2. The optimal policy is characterized by a cuto� belief W .

If wt ≤ W ⇒ D ≥ pt > 1. If wt > W ⇒ pt = 1.

This claim follows from Claim 1 of Rustichini and Wolinsky (1995). The result

implies that if it is optimal to experiment with prices at the current belief of high

demand, then it should also be optimal to price experiment for any belief which has

a higher belief of high demand. Also, if it is not optimal to price experiment at the

current belief of high demand, then it should also be not optimal to price experiment

for any lower belief of high demand.

Therefore, three possible pricing schemes or policies result from W .

W ≤ 1

2
⇒ pt =


1 δ ≥ 1

2

0 otherwise

N =∞

W ≥ (1− α)⇒ pt =


pH wt = 1− α

pL wt = α

N = 0

1

2
< W < (1− α)⇒ pt =



1 W < wt

pH W ≥ wt > α

pL wt = α

0 < N <∞
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In the �rst scheme, for the given D, α and δ, it is never optimal to experiment,

which may be due to two reasons

1. Even for a monopoly, for the given D, α and δ, whenever wt >
1
2
, the future

expected pro�ts from experimentation is less than the future discounted pro�ts from

pricing 1 forever. (Note: wt = 1 − α > 1
2
when demand is observed to be low in the

previous period. By the second property of the Markov process, if no experimentation

was done for N consecutive periods after wt = 1 − α, it will still be the case that

wt+N > 1
2
).

2. Even if demand is found to be high through experimentation, the �rms cannot

sustain a su�ciently high price to make experimentation worthwhile.

In the second scheme, D, α and δ are such that it is optimal to experiment

forever. In the third scheme can be easily characterized by N , where

N = argN maxψN s.t. ψN = Pr [dt+N+1 = 1|dt = 1] ≤ W

Standard calculations yield

ψN = Pr [dt+N+1 = 1|dt = 1] =
[
1 + (1− 2α)N+1

]
/2 ≤ W (See Feller, 1968).

Thus, N is the minimum number of periods pricing at 1 (no experimentation)

is to be done after low demand is observed, at which time wt ≤ W , the cut-o� for

experimentation will be achieved. Therefore, after N periods of pricing at 1, the

�rms will charge pH and with that, if demand is found to be high, pL will be charged
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until low demand is observed. After low demand is observed (both at pricing pH or

pL), �rms will start pricing at 1 for N periods and this process will continue. Also,

note that the pricing scheme can be characterized by N , where the �rst two schemes

correspond to the special cases of N = 0 and N =∞ respectively.

1. Solving for pH and pL

For the monopoly case (Rustichini and Wolinsky 1995), pH = pL = D, but in the case

of the duopoly, considerations of the possibility of deviation could lower the optimal

collusive price in the given environment as in Haltiwanger and Harrington (1991). pH

and pL are such that it is not optimal for the �rms to deviate at any time.

By Claim 2, since the optimal collusive pricing policy at a given is time is de-

termined by wt, let P (wt) be the price charged by the �rms for belief wt. Let Y be

the expected future discounted pro�ts (at the end of a period) after a price greater

than one was accepted and let Z be the future discounted pro�ts (at the end of a

period) after a price great than one was rejected. Therefore, Z is the expected pro�ts

generated starting with N consecutive periods of quoting the price to be 1, while Y

is the expected pro�ts generated from quoting the price pL in the next period.

Y = δ [(1− α) [P (α) + Y ] + αZ]
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Z =
δ − δN+1

1− δ
+ δN+1ψNZ + δN+1 (1− ψN) (P (ψN) + Y )

Claim 3. Given pt ≥ 1 for all t in the optimal pricing policy, the future expected

pro�ts must be greater than or equal to that of an in�nite sequence of one-unit sales

priced at 1 for all periods.

Proof. (By contradiction)

If it is not the case, then the �rms would be better o� in the equilibrium where

they price at 1 and get a guaranteed sale and obtain the expected pro�ts of an

in�nite sequence of unit sales at price 1, which contradicts that the given was an

optimal policy.

It follows that the �rms would only experiment if in the long run they get at

least as much pro�ts as from pricing at 1 forever.

It follows from Claim 3 that Z ≥ δ
1−δ and (1− α)P (α) ≥ 1. Therefore it can be

seen that Y ≥ Z.

Claim 4. 1 < pL = P (α) = min
[
D, Y + α

1−αZ
]
, pH = P (ψN) = min

[
D, Y + ψN

1−ψN
Z
]

At any point, the �rms must have higher expected pro�ts through collusion than



66

through deviating for the pricing pro�le to be sustainable.

Case 1. Condition for �rms not to deviate in periods when pt = P (α) = pL (that

is, after pt−1 > 1 was accepted)

2 (1− α)P (α) ≤ (1− α) (P (α) + Y ) + αZ

⇒ (1− α)P (α) ≤ (1− α)Y + αZ

⇒ P (α) ≤ Y +
α

1− α
Z

Case 2. Condition for �rms not to deviate in periods when pt = P (ψN) = pH

(that is, the period of experimentation after N periods of pricing at 1)

2 (1− ψN)P (ψN) ≤ (1− ψN) (P (ψN) + Y ) + ψNZ

⇒ (1− ψN)P (ψN) ≤ (1− ψN)Y + ψNZ

⇒ P (ψN) ≤ Y +
ψN

1− ψN
Z
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Firms want to maximize expected pro�ts given the above conditions for pH and

pL which is to quote the maximum possible price. Since, for experimentation, it is

required that pH and pL ≤ D at all times, it follows that

1 < pL = P (α) = min

[
D, Y +

α

1− α
Z

]

pH = P (ψN) = min

[
D, Y +

ψN
1− ψN

Z

]

⇒ 1 < pL ≤ pH ≤ D

Therefore, the possible optimal pricing schemes will be the following.

The �rst scheme is as follows:

W ≤ 1

2
⇒ pt =


1 δ ≥ 1

2

0 otherwise

N =∞

In this scheme, for the given D, α and δ, W is such that experimentation is never

possible since �rms will not be able to collude on a higher price.

The second scheme is as follows:
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W ≥ (1− α)⇒ pt =


min

[
D, Y + ψN

1−ψN
Z
]

W ≥ wt = 1− α

min
[
D, Y + α

1−αZ
]

wt = α

N = 0

In this scheme, for the given D, α and δ, W is such that experimentation is

always worthwhile.

The third scheme is as follows:

1

2
< W < (1− α)⇒ pt =



1 W < wt

min
[
D, Y + ψN

1−ψN
Z
]

W ≥ wt > α

min
[
D, Y + α

1−αZ
]

wt = α

0 < N <∞

This is the scheme where experimentation ceases for a �nite number of periods

following the observation of a low demand period. Figure 3 contrasts the pricing

policy of such a case with that of a monopoly with the same cut-o� belief W , 1
2
<

W < (1 − α). If low demand was observed in the last period, then wt = 1 − α and

price would be set at one. Since nothing would have been learnt about the state of

demand by pricing at one, wt would tend towards the stationary probability of 1
2
.

Thus, the �rms would continue pricing at one until wt falls below the threshold W .

In the presented �gure, �rms are to price at D (pH) after crossing the threshold. If
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demand was found to be high, the �rms would set a price of pL and would continue

to price at pL as long as high demand is observed. At any point, if low demand is

observed, then in the next period, wt will equal 1 − α and then �rms will switch to

pricing at one.

Fig. 3. A Possible Price Pro�le for a Duopoly and a Monopoly with the Same Cuto�

W, 1
2
< W < (1− α)

C. Discussion

Observations:

1. When the belief of low demand is high the duopoly is able to collude perfectly
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on pricing low (at 1). The �rms set a low price (at 1) for N consecutive periods

after observing a low demand period just as in the monopoly case. The belief of low

demand being high corresponds to a recession in a business cycle. Therefore, this

suggests that �rms hold o� experimentation for some length of time after observing

a recession.

2. After pricing low (at 1) for a certain number of periods, the belief of low

demand crosses a certain threshold, W . At this point the �rms start to experiment.

There is a sudden jump in the prices charged at this point (after N periods of pricing

at 1), and this price that the duopoly charges might be higher than that would charge

after they �nd demand to be high. That is, in periods with price greater than one,

the possible colluding price weakly increases with the belief in low demand. This

observation is quite startling at �rst. It is due to fears of cheating that the �rms

would not be able to collude on higher prices when the belief of high demand is high.

However, there are many interesting implications of pricing behavior that would come

out of this observation.

This implies that there is a threshold belief in future demand at which �rms

drastically change their pricing pro�le and experimentation in anticipating a boom

in the business cycle. On realizing a boom however, the �rms vigorously compete.

Therefore, �rms are able to collude perfectly at times when optimal price policy

is to charge p = 1. This is because these are the periods with the lowest pro�ts

from deviation. When charging a price greater than one, the optimal price weakly
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increases with the belief in low demand. This is because these are the periods when

the conditions for deviating from the pricing policy would be binding. Therefore,

when the probability of higher demand is high, the price has to be shaded to decrease

the possible pro�ts from deviation.

These predictions are quite di�erent from predictions from the oligopoly pricing

literature. In Rotemberg and Saloner (1986) the results came about because high

demand and low demand was equally likely which made future demand always unre-

lated to the past and current market conditions. Haltiwanger and Harrington (1991)

extend the �uctuations in demand so that demand follows a predetermined cycle.

However, using a predetermined cycle also has drawbacks. Though business cycle

seem to consistently go through booms and busts, their occurrences are not prede-

termined. Haltiwanger and Harrington (1991) derive that the oligopolies have the

highest tendency to deviate from collusion when demand is falling and a lower incen-

tive to deviate when demand is rising. This is quite simply due to the predetermined

cycle they are in.

This chapter extends these models by making demand change in a Markovian

fashion and avoids the drawbacks of the business cycle model in previous work on

oligopoly pricing. Therefore, the observations and conclusions drawn should be more

realistic.
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CHAPTER V

SUMMARY

A. Implementing First-Best Allocations in the Principal-Agents Model

This research extends the work done by Piketty (1993). Piketty shows that when the

number of agents is �nite and the characteristics pro�le of the population is known,

the principal can design a game whose unique Bayesian Nash Equilibrium (through

iterative elimination of strictly dominated strategies) yields First-Best allocations.

There is no loss in e�ciency and the principal is able to extract all the rent in this

case. This research proposes the Sign-Up Game which the principal can use in certain

other incomplete information settings (NIIS) to implement �rst-best outcomes while

extracting all the rent.

The Sign-Up Game o�ers an avenue to overcome loss of e�ciency in adverse

selection problems in certain settings. This research shows that for the ε-Sign-Up

Game, if the principal's information is a setting of the NIIS, rational agents choosing

strategies that survive iterative elimination of weakly dominated strategies result

in a unique Nash Equilibrium. There are many properties of the Sign-Up Game

which make the result very unique. The unique equilibrium is self-selecting, ex-post

preferred to status quo, independent of risk attitudes, truth-revealing and Pareto
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e�cient. The Sign-Up Game and its approach to the principal-agent problem o�ers

new insight into mechanism design. It opens up the possibility of improving upon

second-best solutions in many �nite principal-agent settings.

B. Sophisticated Learning and Learning Demand

A sophisticated learning model was developed which assumed that a fraction of the

population was adaptive learners. The rest of the population (the sophisticated learn-

ers) was aware of this fact and took these adaptive learners' behavior into account.

Thus, when playing a repeated game the sophisticated learners would in each period

choose a strategy that would maximize their payo� for the entire length of the game.

The sophisticated learning model was tested using the data from the continental

divide game experiments by Van Huyck, Cook & Battalio (1997). When tested against

pure adaptive learning (self-tuning EWA), the results are in favor of sophisticated

learning and 34% of the population was found to be sophisticated learners.

The �nal research investigates the dynamics involved in a setting where �rms of

an oligopoly have to learn their demand environment while taking into account the

competitive nature of the �rms. It extends both the literature on monopolistic learn-

ing by studying the impact of introducing an additional �rm, and analyzes dynamic

models of oligopolies by introducing an environment where �rms learn the �uctuating
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demand through their pricing policy.

The predictions made are quite di�erent from predictions from the oligopoly pric-

ing literature (Rotemberg and Saloner (1986), Haltiwanger and Harrington (1991)).

In Rotemberg and Saloner (1986), the results came about because high demand and

low demand was equally likely which made future demand always unrelated to the

past and current market conditions. Haltiwanger and Harrington (1991) model de-

mand so that it follows a predetermined cycle. However, using a predetermined cycle

also has its own drawbacks. This research extends these models by making demand

change in a Markovian fashion and avoids the drawbacks of the business cycle models

in previous work on oligopoly pricing. Therefore, the observations and conclusions

drawn are more realistic.
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APPENDIX A

ON MODELING THE SOPHISTICATED PLAYER IN THE CONTINENTAL

DIVIDE GAME

In the continental divide game in Table V, each player has 14 actions. Since

there are 7 players, there are 147 = 105, 413, 504 possible outcomes each period. If

a sophisticated player were to evaluate all possible scenarios at the outset of the

15 periods, there would be (105, 413, 504)15 possible outcomes. After each of the 7

players go through those calculations they would have to re-evaluate (105, 413, 504)14

possible outcome in the next period. To overcome this problem several assumptions

are made that signi�cantly reduce the number of possibilities needed to be analyzed.

In making these reductions the attractions to particular actions are used so that only

the very likely outcomes are analyzed.

In the continental divide game, players are only aware of the cohort median. The

sophisticated player needs to be aware of the probabilities of future outcomes. It is

assumed that the sophisticated player is aware of the most likely action(s) of each

player in each period if the player was an adaptive learner1.

Sophisticated players form beliefs about the other players being sophisticated.

The sophisticated players are assumed to be aware of the number of players who are

1It is as if the sophisticated player is tracking the attractions of an adaptive learner
through the medians that have materialized thus far in the game and that he is
assuming the adaptive learner chooses the action with the highest attraction (λ =∞).
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more likely to be sophisticated (That is, # {j|αj > 0.5}), and sophisticated players

would believe that these many players would be acting as sophisticated players. Each

sophisticated player would assume that their beliefs are the same as the other so-

phisticated players. This makes the attraction calculation of sophisticated players in

eqn. 3.9 much easier since sophisticated players would know that the payo� maximiz-

ing action sequence, Jt =
{
sjti , s

jt+1

i , ..., sjTi

}
would be the same for all sophisticated

players.

The likelihood was �rst estimated by making the sophisticated player look one

period into the future, and after its successful estimation, two periods were done and

so on. This was done to ensure that the estimation converged and did so in reasonable

time. The player extrapolates his future earnings based on the payo� he got from

this last period he iterated into. It was observed that the likelihood and parameter

estimates did not change signi�cantly beyond three periods of iteration into the fu-

ture. This could be due to the fact that sophisticated players only looked so far into

the future due to their cognitive capabilities or due to some kind of future payo� dis-

counting that made payo�s more than three periods into the future not as attractive.

Another explanation is that the extrapolating technique itself gave a good estimate

of his future earning that would have been obtained in the full iterative procedure.

An additional period of reasoning into the future period means that each sophisti-

cated player, in each period of the repeated game, has to consider all possible action

sequences of additional length while also taking into account all possible action se-
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quences of his opponents for an additional period. Thus, the estimation time increases

exponentially (with a large base) with the increase in the number of periods iterated

into. Since the likelihood and parameter estimates were not observed to change after

iterating for more than three periods into the future, the iteration for three periods

was used, and is reported here. Thus, in the reported estimates sophisticated players

maximize their payo� by calculating their payo� through an action sequence for the

next three periods.
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Following is the code used to find the maximum likelihood of observing the data 

assuming that all the players are self-tuning EWA learners. 

 

/*  Author : Megha W. Watugala 

Version : 4 

Maximum likelihood estimation for self-tuning EWA 

using the continental divide game */ 

new; 

library maxlik;  

SFile = "P:/gauss/datalongd.txt"; 

load data[840,6]=^SFile; 

num_sessions = 8; 

// periods in each session / 

periods_session = {15, 15, 15, 15, 15, 15, 15, 15}; 

// subjects in each session / 

subjects_session = {7, 7, 7, 7, 7, 7, 7, 7};  

 

// number of actions available to the subjects  

// assume actions are indexed 1 .. actions 



 85
actions = 14; 

game_matrix =  

{45   49  52  55  56 55 46 -59 -88 -105 -117 -127 -135 -142, 

 48   53  58  62  65  66  61 -27 -52 -67 -77  -86 -92  -98, 

 48   54   60  66  70  74  72  1 -20 -30 -41  -48 -53 -58, 

 43   51   58  65  71  77  80  26  8  -2  -9  -14 -19 -22, 

 35   44   52  60  69  77  86  46  32  25  19  15  12  10, 

 23   33   42  52  62  72  82  62  53  47  43  41  39  38, 

  7   18   28  40  51  64  78  75  69  66  64  63  62  62, 

-13   -1   11  23  37  51  69  83  81  80  80  80  81  82, 

-37   -24  -11  3  18  35  57  88  89  91  92  94  96  98, 

-65   -51  -37 -21  -4  15  40  89  94  98 101 104 107 110, 

-97   -82  -66 -49 -31  -9   20 85  94 100 105 110 114 119, 

-133 -117 -100  -82 -61 -37  -5 78  91  99 106 112 118 123, 

-173 -156 -137 -118 -96  -69 -33 67 83  94 103 110 117 123, 

-217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120}; 

 

game_matrix = game_matrix/100; 

  

session_index=1; 

period_index=2; 

otheract_index=3; 

choice_index = 5; 

 

total_periods=0; 



 

/*maxclr; __row=0; _max_CovPar = 0; _max_algorithm = 2; */ 

86
total_subject_periods=0; 

 

k=1; 

do while k <= num_sessions;  

    total_periods = total_periods + periods_session[k]; 

    total_subject_periods = total_subject_periods + 

periods_session[k]*subjects_session[k]; 

    k=k+1; 

endo; 

p = {1.3}; 

 

 

{x1,f,grad,cov,ret}= maxlik(data,0,&selftuning,p);  

 

print "  results  "; 

print " lambda  " x1; 

print "  avg likelihood  "  f; 

print "  cov matrix "  cov; 

 

proc selftuning(p,data); 

/* variables used in likelihood estimation */ 

local ylog,i,j,k,m,attractions,Probase,ave_act,change_act; 

local delta,shi,current_session,current_period; 

local actions_done, temp_actions; 
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local 

predicted_median,temp_prob,likely_action,best_response,periods_a

ction,temp_payoff; 

 

local x; 

//y = p[2]; 

x= exp(p);     // x is lambda 

// attrations at each session,period,subject, action 

attractions = zeros(total_subject_periods,actions);  

// used to track the denominator of the probability calculation 

Probase = zeros(total_subject_periods,1); 

// likelihood of each action taken 

 

ylog = zeros(total_subject_periods,1); 

// average of times a particular action is taken 

ave_act = zeros(total_subject_periods,actions); 

// the change in behavior stored here. ave_act used to calculate 

this 

change_act = zeros(total_subject_periods,1); 

// attention function, whether a particular action needs to be 

reinforced by the payoff it would have got or not 

 

delta = zeros(total_subject_periods,actions); 

// the change-detector function 

shi = zeros(total_subject_periods,1); 
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predicted_median = zeros(total_subject_periods,1); 

likely_action = zeros(total_subject_periods,1); 

best_response = zeros(total_subject_periods,1); 

temp_payoff = zeros(actions,1); 

  

 

current_period = 1; 

current_session = 1; 

// initial attractions counter 

local f; 

// long data 

f={0.3,0.3,0.3,1,2,15,16,7,5,8,5,5,2,4};  

 

// main loop 

k=1; 

 

do while k < total_subject_periods;     // for all subject 

periods 

// in one loop a whole periods data is taken care of 

// the while j loop goes through all the subjects in that period 

of that session 

 

    if data[k,period_index] == 1;  // new session 

        // initialize attractions, etc. 

        current_session = data[k,session_index]; 

  current_period = 1; 
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        actions_done = 

zeros(subjects_session[current_session],1); 

        temp_actions = 

zeros(subjects_session[current_session],1); 

        periods_action = 

zeros(subjects_session[current_session],1); 

        j = 1; 

 

        do while j <= subjects_session[current_session]; // 

setting initial attractions 

            i =1; 

   Probase[k+j-1] = 0;   // the base of the prob of 

an action just making sure it starts at 0 

 

            do while i <= actions; 

       attractions[k+j-1,i]= (1/x)*ln(f[i]./f[5]) + 

20;   // attraction of 5 normalized to 20 

                Probase[k+j-1]=Probase[k+j-

1]+exp(x*attractions[k+j-1,i]); 

         i=i+1; 

           endo; 

 

   i=1; 

   temp_prob =0; 

   do while i <= actions; 
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    temp_prob = temp_prob + 

exp(x*attractions[k+j-1,i])/Probase[k+j-1]; 

    if temp_prob > 0.5; 

     predicted_median[k+j-1]=i; 

     i = actions; 

    endif; 

         i=i+1; 

           endo; 

 

      ylog[k+j-1]= x*attractions[k+j-1,data[k+j-

1,choice_index]] - ln(Probase[k+j-1]); 

 

            likely_action[k+j-1] = maxindc(attractions[k+j-

1,.]'); 

            periods_action[j]=maxindc(attractions[k+j-1,.]'); 

   j = j+1; 

        endo; 

        

        j=1; 

        do while j <= subjects_session[current_session];     

      i=1; 

 

   do while i <= actions; 

                temp_actions = periods_action; 

                temp_actions[j]=i; 
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temp_payoff[i]=game_matrix[i,median(temp_actions)]; 

          i=i+1; 

            endo; 

 

            best_response[k+j-1]=maxindc(temp_payoff); 

  

           j=j+1; 

        endo; 

    endif;   // first period taken care of 

 

        j=1; 

        do while j <= subjects_session[current_session];     

            actions_done[j]=data[k+j-1,choice_index]; // action 

taken by each subject this period 

            if current_period != 1;   // setting up ave_act 

    i =1; 

                do while i <= actions; 

                    ave_act[k+j-1,i] = ((current_period-

1)*ave_act[k+j-subjects_session[current_session]-

1,i])./current_period; 

                    i = i+1; 

                endo; 

            endif; 

 



 92
            ave_act[k+j-1,data[k+j-1,choice_index]] = 

ave_act[k+j-1,data[k+j-1,choice_index]]+ 1/current_period; 

            j = j+1;    

        endo; 

 

        j=1; 

 

        do while j <= subjects_session[current_session];  // for 

all subjects in this period deducing their logl 

   m=1; 

 

            do while m <= subjects_session[current_session];  // 

to calculate change in action  

                if m != j; // of opponents 

                    i=1; 

 

                    do while i <= actions; 

                        if i == actions_done[m]; 

                   change_act[k+j-1] = change_act[k+j-1] 

+ ((1-ave_act[k+m-1,i])^2)./(subjects_session[current_session]-

1); 

                        else; 

                   change_act[k+j-1] = change_act[k+j-1] 

+ (ave_act[k+m-1,i]^2)./(subjects_session[current_session]-1); 

                        endif; 

                        i = i+1; 
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                    endo; 

             endif; 

                m = m+1; 

            endo; 

 

            i=1; 

            do while i <= actions;  // calculate attention 

function 

 

                temp_actions = actions_done; 

                temp_actions[j]=i;             

          if game_matrix[i,median(temp_actions)] >= 

game_matrix[data[k+j-1,choice_index],data[k+j-

1,otheract_index]]; 

     delta[k+j-1,i] = 1; 

    else; 

     delta[k+j-1,i] = 0; 

    endif; 

  

               i=i+1; 

         endo; 

 

   shi[k+j-1] = 1-0.5*change_act[k+j-1];   // 

change detector function 
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            shi[k+j-1] = (0.5 + (current_period-1)*shi[k+j-

1])./current_period; // adjustment to better update initially 

 

            if current_period != 

periods_session[current_session];  // unless it is the last 

period 

                Probase[k+j+subjects_session[current_session]-1] 

=0; 

 

    i=1; 

                do while i <= actions; 

                    // set the attractions for next period 

                  temp_actions = actions_done;  // actions taken 

this period 

                  temp_actions[j]=i;             

 

                   

attractions[k+j+subjects_session[current_session]-

1,i]=(current_period*shi[k+j-1]*attractions[k+j-1,i]+delta[k+j-

1,i]*(game_matrix[i,median(temp_actions)]))./(current_period*shi

[k+j-1]+1); 

 

                   

Probase[k+j+subjects_session[current_session]-

1]=Probase[k+j+subjects_session[current_session]-
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1]+exp(x*attractions[k+j+subjects_session[current_session]-

1,i]); 

                   i=i+1; 

                endo; 

 

    i=1; 

    temp_prob =0; 

 

    do while i <= actions; 

 

     temp_prob = temp_prob + 

exp(x*attractions[k+j+subjects_session[current_session]-

1,i])/Probase[k+j+subjects_session[current_session]-1]; 

     if temp_prob > 0.5; 

     

 predicted_median[k+j+subjects_session[current_session]-

1]=i; 

      i = actions; 

     endif; 

           i=i+1; 

             endo; 

 

                ylog[k+j+subjects_session[current_session]-1]= 

x*attractions[k+j+subjects_session[current_session]-

1,data[k+j+subjects_session[current_session]-1,choice_index]] - 

ln(Probase[k+j+subjects_session[current_session]-1]); 
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likely_action[k+j+subjects_session[current_session]-1] = 

maxindc(attractions[k+j+subjects_session[current_session]-

1,.]'); 

                

periods_action[j]=maxindc(attractions[k+j+subjects_session[curre

nt_session]-1,.]'); 

   endif; 

            j = j+1; 

        endo; 

        if current_period != periods_session[current_session];  

// unless it is the last period 

 

            j=1; 

            do while j <= subjects_session[current_session];     

            i=1; 

       do while i <= actions; 

                    temp_actions = periods_action; 

                    temp_actions[j]=i; 

                    

temp_payoff[i]=game_matrix[i,median(temp_actions)]; 

              i=i+1; 

                endo; 
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best_response[k+j+subjects_session[current_session]-

1]=maxindc(temp_payoff); 

                j=j+1; 

            endo; 

        endif; 

 

    current_period = current_period +1; 

    k = k + subjects_session[current_session]; 

 

endo; 

retp(ylog); 

endp; 

 

proc max(x,y); // procedure to return maximum 

 if x>y; 

  retp(x); 

 else; 

  retp(y); 

 endif; 

endp; 
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APPENDIX C 

MAXIMUM LIKELIHOOD ESTIMATION FOR SOPHISTICATED LEARNING 

 

 

Following is the code used to find the maximum likelihood of observing the data 

assuming that a fraction of the players are sophisticated learners while the rest are 

self-tuning EWA learners. 

 

/*  Author : Megha W. Watugala 

Maximum likelihood estimation for Sophisticated Learning  

using the continental divide game */ 

new; 

library maxlik;  

//  long datad set header 

SFile = "P:/gauss/datalongd.txt"; 

load data[840,6]=^SFile; 

num_sessions = 8; 

// periods in each session / 

periods_session = {15, 15, 15, 15, 15, 15, 15, 15}; 

// subjects in each session / 

subjects_session = {7, 7, 7, 7, 7, 7, 7, 7};  

// 1 if converging to low action and 2 if converging to high 

action  

session_end = {1, 1, 2, 2, 2, 1, 1, 2}; 
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session_index=1; 

period_index=2; 

otheract_index=3; 

choice_index = 5; 

// number of actions available to the subjects  

// assume actions are indexed 1 .. actions 

actions = 14; 

//payoff table 

game_matrix =  

{45   49  52  55  56 55 46 -59 -88 -105 -117 -127 -135 -142, 

 48   53  58  62  65  66  61 -27 -52 -67 -77  -86 -92  -98, 

 48   54   60  66  70  74  72  1 -20 -30 -41  -48 -53 -58, 

 43   51   58  65  71  77  80  26  8  -2  -9  -14 -19 -22, 

 35   44   52  60  69  77  86  46  32  25  19  15  12  10, 

 23   33   42  52  62  72  82  62  53  47  43  41  39  38, 

  7   18   28  40  51  64  78  75  69  66  64  63  62  62, 

-13   -1   11  23  37  51  69  83  81  80  80  80  81  82, 

-37   -24  -11  3  18  35  57  88  89  91  92  94  96  98, 

-65   -51  -37 -21  -4  15  40  89  94  98 101 104 107 110, 

-97   -82  -66 -49 -31  -9   20 85  94 100 105 110 114 119, 

-133 -117 -100  -82 -61 -37  -5 78  91  99 106 112 118 123, 

-173 -156 -137 -118 -96  -69 -33 67 83  94 103 110 117 123, 

-217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120}; 

// convert to dollar amounts 



 

print " lambda  " x1; 

100

game_matrix = game_matrix/100; 

 

total_periods=0; 

total_subject_periods=0; 

k=1; 

do while k <= num_sessions;  

    total_periods = total_periods + periods_session[k]; 

    total_subject_periods = total_subject_periods + 

periods_session[k]*subjects_session[k]; 

    k=k+1; 

endo; 

p = {1,0,0,1}; 

/* p is the passed in values of the variable 

x1 the values of the variable at maximum likelihood */ 

/*maxclr; __row=0; _max_CovPar = 0; _max_algorithm = 2; */ 

 _max_MaxIters =15; 

{x1,f,grad,cov,ret}= maxlik(data,0,&selftuning,p);  

print "  results  "; 

print "  avg likelihood  "  f; 

print "  cov matrix "  cov; 

end; 

proc selftuning(p,data); 

/* variables used in likelihood estimation */ 



 101

local 

ylog,yylog,yy,i,j,k,m,attractions,Probase,ave_act,change_act; 

local delta,shi,current_session,current_period; 

local actions_done, temp_actions; 

local 

predicted_median,temp_prob,likely_action,best_response,periods_a

ction,temp_payoff; 

local r, Vmax, Vtemp, alphabar, attractions_block, 

ave_act_block; 

local x,y,alpha,randnum,selflog,sophlog,ifsoph; 

 

x= exp(p[1]);     // x is lambda for selftuning EWA 

y=exp(p[4]);    // y is lambda for sophisticated players 

alphabar = exp(p[2])/(1+exp(p[2])); 

alpha = exp(p[3])/(1+exp(p[3])); 

 

local numsoph; 

local x1,fm,grad,cov,ret,alphatable,logtable,templogtable;  

 

logtable = 

zeros(maxc(periods_session),2*maxc(subjects_session)); 

 

alphatable = zeros(maxc(subjects_session),1); 

 

// attrations at each session,period,subject, action 
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attractions = zeros(total_subject_periods,actions);  

// used to track the denominator of the probability calculation 

Probase = zeros(total_subject_periods,1); 

// likelihood of each action taken 

ylog = zeros(total_subject_periods,1); 

// average of times a particular action is taken 

ave_act = zeros(total_subject_periods,actions); 

// the change in behavior stored here. ave_act used to calculate 

this 

change_act = zeros(total_subject_periods,1); 

// attention function, whether a particular action needs to be 

reinforced by the payoff it would have got or not 

delta = zeros(total_subject_periods,actions); 

// the change-detector function 

shi = zeros(total_subject_periods,1); 

predicted_median = zeros(total_subject_periods,1); 

likely_action = zeros(total_subject_periods,1); 

best_response = zeros(total_subject_periods,1); 

temp_payoff = zeros(actions,1); 

  

current_period = 1; 

current_session = 1; 

 

// initial attractions counter 

local f; 
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// long data 

//f={0.1,0.1,0.1,1,4,16,18,7,6,9,6,6,2,5};  

f={0.3,0.3,0.3,1,2,15,16,7,5,8,5,5,2,4};  

// f is set according to players behavior in the first period 

 

// main loop 

k=1; 

do while k < total_subject_periods;     // for all subject 

periods 

// in one loop a whole periods data is taken care of 

// the while j loop goes through all the subjects in that period 

of that session 

    if data[k,period_index] == 1;  // new session 

 

      // initialize attractions, etc. 

      current_session = data[k,session_index]; 

  current_period = 1; 

      actions_done = zeros(subjects_session[current_session],1); 

      temp_actions = zeros(subjects_session[current_session],1); 

      periods_action = 

zeros(subjects_session[current_session],1); 

      selflog = zeros(subjects_session[current_session],1); 

      sophlog = zeros(subjects_session[current_session],1); 

      ifsoph = zeros(subjects_session[current_session],1); 
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      attractions_block = 

zeros(subjects_session[current_session],actions); 

      ave_act_block = 

zeros(subjects_session[current_session],actions); 

       

      logtable = 

zeros(maxc(periods_session),2*maxc(subjects_session)); 

      templogtable = zeros(maxc(periods_session),2); 

 

      alphatable = zeros(maxc(subjects_session),1); 

 

      j = 1; 

      do while j <= subjects_session[current_session]; // 

setting initial attractions 

          i =1; 

   Probase[k+j-1] = 0;   // the base of the prob of 

an action just making sure it starts at 0 

          do while i <= actions; 

            //attractions_block[j,i] = 

(1/x[session_end[current_session]])*ln(f[i]./f[5]); 

       attractions[k+j-1,i]= (1/x)*ln(f[i]./f[5]);    

 

            Probase[k+j-1]=Probase[k+j-1]+exp(x*attractions[k+j-

1,i]); 

       i=i+1; 
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         endo; 

 

      ylog[k+j-1]= x*attractions[k+j-1,data[k+j-

1,choice_index]] - ln(Probase[k+j-1]); 

          selflog[j] = x*attractions[k+j-1,data[k+j-

1,choice_index]] - ln(Probase[k+j-1]); 

          sophlog[j] = x*attractions[k+j-1,data[k+j-

1,choice_index]] - ln(Probase[k+j-1]); 

          logtable[current_period,2*j-1] = x*attractions[k+j-

1,data[k+j-1,choice_index]] - ln(Probase[k+j-1]); 

          logtable[current_period,2*j] = x*attractions[k+j-

1,data[k+j-1,choice_index]] - ln(Probase[k+j-1]); 

          alphatable[j] = alpha; 

          periods_action[j]=maxindc(attractions[k+j-1,.]'); 

 

   j = j+1; 

      endo; 

 

      j=1; 

      do while j <= subjects_session[current_session];    // 

creating the best_response vector 

      i=1; 

   do while i <= actions; 

            temp_actions = periods_action; 

            temp_actions[j]=i; 
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            temp_payoff[i]=game_matrix[i,median(temp_actions)]; 

        i=i+1; 

          endo; 

          best_response[k+j-1]=maxindc(temp_payoff); 

          j=j+1; 

      endo; 

 

    endif;   // first period taken care of 

 

      j=1; 

      do while j <= subjects_session[current_session];     

          actions_done[j]=data[k+j-1,choice_index]; // action 

taken by each subject this period 

 

          if current_period != 1;   // setting up ave_act 

    i =1; 

            do while i <= actions; 

                ave_act[k+j-1,i] = ((current_period-

1)*ave_act[k+j-subjects_session[current_session]-

1,i])./current_period; 

                ave_act_block[j,i] = ave_act[k+j-1,i]; 

                i = i+1; 

            endo; 

          endif; 
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          ave_act[k+j-1,data[k+j-1,choice_index]] = ave_act[k+j-

1,data[k+j-1,choice_index]]+ 1/current_period; 

          ave_act_block[j,data[k+j-1,choice_index]] = 

ave_act[k+j-1,data[k+j-1,choice_index]]; 

          j = j+1;    

      endo; 

 

      j=1; 

 

      do while j <= subjects_session[current_session];  // for 

all subjects in this period deducing their logl 

   m=1; 

 

          do while m <= subjects_session[current_session];  // 

to calculate change in action  

            if m != j; // of opponents 

                i=1; 

                do while i <= actions; 

                  if i == actions_done[m]; 

               change_act[k+j-1] = change_act[k+j-1] 

+ ((1-ave_act[k+m-1,i])^2)./(subjects_session[current_session]-

1); 

 

                  else; 
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               change_act[k+j-1] = change_act[k+j-1] 

+ (ave_act[k+m-1,i]^2)./(subjects_session[current_session]-1); 

                  endif; 

                  i = i+1; 

                endo; 

           endif; 

            m = m+1; 

          endo; 

 

          i=1; 

          do while i <= actions;  // calculate attention 

function 

            temp_actions = actions_done; 

            temp_actions[j]=i;           

        if game_matrix[i,median(temp_actions)] >= 

game_matrix[data[k+j-1,choice_index],data[k+j-

1,otheract_index]]; 

     delta[k+j-1,i] = 1; 

    else; 

     delta[k+j-1,i] = 0; 

    endif; 

            i=i+1; 

       endo; 

 

   shi[k+j-1] = 1-0.5*change_act[k+j-1];    
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// change detector function 

 

          shi[k+j-1] = (0.5 + (current_period-1)*shi[k+j-

1])./current_period; // adjustment to better update initially 

 

          if current_period != periods_session[current_session];  

// unless it is the last period 

            Probase[k+j+subjects_session[current_session]-1] =0; 

    i=1; 

            do while i <= actions; // set attractions 

                // set the attractions for next period 

                temp_actions = actions_done;   

// actions taken this period 

                temp_actions[j]=i;           

                

attractions[k+j+subjects_session[current_session]-

1,i]=(current_period*shi[k+j-1]*attractions[k+j-1,i]+delta[k+j-

1,i]*(game_matrix[i,median(temp_actions)]))./(current_period*shi

[k+j-1]+1); 

 

                attractions_block[j,i] = 

attractions[k+j+subjects_session[current_session]-1,i]; 

                Probase[k+j+subjects_session[current_session]-

1]=Probase[k+j+subjects_session[current_session]-
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1]+exp(x*attractions[k+j+subjects_session[current_session]-

1,i]); 

                i=i+1; 

            endo; 

 

            ylog[k+j+subjects_session[current_session]-1]= 

x*attractions[k+j+subjects_session[current_session]-

1,data[k+j+subjects_session[current_session]-1,choice_index]] - 

ln(Probase[k+j+subjects_session[current_session]-1]); 

 

            

periods_action[j]=maxindc(attractions[k+j+subjects_session[curre

nt_session]-1,.]'); 

   endif; 

          j = j+1; 

      endo; 

 

      if current_period != periods_session[current_session];  // 

unless it is the last period 

          j=1; 

 

          do while j <= subjects_session[current_session];     

            i=1; 

            numsoph = 0; 

            Vmax = zeros(actions,1); 
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       do while i <= actions; 

                temp_actions = periods_action; 

 

                temp_actions[j]=i; 

 

                  m=1; 

                  do while m<=subjects_session[current_session];  

                    if m !=j; 

 

                        if  ifsoph[m] >= 0.5; 

                          temp_actions[m]=i; 

                          numsoph = numsoph +1; 

                        endif; 

 

                    endif; 

                    m=m+1; 

                  endo; 

 

 

 

                

temp_payoff[i]=game_matrix[i,median(temp_actions)]; 

 

                Vmax[i] = temp_payoff[i] + 

alphabar*FVmax(i,temp_actions,alphabar,current_period,min(2,peri
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ods_session[current_session]-current_period-

1),attractions_block,j,subjects_session[current_session],actions

,ave_act_block,p,periods_session[current_session]-

current_period-1,ifsoph); 

 

                i=i+1; 

            endo; 

 

            selflog[j] = selflog[j] + 

ylog[k+j+subjects_session[current_session]-1]; 

 

            sophlog[j] = sophlog[j] + 

ln(exp(y*Vmax[data[k+j+subjects_session[current_session]-

1,choice_index]])./sumc(exp(y*Vmax))); 

 

            logtable[current_period+1,2*j-1] = 

ylog[k+j+subjects_session[current_session]-1]; 

 

            logtable[current_period+1,2*j] = 

ln(exp(y*Vmax[data[k+j+subjects_session[current_session]-

1,choice_index]])./sumc(exp(y*Vmax))); 

 

            ylog[k+j+subjects_session[current_session]-1]= 

ln((1-ifsoph[j])*exp(ylog[k+j+subjects_session[current_session]-

1]) + 
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((ifsoph[j]*exp(y*Vmax[data[k+j+subjects_session[current_session

]-1,choice_index]]))./sumc(exp(y*Vmax)))); 

            j=j+1; 

          endo; 

          j=1; 

          do while j <= subjects_session[current_session];     

            ifsoph[j] = 

exp(sophlog[j])*alpha/(exp(sophlog[j])*alpha+exp(selflog[j])*(1-

alpha)); 

 

            j=j+1; 

          endo; 

      endif; 

 

    current_period = current_period +1; 

    k = k + subjects_session[current_session]; 

endo; 

retp(ylog); 

endp; 

 

proc max(x,y); // procedure to return maximum 

 if x>y; 

  retp(x); 

 else; 

  retp(y); 
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 endif; 

endp; 

 

proc min(x,y); // procedure to return maximum 

 if x>y; 

  retp(y); 

 else; 

  retp(x); 

 endif; 

endp; 

 

// procedure used by the sophisticated players to iterate into 

the future periods 

proc 

FVmax(Jt,periods_act,alphabar,T,Tleft,attracts,player,subjects,a

cts,ave_acts,p,Tleftact,ifsoph); 

/* variables used in FVmax */ 

local r,Vmax,Vtemp,i,j,m,fattractions,fProbase,fchange_act; 

local fdelta,fshi; 

local acts_done, temp_acts; 

local 

fbest_response,periods_acts,ftemp_payoff,randnum,yy,Vmaxyy; 

 

local x,y; 

x= exp(p[1]);     // x is lambda 
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// attrations for each subject for each action 

fattractions = zeros(subjects,acts);  

// used to track the denominator of the probability calculation 

fProbase = zeros(subjects,1); 

// the change in behavior stored here. ave_act used to calculate 

this 

fchange_act = zeros(subjects,1); 

// attention function, whether a particular action needs to be 

reinforced by the payoff it would have got or not 

fdelta = zeros(subjects,acts); 

// the change-detector function 

fshi = zeros(subjects,1); 

 

fbest_response = zeros(subjects,1); 

//randnum = zeros(subjects,1) 

ftemp_payoff = zeros(acts,1); 

acts_done = zeros(subjects,1);  

 

    if Tleft <= 0; 

      Vmax = 0; 

      retp(Vmax); 

    else; 

 

      T = T + 1; 

      j=1; 
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      do while j <= subjects;     

          acts_done[j]=periods_act[j]; // action taken by each 

subject this period 

          i =1; 

            do while i <= acts; 

                ave_acts[j,i] = ((T-1)*ave_acts[j,i])./T; 

                i = i+1; 

            endo; 

          if acts_done[j] >acts; 

            print acts_done; 

          else; 

            ave_acts[j,acts_done[j]] = ave_acts[j,acts_done[j]]+ 

1/T; 

          endif; 

          j = j+1;    

      endo; 

      j=1; 

      do while j <= subjects;  // for all subjects in this 

period deducing their logl 

   m=1; 

          do while m <= subjects;  // to calculate change in 

action  

            if m != j; // of opponents 

                i=1; 
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                do while i <= acts; 

                  if i == acts_done[m]; 

               fchange_act[j] = fchange_act[j] + 

((1-ave_acts[m,i])^2)./(subjects-1); 

                  else; 

               fchange_act[j] = fchange_act[j] + 

(ave_acts[m,i]^2)./(subjects-1); 

                  endif; 

                  //change_act_block[j] = change_act[k+j-1]; 

                  i = i+1; 

                endo; 

           endif; 

            m = m+1; 

          endo; 

          i=1; 

          do while i <= acts;  // calculate attention function 

            temp_acts = acts_done; 

            temp_acts[j]=i;           

        if game_matrix[i,median(temp_acts)] >= 

game_matrix[acts_done[j],median(acts_done)]; 

     fdelta[j,i] = 1; 

    else; 

     fdelta[j,i] = 0; 

    endif; 

            i=i+1; 
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       endo; 

   fshi[j] = 1-0.5*fchange_act[j];   // change 

detector function 

 

          fshi[j] = (0.5 + (T-1)*fshi[j])./T; // adjustment to 

better update initially 

          //if Tleft != 1;  // unless it is the last period 

            fProbase[j] =0; 

    i=1; 

            do while i <= acts; 

                // set the attractions for next period 

              temp_acts = acts_done;  // actions taken this 

period 

              temp_acts[j]=i;           

               

fattractions[j,i]=(T*fshi[j]*attracts[j,i]+fdelta[j,i]*(game_mat

rix[i,median(temp_acts)]))./(T*fshi[j]+1); 

               fProbase[j]=fProbase[j]+exp(x*fattractions[j,i]); 

               i=i+1; 

            endo; 

    periods_act[j]=maxindc(fattractions[j,.]'); 

          j = j+1; 

      endo; 

            j = player; 

             i=1; 
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         do while i <= acts; 

                  //temp_acts = round(periods_act); 

                  temp_acts = periods_act; 

                  temp_acts[j]=i; 

                  

ftemp_payoff[i]=game_matrix[i,median(temp_acts)]; 

            i=i+1; 

                endo; 

                fbest_response[j]=maxindc(ftemp_payoff); 

                r = max(1,fbest_response[j]-1); 

  

               Vmax = 0; 

                if Tleft == 1; 

 

                  //Vmax = (Tleftact-

Tleft+2)*maxc(ftemp_payoff)./2; 

                  Vmax = (1-

alphabar^Tleftact)*maxc(ftemp_payoff)./(1-alphabar); 

                  retp(Vmax); 

                else;    

 

                  do while r <= min(acts, fbest_response[j]+1); 

                    //temp_acts = round(periods_act); 

                    temp_acts = periods_act; 

                    temp_acts[j]=r; 
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                    m=1; 

                    do while m<=subjects; 

                        if m !=j; 

                          if ifsoph[m] ==1; 

                              temp_acts[m]=r; 

                          endif; 

                        endif; 

                        m=m+1; 

                    endo; 

                    //temp_acts = round((1-

alphabar)*temp_acts+alphabar*r); 

                    Vtemp = maxc(ftemp_payoff) + 

alphabar*FVmax(r,temp_acts,alphabar,T,Tleft-

1,fattractions,player,subjects,acts,ave_acts,p,Tleftact-

1,ifsoph); 

  

                     if Vtemp > Vmax; 

                        Vmax = Vtemp; 

                    endif; 

                    r = r+1; 

                  endo; 

                endif; 

      retp(Vmax); 

    endif; 

    //retp(0); 
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endp; 

 

proc findalpha(alp,tlogtable); 

// first column of log table is selflog the second is sophlog 

local ylog, i, size, alpha; 

size = rows(tlogtable); 

ylog = zeros(size,1); 

alpha = exp(alp)/(1+exp(alp)); 

 

i=1; 

do while i <= size; 

    ylog[i] = ln(alpha*exp(tlogtable[i,1])+(1-

alpha)*exp(tlogtable[i,2])); 

 

    i = i+1; 

endo; 

retp(ylog); 

endp; 
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