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ABSTRACT

Essays on Estimation of Inflation Equation. (August 2008)

Woong Kim, B.A., Yonsei University

Chair of Advisory Committee: Dr. Hae-shin Hwang

This dissertation improves upon the estimation of inflation equation, using the ad-

ditional measures of distribution of price changes and the optimum choice of instru-

mental variables. The measures of dispersion and skewness of the cross-sectional

distribution of price changes have been used in empirical analysis of inflation. In

the first essay, we find that independent kurtosis effect can have a significant role in

the approximation of inflation rate in addition to the dispersion and skewness. The

kurtosis measure can improve the approximation of inflation in terms of goodness of

fit. The second essay complements the first essay. It is well known that classical

measures of moments are sensitive to outliers. It examines the presence of outliers in

relative price changes and consider several robust alternative measures of dispersion

and skewness. We find the significant relationship between inflation and robust mea-

sures of dispersion and skewness. In particular, medcouple as a measure of skewness

is very useful in predicting inflation. The third essay estimates the Hybrid Phillips

Curve using the optimal set of instrumental variables. Instrumental variables are

usually selected from a large number of valid instruments on an ad hoc basis. It

has been recognized in the literature that the estimates are sensitive to the choice of

instrumental variables and to the choice of the measurement of inflation. This paper

uses the L2-boosting method that selects the best instruments from a large number

of valid weakly exogenous instruments. We find that boosted instruments produce

more comparable estimates of parameters across different measures of inflation and



iv

a higher joint precision of the estimates. Instruments boosted from principal compo-

nents tend to give a little better results than the instruments from observed variables,

but no significant difference is found between the ordinary and generalized principal

components.
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CHAPTER I

INTRODUCTION

One of the stylized facts in macroeconomics is a positive relationship between

inflation and relative price variability. Since Mills (1927) observed this relationship,

there has been so much research on this relationship. In the past studies of Fischer

(1982), Ball and Mankiw (1994), and Ball and Mankiw (1995), the key idea is that

a change in the shape of the distribution can affect inflation. Fischer (1982) and

Ball and Mankiw (1994) considered dispersion alone while Ball and Mankiw (1995)

included skewness in addition to dispersion. However, they neglected kurtosis, which

is one of the important distributional characteristics. By kurtosis, we look at the

thickness and peakedness of the distribution. Therefore, I consider moments up to

fourth order so as to capture the property of the distribution sufficiently. This is main

motivation of for the first essay.

My key idea is to introduce kurtosis effect. Pearson’s kurtosis is usually used.

However, the kurtosis concept is so unclear that it is difficult to interpret since it

captures both peakedness and tail heaviness as a single measure. It has been defined in

many ways. Different properties of distribution can be captured by different kurtosis.

Recently, Seier and Bonett (2003) introduced an alternative kurtosis measures which

give more importance to the central part of the distributions so that they tend to

be less correlated with skewness. Therefore, I expect that the performance of both

measures can be noticeable in capturing the peakedness of the distribution. This is

another motivation for the first essay.

This dissertation follows the style of Econometrica.
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I show the importance of the independent effects of kurtosis measures by ex-

tending Ball and Mankiw’s numerical analysis. I also identify the performances of

alternative kurtosis measures. My questions of empirical analysis are “If we addition-

ally consider the independent kurtosis effects that Ball and Mankiw omitted, how

much can we improve the approximation of inflation in terms of the goodness of fit?”

and “Which of the two kurtosis measures performs better in terms of the goodness of

fit?”.

The second essay complements the first essay. Ball and Mankiw analyzed the

effects on the PPI inflation rate of the dispersion and skewness of the changes in prices.

The dispersion and skewness are computed by the classical measurement of weighted

and unweighted standard deviation and skewness of the cross sectional sample.

It is well known that classical measures of dispersion and skewness are very

sensitive to the presence of outliers. This sensitivity can have a significant effect on

the relationship between the skewness and inflation rate. A single positive outlier

tends to significantly increase the skewness, and it will also increase the inflation

rate in the same direction because the overall PPI is a weighted average of prices of

individual commodities. This implies that a positive correlation between the skewness

and inflation rate can be caused by outliers, particularly in a sample of small size.

The second essay examines the presence of outliers in the relative price changes

and estimate unweighted and weighted robust measures of dispersion and skewness.

The effects of robust measures on the inflation rate are then estimated and compared

with the results based on the classical measures of dispersion and skewness.

The third essay is upon the estimation of hybrid Phillips Curve. Recent literature

on the inflation dynamics focuses on two lines of research. The New Keynesian Phillips

Curve (NKPC) models are based on the microeconomic foundation that introduces

nominal rigidities into the forward-looking optimizing behavior. The baseline model
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specifies the inflation as a function of forward-looking expectations of inflation and

marginal costs as the underlying driving force. Gali and Gertler (1999) extend the

baseline model by introducing two types of firms: forward-looking and backward-

looking firms. Their model is a hybrid model that includes past inflation and expected

inflation in addition to the marginal costs as the driving force. This model has been

applied in numerous empirical applications.

The model is typically estimated in a structural form or in a closed form by using

the GMM. As noted in Nason and Smith (2005), estimates of NKPC parameters

are sensitive to the choice of instrumental variables and to the choice of inflation

data. To avoid the weak instrumental variables problem, relatively small number of

instrumental variables are chosen in general on an ad hoc basis. However, since

the instrumental variables are for the rational expectation of future inflation and

the information set for the conditional expectation can include a large number of

informational variables, it is desirable to select the best set of relatively small number

of instrumental variables in a systematic way.

Another line research in inflation dynamics is the information forecasting in a

data rich environment. Factor models have been used widely in the macroeconomics

literature to summarize efficiently a large set of data and to use the summary statis-

tics for a variety of purposes including forecasting. In a series of papers, Stock and

Watson (1998, 2002a,b, 2005) propose to use ordinary principal components estimator

of the factors, while Forni, Hallin, Lippi, and Reichlin (2000, 2003); Forni, Lippi, and

Reichlin (2004); Forni, Hallin, Lippi, and Reichlin (2005) propose to use the general-

ized principal components estimator. Bernanke, Boivin, and Eliasz (2005) introduce

the principal components estimator into the VAR model to overcome the dimension-

ality problem of the VAR model. The FAVAR augments the standard VAR model

with a few latent factors. Bai and Ng (2007b) show that principal components of a
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large number of weakly exogenous variables are not only valid instruments for the

endogenous regressors, but also they can be more efficient than the observed vari-

ables, if weakly exogenous instruments and the endogenous regressors share common

factors. In practice, the first a few principal components, which explain the variation

of indicator variables the most, are used many applications. Bai and Ng (2007a)

emphasize, however, that the first a few principal components are not necessarily the

best instruments for the endogenous regressors. The problem of selecting the best

set of instruments still remains even when we use the principal components of weakly

exogenous variables.

The third essay examines the robustness of the estimates of parameters in Gali

and Gertler’s hybrid model to the choice of instrumental variables. Both the structural

form and closed form equations of the model are estimated by the GMM. Several

sets of instruments are considered, including the set used in GG, Rudd and Whelan

(2005), its subset used in Gali, Gertler, and Lopez-Salido (2001, 2005) and Rudd and

Whelan (2007). Additional instrumental variable sets include a subset of observed

weakly exogenous variables selected by L2-boosting method of Buhlmann and Yu

(2003), and a subset of ordinary and generalized principal components selected by

the L2-boosting method.
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CHAPTER II

INFLATION AND THE DISTRIBUTION OF RELATIVE PRICE SHOCKS

A. Introduction

One of the stylized facts in macroeconomics is a positive relationship between inflation

and relative price variability. Since Mills (1927) observed this relationship1, there has

been so much research on this relationship. Vinning and Elwertowski (1976), Parks

(1978) and Domberger (1987) confirmed that a positive relationship holds for different

periods and different countries based on their empirical findings. In more recent

studies, Ball and Mankiw (1995), Debell and Lamont (1997), Peltzman (2000), Silver

and Ioannidis (2001), Senda (2001), Aucremanne, Brys, Hubert, Rousseeuw, and

Struyf (2002), Caraballo and Dabus (2005) and Demery and Duck (2007) investigated

the empirical correlation between inflation and the moments of relative prices.

In past studies, Fischer (1981) and Fischer (1982) reviewed the previous theories

that explain the inflation-relative price variability relationship 2. According to the

theories, the causality direction between inflation and relative price variability is

different3. However, we are interested in the effects of relative price shocks as in

1He examined the wholesale price data over the sample period of 1890-1926 and
showed relative price variability is closely related to the absolute value of inflation.

2He discussed three theories on the relationship between inflation and relative
price variability: (i) In the presence of menu costs of changing prices, inflation can
affect relative price variability. This is because inflation causes additional transaction
cost so that different costs of adjusting prices in different industries result in greater
relative price variability. (ii) Unexpected inflation can affect relative price variability
by affecting individual prices differently. (iii) Due to the asymmetric price response,
the relative price variability affect inflation.

3His causality tests showed no clear direction.
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Friedman (1975)4. Thus, we focus on the theory in which causality runs from moments

of relative prices to inflation. One of the theories to explain this direction is based

on an asymmetric response. As an example of the asymmetric price adjustment, he

considered downward price rigidity, which means prices rise more easily than they

fall. He showed that if there is an asymmetric response to price shocks, changes in

dispersion have an effect on inflation. The key idea is that a change in the shape

of the distribution can affect inflation. Fischer (1982) considered dispersion alone.

However, using his example, it can be shown that changes in other properties such as

skewness and kurtosis can also affect inflation.

Ball and Mankiw (1994) also considered the asymmetric response as in Fischer

(1982)5. They showed that if the price adjustment is asymmetric due to trend in-

flation, changes in dispersion can affect inflation. This is because firms consider

additionally trend inflation so that more price increases are expected in the presence

of positive trend inflation.

In line with this literature, Ball and Mankiw (1995) showed that changes in

skewness in addition to dispersion can affect inflation under the stickiness assumption.

To show this, they presented an intuitive simple model of menu costs. In their model,

due to the transaction costs for changing prices, only firms with a shock larger than

4There are empirical evidences implying that relative price shocks can cause in-
flation even though they are not directly related to the monetary phenomenon. Oil
shocks of the 1970s are the most obvious example. Price increases in oil-related items
caused inflation and following recessions. However, as noted in Friedman (1975),
relative price shocks which change firms’ desired prices, logically, should not cause
inflation when price adjustments are perfectly flexible. This is because price increases
in particular items caused by sectoral shocks should be offset by price decreases in
other items.

5One of the differences in both papers is the source of an asymmetric response.
It is the downward price rigidity in Fischer (1982) while it is the trend inflation in
Ball and Mankiw (1994). So, the asymmetric response is determined exogenously in
Fischer (1982) while it is determined endogenously in Ball and Mankiw (1994).
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menu cost change their prices. As a result, some firms change their actual prices

and others do not. When price shocks have a symmetric distribution, positive and

negative price changes are offset each other so that the net effect on inflation is zero

even in the presence of menu cost. However, the distribution is asymmetric, positive

and negative price changes are not offset so that the net effect is not zero. With a

symmetric distribution of shocks, changes in dispersion do not affect inflation. But if

the distribution is skewed, larger dispersion cause the stronger effect of skewness on

inflation. That is, changes in dispersion influence inflation by means of the interaction

effect between dispersion and skewness. The main idea is the same as Fischer (1982)’s

in the sense that inflation can be generated by changes in the shape of the underlying

distribution.

In all three papers, the key idea is that a change in the shape of the distribution

can affect inflation. To capture the effect of the changes in distribution, Fischer (1982)

and Ball and Mankiw (1994) considered dispersion alone while Ball and Mankiw

(1995) included skewness in addition to dispersion. However, they neglected kurtosis,

which is one of the important distributional characteristics. By kurtosis, we look at

the thickness and peakedness of the distribution. Therefore, we consider moments up

to fourth order so as to capture the property of the distribution sufficiently. This is

main motivation of our study.

Since Ball and Mankiw (1995) clearly illustrated and emphasized that skewness

effect is stronger than dispersion effect, both measures have been used in empirical

analysis of inflation. Ball and Mankiw model was followed by considerable amount of
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theoretical and empirical studies6. In particular, it has been used to show empirical

evidences for many different countries7, implying that inflation-moments relationships

are robust stylized facts even under the different price setting circumstances. Cara-

ballo and Usabiaga (2004) extended Ball and Mankiw model by introducing kurtosis

in their study of Spanish regional inflation. Based on the regression for each re-

gion, they found kurtosis measure is insignificant in most regions and concluded that

kurtosis is not important in the analysis of Ball and Mankiw’s framework.

However, Caraballo and Usabiaga did not notice that kurtosis can affect inflation

through the interaction effect between moments like the interaction effect between

dispersion and skewness as in Ball and Mankiw. We consider two distributions with

the same mean,variance and skewness but different kurtosis. In the case of a sym-

metric distribution of shocks, changes in kurtosis do not affect inflation. But if the

distribution is skewed to right, larger kurtosis cause the smaller effect of skewness

on inflation. Therefore, we expect that there may be significant kurtosis interaction

effects even though individual kurtosis effect can be negligible. Our interest is to

capture additional properties of the distribution by using novel kurtosis interaction

effect.

6Debell and Lamont (1997) found the evidence that both dispersion and skewness
matter at the US city level. Peltzman (2000) argued that prices tend to respond faster
to a positive shock than to a negative shock, focusing on asymmetric responses. Senda
(2001) studied asymmetric effects of monetary shock using Ball and Mankiw’s menu
cost model. Aucremanne, Brys, Hubert, Rousseeuw, and Struyf (2002) investigated
the presence of outliers in the relative price changes and inflation-dispersion-skewness
relationship using robust measures. Demery and Duck (2007) argued that inflation-
dispersion-skewness relationship in the Ball and Mankiw model are much changed in
the presence of a trend inflation.

7Amano and Macklem (1997) for Canada, Dopke and Pierdzioch (2003) for Ger-
many, Nishizaki (2000) for Japan that has experienced near-zero inflation, Fielding
and Mizen (2000) for EU countries, Florio (2005) for Italy, Caraballo and Dabus
(2005) for Spain and Argentina, Assarsson and Riksbank (2003) for Sweden and
Caraballo and Usabiaga (2004) for Spain.
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What Ball and Mankiw are interested in is the impact of sectoral price shocks

on inflation. Therefore, their argument has an empirical limitation because of the

unobservablity of underlying price shock distribution. Alternatively, they used the

characteristics of observed price changes as a proxy for unobserved price shocks. To

justify using a proxy, they presented a numerical analysis which shows the linear re-

lationship between both of them. Therefore, kurtosis measure what we are interested

in can be also applied only if kurtosis of underlying price shocks and corresponding

kurtosis of observed price changes are linearly related. However, Caraballo and Usabi-

aga neglected this essential procedure. So, it is necessary to check linear relationship

between moments of underlying price shocks and corresponding moments of observed

price changes by extending Ball and Mankiw’s numerical analysis. If kurtosis of price

changes can be used as a proxy for price shock, then we can identify both individual

and interaction effect of kurtosis on inflation.

Our key idea is to introduce kurtosis effect. Pearson’s kurtosis is usually used.

However, the kurtosis concept is so unclear that it is difficult to interpret since it

captures both peakedness and tail heaviness as a single measure. It has been defined in

many ways. Different properties of distribution can be captured by different kurtosis.

Compared to the other macro data, the most striking distributional features of the

price changes is its peakedness. Recently, Seier and Bonett (2003) introduced an

alternative kurtosis measures which give more importance to the central part of the

distributions so that they tend to be less correlated with skewness. Therefore, we

expect that the performance of both measures can be noticeable in capturing the

peakedness of the distribution. This is another motivation for our study.

We show the importance of the independent effects of kurtosis measures by ex-

tending Ball and Mankiw’s numerical analysis. We also identify the performances of

alternative kurtosis measures. Our questions of empirical analysis are “If we addi-



10

tionally consider the independent kurtosis effects that Ball and Mankiw omitted, how

much can we improve the approximation of inflation in terms of the goodness of fit?”

and “Which of the two kurtosis measures performs better in terms of the goodness of

fit?”.

Ball and Mankiw (1995) model and Our model with independent kurtosis effect

are estimated and compared for the sample period of 1947-2006. Ball and Mankiw

estimated only annual data, but we estimate both annual and monthly data since

we want to investigate a possible difference between annual and monthly data as

Verbrugge (1999) pointed out. As expected, additional kurtosis measures have a

significant effect on inflation and the alternative kurtosis measure outperforms. The

improvement measured by different goodness of fit is substantial in monthly data,

but is not much substantial in annual data.

The paper is organized as follows. In the next section, we show the inflation-

moments relationships by extending Ball and Mankiw’s numerical analysis. By com-

paring three models used in Fischer (1982), Ball and Mankiw (1994), and Ball and

Mankiw (1995), we show whether additional properties they did not consider can also

affect inflation in each model. In section 3, we introduce alternative kurtosis measures

and show the usefulness of them as an ideal proxy. In section 4 and 5, the inflation

equations are specified and estimated. Section 6 concludes the paper with a summary

of our major findings.
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B. The Relationship between Inflation and Moments of the Distribution of Relative

Price Shocks

1. Models

This section shows how changes in the moments of the distribution of relative price

shocks can affect inflation. We compare three models used in Fischer (1982), Ball and

Mankiw (1994), and Ball and Mankiw (1995). We briefly review the firm’s pricing

decision rules used in three models.

In all three models, we assume that firms in each industry are subject to a

common relative price shock ǫ to their desired price. In Fischer (1982), firms price

adjustment is asymmetric due to the downward price rigidity. So, when realizing the

sectoral shock ǫ, firms change the price by the size of ǫ if ǫ > 0. But, if ǫ ≤ 0, they do

not change the price. The critical value (0) and the magnitude of price changes can

be the different value. The industry price change πǫ is defined as the average price

changes of the firms in the industry,

πǫ =
0 if ǫ ≤ 0

ǫ if ǫ > 0

In numerical analysis, we assume a critical value (−0.15), and the magnitude of price

change is equal to the size of price shock.

In Ball and Mankiw (1994), the source of the asymmetric price adjustment is

trend inflation. The model assumes that there exists positive trend inflation, which

firms take as given. A firm’s optimal price depends on trend inflation(T ) as well as a

price shock (ǫ). With a heterogeneous menu cost across firms, firms are divided into

two groups. For a given price shock ǫ and trend inflation T , firms with a smaller menu

cost such that c < |ǫ + T | change their prices by the size of |ǫ + T |. On the other
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hand, firms with a higher menu cost do not change their prices. This implies that the

inaction range is not symmetric around zero. The proportion of firms changing prices

is determined by the probability of those firms, P (c < |ǫ + T |). This probability can

be measured by the cumulative distribution function of menu cost, G (|ǫ + T |). The

industry price change πǫ is defined as

πǫ = (ǫ + T )G (|ǫ + T |)

In numerical analysis, we assume a trend inflation of 0.025, which is a value used in

Ball and Mankiw (1994).

In Ball and Mankiw (1995), firms with a menu cost lower than the absolute

value of the shock |ǫ| change the price by the size of ǫ, while firms with a menu cost

higher than |ǫ| do not change the price8. Firms have heterogeneous menu cost and

the proportion of firms with a menu cost lower than |ǫ| is given by a cumulative

distribution function G (|ǫ|). The industry price change πǫ is defined as

πǫ = ǫG (|ǫ|)

In all cases, the price shock varies across industries which is governed by a density

function f (ǫ). Aggregate inflation π is then defined as a weighted average of industry

price changes:

π =

∫ ∞

−∞

πǫf (ǫ) dǫ

Figure 2-1 presents the firm’s price setting assumptions used in three models.

The big difference is the range of inaction, in which firms do not respond to shocks.

8In their model, firms are assumed to have a quadratic loss function of the differ-
ence between the desired price and actual price, and they change the price if |ǫ| is
greater than the square root of the menu cost. We will call the square root of menu
cost simply as menu cost.
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This is due to the different sticky price assumption. Under these assumptions, they

showed how inflation depends on the shape of the distribution.

2. Numerical Analysis for the Theoretical Relationship

Based on these firm’s price setting behaviors, we conduct a numerical analysis similar

to Ball and Mankiw’s analysis. To show how inflation varies with the moments of

underlying price shocks, Fischer (1982), Ball and Mankiw (1994) considered dispersion

alone while Ball and Mankiw (1995) included skewness in addition to dispersion. By

numerical analysis, we show whether additional properties can also affect inflation in

their models.

Ball and Mankiw (1995) used an exponential distribution G (|ǫ|; α) for the menu

cost and Azzalini (1985)’s skew normal distribution f (ǫ; λ) for the price shocks:

G (|ǫ|; α) = 1 − e−α|ǫ|

f (ǫ; λ) = 2φ (ǫ) Φ (λǫ)

where λ is the shape parameter, and φ (ǫ) and Φ (ǫ) are the pdf and cdf of a standard

normal distribution, respectively. They used α = 7 in the menu cost distribution and

imposed a zero mean on the skew normal distribution of price shocks.

A weakness of Ball and Mankiw’s numerical analysis is in their use of Azzalini’s

skew normal distribution for the price shocks. This distribution has a very limited

range of skewness and there is a fixed linear relationship between skewness and kurto-

sis. As shown in Figure 2-2, the feasible set of skewness sk and kurtosis kt of the skew

normal distribution is just a concave line9 with the lowest coordinate {sk = 0, kt = 3}

9Figure 2-2 shows only the case of positive skewness for both the skew normal and
SuN distributions.
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and the highest coordinate {sk = sk∗, kt = kt∗} where

sk∗ = ±
2 (4 − π)

(π − 2)3/2
≈ ±0.9953

kt∗ =
3π2 − 4π − 12

(π − 2)2 ≈ 3.9670

Because of this limited nature of skewness and kurtosis, Ball and Mankiw’s numerical

analysis cannot generate the range of skewness of observed industry price changes,(-

4.2430,4.1443), in their sample. Figure 2-3 shows that one third of their sample has

the standard deviation and skewness outside of the feasible set10. Furthermore, the

numerical analysis of Ball and Mankiw cannot examine the effects of kurtosis of price

shocks on the mean of industry price changes because the kurtosis cannot take only

one value for a given skewness.

There are many alternative asymmetric leptokurtic distributions that are more

flexible than Azzalini’s skew normal. We consider in our numerical analysis Johnson’s

Su-normal (SuN) distribution which is a hyperbolic sine transformation, ǫ = sinh (X),

of a normal random variable X ∼ N (µ, σ2). The density function of this SuN random

variable is

f
(
ǫ; µ, σ2

)
=

1√
2πσ2 (ǫ2 + 1)

exp

{
−

(
sinh−1 (ǫ) − µ

)2

2σ2

}

Figure 2-2 shows the set of feasible values of positive skewness and kurtosis of this

distribution, which is the set below the upper boundary line.

Numerical analysis similar to Ball and Mankiw’s analysis are conducted for

the SuN distribution of price shocks. The SuN distribution has mean zero in all

10Sample values in Figure 2-3 show the pairs of standard deviation and absolute
values of skewness in Ball and Mankiw’s data set. The example of monthly data is
presented in Figure 2-4.
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cases. For the analysis of the relationships between the standard deviation σǫ of

price shocks and the moments (µǫ and σǫ) of industry price changes, we consider

21 evenly spaced values of σǫ in the interval [0.05, 0.25], the range of values con-

sidered in Ball and Mankiw analysis. These relationships are found for four val-

ues of lower skewness sk = {−1.0,−0.6, 0.6, 1.0} and four values of low kurtosis

kt = {5, 10, 15, 20}. Higher values of skewness sk = {−4,−2, 2, 4} are paired with

higher kurtosis kt = {45, 50, 55, 60}. This is necessary because the minimum feasible

value of kurtosis varies with the skewness as the feasible set in Figure 2-2 indicates.

The relationship between the moments of price shocks and the moments of industry

price changes reveal the similar patterns regardless of the value of kurtosis. There-

fore, we report the results for kt = 10 and kt = 50. Let σǫ, skǫ, and ktǫ denote

the standard deviation, skewness, and kurtosis coefficient of price shocks, and let µπ

denote the mean of industry price changes (inflation), respectively.

All three papers argued that there is a positive relationship between inflation and

dispersion of relative price shocks. Our first question is how changes in dispersion can

affect inflation. Figure 2-5 shows the relationship between σǫ and µπ for each model.

In Fischer (1982) model, µπ rises monotonically with σǫ as in the upper panels, so

there is a positive relationship between µπ and σǫ. In Ball and Mankiw (1994), for

a lower skewness on the left panel, σǫ has a positive effect on µπ, but for sk = −4,

there is a weakly negative relation. The bottom panels show the result of Ball and

Mankiw (1995). For a positive skewness, there is a positive relation. However, when

the skewness is negative, the relationship is negative. The example presented in

Figure 2-5 clearly shows this negative relationship. In this case, the problem is that

µπ depends on σǫ (µπ = a+bσǫ) and the effect of σǫ depends on the skǫ (b = c+dskǫ).
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These two relationships can be combined as

µπ = a + (c + dskǫ)σǫ

This means that marginal effects of dispersion (c + dskǫ) depends on the sign and

magnitude of skewness11. However, past studies including Ball and Mankiw (1995)

did not clearly show that the direction of skewness can affect the marginal effect

of dispersion. Vinning and Elwertowski (1976), Parks (1978),and Domberger (1987)

considered the relationship between dispersion and absolute value of inflation (or

squared value of inflation), just based on the empirical data. However, if we use

absolute value or squared value of inflation, we cannot capture the direction of the

marginal effect of dispersion. However, our numerical results clearly show that the

direction of dispersion-inflation relation is determined by the sign of skewness. Thus,

we can say that there a positive relationship between dispersion and the absolute

value of inflation, but the direction of dispersion depends on the skewness. This

finding is new in this literature.

In addition, a higher skǫ raises the effects of σǫ on µπ in two Ball and Mankiw’s

model but it lowers the effects σǫ on µπ in Fischer model. This implies that there

are substantial interaction effects between σǫ and skǫ in all three models. Therefore,

dispersion alone is not enough to capture the effects of σǫ on µπ in Fischer (1982) and

Ball and Mankiw (1994).

Our second question is how inflation varies with the changes in skewness. By

this analysis, we show whether skewness is necessary in Fischer (1982) and Ball and

Mankiw (1994). Figure 2-6 shows the relationship between skǫ and µπ for σǫ =

11We can capture these interaction effect by including cross product terms in the
regression since µπ = a + (c + dskǫ) σǫ = a + cσǫ + dskǫσǫ.
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{0.05, 0.10, 0.15, 0.20, 0.25} over the range of skǫ in [−1, 1] for kt = 10 and over the

range of skǫ in [−4, 4] for kt = 50. In two Ball and Mankiw’s models, there is a

monotonic relationship between skǫ and µπ. But, in Fischer model, there is a weakly

negative relationship. The results for high skewness on the right panel are similar to

the case of low skewness, except for that the relationship are less linear. In addition,

higher σǫ raises the effects of skǫ on µπ. Therefore, it is necessary to consider skewness

in both Fischer (1982) and Ball and Mankiw (1994).

The third question is how inflation depends on kurtosis and whether there is a

role of kurtosis to explain inflation. The relationship between the kurtosis of price

shocks ktǫ and the mean µπ of industry price changes are presented in Figure 2-7 for

a positive skewness skǫ = 1 on the left panel and a negative skewness skǫ = −1 on the

right panel. For a positive skewness,here is a nonlinear negative relationship between

skǫ and µπ. But, for a negative skewness, there is a negative relationship12 except for

the case of Fischer (1982). In addition, a higher σǫ raises the effects of ktǫ on µπ in all

cases. Also, there are substantial interaction effects between kurtosis and moments.

Numerical analyses reveal a few important results. First, the source to generate

inflation-moment relationships is the change in the properties of the underlying dis-

tribution regardless of models. To capture the property of the distribution, Fischer

(1982), Ball and Mankiw (1994) considered dispersion alone while Ball and Mankiw

(1995) included skewness. However, kurtosis also capture the property of the underly-

ing distribution. Second, there is a positive relationship between dispersion (kurtosis)

and absolute value of inflation, but the direction and magnitude of marginal effect de-

pends on the skewness. A positive inflation-skewness relationship depends on model

assumption. A positive relationship is more intuitive. A negative inflation-skewness

12The example shown in Figure 2-5 shows this negative relationship.
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relationship obtained from Fischer model is due to their assumption. Under the

downward price rigidity, firms do not respond to the negative shock even though it is

large. Thus, it is more appropriate to assume menu cost in the analysis of the effects

of relative price shocks. Third, as Ball and Mankiw noted, a large standard deviation

magnifies the effect of skewness on the mean, or a large skewness magnifies the effect

of standard deviation on the mean. This led Ball and Mankiw to include an inter-

action term in the regression equation of inflation. The kurtosis also has a similar

impact on the effects of standard deviation and skewness on the mean. Thus, it is

desirable to include interaction terms of all three moments in the inflation regression

equation.

3. Numerical Analysis for the Empirical Issues

It should be noted that the theoretical model suggests a relationship between the

aggregate (mean) inflation and unobservable moments (dispersion, skewness, and

kurtosis) of the distribution of underlying price shocks. Therefore, there is an empir-

ical limitation because of the unobservablity of underlying price shock distribution.

Ball and Mankiw estimated unobservable moments by the corresponding moments of

observed industry price changes and used them as explanatory variables in a linear

regression equation of inflation rates. This is valid procedure only if the two sets of

moments are linearly related. Therefore, we present a numerical analysis to identify

whether there is a linear relationship between both of them.

As shown in Figure 2-8, the relationship between σǫ and σπ are almost linear

relationships in all three models. The relationship between skǫ and skπ are also

almost linear except for the Fischer model of the higher kurtosis values in Figure 2-9.

Also, there is a linear relationship between ktǫ and ktπ in Figure 2-10. The results

for high kurtosis on the right panel are similar to the case of low kurtosis. Hence, the
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measurement errors in using σπ, skπ, ktπ for σǫ, skǫ, ktǫ and are minimal, and the

only effect will be the magnitudes of the coefficients of these variables in the inflation

regression equation.

Our numerical analyses reveal that the standard deviation, skewness and kurtosis

of observed industry price changes are almost linearly related to the counterparts

of underlying price shocks. Therefore, estimators of the moments of observed price

changes can be used for the moments price shocks with negligible measurement errors

in the linear regression analysis of the moments of price shocks on aggregate inflation.

C. Alternative Kurtosis

Our key idea is to introduce kurtosis and try to capture the additional properties of

the distribution. Pearson’s kurtosis is widely used. However, the kurtosis concept is

so unclear that it is difficult to interpret since it captures both peakedness and tail

heaviness as a single measure. It has been defined in many ways according to the

focus on the properties. This imply that different properties of distribution can be

captured by different kurtosis.

Recently, Seier and Bonett (2003) introduced an alternative kurtosis measures

which are defined as

K1 (b) = E
[
ab−|z|

]
, 2 ≤ b ≤ 20

K2 (b) = E
[
a
(
1 − |z|b

)]
, 0 < b ≤ 1

where z is the standardized variable, a is a normalizing factor to make kurtosis equal

to 3 for normal distribution and parameter b is restricted to particular range. We

call Seier and Bonnett’s measures the ‘SB kurtosis’ for convenience. SB kurtosis gives

more importance to the central part of the distributions while Pearson’s measure,

E [z4], gives more weights to the tail part of the distributions. As a result, SB
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kurtosis is more likely to capture peakedness than tail heaviness. In particular, they

argued that SB kurtosis “tends to be less correlated with skewness across a set of

skewed distribution”. This has something to do with our idea to capture independent

kurtosis effect.

Figure 2-11 shows that two distributions with different shapes can have the same

fourth moment. One is from the SuN density function and the other is from Normal

Inverse Gaussian (NIG) density function, one of the popular distributions in the

finance literatures. Even though two distributions have identical Pearson kurtosis,

they can take quite different shapes, in particular, central part of the distribution.

SB measures are likely to provide us with more information about the difference of

two distributions in terms of peakedness. Therefore, we expect that the performance

of both measures can be different in capturing the peakedness of the distribution.

Compared to the other macro data, the observed cross sectional price changes

show strong excess kurtosis13. To extract the features of actual data, we estimate

the density function. Figure 2-12 provides the kernel density estimation for annual

and monthly data. The most striking distributional feature of the price changes is its

peakedness. In particular, the density function of monthly data is more peaked than

that of annual data. Thus, it is worthy of considering alternative measures which are

likely to capture data properties better.

However, Ball and Mankiw’s arguments are valid only if moments of underlying

price shocks and corresponding moments of observed price changes are linearly re-

lated. Therefore, we compare the linear relationships of both measures. As shown in

Figure 2-13 and 2-14, there is also a linear relationship between ktǫ and ktπ in terms

of SB measures. It implies that we can use SB measures as a proxy for the unob-

13The ranges of kurtosis of price changes for annual and monthly data are (4, 100)
and (4, 240), respectively.
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served price shocks in a linear regression equation of inflation. Note that Pearson’s

kurtosis shows fan-shaped linear relationship while SB kurtosis shows parallel linear

relationship.

We conduct simple regression experiments to compare the performance of both

kurtosis measures as an ideal proxy in the regression analysis. Unlike former numerical

analysis, we consider a more general situation where all moments are changing at

the same time. We generate the experimental price shocks by changing the four

parameters of SuN distribution. These combinations of parameters are randomly

chosen from the particular range, which can generate moments of price changes within

the range of the actual data. We run the regression of moments of price shocks on

the moments of price changes. Table 2-1 and Table 2-2 shows regression results of

kurtosis of price shocks on moments of price changes by using both Pearson and SB

kurtosis. Explanatory power of SB kurtosis in terms of R
2

is better, particularly in

the monthly experiment. Therefore, based on regression results, we expect that SB

kurtosis can be a more ideal proxy for the price shocks.

D. Specification of Empirical Models

Based on numerical analysis, we found that it is desirable to include kurtosis and ad-

ditional interaction terms in the inflation regression equation. In order to reflect this,

we consider a single comprehensive specification that includes six major explanatory

variables which turn out to be valid from our numerical analysis. It covers theoret-

ical relationships implied by Fischer (1982), Ball and Mankiw (1994), and Ball and

Mankiw (1995). Following Ball and Mankiw, the annual version of inflation equation
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Table 2-1.: Regression of Price Shocks on Price Changes: Annual Data.

Pearson KT SB KT
SDǫ SKǫ KTǫ SDǫ SDǫ KTǫ

Constant 0.013 0.000 -3.874 0.005 0.000 -0.023
(0.000) (1.000) (0.000) (0.139) (1.000) (0.802)

SDπ 0.941 0.000 110.650 0.931 0.000 1.963
(0.000) (1.000) (0.000) (0.000) (1.000) (0.000)

SKπ 0.000 0.551 0.000 0.000 0.551 0.000
(1.000) (0.000) (1.000) (1.000) (0.000) (1.000)

KTπ 0.000 0.000 0.334 0.004 0.000 0.903
(0.000) (1.000) (0.000) (0.000) (1.000) (0.000)

R
2

0.925 0.750 0.605 0.918 0.750 0.674

Table 2-2.: Regression of Price Shocks on Price Changes: Monthly Data.

Pearson KT SB KT
SDǫ SKǫ KTǫ SDǫ SDǫ KTǫ

Constant 0.010 0.000 -6.398 0.042 0.000 -1.079
(0.000) (1.000) (0.000) (0.000) (1.000) (0.000)

SDπ 0.928 0.000 389.140 0.970 0.000 2.076
(0.000) (1.000) (0.000) (0.000) (1.000) (0.000)

SKπ 0.000 0.496 0.000 0.000 0.496 0.000
(1.000) (0.000) (1.000) (1.000) (0.000) (1.000)

KTπ 0.000 0.000 0.199 -0.009 0.000 1.208
(0.000) (1.000) (0.000) (0.000) (1.000) (0.000)

R
2

0.862 0.748 0.539 0.867 0.748 0.801

Notes: p-values are reported in parenthesis below the estimates.
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can be linearly specified as

πt = α + βπt−1 + γ1SDt + γ2SKt + γ3 (SDt · SKt)

+γ4KTt + γ5 (SDt · KTt) + γ6 (SKt · KTt) + ǫt

where πt is the inflation rate, πt−1 is a lagged inflation14 and ǫt is assumed to be an

i.i.d disturbance term with a zero mean and a finite variance.

Most previous studies on annual data follow Ball and Mankiw’s specification.

However, in case of studies on monthly data, there is a wide range of specification.

In particular, the selection of lags for regressors are quite different. We classify the

specifications into two types of models based on the lag selections of regressors.

First type of model uses only one lagged dependent variable, following Ball and

Mankiw’s annual version. Assarsson and Riksbank (2003) and Caraballo and Dabus

(2005) specified inflation equation as

πt = α + βπt−1 + γ1SDt + γ2SKt + γ3 (SDt · SKt) + ǫt

Second type uses more than one lagged dependent variables. Verbrugge (2002)

in his analysis of the relationship between inflation and unweighted triples U statistic

specified inflation equation as

πt = α +

9∑

k=1

βkπt−k + γTriplet + ǫt

Similarly, Caraballo and Usabiaga (2004) include two lagged dependent variables:

πt = α +
2∑

k=1

βkπt−k + γ1SDt + γ2SKt + ǫt

14Following Ball and Mankiw, the lagged inflation is used as a proxy for the ex-
pected inflation.
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Using lagged inflation is necessary to remove the autocorrelation in the residuals

since inflation is observed to have considerable persistence. Aside from these two

specification, there is a specification with lagged dispersion and skewness.15 However,

we cannot justify this specification because the purpose of our study is to capture the

effect of the changes in the distribution over time.

We follow the second type in order to capture data property and we select the

twelve lags as a counterpart of annual specification. The same lag structure is widely

used in Phillips Curve literature. Therefore, the monthly version of inflation equation

is linearly specified as

πt = α +

12∑

k=1

βkπt−k + γ1SDt + γ2SKt + γ3 (SDt · SKt)

+γ4KTt + γ5 (SDt · KTt) + γ6 (SKt · KTt) + ǫt

15Aucremanne, Brys, Hubert, Rousseeuw, and Struyf (2002) include lags for dis-
persion and skewness, not lagged inflation.

πt = α +

2∑

k=0

γ1kSDt−k +

2∑

k=0

γ2kSKt−2 + ǫt

Their results show that the coefficients for the second lags are not significant.
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We consider seven different sets of regressors:

(i) {SD, SK}

(ii) {SD, SK, (SD · SK)}

(iii) {SK, (SD · SK)}

(iv) {SD, SK, (SD · SK) , KT}

(v) {SD, SK, (SD · SK) , KT, (SD · KT )}

(vi) {SD, SK, (SD · SK) , KT, (SK · KT )}

(vii) {SD, SK, (SD · SK) , KT, (SD · KT ) , (SK · KT )}

First three sets of regressors are Ball and Mankiw’s model and the other four sets are

our model with kurtosis measures. The individual and joint significance of regressors

are evaluated by p-values. To evaluate the goodness of fit, we investigate four differ-

ent criteria: i) R
2
, ii) Root Means Squared Errors (RMSE), iii) Akaike Information

Criterion (AIC), iv) Schwartz Criterion (SC).

E. Empirical Results

1. Data

The data used in this paper is the four-digit level annual and monthly Producer Price

Indices (PPI) over the available sample period of 1947-2006. This is the data set

obtained from the Bureau of Labor Statistics (BLS)16. The price changes are defined

as

πit = ln (Pit) − ln(Pit−1)

16Historical data files are directly available at following FTP site:
ftp://ftp.bls.gov/pub/time.series/wp/
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where Pit is the index for industry i at time t, following the standard definition in

the literature. We use the 1997 weights that the BLS used in computing the overall

PPI. The moments for the commodity price changes are computed by the classical

measure of weighted standard deviation, skewness, and kurtosis of cross sectional

sample. We use the published inflation rate as a mean inflation. For monthly data,

we use seasonally unadjusted price changes.

The four-digit level PPI has missing observations for some industries. Ball and

Mankiw used only non-missing data when they computed the moments of price

changes. However, BLS computes overall inflation after estimating missing obser-

vations17. Therefore, it is more reasonable to consider corresponding price changes

used in the computation of published inflation. By the same procedures in estimating

missing item’s price quote, BLS also estimates the movements of higher level missing

indexes in PPI using the ‘moving code’ which is not published. This moving code

can be the average movement of the other items within the same category. In most

cases, it would be reasonable to use a higher level index to estimate the movement

17The Chapter 14 of the BLS Handbook of Methods gives an extensive description
of its methodology: “If no price report from a participating company has been received
in a particular month, the change in the price of the associated item will, in general, be
estimated by averaging the price changes for the other items within the same cell (that
is, for the same kind of products) for which price reports have been received”. A link
to this publication is http://stats.bls.gov/opub/hom/homch14 itc.htm. To figure out
how BLS estimates the missing observation, we consider a following specific example.

Item 1 Item 2 Item 3 Industry
weight 0.5 0.3 0.2 1

period 1 120 110 115 116
period 2 130 Missing 120 ?

First step is to normalize the weights of two reported items: Item 1’s weight is
0.5
0.7

= 0.71 and Item 2’s weight is 0.2
0.7

= 0.29. Next step is to calculate the average
growth rate of two items using normalized weights: 130

120
× 0.71 + 120

115
× 0.29 = 1.07.

Item 2’s missing index for period 2 is estimated by applying this growth rate to item
2’s index for period 1: 1.07 × 110 = 118. Next, industry index is the weight average
of all three items: 0.5 × 130 + 0.3 × 118 + 0.2 × 120 = 124.
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of missing observations because a higher level index is calculated after estimating

missing observations. Therefore, we estimate these missing observations using the

movements of higher level indexes instead of unpublished moving code.

2. Estimation Results

Our numerical analyses show that in most cases, three models produce the similar

pattern of inflation-moment relationships. However, there is a big difference in the

direction of marginal effect of dispersion (kurtosis). In Ball and Mankiw (1995) model,

it depends on the sign of skewness while it does not in Fischer (1982) and Ball and

Mankiw (1994) models. So, we ask which theoretical implication is consistent with

the feature of data. If the model assumption is right, it is likely to capture the data

property well. Thus, our first empirical question is “Which of the three models is

data-consistent in terms of theoretical implication?”.

By numerical analysis, we find that there is role of the kurtosis and alternative

kurtosis. Thus, second empirical question is “If we additionally consider the inde-

pendent kurtosis effects that previous studies omitted, how much can we improve the

approximation of inflation in terms of the goodness of fit?”. Third question is “Which

of the two kurtosis measures performs better in terms of the goodness of fit?”. We

will answer these three questions based on regression analysis.

To answer the first question, we examine the marginal effects of dispersion (kur-

tosis) with the skewness. Figure 2-15 shows the marginal effects of dispersion in

annual data. In most sample periods, overtime marginal effect totally depends on

the sign of skewness as in the upper panel. It is linearly related to the skewness.

This relationship holds for monthly data as in Figure 2-16. In addition, the marginal

effects of kurtosis also depend on the sign of skewness in Figure 2-17 and Figure 2-18.

Based on these results, we can say that Ball and Mankiw (1995) model is more data-
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consistent. In addition, note that the direction of dispersion effect and kurtosis effect

is opposite. So if we neglect the kurtosis, it can produce misleading results. Thus,

this difference between dispersion and kurtosis emphasizes the role of the kurtosis.

Next, we turn to the second and third questions. To find the dominant re-

sults irrespective of the chosen sample periods and to compare the performance of

models visually, we conduct the rolling regressions18. Figure 2-19 presents R
2

of

rolling regressions for annual using SB kurtosis measure. Adding kurtosis effect, in

all cases, contributes greatly to the R
2
. Specifically, contributions of the interaction

term (SK · KT ) are greater than those of (SD · KT ). Figure 2-20 shows the results

of monthly data. Contributions to R
2

by adding kurtosis effect are much substantial

at the monthly frequency. In addition, interaction term (SK · KT ) performs better

in most subsamples. The overall performances of adding kurtosis measures in recent

sample periods are better than those of earlier sample periods. Figure 2-21 and Fig-

ure 2-22 presents the results by using Pearson’s kurtosis. They are very similar to

those of SB kurtosis. Figure 2-23 and Figure 2-24 compare the performance of both

measures. In most cases, the SB kurtosis performs better.

The results of rolling regression provide a few implications for the regression anal-

ysis. The additional interaction term (SK · KT ) can help to improve the accuracy

of approximation. In addition, the individual kurtosis KT and the additional inter-

action term (SD · KT ) also can improve the Ball and Mankiw model even though

their quantitative roles depend on sample period and data frequency. Regarding the

performances of Pearson’s and SB kurtosis, both measures perform almost similarly.

However, SB kurtosis measure can perform slightly better than Pearson’s kurtosis

18The rolling regression is commonly used to test the stability of coefficient between
sub-samples or to identify regime changes over the sample periods.
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Fig. 2-16.: Marginal Effects of SD with the Skewness of Price Changes: Monthly Data

(2000-2006).
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Fig. 2-19.: R
2

of Rolling Regressions Using SB KT: Annual Data (1948-2006).
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Fig. 2-20.: R
2

of Rolling Regression Using SB KT: Monthly Data (1947.2-2006.12).

Notes: The seasonally unadjusted price changes are used.
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Fig. 2-21.: R
2

of Rolling Regressions Using Pearson KT: Annual Data (1948-2006).
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Fig. 2-22.: R
2

of Rolling Regression Using Pearson KT: Monthly Data (1947.2-

2006.12).

Notes: The seasonally unadjusted price changes are used.
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2

of Rolling Regression for the Comparisons between Pearson KT and

SB KT: Annual Data (1948-2006).
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measure.

Based on the rolling regression results, we suspect there may be structural

changes in our sample periods. Therefore, we check parameter instability across

sample periods. Because of the long spans of our data (1947-2006), it is important

to ask whether there is an instability of the regression coefficients, that is, structural

changes to the regression. Stability test must be taken into account since when there

are structural changes, estimates of coefficients are biased and inconsistent so that

they lead to a wrong conclusion. We choose our sample period based on the stability

test.

The classical method, the Chow (1960) test, can be applied. However, it can be

applied only when breakpoint is known so that arbitrary choice of breakpoint can be

problematic because test results are very sensitive to those choices. Andrews (1993)

introduced test for the case of an unknown breakpoint19. Following Andrews, we test

Ball and Mankiw’s best performed set of regressors (Constant, Lagged inflation, SD,

19Consider Yt = Xtβt +ut and null hypothesis H0 : βt = β for all t. The alternative
hypothesis is that coefficients are different between two subsamples under unknown
t.

H1 βt = β1 (π) for t ≤ Tπ
= β2 (π) for t > Tπ

where π ∈ (0, 1) is a trimming parameter, T is the sample size and Tπ is a single
breakpoint. LM test statistic for one time change occurring at change point π is
defined as

LM (π) =
Tπ∑

1

(
Yt − X

′

t β̃
)

X
′

t




[

Tπ∑

1

XtX
′

t

]−1

+

[
T∑

Tπ+1

XtX
′

t

]−1



Tπ∑

1

(
Yt − X

′

t β̃
)

Xt/σ̃
2

where β̃ =
[∑T

1 XtX
′

t

]−1∑T
1 XtYt, σ̃2 = 1

T−k

∑T
1

(
Yt − X

′

t β̃
)2

. Test statistics

are defined as Sup LM = supk∈[πT,(1−π)T ] LMk, exponentially weighted statistic Exp

LM = ln
∫

exp(Ft/2)dw(t) and average statistic Ave LM =
∫

Ftdw(t).
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SD, SD·SK). The null hypothesis of this test is that coefficients in Ball and Mankiw’s

model are the same throughout the entire sample period. The alternative hypothesis

allows different values of coefficients across various subsample periods.

Figure 2-25 presents LM statistics over the possible breakpoints in order to il-

lustrate testing results graphically. The 5% critical values of the Sup LM statistics

are compared. We can check LM statistics exceed the Andrew’s critical value for

both annual and monthly data. So we can reject the null hypothesis of no structural

change. Formally, Table 2-3 and Table 2-4 report three LM test statistics used in

Andrews (1993), Andrews and Ploberger (1994), and p values developed by Hansen

(1997). We reports only the joint statistics of all coefficients since it appears to be

better to judge breakpoint based on joint statistics, rather than individual statistics.

In all cases, the null hypothesis of no structural change is strongly rejected.

The LM statistics provide us with the most likely date for a structural change.

We choose a single breakpoint which has the largest LM statistics for coefficient

instability.20 For annual data, it is 1957 and for monthly data, it is February 1974.

To avoid the coefficient instability problem, our sample is divided into two subsamples

according to these breakpoints: For annual data, [1948, 1957] and [1958, 2006]. For

monthly data, [1947.2, 1974.2] and [1974.3, 2006.12].

Table 2-5 reports OLS estimation results of the annual data.21 The monthly data

results are reported in Table 2-6 and Table 2-7. The tables show the comparisons

between three Ball and Mankiw’s models and four our models which include kurtosis

20We focus on test for a single breakpoint. Multiple breakpoints may be general
but there are some debates on multiple breakpoints.

21First subsample of annual data has only 9 observations. So we will exclude it
from our analysis.
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Table 2-3.: Testing for Structural Change of Unknown Timing: Annual Data (1948-

2006).

Critical Value
Test Statistic 10% 5% 1% p value

Sup LM 24.3 16.2 18.4 22.5 0.005

Exp LM 9.1 5.2 6.1 7.9 0.003

Ave LM 12.0 7.8 9.0 11.3 0.007

Breakpoint 1957

Table 2-4.: Testing for Structural Change of Unknown Timing: Monthly Data

(1947.2-2006.12).

Critical Value
Test Statistic 10% 5% 1% p value

Sup LM 112.9 33.9 36.7 42.4 0.000

Exp LM 52.4 13.3 14.6 17.3 0.000

Ave LM 74.6 21.0 22.7 26.4 0.000

Breakpoint 1974.2

Notes: Critical values are reported from the Andrews (1993), and Andrews and Ploberger
(1994).
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measures. The numbers reported in parenthesis are p-values of the coefficients. The

goodness of fit of different specifications are investigated with four different criteria.

The overall estimation results are very consistent to those of our numerical anal-

ysis. All estimation results provide correct signs for the regressors except for the sign

of SD in the result using monthly data. The dispersion and skewness measure have

a positive effect on inflation and kurtosis measure has a negative effect on inflation.

While the skewness and kurtosis measure are always significant, the significance of

dispersion measure depends on data frequency. We note that when the interaction

terms are included, non-interaction terms become insignificant for annual data. For

example, in the first specification of Ball and Mankiw model without an interaction

term, both SD and SK are significant. However, in the second specification with

an interaction term, both SD and SK are not significant while the interaction term

(SD · SK) are significant.

On the whole, the additional kurtosis measures, in particular, interaction terms

can improve the Ball and Mankiw’s model in terms of goodness of fit. However, the

performances of adding kurtosis measures seem to depend on data frequency. For an-

nual data, including the individual kurtosis KT or the interaction term (SK · KT ) can

improve Ball and Mankiw model, but the improvement is not substantial. However,

in case of including interaction terms (SD · KT ), the improvement is quite substan-

tial. However, for monthly data, in case of including interaction terms (SK · KT ),

the improvement is quite substantial.

F. Conclusion

This paper shows the importance of kurtosis in the approximation of inflation, theo-

retically and empirically. This is because the kurtosis measure additionally captures
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Table 2-5.: Regression Results: Annual Data (1958-2006).

BM model BM(2)+Adding KT effect
(1) (2) (3) (4) (5) (6) (7)

Constant -0.013 -0.007 0.008 0.119 -0.196 0.057 -0.220
(0.090) (0.300) (0.028) (0.119) (0.263) (0.465) (0.198)

Lagged inflation 0.557 0.589 0.672 0.547 0.514 0.592 0.559
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SD 0.370 0.261 0.264 5.184 0.201 4.618
(0.001) (0.012) (0.010) (0.041) (0.049) (0.061)

SK 0.012 -0.002 -0.004 -0.001 -0.002 0.093 0.087
(0.000) (0.630) (0.302) (0.704) (0.612) (0.044) (0.052)

SD · SK 0.185 0.222 0.170 0.111 0.168 0.116
(0.000) (0.000) (0.001) (0.051) (0.001) (0.037)

KT -0.036 0.056 -0.018 0.063
(0.098) (0.272) (0.427) (0.205)

SD · KT -1.444 -1.294
(0.051) (0.072)

SK · KT -0.027 -0.025
(0.041) (0.057)

Marginal Effect SD 0.301 0.301 0.301 0.254 0.237 0.201
(0.004) (0.004) (0.003) (0.011) (0.018) (0.043)

Marginal Effect SK 0.011 0.011 0.010 0.010 0.011 0.010
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Marginal Effect KT -0.043 -0.024 -0.031
(0.039) (0.093) (0.043)

R
2

0.761 0.816 0.793 0.824 0.835 0.837 0.846
(Ratio) (100.9) (102.3) (102.5) (103.6)
RMSE 0.019 0.017 0.018 0.016 0.016 0.016 0.015
(Ratio) (96.8) (92.5) (92.1) (88.5)
AIC -4.882 -5.127 -4.870 -4.918 -4.930 -4.940 -4.940
(Ratio) (100.5) (101.4) (101.6) (102.4)
SC -4.727 -4.934 -4.870 -4.918 -4.930 -4.940 -4.940
(Ratio) (99.7) (99.9) (100.1) (100.1)

Notes: p-values are reported in parenthesis below the estimates.
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Table 2-6.: Regression Results: Monthly Data (1947.2-1974.2).

BM model BM(2)+Adding KT effect
(1) (2) (3) (4) (5) (6) (7)

Constant -0.004 -0.003 0.001 0.013 -0.008 0.013 -0.044
(0.000) (0.001) (0.036) (0.015) (0.608) (0.005) (0.002)

SD 0.217 0.155 0.152 0.970 0.134 2.417
(0.000) (0.000) (0.000) (0.096) (0.000) (0.000)

SK 0.001 -0.002 -0.002 -0.002 -0.002 0.010 0.013
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SD · SK 0.101 0.108 0.098 0.092 0.103 0.084
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

KT -0.004 0.001 -0.004 0.011
(0.000) (0.727) (0.001) (0.004)

SD · KT -0.219 -0.613
(0.159) (0.000)

SK · KT -0.003 -0.004
(0.000) (0.000)

Marginal Effect SD 0.142 0.142 0.140 0.136 0.121 0.107
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Marginal Effect SK 0.001 0.001 0.001 0.001 0.001 0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Marginal Effect KT -0.004 -0.004 -0.004
(0.003) (0.002) (0.003)

R
2

0.379 0.553 0.525 0.565 0.566 0.636 0.655
(Ratio) (102.1) (102.3) (115.0) (118.4)
RMSE 0.006 0.005 0.005 0.005 0.005 0.005 0.004
(Ratio) (98.6) (98.2) (89.9) (87.4)
AIC -7.331 -7.659 -7.599 -7.682 -7.682 -7.859 -7.909
(Ratio) (100.3) (100.3) (102.6) (103.3)
SC -7.157 -7.473 -7.424 -7.484 -7.473 -7.649 -7.688
(Ratio) (100.2) (100.0) (102.4) (102.9)

Notes: p-values are reported in parenthesis below the estimates. Estimates of lagged inflation
are not reported.
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Table 2-7.: Regression Results: Monthly Data (1974.3-2006.12).

BM model BM(2)+Adding KT effect
(1) (2) (3) (4) (5) (6) (7)

Constant 0.002 0.003 0.001 0.032 0.010 0.031 0.012
(0.007) (0.000) (0.008) (0.000) (0.506) (0.000) (0.288)

SD -0.038 -0.066 -0.050 0.662 -0.044 0.556
(0.099) (0.001) (0.003) (0.103) (0.000) (0.136)

SK 0.001 -0.001 -0.001 -0.001 -0.001 0.021 0.021
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SD · SK 0.062 0.060 0.064 0.066 0.081 0.082
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

KT -0.008 -0.002 -0.008 -0.003
(0.000) (0.630) (0.000) (0.384)

SD · KT -0.188 -0.159
(0.097) (0.076)

SK · KT -0.006 -0.006
(0.000) (0.000)

Marginal Effect SD -0.065 -0.065 -0.049 -0.042 -0.043 -0.037
(0.001) (0.001) (0.014) (0.038) (0.007) (0.020)

Marginal Effect SK 0.001 0.001 0.001 0.001 0.001 0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Marginal Effect KT -0.008 -0.008 -0.008
(0.000) (0.000) (0.000)

R
2

0.386 0.526 0.514 0.551 0.554 0.722 0.724
(Ratio) (104.8) (105.2) (137.2) (137.5)
RMSE 0.005 0.005 0.005 0.005 0.005 0.004 0.004
(Ratio) (97.2) (96.8) (76.4) (76.1)
AIC -7.462 -7.749 -7.726 -7.801 -7.803 -8.277 -8.280
(Ratio) (100.7) (100.7) (106.8) (106.9)
SC -7.337 -7.584 -7.571 -7.625 -7.617 -8.091 -8.084
(Ratio) (100.5) (100.4) (106.7) (106.6)

Notes: p-values are reported in parenthesis below the estimates. Estimates of lagged inflation
are not reported.
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the effect of changes in the distribution of price shocks on inflation. Since Mills (1927),

many authors have studied the relationship between inflation and moments of price

changes. The source to generate these relationships is the change in the shape of the

underlying distribution. To capture the shape of the distribution, earlier studies in

1970s and 1980s considered dispersion alone. Since Ball and Mankiw (1995) included

skewness, both dispersion and skewness have been used. We argue that kurtosis

should be considered to capture the property of the distribution sufficiently.

Empirically, we confirm the importance of kurtosis, which is consistent to our

theoretical analysis. Our empirical results show that the kurtosis measure has a sig-

nificant effect on inflation. In addition, we can improve the approximation of inflation

in terms of the goodness of fit. Especially, the improvement is substantial in monthly

data, implying dispersion and skewness are not sufficient. In this context, previ-

ous studies based on Ball and Mankiw’s model have a weakness since they omitted

important variables.

It is widely accepted that an inflation-dispersion relationship and an inflation-

skewness relationship are one of the stylized facts in macroeconomics. We propose an

inflation-kurtosis relationship as one of the stylized facts. This relationship has not

been emphasized. However, it can be included in inflation-moments relationship.
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CHAPTER III

INFLATION AND ROBUST MEASURES OF THE DISTRIBUTION OF PRICE

CHANGES

A. Introduction

Ball and Mankiw (1995) presented an intuitive simple model of menu costs which

suggests a relationship between the inflation rates and the distributional characteris-

tics of relative price changes. In their model, firms in each industry are heterogeneous

in their menu costs, but are subject to the same price shock. Faced with a shock to

their desired price, firms change the price only if the price shock is large enough to

make the benefit from changing the price to outweigh the menu cost. The proportion

of the firms which adjust their prices and the average price thus depend on the shape

of the distribution of price shocks. Ball and Mankiw focused on the dispersion and

skewness of the distribution, and illustrate a positive relationship between changes in

the price level and the dispersion/skewness of the distribution.

Ball and Mankiw analyzed the effects on the PPI inflation rate of the disper-

sion and skewness of the changes in prices of commodities that are included in the

overall PPI. The dispersion and skewness are computed by the classical measurement

of weighted and unweighted standard deviation and skewness of the cross sectional

sample. They found significant effects of both dispersion and skewness measures.

It is well known that classical measures of dispersion and skewness are very

sensitive to the presence of outliers. This sensitivity can have a significant effect on

the relationship between the skewness and inflation rate. A single positive outlier

tends to significantly increase the skewness, and it will also increase the inflation

rate in the same direction because the overall PPI is a weighted average of prices of
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individual commodities. This implies that a positive correlation between the skewness

and inflation rate can be caused by outliers, particularly in a sample of small size.

Verbrugge (1999) used a robust measure, triples U-statistic, in the place of the

classical skewness measure in his analysis of the relationship between the unweighted

median inflation and unweighted triples U-statistic which are robust to outliers. More

recently, Aucremanne, Brys, Hubert, Rousseeuw, and Struyf (2002) used the in-

terquartile range for the dispersion measure and the destandardised versions of the

skewness measures of Hinkley (1975) and Groeneveld and Meeden (1984) in addition

to the classical measures.

In this paper we examine the presence of outliers in the relative price changes

and estimate unweighted and weighted robust measures of dispersion and skewness.

The effects of robust measures on the inflation rate are then estimated and compared

with the results based on the classical measures of dispersion and skewness. We find

that dispersion/skewness of the distribution of price changes have a positive effect

on inflation in line with Ball and Mankiw. In particular, medcouple as a measure of

skewness is very useful in predicting inflation.

The paper is organized as follows. In the next section, various robust estimators

of weighted dispersion and skewness are presented and several methods of outlier

detection. In section 3, the inflation equations are specified and estimated. Section 4

concludes the paper with a summary of our major findings.

B. Classical and Robust Measures of Weighted Dispersion and Skewness

It is well known that classical measures of dispersion and skewness are very sensi-

tive to the presence of outliers. We present in this section the classical and robust

measures of weighted dispersion and weighted skewness, followed by a few methods
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of detecting outliers. Let x = {x1, x2, · · · , xn} be the random sample of size n and

w = {w1, w2, · · · , wn} be the corresponding non-negative weights. Unless specified

otherwise, we assume that the weights are normalized such that
n∑

i=1

wi = 1.

1. Classical Measures

The classical measure of weighted dispersion is

σ̂2 =
1

c

n∑

i=1

wi (xi − µ̂)2 , µ̂ =

n∑

i=1

wixi

where the constant term c takes a various forms1. For an unbiasedness of the esti-

mator, c = 1−
n∑

i=1

w2
i , which is used in Aucremanne, Brys, Hubert, Rousseeuw, and

Struyf (2004) and in the PyGSL program. If the location parameter is fixed, then

c = 1. The classical measure of weighted skewness is

ŝk =
1

d

n∑

i=1

wi

(
xi − µ̂

σ̂

)3

where d = 1 − 3
n∑

i=1

w2
i + 2

n∑
i=1

w3
i for the unbiased estimator, which is used in Aucre-

manne, Brys, Hubert, Rousseeuw, and Struyf (2004). When the location parameter

is a fixed value and is not estimated, d = 1. An alternative definition of the weighted

skewness that is used in the SAS program2 is

ŝk =
1

d

n∑

i=1

w
3/2
i

(
xi − µ̂w

σ̂

)3

These classical forms of dispersion and skewness measures are very sensitive to the

presence of outliers.

1Dataplot uses c = (n1 − 1) /n1, where n1 is the number of nonzero weights, and
SAS uses c = n or c = n − 1. Most studies uses c = 1.

2SAS program uses d = n if c = n and d = (n − 1) (n − 2) /n if c = n − 1. Most
studies uses c = 1.
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2. Robust Measures

There are many alternative robust measures of dispersion and skewness, most of

which are based on the estimates of the standard quantiles for unweighted data and

on the estimates of weighted quantiles for weighted data. When the weights are

nonnegative integers, the pth weighted quantile of data set x = (x1, x2, · · · , xn) with

weight vector w = (w1, w2, · · · , wn) is computed as the pth quantile of the expanded

data set w♦x = (w1♦x1, w2♦x2, · · · , wn♦xn), where ♦ is the duplication operator,

i.e., m♦x = xx · · ·x,, repeating x by m times. When the weights are normalized such

that
∑

wi = 1 and wi ≥ 0, the pth weighted quantile Qw
p (x) of x can be computed

as follows. Let
{
x(i)

}
and

{
w(i)

}
denote the sorted data in ascending order and the

corresponding ordered weights, respectively. Let xk be the largest value such that

ws(k) ≡
k∑

i=1

w(i) ≤ p. If ws(k) = p, then Qw
p (x) = x(k). If ws(k) < p, then we may

compute Qw
p (x) by Qw

p (x) = x(k), or by a weighted average x(k) and x(k+1)

Qw
p (x) =

x(k)

(
ws(k+1) − p

)
+ x(k+1)

(
p − ws(k)

)

ws(k+1) − ws(k)

The robust estimators of weighted dispersion and weighted skewness presented below

will use the estimates of weighted quantiles, or the weighted order statistics3 in the

computation of L moments.

Robust Measure of Dispersion

Two most commonly used robust alternatives to the classical standard deviation

are dispersion measures based on the interquartile range and the median absolute

deviation (MAD). The MAD in particular is a very robust estimator. The dispersion

3The weighted order statistic of x with weight vector w and threshold k is defined
as the kth largest value of the expanded list w♦x.
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measure based on the interquartile range is defined by

diqr = ciqr(Q0.75 − Q0.25) = ciqrIQR

where ciqr = 1/(2α) and α = Φ−1(0.75) ≈ 0.67449. The normalization factor ciqr is to

make diqr comparable to the classical standard deviation σ when the sample is from

a normal N(µ, σ2)4.

The MAD is the median of the absolute distances between each data point and

overall median of the data set

MAD(xi) = medi (|xi − medj(xj)|)

where the inner median, medj(xj), is the median of n observations and the outer

median, medi, is the median of the n absolute values of the deviations about the

overall median. The dispersion measure based on the MAD is defined by

dmad = cmadMAD(xi)

where the normalization factor cmad = 1/α ≈ 1.4826 is to make dmad comparable to

σ.

The MAD statistic implicitly assumes a symmetric distribution as it measures

the distance from a measure of central location (the median). Rousseeuw and Croux

(1993) proposed two new statistics, Sn and Qn, as alternatives to the MAD statistic.

The Sn is defined by

drcs = crcsmedi(medj(|xi − xj |))

4If x is distributed as a normal N(µ, σ2), then MAD(x) = ασ and IQR(x) = 2ασ,
for unweighted MAD and IQR, where α = Φ−1(0.75). The relationship between σ
and the weighted MAD and the weighted IQR is unknown. We will use the same
normalization constant for both unweighted and weighted samples.
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where the outer median, medi, is the median of n medians of {|xi − xj |, j = 1, 2, · · · , n}.

The correction factor crcs = 1.1926 is to reduce the small sample bias in the estima-

tion of the standard deviation. The Qn measure of Rousseeuw and Croux is defined

by

drcq = crcq {|xi − xj |; i < j}(k) , k =

(
h

2

)
, h = [n/2] + 1

where crcq = 2.2219 and [n/2] is the integer part of n/2. This estimator is a con-

stant times the kth order statistic of the n(n − 1)/2 distances between data points.

This estimator has a significantly better normal efficiency and it does not depend on

symmetry.

Robust Measure of Skewness

One of the robust skewness measures is Hinkley’s (1975) generalization of Bowley’s

(1920) coefficient of skewness, which is defined by

skh(p) =
(Q1−p − Q0.5) − (Q0.5 − Qp)

(Q1−p − Q0.5) + (Q0.5 − Qp)
, 0 < p < 1/2

which takes a value in the interval [−1, 1]. The quartile skewness with p = 1/4

is Bowley’s measure. The quartile skewness is less sensitive to outliers than the

octile skewness (p = 1/8), but the latter uses more information from the tails of the

distribution and can be more useful in detecting asymmetry5.

Hinkley’s measure requires a choice of p and the measure may be sensitive to a

particular choice. Furthermore, this measure is insensitive to the distribution in the

tails outside the chosen quantiles. The skewness measure proposed by Groeneveld

5Aucremanne, Brys, Hubert, Rousseeuw, and Struyf (2004) used the de-
standardized versions of Hinkley’s measure in their study of inflation rate, i.e., they
used only the numerator term of the Hinkley’s measure with p = 1/4 and p = 1/8.
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and Meeden (1984) overcomes this problem by taking probability-weighted averages

of the numerator and denominator terms in Hinkley’s measure. It is defined by

skgm =

∫ 1
2

0
([F−1(1 − p) − Q0.5] − [Q0.5 − F−1(p)]) dp

∫ 1
2

0
([F−1(1 − p) − Q0.5] + [Q0.5 − F−1(p)]) dp

=
µ − Q0.5

E|X − Q0.5|

where F is the cumulative distribution function and Qp = F−1(p). This measure takes

a zero value for a symmetric distribution and takes a value in the interval [−1, 1]6.

This estimator can be estimated by

skgm =
x − Q0.5

n∑
i=1

wi |xi − Q0.5|
, x =

n∑

i=1

wixi

Brys, Hubert, and Struyf (2003) introduced the medcouple (MC ) as a robust

measure of skewness. Let the sample be sorted in ascending order: x(1) ≤ x(2) ≤

· · · ≤ x(n). The medcouple is defined by

skmc = med
x(i)≤Q0.5≤x(j)

h(x(i), x(j))

where the kernel function is defined as

h(x(i), x(j)) =
(x(j) − Q0.5) − (Q0.5 − x(i))

(x(j) − Q0.5) + (Q0.5 − x(i))

for all x(i) ≤ Q0.5 ≤ x(j). Note that, if either x(i) or x(j) coincides with the median,

then h(x(i), x(j)) = 1 for all x(j) ≥ x(i) = Q0.5, and h(x(i), x(j)) = −1 for all x(i) ≤

x(j) = Q0.5. If there are more than one data point which coincide with the median

such that x(j) = x(i) = Q0.5, then the kernel function is defined as h(x(i), x(j)) = +1

6Note that the denominator of skgm can be considered as a measure of dispersion.
If the denominator term is replaced with the classical dispersion measure, it becomes
Pearson’s coefficients of skewness skp = 3(mean − median)/σ.
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if i > j, h(x(i), x(j)) = −1 if i < j, and h(x(i), x(j)) = 0 if i = j. Thus, if m number

of data points coincide with the median, the kernel function takes m number of zero

values and m(m − 1)/2 number of +1 and −1, respectively. Since the value of the

kernel function lies in the interval (−1, 1) for all x(i) ≤ Q0.5 ≤ x(j), skmc takes a value

in (−1, 1). Note that the kernel function is the same as Hinkley’s measure of skewness

except that Qp and Q1−p are replaced by order statistics x(i) and x(j).

Hosking (1990) introduced L-moments which are summary statistics for proba-

bility distributions and data samples. L-moments can characterize a wider range of

distributions than the classical moments because the existence of L-moments requires

the existence of only the first order moment. They are particularly useful in iden-

tifying skewed distributions and their estimators are more robust to the presence of

outliers in the data. They also provide measures of location, dispersion, skewness,

kurtosis, and other aspects of the shape of probability distributions or data samples.

L-moments are defined as a linear function of the expected order statistics

ℓr =
1

r

r−1∑

k=0

(−1)k

(
r − 1

k

)
E(Xr−k:r), r = 1, 2, · · ·

where E(Xj:r) is the expectation of the jth order statistic in a sample of size r

drawn from the distribution of F (x). These moments can also be expressed as linear

functions of the weighted probability moments introduced by Greenwood, Landwehr,

Matalas, and Wallis (1979)

ℓr =
1

r

r−1∑

k=0

(−1)r−k−1

(
r − 1

k

)(
r + k − 1

k

)
βk, r = 1, 2, · · ·

where βk is the probability weighted moment

βk =

∫
x[F (x)]kdF (x)
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The first three L-moments can thus be written as

ℓ1 = β0, ℓ2 = 2β1 − β0, ℓ3 = 6β2 − 6β1 + β0

where the coefficients are those of the shifted Legendre polynomials. ℓ1is the sample

mean, a measure of location. The second L-moment ℓ2 is (a multiple of) Gini’s

mean difference statistic, a measure of the dispersion of the data values about their

mean. By dividing the higher-order L-moments by the dispersion measure, we obtain

L-moment ratios,

τr = ℓr/ℓ2, r = 3, 4, · · ·

These are dimensionless quantities, independent of the units of measurement of the

data. Hosking shows that τr for r ≥ 3 are bounded in (−1, 1), and proposes to use τ3

as a measure of skewness, which is called the L-skewness and will be denoted by skL.

The L-moments are estimated from the estimators bk of the probability-weighted

moments βk,

b0 =
1

n

n∑

j=1

x(j)

bk =
1

n

n∑

j=k+1

(j − 1)(j − 2) · · · (j − k)

(n − 1)(n − 2) · · · (n − k)
x(j)

where x(j) is the jth order statistic of a sample sorted in ascending order.

For the weighted sample, bk is computed by using the order statistics of the

expanded data set w♦x7.

The triples U-statistic is proposed independently by Davis and Quade (1978)

and Randles et al. (1980) to test asymmetry (skewness) around an unknown center.

7When weights are not integers, weights are converted to integers by multiplying
a constant that is large enough to make the smallest weight to become an integer.
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Verbrugge (1999) used this statistic in his analysis of the correlation between the

median and skewness of the cross sectional prices. The triples U-statistic is defined

as

sktu =

(
n

3

)−1 ∑

i<j<k

h (xi, xj , xk)

where the kernel function is given by

h (xi, xj , xk)

=
1

3
(sign [(xi − xk) + (xj − xk)]

+sign [(xi − xj) + (xk − xj) + sign [(xj − xi) + (xk − xi)]])

=
1

3
sign [mean (xi, xj, xk) − med (xi, xj , xk)]

When this statistic is used to test the asymmetry around an unknown center, the

hypothesis of symmetry is rejected if the corresponding U-statistic is too large in

absolute value. The second expression of the kernel function suggests that the validity

of the test follows from the observation that for a sample of size three from a symmetric

distribution, the sample median is equally likely to be above the sample mean as below

it. We use the triples U-statistic as a measure of skewness around an unknown center.

Triples U-statistic can be considered as an estimator of

P (x1 + x2 > 2x3) − P (x1 + x2 < 2x3)

= P [(x1 − x3) + (x2 − x3) > 0] − P [(x1 − x3) + (x2 − x3) < 0]

3. Detection of Outliers

One of the most widely used identifiers is Tuckey’s (1971, 1977) boxplot identifier

which uses the first and third quartiles as reference points and determines the length

of the whisker by a constant multiple of the interquartile range (IQR):
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Boxplot identifier : [Q0.25 − cIQR, Q0.75 + cIQR], c = 1.5

Vandervieren and Hubert (2004) modified Tuckey’s boxplot by introducing a robust

measure of skewness in the determination of whiskers

VH identifier : [Q0.25 − c1IQR, Q0.75 + c3IQR]

c1 = 1.5eα1MC , c3 = 1.5eα3MC

where MC is the medcouple measure of skewness. α1 = −3.5 and α3 = 4 when

MC ≥ 0 and α1 = −4 and α3 = 3.5 when MC ≤ 0.

Carling (2000) proposed the use of median Q0.5 instead of quartiles Q0.25 and

Q0.75 as the reference point and to use the IQR for the whisker length

Carling identifier : [Q0.5−cIQR, Q0.5 + cIQR], c = 2 or 3

This identifier is also called the median rule. When the dispersion estimator dmad

from the MAD is used instead of the IQR, it is called the Hampel identifier

Hampel identifier : [Q0.5 − cdmad, Q0.5 + cdmad], c = 2 or 38

Rousseeuw, Ruts, and Tukey (1999) proposed the bagplot which is a bivariate gener-

alization of the boxplot, and defined the univariate fences as

RRT identifier : [Q0.5 − c(Q0.5 − Q0.25), Q0.5 + c(Q0.75 −Q0.5)], c = 3 or 4

Aucremanne, Brys, Hubert, Rousseeuw, and Struyf (2004)9 called this identifier the

asymmetric boxplot rule and used c = 3, while Rousseeuw, Ruts, and Tukey (1999)

used c = 4.

8Other choices of the values of c have been used in the literature such as c=3.5 in
Sabade and Walker (2002).

9They defined the fences of the standard boxplot rule as [Q0.5 − 1.5IQR, Q0.5 +
1.5IQR], but this definition is not consistent with the conventional definition that is
widely used in the literature.
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C. Empirical Results

Data used in this study is the four-digit level annual Producer Price Indices (PPI)

over the sample period of 1947-2003. This is the data set that Demery and Duck

(2007) have used in their study of the effect of trend in inflation. We use the 1997

weights that the BLS used in computing the overall PPI10.

Figure 3-1 shows the proportion of industries’ PPI that are identified as outliers

by various methods described in the previous section. Average proportions of outliers

range from about 11% to about 12%. The Tuckey boxplot, VH boxplot and RRT

identifiers show almost identical results on the average as well as over the entire

sample period. The Carling and Hampel identifiers11 give a little smaller proportion

as outliers on the average, but the process of their proportions over time is similar to

the process of the proportions of other identifiers.

Figure 3-2 presents the classical estimates and various robust estimates of dis-

persion. The biased and unbiased classical estimates of dispersion are practically

identical, and their estimates are greater than robust estimates. As shown in the top

panel of Figure 2, the interquartile-based dispersion diqr and the MAD-based disper-

sion dmad are very close to each other with a correlation coefficient 0.98. The middle

panel of Figure 3-2 shows that the Sn and Qn measures of Rousseeuw and Croux

(1993), denoted by drcs and drcq, respectively, are also very close to each other with

a correlation coefficient 0.99. These two groups of estimators are highly correlated

with the classical measure of dispersion with a correlation coefficient of about 0.7.

10We are grateful to Demery and Duck who generously provided the data for our
study. When the PPI index is missing for some industries, the weights are normalized
after excluding the industry with missing observations.

11We used c=3 for Hampel identifier and c=4 for RRT identifier. When smaller
values of c are used, the proportion of outliers identified by each method is a little
higher: 0.186 for Hampel and 0.176 for RRT.
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Fig. 3-1.: Proportion of Outliers.

Notes: Average Proportion in Parenthesis.
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Fig. 3-2.: Alternative Dispersion Estimates.
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Fig. 3-3.: Correlation between Classical and Robust Estimates of Dispersion.

Notes: Rolling Window of 25 Periods.

But, Hosking’s L2 measure is even more highly correlated with the classical measure

with a correlation coefficient 0.98. When L2 is scaled up to have the same standard

deviation as the classical measure, the two series become almost identical.

Although the correlations of robust estimates diqr, dmad, drcs and drcqwith the

classical estimates are quite high for the entire sample period, their relationships

appear different between the early sample period and later sample period. The robust

estimates seem to stay flat since 1990 while the classical estimates show an upward

trend. Figure 3-3 shows the change in the correlation over time, which are computed

from 25 period rolling window. It clearly shows a substantial change in the correlation

in 1999: there is a much greater discordance between the classical and robust estimates

in more recent samples.
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Table 3-1.: Correlation among Skewness Estimates.

skclu skclb skh(1/4) skh(1/8) skgm skmc skL sktu skwtu

skclu 1.00

skclb 1.00 1.00

skh(1/4) 0.53 0.53 1.00

skh(1/8) 0.63 0.64 0.75 1.00

skgm 0.76 0.76 0.79 0.93 1.00

skmc 0.63 0.64 0.90 0.89 0.93 1.00

skL 0.81 0.81 0.68 0.88 0.98 0.85 1.00

sktu 0.74 0.74 0.63 0.80 0.82 0.78 0.81 1.00

skwtu 0.73 0.74 0.75 0.94 0.97 0.90 0.96 0.86 1.00

Robust estimators of skewness, skh, skgm, skmc and skL are bounded in an in-

terval (-1, 1), and the triples U-statistics skwtu is bounded in an interval (-1/3, 1/3).

To make them visually comparable with unbounded classical measures, all estimators

are scaled to have the average standard deviation of skh, skgm, skmc, and skL. Fig-

ure 3-4 shows the estimates of skewness in three groups, where the grouping is partly

based on the correlations among the estimates as reported in Table 3-1. The unbiased

and biased classical measures of skewness are almost identical, and the L-skewness

measure skL is most highly correlated with the classical measures with correlation

coefficient 0.81. The robust estimators skgm, skL, and skwtu are almost identical.

Figure 3-5 shows the changes of relationship between the estimates of the unbi-

ased classical measure and the estimates of robust measures of skewness over time.

They are computed from 25 period rolling windows. The relationship seems to be rela-

tively stable for the skgm, skL and skwtu, but skh and skmc show substantial decrease

in their concordance with the classical measure over the period of 1974-1984. For

more recent data period, the relationship between the classical and robust measure

seem to converge to 0.7-0.8 of correlations.

Turning now to the regression analysis of the effects of the dispersion and skew-
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Fig. 3-4.: Alternative Estimates of Skewness.



79

1972  1980  1990  2000
0.4

0.5

0.6

0.7

0.8

0.9

1

sk−h
sk−gm
sk−mc
sk−L
sk−wtu

Fig. 3-5.: Correlation between Classical and Robust Estimates of Skewness.

Notes: Rolling Window of 25 Periods.

ness on the aggregate inflation rates, we estimate

πt = α + βπt−1 + γ1SDt + γ2SKt + γ3 (SDt · SKt) + ǫt

where πt is the inflation rate, πt−1 is a lagged inflation12 , SDt is dispersion, SKt

skewness and ǫt is assumed to be an i.i.d disturbance term with a zero mean and a

finite variance.

Table 3-2 presents the estimation results. When classical measures are used, both

dispersion and skewness have a positive effect on inflation. The effect of skewness is

highly significant with a p-value close to zero. But, the effects of dispersion is not

12Following Ball and Mankiw, the lagged inflation is used as a proxy for the ex-
pected inflation.



80

Table 3-2.: Estimation Results: 1947-2003.

Marginal Marginal Ranking of

dispersion skewness Effect of SD Effect of SK R
2

R
2

(p-value) (p-value)

CLS CLS 0.245 0.000 0.686 23

diqr skh 0.203 0.000 0.796 14
skgm 0.001 0.000 0.817 11
skmc 0.000 0.000 0.733 21
skL 0.018 0.000 0.814 12

skwtu 0.012 0.000 0.823 10

dmad skh 0.351 0.000 0.806 13
skgm 0.000 0.000 0.853 3
skmc 0.000 0.000 0.771 19
skL 0.034 0.000 0.833 7

skwtu 0.019 0.000 0.840 6

drcs skh 0.161 0.000 0.796 15
skgm 0.000 0.000 0.863 1
skmc 0.000 0.000 0.788 17
skL 0.007 0.000 0.827 8

skwtu 0.005 0.000 0.843 4

drcq skh 0.226 0.000 0.791 16
skgm 0.000 0.000 0.856 2
skmc 0.000 0.000 0.771 18
skL 0.013 0.000 0.824 9

skwtu 0.011 0.000 0.841 5

L2 skh 0.410 0.000 0.692 22
skgm 0.101 0.000 0.672 25
skmc 0.078 0.000 0.608 26
skL 0.162 0.000 0.676 24

skwtu 0.307 0.000 0.741 20
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significant with a p-value of 0.245. In the case of robust measures, both dispersion and

skewness also have a positive effect on inflation irrespective of the choice of measures.

The effects of skewness are highly significant in all cases. But the significance of

dispersion depends on the choice of robust measures. Note that when skmc is used, the

effect of dispersion becomes significant. But, when skh is used, the effect of dispersion

becomes insignificant. It implies that the interaction effect between dispersion and

skewness is greater than individual effect of dispersion. Irrespective of the choice

of robust measures, the effect of skewness is positively significant. Thus, we don’t

find any evidence that the positive inflation-skewness relationship can be caused by

outliers.

It is interesting to compare the goodness of fit according to the different choice

of measures. Table also presents R
2

of the regressions. When classical measures are

used, it is 0.69. R
2

of the regression used by robust measure are higher than R
2

by

classical measures, except for the cases used L2 as a dispersion measure. When drcs

and skgm are used, the fitting of inflation is the best with a R
2

of 0.86. The next best

set for the fitting is (drcq, skgm), (dmad, skgm) and (drcs, skwtu).

D. Conclusion

Ball and Mankiw (1995) showed a positive relationship between inflation and the

dispersion/skewness of price changes. One of the issues in past studies concerns

the source of the observed positive relationship. Ball and Mankiw argued that its

important source is the menu cost, that is, price stickiness. However, their argument

was criticized by Bryan and Cecchetti (1999). Their criticism is that the presence

of outliers in price changes causes the misleading correlation between mean and the

dispersion/skewness of price changes.
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We showed there is a significant relationship between inflation and dispersion/skewness

after considering outlier effects. Thus, the observed inflation-dispersion/skewness re-

lationship is one of the stylized fact, rather than a spurious result caused by out-

liers. Consequently, our empirical results generally support the argument of Ball and

Mankiw.

However, our results also partly support the criticism of Bryan and Cecchetti.

We showed that using robust measures yields the higher goodness of fit in predicting

inflation. In particular, medcouple as a measure of skewness is very useful. We find

that adjusting outlier problems is reasonable in the study of cross-sectional distribu-

tion of price changes.
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CHAPTER IV

ESTIMATION OF HYBRID PHILLIPS CURVE:

OPTIMUM CHOICE OF INSTRUMENTAL VARIABLES

A. Introduction

Recent literature on the inflation dynamics focuses on two lines of research. The New

Keynesian Phillips Curve (NKPC) models are based on the microeconomic founda-

tion that introduces nominal rigidities into the forward-looking optimizing behavior

of monopolistically competitive firms. The baseline model specifies the inflation as

a function of forward-looking expectations of inflation and marginal costs as the un-

derlying driving force.

Gali and Gertler (1999, GG henceforth) extend the baseline model by introducing

two types of firms: forward-looking and backward-looking firms. Their model is

a hybrid model that includes past inflation and expected inflation in addition to

the marginal costs as the driving force. This model has been applied in numerous

empirical applications. Main interests in these studies are the degree of price rigidity,

relative role of forward- and backward-looking expectations, and the marginal costs

as the driving force instead of more conventional measures such as output gaps.

The model is typically estimated in a structural form or in a closed form by using

the GMM. As noted in Nason and Smith (2005), estimates of NKPC parameters

are sensitive to the choice of instrumental variables and to the choice of inflation

data. To avoid the weak instrumental variables problem, relatively small number of

instrumental variables are chosen in general on an ad hoc basis. However, since

the instrumental variables are for the rational expectation of future inflation and

the information set for the conditional expectation can include a large number of
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informational variables, it is desirable to select the best set of relatively small number

of instrumental variables in a systematic way.

Another line research in inflation dynamics is the information forecasting in a

data rich environment. Factor models have been used widely in the macroeconomics

literature to summarize efficiently a large set of data and to use the summary statis-

tics for a variety of purposes including forecasting. In a series of papers, Stock and

Watson (1998, 2002a,b, 2005) propose to use ordinary principal components estimator

of the factors, while Forni, Hallin, Lippi, and Reichlin (2000, 2003); Forni, Lippi, and

Reichlin (2004); Forni, Hallin, Lippi, and Reichlin (2005) propose to use the general-

ized principal components estimator. Bernanke, Boivin, and Eliasz (2005) introduce

the principal components estimator into the VAR model to overcome the dimension-

ality problem of the VAR model. The FAVAR augments the standard VAR model

with a few latent factors. Bai and Ng (2007b) show that principal components of a

large number of weakly exogenous variables are not only valid instruments for the

endogenous regressors, but also they can be more efficient than the observed vari-

ables, if weakly exogenous instruments and the endogenous regressors share common

factors. In practice, the first a few principal components, which explain the variation

of indicator variables the most, are used many applications. Bai and Ng (2007a)

emphasize, however, that the first a few principal components are not necessarily the

best instruments for the endogenous regressors. The problem of selecting the best

set of instruments still remains even when we use the principal components of weakly

exogenous variables.

This paper examines the robustness of the estimates of parameters in GG’s hy-

brid model to the choice of instrumental variables. Both the structural form and

closed form equations of the model are estimated by the GMM. Several sets of instru-

ments are considered, including the set used in GG, Rudd and Whelan (2005, RW5
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henceforth), its subset used in Gali, Gertler, and Lopez-Salido (2001, 2005, GGLS

henceforth) and Rudd and Whelan (2007, RW7 henceforth). Additional instrumen-

tal variable sets include a subset of observed weakly exogenous variables selected by

L2-boosting method of Buhlmann and Yu (2003), and a subset of ordinary and gen-

eralized principal components selected by the L2-boosting method. The L2-boosting

method is one of three methods suggested in Bai and Ng (2007a).

We find that the boosting procedure from 270 observed variables yields different

sets of instruments for the GDP and NFB inflation series, and they differ from the

set of instruments used in previous studies. It is interesting to note that the first

instrument selected by the boosting is the NAPM (National Association of Purchasing

Managers) vendor deliveries index for both inflation series, and both sets include the

lagged monetary base, which is not included in GG’s instrument set. Since the GDP

and NFB inflation series are highly correlated and follow similar time paths, estimates

of parameters and significance of hypothesis tests are expected to be similar between

the two inflation series. However, GG’s and GGLS’s instruments give very different

estimates for the fraction of backward-looking agents and p-values of some of the test

statistics. Boosted instruments, on the other hand, give very comparable estimates.

Furthermore, parameter estimates with boosted instruments have much higher joint

precision. We can draw similar observations from the instruments boosted from the

set of ordinary and generalized principal components. We do not find any significant

difference in the results between the ordinary and generalized principal components,

but the instruments boosted from principal components tend to perform better than

the instruments boosted from observed exogenous variables.

The paper is organized as follows. In section 2, we briefly review GG’s hybrid

model of inflation and identify the hypotheses that the model implies. Since pre-

vious studies did not test some of the hypotheses formally, we test them based on
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their estimation results. Section 3 describes the L2-boosting method, computational

procedures of the ordinary and generalized principal components, and the methods

of determining the number of static and dynamic factors. In section 4, estimation

of parameters in GG’s model and tests of hypotheses are reported and compared

across different sets of instruments. Section 5 concludes the paper with a summary

of findings.

B. Specification and Estimation of Phillips Curve Models

GG consider two models of inflation, a baseline model and a hybrid model. Both

models are based on Calvo (1983)’s assumption that monopolistically competitive

firms face some type of constraints on price adjustment. The probability that a

firm may adjust its price during any given period is (1 − θ) and it must keep the

current price with probability θ. Each firm faces a demand of constant price elasticity.

When all firms are identical ex ante, the aggregate price level pt is given by a convex

combination of pt−1 and the optimal reset price p∗t

(1) pt = θpt−1 + (1 − θ) p∗t

where the optimal reset price that maximizes the expected discounted profit is given

by

(2) p∗t = (1 − βθ)

∞∑

k=0

(βθ)k Et

(
mcn

t+k

)

where mcn
t is the nominal marginal cost, β is the subjective discount factor, and

all variables are expressed as a percent deviation from their steady state values.

Combining these two equations, the baseline model is derived as

(3) πt = pt − pt−1 = λ0mct + βEt (πt+1)
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where λ0 = (1 − θ) (1 − βθ) /θ and mct is the real marginal cost. The closed form

equation of (3) is derived by repeated substitution

(4) πt = λ0

∞∑

k=0

βkEt (mct+k)

This closed form predicts that inflation should be determined by the expected dis-

counted sum of future values of the real marginal cost. To make (4) empirically

tractable, Rudd and Whelan (2005, RW5 henceforth) truncate the infinite sum to a

finite sum plus a remainder term

(5) πt = λ0

K∑

k=0

βkEt (mct+k) + βKEt (πt+K+1)

GG generalize the baseline model by introducing two types of firms: ‘forward

looking’ firms and ‘backward looking’ firms. Forward-looking firms behave like the

firms in the baseline model in setting their price pf
t as in (2). Backward-looking

firms set their price pb
t to the average of newly set prices in previous period plus an

adjustment for the realized inflation in previous period

(6) pb
t = p∗t−1 + πt−1 =

[
ωpb

t−1 + (1 − ω) pf
t−1

]
+ πt−1

where ω is the fraction of backward-looking firms. Substituting these relationships

into the aggregate price level pt = θpt−1 + (1 − θ) p∗t , they derive a new hybrid model

(7) πt = λmct + γfEt (πt+1) + γbπt−1

where

(8) λ =
(1 − θ) (1 − ω) (1 − βθ)

φ
, γf =

βθ

φ
, γb =

ω

φ
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and φ = θ + ω [1 − θ (1 − β)]. The closed form equation of (7) is given by

(9) πt = δ1πt−1 + λ

∞∑

k=0

δ2
−kEt (mct+k)

where λ = λ/ (δ2γf) and

δ1 =
1 −

√
1 − 4γbγf

2γf
, δ2 =

1 +
√

1 − 4γbγf

2γf

Empirically implementable version of (9) is specified as

(10) πt = δ1πt−1 + λ

∞∑

k=0

τkEt (mct+k) + Et

[
τ (K+1) (πt+K+1 − δ1πt+K)

]

where τ = δ2
−1. Parameters λ, δ1 and τ in this equation are estimated with or

without the last remainder term.

RW5 argue that the estimation of the structural equation (7) can be sensitive to

specification errors. If one of the instrumental variables is an omitted variable from

the inflation equation, then the instrumental variable estimator of the coefficient of the

expected inflation is likely biased upward. They argue that it is preferable to estimate

the closed form specification of the inflation equation because it is model consistent,

and because it is less likely to overstate the effect of forward-looking behavior even if

some relevant variables are omitted from the inflation equation.

One of the major issues in the analysis of inflation dynamics is the relative

importance of backward- and forward-looking behavior. GG use the relative size of

γf and γb as the measure of relative importance, and draw a conclusion that forward-

looking behavior is dominant because the estimate of γf is greater than the estimate

of γb. Though they do not conduct a formal test, we may test GG’s measure of
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relative importance by specifying the null and alternative hypotheses as1

(11) H0
GG : γb − γf ≥ 0, H1

GG : γb − γf < 0

Rudd and Whelan (2007, RW7 henceforth) criticize GG’s measure of relative

importance of price setting behavior. They argue that estimation of closed form (10)

is preferable to the estimation of structural form (9) because of potential adverse

effects of mis-specification errors in the latter. The role of forward-looking behavior

is represented by λ or λ in (10). They argue that parameters γf and γb are “almost

completely unrelated to the question. . . whether there is a statistically significant role

for expected future labor shares.” Therefore, the comparison of the estimates of γf

and γb is “not useful for assessing the importance of the forward-looking component

of the hybrid model.” The null and alternative hypotheses2 that RW7 prefer to test

are

(12) H0
RW : λ = 0, H1

RW : λ > 0

which are equivalent to

(13) H0
RW : λ = 0, H1

RW : λ > 0

in the closed form equation (10).

In the context of GG’s hybrid model with theoretical restrictions on the range

of parameters (0 < θ < 1, 0 < β ≤ 1 and 0 ≤ ω ≤ 1), this test can be written in two

alternative tests. It is easy to see from the expression for λ in (8) that λ = 0 if and

1These hypotheses can be expressed as nonlinear hypotheses in terms of primitive
parameters of GG’s hybrid model as H0

GG : ω − βθ ≥ 0 and H1
GG : ω − βθ < 0.

2They seem to use two-sided tests. We specify the hypotheses as a one-sided test
because λ takes only non-negative values in the context of GG’s model.
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only if ω = 1, and λ > 0 if and only if ω < 1. Therefore, the null and alternative

hypotheses in (12) and (13) can be written as

(14) H0
RW : ω = 1, H1

RW : ω < 1

The test of RW7 is thus a test of the null hypothesis of no forward-looking agents

against mere presence of forward-looking agents and it does not consider the magni-

tude of the effects of forward-looking agents on inflation. On the other hand, GG’s

test is testing not just the presence of forward-looking agents, but testing the presence

of a sufficient number of forward-looking agents such that they influence the inflation

dynamics more than backward-looking agents3.

If β 6= 1, the test of RW7 is also equivalent to a test of hypotheses

(15) H0
RW : γf + γb = 1, H1

RW : γf + γb < 1

This test is equivalent to the test in the closed form equation

(16) H0
RW : τ = 1, H1

RW : τ < 1

if γf > 1/2, or to the test

(17) H0
RW : δ1 = 1, H1

RW : δ1 < 1

if γf < 1/2.

The hypotheses in (15) further illustrates that the test of RW7 is also related

to parameters γb and γf , and hence, their criticism on the use of these parameters

in GG’s test seems to be untenable. Note that γf + γb = 1 if and only if ω = 1 or

3This interpretation is based on the fact that βθ < 1 and the test statistic for
(14) is same as the test statistic for ω = βθ against ω < βθ. Comparison of these
hypotheses with hypotheses in (15), (16) and (17) gives the stated interpretation.
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β = 1. Therefore, rejection of the null hypothesis γf + γb = 1 cannot be interpreted

as a rejection of ω = 1 unless the null hypothesis β = 1 is also rejected. When the

direct test of β = 1 is not feasible as in the case of estimating closed form equations,

we may conclude that β = 1 if λ = 0 (λ = 0) is rejected and γb + γf = 1 (or τ = 1,

or δ1 = 1) is not rejected.

An alternative simple way to measure the relative importance of backward- and

forward-looking behavior is to consider the parameter ω itself. Since ω represents

the fraction of firms of backward-looking behavior and all firms are assumed to be

identical, we may use the following hypotheses to test the relative importance of two

price setting behavior:

(18) H0
ω : ω ≥ 0.5, H1

ω : ω < 0.5

GG use the labor share in the non-farm business sector as the measure of the

real marginal cost and the percentage change in the GDP deflator or the non-farm

business (NFB) deflator for πt. Both the baseline model (3) and the hybrid model

(7) are estimated by the linear GMM that treats λ, γf and γb as independent pa-

rameters, and by the nonlinear GMM that takes into account the structure of λ, γf

and γb as functions of primitive parameters β, θ and ω. Their set of instrumental

variables includes four lags of inflation, the labor income share, the output gap, the

long-short interest rate spread, wage inflation, and commodity price inflation. In

subsequent papers, GGLS use a subset4 of these instruments “in order to minimize

the potential estimation bias that is known to arise in small samples when there are

too many overidentifying restrictions.” Data is quarterly data and cover the sample

4They allow for an increasing real marginal cost in this paper and their set of in-
struments include two lags of the real marginal cost, detrended output, wage inflation,
and four (five) lags of inflation for US (Euro) data.
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period 1960:1-1997:4.

RW5 augment the closed form equation (4) of the purely forward-looking model

with lagged inflation rates πt−1 and πt−2, and truncate the present value terms to

12 leads (K = 12) with a remainder terms as specified in (10). They use the same

instruments as in GG with a slightly different sample period. GGLS5 point out

that RW5’s analysis is inappropriate in assessing the validity of GG’s hybrid model

because their closed form equation is not the closed form of GG’s hybrid model.

GGLS5 estimate the closed form equation (10) with 16 leads (K = 16) and without

the remainder term5. In response to GGLS5’s criticism, RW7 reestimate the closed

form equation (10) with a remainder term and three different sets of instruments: (i)

GG’s set excluding all third and fourth lagged variables, which will be denoted by

GG-2 set, (ii) GGLS5, and (iii) GGLS5 after dropping πt−3 and πt−4, which will be

denoted by RW set. The first four columns in Table 4-1 list the variables in each

instrument set.

There are differences among these studies not only in the choice of the instrumen-

tal variables and sample periods, but also in some of the data sets. For comparability,

we estimate the structural and closed form equations for the sample period 1960:I -

2003:IV and for four instrumental variables sets: GG, GGLS5, GG-2 and RW. The

data set is described in more detail in the section of empirical estimation below. Es-

timation results are presented in Table 4-2 for the structural equation and in Table

4-3 for the closed form equation.

GG and GGLS5 report four key findings. First, the real marginal cost has a

positive and statistically significant effect, and it is a proper variable as the inflation

5GGLS5 estimate parameters λ, δ1 and δ2, after substituting γf = 0.5 (δ1 + δ1)
−1,

and then compute the estimates γf and γb from the estimates of δ1 and δ2. RW7
estimate λ, δ1 and τ , and then compute γf and γb.
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Table 4-1.: Set of Instrumental Variables.

GG GGLS5 GDP-L2 NFB-L2

inflation lag 1-4 X X X

Marginal cost 1-2 X X X

Marginal cost 3-4

Real output 1-2 X lag2 only
Real output 3-4

Nominal Wage 1-2 X lag2 only
Nominal wage 3-4

Comm. price 1-4a lag1 of two related lag1 of three related
comm. prices comm. price

Interest rate spread 1-4b lag2 only

Additional instruments not in GG 17 real, 2 inflation, 8 real, 3 monetary
and GGLS5 2 monetary variables variables

Notes: (a) GG use the spot market price index of all commodities. L2-boosting selects the
CPI-service and PPI-material goods for the GDP deflator, and the CPI-medical care, PPI-
material goods and PPI-finished goods for the NFB deflator. (b) GG and GGLS5 define the
interest rate spread as the difference between one year government bond yield and the three
month treasury bill rate. The NFB deflator selects two-lagged value of interest rate spread
defined by the difference between AAA corporate bond yield and the federal funds rate.

driving force. Second, the fraction of backward-looking firms (ω) is significantly

different from zero and thus the pure forward-looking model is rejected. Third, the

estimate of γb is smaller than the estimate of γf and hence, the forward-looking

behavior is dominant6. Lastly, their estimates are consistent with the underlying

theory of GG’s hybrid model.

Table 4-2 shows a few interesting results. First, the test results of (H1) λ = 0 in

the GDP inflation depend on the choice of instruments: it is rejected with GG and

GGLS5, but not with GG-2 and RW. The hypothesis is accepted with large p-values

6GG’s estimates of γb and γf subject to the restriction β = 1 sum to one as
the hybrid model implies, but they report different standard deviations for the two
coefficients: they should have an identical standard deviation. This is probably due
to their use of delta-method in computing standard deviation of γf and γb from the
estimates of primitive parameters.
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Table 4-2.: Comparison of Alternative Instrumental Variables: Structural Form Equa-

tion (1960:I-2003:IV).

GDP NFB

GG GGLS5 GG-2 RW GG GGLS5 GG-2 RW

ω 0.400 0.402 0.448 0.408 0.127 0.098 0.030 0.084
(0.038) (0.085) (0.078) (0.103) (0.252) (0.077) (0.068) (0.085)

θ 0.882 0.874 0.916 0.926 1.001 0.902 0.936 0.911
(0.021) (0.033) (0.047) (0.060) (1.949) (0.051) (0.054) (0.051)

β 0.950 0.948 0.980 0.992 1.000 1.005 1.009 1.005
(0.030) (0.038) (0.039) (0.034) (0.021) (0.030) (0.031) (0.034)

γb 0.316 0.320 0.331 0.306 0.112 0.098 0.031 0.084
(0.022) (0.051) (0.038) (0.056) (0.046) (0.070) (0.068) (0.079)

γf 0.663 0.659 0.662 0.690 0.888 0.906 0.977 0.920
(0.017) (0.025) (0.023) (0.024) (0.188) (0.030) (0.030) (0.031)

λ 0.009 0.010 0.004 0.003 0.000 0.008 0.004 0.007
(0.004) (0.006) (0.004) (0.005) (0.005) (0.010) (0.007) (0.009)

p-Values of Hypothesis Tests

H1 0.006 0.033 0.213 0.282 0.500 0.207 0.307 0.218

H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H3 0.000 0.000 0.000 0.000 0.303 0.000 0.000 0.000

H4 0.190 0.304 0.425 0.475 0.501 0.528 0.547 0.523

H5 0.050 0.089 0.302 0.406 0.508 0.565 0.607 0.560

H6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: Standard errors are reported in parenthesis below the estimates. The test hypotheses
are as follows.

H1: λ = 0 vs λ > 0 H2: γb − γf ≥ 0 vs γb − γf < 0
H3: ω − βθ ≥ 0 vs ω − βθ < 0 H4: γb + γf = 1 vs γb + γf < 1
H5: β = 1 vs β < 1 H6: ω = 1 vs ω < 1
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Table 4-3.: Comparison of Alternative Instrumental Variables: Closed Form Equation

(1960:I-2003:IV).

GDP NFB

GG GGLS5 GG-2 RW GG GGLS5 GG-2 RW

λ 0.017 0.011 0.008 0.009 0.022 0.011 0.013 0.004
(0.006) (0.005) (0.005) (0.005) (0.010) (0.005) (0.010) (0.005)

δ1 0.798 0.747 0.781 0.757 0.756 0.611 0.737 0.489
(0.026) (0.049) (0.039) (0.049) (0.024) (0.061) (0.048) (0.094)

τ 0.673 0.925 0.824 0.913 0.631 0.913 0.773 0.972
(0.107) (0.040) (0.081) (0.048) (0.166) (0.042) (0.170) (0.027)

γb 0.519 0.442 0.475 0.448 0.512 0.392 0.470 0.331
(0.032) (0.021) (0.027) (0.022) (0.046) (0.029) (0.050) (0.044)

γf 0.438 0.547 0.501 0.540 0.427 0.586 0.492 0.659
(0.046) (0.024) (0.035) (0.025) (0.077) (0.034) (0.075) (0.044)

λ 0.011 0.007 0.005 0.005 0.015 0.007 0.008 0.003
(0.005) (0.003) (0.003) (0.003) (0.008) (0.003) (0.007) (0.003)

p-Values of Hypothesis Tests

H1 0.008 0.016 0.053 0.034 0.033 0.019 0.119 0.195

H1(λ) 0.003 0.014 0.044 0.031 0.016 0.019 0.100 0.198

H2 0.854 0.010 0.336 0.027 0.756 0.001 0.427 0.000

H4 0.007 0.025 0.016 0.032 0.033 0.011 0.091 0.158

H4(δ1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H4(τ) 0.001 0.030 0.016 0.035 0.014 0.021 0.092 0.152

Notes: Standard errors are reported in parenthesis below the estimates. The test hypotheses
are as follows.

H1: λ = 0 vs λ > 0 H1(λ): λ = 0 vs λ > 0
H2: γb − γf ≥ 0 vs γb − γf < 0 H4: γb + γf = 1 vs γb + γf < 1
H4(δ1): δ1 = 1 vs δ1 < 1 H4(τ): τ = 1 vs τ < 1
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for the NFB inflation, implying that the real marginal cost has no significant effect

on the NFB inflation. Second, the estimates of ω, and thereby the estimates of γb,

show significant differences between the GDP and NFB inflations. The estimates of

ω in the NFB inflation equation are not only much smaller, but also they are not

statistically different from zero while they are all significant in the GDP inflation

equation. Similar results are observed with the estimates of γb, except that it is

significant with GG instruments in the NFB inflation equation. The third conclusion

of GG and GGLS5 holds for all cases in Table 4-2, and the hypothesis (H2) γb > γf

is strongly rejected with almost zero p-values.

Note that the null hypothesis (H5) β = 1 is not rejected at 5% level of significance,

though it rejected at 10% level in the GDP inflation equation with GG and GGLS5

instruments. As discussed earlier, β = 1 implies (H4) γb + γf = 1. If GG’s hybrid

model is the true data generating mechanism, then we would expect the acceptance of

H4 when β = 1 is not rejected. Table 4-2 shows that this is generally true. However,

another theoretical implication that λ = 0 if and only if ω = 1 does not hold: (H6)

ω = 1 is rejected in all cases, but λ = 0 is rejected in only the first two cases.

Turning to the estimation of the closed form equation, RW5 estimate an equa-

tion that includes πt−2 as an additional variable in (10) and by using GG’s set of

instruments and twelve leads (K = 12 )7. They conclude that lagged inflation’s role

is far more important than can be explained by the pure forward-looking model, and

that the effect of forward-looking price setting (λ) is statistically significant, but it

is quantitatively unimportant. GGLS5 estimate the closed form equation (10) with

16 leads (K = 16 ) and without including the remainder term. Their instruments

are different from those of RW5 and their sample period of quarterly data is 1960:1-

7They also estimated the equation with the output gap instead of the real marginal
cost as the driving force.
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1997:4. They report that the GMM estimates of λ, γf and γb are almost identical to

the GMM estimates of the structural hybrid model.

RW7 report GMM estimates of the closed form parameters of NFB inflation for

nine combinations of the number of lead and the set of instrumental variables8. The

estimates of all parameters except for the estimates of λ and λ are highly significant

in all cases. Because of statistical insignificance of λ and λ, RW7 conclude that there

is “little empirical relationship between inflation and expectations of future values of

the labor income share” and there is no empirical evidence of the presence of rational

forward-looking agents9.

Our estimates reported in Table 4-3 show that the test results of λ = 0 or λ = 0

depend on the choice of instruments in the NFB inflation equation: the hypothesis

is accepted with GG-2 and RW instruments and is rejected with GG and GGLS5

instruments. The hypothesis is rejected for the GDP inflation regardless of the choice

of instruments. A similar pattern is observed in the test of (H4) γb + γf = 1 and its

equivalent version H4(τ). Tests of H4 (δ1) also give the same results as H4 when the

estimate of γf is less than 1/2. The test results of (H2) γb > γf also depend on the

instrument set: it is rejected with GGLS5 and RW, but not rejected with GG and

GG-2, for both inflation.

Results reported in Table 4-2 and 4-3 clearly illustrate the importance of the

choice of instrumental variables. Different choices of instruments can lead to totally

different conclusions on important issues of interest. We start the next section with a

8As noted earlier, GGLS5 estimate parameters λ, δ1 and δ2 and then compute the
estimates of γb and γf from the estimates of δ1 and δ2, while RW7 estimate λ, δ1 and
τ and then derive λ, γb and γf .

9GGLS5 and RW7 have differences not only in the estimation equation (different
number of lead terms and inclusion of the remainder terms), but also in the data of
real marginal costs. The two marginal cost data are highly correlated, but they lead
to different conclusions in the estimates.
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statistical method of selecting the optimum set of instruments from a large number of

valid instruments. We then use the selected optimum instruments in the estimation of

structural and closed form equations of GG’s hybrid model, and compare the results

with the results reviewed above.

C. Choice of Instrumental Variables

The instrumental variables for the GMM estimators of the parameters in structural

or closed form inflation equation are the variables in the information set for agents’

conditional expectation of inflation or marginal costs. This set can contain a large

number of variables as the lagged values are valid instruments and as recent advances

of information technology allow agents to have an access to data on many economic

variables. It is nether practicable to include all valid instrumental variables nor

desirable to include an excessive number of instrumental variables as the bias of

instrumental variable estimators increases with the number of instruments.

The conventional approach to the problem is to select a few variables and their

lagged values from the set of valid instrumental variables. As discussed in the previous

section, GG selects lagged values of six distinct variables for instrumental variables,

and GGLS1, GGLS5, RW5 and RW7 use a subset of GG’s set10. Nason and Smith

(2005) use four different combinations of lagged values of inflation and marginal cost.

In a study of the effect of inflation premium in the hybrid model, Gulyas and Startz

(2006) use the forward and the spot inflation premium in addition to the lagged

values of inflation and the driving force variable. In the estimation of Taylor rule that

involves expected inflation, the instrument set in Clarida, Gali, and Gertler (2000)

includes lags of the federal funds rate, inflation, and the output gap, commodity price

10GG use four lags of inflation, marginal cost, detrended real output, nominal wage
inflation, commodity price inflation, and interest rate spread.
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inflation, M2 growth, and the spread between the long-term bond rate and the three-

month Treasury Bill rate. In a VAR model of European monetary policy, Favero

and Marcellino (2004) use the instrumental variables11 that are similar to those in

Clarida, Gali, and Gertler (2000) and the estimates of static principal components.

In a recent paper, Bai and Ng (2007a) address systematic procedures of selecting

a subset from a large set of valid instrumental variables. They consider two large sets:

one set is the panel data of observable weakly exogenous variables, and another set is

the set of unobservable factors that are estimated from a dynamic factor model. We

will first review the L2 boosting method proposed by Buhlmann and Yu (2003). This

is one of the three selection procedures that Bai and Ng examine in their paper. This

method can be applied to both observable panel data or the set of principal component

estimated from the panel data. After the selection procedure is presented, we will

review the estimation methods of standard and generalized principal components

from the dynamic factor model.

1. Selection of Optimal Instrumental Variables

Consider a model of interest

y1t = β ′Zt + γ′y2t + ut, t = 1, 2, · · · , T

where yit are the endogenous variables and Zt is the set of exogenous regressors

included in the equation12. We have a set of large number of instrumental variables

11The set includes lagged values of the regressors, of the dependent variable, of a
raw material price index, and of the real exchange rate with the US dollar.

12The number of endogenous regressor y2t may be more than one, but we will
consider the case of single y2t in the following discussion. When there are more than
one endogenous regressors, the procedure described below will be applied to each of
them.
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Xt that are weakly exogenous to the parameters. This set can include the lags of

the endogenous variables, lags and functions (such as square) of other predetermined

variables. It can also be a set of principal components of a panel data on weakly

exogenous variables.

The conventional first stage regression of instrumental variable estimation spec-

ifies a regression of endogenous regressor y2t on the included exogenous regressors

Zt and all other instrumental variables Xt. The L2 boosting method proposed by

Buhlmann and Yu (2003) for the selection of ‘relevant instruments’ is based on re-

peated first stage least squares including Zt and one component xit of Xt one at a

time

(19) y2t = π1
′Zt + πi2

′xit + uit ≡ πi
′Wit + uit, i = 1, 2, · · · , N

where N is the number of variables in Xt. The first relevant instrument xi∗ is the

instrument that has the highest explanatory power in the least squares sense among

all N instrumental variables, i.e., the regression with xi∗ yields the smallest sum of

squared residuals. Let v̂1 = ûi∗ be the residual vector of using instrument xi∗ in the

first boosting iteration. Repeat the process with v̂1 as the dependent variable, and

find the second relevant instrument and the corresponding residual vector v̂2 and so

on. Since the search for the minimum SSR is always over the entire N instruments,

a variable may be selected more than once.

Let Pj be the projection matrix defined by Wi∗ = (Z, xi∗) at the j-th boosting

iteration. Then,

v̂m = (I − Pm) υ̂m−1 =

(
m∏

j=1

(I − Pj)

)
y2 ≡ (I − Bm) y2, m = 1, 2, · · · , M

where v̂0 = y2 and M is the maximum number of iterations. It is clear that Bmy2

represents the estimate of the conditional mean of y2 conditional on Z and m relevant
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instruments. Though Bm is not the standard projection matrix, the last expression is

in the form of usual regression residuals, and Bm plays the role of standard projection

matrix. It should be noted that the trace of the standard projection matrix is the

number of regressors. And hence, we may use the trace of Bm as an equivalent measure

of the number of regressors in the selection of the number of boosting iterations. The

number of total boosting iterations is determined by the modified AIC or BIC:

IC (m) = ln

(
v′

mvm

T

)
+ tr (Bm)

A

T
, m = 1, 2, · · · , M

where A = 2 for the AIC, A = ln (T ) for the BIC, and tr (Bm) is the trace of Bm

which is a measure of the ‘degree of freedom.’

The procedure presented above is the case of unitary ‘step length.’ When the

step length τ is in the interval τ ∈ (0, 1), then v̂m is computed by

v̂m = (I − τPm) v̂m−1 =

m∏

j=1

(I − τPj) y2 ≡ (I − Bm (τ)) y2

In their numerical analysis, Bai and Ng (2007a) use the conventional step length

τ = 0.1 and the maximum number of iterations equal to M = min
[
N1/3, T 1/3

]
. It

should be noted that the boosting procedure can be conducted with residual matrices

ỹ2 = (I − Pz) y2 and X̃ = (I − Pz) X, where Pz = Z (Z ′Z)−1 Z ′.

2. Estimation of Principal Components

Principal components have been used to reduce the dimensionality problem when

panel data on a large number of variables are available. For example, in a series of

papers, Stock and Watson (1998, 2002a,b, 2005, SW henceforth) consider forecasting a

time series using a large number of predictors. To reduce the dimensionality problem,

they model the series in terms of a relatively few number of observed variables and

unobserved latent factors which are estimated by the principal components of the rel-
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evant panel data. Bernanke, Boivin, and Eliasz (2005) propose the Factor-Augmented

VAR (FAVAR) model to overcome the dimensionality problem of standard VAR mod-

els. The FAVAR augments the standard VAR model with a few latent factors. Bai

and Ng (2007b) consider the instrumental variable estimator when the number of

available instrumental variables is large. They show that, if a large number of instru-

ments and the endogenous regressors share common factors, the factors estimated

from the panel are not only valid instruments for the endogenous regressors, but also

they can be more efficient than the observed variables.

There are two types of factor models that have been used in the literature: static

factor model and dynamic factor model. Let Xt be an N × 1 vector of time-series

observations on N economic variables with zero means13. Xt is a noisy measure of the

underlying unobserved dynamic factors and it admits a dynamic factor representation

(20) Xt = λ (L) ft + ut

where ft is the q × 1 vector of unobserved covariance stationary dynamic factors,

λ (L) is a matrix of lag polynomials of a finite order p, and ut is the idiosyncratic

component. λ (L) is called the dynamic factor loadings and λ (L) ft is called the

common component. Xt are noisy measures of the underlying unobserved dynamic

factors. The dynamic representation of the dynamic factor model in (20) can also be

13Estimates of principal components are sensitive to the measurement units. It is
therefore a common practice to standardize the data before the estimation.
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written in the static representation

(21) Xt =




λ10 λ11 · · · λ1p

...

λn0 λn1 · · · λnp







ft

ft−1

...

ft−p




+ ut = ΛFt + ut

where λij is a 1× q vector of factor loadings of ft−j , and Λ is an N × r matrix, where

r = q (p + 1). It is assumed that E (ut) = 0 and E (utu
′
t) = Σu. The common factors

and idiosyncratic components are assumed to be uncorrelated at all leads and lags,

that is, E (ftu
′
s) = 0 for all t and s. If Σu is a scalar matrix and E (utu

′
s) = 0 for all

t 6= s, then (21) is the classical (strict) factor model. Approximate factor models relax

the assumptions by allowing that ut can be serially and cross-sectionally correlated.

Note that ft and Ft are unique only up to premultiplication by a unitary (or

orthogonal) matrix. That is, ΛFt = (ΛQ) (Q′Ft) = Λ∗F ∗
t for any orthogonal matrix

Q. Therefore, we cannot identify the common factors. We can estimate only the

orthogonal vectors that span the linear space spanned by the common factors. We will

briefly review two methods of estimating the static factor Ft: the ordinary (standard)

principal component (OPC) estimator that has been used widely, and the generalized

principal component (GPC) estimator proposed by Forni, Hallin, Lippi, and Reichlin

(2005, FHLR henceforth).

The OPC estimator finds Ft and Λ as the solution to the nonlinear regression

problem that minimizes the sum of all squared residuals

(22) min
Ft,Λ

T∑

t=1

(Xt − ΛFt)
′ (Xt − ΛFt) = tr

[
(X − FΛ′)

′
(X − FΛ′)

]

subject to normalization Λ′Λ = I and orthogonal conditions that F ′F is a diagonal

matrix, where X is the T × N data matrix and F is a T × r matrix. The estimator
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of Λ̂ is the eigenvectors of X ′X corresponding to its r largest eigenvalues and the

estimator of the static factors F is the principal component, F̂ = XΛ̂. Note that the

OPC estimator completely ignores the dynamics among the factors14.

Dynamic factor models in (20) and (21) do not include any observable variables

as the underlying factors of Xt. In their analysis of Factor-Augmented VAR (FAVAR)

model, Bernanke, Boivin, and Eliasz (2005) include other observable variables in the

static representation (21)

(23) Xt = ΛFt + ΨZt + ut

where Zt in their model represents the main endogenous variables in the standard

VAR model. The idea is that both Zt and Ft represent common factors that drive the

dynamics of Xt. The dynamic factor model with autoregressive idiosyncratic terms,

uit = δi (L) uit−1 + vit, in Stock and Watson (2005) also takes the form of (23), where

Ψ = diag (δi (L)), Zt = Xt−1, and the ith row of Λ is specified as [1 − δi (L) L] λi (L).

Bernanke, Boivin, and Eliasz (2005) estimate the unobservable factors Ft in (23)

by the principal components of Xt, ignoring the presence of observable factors Zt and

excluding Zt from Xt
15. Their estimator of the factors is thus an estimator of the

linear space spanned by Zt and Ft, and will be correlated with Zt in general. Stock

and Watson (2005) uses an iterative procedure: starting with an initial estimator

of Ψ, Ft is estimated by the first r principal components of Xt − ΨZt; given the

estimate of Ft, Ψ = δi (L) and Λ are estimated by n individual regressions of Xit on

(Ft, Xi,t−1, · · · , Xi,t−mi+1), where mi is the order of δi (L). This procedure is repeated

14Stock and Watson (2005) suggest to augment a vector of distinct time series in Xt

with its lagged values when Ft includes lags of the dynamic factors. This is referred
as stacking Xt with its lags.

15The same procedure is used in one of the examples in an earlier version of Bai
and Ng (2007b).
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until convergence.

Alternatively, we can estimate Ft, Λ and Ψ in (23) as the solution to the nonlinear

regression problem that minimizes the sum of all squared residuals

(24) min
Ft,Λ,Ψ

1

T

T∑

t=1

(Xt − ΛFt − ΨZt)
′ (Xt − ΛFt − ΨZt)

Hwang (2006) shows that a solution for F is the principal components F = UΛ, where

U =
[
I − Z (Z ′Z)−1 Z ′

]
X is the matrix of regression residuals of Xt on Zt, and Λ is

the eigenvectors of U ′U corresponding to its r largest eigenvalues subject to Λ′Λ = I.

Since the principal components are linear combinations of regression residuals, they

are orthogonal to observed regressors Z.

While OPC’s objective function takes a form of ordinary least squares, the GPC

estimators are the solutions to the generalized nonlinear regression problem

(25) min
Ft,Λ

T∑

t=1

(Xt − ΛFt)
′ Σ−1

u (Xt − ΛFt) = tr
[
(X − FΛ′)

′
Σ−1

u (X − FΛ′)
]

where Σu is the contemporaneous covariance matrix of the idiosyncratic component

ut. As in the case of the generalized least squares, this problem becomes the OPC

problem after the transformation X̃t = PXt, and Λ̃ = PΛ, where Σ−1
u = P ′P :

(26) min
Ft,Λ

T∑

t=1

(
X̃t − Λ̃Ft

)′ (
X̃t − Λ̃Ft

)
= tr

[(
X̃ − F Λ̃′

)′ (
X̃ − F Λ̃′

)]

The normalization constraint Λ̃′Λ̃ = I is equivalent to the restriction Λ′Σ−1
u Λ = I.

The estimator of F is the principal component F = X̃Λ̃, where the columns of Λ̃ are

the eigenvectors of X̃ ′X̃ corresponding to its r largest eigenvalues. The GPC can also

be computed by F = XΛ∗, where Λ∗ is the matrix of the generalized eigenvectors of

X ′X in the metric of Σu corresponding to its r largest eigenvalues with normalization
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Λ∗′ΣuΛ
∗ = I16. When Xt is a demeaned time series, Σ̂x = X ′X/T is an estimator of

Xt, and hence λ∗
j can be computed as the generalized eigenvector of the covariance

matrix Σ̂x of Xt in the metric of Σu.

To implement the GPC estimator we need an estimator of Σu. FHLR estimate Σu

by the average of spectral density matrices of idiosyncratic components. The spectral

density matrix of Xt at frequency ωh is computed by using the Bartlett smoothing

lag window wk:

Ŝx (ωh) =
1

2π

m∑

k=−m

wkΓ̂ke
−ikωh, wk = 1 −

|k|

m + 1
, ωh =

2πh

2H
, h = −H, · · · , H

where Γ̂x (k) the estimate of k-th autocovariance of Xt. This has the spectral decom-

position at each frequency

Ŝx (ωh) = U (ωh) D (ωh)U (ωh)
′

= Uq (ωh)Dq (ωh)Uq (ωh)
′ + Un−q (ωh) Dn−q (ωh) Un−q (ωh)

′

≡ Ŝc (ωh) + Ŝu (ωh)

where D (ωh) be the diagonal matrix with the eigenvalues of Ŝx (ωh) on the principal

diagonal in descending order, and U (ωh) is the matrix of corresponding eigenvectors,

and U (ωh)
′ is the transpose of complex conjugate of U (ωh). Uq (ωh) and Un−q (ωh)

are, respectively, the first q columns and the last n−q columns of U (ωh). Ŝc (ωh) and

Ŝu (ωh) are the estimators of the spectral density matrix of the common components

and idiosyncratic components, respectively. The covariance matrices Σ̂c and Σ̂u of

the common and idiosyncratic components are computed as the average of Ŝc (ωh)

and Ŝu (ωh) over the frequencies.

16The jth column of λ∗
j of Λ∗ is the solution to (X ′X − µjΣu) λ∗

j = 0 subject to the
normalization restrictions λ∗′

j Σuλ
∗
k = 1 if j = k and λ∗′

j Σuλ
∗
k = 0 if j 6= k.
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Generalized eigenvectors Λ∗ can now be computed by the eigenvectors of Σ̂x in

the metric of Σ̂u subject to Λ∗′Σ̂uΛ
∗ = I. FHLR compute Σ̂u by Σ̂u = Σ̂x − Σ̂c, and

compute Λ∗ by the generalized eigenvectors of Σ̂c in the metric of a diagonal matrix

diag
(
Σ̂u

)
. They use only the diagonal elements of Σ̂u because this gives better

results in their numerical analysis when N is large with respect to T . Note that GPC

takes into account the dynamics among the factors by evaluation of the peridogram at

different frequencies. Boivin and Ng (2005) point out that, if the static factor model

is the true data generating process, “unnecessary estimation of the spectral density

matrices could induce efficiency loss.”

3. Determination of the Number of Static Factors

In a recent paper, Bai and Ng (2002) propose a few criterion functions for the deter-

mination of r. Let V̂k be the value of the objective function for the OPC divided by

NT :

V̂k =
1

NT

T∑

t=1

(
Xt − Λ̂kF̂tk

)′ (
Xt − Λ̂kF̂tk

)

where F̂tk is the estimate of k number of factors. Bai and Ng (2002) propose the

information criterion

(27) ICpj (k) = ln
(
V̂k

)
+ kgj (N, T )

which is similar to the information criteria commonly used in the time series analysis

except that current penalty function depends on both N and T . They present three

penalty functions:

(28)

g1 =

(
N + T

NT

)
ln

(
NT

N + T

)
, g2 =

(
N + T

NT

)
ln [min (N, T )] , g3 =

ln [min (N, T )]

min (N, T )
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The ICp2 (k) criterion seems to be the most popular statistic in practice.

4. Determination of the Number of Dynamic Factors

Determination of the number of dynamic factors q is particularly important in the

GPC analysis because it requires q in the computation of Σu. Forni, Hallin, Lippi,

and Reichlin (2000) suggest a heuristic inspection of the averages of the eigenvalues

of Ŝx (ωh) over the frequencies for different number of variables. Bai and Ng (2007c)

propose a more systematic way to determine q. Their method is based on the fact

that, when a dynamic factor model is written in a static form such as in (21), the

static factor Ft follows a autoregressive process.

Suppose that the dynamic factors follow AR (h) process ft = Bh (L) ft−1 + ǫt,

where ǫt is an i.i.d. innovation vector with a diagonal covariance matrix. Then, the

static factors Ft can be written as an AR (τ) process Ft = Aτ (L) Ft−1 + ξt, where

ξt = Rǫt, R is a r×q matrix of rank q, and τ = max (1, h − p). The covariance matrix

of ξt, Σξ, is a r × r matrix with a rank q < r. They determine q by the statistic that

captures the number of nonzero eigenvalues of Σξ.

Static factors are first estimated by principal components, and the number of

factors is determined by using one of the information criteria in (27) and (28). Using

the estimated factors F̂t, Σξ is estimated by the sample moments of residuals Σ̂ξ =

T−1
∑T

t=1 ξ̂tξ̂
′
t, where ξ̂t is the residual vector of the regression of F̂t on its lagged

values

F̂t = A1F̂t−1 + · · · + ApF̂t−p + ξt

Let the eigenvalues of Σ̂ξ be denoted by ci, arranged in descending order so that the
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first q eigenvalues are nonzeros and the last r − q eigenvalues are zeros. Define

D1,k =




c2
k+1
r∑

i=1

c2
i




1/2

, D2,k =




r∑
i=k+1

c2
i

r∑
i=1

c2
i




1/2

Then, D1,k = D2,k = 0 for all k ≥ q because ck = 0 for k > q. The estimator of q

that Bai and Ng propose are

(29) q̂3 = arg min
k

(D1,k|D1,k < m∗)

(30) q̂4 = arg min
k

(D2,k|D2,k < m∗)

where m∗ = m/ min
[
T 1/2−δ, N1/2−δ

]
, 0 < δ < 1/2 and 0 < m < ∞.

To implement this procedure, one needs to specify parameters m, δ, and τ . In

their simulation study, Bai and Ng use δ = 0.1, m = 2, 1, 0.5 and τ = 2. Eigenvalues

and eigenvectors are computed by using the singular value decomposition method.

Stock and Watson (2005) exploit a different implication of the static representa-

tion of the dynamic factor model. Substituting Ft = Aτ (L) Ft−1 + ξt into (21), the

model can be written as Xt = ΛAτ (L) Ft−1 + ηt, where ηt = (ΛR) ǫt + ut. This is

precisely the form of standard static factor model if data on ηt are available. They

estimate ηt by the residuals of the regression of Xt on lagged values of F̂t−1, and then

use the information criteria in (27) and (28) to determine the number of static factors

of ηt, which coincides with the number of dynamic factors q. They use τ = 2 in their

empirical analysis.
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D. Empirical Estimation of Hybrid Phillips Curve

The data is a quarterly panel data of 138 variables over the sample period 1960:I-

2003:IV. The data set includes Stock and Watson’s (2005) 132 time series data and

GG’s six time series data that are not included in the former17. All data is obtained

from the Global Insights Basic Economics Database (GIBED) except for the non-farm

business (NFB) deflator, which is obtained from the Federal Reserve Economic Data

(FRED)18. Following GG and Marcellino, Stock, and Watson (2003), the monthly

data is aggregated to quarterly data by the quarterly averages of the monthly data.

Stock and Watson (2005) transform the nonstationary series by taking the first or

second differences in log or level data, while GG and GGLS5 take only the first

differences of log or level data nonstationary variables19. Stock and Watson (2005)

adjust the outliers in some of their monthly data, but we do not adjust for the outliers

in our quarterly data. The inflation is measured as the the log difference in the GDP

deflator (or NFB deflator) and the marginal cost is constructed as the log of labor

17Data covers macroeconomic variables such as industrial production, personal in-
come, inventories, employment, payroll, new housing starts, manufacturer’s new or-
ders, stock price index, interest rate, consumer price index, the producer price index,
personal consumption expenditure deflator and average hourly earnings. GG’s 7 vari-
ables are GDP deflator, NFB deflator, labor income share, the interest rate spread,
output gap (quadratically detrended real GDP), wage inflation (compensation per
hour of nonfarm business sector), and commodity price inflation (spot market price
index of all commodities). The interest rate spread appears in both GG and Stock
and Watson (2005) data sets, but they are computed differently. GG compute the
spread by the difference between one year government bond yield and three month
treasury bill rate, while Stock and Watson define eight different spreads: for example,
the difference between one year government bond yield or AAA corporate bond yield
and the federal funds rate.

18We found that the NFB deflator data in the GIBED, in GG’s study and in RW7’s
study are all different. RW7’s data seem to be identical to FRB’s data with some
recent data that may have been revised. Compared to the data that Stock and Watson
posted on their web site, our data on Stock and Watson’s variables reflect revisions
on several variables.

19Stock and Watson take the first difference of the commodity price inflation, but
GG do not. We will follow Stock and Watson’s procedure.
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income share in the non-farm business sector. The ordinary and generalized principal

components are estimated from 135 variables, excluding the variables that appear in

the inflation equation, i.e., GDP deflator, NFB deflator and the labor income share.

1. Selection of Instruments from Observed Instrumental Variables

We first examine whether the choice of instrumental variables in GG and GGLS

studies are optimal in the sense of Bai and Ng. GG use four lags of inflation, marginal

cost, detrended real output, nominal wage inflation, commodity price inflation, and

interest rate spread, while GGLS5 use four lags of inflation, and two lags of marginal

cost, detrended real output, and nominal wage inflation. We keep four lags of inflation

and two lags of marginal cost as retained instrumental variables (Zt in equation (19),

and select the best instruments for πt+1 from two lags of all other variables by using

the L2-boosting method20. The inflation rate is defined by the log difference in GDP

deflator or NFB deflator.

The BIC criterion selects 25 variables for the GDP deflator and 15 variables for

the NFB deflator. There are five common instrumental variables selected for both

GDP and NFB deflators21. Table 4-1 compares the selected instrumental variables

with those in GG and GGLS5. The set for the GDP deflator includes only the two-

lagged values of detrended real output and nominal wage inflation. It includes one-

20When the GDP deflator is used for the inflation, lagged values of the NFB deflator
are not included in the set of instrumental variables, and vice versa. The set of
candidate instrumental variables consists of one-and two-lagged values of Stock and
Watson’s 132 variables, plus one-and two-lagged values of GG’s 3 variables (detrended
real output, nominal wage inflation and interest rate spread). The total number of
variables in Xt is thus 270 variables. The step length is set to τ = 1.

21These are one lagged values of NAPM vendor deliveries index, Monetary base-
Adjusted for reserve requirement changes, and PPI-intermed Mat. Supplies & Com-
ponents, and two lagged values of IP index-durable consumer goods, and aver-
age weekly hours of Prod or Nonsup workers on private nonfarm payrolls-goods-
producing.
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lagged values of two commodity price indices which are different from the spot market

price index of all commodities that GG use. The set for the NFB deflator includes

neither the detrended real output, nor nominal wage inflation. It includes one-lagged

values of interest rate spread defined by the difference between AAA corporate bond

yield and the federal funds rate, while GG define the spread by the difference between

one year government bond yield and the three month treasury bill rate.

It is interesting to not that the first instrumental variable selected by L2-boosting

method is the lagged NAPM (National Association of Purchasing Managers) vendor

deliveries index for both the GDP and NFB deflators. The second instruments that is

selected is the one-lagged number of building permits in Midwest region for the GDP

deflator and the one-lagged inventory to sales ratio for the NFB deflator. One-lagged

value of monetary base is in the set for both GDP and NFB deflators.

We estimate the underlying model parameters (ω, θ, β) in GG’s specification (7)

by using the nonlinear GMM, compute the estimates of parameters (γb, γf , λ) from the

estimates of underlying model parameters, and compute the p-values of various test

statistics that are discussed in section 2. Table 4-4 presents the results for GGLS5’s

sample period, 1960:I-1997:IV, as well as for the entire sample period, 1960:I-2003:IV.

We also replicate the results in GGLS5 with their data for the first subsample, and

find some differences between their results and the results reported in Table 4-4 under

the heading GGLS5. The results for the GDP deflator are qualitatively similar, but

there are some noticeable differences for the NFB deflator. The p-value of the test

hypothesis λ = 0 for the NFB deflator is 0.140 with our data, but it is 0.019 with

their data. We find that the major source of this difference is the difference in the



113

marginal cost data22.

The results reported in Table 4-4 with our data are similar between the two

sample periods, and hence we focus our discussion on the results in the full sample

period. There is a substantial difference in the estimates of the fraction of backward-

looking firms ω for the GDP and NFB deflators when GGLS5’s instruments are used.

The estimate of ω for the GDP deflator is more than three times greater than the

estimate for the NFB deflator. The difference in the estimates of ω is also reflected in

the estimates of γb. This is rather difficult to justify as the two deflators are similar

with a high correlation coefficient (0.94). The difference is much smaller when the

best instruments are used: the estimate of ω for the GDP deflator is a little more

than 50% greater than the estimate for the NFB deflator when the best instruments

are used.

GGLS5’s instruments also yield a substantial difference between the two deflators

in the test of the null hypothesis λ = 0 against the alternative hypothesis λ > 0. The

null hypothesis is rejected for the GDP deflator at 5% level while it is not rejected for

the NFB deflator even at 20% significance level. When the L2-boosted instruments

are used, the null hypothesis is rejected very strongly for both deflators. We observe

a similar results in the test of the null hypothesis β = 1 against β < 1. That is,

GGLS5’s instruments are used, β = 1 is easily accepted for the NFB deflator and it is

rejected at 10% level of significance for the GDP deflator. Estimates with L2-boosted

instruments strongly reject β = 1.

Another significant difference between using GGLS5’s instruments and L2-boosted

instruments can be seen in the test of the null hypothesis γb + γf = 1 against

22When their marginal cost is replaced with our marginal cost data, the p-value
becomes 0.155. Substitution of the data of other variables do not change the p-value
much from their p-value.
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Table 4-4.: GMM Estimation of Phillips Curve.

1960:I-1997:IV 1960:I-2003:IV

GDP NFB GDP NFB

GGLS5 L2-OBS GGLS5 L2-OBS GGLS5 L2-OBS GGLS5 L2-OBS

ω 0.410 0.527 0.146 0.412 0.402 0.511 0.098 0.337
(0.087) (0.035) (0.074) (0.042) (0.085) (0.040) (0.077) (0.049)

θ 0.873 0.849 0.893 0.881 0.874 0.857 0.902 0.886
(0.034) (0.015) (0.045) (0.033) (0.033) (0.017) (0.051) (0.031)

β 0.934 0.804 0.986 0.809 0.948 0.847 1.005 0.864
(0.041) (0.037) (0.034) (0.042) (0.038) (0.034) (0.030) (0.036)

γb 0.325 0.409 0.141 0.337 0.320 0.393 0.098 0.285
(0.051) (0.017) (0.062) (0.025) (0.051) (0.020) (0.070) (0.033)

γf 0.648 0.530 0.849 0.583 0.659 0.558 0.906 0.647
(0.025) (0.017) (0.032) (0.027) (0.025) (0.016) (0.030) (0.026)

λ 0.011 0.018 0.010 0.016 0.010 0.015 0.008 0.015
(0.006) (0.004) (0.010) (0.008) (0.006) (0.004) (0.010) (0.007)

p-Values of Hypothesis Tests

H1 0.034 0.000 0.140 0.022 0.033 0.000 0.207 0.018

H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H4 0.277 0.004 0.414 0.002 0.304 0.018 0.528 0.006

H5 0.056 0.000 0.341 0.000 0.089 0.000 0.565 0.000

H6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H7 0.151 0.780 0.000 0.018 0.126 0.613 0.000 0.001

GV P 5.760 0.076 8.645 1.610 3.728 0.102 9.282 1.264

GV D 1.820 0.048 12.254 0.958 1.364 0.054 17.887 1.157

J-stat 7.098 10.462 6.462 10.462 7.864 12.056 6.623 12.056
0.419 0.999 0.487 0.999 0.345 0.996 0.469 0.996

Notes: Standard errors are reported in parenthesis below the estimates. The test hypotheses
are as follows.

H1: λ = 0 vs λ > 0 H2: γb − γf ≥ 0 vs γb − γf < 0
H3: ω − βθ ≥ 0 vs ω − βθ < 0 H4: γb + γf = 1 vs γb + γf < 1
H5: β = 1 vs β < 1 H6: ω = 1 vs ω < 1
H7: ω ≥ 0.5 vs ω < 0.5
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γb + γf < 1. The null hypothesis is accepted with GGLS5’s instruments for both

deflators, but it is strongly rejected with L2-boosted instruments. As discussed in

section 2, γb + γf = 1 if either β = 1 or ω = 1. The tests with GGLS5’s instruments

indicate β = 1 and ω < 1. Thus, we draw a conclusion that γb + γf = 1 is due to

β = 1. On the other hand, the tests with L2-boosted instruments indicate that β < 1

and ω < 1, which imply γb + γf < 1.

Table 4-4 reports the generalized variance (i.e., determinant of the covariance

matrix) of the estimates of primitive parameters (ω, θ, β) and the derived parameters

(γb, γf , λ) as a measure of joint precision of the estimates. Boosted instruments give

substantially smaller values of the generalized variance for both inflation measures.

The J-statistics indicate that GGLS5’s instruments are not rejected but the p-values

of the J-statistics for the boosted instruments are much higher than that for the

GGLS5’s instruments.

2. Selection of Instruments from Principal Components

We use the specification in (23) as the factor model, where Xt consists of the candidate

instrumental variables that is used for the L2-boosting in the previous subsection and

Zt includes the retained variables (four lagged inflation and two lagged marginal

cost). All variables are standardized before computing the principal components23.

Ordinary principal components are computed from the residuals of the regression of

Xt on Zt by using singular-value decomposition. The principal components are thus

orthogonal to the retained instrumental variables.

The number of static factors r̂ is determined by using Bai and Ng’s (2002) in-

23Each lagged variable is treated as an independent variable. That is, πt−1 and
πt−2 are standardized separately instead of taking the lagged values of standardized
values of πt−1 as the standardized values of πt−2.
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formation criterion ICp2 (k) as specified in (28). This procedure selects the first 10

and 7 principal components for the GDP and NFB deflators, respectively. Primitive

parameters (ω, θ, β) and derived parameters (γb, γf , λ) of the Phillips curve equation

(7) are estimated by the GMM. The set of instrumental variables include the retained

instrumental variables Zt and the first r̂ number of principal components. The results

are reported in Table 4-5 under the heading r̂-OPC.

As Bai and Ng (2007a) emphasize, the principal components that explain the

variation in Xt the best are not necessarily the best instrumental variables for the

endogenous variable πt+1. Therefore, we apply L2-boosting to the first r̂ number of

principal components and expanded sets of principal components as the base set for

the boosting. To determine the size of the expanded boosting base, we first examine

the fraction of variance explained by each principal component. Figure 4-1 shows the

cumulative fraction of principal components in descending order of eigenvalues. The

first 10 principal components explain 59% of the variance of Xt unexplained by Zt,

and 99.8% of the variance is explained by the first 130 principal components. We thus

consider the first 130 principal components as the maximum base for L2-boosting.

Since the choice of boosting base will lead to different sets of instrumental vari-

ables and hence different estimates of parameters, we use the boosting base from the

first 10 to 130 principal components, adding one additional principal component each

time. Instrumental variables selected from each boosting base are used to estimate

the parameters and their generalized variance. Figure 4-2 shows the effect of different

boosting base on the joint precision of the estimates of primitive and derived param-

eters. There is a significant gain in joint precision of the estimates as the boosting

base increases from a small set, but the additional gains become negligible as the base

size increases beyond 60 (or at most 80) principal components for the GDP deflator

and beyond 80 principal components for the NFB deflator. Estimation results with
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Table 4-5.: GMM Estimation of Phillips Curve-GDP Deflator: Standardized Data for

OPC (1960:I-2003:IV).

L2 Boosting

GG GGLS5 r̂-OPC OBS r̂-OPC OPC80 OPC100

ω 0.400 0.402 0.365 0.511 0.397 0.437 0.450
(0.038) (0.085) (0.057) (0.040) (0.071) (0.043) (0.041)

θ 0.882 0.874 0.862 0.857 0.878 0.851 0.848
(0.021) (0.033) (0.026) (0.017) (0.030) (0.020) (0.019)

β 0.950 0.948 0.946 0.847 0.950 0.883 0.872
(0.030) (0.038) (0.034) (0.034) (0.037) (0.026) (0.026)

γb 0.316 0.320 0.302 0.393 0.316 0.351 0.360
(0.022) (0.051) (0.035) (0.020) (0.040) (0.023) (0.021)

γf 0.663 0.659 0.674 0.558 0.663 0.604 0.592
(0.017) (0.025) (0.021) (0.016) (0.022) (0.014) (0.014)

λ 0.009 0.010 0.013 0.015 0.010 0.017 0.017
(0.004) (0.006) (0.005) (0.004) (0.005) (0.005) (0.005)

p-Values of Hypothesis Tests

H1 0.006 0.033 0.007 0.000 0.035 0.000 0.000

H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H4 0.190 0.304 0.222 0.018 0.286 0.029 0.019

H5 0.050 0.089 0.058 0.000 0.089 0.000 0.000

H6 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H7 0.005 0.126 0.010 0.613 0.075 0.071 0.112

GV Prim 0.156 3.728 0.878 0.102 2.107 0.121 0.097

GV Derv 0.066 1.364 0.630 0.054 0.801 0.101 0.081

# of PC 169 270 10 80 100

# of IV 18 4 10 25 5 21 23

J-stat 10.844 7.864 10.399 12.056 8.274 11.466 11.641
(0.966) (0.345) (0.661) (0.996) (0.407) (0.985) (0.993)

Standard errors are reported in parenthesis below the estimates. The test hypotheses are as
follows.

H1: λ = 0 vs λ > 0 H2: γb − γf ≥ 0 vs γb − γf < 0
H3: ω − βθ ≥ 0 vs ω − βθ < 0 H4: γb + γf = 1 vs γb + γf < 1
H5: β = 1 vs β < 1 H6: ω = 1 vs ω < 1
H7: ω ≥ 0.5 vs ω < 0.5
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Fig. 4-1.: Percentage of Variance Explained by Ordinary Principal Components.

Notes: Standardized Data

10 20 30 40 50 60 70 80 90 100 110 120 130
0

0.5

1

1.5

2

2.5

G
DP

OPC
10 20 30 40 50 60 70 80 90 100 110 120 130

0

2

4

6

8

10

12

14

NF
B

GDP−Prim(xE−13)(Y1)
GDP−Derv(xE−11)(Y1)
NFB−Prim(xE−13)(Y2)
NFB−Derv(xE−11)(Y2)

Fig. 4-2.: Generalized Variances of Primitive and Derived Parameters: OPC from

Standardized Data.



119

the instrumental variables selected from the first 80 and 100 principal components

are reported in Table 4-5.

Estimates of parameters and the p-values of hypothesis tests with the first r̂

number of principal components (r̂-OPC) as the instruments are very similar to the

results of using GGLS5’s instruments, except that the joint precision of parameter

estimates is much higher with the former instruments than with the latter instru-

ments. The gain in precision is not entirely due to a larger number of instruments in

r̂-OPC, which uses 10 instruments while GGLS5 use 4 instruments, in addition to the

retained instruments. This can be seen from a comparison of GGLS5 with the column

L2-boosted r̂-OPC which uses 5 instruments boosted from r̂-OPC principal compo-

nents. Results of GGLS5 and L2-boosted r̂ are extremely close to each other, but

the joint precision of parameter estimates is much higher for L2-boosted r̂ than for

GGLS5. The similarity of r̂-OPC and L2-boosted r̂ with the GGLS5 in the estimates

of parameters implies that our earlier observations about the relationship between

L2-OBS and GGLS5 also hold for the relationship between L2-OBS and r̂-OPC or

L2-boosted r̂. We may conclude that using the first r̂ number of principal components

as instruments is not as good as using instruments selected by L2-boosting over the

observed instrumental variables.

There is little difference among the estimates with the instruments boosted from

80 and 100 principal components though the number of instruments are different. The

joint precision of the estimates of course increases with the number of instruments.

Cursory inspection of the rows in Table 4-5 reveals no large differences in the estimated

values of parameters. But, there are more variations in the estimated standard errors,

and they are reflected in the differences in the p-values of hypothesis tests. The

hypothesis H4: γb + γf = 1 is not rejected by GG, GGLS5, r̂-OPC and boosted r̂-

OPC, but it is strongly rejected by other estimates with boosted instruments. Similar
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observations apply to the test of H5: β = 1 to a lesser degree.

A wide variations are also observed in the joint precision of the estimates. In

general, the precision increases with the number of instruments. Though we are

comparing estimates with different sets of instruments, this result is in line with the

theory. It is more interesting to compare the joint precision based on the same number

of instruments, which is shown in Table 4-6. When only four instruments are used as

in GGLS5, L2-OPC gives a higher precision than the GGLS5 or L2-OBS. When 18

instruments are used as in GG, the results are mixed: L2-OPC gives a slightly higher

precision than GG for the primitive parameters, but it is reversed for the derived

parameters. One clear conclusion we can draw is that the boosting from the principal

components gives a better result than boosting from the observed data. This confirms

the theory of Bai and Ng (2007b).

Table 4-6.: Comparison of Generalized Variancee-GDP Deflator (Same Number of

IVs).

4 IV 18 IV

GGLS5 L2-OBS L2-OPC GG L2-OBS L2-OPC

GDP-Prim 3.728 4.002 2.460 0.156 0.226 0.148

GDP-Derv 1.364 2.486 1.293 0.066 0.115 0.120

NFB-Prim 9.282 4.994 2.219 1993.300 1.264a 1.124b

NFB-Derv 17.887 6.777 5.717 0.908 1.157a 0.871b

Notes: (a) These are for 15 instruments. (b) These are for 12 instruments.

Turning to the NFB deflator in Table 4-7, we find that the number of static factors

and the number of boosted instruments are much smaller for the NFB deflator than for

the GDP deflator. We also find a wider variation of the results across different choices

of instruments. In particular, the estimate of ω ranges from 0.049 to 0.399, which

propagates into a wide variation in the estimates of derived parameters and the p-
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Table 4-7.: GMM Estimation of Phillips Curve-NFB Deflator: Standardized Data for

OPC (1960:I-2003:IV).

L2 Boosting

GG GGLS5 r̂-OPC OBS r̂-OPC OPC80 OPC114

ω 0.127 0.098 0.097 0.337 0.049 0.359 0.399
(0.252) (0.077) (0.059) (0.049) (0.059) (0.044) (0.041)

θ 1.001 0.902 0.907 0.886 0.899 0.868 0.868
(1.949) (0.051) (0.044) (0.031) (0.043) (0.031) (0.032)

β 1.000 1.005 0.973 0.864 0.982 0.844 0.817
(0.021) (0.030) (0.026) (0.036) (0.025) (0.037) (0.038)

γb 0.112 0.098 0.097 0.285 0.052 0.304 0.331
(0.046) (0.070) (0.055) (0.033) (0.060) (0.028) (0.025)

γf 0.888 0.906 0.881 0.647 0.932 0.622 0.589
(0.188) (0.030) (0.026) (0.026) (0.027) (0.026) (0.025)

λ 0.000 0.008 0.010 0.015 0.012 0.019 0.019
(0.005) (0.010) (0.009) (0.007) (0.011) (0.009) (0.009)

p-Values of Hypothesis Tests

H1 0.500 0.207 0.148 0.018 0.137 0.014 0.014

H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H3 0.303 0.000 0.000 0.000 0.000 0.000 0.000

H4 0.501 0.528 0.315 0.006 0.373 0.003 0.002

H5 0.508 0.565 0.155 0.000 0.238 0.000 0.000

H6 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H7 0.070 0.000 0.000 0.001 0.000 0.001 0.007

GV Prim 1993.300 9.282 2.755 1.264 3.576 1.234 1.124

GV Derv 0.908 17.887 6.488 1.157 12.518 1.135 0.871

# of PC 169 270 7 80 114

# of IV 18 4 7 15 3 11 12

J-stat 9.930 6.623 9.780 12.056 7.116 9.886 10.390
(0.980) (0.469) (0.460) (0.996) (0.310) (0.770) (0.795)

Notes: Standard errors are reported in parenthesis below the estimates. The test hypotheses
are as follows.

H1: λ = 0 vs λ > 0 H2: γb − γf ≥ 0 vs γb − γf < 0
H3: ω − βθ ≥ 0 vs ω − βθ < 0 H4: γb + γf = 1 vs γb + γf < 1
H5: β = 1 vs β < 1 H6: ω = 1 vs ω < 1
H7: ω ≥ 0.5 vs ω < 0.5
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values of test statistics. For example, the null hypothesis λ = 0 is easily accepted with

GG’s and GGLS5’s set of instruments, but it is strongly rejected with the instruments

boosted from observed data or principal components. Similar observations can be

made about the test of H4 and H5. The joint precision of the estimates of primitive

parameters is quite low for the GG’s and GGLS5’s instrument sets. These results

contrast sharply with the estimation results for the GDP inflation whose estimates

are more robust to the choice of instruments. Estimates of NFB inflation is obviously

more sensitive to the choice of instruments and we can use their sensitivity as a guide

in choosing the proper set of instruments for both GDP and NFB inflation.

Previous studies of the GG’s model that estimate both GDP and NFB inflation

assume, at least implicitly, that the model can explain both inflation24. Under this

premise, we would expect that the parameter estimates and their statistical signifi-

cance will be similar as the two inflation rates show very similar paths with a high

correlation coefficient (see Figure 4-3). As the estimates of some parameters are very

different between the two inflation data, one way to assess the adequacy of instrumen-

tal variables is to compare the parameter estimates and the p-values of hypotheses

tests between the two measures of inflation.

Estimates of ω and γb in GG, GGLS5, r̂-OPC and L2-boosted r̂ are substantially

smaller for the NFB inflation than for the GDP inflation, while L2-OBS and L2-OPC

give much smaller differences in the parameter estimates. Similar differences are

present in the p-values of test statistics for H1 and H5. Most notable differences are

observed in GG’s estimates for which the p-values of H3 and H4 are quite different

between the two measures of inflation.

24The model is based on the monopolistic competition and the driving force is the
marginal cost which is measured by the marginal cost of non-farm business sector.
Therefore, the model is more in line with the NFB inflation.
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Fig. 4-3.: Comparison of Inflation Rates.

For the compatibility with the implications of GG’s model, we check the con-

sistency in the test results between the two inflation rates. As discussed in section

2, GG’s model implies that H1 and H6 are equivalent hypotheses and both tests are

expected to lead to the same conclusion. A similar equivalence holds for H2 and H3.

The model also implies that, if H5 is not rejected (i.e., β = 1), then H4 should not be

rejected. If H5 is rejected, tests of H1, H4 and H6 should give the same conclusion.

We find that GG, GGLS5, r̂-OPC and L2-boosted r̂ give at least one conclusion that

is different between GDP and NFB inflation, while L2-OBS and L2-OPC give the

conclusions that are consistent ith the model in both GDP and NFB inflation. On

the basis of these observations, we can conclude that L2-OBS and L2-OPC give the

estimates that are more consistent between the two measures of inflation and more

consistent with the implications of GG’s model. The L2-OPC has a slight advantage

over the L2-OBS in that the former gives a higher joint precision of parameter es-
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timates with a smaller number of instruments, and thereby a smaller chance of the

bias due to a larger number of instruments.

Finally, we estimate the generalized principal components (GPC) as described

in the previous section. The number of dynamic factors is determined by using q̂3

in (29) with parameters m = 0.5, δ = 0.1 and τ = 2. We find that the number

of dynamic factors are 7 for the GDP inflation and 5 for the NFB inflation. The

covariance matrix Σu of idiosyncratic terms is computed by using FHLR’s method

with parameter values M = H = 3. The generalized principal components are

computed by F̂ = XΛ̂∗, where Λ̂∗ is the matrix of eigenvectors of Σ̂x in the metric

of diag
(
Σ̂u

)
. As in the case of OPC, instrumental variables are selected from GPCs

by using the L2-boosting method with an increasing number of GPC as the boosting

base. The size of the boosting base is determined by examining the generalized

variance of parameter estimates.

Figure 4-4 shows the change in the joint precision of parameter estimates as the

size of boosting base increases. For the GDP deflator, there are sizable reductions in

the generalized variance up to 69 GPCs and then it stays quite flat. We choose 80 and

102 GPCs as the boosting base for comparability with OPC. For the NFB deflator,

we select 89 and 104 GPCs for the boosting base because the former gives the same

number (11) of instrumental variables as OPC80 and this number does not change

until the base is extended to 104 GPCs. Table 4-8 presents the estimation results

for both OPC and GPC for an easy comparison. There is practically no difference

between OPC and GPC for the GDP deflator except for a little high p-value of test

H4 in GPC80. The joint precision is higher whenever more instruments are used.

There are a little more noticeable differences in the estimates of ω and γb, but the

magnitudes of the differences are still very small.

Now we consider the estimation of the closed form equation (10). Principal com-
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Fig. 4-4.: Generalized Variances of Primitive and Derived Parameters: GPC from

Standardized Data.
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Table 4-8.: GMM Estimation of Phillips Curve-OPC & GPC.

GDP NFB

OPC80 OPC100 GPC80 GPC102 OPC80 OPC114 GPC89 GPC104

ω 0.437 0.450 0.438 0.488 0.359 0.399 0.276 0.347
(0.043) (0.041) (0.042) (0.038) (0.044) (0.041) (0.046) (0.041)

θ 0.851 0.848 0.858 0.854 0.868 0.868 0.876 0.867
(0.020) (0.019) (0.022) (0.018) (0.031) (0.032) (0.030) (0.028)

β 0.883 0.872 0.904 0.859 0.844 0.817 0.884 0.842
(0.026) (0.026) (0.029) (0.028) (0.037) (0.038) (0.032) (0.034)

γb 0.351 0.360 0.348 0.380 0.304 0.331 0.245 0.297
(0.023) (0.021) (0.022) (0.019) (0.028) (0.025) (0.033) (0.028)

γf 0.604 0.592 0.616 0.572 0.622 0.589 0.689 0.626
(0.014) (0.014) (0.016) (0.014) (0.026) (0.025) (0.024) (0.023)

λ 0.017 0.017 0.014 0.016 0.019 0.019 0.018 0.020
(0.005) (0.005) (0.005) (0.004) (0.009) (0.009) (0.008) (0.008)

p-Values of Hypothesis Tests

H1 0.000 0.000 0.002 0.000 0.014 0.014 0.014 0.005

H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H4 0.029 0.019 0.060 0.009 0.003 0.002 0.015 0.001

H5 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

H6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H7 0.071 0.112 0.070 0.378 0.001 0.007 0.000 0.000

GV Prim 0.121 0.097 0.171 0.081 1.234 1.124 1.083 0.770

GV Derv 0.101 0.081 0.104 0.050 1.135 0.871 1.442 0.860

# of PC 80 100 80 102 80 114 89 104

# of IV 21 23 19 24 11 12 11 16

J-stat 11.466 11.641 11.011 12.004 9.886 10.390 10.066 11.070
(0.985) (0.993) (0.975) (0.994) (0.770) (0.795) (0.757) (0.921)

Notes: Standard errors are reported in parenthesis below the estimates. The test hypotheses
are as follows.

H1: λ = 0 vs λ > 0 H2: γb − γf ≥ 0 vs γb − γf < 0
H3: ω − βθ ≥ 0 vs ω − βθ < 0 H4: γb + γf = 1 vs γb + γf < 1
H5: β = 1 vs β < 1 H6: ω = 1 vs ω < 1
H7: ω ≥ 0.5 vs ω < 0.5
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ponents are same as those used in the estimation of the structural form equation.

The L2-boosting is conducted to find the best instruments for mct+1 where the re-

tained instruments are the same as the variables that are used in the boosting for

πt+1. Following RW7, we estimate the closed form parameters δ1, λ and τ , and derive

the fundamental parameters γb, γf and λ. To determine the size of the boosting base

of the principal components, we examine the generalized variance of γb, γf and λ for

various base size. The results are shown in Figure 4-5. The generalized variances

decline in general as the size of the base increases except for the generalized principal

components in the estimation of NFB inflation. The generalized variance becomes

stable at the size 110 for the OPC and 100 for the GPC in the GDP inflation equation,

and at the size 110 for the OPC and 90 for the GPC in the NFB inflation equation.

We use the boosted instruments from these boosting bases. The estimation results

are presented in Table 4-9.

We have shown earlier in Table 4-3 that GG-2 and RW instrument sets give

opposite conclusions between the GDP and NFB inflation in the test of (H1) λ = 0,

and RW instrument gives opposite conclusion in the test (H4) γb+γf = 1. Instrument

sets r̂-OPC and L2-OBS also give contradictory results in the test of (H2) γb >

γf . Therefore, instrument sets that yield robust test results are GG, GGLS5 and

instruments boosted from OPC and GPC. Among these four sets, latter two sets lead

to a higher joint precision of the estimates without excessive number of instruments.

As in the case of structural form estimation, L2-OPC instruments seem to be a little

better than the L2-GPC. According to the estimates with L2-OPC, forward-looking

behavior has a ’dominant’ role in inflation dynamics, and the real marginal cost or

the present value of future real marginal cost have a significant effect on the inflation

regardless of the measurement of inflation by the GDP deflator or NFB deflator.
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Table 4-9.: GMM Estimation of Phillips Curve-Closed Form Equation:Standardized

Data for OPC and GPC: 1960:I-2003:IV.

GDP NFB

r̂-OPC OBS OPC GPC r̂-OPC OBS OPC GPC

λ 0.010 0.011 0.010 0.010 0.018 0.015 0.018 0.016

(0.003) (0.005) (0.003) (0.004) (0.008) (0.006) (0.004) (0.005)

δ1 0.746 0.760 0.692 0.700 0.699 0.719 0.697 0.630

(0.030) (0.043) (0.042) (0.049) (0.046) (0.041) (0.038) (0.049)

τ 0.882 0.877 0.930 0.945 0.771 0.790 0.815 0.889

(0.028) (0.045) (0.025) (0.020) (0.112) (0.099) (0.038) (0.034)

γb 0.450 0.456 0.421 0.421 0.454 0.459 0.445 0.404

(0.012) (0.019) (0.017) (0.019) (0.035) (0.032) (0.019) (0.023)

γf 0.532 0.526 0.566 0.569 0.501 0.504 0.520 0.570

(0.012) (0.022) (0.018) (0.019) (0.052) (0.046) (0.021) (0.025)

λ 0.006 0.007 0.006 0.006 0.012 0.010 0.011 0.011

(0.002) (0.003) (0.002) (0.002) (0.006) (0.004) (0.003) (0.003)

p-Values of Hypothesis Tests

H1 0.003 0.012 0.001 0.003 0.019 0.006 0.000 0.001

H1(λ) 0.002 0.009 0.001 0.003 0.013 0.003 0.000 0.001

H2 0.000 0.042 0.000 0.000 0.293 0.283 0.031 0.000

H4 0.001 0.008 0.004 0.005 0.025 0.015 0.000 0.001

H4(δ1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H4(τ) 0.000 0.004 0.003 0.003 0.021 0.017 0.000 0.001

GV Prim 8.903 103.880 13.463 23.280 5315.100 471.560 70.149 330.500

GV Derv 9.406 68.708 10.777 14.612 5690.300 581.990 78.108 278.000

270 110 100 270 110 90

10 6 12 10 7 8 16 8

J-stat 11.980 10.515 11.704 12.535 11.508 10.383 13.688 11.628

(0.529) (0.310) (0.701) (0.484) (0.319) (0.496) (0.802) (0.392)

Notes: Standard errors are reported in parenthesis below the estimates. The test hypotheses
are as follows.

H1: λ = 0 vs λ > 0 H1(λ): λ = 0 vs λ > 0
H2: γb − γf ≥ 0 vs γb − γf < 0 H4: γb + γf = 1 vs γb + γf < 1
H4(δ1): δ1 = 1 vs δ1 < 1 H4(τ): τ = 1 vs τ < 1
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E. Conclusion

The NKPC equation or its hybrid version includes the rational expectation of inflation

as one of the explanatory variables. Instrumental variables for the future expectation

can include all variables in the current information set, but only a relatively small

number of instruments are used in the estimation of the hybrid inflation equation.

Instrumental variables are selected on an ad hoc basis though they are intuitively

reasonable candidates for the instruments. It has been recognized that the estimates

of the parameters are not robust to the choice of instruments and the effects of the

choice of instruments can be substantial across different measures of inflation. Such

a sensitivity is detected in recent literature.

This paper applies the L2-boosting method of selecting the optimal set of instru-

ments to the estimation of Gali and Gertler’s hybrid inflation equation. Three sets of

boosting base are used. The first boosting base is the lagged values of a large number

of observed variables that Stock and Watson and many others use for inflation fore-

casting. The other two sets are the ordinary and generalized principal components

estimators of underlying factors. Bai and Ng (2007a) show that principal components

can be more efficient instrumental variables than the observed variables.

We find that the set of optimal instruments from observed boosting base is quite

different from the sets used in GG, GGLS5 and RW7. There are also difference

between the instrumental variable set for the GDP and for the NFB deflators. An

interesting result is that the lagged monetary base is one of the optimal instruments

for both inflation series, while it is not one of the instruments in previous studies of

GG’s inflation equation. Another interesting result is that the lagged output gap is

not one of the selected instruments for the NFB deflator. We find that different sets

of instruments in previous studies give substantially different estimates of parameters,
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the fraction of backward-looking agents in particular, and different p-values of some

key test statistics, between the two inflation measures. Such differences vanish or

are reduced significantly when boosted instruments are used. Furthermore, the joint

precision of parameter estimates is higher when the boosted instruments are used.

Results with the boosted instruments from principal component estimates of the

factors are similar to the results with the boosted instruments from observed variables.

The major difference is that the former has a fewer number of instruments, and yet,

it gives the better results than the latter. We find negligible differences between

the ordinary principal components and the generalized principal components as the

boosting base.
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CHAPTER V

CONCLUSION

This dissertation consists of three essays. I try to improve the estimation of infla-

tion equation, using the additional measures of distribution of price changes and the

optimum choice of instrumental variables.

The first essay shows the importance of kurtosis in the approximation of inflation,

theoretically and empirically. Since Mills (1927), many authors have studied the

relationship between inflation and moments of price changes. The source to generate

these relationships is the change in the shape of the underlying distribution. To

capture the shape of the distribution, earlier studies in 1970s and 1980s considered

dispersion alone. Since Ball and Mankiw (1995) included skewness, both dispersion

and skewness have been used. We argue that kurtosis should be considered to capture

the property of the distribution sufficiently. My empirical results show that the

kurtosis measure has a significant effect on inflation. In addition, we can improve the

approximation of inflation in terms of the goodness of fit.

The second essay is to examine the concerns about the source of the observed

positive relationship between inflation and the dispersion/skewness of price changes.

The concern is that the presence of outliers in price changes causes the misleading cor-

relation between mean and the dispersion/skewness of price changes. I show there is

a significant relationship between inflation and dispersion/skewness after considering

outlier effects. Thus, the observed inflation-dispersion/skewness relationship is one of

the stylized fact. I also show that using robust measures yields the higher goodness

of fit in predicting inflation. In particular, medcouple as a measure of skewness is

very useful. We find that adjusting outlier problems is reasonable in the study of

cross-sectional distribution of price changes.
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The third essay is to consider the GMM estimation of Hybrid Phillips Curve.

It has been known that GMM estimates are sensitive to the choice of instrumental

variables. Previous studies select the instrumetnal variables on an ad hoc basis from

a set of reasonable predictors of inflation. This paper applies the L2-boosting method

from two boosting bases: large number of observed weakly exogenous predictors and

their OPC and GPC. The instrumental variable sets used in previous studies lead

to contradictory test results, depending on the measurement of inflation (GNP or

NFB) and depending on estimating the structural form or closed form equation.

Instrumental variable sets that are L2-boosted from OPC and GPC give all consistent

test results and joint precision of the estimates is higher.
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