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Abstract: The process of modern drug design would not exist in the current form without computa-
tional methods. They are part of every stage of the drug design pipeline, supporting the search and
optimization of new bioactive substances. Nevertheless, despite the great help that is offered by in
silico strategies, the power of computational methods strongly depends on the input data supplied at
the stage of the predictive model construction. The studies on the efficiency of the computational
protocols most often focus on global efficiency. They use general parameters that refer to the whole
dataset, such as accuracy, precision, mean squared error, etc. In the study, we examined machine
learning predictions obtained for opioid receptors (mu, kappa, delta) and focused on cases for which
the predictions were the most accurate and the least accurate. Moreover, by using docking, we tried
to explain prediction errors. We attempted to develop a rule of thumb, which can help in the pre-
diction of compound activity towards opioid receptors via docking, especially those that have been
incorrectly predicted by machine learning. We found out that although the combination of ligand-
and structure-based path can be beneficial for the prediction accuracy, there still remain cases that
cannot be reliably predicted by any available modeling method. In addition to challenging ligand-
and structure-based predictions, we also examined the role of the application of machine-learning
methods in comparison to simple statistical methods for both standard ligand-based representations
(molecular fingerprints) and interaction fingerprints. All approaches were confronted in both classifi-
cation (where compounds were assigned to the group of active and inactive group constructed on
the basis of Ki values) and regression (where exact Ki value was predicted) experiments.

Keywords: machine learning; docking; opioid receptors; in silico drug design and discovery

1. Introduction

Computational methods are now an indispensable element of the drug design process,
being used at all stages–from ligand identification via its optimization (both in terms of ac-
tivity and properties) to monitoring its effect after introduction into the market [1,2]. A wide
range of approaches applied to find new potential drug candidates can be divided into those
that use only information about existing ligands (ligand-based methods [3–8]) and those
that take into account the structure of the target protein (structure-based methods [9–14]).
The former group of approaches has the following representatives: similarity searching,
pharmacophore modeling, quantitative structure–activity relationship analysis (QSAR),
etc., whereas structure-based drug design focuses on docking to the three-dimensional
structure of the target protein. In the optimistic case, it is available from the crystal struc-
ture; however, for the great majority of target proteins, such data are unavailable. In such a
situation, the atom arrangement of the target needs to be predicted, which is most often
achieved via the homology modeling procedure [15].
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Both ligand- and the structure-based path have their advantages and disadvantages.
Ligand-based approaches are, in general, faster and are less demanding in terms of compu-
tational resources. However, as the predictions are based on models built on the known
ligands, the quality of the obtained results depends on the quality of the training data
available. For example, when the set of known ligands is small, and it is composed of
compounds sharing high structural similarity, the predictive model may have difficulties in
the correct evaluation of highly diversified compound libraries [16,17]. On the other hand,
the structure-based methods are less prone to bias related to the training set, although
they are much more demanding in terms of computational resources. In addition, the
discrimination ability between active and inactive compounds also varies for different
targets, depending, e.g., on the size and properties of the binding site.

The most common ligand-based strategies involve similarity searches, pharmacophore
modeling, and QSAR analysis. Both similarity searches and QSAR analysis often make
use of machine learning (ML) methods. They are very popular in the computer-aided
drug design (CADD) field due to their speed and relatively high-efficiency of compound
properties predictions. Nevertheless, the ML-based predictions are prone to bias related
to many factors, from the training set composition, via compound representations to
results evaluations [17].

The effectiveness of various computational methods depends on the target, already
available ligands, and method settings. The most often conducted studies on the efficiency
of computational protocol predictions focus on global prediction efficiency. They use
general parameters that refer to the whole dataset, such as accuracy, Matthews correlation
coefficient (MCC), precision, mean squared error (MSE), etc. [18–25]. Here, we scrupulously
examine ML predictions obtained for opioid receptors (mu, kappa, delta). We do not focus
on global prediction efficiency but carefully analyze cases for which the predictions were
the most accurate and the least accurate, and by using other methods, we try to explain
prediction errors.

Opioid receptors are representatives of the G protein-coupled receptors (GPCRs),
being the largest and the most diverse proteins in the human genome [26–28]. Opioid
receptors are responsible mainly for analgesia, and therefore they constitute intensively
explored targets for pain treatment [29]. Their three main subtypes (mu-opioid receptor,
kappa-opioid receptor, and delta-opioid receptor) are involved in many physiological
processes in the living organism. Although the function of opioid receptors in the brain is
still not fully explained, they are proved to play an important role in obesity, respiratory and
cardiovascular control, epileptic seizures, emotional response, and regulation of membrane
ionic homeostasis [30–34].

There is already a great collection of studies comparing the quality of ML-based
predictions made in various conditions. However, such comparisons are usually based on
the global prediction efficiency [35–37]. In the study, we focus on more detailed analysis
and carefully examine cases with the highest prediction error. Such an approach was
applied to see whether there is room for improvement of the prediction quality using
different experimental settings (e.g., compound representation) or evaluation strategy
(e.g., shift from ML to docking). Moreover, to provide also a more general picture of the
considered problem, ML approaches were confronted with simple statistical methods in
both classification and regression tasks.

2. Methods
2.1. Dataset Preparation

Respective ligand sets were prepared based on the ChEMBL database (version 25, Eu-
ropean Molecular Biology Laboratory-European Bioinformatics Institute, Cambridgeshire,
UK) [38]. All affinity values (expressed via Ki) referring to mu, kappa, and delta-opioid
receptors were collected. The compound structures were transformed to the bit-string repre-
sentation using the PaDEL descriptor [39] software (version 2.17, National University of Sin-
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gapore, Singapore ) (the following fingerprints were used: extended fingerprint (ExtFP) [40],
Klekota–Roth fingerprint (KlekFP) [41] and MACCS fingerprint (MACCSFP) [42]).

2.2. ML-Based Predictions

Ki values were predicted using the k-nearest neighbor algorithm (IBk [43]) and random
forest (RF) [44,45]. Ki values were predicted in regression (exact Ki value was predicted)
and classification (assignment to the active, Ki < 100 nM, or inactive, Ki > 1000 nM, class)
experiments. Predictions were carried out in the 10-fold cross-validation mode with
random division into folds. Weka’s (version 3.6.10, University of Waikato, Hamilton,
New Zealand) implementation of the ML algorithms was used [46].

2.3. Molecular Docking

In the second path, all the compounds were docked to the respective crystal structures
of opioid receptors (Table 1). The crystal structures were prepared for docking using the
Protein Preparation Wizard from the Schrödinger Suite, and the docking was carried out in
Glide [47] from the same software package in the extra precision mode. The compound’s
three-dimensional conformations were generated within LigPrep [48] with the use of the
OPLS3 force-field.

Table 1. The summary of the crystal structures of opioid receptors used in the study.

Target PDB ID Resolution (Å)
Co-Crystallized

Ligand Type Receptor State

Mu opioid receptor 4DKL 2.8 Antagonist Inactive
Delta opioid receptor 4RWD 2.7 Antagonist Inactive

Kappa opioid receptor 6B73 3.1 Agonist Active

The obtained ligand–receptor complexes were encoded in the form of the structural
ligand interaction fingerprints (SIFts) [49]. Those positions for which the ligand-residue
contacts occurred for more than 50% of ligands were analyzed in terms of the contact
frequency (the groups of active and inactive compounds were analyzed separately). In
addition, regression experiments predicting Ki values were carried out in an analogous
manner as for ExtFP, MACCSFP and KlekFP.

3. Results and Discussion
3.1. Dataset Analysis

The number of examples considered for a particular target is as follows: 4939 data-
points for the mu opioid receptor, 4628 for the kappa subtype, and 4906 for the delta-opioid
receptor. The activity distribution for considered targets is presented in Figure 1.

The first observation coming from Figure 1 is the relatively high number of very active
ligands (Ki < 10 nM) reported in the ChEMBL database. For all receptors considered, nearly
half of the data points refer to records with Ki values below 100 nM. Moreover, when
taking a closer look at them, it appears that also the majority of them can be assigned to the
group of very active ligands, that is, below the 10 nM. For all three receptors, there are over
1000 ligands with Ki values below the 10 nM threshold.
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Figure 1. Distribution of Ki values of opioid receptors ligands, full data are depicted in blue, red bars refer to the activity
distribution of the most active ligands (Ki < 100 nM).

3.2. Global Effectiveness of ML Methods Predictions (Regression Experiments)
3.2.1. Ligand-Based Analysis

The global effectiveness of such a strategy is presented in Figure 2, and it is expressed
in the form of relative absolute error.
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Figure 2. Relative absolute errors were obtained in the predictions of compounds Ki values for different machine learning
(ML) algorithms and compound representations.

The general observation is that the predictions of the RF algorithm were a little bit
less accurate than those provided by IBk (indicated by higher values of Relative Absolute
Error). Moreover, for the kappa opioid receptor, the differences between results obtained
by RF and IBk are the highest and equal to about 20%. Although, on average, the best
predictions were obtained for KlekFP, only for the kappa opioid receptor, the difference
between various compound representations is not strongly indicated. When it comes to
the analysis of a particular receptor subtype, the most accurate results were obtained for
the kappa opioid receptor, with values of relative absolute error not exceeding 50% for all
compounds representations for IBk, and between 50% to 60% for RF. On the other hand,
the lowest prediction power was observed for the delta opioid receptor, where Relative
Absolute Error values were around 60% for all ML methods and compound representations
used–the highest for MACCSFP, with only a slight difference between IBk and RF.

In addition, for each case, the distribution of prediction error was provided (example
distribution for the delta opioid receptor is visualized in Figure 3, respective data for
remaining targets are placed in the Supplementary Materials). It is visible that for each
method, there is a peak in the prediction error. It is most visible for ExtFP and MACSFP-
based RF models, and in both cases, it is between 100 and 1000 nM error with over 600
such cases for ExtFP and 400 for MACCSFP. Predictive models constructed on ExtFP and
MACCSFP representations using the IBk algorithm did not have such sharp peaks in
predictive error, and its relatively high values are observed for 100 to 10,000 nM. KlekFP
representation displayed different behavior; for RF, the highest number of prediction errors
was of values around 1000. On the other hand, the range of the highest populated error
values was much broader than in the case of MACCSFP and ExtFP. The distribution error
for KlekFP–IBk resembled a distribution error for ExtFP–IBk.
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In addition, regression experiments were carried out for compounds represented by
interaction fingerprints (SIFts). However, in this case, the prediction accuracy was much
lower, as relative absolute error values exceeded 90%.

To analyze whether the compounds for which the ML methods are unable to produce
correct predictions are the same for different methods/compound representations, Venn
diagrams presenting the number of overlapping compounds for each experimental setting
were prepared (200 top compounds were considered in each case, Figure 4). There is no
direct tendency when IBk and RF algorithms are compared. Although for delta and kappa
receptors, the highest number of common compounds with the highest error occur for
IBk, the highest number of ligands that were consistently incorrectly predicted for mu
opioid receptor occurred for RF. The highest number of compounds consistently incorrectly
predicted for both representations and ML methods occurred for the delta opioid receptor
(82 compounds). It was similar to the number of wrongly predicted ligands from the set of
mu opioid receptors (71), whereas for the kappa opioid receptor, the number of ligands,
which were incorrectly predicted in all experimental conditions, was much lower, and it
was equal to 35. Therefore, for delta and mu receptors, the relatively high percentage of
compounds (over 35%) is wrongly predicted regardless of the compound representation
and ML method used. Therefore, it can be assumed that for these compounds, the ligand-
based approach is ineffective in the correct evaluation of their activity. For kappa opioid
receptors, almost 50% of compounds (out of the top 200 worst predictions) were wrongly
predicted by IBk for all fingerprints used. In contrast, RF managed to lower this number to
17%, which means that in the case of these receptor ligands, an improvement in prediction
efficiency can be obtained by the use of other ML algorithms.
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To characterize the set of wrongly predicted compounds in more detail, several
analyses were carried out. At first, it was checked whether the compounds for which the
highest predictive error was consistently obtained belong to the group of active or inactive
ligands (Table 2). Except for the mu opioid receptor, where over 50% of incorrectly predicted
compounds belonged to the group of active ligands, the distribution of compounds over
two activity groups considered (active/inactive) was similar. It was varying from 30–40%
(the obtained numbers do not sum to 100%, as there is a gap in Ki values when dividing
the dataset into the active (Ki below 100 nM) and inactive (Ki above 1000 nM) parts. This
outcome is promising in terms of the potential application of the tested methods in VS, as
the most common problem occurring in compound evaluation is results bias. It is most often
related to compound structures (those that are present in the training set do not resemble
representatives from the test set), but it can also be related to the overrepresentation of one
of the acting classes in the training set. Then, there is a higher probability that the newly
evaluated examples will be assigned to the class with the highest number of examples
regardless of compound structure (although this problem can be solved via the application
of a proper weighting scheme).

Table 2. Comparison of the common compounds with the highest prediction error belonging to the group of active and
inactive compounds.

Target
Total Number of Common

Compounds with the
Highest Error

Number of Common
Compounds Belonging to

the Set of Active Molecules
(Fraction of All Common)

Number of Common
Compounds Belonging to

the Set of Inactive Molecules
(Fraction of All Common)

Delta opioid receptor 82 31 (38%) 31 (38%)
Kappa opioid receptor 35 14 (40%) 12 (34%)

Mu opioid receptor 71 37 (52%) 13 (18%)

As the second type of analysis, a more detailed examination of the activity distribution
of incorrectly predicted compounds was carried out (Figure 5). In general, for mu-opioid
receptor ligands, the highest populated (in terms of consistently incorrectly predicted
compounds) activity range was between 10 and 100 nM and 100 to 1000 nM (when activity
was expressed in the form of Ki values). On the other hand, compounds with relatively
high Ki (over 1000 nM) constituted only a small fraction of mu-opioid receptor ligands
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with the highest prediction error. On the other hand, delta-opioid receptor ligands were
characterized by the highest prediction error when the compound Ki values were above
5000 nM. For kappa opioid receptor ligands, the results were also different as in the case
of this receptor, the highest number of compounds with the highest prediction error fell
to the range of Ki below 10 nM. Due to high variations in the percentage of incorrectly
predicted compounds falling to a particular range of Ki values, no general conclusions can
be drawn in terms of compound activity ranges, for which the highest difficulties in proper
evaluation by ML methods occur.
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3.2.2. Structure-Based Analysis

To explain the observed dependencies from the structure-based point of view, the
docking studies for all the analyzed compounds were carried out. The obtained ligand–
receptor complexes were encoded in the form of the SIFts [49], and those positions, for
which the ligand-residue contacts occurred for more than 50% of ligands were analyzed
in terms of the contact frequency (the groups of active and inactive compounds were
analyzed separately). The analysis allowed for the identification of positions with the
highest difference between the interaction frequency of active and inactive compounds
(Figure 6).

For the delta opioid receptor, the K5x40 residue interacted by 11% more frequently
with active ligands than the inactive ones. In addition, Y7x42 displayed a preference
for active compounds, but the difference in the interaction frequency was much lower
and equal to 5.2%. Moreover, all the positions with the highest difference in interaction
frequencies between the analyzed compound groups for kappa and mu opioid receptors
displayed a preference for active compounds. For the kappa opioid receptor, there were
three residues with a difference at the level of 4% (S45x51, V5x43, and Y7x42) and two
for the mu-opioid receptor (Y3x33 and K5x40). Although the residues discriminating
active and inactive compounds belong to different protein regions, it seems that the 5th
transmembrane helix is the most discriminative in this case.
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sidered). Positions with the highest difference between active and inactive compounds are indicated.

The compounds with the highest prediction error were compared (Figure 7) in terms
of the interaction frequency with amino acids detected in Figure 6.
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The analysis performed in Figure 7 indicates that for some fraction of the dataset,
active compounds interact more frequently with amino acids selected in Figure 6; therefore,
these contacts can be used for the correct determination of compound activity. Nevertheless,
for most of them, contact patterns between actives and inactives do not allow for correct
assignments to the activity class. Consequently, via this approach, only several percentages
of incorrectly predicted compounds can be correctly re-evaluated.

3.3. Classification Experiments

In order to make a comprehensive comparison of methods used for compound evalu-
ation, the ML models were also constructed on the IFP data, and classification experiments
were carried out. Classification experiments are directly related to the problem presented
in Figure 6, as the construction of ML models is mostly based on the differences in the
feature values for different groups (in order to make it possible to make a distinguishment
between them). The efficiency of ML-based division into active and inactive (expressed as
prediction accuracy) compounds is presented in Figure 8.

prediction accuracy =
number o f correct predictions

number o f all predictions
(1)
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The most important observation coming from Figure 8 is that the power of ML
methods performance was much higher when standard ligand-based fingerprints were
used for compound representation rather than when they were encoded in the form
of interaction fingerprints. The difference is over 25% in terms of accuracy. Moreover,
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although it was a delta opioid receptor, for which the highest differences in the contact
frequency for active and inactive compounds occurred, the ML methods were the most
effective in the proper compound assignment to particular activity class for the mu opioid
receptor (it was the only target for which the prediction accuracy on IFP exceeded 70%).
When it comes to more general observations, predictions for KlekFP were more effective
than those for MACCSFP, and IBk was, in most cases, more effective than RF.

Although predictions of the particular value of the Ki parameter were sometimes
related to high prediction error, considering the problem more generally and focusing on
dividing compounds into two activity classes seem to be a more effective strategy than
making attempts to predict the exact Ki value of a compound.

As already mentioned, additional regression experiments carried out for interac-
tion fingerprints confirmed hits observation, as relative absolute error values for regres-
sion on SIFts exceeded 90% (whereas for ExtFP, MACCSFP and KlekFP, they ranged
from ~30–60%).

In addition to classification experiments on ligand-based data, simple statistics on
key-based fingerprints were carried out. Their outcome is presented in Figure 9. The figure
presents keys with the highest differences in “on” bit occurrences between active and
inactive compounds–for MACCSFP, the threshold was set to 20%, for KlekFP–to 35%. The
first observation coming from the figure is that the number of keys providing the highest
differentiation between active and inactive compounds varies for different targets. For
both MACCSFP and KlekFP, the highest number of keys above the threshold occur for
the kappa-opioid receptor and the lowest for the mu opioid receptor. In the latter case,
for MACCSFP, the number of keys meeting the criterium of a minimum of 20% of the
difference between active and inactive compounds in terms of “on” bits frequency is equal
only to 5. Interestingly, out of these five keys indicated for receptor mu, four of them
were also highly discriminative for kappa and delta, which may provide general rules for
activity within the family of opioid receptors.

Another important observation is that for the standard fingerprints, the differences
between “on” bits frequencies for active and inactive compounds are much higher than for
SIFts (there is also a tendency is that they are higher for KlekFP than for MACCSFP). For
each target considered, there are several keys for KlekFP representation, which enable dis-
crimination of over 40% of compounds, which is a significantly higher number than several
percentage differences observed for SIFts. The outcome of simple statistics is also reflected
by the performance of ML models, which were much more effective in active/inactive
compound classification for key-based fingerprints than for interaction fingerprints.

Keys with the highest discriminative potency, which were common for all three opioid
targets, are visualized in Figure 10.

The obtained results show a significant difference between the keys indicated by
MACCSFP and KlekFP. For MACCSFP, they are more general; in the majority of cases,
they include oxygen, and they do not contain aromatic moieties. On the other hand, all
indicated keys from KlekFP contain aromatic moieties, mono- or disubstituted by other
substructures composed of aliphatic carbons. Due to the fact that the keys indicated for
KlekFP are less general, they enable better discrimination between active and inactive
ligands of opioid receptors.

3.4. Case Studies

Finally, a detailed analysis of particular case studies was carried out. We would
like to see for particular compounds whether the structure-based path can help in the
improvement of the correctness of the activity prediction by ML methods. The compound
taken for the case study was delta opioid receptor–ligand–CHEMBL358043 (Figure 11)
with Ki equal to 65.80 nM, whereas the predicted Ki was over 10,000 nM higher.
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Figure 11. Chemical structure of delta-opioid receptor–ligand CHEMBL358043 with Ki equal to 65.80
nM (docking score: −4.12).

At first, the set of structurally similar compounds within the set of considered ligands
was identified (Table 3).

Table 3. The set of structurally related compounds to CHEMBL358043 present in the delta-opioid receptor dataset.

ChEMBL ID Chemical Structure Ki (nM) Docking Score
Tanimoto Coefficient

towards
ChEMBL358043

CHEMBL3923831
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CHEMBL358043, as well as its analogs presented in Table 3, were examined in terms
of their fitting in the binding site of the delta opioid receptor. It is visible that the automatic
evaluation via the docking score values also does not provide an efficient estimation of
compound activities. The analysis of docking results of selected compounds is presented
in Figure 12.
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Figure 12. Docking results of CHEMBL358043 (yellow), CHEMBL409938 (green), CHEMBL369475
(pink), and CHEMBL3923831 (firebrick) in the binding site of the delta-opioid receptor (PDB ID:
4RWD). The yellow dotted lines represent the hydrogen bonds.

The docking results show that the shift to the structure-based approach would not
help in the prediction efficiency of CHEMBL358043, as its docking pose is most similar to
orientations of inactive compounds, rather than the most active CHEMBL2409938.

4. Conclusions

The great applicability of ML methods in computer-aided drug design tasks forces
careful analysis of its predictive power before a method can be used in real applications.
In the study, we considered the problem of the ML method’s power in the prediction of a
compound’s potential bioactivity not generally but rather more locally and tried to analyze
cases with the most difficulties of obtaining correct predictions. The correctness of com-
pound activity prediction was more related to the ML method algorithm than compound
representation, as there was a much higher overlap of compounds with high prediction
error for different representations than for different ML algorithms. The correctness of
activity prediction was also more related to compound structure than its activity (the distri-
bution of prediction error was similar for different activity ranges). Although the use of
structural data intuitively should help in achieving better results, our study indicates that
it can be obtained only for some fraction of compounds. There still remains a high number
of compounds for which even the application of docking does not provide sufficient infor-
mation for their correct evaluation. Moreover, the value of docking studies seems to be
higher when their outcome is not evaluated automatically, e.g., with the use of interaction
fingerprints, but manually, using chemical knowledge and information about desired
ligand–protein contacts. Therefore, ligand-based approaches are a good starting point for
virtual screening campaigns due to their speed in comparison to structure-based methods,
such as docking. In addition, although in ML-based applications, standard molecular fin-
gerprints were more effective than interaction fingerprints, the docking studies undeniably
consist of a resource of incredibly valuable knowledge on possible compound activity.

Supplementary Materials: The following are available online.
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Abbreviations

QSAR Quantitative structure–activity relationship
ML Machine learning
CADD Computer-aided drug design
MCC Matthews correlation coefficient
MSE Mean squared error
GPCRs G-protein-coupled receptors
ExtFP Extended fingerprint
KlekFP Klekota–Roth fingerprint
MACCSFP MACCS fingerprint
IBk k-nearest neighbor algorithm
RF Random forest
SIFts Structural interaction fingerprint
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