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Navigation in Human Flows : Planning with Adaptive Motion Grid

Jacques Saraydaryan':2, Fabrice Jumel'? and Olivier Simonin

Abstract— An important challenge for mobile robots is to
navigate efficiently in human populated environments. In this
context, we examine how human presence grids can be extended
to model human motions, considering only embedded sensors.
The proposed flow grid computes in each cell a discrete
distribution of the human motion. The model is defined to
take into account the most recent observations, so as to adapt
to changes. More, it is expanded with a predictive motion
pattern. Then we revisit the cost function of the A* path-
planning algorithm to take into account the risk of encountering
humans. We compare the standard A* with variants exploiting
the human presence likelihood [1] and the proposed flow grid.
Experiments in simulation show that the Flow grid A* is able
to compute paths minimizing the risk of navigating against
human flows, and to adapt to their variations. Experiments
with a mobile robot confirms the ability of the model to map
human flows and to optimize paths.

I. INTRODUCTION

In this paper, we aim to deal with the problem of robot
navigation in dense-human environments, ie. crowded envi-
ronments (as in pedestrian streets, platforms, public build-
ings). Generally, robots perceive their working environment
from embedded and/or external sensors (eg. fixed cameras).
All these information can be merged and shared by robots to
build a representation of the current state of the environment
or to learn the dynamics, as human flows [2].

The present paper aims to define a grid model able to
map human flows and their changes, then to exploit such
an information to compute efficient paths. We consider that
robots know the static part of the environment (e.g., a metric
map) and are able to locate. SLAM techniques allow to make
such an assumption [3]. Contrary to many works, we do not
consider that the environment is equipped with external fixed
cameras or sensors. Therefore, robots have to move in order
to cover the environment and to update their knowledge of
the human activity. By detecting humans moves, robots can
build a map of human presence and of human flows.

First, we examine how human presence grids can be
extended to human flow grids, with a minimum of additional
information. For this purpose, we compute in each cell a
discrete distribution of human motion. We call flow grid such
a model (illustrated in Fig. 1). Second, we define two A*
path-planning algorithms based on cost functions exploiting
different kind of information about human flows. The first
one uses a human presence map, called affordance map in
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Fig. 1. Simulation of a 200 pedestrian flow. On the right side, the Flow
Grid (red arrows) computed by a robot moving in the flow

the work of Tipaldi et al. [1], containing the likelihood of
encountering humans. The second model uses the proposed
flow grid, containing the likelihood of human motions. We
experiment these models in simulation, in order to evaluate
their ability to map human flows and to compute paths
able to exploit or avoid them. Then we experiment the
more promising model with a robot evolving among people
walking.

The paper is organized as follows. Section II presents
related work to mapping of human flows. Section III intro-
duces the flow grid as an extension of the human presence
grids. Then Section IV revisits the cost function of the
A* algorithm considering these different flow models. In
Section V we present first evaluations of how the flow-grid-
A* performs to adapt to changing human flows, in simuation
and with a real robot.

II. RELATED WORK

Recent works have considered the problem of learning
human flows from one or several static cameras or LIDAR.
In particular we can mention the work of Tipaldi and Arras
[1] defining the spatial affordance map. The model learns
the spatio-temporal distribution of events, from the observa-
tions in each cell representing the environment. The main
limitation of the approach is to only model human presence,
i.e. without information about the motion/velocity of humans.
Then Kucner et al. introduced Conditional Transition Maps
[2], which model the probability of human transition between
neighbouring cells of a grid representing the environment.
Each new observation requires to determine the cell of the
observed person, the cell from where he/she arrives and the
cell to where he/she goes. This combination of transitions
requires to learn 64 parameters per cell, which requires a



lot of observations to learn dynamics over the whole envi-
ronment. An extended approach [4] allows long-term spatial
correlations while reducing the neighboring transitions to
only 4 directions (north, south, east, west).

In [5] and [6] Wada et al. have shown that human
activity, in particular walking, can be observed and mapped
from embedded sensors and with SLAM techniques. After
collecting observations from each region of the environment
they can generate a human motion grid, giving in each cell
the statistics of walking direction in every 15 degree [6].

Gaussian process have been exploited for their ability to
predict the motion pattern of people at arbitrary locations
in [7]. However this approach exploits a pior map derived
from expert knowledge about the environment. Moreover,
Gaussian based techniques are known to be computationaly
expensive.

Our approach supposes no prior knowledge about the
environment and does not exploit any information about
human destinations. We examine how presence grids can be
extended with motion traces, while weighting the most recent
observations to be able to adapt to the flow changes. Then we
revisit the cost function of the A* algorithm to exploit this
human flow modeling (we discuss path-planning techniques
in Sec. IV-A).

III. HUMAN FLOW MODELING AND LEARNING

We adopt a grid representation of human presence and
flow in the environment, as for instance in [1], [2]. In such
grids, each cell holds the likelihood of encountering humans
(ie. presence) or a discrete distribution of human motion
direction.

A. Motion and presence grids

In each cell ¢ ,, we consider a discrete distribution of the
motion directions. This defines a set of K directions, noted
k;. In practice we discretize in 8 directions.

We note Z* the set of observations performed on a cell up
to time ¢. An observation at time t, of a cell ¢, ,, consists
in identifying a human direction if a person is present. By
hypothesis, only one human can occupy a cell at a given
time. In practice, we consider a cell size of 60cmx60cm.

More formally, we note each observation as following:

o | 1 if a person is moving in direction k
c.wk 7 1 0 otherwise.

In this paper, we consider that sensors are perfect, e.g. we
do not model their uncertainty.

Now we note M.,  x(Z") the likelihood to observe a
human moving in direction & in cell ¢, . The objective is
to learn this value from all the observations carried out by
the robots on this cell.

As a first approximation, we can compute this likelihood
as a standard average of the observations, ch,k, corre-
sponding to a counting model as defined in [8].

It is possible to derive the human presence likelihood,
M,cs, which consists in merging the k directions :

MpT‘ESCI=y (Zf) = Z Mcw,y)k(zt) (1)
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Fig. 2. A. Two layers grid model of the human flows (flow grid and
prediction) B. Possible motions from Von Mises Gaussian circle probability
distribution: (a) sample of Von Mises probability distribution with C = 2,
(b) normalized distribution with |K| = 8, (c) prediction direction grid
according a given observation.

Merging all the observations allows to find the affordance-
map proposed by [1].

B. The flow grid model

As human flows are not stationary processes, we propose
to compute an exponential moving average ([9]) in order to
give more importance to the latest observations :

M (2 =a0;, o+ (1—a)M7 (27 @

Cx.,y, Cx,y,

« is a parameter in |0, 1], then M., ; remains in [0, 1].
A high value of o will give more importance to new
observations, while a low value will give more importance
to the history of observations. As in occupancy grids [10]
we update the likelihood at each new observation. One
significant difference is that all M gw,y,k values are initialized
to 0.

As human flows can change rapidly and radically, we need
to update the cells information even they are not observed.
In other word we let the possibility to vanish the information
over time. For this purpose, we compute at a fixed frequency
an update of all the cell values M, Ct” P

(Z) 3)

v is a parameter in ]0,1]. One advantage of having =y
different from 1 is to remove information in area which were
not visited for a long time, and so to force their revisit.

We note Myiop = VaVyVk : M., 1 the grid of human
motion likelihood in every direction k of each cell ¢, .

Mﬁz y,k(Zt)/ = VMctzy

C. Expanding the flow grid with a human motion pattern

Building the flow grid from the local robot observations
can take a long time, as requiring to visit and revisit the
whole environment. In order to accelerate the flow modeling,
we add a human motion pattern around the last observations,
only in cells without information.

It has been shown that predicting the motion of a pedes-
trian by a velocity-based linear projection [11] is known
to be a reasonable approximation for short term behavior
[12]. In our context, we adapt the Von Mises model [13],
by considering that a human can take a maximum rotation
speed of 90°.s~! with an average linear speed of 1m.s~!.

The main idea of the computation is to propagate the pat-
tern from cells with maximum probability presence towards



direction with maximum probability. Details of the model
can be found in [14].

Figure 2.B(c) shows the result of a Von Mises pattern
computation. This distribution is normalized according to the
number of possible directions (| K| = 8 in Fig. 2.B(b)). Then
arrow length represents the probability value (Fig. 2.B(c)).

Note that, as soon as a robot observes a human at a given
location c, its predicted flow is cleared if it exists (for each
k, Mf’;:’d = 0), then the flow grid is computed.

D. Illustration of the Flow Grid model

Figure 1 illustrates a first experiment of the Flow Grid
computed by one robot (the simulator is presented in Section
V-A). The environment contains 200 persons walking around
two small rooms. On right, the flow grid is built by the robot
crossing the flow during less than 1.5 minutes (the robot
and pedestrian nominal speed is 1/m.s*~1). Red arrows show
the human flow computed from robot observations and blue
arrows show the predicted flow. The video!' illustrates such
a simulation.

IV. REVISITING THE A* PATH-PLANNING ALGORITHM
A. Cost estimation in human populated environment

In this paper we refer to the well-known A* algorithm
widely-used for robot path-planning [15]. A* is a classical
algorithm to find an optimal path to a goal using a heuristic to
control the order of exploration of the cells. At each iteration
of its main loop, A* determines which of its partial paths to
expand into one or more longer paths. This is based on an
estimate of the cost still to go to the goal node. A* selects the
path that minimizes the function f(n). f(n) = g(n) + h(n)
where n is the last node on the partial path, g(n) is the
cost of the path from the start node to n, and h(n) is a
heuristic that estimates the cost of path from n to the goal
without knowledge. The heuristic used in this paper, h(n),
is the classical euclidean distance from n to the goal without
obstacle.

To take into account the presence of humans, we consider
three different map-distances to compute the cost function
g(n) in A* planning :

o the standard A*, i.e. the non informed model, where

human presence is equiprobable for each cell.

« the affordance-map [1], estimating human presence.

o the flow-grid map, estimating human motions.

1) Standard A* algorithm: The cost between 2 neighbors
cells n and (n — 1) is defined as:

g(n) =ln,(n =Dl x 1+ F)+g(n—-1) &

where ||n, (n—1)|| is the distance cost between n and (n—1),
F is a positive factor to represent human presence. As the
disturbance due to humans is not known it is considered as
equiprobable in all cells. Then F' is set to a constant (1 in
the experiments).

Thttps://youtu.be/VeJ11GqwIPU

2) A* algorithm with affordance-map: An affordance map
estimates the human presence likelihood in each cell as
a spatial Poisson process [1]. In each cell n, the human
presence estimation, noted Poisson(n), is computed as
follow: Poisson(n) = Myy.s, (see Eq. 1 Section III-A).

This allows to define the following cost function :

g(n) = |In, (n—=1)|| x (1+ F.Poisson(n))+g(n—1) (5)

We add to the distance a cost directly linked to the likelihood
of meeting a human when moving to cell n, i.e. Poisson(n).
The factor F allows to tune the weight of the human
disturbance in the cost function.

3) A* algorithm with Human flow estimation: The human
flow grid and its predicted flow are used to determine the
navigation cost.

Let flow(n) be the human flow cost in cell n. We note
k the direction from (n — 1) to n and 6 its relative angle
(e.gk="NE’, 0 = 7). We note 0, the angle relative to the
direction k;. Then flow(n) is computed as:

| K]
flow(n) = Z(l —cos(Og; — 0)) X My i, (Zt)  (6)
i=1
To penalize the impact of crossing a flow, the factor
1—cos(0y; — ) gives a cost depending on the angle between
the flow and the path direction. The value of M, j,(Zt)
is doubled in case of moving in opposite direction and
ignored in case of moving in the same direction. The sum
of the penalties from all the directions determines the cost
of moving from n — 1 to n.
In the case where M, 1, is not defined, the predicted flow
grid M?'¢% is used.
This leads to the following cost function :
g(n) = lln. (n = D) x (1 + F.flow(n)) + g(n = 1) (7

The factor F allows to tune the weight of the perturbation
caused by the risk of crossing a flow of humans. Currently,
F is tuned experimentally to allow paths going through the
flows if directions are compatible (see next section).

V. EXPERIMENTAL EVALUATION
A. Simulation : Adaptation evaluation

We developed a simulator based on PedSim, the 2D
simulator of pedestrian crowd proposed by [16]. In addition,
[18] proposes a 3D implementation of this simulator under
the ROS framework, allowing to add a mobile robot and to
teleoperate it. We extended this simulator to provide robot
navigation along waypoints, computed with one of the A*
based algorithms above.

Figure 3 presents the "changing’ scenario where we eval-
uate the ability of the different grid models and their relative
A* variants to adapt their paths. Here a robot has to go from
spot A to spot B, then to return from B to A, and repeat
this process. Meanwhile, a crowd of people is following the
corridors in the anti-clockwise direction, before to change
for the opposite direction at time 500s. Figure 4 shows that
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Fig. 3. Snapshot of the changing scenario :
direction after few minutes.

change of the Human flow

before time 500s the Flow-grid A* model is the only one
able to learn to use the bottom corridor to go from A to B.
The robot follows the human direction then it obtains shorter
travel durations (~78). In the same period all models have
equivalent travel durations from B to A, as the human flow
use the top corridor with direction B to A. However, when
the flow direction change, one can see that only the Flow-
grid A* model is able to revise its flow model and then to
compute paths going through the bottom corridor (green line,
reaching 78 after time 1100s).

B. Experiments with Real Robot

We experimented the Flow grid model and the A* revis-
ited algotihm with a mobile robot evolving among walking
persons. We use a Turtlebot 2 platform enhanced with an
Rplidar A2 (resolution of 1° angular, omnidirectional and
range of 6m). The People Ros package provides a toolbox
for detecting human (face detection, leg detection) and
estimating their location and velocity. The leg detector was
used to detect humans location. After filtering location and
velocity data we compute human directions and update the
Flow grid Map.

Experiments were conducted in an area of 100m? where
a wall separates two connected corridors, see Fig. 5 on left
(walls are pink areas). The robot starts on one end of the
wall, then it processes a round trip between the two ends of
the wall. After a first round trip, three persons begin to walk
around the wall into anti-clockwise direction.

A video of the experiment is available here 2.

The figure 6 shows the Flow grid map obtained (left side)
composed of the observed human flow (red arrows) and the
predicted flow (blue arrows). Moreover, the Flow-Grid-A*
path-planning of the robot is displayed (green line). At the
top right of Figure 6, the Turtlebot point of view shows
the planned trajectory, a detected human (legs : red spheres,
human location : green sphere and human velocity : white
arrow) and the local cost map (used by the local planner to
avoid collision). Then at the bottom right, the real robot and
human situation is displayed.

The figure 5 shows two round trips of the robot at
respectively O to 23s and 247 to 278s. After the first round

Zhttps://youtu.be/WiBcO9S _Jmw.
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Fig. 4. Time of A < B paths, for each A* strategy, in the changing flow
direction scenario (Figure 3)
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Fig. 5. Snapshots of the experiment showing the robot trajectory evolution
(green lines) according to the Flow Grid Map update (red arrows).

trip, the robot has not met anybody, leading to an empty Flow
grid (some false positives occurred close to obstacles). The
computed path follows the wall with a safe distance. At time
247s, the robot has detected humans walking around the wall:
the flow grid appears clearly as a field of arrows oriented into
the anti-clockwise. One can see that the computed path from
top to bottom follows the left corridor, which is the direction
of the human flow. As it can be seen in the video the robot
navigation is not obstructed by the persons and vice versa.
The same result is obtained at time 278s, where the robot
computes a path across the right corridor, which follows the
flow direction.
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Fig. 6. Example of Flow grid (red arrows) and Prediction Flow grid (blue)
obtained with a a real robot (using a Turtlebot 2 base and a Rplidar laser)



[1]

[2]

[3]

[4

=

[5]

[6]

[7

—

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

G. D. Tipaldi and K. O. Arras, “I want my coffee hot! learning to find
people under spatio-temporal constraints.” in /CRA. 1EEE, 2011, pp.
1217-1222.

T. Kucner, J. Saarinen, M. Magnusson, and A. J. Lilienthal, “Con-
ditional transition maps: Learning motion patterns in dynamic envi-
ronments,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013, pp. 1196-1201.

C. Stachniss, Robotic Mapping and Exploration. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, ch. Coordinated Multi-Robot Ex-
ploration, pp. 43-71.

Z. Wang, P. Jensfelt, and J. Folkesson, “Multi-scale conditional transi-
tion map: Modeling spatial-temporal dynamics of human movements
with local and long-term correlations,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2015, pp. 6244-6251.
T. Wada, Z. Wang, T. Matsuo, Y. Ogawa, Y. Hayashibara, Y. Hirata,
and K. Kosuge, “Building human motion map for mobile robot in the
indoor dynamic environment,” in Proc. of the 2010 IEEE International
Conference on Robotics and Biomimetics, 2010, pp. 543-548.

T. Wada, Z. Wang, Y. Ogawa, Y. Hirata, and K. Kosuge, “Incremental
human motion map system and human walking behavior representation
in indoor environment,” in Proc. of the 2012 IEEE International
Conference on Robotics and Biomimetics, 2012, pp. 747-752.

S. O’Callaghan, S. P. N. Singh, A. Alempijevic, and F. T. Ramos,
“Learning navigational maps by observing human motion patterns,”
2011.

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, ser. Intel-
ligent robotics and autonomous agents. MIT Press, 2005.

T. Nescher and A. Kunz, Using Head Tracking Data for Robust Short
Term Path Prediction of Human Locomotion. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 172-191.

A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” in Computer, 1989, pp. 46-57.

T. Ikeda, Y. Chigodo, D. Rea, F. Zanlungo, M. Shiomi, and T. Kanda,
“Modeling and prediction of pedestrian behavior based on the sub-goal
concept.” in Robotics: Science and Systems, 2012.

M. Seder and I. Petrovi¢, “Dynamic window based approach to
mobile robot motion control in the presence of moving obstacles,”
in Proceedings of IEEE International Conference on Robotics and
Automation - ICRA 2007, Roma, Italy, 10-14 April 2007, 2007, pp.
1986-1991.

P. E. J. K. V. Mardia, Directional Statistics. John Wiley and Sonsons
Inc., 2000.

F. Jumel, J. Saraydaryan, and O. Simonin, ‘“Mapping likelihood
of encountering humans: application to path planning in crowded
environment,” in The European Conference on Mobile Robotics
(ECMR), ser. Proceedings of ECMR 2017, Paris, France, Sept. 2017.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-01588815

S. M. LaValle, Planning Algorithms. New York, NY, USA: Cam-
bridge University Press, 2006.

C. Gloor, P. Stucki, and K. Nagel, “Hybrid techniques for pedestrian
simulations.” in ACRI, ser. Lecture Notes in Computer Science,
P. M. A. Sloot, B. Chopard, and A. G. Hoekstra, Eds., vol. 3305.
Springer, 2004, pp. 581-590.

D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical Review E, pp. 42824286, 1995.

“Ros packages for pedsim (pedestrian simulator) based on social force
model of helbing et. al, https://github.com/srl-freiburg/pedsim_ros.”
[Online]. Available: https://github.com/srl-freiburg/pedsim_ros



