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Abstract: Many areas intended for crop production suffer from the concomitant occurrence of
heavy metal pollution and elevated salinity; therefore, halophytes seem to represent a promising
perspective for the bioremediation of contaminated soils. In this study, the influence of Cd treatment
(0.01–10.0 mM) and salinity stress (0.4 M NaCl) on the expression of genes involved in heavy
metal uptake (irt2–iron-regulated protein 2, zip4–zinc-induced protein 4), vacuolar sequestration
(abcc2–ATP-binding cassette 2, cax4–cation exchanger 2 pcs1–phytochelatin synthase 1) and
translocation into aerial organs (hma4–heavy metal ATPase 4) were analyzed in a soil-grown
semi-halophyte Mesembryanthemum crystallinum. The upregulation of irt2 expression induced
by salinity was additionally enhanced by Cd treatment. Such changes were not observed for zip4.
Stressor-induced alterations in abcc2, cax4, hma4 and pcs1 expression were most pronounced in the
root tissue, and the expression of cax4, hma4 and pcs1 was upregulated in response to salinity and Cd.
However, the cumulative effect of both stressors, similar to the one described for irt2, was observed
only in the case of pcs1. The importance of salt stress in the irt2 expression regulation mechanism is
proposed. To the best of our knowledge, this study is the first to report the combined effect of salinity
and heavy metal stress on genes involved in heavy metal trafficking.

Keywords: heavy metal stress; heavy metals transporters; Mesembryanthemum crystallinum;
phytoremediation; semi-halophyte

1. Introduction

Among abiotic stresses, salinity is one of the most important factors affecting crop growth.
According to the FAO Land and Plant Nutrition Management Service, elevated salinity concerns
more than 6% of the land area (approximately 400 million hectares) and increases by approximately
1–2% a year. This phenomenon is predominantly associated with human activities, such as excessive
irrigation, deforestation, fertilization and irrigation with salt-contaminated water, resulting in poor
drainage, elevated water table, waterlogging and salt accumulation in the root zone [1–4]. Even good
quality water used for irrigation may contain 200–500 mg of soluble salts per litre. According to [2],
a hectare of arable land may receive 3–5 tons of salts per year in this way. Salinity stress can be recognized
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by the occurrence of three symptoms: first, increased osmotic pressure, which results in water deficit
conditions; second, accumulation of toxic ions in plant organs [4]; and third, nutritional imbalance,
which influences the growth and development of challenged plants [5]. These symptoms are primarily
responsible for adverse alterations in morphological, physiological and biochemical processes that
disrupt the agricultural production and ecological balance of the area [3].

Many areas, including arable lands, suffer from concomitant contamination with heavy metals
(HMs) and salts. Recently, the accumulation of HMs in the environment has increased as a consequence
of intensified human activities, such as mining, smelting and agricultural practices, including the
long-term application of fertilizers, fungicides or pesticides [6]. Since HMs are non-degradable,
they may persist in a contaminated substrate for decades [7]. The threat posed by heavy metals to
humans has an origin in plants, which are the first link in the food chain. Plants can take up HMs from
various sources, such as air, water or soil; the latter process predominates and is dependent on many
factors, such as temperature, soil pH, aeration and, clearly, on the particular species involved in the
accumulation process.

Cadmium is one of the HMs that is particularly widely spread in the environment and has
gained prominence as an important issue not only in urbanized lands, but also in less explored,
rural, agricultural or wildlife areas. Cd toxicity results from altered uptake and transport of nutrient
elements (Ca, Mg, P), disruption of water balance, inhibition of enzymes and reactive oxygen species
(ROS) overproduction. As a consequence, sensitive plants growing in the Cd-polluted environment
display such symptoms as chlorosis, growth inhibition and root tip browning [8]. Since plant responses
to salinity and HM stresses rely on common physiological mechanisms, halophytes have been proposed
as potentially useful candidates for the phytoremediation of Cd-contaminated saline soils [7,9–11].
Halophytes are the plants capable of growth and able to complete their life cycle in environments
polluted with high salt concentrations [2]. Although these plants represent only 2% of the total plant
species on Earth, they are a highly diverse group of organisms [12]. The high tolerance of halophytes
towards salinity is a result of specific properties at the molecular, cellular and whole-plant levels,
and is at least partially related to enhanced resistance to oxidative stress [2,5]. In addition to effective
scavenging of salt stress-derived ROS, halophytes display a whole range of various mechanisms,
including the development of special tubers at leaves or stems that may contain large amounts of salt,
the production of enzymes that limit ion transfer through membranes, the generation of stress proteins
and osmolytes and active metal detoxification in vacuoles, which enable homeostasis maintenance
under stressful conditions [11].

Halophytic plants employ many strategies enabling the undisturbed execution of the
developmental program under concurrent salinity and HM stresses. These strategies involve restricted
metal uptake, exclusion of toxic ions from roots, efficient neutralization of metal ions in the protoplast
and sequestration or translocation to remote organs [13]. The above mechanisms are regulated by
a large number of genes and provide higher tolerance to both salt and Cd [5]. The members of the zinc
iron permease (ZIP) family, including iron-regulated transporters (IRT), are responsible for zinc (Zn),
manganese (Mn), iron (Fe) and Cd uptake [14]. Physiological studies confirmed the overexpression of
ZIP family genes in plants exposed to Cd and nickel (Ni) [15]. Among the transporters involved in
Cd trafficking, phytochelatins (PCs) are the best-known protoplast chelating agents required for the
maintenance of Cd tolerance. Sequestration of Cd in vacuoles is a well-described process directing plant
tolerance towards this pollutant, which involves at least a few known transporters. Cation exchangers
(CAX) participate in Cd2+/Na+ antiport activity in tonoplasts exploiting a V-H+-ATPase-derived proton
motive force [15]. In addition to CAXs, the C subfamily of the ATPase binding cassette (ABCC) has been
recognized as an additional vacuolar metal-PC transporter. Although it has been reported that vacuolar
sequestration of Cd by ABCC is essential for its complete detoxification, transporters from this subfamily
are also involved in the transport of such ions as Zn, Cu, Mn and Fe [16]. Apart from these strategies,
the translocation of Cd to remote organs, combined with sequestration in tissues not involved in vital
metabolic processes, seems to play a crucial role in Cd tolerance. Effective translocation of Cd to the
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shoots requires active transport during loading to the xylem. The P-type heavy metal ATPases (HMA)
are transporters involved both in Cd loading to xylem from vascular tissues (HMA4) [17]. Regulation of
the expression of genes associated with the presented transporters may be necessary for the appropriate
distribution of toxic metal ions at the cellular and whole-plant levels, which substantially contributes
to the resultant Cd tolerance in plants [15].

Many halophytes were reported to be involved in HM remediation processes [10,18–20]. One of
them is Mesembryanthemum crystallinum (the common ice plant), the model C3-CAM intermediate
semi-halophyte, which is widely studied in physiological and biochemical research. This plant has
been found to reveal a high tolerance to excess light, drought and salinity stresses. The dry weight of
the plant may contain even 40% NaCl without showing visible symptoms of toxicity [9]. In addition
to salinity tolerance, high resistance towards HMs has recently been confirmed. This halophyte
is able to accomplish its life cycle at high concentrations of Cu and Zn present in the soil
substrate. It was also confirmed that high doses of Ni did not induce any growth or developmental
disturbances [9,21,22]. In our studies, we described high tolerance of soil-grown ice plants towards
elevated Cd levels, regardless of the photosynthetic metabolism [23]. The obtained data strongly
suggest the potential use of M. crystallinum in the phytoremediation of HM-polluted areas. The aim of
the present study was to determine expression alterations of transporters involved Cd uptake (zip4,
irt2), protoplast detoxification (pcs1), vacuolar sequestration (abbc2, cax4) and xylem loading/shoot
translocation (hma4) upon salinity and heavy metal stress in a model semi-halophyte known for
enhanced HM resistance. To the best of our knowledge, this study is the first to describe the impact of
combined stresses, i.e., salinity and HM, on the expression of genes involved in heavy metals trafficking.

2. Results

2.1. Cadmium Treatment up to 10 mM Does Not Affect the Growth and Development of Soil-Grown Common
Ice Plants

In our previous paper, we showed that Cd concentrations up to 1 mM had no detrimental effects
on soil-grown ice plants [23]. In this study, with the treatment extended to a Cd concentration of
10 mM, no visible morphological symptoms of heavy metal stress in either NaCl-untreated (−NaCl) or
salt-stressed (+NaCl) plants were observed. In particular, none of the applied treatments significantly
modified the dry weight of roots and shoots of NaCl-untreated and salt-stressed ice plants (Table 1).
The water status of the roots and shoots of the −NaCl and +NaCl ice plants was not altered by any of
the applied Cd concentrations (Table 2). Moreover, the unaffected plant growth was also confirmed
by maintaining a constant shoot-to-root (DW) ratio, which demonstrated that neither root nor shoot
growth was disrupted by Cd presence (Table 3). Taken together, the results obtained through biometric
analysis have demonstrated high tolerance of both plant groups towards Cd treatments of up to 10 mM.

Table 1. Weight of roots and shoots of soil-grown NaCl-untreated (−NaCl) and salt-stressed (+NaCl)
Mesembryanthemum crystallinum plants subjected to the elevated concentrations of Cd and control.

Cadmium
Concentration

[mM]

Root DW [g/Plant] Shoot DW [g/Plant]

−NaCl +NaCl −NaCl +NaCl

0 0.29 ± 0.06a 0.18 ± 0.06abc 1.93 ± 0.13a 2.03 ± 0.58a

0.01 0.27 ± 0.05a 0.13 ± 0.01bc 1.90 ± 0.18a 2.20 ± 0.41a

0.1 0.20 ± 0.05abc 0.21 ± 0.09abc 1.97 ± 0.22a 2.29 ± 0.57a

1.0 0.26 ± 0.07a 0.25 ± 0.04ab 2.09 ± 0.33a 2.06 ± 0.33a

10.0 0.21 ± 0.03abc 0.12 ± 0.04c 1.80 ± 0.35a 1.97 ± 0.37a

Means within root/shoot columns followed by the same letters are not significantly different at p < 0.05 according to
Duncan’s test (N = 4, mean value ± SD).
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Table 2. Root and shoot water content of soil-grown NaCl-untreated (−NaCl) and salt-stressed (+NaCl)
M. crystallinum plants subjected to the elevated concentrations of Cd and control.

Cadmium
Concentration

[mM]

Root Water Content [cm3 g−1 DW] Shoot Water Content [cm3 g−1 DW]

−NaCl +NaCl −NaCl +NaCl

0 11.78 ± 4.27ab 8.77 ± 2.41abc 22.27 ± 1.43a 14.54 ± 1.48b

0.01 8.97 ± 0.53abc 6.47 ± 1.03bc 23.10 ± 2.22a 15.10 ± 1.37b

0.1 6.79 ± 0.89bc 5.34 ± 0.28bc 22.49 ± 2.84a 15.37 ± 1.48b

1.0 6.94 ± 0.32bc 7.99 ± 0.94abc 22.70 ± 2.75a 15.46 ± 1.53b

10.0 7.23 ± 1.15abc 10.04 ± 2.55ab 23.24 ± 2.61a 14.98 ± 2.81b

Means within root/shoot columns followed by the same letters are not significantly different at p < 0.05 according to
Duncan’s test (N = 4, mean value ± SD).

Table 3. Shoot-to-root dry weight (DW) ratio in soil-grown NaCl-untreated (−NaCl) and salt-stressed
(+NaCl) M. crystallinum plants subjected to elevated Cd concentrations and control.

Cadmium Concentration [mM]
Shoot-to-Root (DW) Ratio

−NaCl +NaCl

0 7.01 ± 1.54c 10.22 ± 1.74bc

0.01 7.11 ± 0.84c 15.51 ± 3.75ab

0.1 9.57 ± 1.75bc 11.13 ± 3.19b

1.0 7.58 ± 2.33c 8.57 ± 0.78c

10.0 7.44 ± 0.54c 16.88 ± 3.46ab

Means within columns followed by the same letters are not significantly different at p < 0.05 according to Duncan’s
test (N = 4, mean value ± SD).

2.2. NaCl-Stressed Plants Accumulated More Cd than NaCl-Untreated Plants; Cd Was Deposited mostly in
the Roots

To determine the concentration of Cd fraction available for the plants during the experiment,
the substrate samples were analyzed with atomic absorption spectrometry (AAS). Detailed results
regarding changes in bioavailable Cd concentration during subsequent days of treatment are presented
in the supplementary data set (Figure S1). It is worth mentioning that, upon administration of the
highest Cd treatment (10 mM), the salt-stressed (+NaCl) plants, beginning on the first day of the
experiment, were exposed to a significantly higher concentration of bioavailable Cd in comparison
to the NaCl-untreated plants. According to our preceding study concerning the M. crystallinum-Cd
interaction [23], we focused on the results of the eighth day of treatment. In this study, we confirmed
our previous observations by showing that with up to 0.1 mM treatment, the amount of bioavailable
Cd was very low (Figure 1A). The low heavy metal bioavailability in the substrate was reflected by
low Cd concentrations measured in corresponding root and shoot samples (Figure 1B,C). On the other
hand, we found that under 1 and 10 mM Cd treatment, both −NaCl and +NaCl plants were exposed to
similar concentrations of bioavailable Cd. As in our earlier work, the salt-stressed plants subjected to
a 1 mM concentration accumulated more Cd compared to the NaCl-untreated plants, and the heavy
metal was stored mainly in the roots (Figure 1B). Interestingly, this relationship was also maintained
under 10 mM Cd treatment, where the salt-stressed plant roots accumulated almost two-fold more
Cd in comparison to the roots of NaCl-untreated plants. The elevated Cd amounts were deposited in
shoots of NaCl-untreated and salt-stressed plants only under 10 mM concentration, without distinctive
differences being observed between both plant groups.
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untreated (−NaCl) and salt-stressed (+NaCl) Mesembryanthemum crystallinum plants subjected to 
concentrations of 0.01, 0.1, 1, 10 mM Cd and the control (0.0 mM). Different letters above the bars 
indicate statistically significant differences at P ≤ 0.05 by Duncan’s post hoc test (N = 4, mean value 
±SD). 
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in the Roots of Plants Exposed to Salinity Stress 

To determine how salinity stress occurrence and/or Cd exposure affect the expression of the 
genes involved in uptake, vacuolar sequestration and aerial organ translocation, corresponding 
transcript levels were analysed with a qPCR technique in roots and shoots of the NaCl-untreated and 
salt-stressed plants exposed to elevated Cd concentrations. Expression of irt2 and zip4, i.e., plasma 
membrane transporters involved in divalent cation uptake, were measured exclusively in the roots 
of both plant groups. The expression of irt2 found in the Cd-untreated +NaCl plants was over two-
fold higher in comparison to the control (Cd-, NaCl-untreated plants, Figure 2A). Cd treatment 
caused a greater than two-fold increase in irt2 expression in the roots of salt-stressed plants, contrary 
to −NaCl roots, where none of the applied Cd treatments altered the gene expression. In the case of 
zip4, no significant difference was found between the control and salt-stressed plants (Figure 2B). The 
lowest Cd concentration (0.01 mM) caused zip4 downregulation in the NaCl-untreated plants, while 
in the salt-stressed plants, the expression of this gene remained unaltered. Upon treatment with 0.1 
mM Cd, zip4 was upregulated in both groups; however, the concentration-dependent tendency to 
increase expression was maintained only in the −NaCl plants. In the roots of the salt-stressed (+NaCl) 
plants, treatment with 1 and 10 mM Cd resulted in similar zip4 upregulation. 

Figure 1. Contents measured in the substrate (A), roots (B) and shoots (C) of soil-grown NaCl-untreated
(−NaCl) and salt-stressed (+NaCl) Mesembryanthemum crystallinum plants subjected to concentrations
of 0.01, 0.1, 1, 10 mM Cd and the control (0.0 mM). Different letters above the bars indicate statistically
significant differences at p ≤ 0.05 by Duncan’s post hoc test (N = 4, mean value ± SD).

2.3. Genes Involved in Divalent Cation Uptake, Vacuolar Sequestration and Translocation Are Upregulated in
the Roots of Plants Exposed to Salinity Stress

To determine how salinity stress occurrence and/or Cd exposure affect the expression of the genes
involved in uptake, vacuolar sequestration and aerial organ translocation, corresponding transcript
levels were analysed with a qPCR technique in roots and shoots of the NaCl-untreated and salt-stressed
plants exposed to elevated Cd concentrations. Expression of irt2 and zip4, i.e., plasma membrane
transporters involved in divalent cation uptake, were measured exclusively in the roots of both
plant groups. The expression of irt2 found in the Cd-untreated +NaCl plants was over two-fold
higher in comparison to the control (Cd-, NaCl-untreated plants, Figure 2A). Cd treatment caused
a greater than two-fold increase in irt2 expression in the roots of salt-stressed plants, contrary to
−NaCl roots, where none of the applied Cd treatments altered the gene expression. In the case of zip4,
no significant difference was found between the control and salt-stressed plants (Figure 2B). The lowest
Cd concentration (0.01 mM) caused zip4 downregulation in the NaCl-untreated plants, while in the
salt-stressed plants, the expression of this gene remained unaltered. Upon treatment with 0.1 mM
Cd, zip4 was upregulated in both groups; however, the concentration-dependent tendency to increase
expression was maintained only in the −NaCl plants. In the roots of the salt-stressed (+NaCl) plants,
treatment with 1 and 10 mM Cd resulted in similar zip4 upregulation.
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induction was found at 0.1 mM Cd in −NaCl plants and 0.01 and 10 mM Cd in +NaCl plants. The 
regulation of pcs1 expression in shoots was affected differently by the applied stressors. No significant 
differences in the pcs1 expression between shoots of untreated −NaCl and +NaCl plants, were found 
(Figure 3A). Upon Cd treatment of NaCl-untreated plants, the gene expression was upregulated only 
in the cases of 0.1 and 1 mM Cd. Concentration-dependent upregulation of pcs1 expression was 
observed in shoots of salt-stressed plants subjected to up to 0.1 mM Cd. 

ATPase-binding cassette 2 (abcc2) gene expression levels measured in the roots of the control 
(Cd-, NaCl-untreated plants) and salt-stressed plants differed insignificantly (Figure 2D). In −NaCl 
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upregulated. On the other hand, in the roots of the salt-stressed plants, Cd application induced 
random changes that were not correlated with increasing heavy metal concentrations: 0.01 and 10 
mM Cd treatment led to abcc2 upregulation, while 0.1 and 1 mM did not affect the expression of this 
gene. We found no significant differences in the shoot abcc2 expression levels of the −NaCl (control) 
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expression was slightly modified only in response to 0.1 and 10 mM Cd concentrations. In turn, in 
the shoots of salt-stressed plants, all the treatments, except 0.1 mM Cd, significantly upregulated 
abcc2 expression. 

Figure 2. Expression of iron-regulated protein 2, irt2 (A), zinc-induced protein 4, zip4 (B), phytochelatin
synthase 1, pcs1 (C), ATP-binding cassette type c 2, abcc2 (D), cation exchanger 4, cax4 (E), and heavy
metal ATPase 4, hma4 (F) genes in the roots of soil-grown NaCl-untreated (−NaCl) and salt-stressed
(+NaCl) Mesembryanthemum crystallinum plants subjected to concentrations of 0.01, 0.1, 1, 10 mM Cd
and control (0.0 mM). Different letters above the bars indicate statistically significant differences at
p ≤ 0.05 by Duncan’s post hoc test (N = 4, mean value ± SD).

Phytochelatin synthase 1 (pcs1) expression found in the roots of the control (Cd-, NaCl-untreated)
plants was lower compared to the salt-stressed plants (Figure 2C). Upregulation of pcs1 in roots of
NaCl-untreated (−NaCl) plants was observed for all Cd treatments. In the case of the salt-stressed plants,
Cd-induced pcs1 expression in all tested treatments. One can note that a similar cumulative effect of
both stressors was observed for irt2, as described above. In both tested plant groups, the upregulation
effect was not concentration-dependent, and the most pronounced induction was found at 0.1 mM Cd
in −NaCl plants and 0.01 and 10 mM Cd in +NaCl plants. The regulation of pcs1 expression in shoots
was affected differently by the applied stressors. No significant differences in the pcs1 expression
between shoots of untreated −NaCl and +NaCl plants, were found (Figure 3A). Upon Cd treatment
of NaCl-untreated plants, the gene expression was upregulated only in the cases of 0.1 and 1 mM
Cd. Concentration-dependent upregulation of pcs1 expression was observed in shoots of salt-stressed
plants subjected to up to 0.1 mM Cd.

ATPase-binding cassette 2 (abcc2) gene expression levels measured in the roots of the control (Cd-,
NaCl-untreated plants) and salt-stressed plants differed insignificantly (Figure 2D). In −NaCl plants,
treatment with 0.01 mM Cd resulted in the downregulation of abcc2. Application of 0.1 and 1 mM did
not affect the expression of the gene. At the highest Cd concentration (10 mM), abcc2 was upregulated.
On the other hand, in the roots of the salt-stressed plants, Cd application induced random changes
that were not correlated with increasing heavy metal concentrations: 0.01 and 10 mM Cd treatment
led to abcc2 upregulation, while 0.1 and 1 mM did not affect the expression of this gene. We found
no significant differences in the shoot abcc2 expression levels of the −NaCl (control) and salt-stressed
(+NaCl) plants (Figure 3B). In the case of the NaCl-untreated plants, the gene expression was slightly
modified only in response to 0.1 and 10 mM Cd concentrations. In turn, in the shoots of salt-stressed
plants, all the treatments, except 0.1 mM Cd, significantly upregulated abcc2 expression.
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Figure 3. Expression of phytochelatin synthase 1, pcs1 (A), ATP-binding cassette type c 2, abcc2 (B),
cation exchanger 4, cax4 (C), and heavy metal ATPase 4, hma4 (D) genes in the shoots of soil-grown
NaCl-untreated (−NaCl) and salt-stressed (+NaCl) Mesembryanthemum crystallinum plants subjected to
concentrations of 0.01, 0.1, 1, 10 mM Cd and control (0.0 mM). Different letters above the bars indicate
statistically significant differences at p ≤ 0.05 by Duncan’s post hoc test (N = 4, mean value ± SD).

As in the case of the hma4 and pcs1 genes, the cax4 (cation exchanger 4) expression found in roots
of the Cd-untreated, salt-stressed plants was higher in comparison to controls (Figure 2E). None of
the applied Cd concentrations enhanced the cax4 expression, as established in the salt-stressed roots.
On the other hand, in the roots of the −NaCl plants, all Cd treatments upregulated cax4. We found
no difference in the shoot cax4 expression of control (Cd-untreated, NaCl-untreated plants) and
salt-stressed plants (Figure 3C). Cd treatments caused concentration-independent alterations of cax4
expression in the shoots of both plant groups. The gene was upregulated by 0.01 and 0.1 mM Cd in
NaCl-untreated plants and by 0.01 mM in salt-stressed plants.

In the roots of the salt-stressed ice plants, we found a significantly higher hma4 (heavy metal
ATPase 4) expression compared to the control (Cd-untreated, NaCl-untreated plants) (Figure 2F).
Cd treatments did not modify the hma4 expression established in plant roots after salt stress, except for
the highest concentration, which resulted in a significant gene upregulation. In the NaCl-untreated
plants, the Cd application starting with the lowest applied concentration induced hma4 to the level
found for the salt-stressed plants. The hma4 expression determined in the shoots of salt-stressed plants
was lower than that observed for the control (Figure 3D). Cd treatments caused downregulation of
the gene in most of the examined variants. hma4 upregulation was observed in both tested groups
only in response to the highest Cd treatment (10 mM), and the effect was more pronounced for the
NaCl-untreated plants.

3. Discussion

Essential heavy metals, e.g., Zn or Fe, are vital for plants to achieve intact growth and development,
while the involvement of their non-essential relatives, i.e., Hg and Cd, in these processes is doubtful at
best. Cadmium uptake from the soil is performed predominantly in the form of divalent cations and to
some extent as chelates [15]. IRT1 and IRT2, as well as their respective orthologues, are ZIP family
members. As divalent transporters, these proteins are responsible mostly for the uptake of Fe; however,
their involvement in the trafficking of non-essential metals, such as Cd, was confirmed [24–26]. On the
other hand, insufficient Fe levels promote Cd influx and accumulation in plants, while Fe supply initiates
IRT1-mediated Cd uptake [27,28]. Based on the soil substrate analysis, for concentrations up to 1 mM,
the amount of bioavailable Cd was very low. Despite this finding, the salt-stressed plants somehow
sensed the introduced heavy metal which, in our opinion, was reflected by the induced irt2 expression
already observed at the lowest Cd treatment. It was recently discovered that irt1 and irt2 expression was
amplified in glycophytic green grams (Vigna radiata) under Cd treatment in Fe-sufficient conditions [29].
In this study, we observed that salt stress upregulated irt2 expression, and further Cd application
enhanced this effect. The lack of Cd-triggered upregulation of irt2 found in the NaCl-untreated plants
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could suggest that for halophytes, salt stress is required for Cd-induced modulation of irt2 expression.
Moreover, the observed interplay between salinity stress and irt2 transcription regulation suggests an
upstream position of salt stress in the irt2 expression regulation pathway. The rate of Cd and Fe uptake
via IRT transporters is orchestrated with a complex regulatory system, in which bioavailability seems
to play an important role. This property is a result of antagonistic interactions recognized between
both metals. For example, Cd presence can interfere with Fe assimilation, and thus contribute to Fe
deficiency, despite its availability in the soil [30]. It was earlier proposed that the Cd-induced enhanced
expression of irt2 found in green grams is a part of the mechanism that allows coping with elevated Cd
concentrations through improved Fe uptake [29]. However, at high bioavailable Cd concentrations, the
effectiveness of such a mechanism could be negligible. In our opinion, more Cd accumulated in the roots
of plants exposed to salinity (+NaCl), in comparison to NaCl-untreated plants (−NaCl) found under 10
mM treatment, despite similar Cd bioavailabilities, which could result from enhanced irt2 expression.
On the other hand, unaltered irt2 transcript levels observed in the NaCl-untreated (−NaCl) plants
could be responsible for restricted Cd uptake and significantly lower root accumulation compared to
salt-stressed (+NaCl) plants. In conclusion, in a model of semi-halophyte M. crystallinum, salt stress
plays an important role in the regulation of irt2 expression during the plant response to elevated
Cd concentrations. Moreover, both the salt and Cd stress effects on irt2 expression were cumulative.
The involvement of other ZIP family members, e.g., ZIP4, in essential (Mn) and non-essential (Cd)
metal trafficking was confirmed [31]. Transcriptional regulation of ZIP transporters under Cd or
salinity stress has not been thoroughly elucidated. Recently, enhanced expression of zip4 in response to
elevated Cd concentrations was described for non-hyperaccumulating ecotypes of Sedum alfredii [32].
A parallel result was observed in our experiment for both the NaCl-untreated and salt-stressed plants.
Interestingly, our findings suggest that for the examined model semi-halophyte, the scheme of zip4
expression, contrary to irt2, was not affected to such an extent by salt stress. The enhanced zip4
expression found in response to elevated Cd concentration in the NaCl-untreated plants implies that
plant salinity stress was not required for Cd-induced modification of the zip4 expression scheme.
Moreover, contrary to irt2 regulation, no cumulative effect was observed, and both stressors caused
zip4 expression upregulation independently. Although the influence of the two stress factors on zip4
expression was confirmed in this study, the accumulated Cd amounts, especially in salt-stressed roots,
suggest the existence of a more complex mechanism orchestrating heavy metal uptake.

Phytochelatins (PC) are a well-described group of metal-complexing glutathione (GSH) derivatives,
whose synthesis is rapidly induced in response to heavy metals [33]. PC synthase (PCS), whose gene
pcs1 has been recognized in A. thaliana and yeast, is responsible for phytochelatin synthesis [34,35].
The roles of PC and, indirectly, PCS in non-essential heavy metal detoxification have been unequivocally
indicated with A. thaliana PC-deficient cad1 mutants (AtPCS1 mutation) hypersensitive to As, Cd and
Hg [36,37]. The GSH pool and PC synthesis remain interconnected, which revealed enhanced
PCS activity, along with increasing concentrations of exogenously applied GSH and Cd in the
tobacco BY-2 cell line [38]. The alteration of the GSH pool in response to different abiotic stresses is
a well-described phenomenon, related mostly to antioxidative protection [39]. Salinity stress-induced
CAM is accompanied by a significant increase in the GSH pool in Mesembryanthemum crystallinum [40].
The results of our study suggest that salt stress could fortify PC synthesis, not only by elevating the
GSH pool, but also through an enhanced expression of pcs1. The mentioned expression alteration,
however, was organ-specific and pronounced, especially in the roots. Interestingly, Cd treatment
affected the root pcs1 expression in both the NaCl-untreated and salt-stressed plants, which resulted in
even stronger gene expression in the latter group, and further confirmed the cumulative effect of both
stressors on the pcs1 regulatory pathway. In earlier studies, it was documented that overexpression
of the A. thaliana pcs1 gene enhanced Cd accumulation and tolerance in tobacco seedlings as a result
of increased PC synthesis [41]. High levels of PC identified in the Brassica napus phloem sap [42], as
well as highly expressed pcs1 in the A. thaliana phloem-loading cells, support the involvement of the
PC-PCS system in long-distance metal distribution [43]. According to the above-mentioned studies, one
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cannot exclude the involvement of upregulated pcs1 expression in phloem-mediated Cd-PC complex
translocation, since significant concentrations of Cd were measured in shoots of both the NaCl-untreated
and salt-stressed plants at the highest applied Cd concentration. In summary, the results of this study
suggest that applied abiotic stressors, namely, salt and Cd stress, can synergistically affect the regulatory
pathway of pcs1, contributing to the enhanced detoxifying potential of salt-stressed halophytes.

The next stage of heavy metal management involves ATP-dependent sequestration of metal-PC
complexes within the vacuoles. Translocation of metal complexes via the tonoplast is carried out
mainly by ATP-binding cassette (ABC)-type membrane transporters. The role of two best-described
A. thaliana ABCC-type transporters, namely, AtABCC1 and AtABCC2, in Cd and Hg detoxification
through vacuolar sequestration was demonstrated earlier [44]. As in the case of previously described
genes involved in heavy metal homeostasis, the influence of salt stress on abcc2 expression regulation
has not been fully elucidated. The results obtained in this study suggest that, in contrast to pcs1 and
irt2, salt stress did not participate in abcc2 expression regulation of roots and shoots. The response of
ABCC-type transporter genes to heavy metal stress is considerably better known. It was demonstrated
that Cd treatment did not affect A. thaliana abcc1 and abbc2 gene expression [45]; however, it enhanced
the abcc3 transcript level. Recently, similar abcc1 and abcc2 responses to Cd were also confirmed for
rapeseed and wheat [46,47]. Our findings agree with the above-mentioned findings and support the
idea of the lack of heavy metal involvement in halophyte abcc2 expression regulation. Taken together,
the experimental data indicate that both salt stress and Cd treatment have a rather slight effect on the
abcc2 gene regulatory pathway.

In addition to ATP-dependent transporters, such as ABCC-type transporters, the vacuolar
sequestration of cations relies on antiporters energized by V-H+-ATPases and V-PPases.
Cation exchangers (CAX) are a family of such antiporters predominantly responsible for Ca2+

homeostasis, but are also involved in other divalent cation trafficking [48]. Among the six CAXs
identified in Arabidopsis thaliana, CAX2 and CAX4 are strongly involved in vacuolar sequestration of Cd,
thereby conferring heavy metal tolerance [49,50]. The response of monovalent cation exchangers to salt
stress is a well-described phenomenon [51,52]. However, the behavior of divalent transporters, such
as CAXs, during salinity stress has not been determined. This subject requires elucidation, since the
strong induction of activity and increased content of V-H+-ATPase, the enzyme responsible for the
accumulation of an electrochemical gradient exploited during cation transport, has been revealed in
M. crystallinum during salinity stress [53,54]. According to [55], the cax4 steady-state expression level
of the shoot is very low compared to the root. In this study, we confirmed a small share of both salinity
and Cd treatment in the regulation of shoot cax4 expression. On the other hand, cax4 expression in
roots was enhanced by salt stress and Cd treatment independently.

Heavy metals that became neutralized inside the protoplast, either as free cations or chelates, can
be applied to the metal circulation system of xylem and phloem, respectively [43]. While the mechanism
regarding phloem loading and circulation still requires elucidation, the involvement of heavy metal
ATPases (HMAs) in Cd xylem loading leaves no doubt. Most HMAs are influx pumps involved in the
trafficking of both essential and toxic heavy metals. These ATPases may confer heavy metal resistance,
such as AtHMA4, for which dysfunctional mutants were shown to be sensitive to elevated Cd and Zn
levels [56]. It was proved that AtHMA2 and AtHMA4 were extraordinary ATPases [57]. Contrary to
other ATPases, these proteins act as efflux pumps responsible for Cd and Zn xylem loading, thereby
establishing the root-to-shoot translocation of both heavy metals. Although AtHMA4 is expressed
predominantly in the roots, some environmental factors can alter its expression in other plant organs.
It was shown that in the shoots of the A. thaliana seedlings, hma4 expression was upregulated in
response to sodium chloride [58]. In contrast to the aforementioned study, salt stress downregulated
and upregulated hma4 in shoots and roots, respectively. On the other hand, Cd treatment applied
in our experiment to the NaCl-untreated plants upregulated not only hma4 but also cax4, pcs1 and
zip4 in the roots. Interestingly, hma4 upregulation, as observed either for NaCl- or Cd-treatments,
was not reflected by a significant rate of Cd translocation, with the only exception being the 10 mM
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Cd supplementation. Taken together, the above data, analogous to the cases of cax4 and pcs1, show
that both salt and Cd stress enhanced hma4 expression in an organ-specific manner. However, similar
to cax4, but contrary to irt2 and pcs1 regulation, the effect of both stressors was not cumulative;
hence, NaCl and Cd could independently establish root readiness for heavy metal translocation at the
transcriptional level. A different approach, however, was found earlier in glycophytes representative.
Namely, [59] reported that AtHMA4 root expression was downregulated upon exposure to Cd
stress. A similar response was later observed in the shoots of A. thaliana seedlings [58]. On the
other hand, in Cd hyperaccumulators, such as Arabidopsis helleri and Thlaspi caerulescens, the HMA4
constitutive expression in roots and shoots was significantly higher in comparison to their Cd-sensitive
counterparts [60,61]. In summary, it is possible that halophytes may represent intermediate features
between sensitive and hyperaccumulating plants.

4. Materials and Methods

4.1. Plant Cultivation and Cd Treatment

Mesembryanthemum crystallinum L. seeds were sown on soil substrate in a greenhouse under
300–350 µmol photons m−2 s−1 of photosynthetically active radiation (PAR), a 16/8 h day/night period (25
◦C /17 ◦C temperature) and 60%/65% relative humidity (RH). For plant cultivation, the market-available
universal soil substrate “Hawita Fruhstorfer type LD80” (Hawita Gruppe GmbH, Germany) was
used. The “LD80” soil is a ready-to-use substrate made with peat (H4–H6 and H6–H8), clay and
type dependent ingredients, pH value (CaCl2) of 5.9, and salinity (1.0 in g/L KCl). The substrate
contained CaCO3 and a long-term delivery fertilizer, providing N, P, K and Mg in concentrations of
150, 150, 250 and 130 mg/L, respectively. Two weeks after sowing, each seedling with a fully developed
second leaf pair was transferred to an individual 1.2-L round pot with dimensions of 100 mm height ×
125 mm deep. Six-week-old plants were divided into two groups: the first was irrigated with water
(NaCl-untreated, −NaCl), while the second one was irrigated with 0.4 M NaCl (salt-stressed, +NaCl)
for 14 days. In the next step, 8-week-old plants of both mentioned groups were irrigated with 10 cm3

solution of 0 (control), 0.01, 0.1, 1 and 10 mM CdCl2 (Sigma Aldrich, Saint Louis, MO, USA) each day
of the 8-day-long treatment. No leakage from pots was detected during Cd application. On the day
after the last Cd treatment, four plants of each experimental variant were harvested (roots and shoots
independently). The fourth pair of leaves of each plant were collected, immediately frozen in liquid
nitrogen, ground and then stored at −80 ◦C for molecular analyses. The remaining shoots (including
leaves) and roots were used for biometric and Cd concentration analyses.

4.2. Biometric Analysis

For growth parameter and tissue water content determination, plant organs were prepared
according to the procedures described in [9], with a slight modification regarding desiccation
temperature. Specifically, the collected root parts were gently rinsed with cold distilled water
until the soil substrate was removed; the shoots were rinsed briefly, and the roots were blotted with
filter papers. For biometric analyses, the fresh weight was measured immediately, and the dry weight
was assessed after 48 h of desiccation in an oven at 105 ◦C. The tissue water content (TWC) was
calculated on a dry weight basis as follows:

TWC (cm3 g−1 DW) = (FW − DW)/DW

where FW and DW are the fresh and dry weights, respectively.

4.3. Cadmium Concentration Analysis

The soil substrate remaining after plant harvest was collected and stored at 4 ◦C. Prior to the
analysis, the substrate was dried for 48 h in an oven at 105 ◦C and sieved (2 mm). For determination
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of the substrate, the Cd content extraction method involving the use of 0.01 M CaCl2, as described
in [62], was employed. Each extraction was performed on 270 mg of soil substrate. Determination of
M. crystallinum root and shoot Cd concentrations was carried out according to the extraction method
previously described by [63]. The Cd content within the substrate and plant organs was measured with
the method employing Graphite Furnace-Atomic Absorption Spectrometry (GF-AAS, Thermo iCE3000,
Waltham, MA, USA). All standards were purchased from Sigma Aldrich (Saint Louis, MO, USA).
All the reagents used in the experiment were trace element grade.

4.4. RNA Preparation

Total RNA was extracted from ground M. crystallinum roots and shoots frozen in liquid nitrogen
(three plants per sample) using a Total RNA Mini Kit (Bio-Rad, Hercules, CA, USA). RNA purity and
quantity were determined using a Biospec-Nano (Shimadzu, Japan).

4.5. qPCR

An iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA) was used for reverse transcription
carried out on 1000 ng of total RNA after digestion with DNase I (DNA I Amplification Grade, Merck,
US). During qPCR, the samples were labelled with SYBR Green (iQ™ SYBR® Green Supermix, Bio-Rad,
Hercules, CA, USA) fluorescent dye. For a single reaction, 10–15 ng of cDNA and 150 nM of gene-specific
primers were used (Supplementary Table S1). To test amplification specificity, a dissociation curve
was acquired by heating samples from 60 ◦C to 95 ◦C. As a housekeeping reference, ubiquitin was
used. The reaction efficiency was tested by serial dilutions of cDNAs with gene-specific primers
(Supplementary Figure S1). The expression was calculated from at least three reactions according
to [64]. Plants not treated with NaCl (−NaCl) and irrigated with 0 mM Cd served as calibrators.

4.6. Statistical Analysis

The results were analysed with Statistica 13.3 (StatSoft, Kraków, Poland) statistical software.
One-way ANOVA followed by a post hoc test was used to evaluate individual treatment effects at
p ≤ 0.05.

5. Conclusions

Salinity and Cd stress-enhanced expression of the root genes irt2, cax4, hma4, pcs1 and zip4 was
verified using the ice plant model. For irt2 and pcs1, a cumulative effect of both stressors on gene
expression was found. Moreover, the role of salinity stress as an upstream regulator in the halophyte
irt2 expression scheme was suggested.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/4/475/s1,
Figure S1. Cadmium concentrations measured on the 1st, 3rd and 8th day of the experiment in the substrate of
soil-grown NaCl-untreated (−NaCl) and salt-stressed (+NaCl) Mesembryanthemum crystallinum plants; Table S1.
Sequences of primers employed for quantitative analysis of gene expression.
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