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Abstract
The distribution of nucleotides spacing in human genome was investigated. An analysis of the frequency of occurrence in the 
human genome of different sequence lengths flanked by one type of nucleotide was carried out showing that the distribution 
has no self-similar (fractal) structure. The results nevertheless revealed several characteristic features: (i) the distribution for 
short-range spacing is quite similar to the purely stochastic sequences; (ii) the distribution for long-range spacing essentially 
deviates from the random sequence distribution, showing strong long-range correlations; (iii) the differences between (A, T) 
and (C, G) nucleotides are quite significant; (iv) the spacing distribution displays tiny oscillations.

Introduction

The Human Genome (HG) Project was launched in 1990 and 
was declared complete in 2003. The reference sequence for 
the HG was sequenced across all chromosomes. Understand-
ing the coding and explanation of the reading of the genetic 
information contained in the full genomic sequence in view 
of the enormity of the data—despite analytical efforts—is 
still a great challenge (Green et al. 2015) (Green et al. 2015). 
Many studies have proven that the distribution of nucleo-
tides, as well as whole sequences in the human genome is 
not random as it results from the non-random distribution 
of coding sequences (genes), CpG regions, as well as regu-
latory, splice and other functional regions (Denisov et al. 
2015) (Majewski and Ott 2002) (Majewski and Ott 2002) 
(Louie et al. 2003) (Piwowar et al. 2006). Fragments that 
do not encode in human DNA also have their distinctive 
distribution profile for specific nucleotides (Babarinde and 
Saitou 2016) (Sotero-Caio et al. 2017). The aim of many 
investigations has been to pinpoint important structural char-
acteristics of DNA. For example, local irregularities along 
a DNA strand, compared to surrounding regions, have been 

associated with biological functionality (Pinkus 1965). On 
the other hand, it has been established that the regularity of 
DNA recording is characterized, for example, by fragments 
of introns. The coding regions in DNA are irregular (Woods 
et al. 2016). Exon and intron sequences can be identified 
from trends of the ratio of the 3-nucleotides periodicity to 
the background noise in the DNA sequences (Zhao et al. 
2018). Computation of regularities has been also applied to 
biological weighted sequences (strings in which a set of let-
ters may occur at each position with respective probabilities 
of occurrence) to indicate functionally significant fragments 
of DNA (Iliopoulos 2005). The above facts indicate that the 
analysis of nucleotide sequences is still a big challenge and 
any advance in describing DNA might provide a valuable 
insight. In this paper the (linear) spacing distribution of each 
of four nucleotides in the Hunan Genome is analyzed.

The motivation for the presented in the paper analysis was 
to check to what extent the distribution of nucleotides spac-
ing in the human genome is irregular, taking into account 
our assumptions. We wanted to check where is the point at 
which the irregularity of the distribution is clearly observed. 
We start with the investigation of possible self-similar (frac-
tal) patterns and proceed with statistical distribution of the 
nearest neighbor spacing for all four nucleotides constitut-
ing the genome. This type of analysis of data distribution is 
widely used not only in physics but also in other sciences, 
ranging from biomedical (Sotero-Caio et al. 2017) to eco-
nomical (Górski and Skrzat 2006) applications.
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Materials and methods

The Human Genome (HG) sequence has been taken from 
the HG Project in the FASTA format (https ://www.ncbi.
nlm.nih.gov/grc/human /data?asm=GRCh3 8.p10) (Genome 
Reference Consortium, Human Reference 2017). It includes 
the whole HG that is about 3 GB large and contains about 
2 billions of nucleotides in chromosome’s fragments. The 
original text file is converted into numerical files with series 
of positions of particular nucleotides, A, C, G or T, while the 
other codes were ignored. The files with concatenated chro-
mosomes are investigated to reveal averaged global proper-
ties of Human Genome and they are the starting point for 
further calculations. It should be stressed that the concatena-
tion has negligible effect on the results because the number 
of chromosomes as well as the largest spacings are of order 
 102 while the total length of the HG is of order  109.

Fractal analysis

First, the possible generalized fractal dimensions (Mandel-
brot 1982) of linear distributions of nucleotides A, C, G, 
T have been calculated. Such calculations, especially when 
done with a software that cannot be fully controlled, can give 
misleading results [see, e.g. (Górski and Skrzat 2006) (Gór-
ski 2001) (Górski et al. 2016)]. Hence, the calculation has 
been done with care, using our own box-counting algorithm 
code, based on the standard formula for the generalized frac-
tal dimension (Mandelbrot 1982) (Górski 2001).

where N is the number of (linear) divisions, parameter q in 
our case was taken: q = 0, 1, 2, for capacity, information and 
correlation dimensions, respectively; pi(N) is number of data 
points found in i-th box for a given division N. The general-
ized fractal dimension (d_q) is extracted from the plot of log 
Y(N) vs. log N, as a slope of the linear fit.

The resulting standard log–log plot used to extract gener-
alized fractal dimensions for nucleotide A is shown in Fig. 1. 
Circles, squares and diamonds are for capacity (d0), informa-
tion (d1) and correlation (d2) dimension, respectively. In fact, 
the three symbols can hardly be distinguished, as they almost 
perfectly overlap. The names capacity, information and cor-
relation dimension are traditionally used for the parameter 
q = 0, 1 and 2, respectively (Mandelbrot 1982).

For multifractals dq for different q’s have different values, 
while for fractals d(q) is constant.

This excludes multifractality. Moreover, they are placed 
along the dotted line that has the slope coefficient equal 1.00, 

(1)dq =
1

1 − q
lim
N→∞

log
∑

i p
q

i
(N)

logN
=

logY(N)

logN

like for homogeneously or randomly distributed data points. 
The dashed line shows the saturation limit for the ordinate, 
log2(ndp), where ndp is the total number of data points due to 
the finite size of the sample (Górski 2001). Figure 1 gives 
results for the nucleotide A, only. However, identical plots 
were obtained for all four nucleotides, as well as for selected 
single chromosomes. Moreover, almost identical plots were 
obtained for randomly generated data samples of the same 
size.

Figure 1 implies that the data set has integer (non-frac-
tal) dimension precisely equal to 1.00. Clearly, due to the 
Hentschel-Procaccia inequality (Hentschel and Procaccia 
1983) d(q) = 1.00 for all q < 2, as the function d(q)) is mono-
tonic. Calculations for higher values of q were not performed 
because for very small pi(N) in sum in Eq. 1 their high pow-
ers are beyond any reasonable compiler accuracy. Hence, 
one has to conclude that the spacing distribution of nucleo-
tides in Human Genome does not show any trace of direct 
self-similarity, fractal or multifractal structure.

In this place, it is worth to remind, that within the 
2-dimensional Chaos Game Representation (CGR ) of 
DNA sequences (Jeffrey 1990) their fractal structure is 
well established by many authors (see, e.g. (Moreno et al. 
2011)). Self-similarity in those cases is due to the special 
properties of the CGR  transformation, that is a kind of 
recurrence plot technique (Eckmann et al. 1987). These 
techniques are useful as randomness tests for random 
number generators (Jeffrey 1990), as well as stationarity 
tests for time series (Górski and Skrzat 2006). However, 
they do not imply self-similarity of the data sample by 
itself. Hence, it should be stressed, that our calculations 

Fig. 1  Log–log plot for distribution of base A. Circles, squares and 
diamonds are for capacity (d0), information (d1) and correlation (d2) 
dimension, respectively (they strongly overlap). The dotted line has 
the slope coefficient equal 1, like for homogeneously or randomly dis-
tributed data points. The dashed line shows the saturation limit for the 
ordinate, due to the finite size of the data sample

https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh38.p10
https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh38.p10
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presented in Fig. 1 are completely different than calcula-
tions presented, e.g. in (Moreno et al. 2011) and similar 
papers. While the cited papers proven the non-stationarity 
of the data series we have tested its direct fractal proper-
ties (of the linear DNA chain). No self-similar structures 
were found within the linear chain.

Even though the investigated data samples are not 
self-similar, and they were shown to have high entropy 
(Schmitt and Herzel 1997)—like random sequences—
they are definitely not purely random. This will be shown 
in the following section. Moreover, even a highly struc-
tured data can resemble random series after compression, 
as the data compression algorithms increase the Shannon 
entropy.

Spacing distribution analysis

In this section we analyze the spacing distribution, p(s), 
between nucleotides of the same type. Here, spacing (s) is 
defined as the distance between two closest neighbors of the 
same type. For example, for the nucleotide A and the sequence 
AA the spacing of nucleotides A is s = 1. For the sequence 
AXA, where X is any nucleotide except A, the spacing is s = 2, 
etc. In Figs. 2,3 the circles show (normalized) probabilities, 
p(s), of a given spacing in the sample. In addition, we added 
a dotted line that corresponds to the uniform random distribu-
tion of nucleotides,

(2)prand(s) = 1∕3x(3∕4)s ,where
∑s=∞

s=1
p(s) = 1

Fig. 2  Normalized histogram of spacing distribution, p(s), for bases A and C. The dotted line corresponds to a purely random distribution. Hori-
zontal axis gives spacing distance and the vertical axis gives probability

Fig. 3  Normalized histogram of spacing distribution, p(s), for bases T and G. The dotted line corresponds to a purely random distribution. Hori-
zontal axis gives spacing distance and the vertical axis gives probability
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Such distribution has no long-range correlations and was 
given as a reference to show the strength of correlations in 
our case.

For the Human Genome data the spacing distribution has 
cutoff for  smax that is at most of order 103. The total number 
of occurrences of nucleotide A (and T) is about 5.5 × 108 and 
for nucleotide C (and G) about 4.1 × 108. In Fig. 2 plots are 
given for nucleotides A and C, while in Fig. 3 for nucleo-
tides T and G. Both pairs of plots are similar, in accordance 
with the Chargaff’s rule. All probability distributions are 
normalized to unity to enable comparison of samples with 
different sizes.

In Figs. 4 and 5 the tails of the histograms are shown 
up to s = 200. Here, one can see that for larger spacings (s) 
the tail is getting fat and strongly deviates from exponential 

behavior. Also, one can see a kind of phase transition at 
s2 ≈ 80 and the histograms’ bins are more randomly dis-
tributed. For p(s) approaching  10−9 there are only single 
data points per bin and the statistics becomes less reliable. 
Hence, though the single events are up to s ≈ 1000 they are 
not displayed. It should be stressed that fat tails are also 
common for self-organizing systems in economy, sociology, 
etc., where long-range correlations (LRC) occur (Górski and 
Skrzat 2006).

This phenomenological behavior, though as yet not well 
understood, seems to be important because of its universal-
ity. It was observed for very different systems commonly 
considered as being complex in economy (Górski et al. 
2002), sociology, biology (Górski and Skrzat 2006), linquis-
tic (Lestrade 2017) etc. It is interesting to notice that the 

Fig. 4  Normalized histogram of spacing distribution for bases A and C with tail up to s = 200. Horizontal axis gives spacing distance and the 
vertical axis gives probability

Fig. 5  Normalized histogram of spacing distribution for bases T and G with tail up to s = 200. Horizontal axis gives spacing distance and the 
vertical axis gives probability
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characteristic strong correlations and fat tails do occur for 
distances (s) from about 20 up to about 80. It is also unclear 
why the first threshold is considerably larger for A and T 
nucleotides than for C and G nucleotides.

Closer examination of spacing distributions reveals sev-
eral characteristic features that are listed below:

 (i) For small spacing (about sA
1 ≈ 30 for A and T nucle-

otides, but sC
1 < 10 for C and G nucleotides) the dis-

tributions are quite close to the purely random distri-
bution. However, for larger spacings the distributions 
strongly deviate from randomness.

 (ii) The long tails of the distributions are strongly 
enhanced (’fat tails’) in comparison with the random 
distribution. This suggests strong long distance cor-
relations.

 (iii) In general, behavior of nucleotide A is similar as for 
nucleotide T, and the same holds for the (C,G) pair, 
though both pairs behave in different way. This can 
be viewed as another manifestation of the Chargraff’s 
rule.

 (iv) For odd spacing (s = 3, 5, 7, …) probability is higher 
than for their even predecessors. And the difference 
is slightly higher for (C,G) nucleotides than for (A,T) 
nucleotides. This is a kind of small high frequency 
oscillations in the distributions.

Discussion and conclusion

It has been shown that the nucleotide spacing distribution in 
the Human Genome is not random, though its high entropy. 
This is confirmed by the known fact that the nucleotide 
composition of the DNA sequence determines its spatial 
structure, function and stability of the spatial structure of 
the nucleic acid (Vologodskii and Frank-Kamenetskii 2013) 
(Vologodskii and Frank-Kamenetskii 2018) (Travers 2005).

It has been found that the analyzed distribution has no 
fractal structure and for small spacings (s < s1) it is close to 
random distribution (exponential decay). Analogous conclu-
sion that the so-called random matches always dominate the 
distribution for small lengths has also been found recently 
for eukaryotic genomes (Massip et al. 2015), with similar 
suggested estimate, s1 ≈ 25. On the other hand, for larger 
spacing the distribution shows strong correlations and fat 
tails.

For large distances, s > s2 ≈ 80, strong variability 
around any smooth interpolation was found. Variability 
of long nucleotide fragments is most likely responsible 
for structural variation, which is read by molecules inter-
acting with DNA, which are conformationally sensitive. 

Existence of long-range correlations within the genome of 
living organism has immense importance in understand-
ing the language of DNA sequences. However, the biolog-
ical meaning of the long-range correlations in DNA is, as 
yet, not clear. It is still an open and challenging problem. 
Long-range correlations suggest that to read the func-
tionality of the human genome, one cannot focus solely 
on the linear reading of individual nucleotides present 
in the DNA strand. DNA is a three-dimensional object 
packed in a specific way in a cell nucleus. DNA is read by 
unraveling specific DNA fragments in the nucleus space. 
Probably the interaction of unraveled DNA strand frag-
ments in space may explain the described interactions of 
long-range DNA fragments. The non-random patterns in 
DNA with long-range correlation can only be confirma-
tion of this fact.

Research reports that there are non-linear chromatin 
interactions activating, e.g. transcription factors and long 
distance DNA interaction (Mifsud et al. 2015)(Noonan and 
McCallion 2010)(Peng et al. 1992). It confirms the com-
putational observations.

Scientific reports also show a number of other pieces 
of evidence to explain DNA irregularities and long-range 
correlations. Long-range correlations (LRC) has been sug-
gested to be related to the duplication of DNA fragments. 
Some authors claim that LRC occur only for intron con-
taining DNA sequences, some however, that LRC does 
not distinguish between the intron and intronless DNA 
sequences. There have also been reports that LRC can be 
related to the nucleosomal structure and dynamics of the 
chromatin fiber. Our results are in agreement with con-
clusions reached by other authors, see, e.g. (Massip et al. 
2015) (Messer et al. 2007). Moreover, the LRC have been 
shown important to the persistence of resonances of finite 
segments (Albuquerque et al. 2005).

Attempts are made to analyze the variability of the 
DNA sequence in terms of structural variation resulting 
from variation at the sequence level by, e.g. parametric and 
non-parametric entropy measures. Also, one can speculate, 
that relatively high entropy of the sequences reported pre-
viously (Schmitt and Herzel 1997) (and some similarity 
to random series) may be an effect of a kind of data com-
pression algorithm. Finally, the A-T and C-G nucleotides 
have very similar distributions that is in accordance with 
the Chargaff’s rule. On the other hand, there is clear dif-
ference between the two pairs. The C-G nucleotides have 
significantly higher probability for larger spacing (fatter 
tails). For s = 50 the probability for C is about 10 times 
higher. On the other hand, the tail for C is shorter and its 
maximum is slightly higher. Such behavior have also been 
found for genomes of other species (Afreixo et al. 2009).
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