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Abstract—The paper proposes a bio-inspired model for an
imitative sensorimotor learning, which aims at building a map
between the sensory representations of gestures (sensory targets)
and their underlying motor pattern through random exploration
of the motor space. An example of such learning process occurs
during vocal learning in humans or birds, when young subjects
babble and learn to copy previously heard adult vocalizations.
Previous work has suggested that a simple Hebbian learning rule
allows perfect imitation when sensory feedback is a purely linear
function of the motor pattern underlying movement production.
We aim at generalizing this model to the more realistic case
where sensory responses are sparse and non-linear. To this end,
we explore the performance of various learning rules and nor-
malizations and discuss their biological relevance. Importantly,
the proposed model is robust whatever normalization is chosen.
We show that both the imitation quality and the convergence time
are highly dependent on the sensory selectivity and dimension of
the motor representation.

I. INTRODUCTION

Imitative sensorimotor learning can be though as a control
problem aiming to map the sensory input into a motor output.
For example, humans and songbirds learn to produce species-
specific vocalizations as juveniles by imitating surrounding
adults. The vocal learning process displays distinct (although
partially overlapping) processes. First, during a sensory learn-
ing phase, young subjects memorize adult vocalizations, and
build neuronal representations of their species vocal gestures.
Then, in a sensorimotor phase, they start vocalizing and
progressively converge to a good imitation of previously
exprienced vocalizations. It is believed that during the early
phase of this sensorimotor process, called babbling, the sub-
ject maps representation of sensory (auditory) targets to the
corresponding motor commands. In other words, the subject
learns an inverse model. In this study, we assume the auditory
selective responses to be already in place and investigate
biological plausible mechanisms to learn an inverse model
enabling this sensorimotor mapping.

An interesting property of some neurons in the brain is the
ability to respond similarly during the production or observa-
tion (or listening for vocal gestures) of a given movement. This
property has been linked with imitative sensorimotor learning
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and internal models (inverse or forward model). These neurons
are referred to as mirror neuron [1], [2], [3]. While forward
models describe a causal relationship between the sensory
input and the motor system, inverse models have the aim to
provide an appropriate motor command to a given state of the
motor system. Although building an inverse model is easier
when a forward model is available as proposed in [4], [5],
inverse models could be enough to bootstrap the development
of a simple computational mechanism, describing a memory
system composed by the motor plan and the sensory stim-
ulus [6]. The importance of computational models involving
mirrors systems and learning processes has been stressed by
Oztop et al. [1], [6], and the ”Mirror-system hypothesis” stated
by Arbib in [7] links mirror neurons with the emergence
of human language during evolution. Songbirds learn their
vocalization by imitation through a vocal learning process that
very much resembles speech learning in human babies [8]. In
the brain of songbirds, a part of the basal ganglia-thalamo-
cortical circuitry is devoted to song learning in juveniles and
plasticity in adults. This circuit is homologuous to the basal
ganglia circuits responsible for motor learning in mammals,
and involved in speech learning in humans [9], [10]. Moreover,
this song-related BG-thalamo-cortical circuit in birds receives
input from mirror neurons [2]. Therefore, the brain circuits re-
sponsible for avian song learning represent an ideal framework
to study the neural mechanisms underlying imitative learning.

A theoretical model describing the implementation of an
inverse model between auditive and motor areas through
associative learning has been proposed recently [11], [12].
The model is based on a simple Hebbian learning rule driven
through random motor exploration and auditory feedback
responses to this motor exploration. The proposed model
assumes linearity for mathematical simplicity. As auditory
responses in the brain are rather sparse and nonlinear we aim
to extent the theoretical framework to a more realistic scenario
[13].

We used an inverse model inspired by Hahnloser and Gan-
guli [11] to describe the interaction between two populations
of neurons, one formed by motor neurons and another formed
by sensory neurons. We first show that replacing the learning
rule by a simple normalized Hebbian learning rule allows



rapid convergence in a simple non-linear model. We apply
different normalizations in the learning rule. We then explore
the influence of the sharpness of auditory selectivity in relation
with the learning error after convergence and convergence time
of the learning. Finally, we show how changing the number
of sensory or motor dimensions modifies learning.

II. METHOD

A. Network and goal

The model includes two neural populations as shown in
Fig. 1. The first layer is composed by afferent neurons and
represents the sensory area. The second layer is composed by
motor neurons, which represent the starting point for muscle
activation, and thereby for movement production. The synaptic
weights describing the strength of the connection between
neurons are defined by matrix W .

Fig. 1. Neural network schema. The network includes two neural popu-
lations: the first layer is composed by na afferent neurons and represents
the sensory area, the second layer is composed by nm motor neurons and
represents the motor area. Wi,j represents the synaptic connections between
sensory and motor neurons. Below the network schema we highlight how we
define the sensory response. At each time step t, the sensory response is a
function of the motor output, that is At = f(Mt).

A model describing sensorimotor phase of learning based
on a network as in Fig. 1 has been previously proposed by
Hahnloser and Ganguli [11]. Neurons are linear units and at
each time t motor and auditory activity are defined as a nm-
dimensional vector Mt and a na-dimensional vector At, where
nm and na represent respectively the number of motor and
auditory neurons in the network.

B. Auditory response

At each time t the auditory activity At is defined as a
function of the motor pattern Mt at that particular time, that
is At = f(Mt). Hahnloser and Ganguli in [11] define the
auditory activity as a linear function of Mt, that is

At = QMt, (1)

where Mt represents the motor pattern at time t and Q the
linear map defining the auditory activity due to the auditory
feedback driven by current motor activity.

We then introduce non-linearity in the sensory response
to auditory feedback. To represent selective responses as
observed in various high sensory brain areas (e.g. auditory

regions of the pallium in birds display responses selective to
tutor syllables or to the bird’s own syllables), we define the
auditory activity At for each j = 1, .., na neurons as a bell-
shaped function around a target motor pattern:

Ajt = exp

(−||M∗
j −Mt||2

2σ2nm

)
, (2)

where σ represents the selectivity tuning width, nm the
number of motor neurons belonging to the network, Mt the
motor pattern at time t and M∗ the center of the auditory
activity.

C. Learning process

Learning is driven by the Hebbian learning rule

∆Wt ∝ ηMtAt, (3)

where Wt represents the synaptic weights between sensory
and motor neurons, η the learning rate, Mt the motor pattern
at time t and At the auditory activity at time t.

Synaptic weights Wt=t0 between sensory and motor neu-
rons are initially weak and increase according with (3) during
learning until a certain time t = tf , as

Wt = Wt−1 + ∆Wt, (4)

where Wt represents the synaptic connections between sensory
and motor neurons and ∆Wt is defined by (3).

However, synaptic weights have an upper boundary due to
biological limitations (maximal number of synaptic receptors
or neurotransmitters released). This can be introduced by a
normalization either on the synaptic weights Wi,j or on their
variation ∆Wi,j .

Hahnloser and Ganguli in [11] proposed a postdictive Heb-
bian learning rule given by

∆Wt = η(Mt −Wt−1At)A
T
t , (5)

where Wt represents the synaptic weights between sensory
and motor neurons, η the learning rate, Mt the motor pattern
and At is defined by Eq. (1). Here the apex T indicates the
transpose of the vector At.

In our model, we kept the basic Hebbian rule and we tested
three normalizations in two different cases: a normalization
over motor neurons (over all targets of one postsynaptic
neuron) and a normalization over auditory neurons (over all
inputs of one presynaptic neuron).

In practice, the two types of normalization are respectively
implemented by normalizing over the lines or columns of the
weights matrix W . The aim of the normalization is to bound
either the mean of each column or line of Wi,j or the euclidean
norm of each column or line of Wi,j to a maximum of 1.
Considering the case of normalizing with respect to auditory
neurons and pushing the mean of every column of W to a
maximum of 1, the applied normalizations are the following:

• Maximum weights normalization

Wi,j =
nmWi,j

ΣiWi,j
, (6)



• Supremum weights normalization

Wi,j =

{
Wi,j

ΣiWi,j

nm
< 1,

nmWi,j

ΣiWi,j
otherwise,

(7)

• Decreasing factor normalization

∆Wi,j = ηMtAt

(
1− ΣiWi,j

nm

)
. (8)

Here Wi,j represents the synaptic connections between sen-
sory neuron j and motor neurons i = 1, .., nm, where nm is
the number of motor neurons.

To obtain the normalization over the motor neurons and
pushing the mean of each line of W to a maximum of 1, it
is enough to change the index i for the index j and use the
auditory dimension na. In order to use the norm instead of
the mean in the definiton of the normalizations it is enough
to introduce the norm on the column or the norm on the line
of W in place of the mean.

At the same time, normalizing synaptic weights forces us to
also normalize the motor target M∗, which represents what the
model would learn at t = tf . This is equivalent to a reduction
of the target motor space (as it introduces a constraint on the
final output of the model).

D. Simulation details

Each sensory neuron contains the response to a motor
performance, and this is represented by the motor target
M∗. We did not consider any strategy for the exploration.
That is, at each time step t we simply considered the case
of a random motor exploration Mt on which the auditory
selectivity depends.

In the Hahnloser-Ganguli model there exist a direct map
which defines the motor activity from the auditory activity
as Mt = QdAt. For the inverse model we need to define
At in dependence on Mt as in Eq. (1). That is the inverse
matrix of Q, i.e Qd represents the motor target M∗, that is
the ideal motor activity which the model should have learned
once learning phase has ended. The goal then is to activate
each sensory neuron can drive M∗

j through W , such that

WA∗ −→M∗, (9)

where A∗ = A0I defines the ideal auditory activity. We fixed
A0 = 1.

Given the motor targets M∗, at each time step t, the distance
between what the model actually learned and what it should
have learned is defined as

dt =
||M∗ −WtA

∗||
nm

, (10)

where M∗ represents the motor target, Wt the synaptic weights
matrix, A∗ the ideal auditory activity and nm the number of
motor neurons.

We defined the convergence time τ as the number of time
steps at which the updates of the weights are small enough.
That is, the distance between what the model targets should
have learned and what he effectively learned reaches a plateau.

After have chosen ε = 1 at t = t0, given an interval of time
∆t = [k, k + 2N ] of measure 2N , we defined

ε =
1

2N

(
Σk+2N

k+N dt − Σk+N
k dt

)
, (11)

and we used it as threshold, in a way that a particular
experiment stops either if ε reaches the value ε∗ = 10−9

either if it goes until a fixed time t = tf . We tested
several values for the tuning selectivity width, i.e. σ =
[0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7], varying in this way the au-
ditory selectivity. We used for almost every value an interval
of length N = 400. However, since the distance evolves very
slowly, for small values of σ this interval is not large enough.
For instance, an interval with N = 500000 has been used for
σ = 0.02.

III. RESULTS

A. Simple model with linear auditory responses

Fig. 2 shows the evolution in time of the smooth average
distance between WA∗ and the target motor pattern M∗,
defined by Eq. (10) for each simulation. In the linear version
of the model (blue line) , the auditory activity is a linear
function of the motor production, as in Eq. (1), and the
postdictive Hebbian rule defined by Eq. (5) guides learning.
As expected by the theory [11], the distance between WA∗

and the target motor pattern M∗ (which is the inverse of Q)
converges exponentially to zero. The learning rule therefore
ensures proper learning of the inverse model. In contrast, when
auditory feedback is non-linear (orange line in Fig. 2), where
the auditory activity is defined by Eq. (2), the postdictive
Hebbian learning rule does not allow convergence, and the
distance between WA∗ and the target motor pattern M∗ rather
diverges.
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Fig. 2. Ganguli-Hahnloser linear and nonlinear model. Evolution in time of
the smooth average distance between WA∗ and the target motor pattern M∗,
computed over 50 simulations. Comparison between the Hahnloser-Ganguli
linear model (in blue) where the auditory response is defined by Eq. (1)
and the nonlinear version of Hahnloser-Ganguli model (in orange) where the
auditory response is defined by Eq. (2). In both cases learning is driven by the
postidictive Hebbian learning rule in Eq. (5) and weights are updated following
Eq. (4). To highlight the behavior of the linear model, the same comparison
using a log scale is shown in the box. Parameters value: tf = 1.5 ∗ 104,
nm = na = 3, η = 0.01, σ = 0.1, C = 20.



Define the auditory activity as in Eq. (1) means that the
matrix Q needs to be invertible to reach convergence. We also
don’t know how to define the exploration space starting from
the map Q. We assumed as given the space of the inverse
of Q, which means that we solved at each time step t the
linear system Q−1At = Mt, where Q−1 = M∗. At the same
time to solve a linear system means to face the problem of
invertibility of matrix M∗. Indeed, if the matrix M∗ is singular
or close to be singular, then the numerical algorithm is not
longer working. To avoid an ill-posed problem we added a
condition by computing the condition number1 of the matrix
M∗, forcing it to be such that

k(M∗) < C, (12)

where M∗ represents the motor target and C is a positive
constant belonging to [1,+∞]. In this way we simulated all
the simulations in Fig. 2 without having ill-posed problems.
Without the application of this condition, simulations were of-
ten diverging because of the divergence of M∗−1

. A nonlinear
auditory response defined by Eq. (2) enables to avoid ill-posed
problems. At the same time (as underlined in the small box
with logarithmic scale in Fig. 2) it leads to a divergence in the
distance between the target motor pattern M∗ and WA∗. That
is, the model does not learn anymore after the introduction of
nonlinearity. So far, instead of keeping the postdictive Hebbian
rule proposed by Ganguli and Hahnloser in [11], we used a
traditional Hebbian rule to drive learning and tried to face the
problem by applying other types of normalization.

B. A nonlinear auditory response

Fig. 3 shows the evolution of the distance between WA∗

and the target motor pattern M∗ for one example neuron.
The initially weak synaptic connections evolves following the
Hebbian learning rule given by Eq. (3) and finally approaches
M∗. To obtain these results we applied the normalization
defined by Eq. (8). By introducing nonlinearity, as shown
by Fig. 2, the Ganguli-Hahnloser model does not converge
anymore.

We tested three different normalizations, given by Eq. (6),
Eq. (7) and Eq. (8). The upper panel of Fig. 4 shows the
comparison between the three normalizations with respect to
auditory neurons. That is, with respect to the columns of W .
Normalizations given by Eq. (6) and Eq. (7) are applied di-
rectly to the weights matrix, which gives a faster convergence
but a lost in smoothness. Normalization given by Eq. (8) is
applied to the variation of the weights, by multiplying its
classical definition by a decreasing factor. This means that
the variation is smaller and smaller as the weights approaches
the target, which results in a smooth trend of the distance
curve. To highlight better the difference between normalization

1Given a general linear system Ax = b, its condition number is defined as
k(A) = ξmax(A)/ξmin(A), where ξmax(A and ξmin(A) are respectively
the maximal and minimal singular values of A. The value k(A) represents the
variability of the solution, so how much the solution x changes consequently
to a change in b. The lower bound for the condition number is k(A) = 1,
whereas it can reaches the value k(A) =∞ if the matrix A is singular.
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Fig. 3. Evolution of synaptic weights in time relative to a single auditory
neuron and distance from the target motor pattern (three neurons
example). Evolution in time of the synaptic weights W (continuous blue
line) and the target motor pattern M∗ (dashed blue line) for one example
neuron. Each auditory neuron is composed by three components represented
by the three lines. Here the auditory activity is defined by Eq. (2) and learning
is driven by the Hebbian learning rule in Eq. (3). At each time steps weights
are updated following Eq. (4) and the normalization defined by Eq. (8) has
been applied. Parameters value: tf = 1 ∗ 105, nm = 3, na = 1, η = 0.01,
σ = 0.1.

over auditory and motor neurons, the bottom panel of Fig. 4
shows the comparison between the normalization given by Eq.
(8) applied in its mean and norm version. As it is shown,
a normalization over auditory neurons works better than the
same normalization over motor neurons in the sense that the
distance between WA∗ and M∗ is lower if the normalization
is applied over the auditory neurons than if the normalization
is applied over the motor neurons.

C. Auditory selectivity effect

Auditory selectivity impact on the learning can be observed
by varying its value and by observing both the convergence
time τ both the distance at t = τ between WA∗ and M∗.
Fig. 5 shows how the mean convergence time τ and the mean
distance dt at t = τ depends on the auditory selectivity. As the
tuning selectivity width σ increases, a decreasing in the mean
convergence time and an increasing in the mean distance can
be observed. In particular, for the value σ = 0.02 convergence
time is not fully correct because many simulation reached a
fixed time tf = 2 ∗ 107 before having reached convergence.
This is displayed on the plot by the first dashed part of the
red line.

D. Varying network dimensions

The quality of learning in terms of the distance at the
convergence time t = τ and how slow learning develops
can be investigated by varying the network dimension. Firstly,
the number of auditory neurons has been kept fixed at the
value na = 3, and the number of motor neurons varied as
nm = [2, 3, 4, 5, 6, 7]. Then, viceversa, the number of motor
neurons has been kept fixed at nm = 3 and the number of
the auditory neurons varied using the same values as before.
Fig. 6 shows the effect of changes in the network dimension
respectively on the mean convergence time τ and on the
mean distance at t = τ , computed over 50 simulations. The
upper panel shows how, keeping fixed the motor dimension,



Fig. 4. Comparison between different types of normalization: evolution
in time of the distance. Evolution in time of the smooth average distance be-
tween WA∗ and the target motor pattern M∗, computed over 50 simulations.
(Top) Comparison between the model normalized by the maximum weights
normalization in Eq. (6) and the corresponding norm version (respectively
the continuous blue line and the dashed blue line), the model normalized
by the supremum weights normalization in Eq. (7) and the corresponding
norm version (respectively the continuous green line and the dashed green
line), the model normalized by the decreasing factor normalization in Eq. (8)
and the corresponding norm version (respectively the continuous red line and
the dashed red line). All the normalizations have been taken with respect to
auditory neurons. (Bottom) Comparison between the model normalized by the
decreasing factor normalization in Eq. (8) with respect to auditory neurons
(red lines) and with respect to motor neurons (dark red lines). Comparison
between the normalization applied using the mean of W (continuous lines)
and the norm of W (dashed lines). Here the auditory activity is defined by Eq.
(2) and learning is driven by the Hebbian learning rule in Eq. (3). At each time
steps weights are updated following Eq. (4). Parameters value: tf = 1 ∗ 105,
nm = na = 3, η = 0.01, σ = 0.1.

there is not an evidence of network dimension effect on the
mean convergence time. Viceversa, keeping fixed the auditory
dimension the learning slows down as the motor dimension
increases. However, the mean distance at t = τ is not affected
by any change in the neural network dimensions, as shown
in the bottom panel of Fig. 6. More details are available at
https://github.com/spagliarini/2018-ICDL-EPIROB.

IV. DISCUSSION

Hahnloser and Ganguli [11] proposed a simple mathemati-
cal framework to approach the sensorimotor learning problem
in songbirds. It is based on a linear auditory activity and a
postdictive Hebbian learning rule. Linearity in the auditory
activity makes the theoretical investigation possible but is
not biologically realistic. To be invertible, the matrix Q for
auditory response must be squared, which means that auditory

0.
02
0.
05 0.

1
0.
2

0.
3

0.
5

0.
7

104

105

106

107

10 2

10 1

Convergence time (in number of time steps) Final distance from the target

Tuning sparameter

C
on

ve
rg

en
ce

 ti
m

e 
(t

im
e 

st
ep

s) D
istane from

 the target

Fig. 5. Effect of the auditory selectivity on convergence time and distance.
Auditory selectivity impact on the convergence time (in red) and on the
distance between WA∗ at the convergence time τ and the target motor
pattern M∗ (in blue), computed over 50 simulations. The first dashed part
of the red line underlines the fact that for σ = 0.02 not all the simulations
converges before having reach a fixed simulation exit time tf = 2 ∗ 107.
Here the auditory activity is defined by Eq. (2) and learning is driven by
the Hebbian learning rule in Eq. (3). At each time steps weights are updated
following Eq. (4). Parameters value: σ = [0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7],
nm = na = 3, η = 0.01, ε∗ = 10−9. We applied the decreasing factor
normalization given by Eq. (8). To exit the simulations we compute ε as in
Eq. (11). We used for almost every value an interval with N = 400. However,
since the distance evolves very slowly, for small values of σ this interval is
not large enough. For instance, an interval with N = 500000 has been used
for σ = 0.02.
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Fig. 6. Effect of network dimension on the convergence time and the
distance. (Left) Network dimensions effect on the mean convergence time τ
and (Right) on the mean distance between WA∗ at time t = τ and the target
motor pattern M∗, computed over 50 simulations. The dark red line refers
to a network where the number of auditory neurons has been kept fixed at
na = 3, whereas the light red line refers to a network where the number
of motor neurons has been kept fixed at nm = 3. In both cases, the second
dimension has been varied as [2, 3, 4, 5, 6, 7]. Parameters value: η = 0.01,
σ = 0.1. Here we applied the decreasing factor normalization given by Eq.
(8). To exit the simulations we compute ε as in Eq. (11) with N = 400.

and motor dimensions have to be equal. Moreover, numer-
ical implementation of the learning algorithm proposed by
Hahnloser and Ganguli requires to invert the auditory response
matrix (Q) to determine the range of motor output required for
proper exploration and learning. As there is no general method
to invert a random matrix Q, a numerical implementation of
the model requires to set a specific Q that can be inverted.
Finally, the postdictive learning rule only works for the linear
model and it is not clear whether biologically realistic learning
rules can still lead to convergence or near-convergence in the
case of non-linear auditory feedback.

As Hebbian or associative learning rules are imple-



mented through activity-dependent synapse-specific increases
in synaptic weights (synaptic potentiation), that must be aug-
mented by global processes that regulate overall levels of
neuronal and network activity to prevent explosion of synaptic
weights [14]. Regulatory processes are often as important as
the more intensively studied Hebbian processes in determining
the consequences of synaptic plasticity for network function.
Setting an upper bound on the total synaptic weights to or
from a given neuron may also reflect the biological limitation
of synaptic connections: limits are imposed on their growth
due to the limited quantity of available material (receptors,
neurotransmitters, ...). The introduction of normalization on
the weights or on their variations is a simple solution to
this problem. Several forms of normalization were considered
here to take into account this biological limitation. While the
linear model of Hahnloser and Ganguli [11] converges for the
postdictive learning rule described there, we show that near-
convergence can be achieved with multiple normalization rules
added to a simple and typical associative learning rule given by
Eq. (3). Convergence time, final distance from motor output to
target, and smoothness of the distance evolution through time
all depend on the specific normalization used. However, it is
important to notice that the final ”error” (distance from motor
final weights to target motor pattern) does not vary much with
normalization, assuming it is applied on all synaptic outputs
from a given presynaptic (auditory) neuron.

In most of the simulations we focused on normalization
given by the decreasing factor normalization in Eq. (8). We
kept this normalization for all our analyses because it gives
better performance (i.e. low ”error”). We noticed that when
this normalization is applied, it gives better performances over
auditory neurons (presynaptic) than over motor neurons (post-
synaptic), despite the fact that a normalization with respect
to motor neurons (regulated at the level of the post-synaptic
neuron) may be more biologically plausible. Although other
forms of plasticity exist, including presynaptic modulation
of synaptic strength, classic long-term potentiation/depression
(LTP/LTD) mechanisms mostly involve postsynaptic receptor
reorganization.

A remaining open question is related to the final value
(after convergence) of the distance between the target motor
pattern and what the model actually learned. Future work is
needed to determine the factors that determine this final error
and how it can be reduced. One possibility is that various
motor targets (one for each auditory neuron) may interfere
during learning, leading to imperfect copies. However, our
preliminary experiments didn’t show that interference had an
influence on the final error.

We investigated how learning depends on the auditory selec-
tivity observing that as the tuning selectivity width σ increases
as the final distance between weight matrix and motor target
(error) increases while convergence time decreases. There is
therefore a trade-off between learning speed and accuracy that
can be balanced through the selectivity of auditory neurons.
One way to make learning both fast and accurate could be
to start the learning process with a large tuning width (low

selectivity) and to decrease it progressively as learning goes
on. Interestingly, in many songbird species (including the
well-studied zebra finches), sensory learning overlaps with
sensorimotor learning, and the auditory selectivity therefore
develops during the early sensorimotor phase.

Finally, taking into account the influence of the dimensions
(i.e. number of units) of the sensory and motor layers we
noticed that motor dimension has a strong influence on con-
vergence time. This strong influence comes from the fact that
for lower values of σ the distance between the target and WA∗

tents to decrease much more slowly. In our network we are
considering a motor output that does not distinguishes muscle
control and sound production. It is not clear which of these two
components is responsible for the high increase in convergence
time. A model displaying a motor output and a sound gener-
ating system is needed to resolve this question. Future work
could include (1) the addition of an artificial syrinx model as
motor output and more auditive like feature selectivity in the
auditory layer, and (2) the influence of different exploration
methods such as goal-directed exploration.
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