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ABSTRACT

Dynamic Thermal Management

in Chip Multiprocessor Systems. (August 2008)

Chih-Chun Liu, B.S., Feng-Chia University

Chair of Advisory Committee: Dr. Eun Jung Kim

Recently, processor power density has been increasing at an alarming rate result-

ing in high on-chip temperature. Higher temperature increases current leakage and

causes poor reliability. In our research, we first propose a Predictive Dynamic Ther-

mal Management (PDTM) based on Application-based Thermal Model (ABTM) and

Core-based Thermal Model (CBTM) in the multicore systems. Based on predicted

temperature from ABTM and CBTM, the proposed PDTM can maintain the system

temperature below a desired level by moving the running application from the possi-

ble overheated core to the future coolest core (migration) and reducing the processor

resources (priority scheduling) within multicore systems. Furthermore, we present the

Thermal Correlative Thermal Management (TCDTM), which incorporates three main

components: Statistical Workload Estimation (SWE), Future Temperature Estima-

tion Model (FTEM) and Temperature-Aware Thread Controller (TATC), to model

the thermal correlation effect and distinguish the thermal contributions from appli-

cations with different workload behaviors at run time in the CMP systems. The pro-

posed PDTM and TCDTM enable the exploration of the tradeoff between throughput

and fairness in temperature-constrained multicore systems.
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CHAPTER I

INTRODUCTION

Chip multiprocessors (CMPs) have already been employed as the main trend in new

generation processors. A CMP includes multiple cores within one single die area to

increase the microprocessors’ performance. However, the increased complexity and

decreased feature sizes have caused very high power density in modern processors.

The power dissipated is converted into heat and the processors are pushing the limits

of packaging and cooling solutions. The increased operating temperature potentially

affects the system reliability. Moreover, leakage power increases exponentially with

operating temperature. Increasing leakage power can further raise the temperature

resulting in a thermal runaway [1]. Hence, there is a need to control temperature at

all levels of system design.

Recently, many hardware and software-based Dynamic Thermal Management

(DTM) [1, 2, 3, 4, 5] techniques have been proposed in sense of that they, except

[5], start to control the temperature after the current temperature reaches the criti-

cal temperature threshold. Dynamic Thermal Management can be characterized as

temporal or spatial. Temporal management schemes, such as Dynamic Frequency

Scaling (DFS), Dynamic Voltage Scaling (DVS), clock gating, slowdown the CPU

computation to reduce heat dissipation. Although they could effectively reduce tem-

perature, they incur significant performance overhead. On the other hand, spatial

management schemes, such as thread migration, can reduce the temperature without

throttling the computation [6]. However, neighboring thermal effect and application

thermal behavior are not considered in prior works. Due to packaging technology in

The journal model is IEEE Transactions on Automatic Control.
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CMP, the temperature of each core will be affected by other cores. The temperature

differential between cores can be as much as 10 ∼ 15 ◦C [4]. There are significant vari-

ations in the thermal behavior among different applications [4, 5]. Motivated by these

facts, we first propose the Predictive Dynamic Thermal Management (PDTM) in this

research to utilize an advanced future temperature prediction model for each core to

estimate the thermal behavior considering both core temperature and applications

temperature variations and take appropriate measures to avoid thermal emergencies.

Furthermore, although thermal-aware thread migration in the CMP environment

has been introduced in the studies above, no prior attempt has been made to discover

the thermal correlation effect among neighboring cores. However, according to our

observation, the temperature of a single core can be affected by 2◦C to 16◦C depend-

ing on different levels of thermal correlation in our 4-cores CMP system. Moreover,

it is known that temperature of a component is highly correlated with that of other

components in the same chip [4, 7, 8, 9]. The temperature model, capturing a neigh-

boring effect in an uniprocessor, cannot be directly applied to that of CMPs, due

to their potential heterogeneity where each core has an independent thread to run.

Moreover, the significant variations in the thermal behaviors among different applica-

tions have already been introduced in [4, 5]. Although, there have been a handful of

studies using simple workload models, such as the average of workload and IPC (In-

structions Per Cycle), for the Dynamic Thermal Management (DTM), the workload

information is measured offline in their studies [6, 10]. We believe that it is necessary

to develop an efficient online workload estimation scheme for DTM to be applicable

to the real world applications which have variable workload behaviors and distinct

thermal contributions to the increased chip temperature. Instead of conducting our

DTM design upon the worst-case analysis, we drive our DTM design toward to the

average-case thermal management in the CMP systems. Hence, there is a need to
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develop an efficient and practical DTM scheme by modeling the thermal correlation

effect and distinguishing the thermal contributions from applications with different

workload behaviors at runtime. Hence, in this research, we also propose the Thermal

Correlative Dynamic Thermal Management (TCDTM) to characterize applications’

dynamic workload behaviors and model the thermal correlation effect among neigh-

boring cores. Both PDTM and TCDTM will be thoroughly discussed in the following

chapters.
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CHAPTER II

RELATED WORK

Nowadays, several thermal control techniques have been proposed and applied in mod-

ern processors via either hardware-based or software mechanisms [1, 8]. Hardware-

based DTM mechanisms, such as Dynamic Frequency Scaling (DFS) and Dynamic

Voltage Scaling (DVS), as well as clock gating, are able to effectively reduce proces-

sor’s temperature and guarantee thermal safety, but with high execution performance

overhead. In [1], the key goals of DTM were stated as: (1) to provide inexpensive

hardware or software responses, (2) that reliably reduce power, (3) while impacting

performance as little as possible. In [11], HybDTM, a methodology for fine-grained,

coordinated thermal management using both software (priority scheduling) and hard-

ware (clock gating) techniques, is proposed. In order to estimate temperature, Hyb-

DTM proposed a regression-based thermal model based on using hardware perfor-

mance counters. However, HybDTM can not effectively reduce overheat temperature

without performance overhead, because real temperature cannot be estimated solely

by hardware performance counter, and both of priority scheduling and clock gating

will introduce high performance overhead. Their performance overhead is 9.9% com-

pared to the case without any DTM. Therefore, as the multicore processors become

popular, some software-based thermal management mechanisms, such as thread mi-

gration in a CMP has been studied in [6, 10, 12]. In [6], the proposed mechanism,

called heat-and-run, has two key components: SMT thread assignment and CMP

thread migration. Within heat-and-run the SMT thread assignment attempts to in-

crease processor-resource utilization by co-scheduling threads which use complemen-

tary resources; on the other hand, the CMP thread migration cools overheated cores

by migrating threads away from overheated cores and assigning them to free SMT
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contexts on alternate cores to maintain throughput while allowing cooling overheated

cores. They showed that for four cores CMP running five threads, heat-and-run

thread assignment (HRTA) and heat-and-run thread migration (HRTM) achieve 9%

higher average throughput than stop-go and 6% higher average throughput than DVS.

Moreover, when performance is constrained by temperature, the performance gains

brought by thread migration and the importance of limiting the migration frequency

to reduce performance overhead has been confirmed in [13]. In [13], a new migra-

tion method for temperature-constrained multicore is proposed to exchange threads

whenever the simultaneous occurrence of a cold and a hot core is detected. The

authors demonstrate that their method yields the same throughput with HRTM,

but requires much less migrations. In [12], the authors further discuss about the

migration performance overhead by considering the different memory usages among

applications. They propose to calculate the average temperature among all cores and

set upper/lower threshold. Once a core (source core) reaches the upper/lower thresh-

olds, the migration would be triggered and the threads on the source core would be

exchanged with those on the target core. The target core is determined by consider-

ing the temperature difference between source and target cores and the data size of

the tasks running on the both cores. A core with higher temperature difference and

smaller data size tends to be selected as the target core to provide thermal balance

and reduce performance overhead. However, the application workload behaviors are

ignored. That means that sets of running threads will be migrated without consider-

ing the different thermal effects caused by various threads, while the core temperature

reaches the upper/lower temperature threshold. Moreover, it is not guaranteed that

the exchanged threads would not keep increasing the source core’s temperature and

eventually overheated. Furthermore, the migration action in these studies is triggered

by the current temperature (when the temperature reaches the predefined threshold);
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however, instead of considering the current temperature, we believe that an accu-

rate future temperature prediction model could perform more effectively in lowering

the peak temperature. However, as presented in [4], an accurate and practical dy-

namic model of temperature is needed to accurately characterize current and future

thermal stress, application-dependent behavior, as well as to evaluate architectural

techniques for managing thermal effects. Moreover, estimating thermal behavior from

the average of power dissipation is unreliable. Most importantly, except [10], these

prior works above are based on simulated results, and neglect the thermal correlation

among cores. The power dissipated by the rest of the chips is assumed to be neg-

ligible. However, the neighboring thermal correlation plays a significant role in the

thermal management in the CMP environment. In [10], the thermal-aware scheduler

is proposed and implemented on a 1.2G POWER5 system. However, the thermal

correlation is not discussed in this work and the scheduler requires tasks being pre-

defined as cold or hot tasks in advance. This may be unpractical in the real-world to

classify all tasks before running.
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CHAPTER III

PREDICTIVE DYNAMIC THERMAL MANAGEMENT FOR MULTICORE

SYSTEMS

In this chapter, we would discuss about the proposed Predictive Dynamic Thermal

Management (PDTM) in the context of multicore systems. Our PDTM scheme uti-

lizes an advanced future temperature prediction model for each core to estimate the

thermal behavior considering both core temperature and applications temperature

variations and take appropriate measures to avoid thermal emergencies. To evaluate

the proposed PDTM, we implement the temperature prediction model along with the

thermal-aware scheduling on a real four-core product under Linux environment. The

experimental results on Intel’s Quad-Core system running two SPEC2006 benchmarks

simultaneously show the proposed PDTM lowers temperature by about 5% in aver-

age and reduces up to 3◦C in peak temperature with only at most 8% performance

overhead compared to Linux standard scheduler without DTM. Moreover, to validate

the presented PDTM, we also rebuilt HRTM [6], and our PDTM outperforms HRTM

in reducing average temperature by about 7%, performance overhead by 0.15%, and

peak temperature by about 3◦C, while running single benchmark.

The main contributions of the proposed PDTM are summarized as follows:

• We propose an advanced future temperature prediction model for multicore

systems with only 1.6% error in average.

• We demonstrate that our scheme outperforms the existing DTM schemes (HRTM

and HybDTM) and provides thermal fairness among cores.

• The proposed PDTM incurs low performance overhead which is only 1% when

running single benchmark, and 8% when running two benchmarks simultane-
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ously.

• Most importantly, there is no additional hardware unit required for our predic-

tion model and thermal-aware scheme. It means that our model and scheme

is scalable for all the multicore systems and can be applied to real-world CMP

products.

A. Predictive Thermal Model

In this section, we present a thermal model to predict the future temperature at

any point during the execution of a specific application. The model is based on our

observation that the rate of change in temperature during the execution of an applica-

tion depends on the difference between the current temperature and the steady state

temperature of the application1. Moreover, the thermal behavior is different among

applications. Since the system temperature is affected by both each application’s ther-

mal behavior and each processors thermal pattern, we define the application-based

thermal model and the processor-based thermal model in PDTM.

1. The Application-based Thermal Model

The Application-based Thermal Model (ABTM) accommodates short-term thermal

behavior in order to predict the future temperature in fine-grained. As shown in Fig-

ure 1, there are rapid temperature changes even when the workload is statically 100%.

Specifically, this model first derives the thermal behavior from local intervals (short

term temperature reactions) and then predicts the future temperature by incorpo-

rating this behavior into a regression based approach that is known as the Recursive

1The steady state temperature of an application is defined as the temperature the
system would reach if the application is executed infinitely.
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Fig. 1. Real temperature of one core on running bzip2 benchmark

Least Square Method (RLSM). In the general least-squares problem, the output of a

linear model y is given by the linear parameterized expression

y = θ1f1(u) + θ2f2(u) + · · ·+ θnfn(u), (3.1)

where u = [u1 ,u2 ,· · · ,un ] is the model’s input vector, f1,...,fn are known functions

of u, and θ1, θ2,...,θn are unknown parameters to be estimated. In our study, let the

input vector, u, and the output vector, y, be time units and working temperature

respectively. To identify the unknown parameters θi, experiments usually have to

be performed to obtain a training data set composed of data pairs (ui ;yi ), i =

1,· · · ,m}. Expressed in matrix notation, the following equation can be obtained: Y
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= Xθ where X is an m × n matrix:

X =




f1(u1) · · · fn(u1)

...
...

...

f1(um) · · · fn(um)




(3.2)

θ is a n × 1 unknown parameter vector:

θ = [θ1, θ2, ..., θn]T (3.3)

and Y is a n×1 output vector:

Y = [Y1, Y2, ..., Yn]T (3.4)

If XT X is nonsingular, the least square estimator can be derived as

θ = (XT X)−1XT Y, (3.5)

Denote the ith row of the joint data matrix [X : Y ] by [XT
i : Yi]. Suppose that a

new data pair [XT
k+1 : Yk+1] becomes available as the (k + 1)th entry in the data set.

To avoid recalculating the least squares estimator using all input and output data

samples, let Pk = (XT X)−1 for the kth in Equation (3.5). Likewise, the recursive

least square method at (k + 1)th can be developed as

Pk+1 = Pk −
Pkxk+1x

T
k+1Pk

1 + yT
k+1Pkyk+1

, (3.6)

where yk+1 is the output vector and xk+1 is input vector of of fk+1.

θk+1 = θk + Pk+1xk+1(yk+1 − xT
k+1θk) (3.7)

where matrix P is an intermediate variable in the algorithm. Eventually, we get

future temperature, yn, by an application thermal behavior using the current θ vector.



11

Detailed descriptions of the Least Square Method and Recursive Least Square Method

can be found in the literatures [14]. With Equation (3.1), ABTM can predict future

temperature for an application as shown in Figure 2. How the ABTM applied in

PDTM is explained in Section 3.

ti+△t
temperaturetriggerthresholdmigrationthreshold △tti

temperature
time

current temperature futuretemperature
Fig. 2. The calculation of ∆t(migration time) using ABTM

2. The Core-based Thermal Model

The heat transfer equations model the steady state temperature of systems with heat

sources [15]. It has been observed in those models that the temperature changes

exponentially to the steady state starting from any initial temperature. In other

words, the rate of temperature change is proportional to the difference between the

current temperature and the steady state [15]. We initially assume that the steady

state temperature of the application is known. Later we will relax this constraint.

Let Tss be the steady state temperature of an application. Let T (t) represent the

temperature at time t and let Tinit be the temperature when an application starts
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execution (T (0)=Tinit). The prediction model assumes that the rate of change of

temperature is proportional to the difference between the current temperature and

the steady state temperature of the application. Thus

dT

dt
= b× (Tss − T ). (3.8)

Solving Equation (3.8) with T (0) = Tinit and T (∞)=Tss, we get

T (t) = Tss − (Tss − Tinit)× e−bt (3.9)

where b is a processor-specific constant. The value of b is determined using Equation

(3.8) by observing heating and cooling curves corresponding to all SPEC2006 bench-

marks on the core. Also, since the value of b is different to the amount of workload,

b should be determined by the workload on each processor. Running several bench-

marks, we obtained b = 0.009 when the workload is 100%. We precompute the steady

state temperature of an application offline. Then by rearranging Equation (3.9), we

get the steady state temperature Tss of the application.

Tss =
T (t)− Tinit × e−bt

(1− e−bt)
(3.10)

Therefore, with Equation (3.9) and (3.10), we get the future temperature after time

t and the steady state temperature, Tss, of each core.

3. The Predictive Thermal Model

Our approach, which towards characterizing the thermal contribution of individual

processor, uses ABTM and CBTM at run-time as the input for the overall thermal

model to directly estimate the future temperature. For each application, we exploit

both short-term (ABTM) and long-term (CBTM) future temperature values to pre-



13

vent Ping-Pong effect2. The application-based temperature Tapp predicts the transient

variations in application temperature which includes the temperature contribution at

the running period on the core before being migrated into other core. On the other

hand, the core-based temperature Tcore is calculated with the aggregated temperature

by workload. The overall predictive temperature is then given as:

Tpredict = wsTapp + wlTcore (3.11)

where Tpredict is determined as the overall predictive temperature, ws is a weighting

factor of ABTM, and wl is a weighting factor of CBTM. Note that ws and wl should

be adjusted according to the application workload. Since the benchmarks we used in

this study maintain 100% workload in most time, we found that the optimal values

for ws and wl are 0.7 and 0.3 respectively based on our experimental results.

B. PDTM Scheduler

The Linux standard scheduler is designed to compromise two opposing aspects: re-

sponse time and throughput. Interactive processes such as shell programming are

built to run in a satisfactory response time. On the other hand, CPU-intensive pro-

grams needs to ensure throughput. To keep up with this corollary in multi-cores,

a certain process is rarely migrated into another core in Linux standard scheduler.

This is mainly because an active process uses running information like TLB for the

process through cache memory [16]. However, when the workload is noticeably un-

balanced, the Linux standard scheduler initiates process migrations despite migration

overhead. However, the Linux standard scheduler does not take the temperature be-

havior into account. To resolve this issue, the proposed PDTM enables the scheduling

2Process is migrated among several cores very frequently.
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Workload Digital thermal sensor Application-based thermal model Core-based thermal model
Migration schedulingPriority scheduling

Predictive DTM

Monitoring Future temperature 

prediction model

Thermal-aware scheduler

HardwareSofrware
Fig. 3. System overview

policy to accommodate the temperature behavior as well as workloads in a multicore

environment.

Our PDTM mainly composes of three components as shown in Figure 3. In

the monitoring part, application workload (CPU utilization) is monitored for appli-

cation’s migration to balance workload by Linux standard scheduler. However, it is

not aware of temperature. Our PDTM uses Digital Thermal Sensor (DTS) to detect

temperature at run-time. The detected temperature information will be used in the

future temperature prediction model.

As shown in Figure 4, PDTM determines that migration is necessary when the

predicted temperature exceeds the migration threshold (Ttmt). When the current

temperature (Tcur) reaches the temperature trigger threshold (Tttt), ∆tm, the time to

which the migration threshold, is calculated by ABTM. PDTM begins to calculate the

future temperature via ABTM and CBTM for other cores after ∆tm. The core with
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Fig. 4. PDTM scheduler algorithm
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minimum value among future temperature (T []) is selected as new core for migration.

As shown in Figure 5, our goal is to find the future coolest core after ∆tm with our

prediction. If the prediction temperature, Tpred is also larger than priority scheduling

temperature(Tpst), the priority of application should be adjusted as well as migration.

△tm
ti

temperature

time
ABTM+CBTM

ti+△tmCBTM
TTTTcurcurcurcur

TTTTpredpredpredpred Migration threshold(Migration threshold(Migration threshold(Migration threshold(TTTTtmttmttmttmt))))Priority Scheduling Priority Scheduling Priority Scheduling Priority Scheduling threshold(threshold(threshold(threshold(TTTTpstpstpstpst))))
PDTM trigger threshold (PDTM trigger threshold (PDTM trigger threshold (PDTM trigger threshold (TTTTtttttttt))))

Fig. 5. PDTM utilizes ABTM and CBTM simultaneously to predict both short-term

and long-term future temperature for multicore

C. PDTM Implementation and Analysis

In order to estimate working temperature through Digital Thermal Sensor (DTS) for

multicore systems, we develop a specific driver to access them in runtime. In a chip-

multiprocessor (CMP) silicon die, each core has a unique thermal sensor that triggers

independently. The trigger point of these thermal sensors is not programmable by

software since it is set during the fabrication of the processor [17]. In our experiments,

we set temperature trigger threshold as 60◦C to start PDTM, and the migration

threshold as 70◦C to migrate applications when the predicted temperature exceeds
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Fig. 6. Comparisons among the three different schemes - ”without DTM”, ”HRTM”,

and ”PDTM”, using libquantum benchmarks
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Fig. 7. Comparisons among the three different schemes - ”without DTM”, ”HRTM”,

and ”PDTM”, using bzip2 and libquantum benchmarks
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Table I. A set of benchmarks list

Benchmarks Temperature Memory Usage

perlbench+hmmer Low Low

perlbench+bzip2 Low High

libquantum+hmmer High Low

libquantum+bzip2 High High

the migration threshold. Also, priority scheduling threshold is 82◦C. When predicted

temperature is reached at priority scheduling threshold, the priority of application can

be adjusted as lower value. All experiments are tested under ambient temperature

control and fixed fan speed.

1. Digital Thermal Sensor for Core 2 Quad

In Intel’s Core Architecture, the DTS can be accessed by a Machine Specific Register

(MSR). The value in the MSR is an unsigned number and the unit is Celsius (◦C).

In MSR, we use IA32 THERM STATUS register in order to get temperature of each

core. Within the register, it uses 7 bits where the value of DTS is stored. We can get

temperature for four cores by Equation (3.12).

Tcore = Tjunction −DTSvalue (3.12)

Tjunction is a manufactural value by Intel.

2. Experimental Analysis

To demonstrate the proposed PDTM, we conduct our experiments with a single

SPEC2006 benchmark and a set of two SPEC2006 benchmarks as shown in Table I.
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Running the single benchmark, the presented PTDM can decrease 8% temperature in

average (Figure 6), and reduces up to 5◦C in peak temperature with only under 1%

performance overhead compared to Linux standard scheduler without DTM. Run-

ning two benchmarks simultaneously, the proposed PDTM can even lower about 10%

temperature in average and reduces up to 3◦C in peak temperature while running

a set of benchmarks with only under 8% performance overhead compared to Linux

standard scheduler without DTM (Figure 7). As shown in Figure 8, the performance

overhead caused by PDTM is only under 1% in average while running one benchmark.

It means PDTM can be more effective to control temperature than Linux standard

scheduler when temperature and workload is higher.
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Fig. 8. Performance overhead:PDTM incurs only under 1% performance overhead in

average while running single benchmark

In order to make comparison, we also rebuilt HybDTM [11] (the software scheme-
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changing priority) and HRTM [6] on our Quad-Core system. HybDTM uses priority-

based scheme and HRTM uses migration-based scheme. HybDTM scheme relies on

hardware performance counter, while HRTM relies on current temperature informa-

tion. The experimental results show our PDTM outperforms HRTM in reducing aver-

age temperature by about 7%, performance overhead by 0.15%, and peak temperature

by about 3◦C. Additionally, our future temperature prediction model provides more

accurate prediction with only less than 1.6% error as shown in Figure 9; on the other

hand, the estimation model, introduced in HybDTM, has at most 5% average error.

The main reason of the accuracy in our prediction model is that we consider not only

the core-based temperature at each core, but also the application thermal behavior.

Therefore, PDTM is capable to manage the temperature fairness and controls the

overall temperature lower than other schemes even in CPU intensive situation.
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Fig. 9. The prediction model can estimate future temperature with less than 1.6%

error on running bzip2 benchmark
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CHAPTER IV

TEMPERATURE MODELING AND MANAGEMENT BASED ON THERMAL

CORRELATION AMONG NEIGHBORING CORES IN CMPS

Although, there have been a handful of studies using simple workload models, such as

the average of workload and IPC (Instructions Per Cycle), for the Dynamic Thermal

Management (DTM), the workload information is measured offline in their studies

[6, 10]. We believe that it is necessary to develop an efficient online workload esti-

mation scheme for DTM to be applicable to the real world applications which have

variable workload behaviors and distinct thermal contributions to the increased chip

temperature. Instead of conducting our DTM design upon the worst-case analysis, we

drive our DTM design toward to the average-case thermal management in the CMP

systems. Hence, there is a need to develop an efficient and practical DTM scheme by

modeling the thermal correlation effect and distinguishing the thermal contributions

from applications with different workload behaviors at runtime.

In this thesis, we propose the Thermal Correlative Dynamic Thermal Manage-

ment (TCDTM) that incorporates three main components: Statistical Workload Es-

timation (SWE), Future Temperature Estimation Model (FTEM) and Temperature-

Aware Thread Controller (TATC). The SWE utilizes the workload probability distri-

bution to measure each running thread’s workload behavior locally and overall work-

load behavior within each core globally. The representative workload is estimated

by using the cumulative distribution function (cdf ) at runtime. Thus, the thermal

impacts contributed by various threads are distinguished by the estimated represen-

tative workload. We further model the thermal correlation among neighboring cores

by profiling the thermal impacts from neighboring cores under the specific workload.

Once the thermal behavior of each running thread is obtained and the thermal cor-
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relation is modeled for the neighbor cores, the FTEM can then estimate each core’s

future temperature by taking both the thermal behaviors and the thermal correlation

into account. Therefore, based on the estimated future temperatures, TATC moves

the running thread from the possible overheated core to the future coolest core (mi-

gration), or reduce the processor resources (priority scheduling) while migration is not

available within multicore systems to effectively lower peak temperature, avoid ther-

mal emergency and provide thermal fairness with negligible performance overhead.

To further demonstrate TCDTM’s scalability and efficiency, especially to satisfy the

demand of thermal control in the recent server environment, we implement and evalu-

ate the proposed TCDTM in the real-world products, 4-core (Intel Quad Core Q6600)

and 8-core (two Quad Core Intel Xeon E5310 processors) systems, running grouped

applications ranged from multimedia application, popular server applications to sev-

eral benchmarks without any additional hardware unit.

We conclude the main contributions of this proposed work as follows:

• We analyze and distinguish the different thermal impacts contributed by various

applications with different dynamic workload behaviors via utilizing a statistic

approach.

• We develop the thermal models to consider the thermal correlation among neigh-

boring cores in CMP systems by profiling thermal parameters under the specific

workload.

• Then, we propose an effective DTM, called TCDTM, which is applicable to the

real-world applications having fluctuant workload behaviors and scalable to the

real CMP machines without any additional component required.

• According to the experimental results, TCDTM reduces the peak temperature
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by up to 9.09% and 7.94% in our 4-core system and 8-core system with only

2.28% and 0.54% performance overhead respectively compared to the Linux

standard scheduler.

• In average, TCDTM outperforms PDTM [18] and Thermal Balancing Policy

[12] by 3.8% and 3.16% in lowering peak temperature with 0.3% and 37.6% less

performance overhead respectively in our 4-core system; On the other hand,

TCDTM outperform PDTM [18] and Thermal Balancing Policy [12] by 4.09%

and 3.87% in lowering peak temperature with 0.09% more and 36.94% less

performance overhead respectively in our 8-core system.

A. Statistical Workload Estimation

In this section, we introduce a statistical model to estimate workload. To capture

the dynamic workload change, first we define workload with an execution time infor-

mation for a given time inverval, then we model a representative workload through a

cumulative distribution function (cdf ) and standard deviation based on workload his-

tory information. Finally, we show the effect of workload on the thermal parameters

which will be used in the thermal model, as describe in Section 3.

1. Definition of Workload

An application consists of a sequence of instructions to be executed. Execution time

(tapp) of the application can be represented in terms of Cycles Per Instruction (CPI),

the number of instructions being executed, and the CPU frequency as follows [19, 20]:

tapp =

n∑
i=1

CPIi

fCPU
, (4.1)
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where n is the total number of instructions, CPIi is the number of CPU clock cycle

for the ith instruction, and fCPU is the CPU frequency.

We can define workload tapp by the ratio of the execution time, tapp, to given

slack time, tmax, in Equation (4.2).

Wapp =
tapp

tmax

× 100. (4.2)

Actually, Linux kernel provides the ratio for each time interval. Therefore, we use

the ratio to model a representative workload of an application as follows.

2. Representative Workload

Instead of using simple average of Wapp, we attempt to use a representative workload

that can capture the system dynamics at runtime. In this study, we propose to derive

the representative workload from a cumulative distribution function (cdf ) of Wapp

and its standard deviation. We denote the cdf as F (x) for a random variable X for

Wapp according to a probability density function (pdf ), f(x), and probability p using

Equation (4.3)

P (Wmin
app ≤ X ≤ Wmax

app ) =

W max
app∫

W min
app

F (x)dx, (4.3)

where X is in the interval [Wmin
app ,Wmax

app ] and F (x) = P (X ≤ x) =
∑

y:y≤x p(y). And

Wmin
app means 0% and Wmax

app means 100% workload, respectively. To satisfy a various

computational requirements, the representative should be decided by the probability

requirements for application workload, Wapp, in the window. Specifically, let ρ be the

probability required for application workload in a window. In our observations, even

dynamic workload of applications can be defined as the representative workload by a
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probability ρ as follow:

P [X ≤ Wapp] ≥ ρ. (4.4)

As shown in Figure 10, we can exploit the representative workload using cdf

when playing a multimedia application. Moreover, in order to distinguish the threads

with stable workload behaviors from those with highly unstable workload behaviors,

the standard deviation, denoted as σ, is considered. In this study, we classify the

threads with σ less than 7.0 as the threads with stable workload behaviors in our

systems. Therefore, we use ρ = 0.5 to represent these stable threads’ workload and

ρ = 0.7 to represent those threads with highly unstable workload behaviors for the

thermal safety in the cdf.

ρ =





0.5 σ < 7.0 stable workload

0.7 σ ≥ 7.0 unstable workload

. (4.5)

Here, we consider the thread-level workload estimation as local, while core-level

workload estimation as global. For global workload estimation, the overall workload in

a single core is also monitored at runtime. The same as the thread-level, the concepts

of σ and ρ are also adopted in the core-level. Thus, the representative workload

for each core will be used to estimate the future temperature as explained in the

next section, and the different thermal effects contributed by different threads could

also be distinguished by the representative workloads if there are multiple threads

running in a single core. Moreover, to effectively control the temperature with less

performance overhead, we set 30% as the workload threshold. That implies that the

TCDTM would only control those threads with workloads higher than 30%, because

the threads with workloads under 30% only affect the temperature at most 2◦C in

our systems. The detailed thread control policies will be explained in Section C.
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3. Workload Effect on Thermal Parameter b

In order to provide a thermal model of a processor, we should consider the relationship

between temperature and workload of applications on the processor. We define T (t)

and P (t) as temperature and power at time t, respectively, using Fourier’s Law as

the following [21, 22]:

T ′(t) = P (t)− bT (t), (4.6)

where b is a positive constant representing the power dissipation rate. If we define

f(t) as processor frequency at time t, power and processor frequency are relevant to

the followings:

P (t) = a(fα(t)), (4.7)

for some constant a and α > 1. With an assumption that T0 = 0 (the initial temper-

ature is the ambient one), the solution of Equation (4.6) using Equation (4.7) can be

presented as follows:

T (t) =

∫ t

t0

a(frα(τ)e−b(t−τ))dτ + T0e
−b(t−t0). (4.8)

We can derive the following equation if we maintain the frequency constant at f(t)

= fc during the time interval at [t0, t].

T (t) =
a(fα

c )

b
+ (T (t0)− a(fα

c )

b
)e−b(t−t0), (4.9)

where fc is the current frequency on the processor. In order to determine thermal

parameters, a and b, we assume α = 3.0 [21], and then we can obtain the values for a

and b. In order to measure a and b more accurately, we should know the meaning of

those values. The change in temperature is based on individual component’s thermal

resistance and capacitance in specific processors [23]. To obtain current and future
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temperatures, we should take account for thermal resistance Rth and thermal capac-

itance Cth, while changing in temperature from Told to Tnew over a time interval ∆t

like Equation (4.10).

Tnew = P ·Rth + (Told − P ·Rth)e
−∆t

Rth·Cth , (4.10)

where Rth is thermal resistance and Cth is thermal capacitance. With Equation (4.10)

and (4.9), we can derive the thermal parameters a and b as follows:

a =
1

Cth

, b =
1

Rth · Cth

(4.11)

By Equation (4.11), thermal parameter a is represented as thermal capacitance Cth.

Thermal capacitance is defined as the amount of thermal energy required to raise

temperature of one mole of material by 1 Kelvin and can be measured at constant

volume or at constant pressure [22]. Therefore, this value is practically constant in

the same material. In contrast, the thermal parameter b is related to application’s

workload. This is because thermal resistance is in inverse proportional to power con-

sumption. Hence, characterizing the workload behavior is critical for distinguishing

the different threads’ thermal effects. As shown in Figure 11, the workload domi-

nates the temperature change in a core. Therefore, it is important to characterize

application’s workload in thermal control.

B. Thermal Model

In this section, we propose a proper thermal model for a CMPs to estimate future

temperature considering thermal correlation among neighboring cores.
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Fig. 11. Thermal effect of different workloads

1. Prior Thermal Model of a Single Core

The heat transfer equations are introduced to model the steady state temperature of

systems with heat sources in [15]. Within those heat transfer equations, the rate of

temperature change is proportional to the difference between the current temperature

and the steady state. Let Tss be the steady state temperature of an application. Then,

we denote T (t) as the temperature at time t and Tinit as the initial temperature when

an application starts execution (T (0)=Tinit). Thus,

dT

dt
= b× (Tss − T ). (4.12)

where b is a thermal parameter 3. Solving Equation (4.12) with T (0) = Tinit and

T (∞) = Tss, we could obtain

T (t) = Tss − (Tss − Tinit)× e−bt (4.13)



31

Using Equation (4.13) and our measurements, we can obtain Tss and b using following

steps:

1. We first run an application with 100% workload for a long time, and then

measure the steady sate temperature (Tss) when temperature is not changed

any more.

2. We monitor several current temperature through the Digital Thermal Sensor

(DTS) in each core. Thus, we calculate the thermal parameter b for the appli-

cation within the core using Equation (4.13).

As the result, we obtain each core’s respective value b and Tss for the generated

process in Table II by executing a generated process with 100% workload in each

core individually. Therefore, once the thermal parameter b and the steady state

temperature are obtained, we could estimate the core’s future temperature (T (t))

after time t by Equation (4.13). we can notice that each core’s thermal parameter b

and Tss are different even though the cores are within the same package as shown in

Table II. Moreover, we have observed that Tss and thermal parameter b are different

according to the workload in each core, as well as thermal correlation effect among

neighboring cores in the CMP systems. Therefore, we are motivated to improve

the prior thermal model by including the workload behavior and thermal correlation

concepts.

2. Thermal Effect according to Workload and Correlation among Cores

In this section, we first characterize the different thermal impacts contributed by

different workloads and then model the thermal correlation among neighboring cores.
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Table II. Each core’s respective Tss and thermal parameter b for a generated example

process with 100% workload running in the Intel Quad Core Q6600 system

Core 1 Core 2 Core 3 Core 4

b 0.0199 0.0175 0.0169 0.0181

Tss 78◦C 72◦C 68◦C 71◦C

Table III. The thermal parameter b and Tss according to workload in 4-core system

Core 1 Core 2 Core 3 Core 4

Workload (%) b Tss b Tss b Tss b Tss

20% 0.0139 59◦C 0.0092 58◦C 0.0053 52◦C 0.0065 57◦C

40% 0.015 64◦C 0.0058 62◦C 0.0085 57◦C 0.0065 58◦C

60% 0.0187 68◦C 0.0092 65◦C 0.0078 61◦C 0.0113 63◦C

80% 0.0179 73◦C 0.0164 70◦C 0.0165 67◦C 0.0138 68◦C

100% 0.0199 78◦C 0.0175 72◦C 0.0169 68◦C 0.0181 71◦C
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a. Thermal Impacts Contributed by Different Workloads

In the real world applications, the workload fluctuates, and each core’s Tss and b

should be changed according to the variance of workload at runtime. Therefore, by

running processes with several different workloads on each core in our 4-core system,

we observe the relationship between workload and thermal parameter b, as well as

Tss in the Table III. To do that, we experiment on two different environments such

as 4-core (Intel Quad Core Q6600) and 8-core (two Quad Core Intel Xeon E5310

processors) systems. We will explain in detail about our environments in Section 1.

b. New T ′
ss according to Thermal Correlation

We classify new T ′
ss into two parts: Tw

ss (according to its own workload), and Ttc

(affected by neighboring cores’ temperature). Thus, we calculate new T ′
ss according

to own workload by the following Equation (4.14).

T ′
ss = Tw

ss + Ttc. (4.14)

First, we can obtain Tw
ss from Table III. Since neighboring cores’ temperature

is relative to their own workloads, Ttc should also consider each cores’ workloads as

well as their temperature. As shown in Figure 12, the thermal range of core 1 is

determined by the thermal correlation effect from core 2, core 3, and core 4 in our

4-core system. In order to calculate the T ′
ss for core 1, we develop the Equation (4.15)

to obtain Ttc to model the thermal correlation impact from other cores.

Ttc =
n∑

i=2

∆T ×Wi, (4.15)

where ∆T is the thermal range between core 1’s temperature with and without ther-

mal correlation from neighboring cores. Wi is each core’s representative workload
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Fig. 12. The thermal range (∆T ) using Tw
ss and Ttc to calculate T ′

ss for core 1

estimated described in Section 2. For example, there are 4 threads with different

workloads running on each core individually in the 4-core system (Core 1 : 100%,

Core 2 : 50%, Core 3 : 30%, Core 4 : 20%). We first obtain Tw
ss as 78◦C and b as

0.0199 from Table III. Then, we calculate the thermal correlation effect from each

neighboring core with 100% workload, as shown in Table IV.

Therefore, by Equation (4.14) and (4.15), the T ′
ss can be obtained by the following

equation:

T ′
ss = 78 + (85− 78)× 50%

+ (84− 78)× 30%

+ (83− 78)× 20%

= 84.3 (◦C)
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Table IV. Ttc and b according to thermal correlation profiled for core 1

Ttc b

Only Core1 (100%) 78◦C 0.0199

Core1 (100%) + Core2 (50%) 85◦C 0.0246

Core1 (100%) + Core3 (30%) 84◦C 0.0195

Core1 (100%) + Core4 (20%) 83◦C 0.0176

In above example, the calculated T ′
ss (84.3◦C) is higher than the original Tss

(78◦C). The difference between these values represents thermal correlation effect, Ttc

(6.3◦C), among neighboring cores.

c. New b′ according to Thermal Correlation

Also, in order to advance the new b′ by considering the thermal correlation effect, we

define b′ as b′ = bw + btc and develop the following equations(4.16) and (4.17):

btc =
n∑

i=2

∆b×Wi (4.16)

b′ = bw + (btc × (T ′
ss − Tcur)

(T ′
ss − Tinit)

), (4.17)

where bw is determined according to own workload and btc is thermal parameter

affected by neighboring cores. And Tcur is current temperature and Tinit is initial

temperature. In Equation (4.16), ∆b is the difference between core 1’s thermal pa-

rameter b with and without thermal correlation by neighboring cores. In contrast
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with T ′
ss, thermal parameter b′ is changeable according to current temperature (Tcur).

Therefore, even if the thermal parameter b′ can be changed by current temperature

and thermal correlation, b′ determines only temperature increase rate.

3. Future Temperature Estimation Model (FTEM)

In this section, we propose a new thermal model to estimate future temperature

for each application in CMP. We focus on obtaining both new T ′
ss and new thermal

parameter b′ according to the estimated workload and profiled thermal correlation

impacts.

The original thermal models for estimating the future temperature at time t is

improved from Equation (4.13) to the following Equation (4.18) for a specific core

with workload estimation and thermal correlation by neighboring cores.

T ′(t) = T ′
ss − (T ′

ss − Tinit)× e−b′t

T ′(t) = Tw
ss + Ttc − (Tw

ss + Ttc − Tinit)× e
−(bw

tc+(btc× (T ′ss−Tcur)

(T ′ss−Tinit)
))×t

(4.18)

In order to validate our new thermal model, we conduct several experiments run-

ning some applications with different workload. The estimated future temperature for

core 1 through our new thermal models are compared with the monitored temperature

by the Digital Thermal Sensor in Figure 13. From Figure 13, the estimated future

temperature by the improved thermal models is very accurate, especially within the

first 200 seconds, which is much longer than enough to react against to the increasing

temperature.

Moreover, in order to demonstrate that the improved thermal models can be

effective even under the fluctuant workload, we also evaluate our thermal models by

executing multimedia data, which generates two individual threads. We first calculate
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Fig. 13. Validation of improved thermal model with workload estimation and thermal

correlation in static application. (Only core 1’s temperature is drawn.)
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Transformer movie, the Mplayer software would generate two threads. One is
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Fig. 15. Future Temperature Estimation Model (FTEM)

the representative workload through the cumulative distribution function (cdf ), and

then estimate temperature by considering both the representative workload and the

thermal correlation in the equations above. The result of workload estimation by cdf

is shown in Figure 14(a), and the estimated temperatures compared with the moni-

tored real temperature is shown in Figure 14(b). Thus, the results also demonstrate

the the accuracy of our improved thermal models under fluctuant workloads consid-

ering both workload and thermal correlation from neighboring cores. Therefore, as

shown in the Figure 15, the proposed Future Temperature Estimation Model (FTEM)

estimates each core’s future temperature (Test) for its individual steady state tempera-

ture according to the application and core representative workloads (Wapp rep,Wcore rep

) estimated by SWE. The estimated future temperature is validated against the mea-

sured temperature for actual processors with Digital Thermal Sensors (DTS), with

an average error of 2.4%. Eventually, the time duration (∆t) before the temperature
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reaches the migration threshold can be calculated and passed to TATC for thread

control along with (Test). (The detailed explanations will be brought in the following

sections.) Therefore, instead of blindly migrating all the running threads or reschedul-

ing all their priorities, the proposed TCDTM is able to adaptively cope the threads

according to their different thermal effects, based on their representative workloads

and neighboring thermal correlation effects. Consequently, TCDTM is capable to

control the temperature at a desired level with ignorable performance overhead.

C. Temperature Correlative DTM

In this section, we introduce the system design and architecture of the proposed

TCDTM. Moreover, we present how Thermal-Aware Thread Controller (TATC) uti-

lize the workload behavior and thermal correlation information to achieve thermal

balancing and lower the peak temperature will be explained in details.
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Fig. 16. The TCDTM system architecture
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1. System Overview

Basically, the proposed Thermal Correlative Dynamic Thermal Management (TCDTM)

consists of three major components: Statistical Workload Estimation (SWE), Future

Temperature Estimation Model (FTEM) and Temperature-Aware Thread Controller

(TATC). As shown in Figure 16, we depict the system architecture on a 4-core (In-

tel Quad Core Q6600 processor) machine. We developed a specific device driver for

Linux to access the Digital Thermal Sensor (DTS) for monitoring each core’s tem-

perature, and temperature information would be used in the FTEM. As explained

in the Section A and B, SWE is used to exploit the representative workload in both

thread and core levels to present each application’s workload behavior, while FTEM

utilizes the representative workload and thermal correlation information to estimate

the time duration (∆t) before temperature reaches the migration threshold and the

future temperature (Test). Hence, the TATC is able to react against to the thermal

emergency appropriately according to the estimated information. In the following

section, we discuss about the TATC in details.

2. Temperature-Aware Thread Controller (TATC)

To guarantee the thermal safety, the Thermal-Aware Thread Controller (TATC) con-

sists of two schemes: the priority scheme and migration scheme. Basically, When

current temperature reaches the trigger threshold, the SWE starts to monitor the

application’s workload behavior and calculate the representative workloads through

cdf for the running thread and core. Hence, as shown in Figure 17, the core represen-

tative workload (Wcore−rep) and application representative workload (Wapp−rep) can

be utilized in the FTEM. In FTEM, the time duration (∆t) before reaching migration

threshold can be estimated based on the profiled T ′
ss and b′ for different workloads.
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According to the ∆t, TATC migrates the running threads from the possible over-

heated core to another core. Here, since a thread under 30% workload affects the

core temperature at most 2◦C in our observations, TATC deals with the threads

with workload higher than 30% to reduce the performance overhead. In TATC, mi-

gration can be adopted in most cases, unless all the cores’ temperature reaches the

priority scheduling threshold. In this case, TATC should utilize the priority sched-

uler to adjust the nice value in the Linux process scheduler to reduce the thread’s

priority and increase the cooling time, because migration can not effectively reduce

the core temperature if all the core temperatures are near to the maximum allowable

temperature.����������� ��	
��������
�����
��
��	���	�����	���	��� ����	����	����	���
��	���	�����
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Fig. 17. TCDTM control flow: The T ′
ss, and b′ are profiled according to the applica-

tion’s workload. After future temperature estimated, the time duration (∆t)

before temperature reaches the migration threshold and future temperature

(Test) would be passed to TATC for reaction

Also, we ignore the difference of performance overhead caused by migrating

threads with different memory usages, because we observe that the migration perfor-
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mance overhead is dominated by the thread suspending and restarting processes in

the Linux kernel, rather than the different memory usage. For example, by compar-

ing the libquantum benchmark and a generated transaction thread, the difference of

migration overhead is just 0.0346 millisecond, although both of them maintain almost

100% workload, but the generated transaction thread has about 51% memory usage

in Linux kernel, while the libquantum has only around 3% memory usage.

Therefore, by considering the thermal effect of different workloads and the ther-

mal correlation, TATC is able to effectively reduce the peak temperature of each core

and achieve thermal balancing with ignorable performance overhead.

D. Experimental Results and Analysis

In this section, the detailed experimental environment and results are explained, along

with the analysis of the efficiency and effectiveness of the proposed TCDTM.

1. Experimental Environment

Table V. Experimental systems descriptions

System I System II

The number of cores 4 cores 8 cores

Processor Intel Quad Core Q6600 two Quad Core Intel Xeon E5310

Memory Size 1 GB 1 GB

Operating System. SUSE 10.3 (Kernel Version: 2.6.22) RedHat Enterprise 4 (Kernel Version: 2.6.9)

Since the thermal correlation effect is difficult to be simulated, we insist to im-

plement and evaluate the proposed TCDTM in the real CMP products. In order to

estimate each core’s working temperature individually, we develop a specific device
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driver for accessing the Digital Thermal Sensor (DTS) on Linux in our multicore

systems. The trigger point of these thermal sensors is not programmable by software

since it is set during the fabrication of the processor [17]. To evaluate the scalability,

we conduct our experiments in two multicore systems as shown in Table V. Moreover,

the implementation parameters of TCDTM for the two systems are provided in Table

VI.

Table VI. Experimental parameters

System I System II

Initial Temperature 54 ◦C 52 ◦C

Trigger Threshold 65 ◦C 55 ◦C

Priority Scheduling Threshold 95 ◦C 70 ◦C

The highest temperature 98 ◦C 74 ◦C

In order to demonstrate the applicability of the proposed TCDTM to various

applications with different workload behaviors, we create several scenarios and test

groups which include stable, fluctuant and combined workload behaviors as shown

in Table VII. We choose bzip2 and libquantum from SPECCPU2006 benchmark,

vacation from STAMP benchmark [24], and a multimedia application - Mplayer as

our test applications. We select bzip2 because it is both CPU and memory intensive,

while libquantum is only CPU intensive. Furthermore, vacation is a client/server

travel reservation system benchmark that is appropriate to present the demand of

thermal control in the server systems. For the application with fluctuant workload,

we use Mplayer to execute the ”Transformers” video clip encoded by H.264. One

should note that the Mplayer would generate two threads during execution: one is
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the X windows deamon, which maintains about 30% workload, and the other is the

decoding thread whose workload is fluctuant between 40% and 70%.

To compare the effectiveness and efficiency of the proposed TCDTM, we also

rebuild the Predictive Dynamic Thermal Management (PDTM) [18] and Thermal

Balancing Policy (TBP) [12] in our systems. All the experiments in this research are

under ambient temperature control, and the speed of cooling fan is also fixed.

Table VII. Application test scenarios

Category Test group Details

Scenario A stable workload 1 bzip2

2 bzip2 + libquantum

3 libquantum + vacation

Scenario B fluctuant workload 4 Multimedia

Scenario C combined workload 5 bzip2 + Multimedia

6 libquantum + vacation + Multimedia

7 bzip2 + libquantum + vacation + Multimedia

2. Analysis and Evaluation

Here, we select several representative test groups from each scenario to present as

figures1 to demonstrate the proposed TCDTM’s effectiveness in thermal control. On

the contrary, the performance overhead caused by DTM is discussed for all test groups.

Here, we would discuss the effectiveness and efficiency by individual group in our two

systems.

1All the temperature figures have been processed by the smooth function in Matlab
for clearness.



46

a. System I (4-core System)

The different scenarios’ experimental results in System I are discussed below:
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Fig. 18. DTM evaluation in 4-core system for stable workload behaviors: Test Group

2 (libquantum + vacation)
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1. Scenario A (Stable Workload)

As shown in Figure 18, all the DTMs have lower peak temperature compared to

the Linux Standard Scheduler in Test Group 2. Compared to the Linux Standard

Scheduler, both TCDTM and PDTM reduce the peak temperature by 3.13%, while

TBP reduces by 2.08% as shown in Table VIII. For the performance overhead eval-

uation in Figure 21, the TCDTM and PDTM present less than 0.46% performance

overhead compared to the Linux Standard Scheduler in Test Group 2, while TBP

incurs 6.64%. This is also the reason why the temperature in TBP doesn’t decrease

obviously after executing 600 seconds. Since there are only two threads running in

the systems, the thermal correlation effect is minor. Moreover, both of the treads

maintain 100% workload stably, and the difference of thermal behaviors could then

be ignored. Therefore, PDTM presents the similar effectiveness in thermal control

compared to TCDTM.

2. Scenario B (Fluctuant Workload)

As shown in Figure 19, we first notice that TCDTM presents a smoother temper-

ature pattern, and provides better thermal fairness by having narrower temperature

gaps among all cores in the Test Group 4. As shown in Table VIII, TCDTM reduce

the peak temperature by 1.35% compared to Linux Standard Scheduler, while both

TBP and PDTM increase the peak temperature by 1.35%. Since there is only one

non-CPU-intensive multimedia application executed simultaneously, the temperature

decrease in the proposed TCDTM is minor. In PDTM, the temperature pattern

seems to be similar to the pattern of the Linux Standard Scheduler; however, the

temperature of core 3 and core 4 in PDTM is higher than in Linux Standard Sched-

uler, because PDTM tends to migrate the threads into core 3 and core 4. Although
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Fig. 19. DTM evaluation in the 4-core system for fluctuating workload behaviors: Test

Group 4 (Multimedia)
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PDTM rarely migrates the threads into core 1, some system threads can be assigned

to core 1. Since the Tss and thermal value b are higher, core 1 is more sensitive

in temperature changing. Therefore, the system threads still keep core 1 in higher

temperature, although the multimedia threads are running on core 3 and core 4. On

the contrary, the core 1’s temperature in TBP is even higher than in Standard Sched-

uler. Besides the higher Tss and b of core 1, TBP trigger threads exchange while the

thresholds are reached. Therefore, even though the thread in core 1 are exchanged out

to avoid increasing core 1’s temperature, the thread exchanged into core 1 still can

potentially keep increasing the core 1’s temperature. Therefore, the thermal safety

cannot be guaranteed in TBP.

About the performance overhead shown in Figure 21 and Table VIII in Test

Group 4, the performance overhead is not available, because there is no obvious

frame drop among 4 different schemes. This is due to the high CPU frequency in our

test environment. In [25], the authors have demonstrated that 1Ghz CPU frequency

is enough for 96% frames for decoding in H.264 codec. Therefore, we cannot compare

the performance overhead among the 4 schemes in Test Group 4.

3. Scenario C (Combined Workload)

In the Test Group 7, since the number of threads is more than the number of

cores, each core runs at least one thread at most time. This is important for the

evaluation of the proposed TCDTM, because this group consists of applications with

different workload behaviors, and the thermal correlation among cores is severe. From

the Figure 20, the proposed TCDTM can effectively lower down the peak temperature

by 2.15% compared to the Linux Standard Scheduler with only 6.27% performance

overhead, as shown in Table VIII. One may notice that the peak and average tem-

perature in TBP is much lower and smoother than other schemes. However, this
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Fig. 20. DTM evaluation in 4-core system for combined workload behaviors: Test

Group 7 (bzip2 + libquantum + vacation + Multimedia)
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cannot demonstrate that TBP outperforms others in thermal control, because TBP

incurs over two times performance overhead in Figure 21, and this is much worse

than acceptable for the efficiency. Moreover, the peak temperature in PDTM is even

3.23% higher than that in Standard Scheduler with 12.20% performance overhead,

and this is due to that PDTM is not aware of the distinct workload behaviors among

threads and the significant thermal correlation issues, so PDTM cannot accurately

predict the core’s future temperature and trigger migration at the correct time. On

the contrary, TCDTM is capable to distinguish the different workload behaviors and

estimate the thermal correlation effect. Therefore, TCDTM outperforms TBP and

PDTM in both thermal control and efficiency.

Table VIII. Experimental results compared to Linux Standard Scheduler in System

I (4-core system): (R.P.T. : Reduced Peak Temperature; P.O. : Perfor-

mance Overhead)

TBP PDTM TCDTM

Test Group R.P.T. (%) P.O. (%) R.P.T. (%) P.O. (%) R.P.T. (%) P.O. (%)

1 6.25 3.03 7.50 0.47 8.75 3.26

2 2.08 6.34 3.13 0 3.13 0.46

3 0 16.58 1.10 −2.95 4.40 −3.12

4 −1.35 N/A −1.35 N/A 1.35 N/A

5 2.27 5.80 1.14 0.34 9.09 2.28

6 2.17 115.86 2.17 −1.67 7.61 2.93

7 3.23 111.74 −3.23 12.20 2.15 6.27
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b. System II (8-core System)

The different scenarios’ experimental results in System II are discussed below:
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Fig. 22. DTM evaluation in 8-core system for combined workload behaviors: Test

Group 5 (bzip2 + Multimedia)

1. Scenario C (Combined Workload)

In System II, the proposed TCDTM outperforms PDTM and TBP in both tem-

perature control effectiveness and efficiency in the Group Test 5. As shown in Figure
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22, TCDTM presents a much smoother temperature pettern than the Linux Stan-

dard Scheduler. In Table IX and Figure 23, TCDTM reduces the peak temperature

by 7.94% with 0.54% performance overhead compared to Linux Standard Scheduler,

while PDTM and TBP reduce peak temperature by 1.59% and 3.17% with 0.15% and

55.5% performance overhead respectively. Although TBP decreases the peak temper-

ature and presents smoother thermal pattern compared to the Standard Scheduler,

TBP also offers impractically huge performance overhead. Moreover, the exchanged

threads cannot effectively reduce core 1’s temperature. Since PDTM is not aware

of the different thermal effect contributed by applications with different workload

behaviors and the thermal correlation effect, PDTM cannot accurately predict the

temperature and react in time. Therefore, around 800 seconds in Figure 22, PDTM

fails to control the temperature under the desired level.

Table IX. Experimental results compared to Linux Standard Scheduler in System II

(8-core system): (R.P.T. : Reduced Peak Temperature; P.O. : Performance

Overhead)

TBP PDTM TCDTM

Test Group R.P.T. (%) P.O. (%) R.P.T. (%) P.O. (%) R.P.T. (%) P.O. (%)

1 1.61 −0.77 1.61 −1.23 8.06 2.38

2 −4.76 65.73 −4.76 13.49 3.17 19.62

3 −1.61 27.59 0 8.42 −1.61 1.83

4 −1.69 N/A −1.69 N/A 5.08 N/A

5 3.17 55.50 1.59 0.15 7.94 0.54

6 −1.61 72.39 0 2.99 0 7.58

7 1.52 118.30 −1.52 6.63 1.52 2.89
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c. Analysis

For all the experiments results, we summary the thermal control effectiveness and

performance overhead compared to the Linux Standard Scheduler in the Table VIII

and Table IX. Among all the results, TCDTM reduces the peak temperature by up to

9.09% in Test Group 5 in System I and up to 7.94% in System II with only 2.28% and

0.54% performance overhead respectively. In TBP, the high performance overhead

may due to the high migration frequency, since the migration is easier to be triggered

once the current temperature reach either upper or lower threshold. Moreover, in

TBP, the temperature gaps among each core is wider than other schemes, because

each core has different Tss and thermal value b, and the exchanged threads can still

increase the overheated core’s temperature. In average, TCDTM outperforms PDTM

and TBP by 3.8% and 3.16% in lowering peak temperature with 0.3% and 37.6%

less performance overhead respectively in System I; On the other hand, TCDTM

outperform PDTM and TBP by 4.09% and 3.87% in lowering peak temperature with

0.09% more and 36.94% less performance overhead respectively in System II.

Therefore, TCDTM outperforms other DTMs in both thermal control and per-

formance efficiency under several different experimental scenarios, because TCDTM

is capable to distinguish the different thermal behaviors of various applications with

different workload behaviors, as well as aware of the thermal correlation among neigh-

boring cores to react against thermal emergency immediately.
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CHAPTER V

CONCLUSION

Due to the ever-increasing power density and current leakage, thermal impact has

become critical and needs to be addressed immediately in the modern chip design.

Since the cost and complexity are the major challenges in designing thermal packag-

ing for thermal control in CMPs, an efficient Dynamic Thermal Management (DTM)

is essential in the design of the high-performance microprocessors. Therefore, in

this cooperative research work, we have have proposed two modern Dynamic Ther-

mal Managements, Predictive Dynamic Thermal Management (PDTM) and Ther-

mal Correlative Dynamic Thermal Management (TCDTM),to efficiently control the

chip operation temperature under the desired threshold in the Chip multiprocessors

(CMPs) systems. The conclusion of each proposed work is given in the following

sections:

A. Predictive Dynamic Thermal Management

In the proposed PDTM, we present an advanced future temperature prediction model

for multicore systems to predict each core’s future temperature with only 1.6% error

in average, and evaluated PDTM on Intel Quad-Core with a specific device driver to

access the Digital Thermal Sensor. We demonstrate that our scheme is able to reduce

the overall temperature and provide thermal fairness among four cores. The proposed

temperature prediction model can provide more accurate prediction and more efficient

temperature management by using ABTM and CBTM with lower performance over-

head compared to other schemes (HRTM and HybDTM). Compared against Linux

standard scheduler, PDTM can decrease average temperature about 10%, and peak

temperature by 5C with negligible impact of performance under 1%, while running
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single SPEC2006 benchmark. Moreover, our PDTM outperforms HRTM in reducing

average temperature by about 7% and peak temperature by about 3◦C with perfor-

mance overhead by 0.15% when running single benchmark. Most importantly, there

is no additional hardware unit required for our prediction models and scheduler.

B. Thermal Correlative Dynamic Thermal Management

Moreover, to avoid thermal emergencies and provide thermal fairness in CMP systems,

we propose and implement an adaptive and scalable run-time thermal management

scheme, called Thermal Correlative Dynamic Thermal Management (TCDTM), on

the real-world CMP products. Since the significant variations in the thermal be-

haviors among different applications and the severe thermal correlation effect among

multi cores are ignored by all the prior DTM works. We suggest to characterize each

application’s distinct thermal behavior by applying a cumulative distribution func-

tion into the application workload and a proper thermal model for CMP systems to

analyze the thermal correlation effect by profiling the thermal impacts from neigh-

boring cores under the specific workload. Thus, the future temperature of each core

can be more accurately estimated for adopting an appropriate reaction against the

thermal emergency through the proposed TCDTM.

To demonstrate the scalability and effectiveness, we implement and evaluate the

proposed TCDTM in the 8-cores (two Quad Core Intel Xeon E5310 processors) and

4-cores (Intel Quad Core Q6600) systems running grouped multimedia application

and benchmarks. According to the experimental results, TCDTM reduces the peak

temperature by up to 9.09% in our 4-cores system and up to 7.94% in 8-cores sys-

tem with only 2.28% and 0.54% performance overhead respectively compared to the

Linux standard scheduler. Moreover, TCDTM also outperforms PDTM and Ther-
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mal Balancing Policy in both thermal control effectiveness and reducing the caused

performance overhead.

This is the first study addressing the neighboring thermal correlation effect in

CMP systems for Dynamic Thermal Management. We would like to present this work

to discover the thermal nature and build a study foundation for Dynamic Thermal

Management in Chip Multiprocessor systems in the future.
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