
HAL Id: hal-03214497
https://hal.archives-ouvertes.fr/hal-03214497

Submitted on 1 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Logic File System
Yoann Padioleau, Olivier Ridoux

To cite this version:
Yoann Padioleau, Olivier Ridoux. A Logic File System. USENIX 2003 Annual Technical Conference,
General Track, Sep 2003, San Antonio, TX, United States. �hal-03214497�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/427702794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-03214497
https://hal.archives-ouvertes.fr

USENIX Association

Proceedings of the
General Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

2003 USENIX Annual Technical ConferenceUSENIX Association 99

A Logic File System

Yoann Padioleau and Olivier Ridoux
IRISA / University of Rennes 1

Campus universitaire de Beaulieu
35042 RENNES cedex, FRANCE

{padiolea,ridoux}@irisa.fr, http://www.irisa.fr/lande

Abstract

On the one hand, hierarchical organizations are rigid in
the sense that there is only one path to each document.
On the other hand, keyword-based search is flexible be-
cause many sets of keywords may lead to the same doc-
ument, but it lacks a navigation mechanism. We present
the new paradigm of a logic file system, which integrates
navigation and classification, and the possibility of ex-
pressive queries. This paradigm associates logical de-
scriptions to files, and logical deduction serves as a ba-
sis for navigation and querying; paths are formulas. A
key notion is the extension of a logical formula: i.e., the
set of all files whose description satisfies the formula.
The root directory is determined by formula

� � � �
, and

sub-directories of a directory are determined by formulas
whose extension strictly intersects the directory exten-
sion. This gives a logical ground for considering naviga-
tion as computing relevant hints to help refining a query.
A prototype implementation demonstrates encouraging
performances.

1 Introduction

Computer users can access a very large variety and num-
ber of digital documents. Managing so many documents
is a difficult task. An important difficulty is to find
quickly one desired document among many files; this is
the information retrieval problem. Information retrieval
techniques cannot be thought independently of organi-
zation methods; they form paradigms. The most well-
known information retrieval/organization paradigms are
the hierarchical paradigm, the boolean paradigm, and
the relational paradigm. This introduction continues
by presenting the advantages and disadvantages of these
paradigms. The Logic File System is an original combi-
nation of these three paradigms.

1.1 Hierarchical organizations

Traditional file systems belong to the hierarchical
paradigm, as well as Web portals such as Yahoo!, and
many e-mail managers. Information is organized by first
creating a hierarchy of concepts, which induces a tree-
like structure, and then putting objects in this tree, which
is the classification process. Information is searched by
going up and down in this tree; this is the navigation pro-
cess. In a file system, concepts are directories, and obj-
ects are files.

The advantages of the hierarchical paradigm are:
� the system proposes navigation hints to the user,
e.g., directory names. If the user does not remember or
does not know the exact classification of an object, then
the computer will help him.

� the system proposes relevant hints only. By first
proposing global concepts and then sub-concepts, the
system helps in finding an object step-by-step.

The disadvantages are:
� since there is a single path to a file, one must
know it exactly. This requires either luck or eru-
dition. Gopal and Mander say [8] “Beyond a cer-
tain scale limit, people cannot remember locations for
explicit path names, after so many years, it is still
amusing to see even experienced UNIX system ad-
ministrators spend time trying /usr/lib or was it
/usr/local/lib, maybe /opt/local/etc/lib
or /opt/unsupported/lib. There are of course
many search tools available, but organizing large file sys-
tems is still too hard”. Our objective is to take into ac-
count this human factor; users of a file system tend to
look for files that they do not know where they are. So,
users should not commit themselves to expressing defi-
nite paths.

� one can put an object in only one place, which means
one cannot associate several independent (i.e., not or-
dered by the subconcept relation) concepts to one object.

2003 USENIX Annual Technical Conference USENIX Association100

However, one often wants to associate several indepen-
dent concepts to an object: e.g., price and weight.

� another disadvantage is that the logic of the query lan-
guage is limited to conjunctive formulas (e.g., �

� �
for

traditional file systems), though disjunction is a clean
formal way of expressing non-definite paths. Disjunc-
tion can be simulated using shell tricks, such as in

ls -r */(keyword1|keyword2)/ ,
but cd */(keyword1|keyword2)/ means noth-
ing. Negation is still more difficult to simulate. To
express non-definite paths, a user would like to do just
cd !keyword1, or cd keyword1|keyword2.

1.2 Boolean organizations

Web search engines such as Google belong to the
boolean paradigm. Information (in the Web case, HTML
files) is organized by describing information elements
with keywords. One finds an information by specifying
the keywords that its description must contain. It can be
extended by boolean formulas, such as� � � � 	 � � � � � � � 	 � � � � � � � � 	 � � �

.

The advantages of the boolean paradigm are:
� As opposed to the hierarchical paradigm, it is easy to
describe an information element by a conjunction of con-
cepts. It is flexible because of the many boolean formulas
that are equivalent. E.g., queries � � � � � �

and
� � � � � �

are equivalent, as opposed to a hierarchical file systems
where man/ps and ps/man are not equivalent at all.

� The query language is expressive; it permits conjunc-
tion, disjunction and negation.

The disadvantages are:
� As opposed to the hierarchical paradigm, the system
does not answer a query with relevant keywords; instead,
it returns a list of all information elements whose de-
scription is partially matched by the query. So, the exact
keywords that permit to select an information element
must be guessed by the user; the system does not help.

� Since the system answers with a list of information
elements the result of a query can be long, which can
mean useless, because a user cannot/does not want to go
through the entire list to find the desired file. That means
that the user needs to find further keywords without help.

So, one would like that a boolean system proposes rel-
evant keywords that will refine the search; one wants a
navigation capability with a boolean query capability.

1.3 Relational organizations

Databases belong to the relational paradigm. Data is
organized by first creating tables, according to a pre-
established schema, and then by filling in those tables
with items. One searches an object by using a complex
language based on relational algebra.

The big advantage of databases is the expressiveness of
their query language. E.g., one can associate valued at-
tributes to items, and then make complex queries such as

select ... where size > 45 .

The difficulty is that this expressiveness comes at a price.
Databases are more complex systems than file systems,
and are less easy to learn (a UNIX-shell course: 1 hour,
an SQL course: 40 hours). This is because there are
many concepts to learn, such as selection and projection.
Moreover, as for boolean organizations, it does not pro-
pose navigation, which makes it difficult to find an infor-
mation without knowing the schema of the database.

1.4 A new paradigm

All paradigms described in this introduction have their
advantages and drawbacks. The main contribution of our
work is to propose a new organization which makes it
possible to combine navigation, querying, ease of use,
and expressiveness, and which can be implemented rea-
sonably efficiently. As opposed to previous works (see
Section 6 for related works), the combination of query-
ing and navigating is unrestricted. In particular, one can
navigate in the result of any query. This organization
is an instantiation of a theoretical approach [3, 4] that
generalizes file paths to almost arbitrary logic formulas.
Information systems based on this approach are called
Logic Information Systems (LIS for short). Once an or-
ganization is chosen, the question remains of what will
be its place in a system architecture. The proposed or-
ganization is implemented as a file system. This makes
it usable by all sorts of applications, e.g., shells, editors,
compilers, multimedia players. The file system will be
called Logic File System (LISFS for short, and to avoid
confusion with the Log-structured File System [16]).

The article is organized as follows. We first present the
principles and usage of a logic file system in Section 2.
Then we expose an implementation scheme, with its da-
ta structures and algorithms in Section 3. We present
additional features and extensions to the basic scheme in
Section 4. Section 5 describes an actual implementation

2003 USENIX Annual Technical ConferenceUSENIX Association 101

and the results of experiments. Section 6 presents related
works. Finally, we present future search directions and
conclusions in Sections 7 and 8 .

2 Principles of a logic file system

We first describe a file system based on the boolean
query paradigm and then we extend it to add the nav-
igation capability. In terms of Gopal and Mander ex-
ample (see Section 1.1), the boolean file system allows
to do ls lib to get every library files. With naviga-
tion, the answer is not formed of all library files, but of
all keywords that can be used to make the query more
precise: in their example, usr, opt, ... Then, the user
can do ls lib/usr, and the answer will be all files
that are fully identified by keywords lib and usr (in
fact, the files of UNIX directory /usr/lib), plus key-
word local, because it helps identifying files that are
in usr/lib/local and not in usr/lib. Keyword
opt is not listed because it is not relevant to lib/usr.
In this framework, ‘/’ commutes, so that usr/lib and
lib/usr are equivalent.

The boolean file system plus the navigation capability
forms the core of the logic file system. We present the
semantics of shell commands in the resulting file system.
Then we explain how this new paradigm affects the se-
curity model. We describe a file system in terms of shell
commands, because they are more user-oriented. Only
when entering into deeper details in Section 3.3, do we
consider actual file system operations, like lookup and
readdir.

2.1 A boolean file system

As we have chosen a standard file system inter-
face we have to deal with files and directories.
Boolean properties will play the role of directo-
ries. To handle boolean queries in a file system,
we associate a conjunction of properties of inter-
est (i.e., a directory) to every file. This is done
by first registering property names with command
mkdir, e.g., mkdir man; mkdir latex;... At
this stage, this indicates that man and latex are subdi-
rectories of /, but it also indicates that man/latex and
latex/man are paths to potential subdirectories. Sec-
ond, command cd sets the working directory (variable
PWD in some shells) to a desired list of property names.
Finally, commands like touch and cat will create

f1

f2

f3

f4

f5

f6

f7

o name(o)

1

2

3

4

5

6

7

ls
 =

 {
 f

7,

f5
,

 f
3,

f2

,
f1

 }

a0

x

x

x

a1

x

x

x

a2 a3

x

x

x

x

x

x

a4

x

x

x

x

x

a5

x

x

x

x

x

x

a6

x

objects
properties

PWD = a3 / a5

Figure 1: a boolean file system

files associated with the properties named in the PWD,
e.g., cd man/latex/french; touch myfile.
Note that latex needs not be a subconcept of man, nor
french be a subconcept of latex, as in a hierarchical
file system. The slash (/) must be read as a conjunction,
hence it is commutative.

Boolean logic defines a language, i.e., its formulas, and
an entailment relation that is usually written � � . � � � � �

means that if �
is true, then � �

must be true too. For
instance, � � � � � � holds in boolean logic. In the
current prototype, formulas must be presented in con-
junctive normal form: e.g., � , � � , �

 � �
� � �

�
, or�

�
 � �

� � � �
� � � � � � �

. These formulas are written a,
!a, a1|a2|a3, and (a1|a2)&(a3)&(!a4) in the
concrete syntax. The entailment relation is that of usual
boolean logic.

Let
 be the set of all the files in the file system, � � � �
be

the description of a file
�

(in our case, � � � �
is a conjunc-

tion of properties), � � � � � � �
be the name of file

�
, and� � � �

be the content of file
�
. The state of a boolean orga-

nization is well-represented by a � � � � � � � 	 � � � � �
ma-

trix (see Figure 1 for an illustration). The answer to ls
in a PWD � is � � � � � � � � � � �
 � � � � � � � � . This set is
called the extension of formula � . Note the risk of name
clashes in extensions; several

�
’s with different descrip-

tions, but same name, may clash in an extension. This
risk will disappear in the final design of Section 2.2. The
root directory, or /, is equivalent to formula

� � � �
. So,

doing ls at the root will list the names of all the files in
the system, because anything entails

� � � �
.

The PWD evolves incrementally. Given a property x, do-
ing cd x in a PWD p, changes the PWD into p

�
x. A

logic path must always be composed with the PWD, tak-

2003 USENIX Annual Technical Conference USENIX Association102

ing into account relative and absolute paths, and special
names like "..". E.g., doing cd /y sets PWD to y.

As files evolve, their descriptions evolve too. So, one
needs a way to update the description of a file. In hi-
erarchical file systems, the place where a file is locat-
ed is the current description of this file, and when one
wants to modify its description, one just changes its lo-
cation using command mv. This works in the same way
in a boolean file system. Concretely, if one executes
mv p1/f1 p2/f2, the effect is to change the name
of f1 into f2, and to change its description, deleting at-
tributes of p1 and adding those of p2. E.g., assume file f
is created with description man

�
latex

�
french, then

command cd /man/ps; mv f ../pdf results in
the new description man

�
pdf

�
latex for file f.

Executing rmdir x removes a property name (i.e., a
virtual directory). It first checks that x is a
simple atom (neither a disjunction, a conjunction,
nor a negation), and that this property is empty,
i.e., � � � � �
 � � � � � � � x � �

. Finally, rm proceeds as
in a hierarchical file system.

At this stage, a boolean file system has all the advantages,
but also the drawbacks, of a boolean organization. In the
following section, we add navigation to the boolean file
system. This defines the full logic file system.

2.2 Boolean file system, plus navigation

The answer to a boolean query can be very large (typ-
ically, cd /; ls would list the extension of the root,
i.e., every file), so one would like to add a navigation ca-
pability to the boolean file system. So doing, the system
will answer a query with relevant properties that refine
the search. Those properties will be presented as sub-
directories. By “relevant” we mean that if in a PWD �
all files have keyword �

, some have the keyword �

�
,

and none have the keyword �
�
, then neither �

nor �

�
is

relevant to distinguish between the files, but �
�

is relev-
ant. Command ls lists sub-directories, but also files that
cannot be distinguished any further by relevant proper-
ties. In a logic file system, the files located in a PWD �
are the files whose description satisfies � , but does not
satisfy any of its subdirectories. In the preceding exam-
ple, if one of the files had just the properties mentioned
in � and �

, and nothing more (i.e., not �

�
), then it would

be listed.

More formally, let � be the set of all property names, let
� � � � � � � � � �
 � � � � � � � � (the extension of �), then

f1

f2

f3

f4

f5

f6

f7

o name(o)

1

2

3

4

5

6

7

Fi
le

s
=

 {

f5
,

 f
3

 }

a0

x

x

x

a1

x

x

a2

x

a3

x

x

x

x

x

x

a4

x

x

x

x

x

a5

x

x

x

x

x

x

a6

x

objects
properties

a3 / a5 = PWD

Dirs = { a0, a1, a2 }

Figure 2: querying and navigating

the answer to ls in a PWD � is divided in two parts, the
sub-directories � � � �

, and the files � �
 � �
, such that

�
and

� �
 � � �
� � �
 �

(see Figure 2 for an illustration). Sub-directories in � � � �

are also called increments.

In hierarchical file systems, several files may have exact-
ly the same name, provided that they are not located in
the same directory; otherwise, the user would not be able
to disambiguate which file he wants to manipulate. In
the boolean file system, the same problem arises, so one
must ensure that if two files have the same name, they
must not have exactly the same description. If this con-
dition is kept true, a path always exists where only one of
these two files is listed, and so where there is no ambigu-
ity. Navigation always finds this path. For instance, users
Alice and Bob may both have a file called foo; one file
foo will have attribute alice, and the other one will
have bob. Alice in her homedir /home/alicewill see
her own foo, and Bob in his homedir /home/bob will
see his own foo. A file foo may also have attributes
alice and bob; in this case, it is visible by both users.

2.3 Navigation in a taxonomy

With this scheme, the number of file names listed by
a command ls is reduced, but there may be too many
increments anyway. For instance, at the root directory,
the system would list nearly all the property names. The
principle of navigation is obviously to propose concepts

2003 USENIX Annual Technical ConferenceUSENIX Association 103

that refine the search, but also to propose the most gener-
al such concepts. E.g., assuming computer science doc-
uments, one would like to classify the keywords so that
the system first proposes the main fields of computer sci-
ence, e.g., algorithms, databases, operating-systems, and
then the subfields, e.g., UNIX, Linux,Windows.

So, one needs some means for stating that an atom-
ic property is more general than others. To this aim,
we use the mkdir command to create a hierarchy
of concepts: a taxonomy. So, to say that a proper-
ty �

is more specific than � � , one simply executes

mkdir � � ; cd � � ; mkdir �

, as for files. If an

object � has property �

, then it must also have proper-

ty � � . In logical terms, this means that � � � � � � �

must
entail � � � � � � � � . So, the extension of � � must con-
tain the extension of �

. This is achieved by considering

the taxonomic relations as axioms, e.g., �
 � � � � . Note

that the taxonomic relation is a directed acyclic graph (a
DAG). E.g., doing

cd /OperatingSystem/TradeMark
mkdir Unix

makes Unix a subconcept of OperatingSystem
(axiom Unix � � OperatingSystem), and of
TradeMark (axiom Unix � � TradeMark; UNIX is a
registered trademark of The Open Group). Now, if a user
does ls /OperatingSystem all files with property
Unix will also satisfy this query.

Command ls is refined accordingly, by proposing the
most general increments. So, the answer to ls in a PWD

� becomes
� �

,
where

� � � � � � � � � � � � � � � � � 	 � � � � 	 �� � � � � � � 	 ,
and � �
 � �

does not change (see Figure 3).

2.4 A security model

One of our goals in designing LISFS was to be as much
compatible as possible with existing file systems. So,
there is no reason to change the way file permissions are
handled beyond what is implied by the new navigation
paradigm. This is quite easy to do for files, because their
nature does not change with LISFS, but we had to design
a new security model for directories, because their nature
changes a lot with LISFS.

Trying to mimic the way hierarchical file systems handle
directory permissions introduces the following question:
what are the permission/ownership of a conjunction of
property names such as man/ps? Under hierarchical

f1

f2

f3

f4

f5

f6

f7

o name(o)

1

2

3

4

5

6

7

Fi
le

s
=

 {

f5
,

 f
3

 }

a0

x

x

x x

x

a1 a2

x

a3

x

x

x

x

x

x

a4

x

x

x

x

x

a5

x

x

x

x

x

x

a6

x

objects

Dirs = { a0 }

a3 / a5 = PWD

axioms: a1 a0, a2 a0, a4 a3.

properties

Figure 3: querying and navigating in a taxonomy

file systems, it is the permission/ownership of the last di-
rectory on the path (ps in the example) that gives the
permission/ownership of the whole path. This is sensible
since creating a file in ps does not modify the content of
man. However, in the logic file system, the order of prop-
erty names in a path is immaterial. So, the permissions
of man/ps should be a conjunction of the permissions
of man and ps to make it certain that, if the owner of
man has so decided, nobody can create a new object in
man or man/ps. This way of handling directory permis-
sions makes commands that create objects (e.g., touch
or mkdir) safe.

LISFS permits that a user “sees” a file, without specify-
ing all its keywords; it suffices to specify enough key-
words so that the file is designated unambiguously. This
is like seeing any distant subdirectory in a hierarchical
file system. This has strange side effects on security;
one can see a file one does not own, from a directory
where one has the write permission. This means that,
under the traditional security semantics, one could ei-
ther delete this file, even without the write permission
on all the properties describing this file, or add a prop-
erty to the description of a file (with the mv command).
So, we refine the security model by allowing only the
owner of a file to delete or change the property list of a
file. The same kind of difficulty arises in hierarchical file
systems with the directory /tmp. Every user can cre-
ate files in /tmp, which implies the write permission for
all on /tmp. However, one does not want that a user
deletes the files of another user. The “sticky-bit” solves
this difficulty. In a directory having this bit, the system
does not look only at the permissions of the directory,

2003 USENIX Annual Technical Conference USENIX Association104

but also at the uid of the requesting process in order to
check whether the owner of the file is the same user as
the owner of the current process.

To summarize,
� touch and mkdir security semantics rely on the fact
that the permissions of a path are the conjunction of the
permissions of each path elements.

� rm, rmdir, chmod, and chown operations check
that the owner of the current process is the owner of the
file or property name;

� mv checks that the owner of the current process is the
owner of the file, and check that one has the write per-
mission on the properties one deletes, and the write per-
mission on the properties one adds.

3 Algorithms and data structures

We will first describe the LS algorithm that computes
the answer to ls as it is the most original LISFS oper-
ation. Indeed, it computes the sets � �
 � �

and � � � �
for

getting local files and sub-directories (see definition of
� � � �

and � �
 � �
in Section 2.2), whereas the usual oper-

ation performed by ls is merely to read a directory file.
Moreover, this operation dictates the choice for the da-
ta structures that we will present just after. Then we will
give an overview of the concrete implementation of a few
representatives LISFS operations.

3.1 The LS algorithm

Each property name in � is represented by an in-
ternal keyword identifier � � , and each object in
 is
represented by an internal object identifier

� � . To
represent the description � � � �

of an object, a table
object->keywords indexed by internal object ident-
ifiers contains lists of internal keyword identifiers (in-
deed, in this prototype, the description of an object is
a conjunction of properties). This corresponds to rows
of the � � � � � � � 	 � � � � �

matrix. A formula is repre-
sented by a list of a union value, which is either an in-
ternal keyword identifier, or the tag Or associated with
a list of internal keyword identifiers (the operands of
the disjunction), or the tag Not associated with an in-
ternal keyword identifier. The list will play the role of
the conjunction. The axioms of the taxonomy are repre-
sented as a DAG of internal keyword identifiers imple-
mented as a table keyword->children and a table
keyword->parents. We call it the taxonomy DAG.

Adding an axiom � � � � � � � � means attaching � as a
child of the internal keyword identifiers � ,

�
and � . In this

data structure, the top node represents the most general
property, i.e.,

� � � �
because anything implies

� � � �
.

Extensions are not computed with table
object->keywords; instead, they are pre-computed
in the inverted table keyword->objects. This uses
standard indexing techniques, and this corresponds
to the columns of the � � � � � � � 	 � � � � �

matrix. The
extension of � � �

is computed by intersecting � and�
extensions, i.e.,

� � � �
� � � � � � � � �

�
� � � � � � � �

.
Similarly,

� � � �
� � � � � � � � �

�
� � � � � � � �

, and
� � � �

� � � � � � � � � �
�

� � � � � � � �
. The underlying as-

sumption for using an inverted table is that the number
of attributes per path and file description is small wrt. the
number of files. This is confirmed by experiments, and
by analysis. Indeed, most of the attributes are computed
automatically by functions that do not depend on the
number of files (see transducers in Section 4).

In fact, the table keyword->objects does not con-
tain for every property only the objects described by this
property, but also the objects that are described by some
sub-property of this property. This amounts to precom-
pute the extensions of all the atomic properties. Then,
adding a file with property � requires to update (using ta-
ble keyword->parents) the keyword->objects
entry of � and of all its ancestors in the taxonomy DAG.
This is costly, but we think that the main operation to op-
timize is consultation rather than creation. So, we prefer
to transfer the hard-work to creation commands. More-
over, creation does not require an immediate update; its
response time can be good anyway if it leaves the com-
putation to a background task.

So, table keyword->objects returns extensions at a
constant cost. The PWD formula is usually small, because
it is often the trace of a navigation by a human being. So,
to compute extension(PWD) costs only a few access-
es (� 	 � �) to table keyword->objects. More-
over, extensions can be compressed by using an interval
representation (where lists of consecutive elements are
represented by their � � � and � � �

), and specialized set
operations can be used. This is especially useful for the
most general properties which contain in their extensions
nearly all the objects.

The algorithm first locates the internal keyword ident-
ifiers that are present in PWD, and computes the exten-
sion of PWD. Then it searches the taxonomy tree down-
wards from the root node while the extensions of tra-
versed nodes contain the PWD extension. The highest in-
ternal keyword identifiers whose extension does not con-

2003 USENIX Annual Technical ConferenceUSENIX Association 105

ext(PWD)

ext(PWD)

a3:[1..5,7]

a4:[1..3,5,7]

ext(PWD)
a5:[1..3,5..7]

ext(PWD) =
a6:[6]

taxonomyLegend:

"LS" traversal

ext(PWD) =

ext(PWD)

a1:[1,7] a2:[2,7]

a0:[1..2,7]

/:[1..7]

PWD = a3/a5
ext(PWD) = {1..3,5,7}

Sub = { a0 }
Files = ext(PWD) - ext(Sub) = { 3, 5 }

Figure 4: the final algorithm

tain the PWD extension, and has a non empty intersection
with it, are the maximal increments to list in � �

� �
(see

pseudo-code below). This avoids having to go through
all the formulas. The extensions of all sub-properties of
a property that does not intersect with the PWD are not
considered, because if keyword->objects[�] does
not intersect with PWD then no descendant of � will inter-
sect since keyword->objects[�] contains the “in-
lined” extensions of its children. Similarly, extensions of
sub-properties of a property that strictly intersects with
the PWD are not considered either, because those sub-
properties will also intersect with the PWD but are not
maximal increments.

extension(f) =
let set =
forall x in the list f

compute intersection of
either x is a single keyword
then keyword->objects[x]

either x is a OR with elements xs
then

forall y in xs
compute the union
of keyword->objects[y]

either x is a Not y
then do nothing

in ext := set
forall x in the list f

if x is a Not y then
ext := minus(ext,

keyword->objects[y])
otherwise do nothing

return ext

LS(f) =
let ois = extension(f)
let fis =
collect keywords fi

from the taxonomy DAG
using a depth first search
starting from the top node
using keyword->children
until

card = cardinality(
inter(extension(fi),

ois))
0 < card < cardinality(ois)

in Dirs = fis
Files = minus(ois,

union_extension(dirs))

Figure 4 illustrates this algorithm. The context is the
same as in Figure 3. Every node of the taxonomy is
represented by its name and extension (e.g.,

� � � � � � 	 �
for

the root node). The thick lines represent the taxono-
my. The two thin arrows point to the atomic formulas
of the current PWD. The dashed arrows represent the ac-
tual traversal done by the algorithm for answering com-
mand ls. For each traversed node that has subnodes,
the algorithm compares the extension of the node with
the extension of the PWD; the result of this comparison
is written under the node description (e.g., � � � �

PWD
�

for the root node). Only when the result is � � � �
PWD

�
does the algorithm enter the subnodes. Sub-directories
are those that do not contain PWD but have a non-empty
intersection with it (e.g., � �). � � does not count as a sub-
directory because it does not intersect PWD. Files in the
extension of PWD but not in a sub-directories are returned
(i.e., � � � �).

The complexity of computing � �

� �

and � �
� �

is essen-
tially the complexity of the product of a � � � � � � � 	 � � � � �

matrix by a vector of properties (the PWD), plus the prod-
uct of the transposed matrix by a vector of names (the

� �

� �

). The first product computes the � �

� �

as of the
boolean file system (see Section 2.1), and the second
product computes the � �

� �
. Assume there are 	 proper-

ties and � names. Both products cost 	
� � operations.

However, both the matrix and the vector of properties are
sparse. Indeed, the number of attributes of a file seldom
depends on the number of files. So, one can assume it is
constant. This is confirmed by experiments; e.g., the cod-
ing of a set of man pages as a logic file system costs about
45 attributes per file whatever the number of files. Let us
call � the number of properties per file, � � 	 . More-
over, the vector of properties (the PWD) has usually less
non-zero elements than � . Let us call it � , � � � . Then
the first product costs only � � � . It results in a vector
of names with � non-zero elements, � � � . The second
product costs 	

� � . Finally, since the scalar operations
are boolean operations, they have good absorbing prop-
erties (e.g., �

� � �

� � � � �

� �
whatever is �). This allows

2003 USENIX Annual Technical Conference USENIX Association106

extension

keywords

description

keywords

keyword->objects

...

...
extension

extension

..
.

...

...

keyword->children

keywords

keywords

..
.

object->keywords

...

...

..
.

description

description

...

...

keyword->parents

keywords

keywords

..
.

For traversing the
taxonomy DAG
downwards

For traversing the
taxonomy DAG
upwards

Represents the
columns of the
name * property matrix

Represents the
rows of the
name * property matrix

Figure 5: the main tables

to short-circuit the computation, without computing ev-
ery internal products. The essence of algorithm LS is to
perform these matrix-vector products, taking advantage
of sparseness and taxonomy axioms, and short-circuiting
products as soon as possible. In summary, assuming the
number of properties per name does not depend on the
number of names, the worst-case complexity of algor-
ithm LS is in
 �

�
�
. It is much less in practice because of

the caching of answers and the short-circuits in boolean
operations. Note that the total number of files, � , must
be considered with respect to the current PWD. Assume
a machine with a million files; this number only affects
operations at the root of the file system. As soon as one
moves to subdirectories with smaller extensions, � de-
creases. Section 5 presents the measured cost of LISFS
operations on a prototype.

3.2 Data structures

The internal data structures use internal object and key-
word identifiers, instead of plain names. This is more
space and CPU efficient. In a traditional file system,
these internal identifiers are the inode number of a file
(or of a directory). In our specification,

�
’s are such in-

ternal object identifiers. The meta-data consists main-
ly in tables keyword->children (which represents
the taxonomy DAG) and keyword->objects (which
represents the extension table) used by the LS algor-
ithm. Moreover, in order to preserve the consistency
of extensions, command touch updates the entries in
keyword->objects for all the ancestors of the in-
ternal keyword identifiers in the current PWD. This is
done recursively using a table keyword->parents.
Similarly, command rm file updates the extensions of
all internal keyword identifiers used in the description of
file. This uses a table object->keywords which

inode

...

pwd
permissions
valid?
file | dir
cache
timestamp

description

list of (name,inode)

path

Figure 6: the inode

was called � � � �
in our specification. All these tables are

presented in Figure 5.

In order to return plain names in ls answers, we intro-
duce two tables to get the name of a file or property given
its internal identifier: keyword->keywordname and
object->filename. As we allow to do cd � even
if � is not a subdirectory of the current directory, we need
to know to what internal identifier � corresponds to, so
we add a table keywordname->keyword. In order to
check, when adding a file, that there is no other file with
the same name and same description, we also introduce
a table filename->objects.

In the UNIX context, a typical user manipulates files
with names, whereas the operating system uses an in-
ternal identifier: the inode number. The inode structure
is presented in Figure 6. Traditional file systems store on
disk an inode_table (indexed by the inode number)
where each entry (aka. the inode) contains the control
information to manage a file or a directory, such as its
mode, permissions, data block addresses, etc.

Algorithm LS starts from the PWD formula, which it
knows only as an inode. So, we add a pwd field to direc-
tory inodes, which contains a list of a union type. Each
union value contains either the internal property ident-
ifier of a property, or the tag Or with a list of internal
property identifiers (the operands of the disjunction), or
the tag Not with an internal property identifier.

Moreover, answers to ls are cached. Directory inodes
contain the addresses of blocks that store the result com-
puted by ls, which mimics the contents of a directory
under a hierarchical file system. As this result must be
recomputed every time someone modifies the contents
of a LISFS, inodes contain a local timestamp indicating
the time the current result was computed. LISFS main-
tains a global timestamp that is incremented every time
someone adds or deletes a file or an atomic property. Op-
eration ls compares the global timestamp with the local
one, to decide if the increments must be recomputed.

All this means that every time new increments are com-
puted, fresh inodes are allocated, and their local time-

2003 USENIX Annual Technical ConferenceUSENIX Association 107

stamp is set to 0 (to force the next call to ls to recompute
increments). When increments are recomputed, LISFS
will fill in storage blocks with the result computed by
the LS algorithm, and will adjust accordingly the block
addresses in the inode.

3.3 Concrete operations

We switch now from shell operations to file system op-
erations to enter in more details. We use Linux VFS ter-
minology (Virtual File System [10]). To save space, we
enter in the details of only a few LISFS operations. Note
that these details are often direct consequences of the da-
ta structures, so that details of other operations can be
inferred for a large part.

For fault-tolerance, we use journaling for implementing
transactions. Every time several tables must be updat-
ed in an atomic way, a transaction is started, which logs
the updates. In case of failure, the next reboot will redo
(or undo) the log (see [16] on journaling and transac-
tion). For example, renaming a keyword needs to update
table keyword->keywordname and its inverse table
keywordname->keyword. This must be done in a
transaction to ensure that the two tables are coherent.

File system operations can be divided into three groups:
global operations (aka. superblock operations), direc-
tory operations (aka. inode operations), and file opera-
tions. Global operations deal with the management of
the file system: (un)mounting, and statistics. Direc-
tory operations deal with navigation/querying, and cre-
ation/deletion of files/properties. Finally, the file opera-
tions deal with the file contents. Note that in hierarchical
file system, operation readdir is considered as a file
operation, though we consider it as an inode operation.
This is because in these systems to readdir is actually
to read the content of a directory file, though in our case
it implies a real computation. Directory operations are
original wrt. hierarchical file systems, whereas file and
global operations are mostly similar to their counterparts
in hierarchical file systems.

3.3.1 Global operations

Operation read_super is called via the user program
mount. It locates the different tables on the disk, it
stores this information in the superblock structure for fur-
ther use, and it fills in the first entry in inode_table
that corresponds to the root inode. The pwd field of this

entry is set to a list of one element containing a single in-
ternal identifier of the top node of the taxonomy DAG
which corresponds to property � � � � . The local time-
stamp is set to 0, and the global timestamp is set to 1.

Operations put_super (shell command umount),
write_super and stat_fs (shell command df) are
like their counterparts in hierarchical file systems.

3.3.2 Inode operations

Operation readdir is called via the user program ls.
It takes as a parameter an inode, and returns a list of pairs
containing the plain name of a file or property and the
corresponding inode number. If the global timestamp
is equal to the local timestamp of the inode, then the
list of pairs is read at the block addresses in the inode.
Otherwise, an actual computation must be started: algor-
ithm LS (described in Section 3.1) is applied to the pwd
field of the parameter inode. The result is a pair Dirs
and Files which contain respectively a list of internal
keyword identifiers and a list of internal object identif-
iers. Then, a new buffer is allocated, and for each oi in
Files the pair (object->filename[oi], oi)
is stored in the buffer. For each fi in Dirs, a
fresh inode number ino is allocated, and the pair
(keyword->keywordname,ino) is also stored in
the buffer. Then, for each ino, the pwd field of
inode_table[ino] is filled in with the conjunction
of fi and the current PWD, and its local timestamp is set
to 0. Finally, previous blocks used by the contents of this
directory are freed, new blocks are allocated and filled
with the contents of the current buffer, the local time-
stamp is set to the value of the global timestamp, and the
list of pairs contained in the buffer is returned.

Operation lookup can be called via the command
cd keyword. It takes as a parameter an inode (the cur-
rent directory) and a string s, which is the plain name
of a file or of a formula, and it returns the correspond-
ing inode, or an error condition. Operation readdir is
called to look if the string is in the list of pairs, in which
case the corresponding inode is returned. Otherwise, the
string must correspond either to a property not listed as
an increment of the current directory, or to a complex
formula. If the string has the form of a single name, then
keywordname->keyword[s] gives the correspond-
ing internal keyword identifier fi. If this entry is empty,
an error code is returned, otherwise a fresh inode ino is
allocated, and the pwd field of inode_table[ino]
is filled in with the conjunction of fi and of the PWD
of the current directory, and inode ino is returned. If

2003 USENIX Annual Technical Conference USENIX Association108

the string has the form of a disjunction x|y|z|..., the
atomic property names are translated into their internal
keyword identifier xi, yi, zi, . . . If there is a property
name without a corresponding internal keyword identif-
ier, then an error code is returned. Otherwise, a fresh
inode is allocated as above, putting this time in the pwd
field a conjunction of the PWD of the current directory
with the disjunction (with the Or tag) of the internal key-
word identifier xi, yi, zi, If the string has the form
of a negation !x, then the operation is similar, but putting
this time in the pwd field the tag Not.

Operation create can be called via command touch.
It takes as a parameter an inode (the current directory),
a string s, and returns the inode corresponding to
the object just created. The current directory must
correspond to a conjunction, fis, of atomic properties
(as we have restricted the description of object). This
is checked first. Then a similar check is done for the
string s; it must not contain connectives |, & or !.
Finally, another object y with the same name and
description must not exist. This is checked by looking
for an object y in table filename->objects[s],
and comparing fis with the corresponding entry in
object->keywords[y]. If one of those checks
fails, then an error code is returned, otherwise a trans-
action is started for updating several tables in an atomic
way. Then, a fresh internal object identifier o is allo-
cated. It is added in filename->objects[s],
object->filename[o] is set to s,
object->keywords[o] is set to fis, and
for each keyword f in fis, o is added to
keyword->objects[f] and recursively in all the
ancestor nodes of f using table keyword->parents.
Then, the transaction is ended, and o is returned.

Operation mkdir behaves the same way as create,
but this time for atomic properties. It allocates a
fresh keyword internal identifier, fi. Then, it adds
new entries in tables keywordname->keyword
and keyword->keywordname, and it sets
to empty keyword->children[fi] and
keyword->objects[fi], and for each
atomic property, pi, of the PWD, it adds fi
in keyword->children[pi] and pi in
keyword->parents[fi].

Operation unlink undoes what has been done in
create, checking that the current user is the owner of
the file to be deleted.

Operation rmdir behaves the same way as unlink,
but for atomic properties.

Finally, operations notify_change and
read_inode manage the inode_table, asso-
ciating the appropriate permissions to an inode, using
the security semantic described in section 2.4.

3.3.3 File operations

Operations lseek, read, write, open, release,
truncate are standard. For example, operation read
takes as a parameter an inode, and a buffer to be
filled in. It first gets the inode number oi, looks in
inode_table[oi] to get the block addresses of the
contents of the file and fills in appropriately the buffer
passed in parameter.

4 Extensions

Section 2 exposed the core of LISFS. In reality this is
only a framework, in which more features can be in-
troduced. We present in this section a part of the fea-
tures that have actually been introduced in the prototype
LISFS. A more complete account, particularly on ACL-
like security and variants of navigation, is given in a re-
search report [14].

LISFS includes the possibility of valued attributes. For
instance, one can create a directory author:minsky,
or size:45. Since related properties can be grouped in
a taxonomy DAG, one can gather all properties of the
form size:x as sub-concepts of the property size.
This increases the readability of ls, which will pro-
pose first the coarse categories (size, author, . . .)
and then the finer sub-categories, that is the valued at-
tributes (size:1, size:2, . . .). LISFS supports op-
erations on integer attributes, e.g., cd size:>45 and
string attributes, e.g., cd auteur:=˜ m.?in.+y.*.
We simulate such a query by constructing a disjunction
of all the existing properties that satisfy the condition,
e.g., cd (size:46|size:72|...). This is done
in the lookup operation.

As many properties can be automatically inferred from
the file contents, we designed transducers which are
functions that extract attributes and values from file con-
tents (as in the Semantic File System [7]). If attributes
are new, they are created on-the-fly. In our proto-
type, transducers are defined for all the system attributes
of a file, e.g., its size and last modification time, but
also for its extension, e.g., ext:c is extracted from

2003 USENIX Annual Technical ConferenceUSENIX Association 109

foo.c. For the sake of experimentation, we have al-
so defined a transducer for MP3 music files, which ex-
tracts the genre, author and year from the meta-
data encoded in the file. This permits requests like
cd genre:Disco/year:1980. We could also easi-
ly define other transducers to support more file types, but
we prefer to offer the user a simple interface to define his
own transducers.

Conceptually, the description of a file is split in two parts:
the extrinsic part, made of properties assigned by the us-
er, and the intrinsic part, made of properties inferred by
transducers. As the content changes, the intrinsic part
changes too. This is done in operations release and
notify_change. Intrinsic attributes are not updat-
ed by the read or write operations. Indeed, calling
the transducers is costly, and we prefer to update the in-
trinsic attributes only when the user closes a file, that is
when doing release. To update the intrinsic part, each
transducer is called in turn, with the contents, name and
system attributes of the file as arguments.

5 Experimental results

The current prototype of LISFS is implemented as a
user level file system, using PerlFS. We use Berkeley
DB [13] to manage the different meta-data (implement-
ed as Btrees). The transactional module of Berkeley DB
provides the necessary tools for preventing the possible
corruption of meta-data by a crash. Finally, we use the
underlying file system (EXT2) to manage the contents of
files and tables.

Since there is no similar file system to compare with, a
part of our experimentations aims at evaluating the over-
head of LISFS with respect to a similar technology file
system that implements the standard semantics. Since
the LISFS prototype is built upon EXT2 and PerlFS, we
evaluate the overhead with respect to these file systems.
Another part of our experimentations aims at evaluating
the performance of LISFS for tasks it has been designed
for, like information retrieval. In this case, it is compared
with a user-level application that performs the same task,
like command find. We ran several experiments to de-
termine the overhead of using LISFS, both in speed and
disk space. The platform for all experiments was a Linux
box running kernel 2.4, with a 2Ghz Pentium 4, 750Mb
RAM, and a 40 Gb IDE disk.

The first experiment evaluates the disk space overhead
used by the meta-data of LISFS (see Table 1). The ex-

Andrew MP3 Man

NbFiles 860 633 11502
FSize 10 Mb 1772 Mb 246 Mb
TSize 2 Mb 3.1 Mb 43.3 Mb

AvNbAttr 26/23 36/20 21/24
NbAttr 1686 3730 43442

AvFSize 11.6 Kb 2799 Kb 21.4 Kb
SpOverH% 20 % 0.17 % 17.6 %
SpOverH/F 2.3 Kb 4.9 Kb 3.7 Kb
SpOverH/A 1.2 Kb 0.84 Kb 1 Kb
SpOverH/FA 47 bytes 87 bytes 84 bytes

NbFiles = Number of files, FSize = Total size of files, TSize = Total size

of LISFS tables, AvNbAttr = Average number of file attributes (intrin-

sic/extrinsic), NbAttr = Total number of attributes, AvFSize = Average

file size, SpOverH% = Space overhead (per cent), SpOverH/F = Aver-

age space overhead per file, SpOverH/A = Average space overhead per

attribute, SpOverH/FA = Average space overhead per attribute of file.

Table 1: Results of Disk Space Benchmark

periment is run for a set of 633 MP3 music files, a set of
860 program files obtained by ten copies of the Andrew
file system benchmark [9], and a set of 11502 man pages.
The Andrew files are described by intrinsic attributes
valued by the names of functions declared in them (as
produced by command CTAGS). The MP3 files are de-
scribed by intrinsic attributes valued by MP3-specific
meta-data such as genre and artist. The man pages
are described by the words of their description line. All
have extrinsic attributes for ACL-like security and for
representing their position in a user-defined hierarchy,
plus other intrinsic system attributes for size, last mod-
ification time, etc. SpOverH/F measures the average cost
of file descriptions (i.e., rows of the � � � �

�
� �

�
� � � �

�

matrix). SpOverH/A measures the average cost of each
attribute (i.e., extensions, or columns of the matrix).
SpOverH/FA measures the average cost of each individ-
ual attribute of each file (i.e. each non-empty position in
the matrix).

In the second experiment, we ran the modified Andrew
benchmark, first on the native file system (EXT2), then
on a hierarchical file system implemented via PerlFS,
then on LISFS where transducers were turned off then
on (see Table 2). The Andrew benchmark has 5 phases:
Mkdir constructs a directory hierarchy,Copy copies files,
Scan recursively traverses the whole hierarchy, Read
reads every byte of every file, and finallyMake compiles
the files. Note rowReadwhere LISFS without transducer
is faster than PerlFS because PerlFS goes into empty di-
rectories that LISFS avoids because they are not relevant.
We also ran our own benchmarks that consists in creating

2003 USENIX Annual Technical Conference USENIX Association110

Ext2 PerlFS
LISFS
(transdu-

cer off)

LISFS
(transdu-

cer on)

Mkdir 0.217s 0.986s 1.823s 3.703s
Copy 1.359s 5.943s 13.212s 46.296s
Scan 2.506s 5.141s 5.348s 6.638s
Read 3.548s 11.510s 11.119s 12.333s
Make 16.896s 28.384s 36.182s 46.260s
Total 24.526s 51.964s 67.684s 115.230s
MP3 2min28s 4min30s 5min 5min30s
Man 22min 29min 44min 85min

Table 2: Results of CPU Benchmark

the 633 music files, and creating the 11502 man pages.
In both cases, creating also means indexing through the
use of adhoc transducers.

We now compare the speed of search-like activities using
UNIX find and apropos, and LISFS lookup. With
the Andrew files find’ing function GXfind takes 2.899
seconds, but look’ing it up takes 0.081 seconds. Sim-
ilarly, with the MP3 files find’ing disco music takes
3.292 seconds, but look’ing it up is immediate. Doing
ls change with the man pages takes 1.370 seconds,
and returns 110 increments. Doing apropos change
takes 0.145 seconds, and returns 288 items. In oth-
er words, the increments reveal the organization of the
items. Doing ls change/directory with the man
pages takes 0.026 seconds, and returns 4 entries. Do-
ing apropos change | grep directory takes
0.030 seconds, and returns the same 4 entries. We have
also tested the speed of ls in directories of various sizes
in the music files context. In directory artist, ls
computes 155 increments in 0.405 seconds. In directory
size, it computes 629 increments in 1.058 seconds, and
finally it computes 28 increments in directory genre in
0.220 seconds. Note that in any case, only the first ls
in a given directory takes time, as for further ls LISFS
uses its cache, and answers immediately.

Figure 7 plots the creation times of the 633 MP3 files and
11502 man pages. It shows an almost constant creation
time until 10000 files, and then a deterioration. We be-
lieve that a better representation of extensions will push
this point to a greater value.

In summary, the space overhead is tolerable, and it
could still be decreased by using better marshalling tech-
niques. Operations lookup and readdir do not show
a great performance penalty, especially considering the
work they perform. Moreover, they compare positively
with search tools like find. On the opposite, opera-

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700

"evolvemp3-lfs2"

0

0.5

1

1.5

2

0 2000 4000 6000 8000 10000 12000

"stat_lfs"

Figure 7: creation times (sec)

tion create suffers from a large performance penalty,
because the extensions of the taxonomy DAG must be
checked and updated. This is visible in the Copy row
of Table 2. It can be cured by performing most of the
create operation lazily, in the background during idle
time. Indeed, the result returned by create does not
depend on the updating of internal tables. We need also
study alternative representations of the taxonomy DAG.

6 Related work

The Semantic File System (SFS [7]) was the first file sys-
tem to combine querying and navigation. It remained
compatible with the file system interface by using vir-
tual directories. Some attributes were extracted from
the contents of the files by transducers. This allowed
users to express queries such as cd ext:c/size:15.
However, users could not assign their own attributes to
a file (i.e., all these attributes were intrinsic, see Sec-
tion 4). More importantly, querying and navigation were
two separated operation modes; one could not navigate

2003 USENIX Annual Technical ConferenceUSENIX Association 111

in a virtual directory that resulted from a query. The Hi-
erarchy and Contents proposal [8] solved this problem
in a way that leads to inconsistencies. Directories that
represent answers to queries are no longer virtual; they
are real directories in which one can navigate, and even
write. However, one can write something which is in-
consistent with the query that created the directory. An-
other file system that combines querying and navigation
is the Be file system (BeFS [6]). Following the observa-
tion that hierarchical file systems fail to describe a file by
a conjunction of independent concepts, BeFS allows the
user to manually assign attributes to a file. But this ex-
tension is not compatible with a standard UNIX interface
(as opposed to SFS and LISFS where one can use classi-
cal shells). So, one can either use a shell or browser and
navigate, or use the new interface and do querying, but
not both. Finally, the Nebula file system [1] allows a user
to assign multiple attributes to a file and formulate query
at the shell level. One can also create kinds of directories
called views, which are just names assigned to queries,
as for databases. Views can be organized in a hierarchy,
where subviews refine parent’s views with another query
(restricting the set of objects). This allows to cache fre-
quently used queries. One can both navigate following
the subviews links, and query the file system, but as for
SFS, one cannot navigate in the result of a query.

The principal contribution of our work is a seamless
combination of querying and navigation, under the file
system interface. The key features are to combine intrin-
sic and extrinsic descriptions, and to permit navigation in
query results by computing relevant subdirectories.

This idea of combining querying and navigation via in-
crements is not new. In the literature, increments are also
called co-occurrence lists, term suggestions, relevant in-
formations, significant keywords, . . . In [11], a corpus
of keywords is extracted from man pages, and via for-
mal concept analysis [5], a lattice of keywords is com-
puted to permit a user to find man pages by keywords,
and getting as a result other keywords considered relev-
ant (as increments in Section 2.2). Queries are limited to
conjunctions of keywords, and keywords cannot be or-
dered which mean we get the disadvantages mentioned
in Section 2.3. In [15], a similar approach is applied to
bibliographic information retrieval. The querying mech-
anism of these applications is completely encompassed
by LISFS; the answers of LISFS are the answers of for-
mal concept analysis. In fact, the domain of information
retrieval is aware of the need for integrating querying and
navigation (e.g., see [2, 12]). However, the proposals in
this domain remain at the application level, and are very
often combined with visual interface issues.

All those systems are limited to conjunctive queries, and
are more like front-ends over another information sys-
tem for allowing to combine querying and navigating,
which means that they do not handle updating in their
interface. Our contribution is to offer all these services,
querying, navigating, and updating, at the system level,
so that many kinds of application can be built on it.

7 Future directions

There is much room for performance improvement in
the prototype LISFS. E.g., operations create and
readdir are too expensive. Tricks such as grouping of
commands (as in X Window), amortization, lazy struc-
tures or use of idle time will certainly improve the per-
formance of create. Finally, in place of a global time-
stamp, locating more precisely what is dirty could lead to
less cache miss. Another future work is to make a “com-
plete” logic file system, allowing arbitrary formulas in
object descriptions as well as in queries. This requires to
incorporate an automatic theorem prover for represent-
ing the � � relation in LISFS. The goal here is to permit an
open-ended range of file description styles. Even if some
logics are undecidable (e.g. predicate logic) or unprac-
ticable (e.g., propositional logic), there are many useful
and practicable logics that could be used as a file descrip-
tion language: e.g., a logic of types for program compo-
nents, or a logic of intervals for expressing dates. Anoth-
er direction is to overcome the difference between direc-
tories and files. We would like to navigate in files in the
same way as in directories. E.g., one would like to navi-
gate inside a BibTeX file, or inside a program source file.
Then, a user could do cd !comment & security
to get all the parts of a source file that are not comments
and that talk about security.

8 Conclusions

We have presented a new file system paradigm which
allows to freely combine high-level file description and
querying using logic formulas, navigation, and updating.
This is called a Logic File System. The integration of
querying and navigation goes beyond previous propos-
als; coherence is kept when writing in virtual directories,
and navigation and querying can be freely intermingled.
Such a file system gives at a system level services that
are useful in many applications. A key technical aspect
is to develop data structures and algorithms that permit

2003 USENIX Annual Technical Conference USENIX Association112

to implement a prototype LISFS with encouraging per-
formances. Experiments show that though the prototype
LISFS is slower than a more classical one, it passes usu-
al benchmarks with reasonable performances: create-
intensive benchmarks show a bad performance ratio for
LISFS, but ls-intensive benchmarks show almost no
penalty. Consider also that what operation create ac-
tually does is on-line indexing. Note also that the cur-
rent implementation of LISFS is very soft, a user-level
program based on PerlFS, and it could be improved by
using more effective techniques. We believe that all this
confirms the validity of LISFS.

9 Acknowledgments

We thank the anonymous referees and our sheperd, Prof.
Darrell Long, for their thoughtful remarks. We also wish
to acknowledge the collaboration with Sébastien Ferré
for elaborating the theory of Logic Information System.

10 Availability

A prototype LISFS and more information on this project
can be down-loaded at the following URL:

http://www.irisa.fr/LIS

References

[1] C.M. Bowman, C. Dharap, M. Baruah, B. Camar-
go, and S. Potti. A File System for Information
Management. In ISMM Int. Conf. Intelligent Infor-
mation Management Systems, 1994.

[2] P. Bruno, V. Ehrenberg, and L.E. Holmquist. Star-
zoom - an interactive visual interface to a semantic
database. In ACM Intelligent User Interfaces (IUI)
’99. ACM Press, 1999.

[3] S. Ferré and O. Ridoux. A file system based on con-
cept analysis. In Y. Sagiv, editor, Int. Conf. Rules
and Objects in Databases, LNCS 1861, pages
1033–1047. Springer, 2000.

[4] S. Ferré and O. Ridoux. Searching for obj-
ects and properties with logical concept analysis.
In Int. Conf. Conceptual Structures, LNCS 2120.
Springer, 2001.

[5] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer, 1999.

[6] D. Giampaolo. Practical File System Design with
the Be File System. Morgan Kaufmann Publishers,
1999.

[7] D.K. Gifford, P. Jouvelot, M.A. Sheldon, and
J.W. O’Toole Jr. Semantic file systems. In 13th
ACM Symp. Operating Systems Principles, pages
16–25. ACM SIGOPS, 1991.

[8] B. Gopal and U. Manber. Integrating content-based
access mechanisms with hierarchical file systems.
In 3rd ACM Symp. Operating Systems Design and
Implementation, pages 265–278, 1999.

[9] H.J. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, N. Sidebotham, and M. West. Scale
and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51–81,
1988.

[10] S.R. Kleiman. Vnodes: An architecture for mul-
tiple file system types in Sun UNIX. In USENIX
Summer, pages 238–247, 1986.

[11] C. Lindig. Concept-based component retrieval. In
IJCAI95 Workshop on Formal Approaches to the
Reuse of Plans, Proofs, and Programs, 1995.

[12] R. Miller, O. Tsatalos, and J. Williams. Integrating
hierarchical navigation and querying: A user cus-
tomizable solution, 1995.

[13] M.A. Olson, K. Bostic, and M. Seltzer. Berkeley
DB. In FREENIX Track: 1999 USENIX Annual
Technical Conference, pages 183–192, 1999.

[14] Y. Padioleau and O. Ridoux. A logic file system.
Research Report RR-4656, INRIA, 2002.

[15] G.S. Pedersen. A browser for bibliographic infor-
mation retrieval based on an application of lattice
theory. In ACM-SIGIR’93, pages 270–279, 1993.

[16] M. Rosenblum and J.K. Ousterhout. The design
and implementation of a log-structured file sys-
tem. ACM Transactions on Computer Systems,
10(1):26–52, 1992.

