
HAL Id: hal-03207510
https://hal.inria.fr/hal-03207510

Submitted on 25 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounding memory access interferences on the Kalray
MPPA3 compute cluster

Dumitru Potop-Butucaru, Jad Khatib, Philippe Baufreton

To cite this version:
Dumitru Potop-Butucaru, Jad Khatib, Philippe Baufreton. Bounding memory access interferences on
the Kalray MPPA3 compute cluster. [Research Report] RR-9404, Inria. 2021, pp.24. �hal-03207510�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/427702898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03207510
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
94

04
--

FR
+E

N
G

RESEARCH
REPORT
N° 9404
December 2020

Project-Teams KAIROS

Bounding memory access
interferences on the
Kalray MPPA3 compute
cluster
Jad Khatib (Inria jad.khatib@inria.fr), Dumitru Potop-Butucaru
(Inria dumitru.potop@inria.fr), Philippe Baufreton (Safran
philippe.baufreton@safrangroup.com)

mailto:jad.khatib@inria.fr
mailto:dumitru.potop@inria.fr
mailto:philippe.baufreton@safrangroup.com




RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Bounding memory access interferences on the
Kalray MPPA3 compute cluster

Jad Khatib (Inria jad.khatib@inria.fr), Dumitru
Potop-Butucaru (Inria dumitru.potop@inria.fr), Philippe
Baufreton (Safran philippe.baufreton@safrangroup.com)

Project-Teams KAIROS

Research Report n° 9404 — December 2020 — 24 pages

Abstract: The Kalray MPPA3 Coolidge many-core processor is one of the few off-the-shelf
high-performance processors amenable to full-fledged static timing analysis. And yet, even on
this processor, providing tight execution time upper bounds may prove difficult. In this paper,
we consider the sub-problem of bounding the timing overhead due to memory access interferences
inside one MPPA3 shared memory compute cluster. This includes interferences between computing
cores and interferences between the instruction and data accesses of a given core. We start with
a detailed analysis of the MPPA3 compute cluster, with emphasis on three key components: the
Prefetch Buffer (PFB), which performs speculative instruction loads, the fixed-priority (FP) arbiter
between instruction and data accesses of a core, whose behavior is highly dependent (in the worst
case) on interferences from other cores, and the SAP (bursty Round Robin) arbiters guarding
access to memory banks. We provide a full-fledged interference analysis covering both levels. This
analysis is rooted in a novel modeling of memory access patterns, which describes their worst-
case and best-case burstiness, a key factor influencing the MPPA3 arbitration. We evaluate our
interference model on multiple applications, ranging from real-life avionics code specified in SCADE
to linear algebra code. We also suggests methods for reducing execution time and improving
analysis precision by means of code generation.

Key-words: Real-time systems, Timing analysis, Interference analysis, Many-core, Kalray

mailto:jad.khatib@inria.fr
mailto:dumitru.potop@inria.fr
mailto:philippe.baufreton@safrangroup.com


Analyse d’interférences mémoires sur les clusters de calcul
du pluri-cœurs Kalray MPPA3

Résumé : Le pluri-cœurs Kalray MPPA3 Coolidge est un des seuls processeurs haute-
performance sur étagère à permettre le calcul de bornes statiques (non-probabilistes) sur le
temps d’exécution. Mais même sur ce processeur le calcul de bornes serrées est difficile. Dans
cet article, nous traitons le sous-problème du calcul de bornes supérieures sur les interférences
dues aux accès concurrents aux bancs de mémoire partagée. De plus, notre analyse se concentre
sur un seul cluster de calcul de l’architecture-cible, et s’intéresse seulement aux interférences
entre cœurs de calcul du cluster et aux interférences entre accès instruction et données d’un
seul cœur. Nous commeno̧ns par une analyse détaillée du cluster de calcul MPPA3, mettant
l’accent sur trois composants-clefs: le tampon de préchargement anticipé (Prefetch Buffer, ou
PFB) qui réalise des préchargements de code spéculatifs, l’arbitre à priorité fixe (FP) entre les
accès au code et aux données d’un même cœur de calcul, dont le comportement est dépendant
(au pire cas) des interférences d’autres cœurs, et les arbitres SAP (Round Robin avec support
pour les rafales) qui contrôlent l’accès aux bancs de mémoire partagée. Nous développons une
analyse d’interférences complète par rapport au domaine choisi. Notre analyse est fondée sur une
nouvelle modélisation des motifs d’accès à la mémoire, qui permet la représentation du groupage
des accès en rafales (dans le pire et dans le meilleur des cas). Ce facteur a une influence très
forte sur l’arbitrage MPPA. Nous évaluons notre approche d’analyse d’interférences sur plusieurs
applications allant de tâches avioniques appartenant à une application de production spécifiée en
SCADE, et jusqu’à du code d’algèbre linéaire représentatif pour les applications de type “jumeau
numérique” ou “machine learning”. Nous suggérons aussi des méthodes permettant de réduire le
temps d’exécution et d’améliorer la précision de l’analyse par des choix de génération de code.

Mots-clés : Temps réel, Analyse de temps d’exécution, Analyse d’interférences, Pluri-coeur,
Kalray



Bounding memory access interferences 3

1 Introduction
The world of embedded computing is rapidly changing. The classical embedded control system,
with its (relatively) low computational requirements is progressively extended to include AI/ML
components or model predictive control1 with high computational needs (and tight real-time
requirements). Implementing such systems requires methods and tools belonging to not one, but
two major scientific and engineering fields:

• Real-Time Embedded (RT/E) computing, for the aspects related to safety and predictabil-
ity.

• High-Performance Computing (HPC), for the aspects related to performance and efficiency.

The Kalray MPPA family of many-core processors2 is one of the most promising results of
this on-going synergy between RT/E and HPC computing. It has been developed as a hard-
ware solution meant to provide support for both raw performance needs and predictability. Raw
performance is attained by means of massive parallelism3 and carefully designed memory sys-
tem, on-chip interconnect, and I/O interfaces. Attaining predictability usually requires both
transparency—access to the processor specifications to allow analysis—and avoiding as much as
possible mechanisms that are known to reduce the precision of analysis [3], such as out-of-order
pipelines, speculation, non-LRU caches... Kalray does both [6, 10].

However, even this level of hardware support for predictability does not make timing analysis
easy. While the in-order VLIW pipeline of each MPPA3 processing code is amenable to very
precise timing analysis, two fundamental issues remain:

• Attaining both performance and predictability is difficult on any multi- and many-core pro-
cessor [4], as performance requires some degree of resource sharing,4 whereas predictability
is traditionally attained through time/space isolation mechanisms meant to eliminate in-
terferences [2], or at least significantly reduce and bound them.5

• The quest for raw performance means that, even though Kalray MPPA processors are the
best for predictability among production HPC-capable processors, it still features hard-
ware components that make analysis difficult and reduce its precision. On the MPPA3,
these components perform speculative memory fetches, L1 fixed-priority (FP) arbitration6

between code and data memory requests of a given processor core, bursty L2 and L3 arbi-
tration with bounded (not fixed) burst size between memory requests coming from different
cores/clusters, or (more classically) they access DDR memory whose refresh operations
must be considered during timing analysis.

The first topic is covered in ongoing work which has already produced a few interesting com-
promises [16, 6, 7]. Our goal, in this paper, is to focus on the second topic, and more
precisely on the issues related to executing parallel code on a single compute cluster of the
MPPA3 processor.

Our contribution is threefold:

1Digital twins in the control loop.
2www.kalrayinc.com
3Large numbers of efficient computing pipelines and specialized accelerators.
4For instance, allowing two or more processors to access the same memory bank concurrently.
5We shall not consider in this paper mixed-critical solutions where the predictability of high-performance

parts of an application is attained by means of monitoring and scheduling.
6Which is dependent on the behavior of lower levels of the memory hierarchy.

RR n° 9404

www.kalrayinc.com


4 Khatib, Potop-Butucaru, Baufreton

• We conduct an analysis of the Kalray MPPA3 compute cluster, focusing on the memory
subsystem and on the three components that pose static analysis problems (prefetch buffer,
L1 arbiter and L2 arbiter). We identify worst-case interference patterns which result in
better interference bounds than over-approximations of previous work. In doing so, we
determine the importance of memory access burstiness in the definition of these patterns,
and we also identify methods to reduce interferences by construction.

• We introduce a formal model allowing the representation and worst-case reasoning on
bursty memory access pattern specifications. On this base we develop novel algorithms
allowing to derive worst-case upper bounds on the memory access interferences at both
L1 level (between instruction and data requests of the same core) and L2 level (between
requests coming from different cores).

• We evaluate our model and algorithms on multiple applications: a classical embedded
control application (a real-life avionics software specified in SCADE), a few applications of
the TACLE WCET testbench [8], and a linear algebra code (matrix multiplication) which
is representative for high-performance AI/ML code.

Our work was guided by two main objectives: precision and scalability. To attain precision, we
consider in great detail the properties of the hardware. To attain scalability, we have systemati-
cally avoided HW state exploration approaches, relying instead on static over-approximations.

Outline The remainder of the paper is organized as follows: In Section 2 we review previous
work. Section 3 presents in detail the MPPA3 architecture, with focus on the compute clusters.
In Section 4 we set the basis for the definition of the interference model by formally defining
the architecture and application model and by setting the general timing analysis paradigm
we follow. Sections 5 and 6 defined our methods for L1, respectively L2 interference analysis.
Section 7 covers experimental evaluation, Section 8 discusses methods for reducing interferences,
and Section 9 concludes.

2 Related Work
Our work is closely related to the large corpus of previous results on the timing analysis of
parallel code running on multi-cores, regardless of whether analysis is considered as an end in
itself [11, 13], or if it is seen as part of a larger ressource allocation process meant to provide
hard guarantees on the real-time behavior of the resulting code [15, 6, 16, 12, 17, 7]

One main difference between our approach and the ones cites above is that we do not consider
the full-fledged timing analysis problem. Instead, given that multiple integrative approaches
exist (cited above), we only focus on providing upper bounds on L1 and L2 memory access
interferences.

In doing this, we follow a multicore response time analysis[4] approach where, as detailed
in Section 4.2, the worst-case respose time (WCRT) of a task is computed as a sum between a
worst-case execution time (WCET) assuming no interferences plus separate terms corresponding
to the various interference sources (in our case, L1 and L2 interferences). In particular, we
assume that WCET analysis does not even consider the state of the L1 arbiter (where data and
instruction memory accesses of the same PE interfere). Theoretically, considering the state of
this arbiter during WCET analysis could significantly improve analysis precision. However, the
presence of speculation and the dependence of L1 arbitration on the behavior of lower levels of
the memory hierarchy means that the state space to explore is very large, leading to tractability
issues which we wanted to avoid.

Inria



Bounding memory access interferences 5

Much of the previous work cited above has (also) been has targeted at the Kalray MPPA plat-
form, and in particular its MPPA2 version (codenamed Bostan). Our paper paper considers the
hardware innovations brought by the Kalray MPPA3 platform—speculative prefetch and bursty
arbitration–which have only been considered in [10]. By comparison, we provide significantly
tighter bounds on the L1 interference analysis and the first correct L2 interference analysis, both
based on a novel modeling of burstiness which we introduce.

3 The Kalray MPPA3 many-core processor
The third generation of Kalray many-core processors (codenamed Coolige) integrates 80 Process-
ing Elements (PEs) running at 1200 MHz, distributed over 5 identical Compute Clusters (CCs).
CCs are interconnected through a dual Network on Chip (NoC) and through an Advanced eX-
tensible Interface (AXI). The AXI network also connects the CCs to two DDR controllers (each
guarding access to 4GB of RAM each), and to a PCIe controller. The NoC also connects the
CCs to two 100G Ethernet controllers.

In this paper, we focus our study on a single CC. Thus, we do not consider in our analysis
the NoC and the AXI interconnect.

A
cc
el

I$ D$

PE0..PE15
A
cc
el

SMEM0-SMEM15

A
X
I
In
it
ia
to
r

A
X
I
T
ar
ge
t

4MB=
16x256kB

N
oC

R
x

D
SU

N
oC

T
x

R
M

SR
A
M

Se
cu

re

C
ry
pt
o

Local interconnect

pipeline
PFB

Cluster I/O

Secure zone

VLIW

C
ry
pt
o

Figure 1: MPPA3 Compute Cluster

3.1 Compute Cluster
The overall organization of a CC is depicted in Fig. 1. It consists of two interconnected zones:
a secure one and a non-secure one. The secure zone contains a Resource Management (RM)
processor, a 256 KB secure memory bank and a dedicated cryptographic accelerator. The non-
secure zone contains:

• 16 identical processing elements (PEs)

• 16 identical shared Static RAM banks of 256 KB each, totaling 4 MB of shared local
memory (SMEM)

RR n° 9404



6 Khatib, Potop-Butucaru, Baufreton

• Two Direct Memory Access (DMA) interfaces allowing receiving (Rx) and transmitting
(Tx) data over the NoC

• An AXI channel interface consisting in two components, one initiator for receiving requests
from outside the CC, and one target issuing requests to the other CCs and I/O devices.

• A second cryptographic accelerator and a Debug Support Unit (DSU).

• A real-time clock is associated with each PE, and clocks in the same cluster are synchronous.

In this paper, we focus on the interaction between the 16 PEs and the 16 SMEM banks of the
non-secure zone, which is critical in attaining performance.

3.2 Processing element (PE)
As pictured in Fig. 1 and Fig. 2(left), each PE consists of a 64-bit 6-issue Very Long Instruction
Word (VLIW) pipeline alimented by one prefetch buffer (PFB). The PFB is connected to the L1
instruction cache and the pipeline is directly connected to the L1 data cache. Instruction and
data requests towards the memory are multiplexed using a fixed priority (FP) arbiter that gives
priority to data requests (either read or write).

The VLIW pipeline issues bundles formed of one or more instructions. Each instruction
is formed of 1 to 3 32-bit words, called syllables, and a bundle can contain 1 to 8 syllables.7
The VLIW pipeline is timing compositional [5], meaning that execution is monotonic: shorter
functional unit durations and faster responses from memory result in shorter execution time.

3.2.1 Prefetch bufer (PFB)

While the VLIW pipeline is timing compositional, the pipeline is alimented by a prefetch buffer
which performs speculative prefetching. It has 4 lines of 4 syllables each, and it always attempts
to keep the lines filled with code. It does so by requesting instructions from the instruction cache
(one PFB line at a time) each time the PFB contains free lines.

When execution reaches and takes a jump operation—unconditional jump, conditional jump,
call, or hardware loop end—the PFB is flushed and the prefetch process starts from scratch.

Speculation means that the number of memory requests issued by the PFB to the cache (and
thus to the memory) may vary, even for the same code executed on the same data. Indeed,
faster instruction loads from memory due to reduced interferences from other cores may result
in the PFB issuing more requests before a jump. In turn, this may result in a longer overall
execution—a timing anomaly [14].

Note that each point where execution reaches a jump operation may be subject to speculative
loading of at most 4 PFB lines of code that may not be executed. This means that effects can
accumulate in time, but also that this effect is bounded. We shall always, in our analyses, assume
a worst case where the PFB manages to fill in the PFB lines before each jump that is taken. This
results in at most 4 requests to the instruction cache and 2 requests to memory, each of which is
potentially subject to interferences. However, it is important to note that only the last of these
two speculative memory requests may delay pipeline execution and thus increase execution time.
This is because the last request is issued just before the PFB is flushed in response to the jump
being taken, and thus delays the load of the first bundle after the jump.

Due to speculative prefetching, the precision of the analysis will be reduced for code featuring
many jump instructions that are taken. To avoid creating fine-grain branching, the Kalray3

7Grouping instruction into bundles is subject to complex functional constraints. For instance, two memory
operations cannot be part of the same bundle.

Inria



Bounding memory access interferences 7

instruction set (KIS) provides a few predicated operations [9], such as conditional move operations
or conditional load/store operations. These operations take as input a predicate register, and
the operation is executed only if the predicate is non-zero. This allows conditional execution
without branching, and thus without the associated PFB-related imprecision.

3.2.2 L1 caches and memory request sizes

Both L1 caches are 4-way set-associative with Least Recently Used (LRU) replacement policy, a
64 byte (16 syllables) cache line and 16 Kbytes total size.

The data cache is write-through, with a no-write-allocate write policy. This means that write
operations are forwarded synchronously to the memory and to the cache itself. If the data is in
cache, the cache state is updated. If not, the cache state remains unchanged.

The bus between caches and memory is 256 bits wide (32 bytes, 8 syllables). Each memory
request can transport at most this amount of data, and thus is issued in exactly 1 clock cycle.8
This means that loading a cache line from memory requires 2 read requests issued without a gap
between them (collated).

Write requests can only be issued for data (by the Load/Store unit of the pipeline). A write
request only takes 1 cycle, and corresponds to exactly one store operation of the program. In
particular, store requests are not grouped to reduce the number of memory accesses, meaning
that an SB or SW operation (store byte/word) operation will only use 8, respectively 32 bits
of the 256 bits of the memory bus width. The KIS provides store operations all the way from
from byte size to octuple word size (256 bits) and the compiler attempts to group smaller store
operations into larger ones.9 However, for typical software (like those in our test bench), the
reduction obtained by automated grouping is not significant, so that large numbers of write
requests will be issued to memory. This also means that aggressive program optimization, which
reduces the number of memory accesses by working as much as possible in the processor registers,
is key in reducing interferences.

After a read request resulting in a miss, the PFB or pipeline cannot issue a new (read or
write) request to memory until the missing cache line is retrieved from memory.

Cache coherency between PE caches can be enabled, but as our study is mainly concerned
with predictability, and given that cache coherency makes timing analysis more difficult, we
assume that cache coherency is disabled.

3.3 Local cluster memory (SMEM) and local interconnect
Each CC contains 4Mbytes of Static RAM accessible to all PEs.10 This Shared MEMory (SMEM)
is partitioned into 16 banks of 256Kbytes each, which we denote SMEM0 − SMEM15.

The SMEM can be used under 3 configurations:

Banked mode This is the classical memory space organization, where each SMEM bank is
assigned a contiguous physical address range. This mode allows maximum control over how
data and code are allocated to specific banks, allowing the enforcement of space isolation
rules that may significantly (or totally) reduce interferences between cores.

8The mechanism of the previous-version Kalray 2, where packets containing multiple flits allow transporting
more data than the bus width is not used. Instead, the bus is significantly wider, and burstiness support is added
to the arbitration.

9Stardard library routines, such as memcpy can also be (manually) optimized, which results in significant gains
in programs that use them, such as code generated from Lustre/SCADE.

10In addition, it also has a secure 256Kbytes bank, only accessible to the RM PE.

RR n° 9404



8 Khatib, Potop-Butucaru, Baufreton

Interleaved mode Consecutive physical memory locations are assigned in consecutive (modulo
16) memory banks. Under uncontrolled memory access patterns, this has a load balancing
effect, usually reducing average-case interferences. However, space isolation approaches be-
come virtually impossible, which largely complicates worst-case static interference analysis.

L2 cache mode All or part of the local memory can be configured as L2 cache. Non-partitioned
shared caches are a difficult topic in timing analysis, because their states are difficult to
predict, making this approach incompatible with our objective of timing predictability.

For the remainder of the paper, we shall assume that the SMEM is configured in banked mode.
The local interconnect of the CC ensures that:

• Accesses from two different PEs to two different SMEM banks do not interfere with each
other.

• In the absence of interferences, the memory access time does not depend on the PE issuing
a request and the target SMEM bank (uniform memory access model).

In the absence of interferences, the memory pipeline latency11 is of 23 cycles.

3.4 Memory access arbitration
The structure of the memory system of the MPPA3 processor is pictured in Fig. 2. We can
distinguish 3 arbitration levels:

L1 arbitration happens inside a PE between the data and instruction requests going towards
the memory. It is done by a single fixed priority (FP) arbiter.

L2 arbitration happens inside a CC. The access to each SMEM bank and to the AXI target is
guarded by one arbiter with SAP policy (detailed below). These arbiters receive requests
from the PEs and from the other components of the CC (RM, DSU, accelerators...).

L3 arbitration happens inside the AXI interconnect. One AXI arbiter with DRR policy guards
access to each of the two DDR memory controller and to each of the CCs.

Note that, through AXI, a PE of one cluster can access not only the external DDR memory, but
also the SRAM of other CCs.

L1 arbitration is of fixed priority (FP) type, with priority being given to data accesses. L2
arbitration follows a modified, configurable Round Robin policy called Smart Arbitration Policy
(SAP). Under SAP, when a source of requests (such as a PE) is granted access, (n+1) successive
requests will be accepted if they come in successive cycles starting on the cycle where access is
granted. Here, n is a per-CC configuration parameter that takes a value in the range 1..7.

For space reasons, we focus our analysis on the intra-cluster L1 and L2 arbitration and on
the interaction between PEs and SRAM banks of memory, assuming that other components
(grayed in Fig. ??) do not contribute to the interferences. This amounts to assuming that
software organization and synchronization ensures the absence of interferences from these sources.
Extending our analysis to include the L3/AXI level and interferences from the other sources is
ongoing work.

11Time duration between a cache issuing a memory read request upto the point where the memory respose
arrives back to the cache.

Inria



Bounding memory access interferences 9

Level 1 Level 2 : CCx Level 3 Level 2 : CCy

Local interconnect CCx AXI interconnect Local interconnect CCy

SAP
Target
Memory
Bank

P0

P15

RM

DSU

Crypto
Accel1

Crypto
Accel2

NOC TX

NOC RX

AXI Initiator

DRR

DRR

Other
CCs

Other
CCs

External
DDR
Memory

Local
Memory
Bank

AXI
Target

SAP

SAP

P0

P15

RM

DSU

Crypto
Accel1

Crypto
Accel2

NOC TX

NOC RX

AXI Initiator

P0

VLIW
pipeline

I$
PFB

D$

Store
bypass

FP

pr
io
rit

y

Figure 2: Memory system of the MPPA3 processor

4 Interference analysis method overview

In this section, we first formalize the application and architecture model, and then define the
general timing analysis paradigm we follow.

4.1 Application and architecture model

We assume the application code we analyze uses 1 ≤ P ≤ 16 processing elements and 1 ≤ B ≤ 16
memory banks out of those provided by the CC. We label the PEs we use p0 − pP−1, and we
label the memory banks b0 − bB−1. Note that p0 and b0 do not necessarily correspond to the
PE0 or SMEM0. Indeed, in common configurations of the MPPA3 cluster, the first 2 of the 16
banks of the CC are used by system software, so that b0 cannot correspond to them.

We assume that p0 . . . pP−1 and b0 . . . bB−1 are fully dedicated to the execution of the appli-
cation code we analyze. In particular, no accesses from other sources (other PEs or other I/O
devices) target b0 . . . bB−1 in the analysis timeframe, and the p0 . . . pP−1 only execute code of
the aplication under analysis which only access memory banks b0 . . . bB−1.

The application under analysis consists in a set of non-preemptive tasks ti 0 ≤ i ≤ (T − 1).
We assume the allocation of tasks to PEs is fixed. We denote with p(t) the execution PE of task
t.

To focus on the low-level arbitration aspects that interest us, we assume that the potential
interference matrix is provided. More precisely, for every two tasks ti and tj with i 6= j a
Boolean overlap(ti, tj) determines whether the two tasks can overlap in time, and thus interfere.
Various methods have been proposed in the literature for determining whether two tasks can
overlap/interfere, for both dependent/DAG task models and time-triggered task models.

We assume tasks do not perform uncached data memory reads. Thus, the execution of a task
will result in only 3 types of memory accesses: cached instruction memory reads, cached data
memory reads, and uncached data memory writes.

To facilitate presentation, we assume that the execution of each task starts with an empty
pipeline and empty caches. This state can be attained using barrier instructions.

RR n° 9404



10 Khatib, Potop-Butucaru, Baufreton

4.2 Response time analysis
We assume that for each task t one can compute WCET (t) which is a safe upper bound on the
execution duration of t in isolation (without L2 interferences from other tasks) while assuming
that the PE executing t has not one access to memory (subject to FP arbitration) but two
(separate for code and data), and also assuming that code and data are placed on separate
memory banks, so that no L1 or L2 interferences exist between code and data traffic generated
by t.

Note that WCET (t), as defined here, is not a true upper bound for the actual execution of
code on a MPPA3 PE, even assuming execution in isolation.

On the MPPA2 platform, L1 interferences were considered as part of the WCET value.
However, two innovations of the MPPA3—the introduction of the speculative prefetch buffer
(PFB) and the fact that L1 arbitration depends on L2 interferences12— significantly decouple
pipeline execution from the L1 arbitration, which explains our choice to separate them. Note,
however, that the analysis producingWCET (t)must still consider PFB-related and cache-related
contributions.

We denote with WCRT (t) an upper bound on the execution of task t, which also takes into
account the L1 and L2 interferences. Under a multicore response time analysis[4] approach, we
consider different interference sources (L1 and L2) as separate factors, which gives the following
formula for the response time of a task:

WCRT (t) =WCET (t) + interfL1(t) + interfL2(t)

where interfL1(t) is an upper bound on the L1 interferences on the execution of t (a time
overhead expressed in clock cycles) and interfL2(t) is an upper bound on the L2 interferences
on t by tasks t′ that may overlap in time with t (overlap(t, t′) = true). We assume that
overlap(t, t′) = false for all task t′ with p(t′) = p(t).

One important point here is thatWCET (t), interfL1(t), and interfL2(t) are independently
computed. For instance, interfL1(t) and interfL2(t) may correspond to different execution
scenarios.

5 L1 Interference Analysis

5.1 Worst-case single interference cost
Recall that the L1 arbiter is of fixed priority type (FP), giving priority to data traffic. The
main problem related to the use of FP arbitration is the potential for starvation for the lower-
priority traffic—a request may be indefinitely denied because high-priority request come without
interruption.

In the MPPA3 PE, an instruction request (issued by the instruction cache) can be delayed
by multiple data requests [10]. However, this delay is bounded:13 an instruction request blocked
at the level of the L1 arbiter blocks the instruction cache, and thus does not allow the load of
new instructions by the PFB. Even assuming all instructions in flight in the pipeline and in the
PFB are memory accesses, when these instructions are all completed the instruction request will
pass L1 arbitration.

12During an execution in isolation, two memory accesses generated by non-consecutive bundles cannot traverse
the L1 arbiter in successive cycles. However, when the memory pipeline is blocked at L2 level by requests from
other processors, the L1 arbiter can be blocked itself, allowing new requests can “catch up” with the ones blocked
at L1 level.

13A phenomenon known as bounded starvation.

Inria



Bounding memory access interferences 11

To determine the worst case scenario, recall that a load operation resulting in a data cache
miss will block the data cache until a response is received from the memory. Thus, an instruction
request can always pass just after a read request sent by the data cache to the memory.

The PFB can store up to 16 bundles formed of one load or store instruction each, and the
pipeline can contain 4 in-flight store operations. Then, the maximum delay L1 arbitration can
inflict to a instruction request happens when the pipeline and PFB contain a sequence of 19
store operations followed by one load operation resulting in a data cache miss. As each store
operation takes one cycle at the L1 arbiter level and each cached load operation takes 2 cycles,
the maximal total delay is d = 21 cycles.

5.2 Worst-case number of interferences
Every instruction read issued by the instruction cache is potentially subject to an interference.
However, determining the number of such operations is not straightforward in the presence of the
speculative PFB. To up-bound the number of accesses, we can make the worst-case assumption
that before each jump14 that is taken the PFB has the time to fill up. Given that the PFB size
equals that of 2 cache lines (but with potentially unaligned accesses) this makes for at most 2
instruction cache requests corresponding to speculative loads that are not used.

However, among these two unused speculative loads only the last one may delay execution—
the previous one is completed before the jump instruction is performed.

Existing static analysis tools such as aiT15 or OTAWA[1] already can determine, in addition
to the task WCET, an upper bound on the number of read requests issued by an LRU instruction
cache when prefetch units are not present. Their analysis can be extended to include the worst-
case PFB request scenario detailed above, and thus to produce an upper bound on the number
of read operations issued by the instruction cache where interferences result in execution time
delays.

We denote with icache_req(t) this number of requests.

5.3 L1 interferences - coarse upper bounds
Worst-case single interference cost d and the upper bound on the number of interfering instruction
cache requests icache_req(t) provide us with a first upper bound on the L1 interferences:

interfL10(t) = d ∗ icache_req(t)

This first (and coarsest) upper bound has already been introduced in previous work [10].
We denote with w(t) an upper bound on the number of data write requests issued during

the execution of t and with r(t) an upper bound on the number of data cache misses during
the execution of t.16 Recall, from Section 3.2.2, that each write request takes 1 cycle on the L1
arbiter and each data cache miss results in two collated read requests taking 2 cycles on the L1
arbiter. Then, the L1 interferences associated with t are bounded by w(t) + 2 ∗ r(t), and we can
refine the previous bound into:

interfL11(t) = min(w(t) + 2 ∗ r(t), interfL10(t))

14Unconditional jump, conditional jump, or hardware loop iteration.
15www.absint.com/ait/
16Both w(t) and r(t) can be computed using existing WCET analysis tools.

RR n° 9404

www.absint.com/ait/


12 Khatib, Potop-Butucaru, Baufreton

5.4 Burstiness and refined upper bound
In the the definition of interfL10(t) and interfL11(t), the icache_req(t) term is difficult to
optimize, as prefetching decorrelates instruction reading from pipeline execution. However, sys-
tematically considering the penalty of d is an obvious over-approximation, as the worst-case
scenario to which it corresponds, while feasible, is difficult to attain.

To understand how this penalty can be reduced, we need to go back to the presentation of
Section 5.1, and understand how the sequence of data accesses that delays an instruction requests
at L1 level is formed. The first remark is that such a sequence, or burst, of data accesses (with
no free cycle between them) is formed of between 0 and 20 write requests followed by zero or
two collated read requests (but never more than 21 requests total).

In every execution trace φ of t, we can count these bursts and classify them by size. The
result is a function eφ : {1, . . . , 21} → N giving for each burst size i the number eφ(i) of bursts
of that size. We denote with B21 the set of such burst descriptions.

If eφ ∈ B21 is known, then an upper bound on the L1 interferences of trace φ is given by:

interfL12(t, eφ) =

1∑
k=21

k ∗min

(
eφ(k),

[
icache_req(t)−

k+1∑
l=21

eφ(l)

])

This formula amounts to assuming that the larger bursts are causing interferences before smaller
ones.

To allow moving from a per-trace formula to a trace-independent formula, we first introduce
a partial order relation on B21. If e1, e2 ∈ B21 we say that e2 dominates e1, denoted e2 ≥ e1 if
for every 21 ≥ k ≥ 1 we have:

21∑
i=k

i× e2(i) ≥
21∑
i=k

i× e1(i)

This amounts to e2 taking at least as many cycles at the L1 arbiter as e1, and e2 having these
cycles grouped into greater bursts. The set B21, endowed with the ≤ partial order, is a lattice.
We shall denote with ∨ the lower upper bound operator of this lattice.

Under these definitions, e2 ≥ e1 implies interfL12(t, e2) ≥ interfL12(t, e1), and therefore a
trace-independent upper bound on the L1 interferences is provided by:

interfL13(t) = interfL12(t,
∨

φ trace of t

eφ)

We denote e(t) =
∨
φ trace of t eφ, and call it the L1 burst characterization of t. In fact any burst

characterization of B21 that is greater than e(t) will provide a safe upper bound for interfL1(t).
Before moving on, we introduce two more notations. If x ∈ B21 we shall allow its represen-

tation as (i1 → x(i1); . . . ; im → x(im)), where 21 ≥ i1 > . . . > im ≥ 1 are the indices where
x(il) 6= 0. For instance, (5→ 2; 1→ 5) defines a burst description composed of 2 bursts of size 5
and 5 bursts of size 1. By extension, () is the empty burst description containing no burst. On
B21 we introduce the addition operation +, which is defined pointwise: (a + b)(i) = a(i) + b(i)
for 1 ≤ i ≤ 21.

5.5 Tight over-approximation of e(t)
Our final objective at L1 level is to provide a method for computing a tight over-approximation
of e(t). To do so, we start by noting that, when the instruction cache isuses a read request
towards the memory (at the request of the PFB):

Inria



Bounding memory access interferences 13

• It can only be delayed by memory access instructions already in the pipeline and PFB that
actually result in data memory requests (going beyond the data cache). All data write
operations in the pipeline and PFB fall in this case, but only data read operations resulting
in a miss must be considered. Furthermore, when a read is considered, it terminates the
sequence of memory accesses that delays (the instruction request can pass after the data
read request, as explained above).

• If the instruction read request towards memory occurs immediately after a branch state-
ment that is taken (and which is accompanied by a PFB flush) and if the target instruction
of the branch is not in the instruction cache,17 then only the memory access instructions
preceding the branch may delay the instruction read request.

For simplicity, and in order to focus on the arbitration-related issues, we shall assume that
the control flow of our tasks does not involve loops (that it is a directed acyclic graph - DAG),
and that it has a single input point and a single exit point.

The objective of our analysis is to determine, for each bundle p of task t, an L1 burst
characterization of t, assuming that its execution ends in p. We denote this characterization
e(t, p). Then, we can set e(t) = e(t, pend), where pend is the exit bundle of t.

The definition of e(t, p) is inductive and has four cases. The first case is when p is the first
bundle of trace t. Then, we can set:

e(t, p) =

 () if p contains no memory access
(1→ 1) if p contains a store instruction
(2→ 1) if p contains a load instruction that may generate a cache miss

The second case is when bundle p contains no memory access instruction that may result
in a request being sent to memory. This means no store instruction and no load instruction that
may result in a data cache miss.18 In this case, we start by denoting src(p) the non-void set of
bundles that can directly give control to p (either in sequence or through branching instructions).
Then, we can set:

e(t, p) =
∨

p′∈src(p)

e(t, p′)

The third case is when p contains a store instruction. In this case, we start by identifying
all the sequences of bundles pk . . . p1p ending in p and having the following properties:

• pk . . . p1p can be part of a valid execution trace.

• The bundles pk−1 . . . p1p can all be together in flight in the pipeline and the PFB.

• The sequence contains at most one load instruction that will certainly result in a data cache
miss.19 If present, this load instruction cannot be followed by other store instructions.

We denote this set of bundle sequences with P (p). Given that pipeline and PFB can contain only
4 bundles and 16 syllables, this set is finite (and usually small). This set contains all the sequences
of bundles whose memory accesses can be grouped in a burst ending in the write of bundle p, and
which can delay a memory request of the instruction cache. Considering w = pk . . . p1p ∈ P (p),

17Which can be determined through a Must cache analysis.
18As determined by a Must cache analysis.
19As determined by a May cache analysis.

RR n° 9404



14 Khatib, Potop-Butucaru, Baufreton

we shall denote with size(k) the size of the maximal associated burst that can be generated by
bundles pk−1 . . . p1p. Then, we can set:

e(t, p) =
∨

pk...p1p∈P (p)

(e(t, pk) + (size(pk−1 . . . p1p)→ 1))

This formula amounts to exploring all possible decompositions of the potential memory accesses
into bursts.

The fourth case is when p contains a load instruction that may result in a data cache miss.
When the cache miss happens, the only burst ending in the read access contains the read itself.
Thus, we can set:

e(t, p) = (
∨

p′∈src(p)

e(t, p′)) + (2→ 1)

Note the reuse of the reasoning of the second case, and the addition of the burst of size 2, which
corresponds to the two collated memory requests due to the data cache miss.

6 L2 Interference Analysis
Recall from Section 3.4 that L2 arbitration is performed using a modified Round Robin policy
called SAP. The policy, which is configurable at CC level by a constant 1 ≤ n ≤ 7, will allow each
PE, when it is granted access, to pass at most n+ 1 requests, if they arrive in successive cycles.
Therefore, burstiness is again key in analyzing arbitration. However, several key differences with
respect to L1 arbitration require an extension to our modeling apparatus:

• Instruction and data traffic have already been mixed at L1 level (we need to consider both).

• Interferences happen at bank level, meaning that from the traffic produced by a specific
PE we need to extract the component concerning a specific bank. Identifying bursts is not
straightforward in this context.

• At L1 level, a worst-case analysis of the greatest bursts was sufficient. At L2 level, the
worst case will be given by the greatest bursts produced by one core interfering with the
smallest bursts produced by another.

For this reason, we start by extending our burst modeling apparatus.

6.1 Burstiness modeling, part 2
While at L1 level we were only interested in bursts of at most 21 data memory requests, we must
consider here two different kinds of bursts:

• Bursts of successive memory requests of unbounded size issued by one PE to one memory
bank. We denote the set of such burst descriptions B∞.20

• Bursts of size at most n+ 1 accepted by the SAP arbiter from one PE. We denote this set
Bn+1

20Large bursts of this type can easily be generated in practice by long sequences of store instructions pre-loaded
in the cache (e.g. as part of a loop).

Inria



Bounding memory access interferences 15

The second type of burst descriptions are obtained by fragmenting the potentially unbounded
bursts issued by the PE according to the SAP policy. This operation is performed using function
fragn : B∞ → Bn+1 defined by:

fragn(b)(i) =

{ ∑
1≤k≤∞

k mod (n+1)=i

b(k) if 1 ≤ i < n+ 1∑
1≤k≤∞(b(k) ∗ (k div (n+ 1))) if i = n+ 1

Given that the Bn+1 burst descriptions can thus be obtained from B∞ descriptions, we shall
assume that each task is only characterized in the B∞ domain. Such characterizations must
produced by static analysis methods similar to those of Section 5.5.

For each task t and for each memory bank b accessed by t we need to consider not one, but
two burst descriptions:

• When determining how much t can delay another task t′ through interferences happening
on bank b, then we need a burst description denoted coarse(t, b) that is greater, in the ≤
partial order of Section 5.4, than the burst description of any execution trace (as explained
in Section 5.4) of t in the system including t and t′.

• When determining how much t can be delayed by t′ through interferences happening on
bank b, then we need a burst description denoted fine(t, b) which is also greater than the
burst description of any other execution trace, but in a different order, defined below.

The new order between burst descriptions is denoted � and defined as follows: If e1, e2 ∈ B∞
then we write e1 � e2 if for every 1 ≤ k <∞ we have:

k∑
i=1

i× e2(i) ≥
k∑
i=1

i× e1(i)

This amounts to e2 taking at least as many cycles to pass arbitration, but having these cycles
grouped into smaller bursts. The set B∞, endowed with the � partial order, is a lattice. We
shall denote with ∪ the greatest lower bound operator of this lattice. Note that, given that BM
is naturally included in B∞ for any positive integer M , the � order and the ∪ operator are also
defined on BM .

Intuitively, the worst-case interference scenario involves the largest possible number of (small)
packets of the side that is delayed (burst description maximal in the sense of �) and the greatest
packets on the side that delays (burst description maximal in the sense of ≤).

6.2 L2 interferences
Under these definitions, assuming that two tasks t1 and t2 are executed on different processors
and that overlap(t1, t2) = true, we can compute an upper bound on the overhead that t2 can add
to the execution time of t1 due to interferences on bank b, which we denote interfL2(t1, t2, b).

To do so, we assume that coarse(t2, b) and fine(t1, b) are provided and that c = fragn(coarse(t2, b))

and f = fragn(fine(t1, b)). We will also denote with sum(f) =
∑n+1
k=1 f(k) the number of bursts

(of any size) in f . Then:

interfL2(t1, t2, b) =

1∑
k=n+1

k ∗min
c(k),max

0, sum(f)−
k+1∑
j=n+1

c(j)

 (1)

Intuitively, for each burst in f , incrementally, we assume delaying by the largest remaining burst
of c.

RR n° 9404



16 Khatib, Potop-Butucaru, Baufreton

Starting from this basic brick involving only two tasks on a single SMEM bank, we can first
determine an upper bound on the overhead that t2 can add to the execution time of t1 on any
bank:

interfL2(t1, t2) =

15∑
k=0

interfL2(t1, t2, bk)

Then, we can build a first over-approximation of the delay incurred by one task due to L2
interferences:

interfL20(t) =
∑

overlap(t,t′)=true

interfL2(t, t′)

Of course, this last bound can usually be significantly improved. For instance, using the
notations used in the definition of interfL2(t1, t2, b), interferences coming from all the tasks
executing on one core cannot comprise more than sum(f) bursts (whereas by summing the indi-
vidual contributions interfL2(t, t′) of all tasks t′ running on a core this bound can be overflowed).
To avoid this source of over-approximation, we can consider all interferences from one core p at
once, and set:

cp,b =
∑

overlap(t,t′)=true
p(t′)=p

fragn(coarse(t
′, b)) (2)

interfL2(t, p, b) =

1∑
k=n+1

k ∗min
cp,b(k),max

0, sum(f)−
k+1∑
j=n+1

cp,b(j)

 (3)

interfL21(t) =
∑
p 6=p(t)

15∑
k=0

interfL2(t, p, bk) (4)

Similarly, considering more elaborate task models (e.g. DAGs) or time/space isolation prop-
erties (discussed in Section 8) should allow further reducing interferences.

7 Experimental results

In this section, we evaluate our interference analysis methods on a number of applications chosen
for their representativity. One particular point of this evaluation is that no static analysis
tools, such as WCET analysis tools, exist yet for the Kalray MPPA3 processor (only for its
predecessor MPPA2). For this reason, we have had to derive the input of our algorithms (the
burst descriptions) from mere execution traces of the applications. The process, detailed below,
uses simplified versions of the method in Section 5.5. The result is not meant to be safe, but
simply to give a quantitative evaluation of our interference analysis method that is as realistic
as possible.

7.1 The testbench

We have applied our analysis methods on 7 tasks taken from 4 applications. The basic character-
istics of these applications are summarized in Table 1. To obtain these figures, the applications
have been compiled under maximum optimization (gcc -O3) and have been executed once (in a

Inria



Bounding memory access interferences 17

single configuration) to obtain an execution trace.21 The figures in the four columns correspond
to:

• ReadIC - Number of instruction cache misses. Each of them results in two collated requests
from the instruction cache to the memory.

• ReadDC - Number of data cache misses. Each if them results in two collated requests from
the data cache to the memory.

• Write - Data writes, each resulting in a single request to the memory.

• Execution time - total execution time in isolation.

All applications feature a fully static memory allocation (no use of malloc).

Application
source Task description Memory access profile Execution time

(cycles)ReadIC ReadDC W
Industrial task1 733 446 2920 20479

avionics engine task2 703 306 2247 16481
control (SCADE- task3 451 277 1511 11374

generated) task4 395 183 1353 9797
TACLE bench[8] Anagram function 84 588 84591 726069

Pattern Matching (PM) 180 296 210890 4233766
Linear algebra/ML Matrix multiplication

(matmul)
5 384 32768 251987

Table 1: Application and task characteristics

Four of the seven tasks are extracted from a large, real-life avionics engine control applica-
tion. Following the industrial process, the application is specified in SCADE and automatically
translated into C. We have worked directly on the generated C code. As the figures in Table 1
show, these tasks are control-dominated, with many more instruction memory reads than data
memory reads. This is typical for SCADE-generated code of embedded control applications.

The linear algebra code (a 32x32x32 floating point matrix multiplication) is the exact oppo-
site: the number of instruction memory reads is far smaller than data memory reads. This is
typical for high-performance code in both AI/ML and model-predictive control.

The two remaining applications have been selected from the TACLe WCET benchmark suite
[8] for their intermediate memory access profile.

7.2 Extraction of burst descriptions
As explained above, in the absence of static analysis tools, the input data needed by our interfer-
ence analysis is extracted from execution traces. Code is executed in the cycle-accurate MPPA3
processor simulator provided by Kalray. The resulting execution trace is then passed through an
LRU cache simulator we developed. This pass determines which data load instructions result in
data cache misses (an thus in data memory read requests). It also determines an upper bound
on the number of instruction memory requests. This information is annotated in the traces.

21Maximum optimization greatly reduces the number of memory access operations, thus reducing the absolute
numbers of interferences. It also packs instructions into bundles, which increases the relative weight of each
interference as a percentage of execution time.

RR n° 9404



18 Khatib, Potop-Butucaru, Baufreton

From the annotated trace of each task t we extract replacements for the following pieces of
data used in the formulas of Sections 5.4 and 6.2:

• es(t) is a replacement for e(t), needed in the computation of the L1 interferences (and
originally computed in Section 5.5).

• c(t, b) is a replacement for fragn(coarse(t, b)), needed in the computation of L2 interfer-
ences, in equations 1 and 2.

• s(t, b) is a replacement for sum(fragn(fine(t, b))), needed in the computation of L2 inter-
ferences, in equations 1 and 3.

The computation of the values needed at L2 level is only performed for n = 1. Without
taking into account tight inter-processor synchronizations to synchronize bursts coming from the
different PEs (which are not considered by the algorithms we define and are difficult to enforce)
we expect interference upper bounds to worsen when n increases, as fragn(coarse(t, b)) will
increase faster than fragn(fine(t, b)).

Computation of es(t) It is performed using a modified version of the recurrence relations of
Section 5.5. The modifications are the following:

• Whenever the original recurrence equations consider a supremum over multiple possible
histories, we only consider those compatible with our execution trace:

– The set src(p) used in cases 2 and 4 contains exactly one element.
– The set P (p) used in case 3 only contains subsequences of bundles of the trace ending

in the current bundle.

• Instead of May or Must data cache analysis results, we use exact cache states.

Computation of c(t, b) It is performed by counting the number m of memory requests to
bank b, and then dividing them into a minimum number of bursts:

c(t, b) =

{
(n+ 1→ m div (n+ 1)) if m mod (n+ 1) = 0
(n+ 1→ m div (n+ 1);m mod (n+ 1)→ 1) otherwise

Computation of s(t, b) This over-approximation is less brutal. We start by identifying the
number i of instruction read requests towards bank b. Each of these are considered as a single
burst of size 2. Then, we identify the bursts of data accesses (sequences of data accesses that
reach bank b in successive cycles). These are individually cut into a minimal number of bursts
of size at most n+ 1 and counted into s(t, b).

7.3 Results

7.4 L1 interferences
The result of applying L1 interference analysis is provided in Fig. 3. The graph at left compares
our best analysis (interfL13) to the interfL11 analysis. The figures are provided both as
absolute values and our analysis as a percentage of interfL11. The table at right evaluates
interfL13 as a percentage of the task execution time.

We use interfL11 as a baseline instead of the interfL10 analysis introduced in previous
work [10] for several reasons: First of all, interfL10 is by construction less tight than interfL11.

Inria



Bounding memory access interferences 19

Second, in the case of avionics tasks the pessimism of interfL10 is too significant, and easily
corrected. For instance, interfL11(task1) = 3812, whereas interfL10(task1) = 15393, or 75%
of the execution time of task1. The final reason is that using interfL10 as a baseline would have
downplayed the importance of the application profiles identified below.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

task1 task2 task3 task4 Anagram PM Matmul

U
p

p
e
r 

B
o
u
n
d

 i
n
te

rf
e
re

n
ce

 l
e
v
e
l 
1

 
 (

cy
cl

e
s)

Applications

interfL11

interfL13

100%

100%

100%

100%

45%

50%

31%

Task L1 interference Exec. time
task1 18.62% 20472
task2 17.34% 16481
task3 18.15% 11373
task4 17.56% 9788

matmul 1.38 ∗ 10−4% 251987

anagram 1.15 ∗ 10−3% 726280

pm 4.70 ∗ 10−4% 4233766

Figure 3: L1 interference analysis results. At left, precision improvement (interfL11 in blue vs.
interfL13 in red). At right, interfL13 as a percentage of execution time.

One immediately notices two very different application profiles: the control-dominated tasks
of the avionics application vs. all the other tasks. In the first case, worst-case interferences as
a percentage of WCET are very large, and our method provides no reduction in interference
upper bound. To understand the reason for this, recall that interferences are due to instruction
requests which are delayed by bursts of data requests. Our analysis determines that bursts
of data requests are significantly smaller than the worst case d. This significantly reduces the
interference upper bound when the number of bursts is smaller than the number of instruction
requests (as is the case in tasks matmul, anagram, and PM, with reductions of 50%-70%). But
this is not the case in the avionics tasks. For such control-dominated code the best method for
reducing interferences is to reduce the number of data memory accesses (and in particular data
writes, as explained in Section 8). An important aspect to remember here is that L1 interference
cost is incurred only once per task (meaning that the figures are likely acceptable in practice).

7.5 L2 interferences
To evaluate L2 interferences, we have considered scenarios where one task is delayed through
interferences by exactly one other task (including a copy if itself). This makes for a total of 49
cases. In each of them, we have considered two configurations corresponding to different memory
allocation choices.

C1 Global data accessed by both tasks is placed on the same memory bank, but the stack
and code of the two tasks are placed on different banks. This case is representative of a
configuration where interferences are only due to shared variables and to accesses to system
routines, such as memcpy, which can be accessed by both tasks.

C2 Accesses of the delayed task to global data, stack, and code can all be subject to interferences
from accesses of the delayer task to global variables (but not code and stack). This case
is meant to represent configurations where each processor is assigned one memory bank

RR n° 9404



20 Khatib, Potop-Butucaru, Baufreton

which contains its stack, the code of tasks executing on it, and part of the shared data. In
this case, interferences come under the form of reads and writes of the shared variables.
We consider in this case, too, interferences due to the access to system routines.

The results of the analysis in these two cases are provided in Figures 2 and 3.

Delayed task Delayer task Delayed task
exec. timetask1 task2 task3 task4 matmul anagram PM

task1 1.79 0.76 1.09 0.64 0.37 0.47 0.41 20472
task2 1.04 0.94 0.94 0.80 0.15 0.29 0.20 16481
task3 2.03 1.37 1.97 1.16 0.14 0.33 0.21 11373
task4 1.43 1.39 1.33 1.34 0.18 0.40 0.26 9788
matmul 0.01 0.005 0.003 0.003 13.30 5.50 26.31 251987
anagram 0.008 0.005 0.004 0.004 3.07 1.91 3.07 726280
PM 0.001 0.0005 0.0004 0.0004 0.79 0.32 4.69 4233766

Table 2: L2 analysis results in configuration C1. Figures are in % of execution time of the delayed
task (which is provided for reference).

Delayed task Delayer task Delayed task
exec. timetask1 task2 task3 task4 matmul anagram PM

task1 1.79 0.76 1.09 0.64 10.28 10.39 10.32 20472
task2 1.12 0.94 0.94 0.80 11.30 11.44 11.35 16481
task3 2.24 1.37 1.97 1.16 11.04 11.23 11.11 11373
task4 1.64 1.39 1.33 1.34 10.72 10.95 10.80 9788
matmul 0.015 0.005 0.003 0.003 13.30 5.50 26.31 251987
anagram 0.008 0.005 0.004 0.004 3.11 1.91 3.11 726280
PM 0.001 0.0005 0.0004 0.0004 0.79 0.32 4.69 4233766

Table 3: L2 analysis results in configuration C2

The most important remark is that for all but the most memory-intensive applications (mat-
mul and PM) L2 interferences remain low (under 2%) when remaining in the same application
class. This allows considering realistic situations where multiple interference sources must be
considered for each task (but the number of interferences is kept under control through the
mapping [7]).

In the second scenario, we can see that tasks generating large numbers of accesses to shared
data (matmul, anagram, PM) can disproportionately delay smaller tasks if code and stack ac-
cesses are considered. This suggests that mapping of such tasks must be performed with care,
drastically limiting interferences by means of time/space isolation, as discussed in the next sec-
tion.

However, isolation may pose a problem for HPC code like that of matmul (which has the
largest interference figures) because such applications often involve parallelized loop nests in-
volving multiple processors accessing the same data. More work is needed to determine how the
implementation of such applications can be performed in a way that reconciles performance and
predictability.

Inria



Bounding memory access interferences 21

8 Reducing interferences by code transformations

Interference analysis improvements are still possible, but significant interference reductions can
be attained by transforming the application code.

8.1 Increasing memory bandwidth usage

Note in Table 1 that the number of write operations dwarfs the number of reads (both instruc-
tion and data), by a ratio of up to 440 times (for PM). This is of course a by-product of the
write-through cache policy, but it is also exacerbated by the systematic under-use of the local in-
terconnect width during write operations. To understand how serious an issue this is, we provide
in Table 4 a classification of the write operations issued by two tasks according to the amount
of the data that is stored. While each write operation can transport up to 32 bytes, 3488 of the
memory accesses of task PM only transport 1 byte. Overall, PM uses only 15% of the bandwidth
provided by its 210890 write operations, while task1 goes up to 27% due to the use of larger data
types.

Task Store size (bytes) Bandwidth
usage (%)1 2 4 8 16 32

PM 3488 120 155034 51989 136 123 15%
task1 2 0 1641 196 1061 20 27%

Table 4: Number of store operations by store size in two applications

These figures suggest that in the PM task the number of memory write accesses could be
divided by up to 6.5, and for task1 by 3. However, these are theoretical upper bounds, and we
wanted to have a more realistic evaluation of potential gains. For a (very partial) result, we
considered a simple optimization of the memcpy library routine. Calls to memcpy are generated
by gcc to encode the copy of large C struct objects (in the wrappers calling SCADE-generated
code). The stock implementation of memcpy on MPPA3 uses 16-byte load and store instructions
instead of the full-bandwidth 32-byte instructions. By simply optimizing the memcpy routine to
use full-bandwidth memory accesses, we reduce interferences as pictured in Fig. 4. Considering
the store operation profiles of Table 4, we can determine that most of the 16-byte stores of task1
will be replaced with 32-byte stores, leading to a reduction of up to 530 memory accesses, or
16% (which is well approached by the 13% reduction in the task1 interferences of Fig. 4).

RR n° 9404



22 Khatib, Potop-Butucaru, Baufreton

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

task1 task2 task3 task4

U
p
p
e
r 

B
o
u
n
d
 i
n
te

rf
e
re

n
ce

 l
e
v
e
l 
1

 
 (

cy
cl

e
s)

Applications

old memcpy
new memcpy

86.9%

86.8%

89.9%

87.8%

Figure 4: L1 interference reduction after memcpy optimization

Beyond manual code rewriting (as done for memcpy), increasing memory bandwidth use (and
thus reducing the number of memory requests and the interferences) can only be done using
non-trivial compiler support.22

8.2 Time/space isolation
Various isolation properties [2] can be used to reduce or completely eliminate L2 interferences.
In turn, this also helps L1 analysis, by reducing the variability of the FP arbitration23

However, isolation has its cost [2], which can be unacceptable, especially in the case of
parallelized HPC code (AI/ML, digital twin models, etc.). More research is therefore needed
in this direction to determine the acceptable compromises.

9 Conclusion
This paper brings two main contributions. The first is a precise analysis of the properties of
three novel architectural innovations of the MPPA3 architecture: the speculative PFB, the FP
L1 arbiters, and the SAP L2 arbiters. This analysis both emphasizes the importance of memory
access burstiness and allows defining methods to reduce interferences by construction. The second
contribution is a formal model allowing the representation and worst-case reasoning on bursty
memory access pattern specifications. This model supports the definition of novel algorithms for
L1 and L2 memory access interference analysis, which provide better results than previous ones.
We evaluate our model and algorithms on multiple applications.

Our analysis and results suggest that, to allow the safe and efficient mapping of high-
performance applications, three complementary research directions should be followed in the
future:

22The current MPPA3 port of gcc is limited in this respect.
23For instance, absence of L2 interferences means that store requests are never grouped into larger bursts due

to waiting at the level of the FP arbiter. This reduces L1 interference analysis complexity and potentially reduces
L1 interferences.

Inria



Bounding memory access interferences 23

• The design of static analysis methods capable to extract the information required by our
interference analysis, as well as improving our interference analysis methods.

• The introduction of application restructuring methods to increase memory bandwidth us-
age.

• The definition of parallelization methods allowing to enforce time/space isolation properties
that reduce interferences without penalizing performance.

References
[1] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: An Open Toolbox for

Adaptive WCET Analysis. In Proceedings SEUS, 2010.

[2] P. Baufreton, V. Bregeon, K. Didier, G. Iooss, D. Potop-Butucaru, and J. Souyris. Efficient
fine-grain parallelism in shared memory for real-time avionics. In Proceedings ERTS2, 2020.

[3] Thomas Carle, Manel Djemal, Daniela Genius, François Pêcheux, Dumitru Potop-Butucaru,
Robert De Simone, Franck Wajsbürt, and Zhen Zhang. Reconciling performance and
predictability on a many-core through off-line mapping. In 9th International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC’2014), Montpellier,
France, May 2014.

[4] R. Davis, S. Altmeyer, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke. An extensible
framework for multicore response time analysis. Real-Time Systems, 54(3):607–661, 2018.

[5] B. Dupont de Dinechin. Engineering a manycore processor platform for mission-critical ap-
plications. Keynote talk at MCSoC, 2016. https://mcsoc-forum.org/2016/wp-content/
uploads/2015/07/Keynote-De-Dinechin.pdf.

[6] Maximilien Dupont de Dinechin, Matheus Schuh, Matthieu Moy, and Claire MaÃ¯za. Scal-
ing up the memory interference analysis for hard real-time many-core systems. In Design,
Automation and Test in Europe Conference (DATE), 2020.

[7] K. Didier, D. Potop-Butucaru, G. Iooss, A. Cohen, J. Souyris, P. Baufreton, and A. Graillat.
Correct-by-Construction Parallelization of Hard Real-Time Avionics Applications on Off-
the-Shelf Predictable Hardware. ACM TACO, 16(3):1–27, August 2019.

[8] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoeberl,
R. Bo Sørensen, P. Wägemann, and S. Wegener. TACLeBench: A Benchmark Collection to
Support Worst-Case Execution Time Research. In Proceedings WCET, 2016.

[9] Kalray. Kalray kv3 VLIW Core Architecture Manual, 2019. Manual KETD-62.

[10] Kalray. Time-critical computing on the mppa processor. Internal report KETD-417, 2021.

[11] H. Ozaktas, C. Rochange, and P. Sainrat. Automatic WCET analysis of real-time parallel
applications. In Proceedings of the WCET workshop, Paris, France, 2013.

[12] Q. Perret, P. Maurère, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet. Mapping
hard real-time applications on many-core processors. In Real-Time Networks and Systems
(RTNS2016), Brest, France, October 2016.

RR n° 9404

https://mcsoc-forum.org/2016/wp-content/uploads/2015/07/Keynote-De-Dinechin.pdf
https://mcsoc-forum.org/2016/wp-content/uploads/2015/07/Keynote-De-Dinechin.pdf


24 Khatib, Potop-Butucaru, Baufreton

[13] D. Potop-Butucaru and I. Puaut. Integrated worst-case execution time estimation of mul-
ticore applications. In Proceedings WCET, Paris, France, 2013.

[14] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and B. Becker. A
Definition and Classification of Timing Anomalies. In Proceedings WCET, 2006.

[15] H. Rihani, M. Moy, C. Maiza, R. Davis, and S. Altmeyer. Response time analysis of syn-
chronous data flow programs on a many-core processor. In Proceedings RTNS, 2016.

[16] B. Rouxel, , S. Derrien, and I. Puaut. Tightening contention delays while scheduling par-
allel applications on multi-core architectures. ACM Transactions on Embedded Computing
Systems (TECS), 16(5s):1 – 20, October 2017.

[17] S. Skalistis and A. Simalatsar. Near-optimal deployment of dataflow applications on many-
core platforms with real-time guarantees. In Proceedings DATE, 2017.

Inria



RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Introduction
	Related Work
	The Kalray MPPA3 many-core processor
	Compute Cluster
	Processing element (PE)
	Prefetch bufer (PFB)
	L1 caches and memory request sizes

	Local cluster memory (SMEM) and local interconnect
	Memory access arbitration

	Interference analysis method overview
	Application and architecture model
	Response time analysis

	L1 Interference Analysis
	Worst-case single interference cost
	Worst-case number of interferences
	L1 interferences - coarse upper bounds
	Burstiness and refined upper bound
	Tight over-approximation of e(t)

	L2 Interference Analysis
	Burstiness modeling, part 2
	L2 interferences

	Experimental results
	The testbench
	Extraction of burst descriptions
	Results
	L1 interferences
	L2 interferences

	Reducing interferences by code transformations
	Increasing memory bandwidth usage
	Time/space isolation

	Conclusion

