
A VERIOG-HDL IMPLEMENTATION OF VIRTUAL CHANNELS IN A

NETWORK-ON-CHIP ROUTER

A Thesis

by

SUNGHO PARK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2008

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4277027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A VERIOG-HDL IMPLEMENTATION OF VIRTUAL CHANNELS IN A

NETWORK-ON-CHIP ROUTER

A Thesis

by

SUNGHO PARK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Peng Li
Committee Members, Eun Jung Kim

Gwan Choi
Head of Department, Costas N. Georghiades

August 2008

Major Subject: Computer Engineering

iii

ABSTRACT

A Verilog-HDL Implementation of Virtual Channels in a Network-on-Chip Router.

(August 2008)

Sungho Park, B.E., Inha University

Chair of Advisory Committee: Dr. Peng Li

As the feature size is continuously decreasing and integration density is increas-

ing, interconnections have become a dominating factor in determining the overall

quality of a chip. Due to the limited scalability of system bus, it cannot meet the

requirement of current System-on-Chip (SoC) implementations where only a limited

number of functional units can be supported. Long global wires also cause many

design problems, such as routing congestion, noise coupling, and difficult timing clo-

sure. Network-on-Chip (NoC) architectures have been proposed to be an alternative

to solve the above problems by using a packet-based communication network. The

processing elements (PEs) communicate with each other by exchanging messages over

the network and these messages go through buffers in each router. Buffers are one of

the major resource used by the routers in virtual channel flow control.

In this thesis, we analyze two kinds of buffer allocation approaches, static and

dynamic buffer allocations. These approaches aim to increase throughput and mini-

mize latency by means of virtual channel flow control. In statically allocated buffer

architecture, size and organization are design time decisions and thus, do not perform

optimally for all traffic conditions. In addition, statically allocated virtual channel

consumes a waste of area and significant leakage power. However, dynamic buffer al-

location scheme claims that buffer utilization can be increased using dynamic virtual

channels. Dynamic virtual channel regulator (ViChaR), have been proposed to use

centralized buffer architecture which dynamically allocates virtual channels and buffer

iv

slots in real-time depending on traffic conditions. This ViChaR’s dynamic buffer man-

agement scheme increases buffer utilization, but it also increases design complexity. In

this research, we reexamine performance, power consumption, and area of ViChaR’s

buffer architecture through implementation. We implement a generic router and a

ViChaR architecture using Verilog-HDL. These RTL codes are verified by dynamic

simulation, and synthesized by Design Compiler to get area and power consumption.

In addition, we get latency through Static Timing Analysis. The results show that a

ViChaR’s dynamic buffer management scheme increases the latency and power con-

sumption significantly even though it could increase buffer utilization. Therefore, we

need a novel design to achieve high buffer utilization without a loss.

v

To my family for their love and encouragement.

vi

ACKNOWLEDGMENTS

I would like to thank my research advisor, Dr. Eun Jung Kim, for her support,

encouragement and guidance during the period of my studies. She taught me a lot

about research and guided me through every step of my studies. I would also like to

thank chair, Dr. Peng Li, for his kindness, understanding and valuable comments. My

sincere thanks to Dr. Gwan Choi for his willingness to be on my defense committee

and his valuable comments. I would like to extend my special thanks to my colleague,

Manhee Lee. During this project, he was my partner in designing a network-on-chip

router. I thank him for his moral and technical support. Special thanks to my family

for their support and kindness. Sincere thanks to all my friends for their friendship

and support throughout the period of my studies at Texas A&M University.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II RELATED WORK . 4

A. Network-on-Chip Topology 4

B. Routing Strategy . 4

C. Dynamic Virtual Channel Allocation 5

III BACKGROUND . 7

A. Network Property . 7

1. Topology . 7

2. Switching Technique 8

3. Routing Protocol . 11

4. Flow Control Mechanism 12

B. Buffering in Packet Switches 13

1. Output Queues . 13

2. Input Queues . 14

3. Shared Central Queues 14

C. Diverse Input Port Buffers 16

1. Single Input Queues 16

2. SAFC (Statically Allocated Fully Connected) 16

3. SAFQ (Statically Allocated Multi-Queue) 16

4. SAFQ (Statically Allocated Multi-Queue) 17

D. Generic NoC Router . 18

E. Dynamic Virtual Channel Regulator(ViChaR) 18

1. ViChaR Configuration 18

2. Virtual Channel Allocator and a Switch Allocator . . 20

3. Register-Based Buffering 22

IV DESIGN FLOW . 23

A. Standard Cell Design . 23

1. Design Library . 23

2. Hardware Description Language 23

B. Synthesis with Synopsys Design Compiler 24

viii

CHAPTER Page

C. Design Evaluation Techniques 25

1. Throughput and Latency 25

2. Area Estimation . 25

3. Power Consumption Measurement 25

V ROUTER IMPLEMENTATION 26

A. Asynchronous Design . 26

1. No Clock Skew . 26

2. Low Power Consumption 26

3. Low Global Wire Delay 26

4. Automatic Adaptation to Variation 27

B. An Arbiter Design . 27

1. Basic Concept of Arbitration 27

2. Fixed Priority Arbiter 28

3. Round-Robin Arbiter 29

4. Matrix Arbiter . 30

5. Tree Arbiter . 31

C. A Generic Router . 32

1. High-level View . 32

2. Buffer Architecture 33

3. Virtual Channel Allocator(VA) 36

4. Switch Allocator(SA) 36

5. Crossbar Switch and Other Implementation 39

D. A Virtual Channel Regulator 39

1. High-level View . 39

2. Buffer Architecture 42

3. Virtual Channel Allocator(VA) 46

4. Switch Allocator(SA) 46

5. VC/Slot Availability Tracker 48

6. VC Control Table . 48

7. Crossbar Switch in a ViChaR 50

VI RESULT AND OTHER DISCUSSION 52

A. Area Estimation . 52

1. Cell Area . 52

2. Interconnect and Total Area 53

B. Power Consumption Estimation 54

1. Dynamic Power Consumption 55

ix

CHAPTER Page

2. Cell Leakage Power Consumption 55

C. Latency Estimation . 56

VII CONCLUSION AND FUTURE WORK 64

A. Conclusion . 64

B. Future Work . 65

REFERENCES . 66

APPENDIX A . 69

APPENDIX B . 74

APPENDIX C . 79

VITA . 82

x

LIST OF TABLES

TABLE Page

I Total Cell Area (TSMC 180nm), G:Generic, V:ViChaR 53

II Net Interconnect Area (TSMC 180nm), G:Generic, V:ViChaR 53

III Total Area (TSMC 180nm), G:Generic, V:ViChaR 53

IV Dynamic Power Consumption (TSMC 180nm), G:Generic, V:ViChaR 56

V Leakage Power Consumption (TSMC 180nm), G:Generic, V:ViChaR 56

xi

LIST OF FIGURES

FIGURE Page

1 Virtual Channel Router . 2

2 Example of Four Network Topologies 8

3 Store-and-Forward Switching Technique 9

4 Virtual Cut-Through Switching Technique 10

5 The Concept of Virtual Channels . 11

6 Unit of Resource Allocation . 12

7 Head-of-Line Blocking . 14

8 Alternative Designs of Switching with Input Port Buffers 15

9 Generic NoC Router Architecture . 17

10 Buffer Architecture and Allocation 19

11 Virtual Channel Allocation and Switch Allocation 21

12 Basic Synthesis Flow with Design Compiler 24

13 Example of Arbitration in FIFO . 28

14 Example of a Fixed Priority Arbiter Code 29

15 Muxed Parallel Arbiter . 30

16 Two Fixed Priority Arbiters with a Mask 30

17 Matrix Arbiter . 31

18 Tree Arbiter . 31

19 Top View of a Generic Router . 34

xii

FIGURE Page

20 Buffer Architecture of a Generic Router 35

21 1-bit D-Latch and Enable Signals . 36

22 Virtual Channel Allocator in a Generic Router 37

23 Switch Allocator in a Generic Router 40

24 Crossbar Switch in a Generic Router 41

25 Top View of a ViChaR . 43

26 Unified Buffer Structure(UBS) in a ViChaR 44

27 Limitation of a Statically Assigned Buffer Organization 45

28 Virtual Channel Allocator in a ViChaR 47

29 VC/Slot Availability Tracker . 48

30 Switch Allocator in a ViChaR . 49

31 VC Control Table . 50

32 Crossbar Switch in a ViChaR . 51

33 Total Cell Area Comparison (TSMC 180nm) 54

34 Net Interconnect Area Comparison (TSMC 180nm) 54

35 Total Area Comparison (TSMC 180nm) 55

36 Dynamic Power Consumption Comparison (TSMC 180nm) 57

37 Leakage Power Consumption Comparison (TSMC 180nm) 57

38 Generic and ViChaR NoC Router Pipeline 58

39 VA Critical Path Delay in a Generic Router 59

40 VA Critical Path Delay in a ViChaR Router 60

41 SA Critical Path Delay in a Generic Router 62

xiii

FIGURE Page

42 SA Critical Path Delay in a ViChaR Router 63

43 Verilog code of Top module in a generic router 70

44 Partial verilog code of Buffer module in a generic router 71

45 Partial verilog code of a Virtual Channel Allocator in a generic router 72

46 Partial verilog code of a Switch Allocator in a generic router 73

47 Partial verilog code of Top module in a ViChaR router 75

48 Partial verilog code of Buffer module in a ViChaR router 76

49 Partial verilog code of a Virtual Channel Allocator in a ViChaR router 77

50 Partial verilog code of a Switch Allocator in a ViChaR router 78

51 Verilog code of a crossbar in a generic and ViChaR router 80

52 Verilog code of a round-robin arbiter in a generic and ViChaR router 81

1

CHAPTER I

INTRODUCTION

As the technology scales down, the gate delay decreases, but the wire delay increases

relatively and this global wire delay becomes the main factor which can decide the

overall performance. Difficult timing closure becomes the main problem among many

design issues which is caused by long global wire delay. Many VLSI designers are

trying to solve this long global wire delay problem through buffer insertion. In ad-

dition, many current System-on-Chips (SoCs) use a system bus to connect several

functional units. The slave unit would comply with this system bus protocol in or-

der to be synchronized with the master unit. However, these SoC system buses can

support only limited number of functional units, and thus will face scaling problems

in heterogeneous MPSoCs (MultiProcessor System-on-Chips) or large scale CMPs

(Chip-MultiProcessors). Even though a multiple bus structure with bridge and bus

matrix structure could be the alternative plans, these solutions still do not scale well

and have the disadvantages of high power consumption. In order to solve these long

global wire delay and scalability issues, many studies suggested the use of a packet-

based communication network which is known as Network-on-Chip (NoC). This NoC

is used to connect many functional units with a universal communication network

[1, 2, 3] .

In NoC, a router sends packets from a source to a destination router through

several intermediate nodes. If the head of packet is blocked during data transmission,

the router cannot transfer the packet any more. In order to remove the blocking

problem, the researcher proposed wormhole routing method. The wormhole router

The journal model is IEEE Transactions on Automatic Control.

2

Fig. 1. Virtual Channel Router

splits the packet into several flits which can be transferred in a single transmission.

Buffer allocation and flit control are performed at a flit level in wormhole routing

since wormhole routing does not allocate available buffer to whole packet. There-

fore, the wormhole routing is a method which can minimize overall latency and may

decrease buffer size compared to others. In addition, virtual channels are used to

avoid deadlock problem and thus increase throughput. The main purpose of virtual

channels is to decouple the allocation of buffer space to allow a flit to use a single

physical channel competing with other flits. Figure 1 shows a virtual channel router

[1] . For simplicity, a mesh network is used as topology and an adaptive routing is

also used as a routing strategy.

A number of requirements need to be met in order to use wormhole router. Each

router has to exchange their credits, which are the information about how many VCs

3

are available in the adjacent router. During establishing VCs among routers, each

router arbitrates candidate VCs with this credit information. The transmitting router

has to keep the credit information such as the number of available free buffers and

the number of available VCs from nearby routers. The receiving router also updates

the read/write pointers in internal buffer control logic when it receives the flit from

the previous router.

Buffers consume much leakage power since buffers, which are implemented with

registers, occupy large areas compared to other combinational logics [1] . From [4] the

buffers consume about 64 percent of the total router leakage power. Dynamic power

consumption is proportional to switching activity, supply voltage, and capacitance

load. Whenever the flit arrives at or departs from router, it consumes much dynamic

power depending on switch activity. Therefore, buffer design plays an important role

in implementing an energy efficient on-chip network. The goal of this thesis is to

provide a detailed explanation to implement generic and ViChaR (Virtual Channel

Regulator) structure. In Chapter II, we take a look at related work. Chapter III

presents the basic concept of virtual channels in a generic router, and Chapter IV

presents implementation methodology and Chapter V is a router implementation,

and Chapter VI is a conclusion of my work.

4

CHAPTER II

RELATED WORK

This thesis draws on and builds on a variety of related and prior works in the area

of design of network-on-chip buffers, virtual channel allocation (VA) and switch al-

location (SA) in the router. Prior studies provide concepts and systems that will be

implemented and further refined in the course of the proposed research.

A. Network-on-Chip Topology

W. J. Dally introduced Network-on-Chip communication and especially 2D torus ar-

chitecture in [2]. Kumar et al. [5] used 2-D tile-based architecture adopting a mesh

based topology. Mesh and torus are popular NoC topologies, and they have different

features in terms of throughput, power consumption, and latency depending on rout-

ing algorithms [6]. In addition, SPIN network uses the fat tree topology in [3] and

octagon topology is proposed in [7]. Each topology has its own characteristic. Among

theses topologies, many designers like to use mesh topology because of simplicity.

B. Routing Strategy

The packet is routed through networks depending on a routing strategy. The routing

algorithms could be one of the following two strategies. Deterministic routing such

as XY routing is when the routes between given pairs of nodes are pre-programmed

and thus follow the same path between two nodes. Adaptive routing is when the

path taken by a packet may depend on other packets, and each router should know

network traffic status in order to avoid a congested region in advance [2].

5

C. Dynamic Virtual Channel Allocation

A generic router generally uses a statistically allocated buffer which can cause the

Head-of-Line (HoL) blocking problem. [8] proposes buffer customization which de-

creases the queue blocking probability in order to improve the network performance.

A scheme called dynamic virtual channel regulator (ViChaR) is proposed in [9] . In

the ViChaR, VCs are allocated dynamically, and buffer allocation for each VC could

be different depending on network traffic. For example, many and shallow VCs are

more efficient in the light traffic, and few and deeper VCs are more efficient in heavy

traffic. In addition, on-chip network router meeting traffic demand must be designed

to have the least number of buffers since the power consumption of the buffer dom-

inates all the other logic such as VA, SA, and crossbar[9]. ViChaR proposes the

method of increasing buffer utilization and decreasing overall power consumption.

From [9] the area overhead and extra power consumption is trivial where there is a

4 percent reduction in logic area and minimal 2 percent power increase compared to

equal size generic buffer implementation. Especially, it reports a 25 percent increase

in performance with the same amount of buffering [9].

Dynamically Allocated Multi-Queue (DAMQ) buffer architecture is presented in

[10]. This DAMQ has the unified and dynamically-allocated buffer structure. The

concept of DAMQ is similar with ViChaR. DAMQ uses a fixed number of queues per

input port. But this can cause the HoL blocking problem. Therefore, ViChaR assigns

the buffer resource to each of the VCs according to the network traffic in order to

solve the HoL problem. Fully Connected Circular Buffer (FC-CB) is explained in [11].

FC-CS is basically using a Dynamically Allocated Fully Connected (DAFC) method

[12] in order to have the flexibility in diverse traffic by adapting wormhole routing

and virtual channels. Hence, this FC-CB provides a low average message latency and

6

high throughput even under heavy traffic. However, FC-CB structure has a fixed

number of VCs and complex logic to control circular buffer and thus causes higher

dynamic power consumption.

7

CHAPTER III

BACKGROUND

This chapter provides background information on Network-on-Chip research areas

throughout the thesis. On-chip networks share many concepts with an interconnection

network for a traditional multiprocessor system. When we categorize networks, it is

typically done by recognizing four key properties: topology, switching technique,

routing protocol, and flow control mechanism.

A. Network Property

1. Topology

Mesh and torus network topologies are selected as the best choice in a NoC [2]. These

two network topologies have simplicity of 2-D square structure. Figure 2 (a) shows

a 2-D mesh network structure [5]. It is composed of a grid of horizontal and vertical

lines with a router. This mesh topology is mostly used since delay among routers can

be predicted in a high level. A router address is computed by the number of horizontal

nodes and the number of vertical nodes. 2-D torus topology [2] is a donut-shaped

structure which is made by a 2-D mesh and connection of opposite sides as we can see

in Figure 2 (b). This topology has twice the bisection bandwidth of a mesh network

at the cost of a doubled wire demand. But the nodes should be interleaved because all

inter-node routers have the same length. In addition to the mesh and torus network

topologies, a fat-tree structure [3] is used. In M-ary fat-tree structure, the number

of connections between nodes increases with a factor M towards the root of the tree.

By wisely choosing the fatness of links, the network can be tailored to efficiently

use any bandwidth. An octagon network was proposed by [7]. Eight processors are

8

(a) Mesh (b) Torus

(c) Binary Fat Tree (d) Octagon

Fig. 2. Example of Four Network Topologies

linked by an octagonal ring. The delays between any two nodes are no more than two

hops within the local ring. The advantage of an octagon network has scalability. For

example, if a certain node can be operated as a bridge node, more Octagon network

can be added using this bridge node. Figure 2 (c) and (d) show binary fat-tree and

octagon topologies.

2. Switching Technique

Switching mechanisms determine how network resources are allocated for data trans-

mission when the input channel is connected to the output channel selected by the

routing algorithm. There are typically four popular switching techniques: store-and-

forward, virtual cut-through, wormhole switching, and circuit switching [13]. The

first three techniques are categorized into a packet-switching method.

In a store-and-forward switching method, the entire packet has to be stored in

the buffer when a packet arrives at an intermediate router. After a packet arrives,

9

Fig. 3. Store-and-Forward Switching Technique

the packet can be forwarded to a neighboring node which has available buffering

space, available to store the entire packet. This switching technique requires a lot

of buffering space more than the size of the largest packet. It should increase the

on-chip area. In addition to the area, it could cause large latency because a certain

packet cannot traverse to the next node until its whole packet is stored. Figure 3

shows a store-and-forward switching technique and a flow diagram.

In order to solve long latency problem in a store-and-forward switching scheme,

virtual cut-through switching [14] stores a packet at an intermediate node if next

routers are busy, while current node receives the incoming packet. But, it still requires

a lot of buffering space in the worst case. Figure 4 shows the timing diagram for a

virtual cut-through switching method.

The requirement of large buffering space can be solved using the wormhole switch-

ing method [15]. In the wormhole switching method, the packets are split to flow

control digits (flits) which are snaked along the route in a pipeline fashion. There-

fore, it does not need to have large buffers for the whole packets but has small buffers

for a few flits. A header flit build the routing path to allow other data flits to tra-

verse in the path. A disadvantage of wormhole switching is that the length of the

path is proportional to the number of flits in the packet. In addition, the header flit

is blocked by congestion, the whole chain of flits are stalled. It also blocked other

flits. This is called deadlock where network is stalled because all buffers are full and

10

Fig. 4. Virtual Cut-Through Switching Technique

circular dependency happens between nodes. The concept of virtual channels [15] is

introduced to present deadlock-free routing in wormhole switching networks. This

method can split one physical channel into several virtual channels. Figure 5 shows

the concept of a virtual channel.

For real-time streaming data, circuit switching supports a reserved, point-to-

point connection between a source node and a target node. Circuit switching has two

phases: circuit establishment and message transmission. Before message transmis-

sion, a physical path from the source to the destination is reserved.

A header flit arrives at the destination node, and then an acknowledgement

(ACK) flit is sent back to the source node. As soon as the source node receives the

ACK signal, the source node transmits an entire message at the full bandwidth of

the path. The circuit is released by the destination node or by a tail flit. Even

though circuit switching has the overhead of circuit connection and release phase, if

a data stream is very large to amortize the overhead, circuit switching will be used

continuously. Since most Network-on-Chip systems need less buffering space and has

a low latency requirement, the wormhole switching method with a virtual channel is

the most suitable switching method.

11

Fig. 5. The Concept of Virtual Channels

3. Routing Protocol

Routing protocol is a protocol that specifies how routers communicate with each

other to diffuse information that allows them to select routes between any two nodes

on a network. In general, routing protocol can be either deterministic or adaptive.

Deterministic routing, such as XY routing, is when the routes between given pairs of

nodes are pre-programmed and thus follow the same path between two nodes. This

routing protocol can cause a congested region in the network and poor utilization of

the network capacity. On the other hand, adaptive routing is when the path taken

by a packet may depend on other packets in order to improve performance and fault

tolerance. In adaptive router, each router should know the network traffic status in

order to avoid a congested region in advance [16].

In addition, modules which need heavy intercommunication should be placed

close to each other to minimize congestion. [16] states that adaptive routing can

support higher performance than the deterministic routing method with deadlock-free

network. However, higher performance requires a higher number of virtual channels

[17]. A higher number of virtual channels can cause long latency because of design

complexity. Therefore, if network traffic is not heavy and the in-order packet is

delivered, the deterministic routing could be selected.

12

Fig. 6. Unit of Resource Allocation

4. Flow Control Mechanism

Figure 6 shows units of resource allocation.A message is a contiguous group of bits

that are delivered from a source node to a destination node. A packet is the basic

unit of routing and the packet is divided into flits. A flit (flow control digit) is the

basic unit of bandwidth and storage allocation. Therefore, flits do not contain any

routing or sequence information and have to follow the route for the whole packet.

A packet is composed of a head flit, body flits (data flits), and a tail flit. A head flit

allocates channel state for a packet, and a tail flit de-allocates it. The typical value

of flits is between 16 bits to 512 bits. A phit (physical transfer digit) is the unit that

can be transferred across a channel in a single clock cycle. The typical value of phit

ranges between 1 bit to 64 bits.

Flow control can be examined with the same method as the switching technique.

A role of flow control mechanism is to decide which data is serviced first when a

physical channel has many data to be transferred. In a store-and-forward and a

virtual cut-through switching method, flow control is performed at packet level, which

means that an entire packet is stored in buffers and forwarded to a neighboring router

which has available buffers. In a wormhole routing switching method, the packet is

split into flits and thus flow control executes at flit level. The first flit goes through

intermediate nodes to set up a path for the following data flit, and a tail flit closes the

13

path passing the intermediate node. With virtual channels, the wormhole router can

solve deadlock problems [15]. Virtual channels share the same physical channel, but

these virtual channels are logically separated with different input and output buffers.

B. Buffering in Packet Switches

In crossbar switch architecture, buffering is necessary to store packet because the

packets which arrive at nodes are unscheduled and should be multiplexed by control

information. Three buffering cases happen in a NoC router. The first buffering

condition is the output port can receive only one packet at a time when two packets

arrive at the same output port at the same time. The second buffering condition is

that the next stage of network is blocked and the packet in the previous stage cannot

be routed into next router. And finally, a packet has to wait for arbitration time to

get route path in a current router, the current router must store this packet in buffer.

Therefore, the place of buffer space can be located in three parts: The Output Queue,

The Input Queue, and the Central Shared Queue.

1. Output Queues

In buffer architecture, output queues can be used if output buffers are large enough

to accept all input packets, and switch fabric runs at least N times faster than the

speed of the input lines in an N by N switch. However, since high speed switch fabric

is currently not available and output queues should have as many input ports as an

input line can support, output queue buffer architecture should make logic delay large

[18].

14

Fig. 7. Head-of-Line Blocking

2. Input Queues

Input buffers require only one input port in a packet switch because only one packet

can arrive at a time. Therefore, it can speed up performance with many input ports.

That is why many researchers use input queue buffer architecture. But, the input

queue buffer architecture has the Head-of-Line (HoL) blocking problem. HoL can

happen while a packet in the head of queue waits for getting output port, another

pacekt behind it can not proceed to go to idle output port. HoL blocking significantly

reduces throughput in NoC. Figure 7 shows Head-of-Line blocking in a NoC router

environment.

3. Shared Central Queues

All the input ports and output ports can access shared central buffer. For example,

if the number of input ports is N and the number of output ports is N, central buffer

has minimum 2N ports for all input and output ports. As N increases, access time

to memory also increases which brings performance down. This large access time

should occur whenever packet transmission happens. In addition to implementation

difficulties, shared central buffer also causes down performance because of large access

time [18].

15

crossbarInput ports

(A) FIFO Buffers

output ports

N N/4
4x1

4x1

4x1
4x1

output ports

Input

ports

(B) SAFC (Statically

Allocated Fully Connected)

N/4

Input

ports

(C) SAMQ (Statically

Allocated Multi-Queue)

crossbar

output ports

crossbar

Input

ports

output ports

(D) DAMQ (Dynamically

Allocated Multi-Queue)

N

Fig. 8. Alternative Designs of Switching with Input Port Buffers

16

C. Diverse Input Port Buffers

1. Single Input Queues

Figure 8 (A) shows that each input port has a single FIFO buffer and each FIFO

buffer receives packets from a previous node. The packets stored are waiting for their

order. In the figure 8 (A), crossbar switch has 4 input and output ports [18].

2. SAFC (Statically Allocated Fully Connected)

Each input port has separate FIFO queue for every output port in order to remove

the Head-of-Line (HoL) blocking problem. If packets arrive at a corresponding queue,

the packets are competing for the same output and thus the packet at the head of

line cannot block other packets. Throughput in SAFC is higher than in single input

queue since each input can transmit N packets every time. However, this SAFC has

several drawbacks. The first one is inefficient buffer utilization because N buffers are

divided by four statically allocated queues, and thus, available buffer space for each

input port is only one quarter of the buffer space. Therefore, it is mandatory to route

all packets in advance to know the destination output port. The second disadvantage

is design complexity. It is required to manage separate buffers and crossbars [18].

3. SAFQ (Statically Allocated Multi-Queue)

In SAMQ, this resolves the second disadvantage of SAFC which is a design complexity.

If packets arrive at buffers, one of the packets is forwarded to the crossbar. Therefore,

it does not need to manage N crossbars. However, SAMQ still has inefficient buffer

utilization [18]. Figure 8 (C) shows SAMQ design.

17

F
li
t
k

F
li
t
3

F
li
t
2

F
li
t
1

F
li
t
k

F
li
t
3

F
li
t
2

F
li
t
1

F
li
t
k

F
li
t
3

F
li
t
2

F
li
t
1

W
ri
te

P
o
in
te
r

R
e
a
d

P
o
in
te
r

Fig. 9. Generic NoC Router Architecture

4. SAFQ (Statically Allocated Multi-Queue)

In DAMQ scheme, each input buffer uses a single buffer space. In order to increase

buffer utilization, each queue in each input port is dynamically allocated, and this

queue is maintained by a linked list. The dynamic buffer allocation significantly

increase buffer usage. The control logic is composed of head and tail pointers. When-

ever a packet arrives, the packet is stored in the location which the head pointer

directs. While a packet is stored into free buffer space, its destination output port

number will be decided. The tail pointer is responsible for pointing out location to

be sent into crossbars.

18

D. Generic NoC Router

Generally, a NoC router has five input and output ports, each of which is for local

processing element (PE) and four directions: North, South, West, and East. Each

router also has five components: Routing Computation (RC) Unit, Virtual Channel

Allocator (VA), Switch Allocator (SA), Flit Buffers (BUF), and Crossbar as we can

see in Figure 9. When the header flit arrives at the internal flit buffer, the RC unit

sends incoming flits to one of physical channels. The Virtual Channel Allocation

unit receives the credit information from the neighboring routers, arbitrates all the

header flits which access the same VCs, and then select one of them according to the

arbitration policy. Therefore, this header flit can set up the path where the following

data and tail flits can traverse this route successfully. The transmitting router sends

the control information to the receiving router, and receiving router may update VC

ID at the internal buffer with this control information. Switch Allocation (SA) unit

arbitrates the waiting flit in all VCs accessing the crossbar and allow only one flit to

get crossbar permission. The SA operation is based on the VA stage since the flit

data in the buffer comes from the previous router in the route. The flit data pass

over the crossbar and thus can arrive at the destination node.

E. Dynamic Virtual Channel Regulator(ViChaR)

1. ViChaR Configuration

The ViChaR is composed of two main components which are the Unified Buffer

Structure (UBS) to share the internal flit buffers with all VCs simultaneously, and

the Unified Control Logic (UCL,) to control UBS and assign buffers into VCs dy-

namically according to the network traffic. UCL has the following 5 logic blocks per

port. Arriving/Departing flit pointers manage the control logic for vk flit buffers

19

Fig. 10. Buffer Architecture and Allocation

20

where v is the number of VC per port and k is the number of flit buffers per VC.

In Figure 10, we can compare ViChaR router buffer architecture with generic router

buffer architecture. Incoming flits of each packet in the UBS of ViChaR may not

be contiguous. The Slot Availability Tracker provides the next available flit buffer

location depending on the network condition. This allows the router to use a vari-

able number of in-flight packets per port according to the traffic. VC Control Table

remembers all in-use VCs and a detailed flit buffer location per VC in UBS. Each

output port has its own Virtual Control Table to control data flow. VC Availability

Tracker keeps track of the status of available VCs, and Token Dispenser uses the data

that VC Availability Tracker provides.

2. Virtual Channel Allocator and a Switch Allocator

Figure 11 shows a Virtual Channel Allocator and a Switch Allocator in Generic

and ViChaR architecture. A generic router can support only a fixed and statically

assigned number of VCs per input port. On the other hand, ViChaR can provide

a variable number of VCs depending on network traffic. Each input port can have

maximum vk VCs in order to increase buffer utilization in the ViChaR architecture,

and Virtual Control Table keeps track of these buffer locations. It is important to

look at each VA and SA arbiter component. Each vk:1 VA 1st arbiter in the ViChaR

could have longer delay than a v:1 VA 1st arbiter of generic router. In ViChaR [9],

they analyzed the area and power overhead of the ViChaR which are implemented in

structural Register-Transfer Level (RTL) Verilog and then synthesized in Synopsys

Design Compiler using a TSMC 90nm standard cell library.

21

Fig. 11. Virtual Channel Allocation and Switch Allocation

22

3. Register-Based Buffering

The flit buffers can be implemented in diverse ways. The Memory cell-based buffering

method using a SDRAM type memory cell has latency penalties, and this penalty

happen whenever the flits arrive at and depart from the buffers. ViChaR uses registers

(D-Latch) for buffering, and these D-Latches have only a few delay of control logic. We

implement flit buffers using register based buffering in the same method as ViChaR.

23

CHAPTER IV

DESIGN FLOW

This chapter gets through design flow for implementation of virtual channels in a

network-on-chip router. Design flows are the straightforward combination of elec-

tronic design automation tools to accomplish the design of an integrated circuit. In

NoC design, design parameters are topologies, switching techniques, routing protocol,

and flow control mechanisms that we see in the previous chapter. These parameters

are modeled by Verilog-HDL (Hardware Description Language) and then synthesized

by Design Compiler to get gate level netlist. Gate level simulations is performed to

verify functionality and know gate delay.

A. Standard Cell Design

1. Design Library

Virtual channels in a network-on-Chip router are implemented by a generic standard

cell library. The library used is TSMC (Taiwan Semiconductor Manufacturing Com-

pany) 180nm technology. This synopsys design library includes timing specifications

for different operating conditions. The timing specification used is typical case ver-

sion (1.8V). The reason for choosing TSMC 180nm technology is that this library is

available in the Computer Science Department.

2. Hardware Description Language

Verilog (Hardware Description Language) is used to implement virtual channels in a

NoC router. This language supports the design, verification, and implementation of

analog, digital, and mixed-signal circuits at various levels of abstraction.

24

Fig. 12. Basic Synthesis Flow with Design Compiler

B. Synthesis with Synopsys Design Compiler

A synthesis tool, Synopsys Design Compiler, takes an RTL hardware description, a

standard cell library, design constraints such as setup and hold time as inputs, and

produces a gate-level netlist which is a list of circuit elements and their interconnec-

tions, area (Gate Count), power consumption, timing information as outputs. The

resulting gate-level netlist is a completely structural description with standard cells.

Figure 12 shows typical synthesis flow with Design Compiler [19].

25

C. Design Evaluation Techniques

1. Throughput and Latency

Throughput can be computed as the number of successful flits over a link or a single

physical or logical channel at a maximum speed. Latency is a time delay between a

flit start to be injected at the sending node, and this flit arrives at the target node.

These two factors are affected by congestion where many virtual channels are willing

to send flits simultaneously. In order to measure critical path delay, STA (Static

Timing Analysis) is executed.

2. Area Estimation

Through a Network-on-chip (NoC) router implementation, area information can be

extracted using ”report area” command. Gate count is independent of specific tech-

nology. Therefore, the gate count is measured by Design Compiler command.

3. Power Consumption Measurement

Dynamic power consumption is mainly dependent on switching activity in asyn-

chronous logic. On the other hand, leakage power consumption is proportional to

the area. Design Compiler has a ”report power” command which calculates dynamic

and leakage power on the basis of capacitance and estimated circuit activities.

26

CHAPTER V

ROUTER IMPLEMENTATION

A. Asynchronous Design

A Network-on-Chip router is implemented by asynchronous design methodologies

which use implicit or explicit data valid signal instead of clock signals. Asynchronous

design has the following benefits [20]:

1. No Clock Skew

The first advantage is that asynchronous logic has no clock skew. Clock skew is

a phenomenon in synchronous circuits in which the clock signal arrives at different

components at different times. Therefore, asynchronous logic does not have to worry

about clock skew because it has no globally distributed clock.

2. Low Power Consumption

The second advantage is low power consumption. Asynchronous logic only execute in

its own operation while synchronous circuits have to be toggled by clock signal every

time which causes dynamic power consumption.

3. Low Global Wire Delay

A clock cycle of synchronous circuits depends on critical path delay. Hence, setup and

hold timing issue should be carefully controlled and the logic which has critical path

delay must be optimized considering the highest clock rate. However, the performance

of asynchronous circuits can be calculated by the speed of the circuit path currently

in operation.

27

4. Automatic Adaptation to Variation

Combinational logic delay can be changed depending on variation such as fabrication,

temperature, and power-supply voltage. A clock cycle should be calculated consider-

ing the worst case variation, for example, low voltage and high temperature. However,

the delay of asynchronous circuits is computed by current physical properties

B. An Arbiter Design

Many input ports which are requestor want to access a common physical channel

resource. In this case, an arbiter is required to determine how the physical channel

can be shared amongst many requestors. When we think about arbitration logic, we

have to consider many factors.

1. Basic Concept of Arbitration

If many flits arrive at buffers from several virtual channels and these flits are destined

for one physical channel, an arbiter receives request signals from buffer such as FIFO

empty or full signals. These FIFO empty and full signals are generated by comparing

write pointers and read pointers. For example, if a write pointer has the same value

as a read pointer, FIFO empty signal will be generated. On the other hand, if a write

pointer has more value than a read pointers, FIFO full signal will be made. Figure

14 shows general arbitration flow in FIFO (First In First Out) based request and a

grant system. When a new flit arrives at FIFO, a write pointer gets incremented and

request signal is generated. An arbiter receive N request signals and grant only one

buffer, and this grant signal increases a read pointer of corresponding FIFO. This

type of arbitration flow is used to implement a NoC router VA and SA logic. Fairness

is a key property of an arbiter. In other words, a fair arbiter support equal service

28

Fig. 13. Example of Arbitration in FIFO

to the different requests. In FIFO environment, requesters are served in the order

they made their requests. Even though an arbiter is fair, if traffic congestion is not

fair in a NoC environment, the system cannot be fair. Figure 13 shows a example of

arbitration in FIFO.

2. Fixed Priority Arbiter

One general arbitration scheme is a fixed priority arbiter. Each input port has its own

fixed priority level, and an arbiter grants an active request signal with the highest

priority depending on this priority level. For instance, if request[0] has the highest

priority among N requests, and request[0] is active, it will be granted regardless other

request signals. If request[0] is not active, the request signal with the next highest

priority will be granted. In other words, the current request (lower priority) only

will be served if the previous request (higher priority) has not appeared or been

served already. Therefore, fixed priority arbiter can be used where there are a few

requesters. The implementation of fixed priority arbiter can be done by the following

case statement [21].

29

case (request[4:0])

5’b????1 : grant <= 5’b00001;

5’b???10 : grant <= 5’b00010;

5’b??100 : grant <= 5’b00100;

5’b?1000 : grant <= 5’b01000;

5’b10000 : grant <= 5’b10000;

5’b00000 : grant <= 5’b00000;

endcase

Fig. 14. Example of a Fixed Priority Arbiter Code

3. Round-Robin Arbiter

When we use a fixed priority arbiter in NoC design, there is no limit to how long a

lower priority request should wait until it receives a grant. In a round-robin arbiter,

every requester can take a turn in order because a request that was just served should

have the lowest priority on the next round of arbitration. A pointer register maintains

which request is the next one. Hence, a round-robin arbiter is a strong fairness arbiter

[21]. Figure 14 shows a example of a fixed priority arbiter code. In general, a round-

robin arbiter can use N fixed priority arbiter logic. Figure 15 shows a muxed parallel

priority arbiter. The parallel priority arbiter uses N fixed priority arbiters in parallel

for N requesters. Shift module shifts request to the right by t values before arbitration.

Therefore, multiplexer receives all possible grant signals for round-robin arbiter. At

this time, pointer should select which of the intermediate grant vectors will actually

be used. This design is fast, but the area of this design is too much because of N shift

module and fixed priority arbiters with a large number of requesters.

For good area and timing aspect, two fixed priority arbiters with a mask can be

used. In Figure 16, the lower arbiter receives all request signal and the upper arbiter

first masks all request signal before one request signal is selected by the round-robin

30

Fig. 15. Muxed Parallel Arbiter

Fig. 16. Two Fixed Priority Arbiters with a Mask

pointer. If upper arbiter selects a grant signal, the grant signal is chosen by MUX

[21].

4. Matrix Arbiter

Matrix arbiter uses a least recently served priority scheme by maintaining a triangle

array of state bit Wij for all i < j. Wij (row i and column j) indicates that request

i takes priority over request j. Only the upper triangular portion of the matrix need

be maintained. Figure 17 shows how a single grant output is generated for a 4-input

arbiter in matrix arbitration. This arbiter ensures that a grant is generated only

31

Fig. 17. Matrix Arbiter

Fig. 18. Tree Arbiter

if an input request with a higher priority is not asserted. The flip-flop matrix is

updated after each clock cycle to reflect the new request priorities [22]. This matrix

arbiter is a favorite arbiter for small number of inputs because it is fast, inexpensive

to implement, and provides strong fairness.

5. Tree Arbiter

With a large number of inputs, a tree arbiter organizes these inputs as a tree of smaller

arbiters. Each arbiter eagerly sends request to the upper tree before it determines

which input they will actually grant [22]. The example of tree arbiter is shown in

Figure 18.

32

C. A Generic Router

1. High-level View

Figure 19 shows the top view of a generic router. In an implementation, the number

of input and output ports are 5, and each input port has 4 virtual channels. The

inputs are composed of 128 bits incoming flit data per input port, 4-bits data enable

signal per input port, 4-bits virtual channel status per input port, and four virtual

channel requests per input port. The outputs are composed of 128-bits outgoing flit

data per output port, 4-bits output data enable signal per output port, 4-bits current

node virtual channel status signals, and 20-bits virtual channel request signals. There

are VA (Virtual Allocator) , SA (Switch Allocator), and Flit buffers (Flitbuffer p1,

Flitbuffer p2, Flitbuffer p3, Flitbuffer p4, Flitbuffer p5). Each flit buffer is composed

of 16 buffers (4 virtual channels), and each buffer can store a 128-bits flit. A 4-

bits WE (Write Enable) signal (WE p1, WE p2, WE p3, WE p4, WE p5) comes

from each previous node and each bit indicates a WE signal for each virtual channel.

For Virtual-Channel Allocator (VA), current node receives 4-bits VC status from

each neighboring router. These bits indicate how many available virtual channels a

neighboring router has. VA top module also receives total 20 request signals from

adjacent nodes. Each neighboring node send 4 virtual channel request signals in

order to get permission to access available buffers. Each head flit has the direction

information for the following flits. Therefore, flit buffer logic can know direction

of each packet and provides this direction information into VA top module. When

virtual channel arbitration is done, VA top module sends request output signals to

5 neighboring nodes including PE (Processing Element). The details is explained in

the following section. For a Switch Allocator (SA), as soon as a current node gets the

permission of next router’s virtual channel priority and next body flits arrive at flit

33

buffers, SA top module receives request signals from buffer module as input signals.

Therefore, if many body flits arrive at buffers, SA top module will receive many input

signal as logic level high. After switch allocation, RE (Read Enable) signal will be

generated. Each bit in a 4-bits RE signal indicates that corresponding flit will be

transferred into appropriate granted virtual channel.

2. Buffer Architecture

Buffer architecture for generic router is given in Figure 20. Flits arrive at flit buffers

with their enable signal (WE). Write pointers with WE signal decide the location

to store flits. 16-flits buffers are divided by 4 parts and each part is for each input

port and each buffer is corresponding to each virtual channel. The basic enable logic

for D-latch is shown in Figure 21. D-latch is used to use advantage of asynchronous

logic. All flit buffers are consisted of these D-latchs. In read operation, a RE (Read

Enable) signal is generated from the Switch Allocator (SW). According to RE and

read pointers, flit buffers send a flit into a crossbar module.

A packet is segmented into flits and then this packet can be delivered with this

segmentation. As we examine packet types in the previous chapter, a packet is consist

of a head flit, body flits, and a tail flit. When a head flit arrive at current node, the

routing logic decides the routing path for the following flits. With the decision of

the routing path, an output physical channel is also determined. In a generic buffer

architecture, each flit buffer can decode and recognize routing information in a head

flit. Each head flit has only one of five directions in the routing path: North, South,

West, East, or Local.

34

Fig. 19. Top View of a Generic Router

35

Flit_0

Flit_1

Flit_2

Flit_3

Flit_4

Flit_5

Flit_6

Flit_7

Control Logic
(Read/Write Pointer)

Flit_8

Flit_9

Flit_10

Flit_11

Control Logic

(Read/Write Pointer)

Flit_12

Flit_13

Flit_14

Flit_15

Control Logic
(Read/Write Pointer)

Input port1 To Crossbar

VC ID SA CTL

Control Logic

(Read/Write Pointer)

VC1_empty_p1

VC1_full_p1

VC2_empty_p1

VC2_full_p1

VC3_empty_p1

VC3_full_p1

VC4_empty_p1

VC4_full_p1

Generic Buffer Architecture

Fig. 20. Buffer Architecture of a Generic Router

36

Fig. 21. 1-bit D-Latch and Enable Signals

3. Virtual Channel Allocator(VA)

In a router, many input ports, which are requestor, will access a common physical

channel resource. In this case, an arbiter is required to determine how the phys-

ical channel can be shared amongst many requestors. A virtual channel allocator

is composed of two stages in Figure 22. The first stage of VA receives neighboring

router’s virtual channel status and previous router’s request signals. A direction of

a head flit is used to match VC status with VC requests. The purpose of 2nd stage

is to generate virtual channel request signals with an available virtual channel of the

next router. The two fixed priority arbiter with a mask is used to implement virtual

channel arbitration logic. The basic architecture of a virtual channel block is based

on [22]. In the first stage of VA, a 4:1 arbiter reduces the number of requests from

each input VC to one output VC. Therefore, total 20 4:1 arbiters are used in the first

stage of VA. The second stage of VA selects one from the maximum 20 requests to

use one output VC, and thus total 20 20:1 arbiters are used in the second stage of

VA.

4. Switch Allocator(SA)

Once a path is set as a routing path, a virtual channel in both input and output

port is dedicated for an entire routing path. Other flits will use the remaining VCs

in a generic router. Therefore, each packet has its own a virtual channel. Then, a

37

Fig. 22. Virtual Channel Allocator in a Generic Router

38

switch allocator will grant the following flits when they arrive at flit buffers. If there

are multiple requests, a SA will select the winner in a round-robin fashion for each

priority level. Figure 23 (a) shows switch allocator block diagram. In the first stage

of SA, each input port has v virtual channels. It means that v input channels are

sharing one crossbar port. Thus, 1st stage switch allocator selects one request from

the input VC. In the second stage of SA, each p:1 arbiter arbitrates between winning

requests from each input port, total p input ports, for output ports. Therefore, total

P v:1 arbiters are required in the first stage and P p:1 arbiter is needed for the second

stage of SA. In a router implementation, the number of virtual channel are 4 and the

number of ports are 5. Figure 23 (b) shows detail implementations. The inputs of 1st

stage of SA are data enable signals per virtual channel. For example, sa input1 v1

is coming from virtual channel 1 data enable from the north side. Therefore, there

are total 20 inputs in the 1st stage switch allocator. The output signals of 4:1 arbiter

in the 1st stage SA is a winning flit which selects the inputs of the 2nd stage SA.

P1 vc0 en signal has 5-bits width and is coming from the direction information of a

incoming flit. Hence, a incoming flit can generate a input signal for 2nd stage of SA

with direction information. With the same method, a 2nd stage arbiter will arbitrate

and select a candidate flit and thus can generate a RE (Read Enable) signal for buffers.

In the 2nd stage, the winning flit is ORing and generates the SUCCESS signal for the

1st stage arbiter. The 1st stage arbiter receives the SUCCESS signal since this arbiter

should know whether its winning flit has permission to access crossbar or not. If a

winning flit can be forwarded to crossbar, 1st stage arbiter can go further to arbitrate

next flits. Otherwise, 1st stage arbiter would continue to generate the same signal

again. During these processes, flits in a buffer have to wait for getting admission of

the crossbar. Throughput and latency can be determined by the delay of a virtual

channel allocator and switch allocator. Therefore, we need to analyze critical path

39

delay in these blocks.

5. Crossbar Switch and Other Implementation

The crossbar fabric module in the design is responsible for physically connecting an

input port to its destined output port, based on the grant issued by the scheduler.

In every crossbar, the cross-points are controlled by the CNTRL input of the mod-

ule. If a certain CNTRL bit is high, then the corresponding cross point is closed.

Figure 24 shows crossbar fabric implementation in a NoC router. 5-bits control sig-

nal(direction p1, direction p2, direction p3, direction p4, direction p5) is determined

by output signals of 2nd stage SA. This control signals are used by a crossbar to decide

which input ports have to be connected into output ports. According to the control

signals, a whole connection between source and target nodes is accomplished. RC

(Route Computation) logic is not implemented in thesis project since the RC module

is required to implement a whole system and RC module needs routing algorithm in

a NoC router. Therefore, without RC module, we implemented a generic router using

Verilog.

D. A Virtual Channel Regulator

1. High-level View

Figure 25 shows the top view of the virtual channel regulator (ViChaR) buffer archi-

tecture. The implementation environment is different from a generic router. Each a

number of input ports and output ports is 5. But there is no fixed virtual channel

since ViChaR distributes virtual channels according to network traffic. ViChaR uses

a Unified Buffer Structure (UBS) instead of individual FIFO buffers [9]. This UBS

allows a router to use a dynamically assigned virtual channel management scheme.

40

Fig. 23. Switch Allocator in a Generic Router

41

Fig. 24. Crossbar Switch in a Generic Router

42

The main difference between a generic and ViChaR router is that ViChaR uses a

novel, tabled-based design which provides single-clock operation without overhead.

In the Figure 25, VC Control Table receives many control information such as the

number of available flit buffers, the number of available virtual channels, and the

direction information of flit packets. The ViChaR is controlled by Unified Control

Logic (UCL). UCL is composed of five parts: Arriving/Departing Flit Pointers Logic,

Slot Availability Tracker, VC Availability Tracker, VC Control Table, and Token Dis-

penser. The VC and Slot Availability Tracker is looking at all VCs in VC Control

Table and thus informs the available VCs and slots of Token Dispenser in order to

assign VCs to incoming flits, and a new flit is stored in the location which the Slot

Available Tracker points out. These two blocks are located at each flit buffer module.

The VC Control Table is shown in Figure 25. This VC Control Table contains slot

IDs of all flits currently and VC IDs in the buffers. The current location of a head

flit, data flits, and a tail flit are indicated by the VC Control Table. This location

information increases buffer utilization because of flexibility, and this removes disad-

vantages caused by statically-allocated buffer architecture. In addition, it is possible

to manage a variable number of VCs using VC Control Table. The Token dispenser

is responsible for dispensing free VCs to requesting flits. A Virtual channel Allocator

(VA) receives slot status bits and each request from the previous routers as input sig-

nals. Switch Allocator (SA) also receives available slot information from VC Control

Table as input signals. The crossbar fabric module is the same as a generic router.

2. Buffer Architecture

Buffer architecture for ViChaR is shown in Figure 26. The difference between a

generic router and ViChaR buffer architecture is that ViChaR is composed of unified

buffer structure which is controlled by unified control logic (UCL). Each input port has

43

Fig. 25. Top View of a ViChaR

44

Fig. 26. Unified Buffer Structure(UBS) in a ViChaR

one UBS and UCL. In a heavy traffic, increasing the number of VCs is a more effective

way of improving performance than increasing buffer depth since many packets are

contending for routing resource. On the other hand, in light traffic, increasing buffer

depth is more efficient way than increasing the number of VCs. Therefore, it is

required to dynamically allocate buffer resource into VCs according to traffic. Figure

27 shows these limitations of statically allocated buffer architecture.

45

T D D H VC0

T D D H VC1

Two packets

blocked due to

shallow VCs

VC v

Remaining

buffer slots are

not utilized

(a) Light Traffic

Many/Shallow VCs

T D D H VC0

T D D H VC1

H VC v

(b) Heavy Traffic

Many/Shallow VCs

Inefficient Efficient

T D D

Buffer slots are

fully utilized

T D D H VC0

VC1

Both packets

accommodate

d by deep VCs

(c) Light Traffic

Few/Deep VCs

efficient

T D D H

Buffer slots are

fully utilized

T D D H VC0

VC1T D D H

Two packets

accommodate

d by deep VCs

T D D H

T D D H

Remaining

packets

blocked due

to lack of VCs

(d) Heavy Traffic

Few/Deep VCs

Inefficient

Fig. 27. Limitation of a Statically Assigned Buffer Organization

46

3. Virtual Channel Allocator(VA)

A Unified Buffer Structure (UBS) does not have a fixed number of buffering space.

For one packet, vk buffer spaces per port are dynamically allocated according to the

traffic condition. In 1st stage of VA, virtual channel allocator receives neighboring

router’s slot status and previous router’s request signals. Therefore, total P*P vk:1

arbiters in the 1st stage VA and P P:1 arbiters in the 2nd stage VA are used to set up

the routing path. The two fixed priority arbiters with a mask are used to implement

arbitration logic. The difference between a generic router VA and ViChaR VA is

that ViChaR has much more the number of inputs than a generic router in the 1st

stage VA. However, a ViChaR router has fewer the number of inputs than a generic

router in the 2nd stage VA. Therefore, during implementation, we compared area,

power consumption, and latency of these two virtual channels. Figure 28 shows VA

implementation details in a ViChaR.

4. Switch Allocator(SA)

A Switch Allocator (SA) of ViChaR is different from that of a generic router. Once

a path is set as a routing path, a switch allocator grants the following data flits

and a tail flit. Whenever a head flit sets up the routing path and the amount of

flits, the allocated number of flits will be different according to the amount of traffic.

VC Control table provides these information about the amount of the available flits

in the buffers. In the first stage of SA, 16-bits slot availability and data enable

signal are ANDing to generate valid data signals among these inputs. These inputs

go to the input of the 1st stage SA. The first stage arbiter selects a winner, and

the winner goes to the input of the 2nd stage SA with direction information. The

second stage of SA arbitrates the inputs which access to the same direction. In order

47

Fig. 28. Virtual Channel Allocator in a ViChaR

48

Fig. 29. VC/Slot Availability Tracker

to measure performance, we compared the area, power consumption, timing of SA

module between a generic and ViChaR router. Figure 30 shows SA implementation

details in a ViChaR.

5. VC/Slot Availability Tracker

A VC and Slot Availability Tracker keep track of all the VCs and slots in the VC

Control Table. Based on available VC and Slot information, new incoming packets

and flits are assigned . In Figure 29, logic high indicates that VC/Slot is avail-

able, and logic low shows that VC/Slot is occupied. Both trackers have a pointer

to point out the available entry. If all VCs and Slot are used by the packets and

flits, adjacent router will not send packets and flits any more. VC/Slot Availability

Tracker is implemented by comparing write pointer and read pointer. If the value of

both pointer is the same, VC/Slot Availability value indicate logic ’1’ which means

VC/Slot Availability in each ID has a available space to store packets and flits.

6. VC Control Table

A VC Control Table is composed of Slot IDs of all flits in the buffers. Each VC ID

has space to store a entire packet: a head flit, data flits, and a tail flit. From Figure

49

Fig. 30. Switch Allocator in a ViChaR

50

Fig. 31. VC Control Table

31, VC 0 has a head flit in slot 0, two data flits in slot 1 and 3, and a tail flit in slot

5. This scheme increases buffer utilization since the buffer space can be dynamically

assigned according to the number of packets. For example, if 10 packets are coming

from east direction, VC Control Table will assign 10 VC rooms for the packets. VC

Control Table receives VC/slot availability signals from buffer module in order to

build tables and then generate slot availability signal for Switch Allocator module.

Also it send slot status signals for neighboring routers.

7. Crossbar Switch in a ViChaR

The crossbar fabric module in a ViChaR router is responsible for physically connect-

ing an input port to its destined output port based on the control signal from SA.

If a certain CNTRL bit is high, then the corresponding cross point is closed. 5-bits

control signals(direction p1, direction p2, direction p3, direction p4, direction p5) is

determined by output signals of 2nd stage SA. This control signals are used by cross-

bar to decide which input ports have to be connected into output ports. According

to the control signals, a whole connection between source and target nodes is accom-

plished. Figure 32 shows crossbar implementation details in a ViChaR.

51

Fig. 32. Crossbar Switch in a ViChaR

52

CHAPTER VI

RESULT AND OTHER DISCUSSION

This chapter presents performance and cost measurement for a generic router and

ViChaR implementations presented in previous chapter. In order to analyze area,

power consumption and performance, these two router architectures are implemented

in structural Register-Transfer Level (RTL) Verilog and then synthesized in a Syn-

opsys Design Compiler using TSMC 180nm standard cell library. We set up the

synthesis environment using an operating voltage of 1.8V (typical voltage) and a

clock frequency of 100MHz. The router has 5 input and output ports, 4 VCs per

input port, 4 flits per VC, and 128 bits per flit. The area, power consumption, and

critical path delay is extracted from synthesized results.

A. Area Estimation

We estimated area of a generic and a ViChaR router, and investigate how it is affected

by implementing dynamically allocated buffer architecture in a ViChaR. The area

consumed by a router is divided by cell area and interconnect area.

1. Cell Area

The Cell area is composed of combinational and non-combinational area, and the

number of gate count can be calculated by the Gate Count formula. The total cell

area of a generic router and a ViChaR are shown in Table I and Figure 33. In total

cell area estimation, VA of a generic router has much more area than VA of a ViChaR

since the 2nd stage arbiters in a generic router has more the number of inputs than

that of a ViChaR. In arbitration logic, as the number of input increases, the area also

increase. On the other hand, SA of a ViChaR has more area than SA of a generic

53

Table I. Total Cell Area (TSMC 180nm), G:Generic, V:ViChaR

Total Cell Area VA G VA V SA G SA V Buffer G Buffer V Total G Total V

Combinational Area 11196 9443 1465 3492 35197 31425 47858 46251

Non-Combin. Area 7040 6233 66 1540 11146 10560 18252 18333

Total Cell Area 18236 15567 1531 5032 46343 41985 66110 64584

Percentage 27.5% 24.9% 2.3% 8% 70.2% 67.1% 100% 100%

Table II. Net Interconnect Area (TSMC 180nm), G:Generic, V:ViChaR

Interconnect Area VA G VA V SA G SA V Buffer G Buffer V Total G Total V

Net Intercon. Area 145 77 14 32 696 696 855 805

Percentage 16.9% 9.5% 1.6% 3.9% 81.5% 86.6% 100% 100%

router because the 1st stage arbiters in a ViChaR has much more input signals than

a generic router. The buffer area of a ViChaR is almost the same as that of a generic

router.

2. Interconnect and Total Area

Table II and Figure 34 show net interconnect area. Interconnect area has similar

tendency with total cell area. The interconnect area of a VA module in a generic

router is greater than that of ViChaR. On the other hand, the interconnect area of a

SA module in a ViChaR is greater than a generic router. Therefore, Total area has

Table III. Total Area (TSMC 180nm), G:Generic, V:ViChaR

Total Area VA G VA V SA G SA V Buffer G Buffer V Total G Total V

Total Area 18381 15644 1545 5064 47039 47681 66965 65389

Percentage 27.4% 24.7% 2.3% 8% 70.2% 67.3% 100% 100%

54

0

10000

20000

30000

40000

50000

60000

70000

Generic ViChaR Generic ViChaR Generic ViChaR Generic ViChaR

VA SA Buffer Total

G
a

t
e

 C
o

u
n

t

Axis Title

Total Cell Area

Combin. Area

Non-Combin. Area

Total Cell Area

Fig. 33. Total Cell Area Comparison (TSMC 180nm)

0

100

200

300

400

500

600

700

800

900

Generic ViChaR Generic ViChaR Generic ViChaR Generic ViChaR

VA SA Buffer Total

G
a

t
e

 C
o

u
n

t

Net Intercon. Area

Fig. 34. Net Interconnect Area Comparison (TSMC 180nm)

also the same trend as total cell area and net interconnect area. The total area of a

generic router and a ViChaR are shown in Table III and Figure 35.

B. Power Consumption Estimation

Power consumption is another important parameter in a NoC router design. First,

we look into dynamic power consumption which is determined by switching activity,

and then we will consider leakage power consumption.

55

0

10000

20000

30000

40000

50000

60000

70000

G
e

n
e

r
ic

V
iC

h
a

R

G
e

n
e

r
ic

V
iC

h
a

R

G
e

n
e

r
ic

V
iC

h
a

R

G
e

n
e

r
ic

V
iC

h
a

R

VA SA Buffer Total

G
a

t
e

 C
o

u
n

t

Total Area

Total Area

Fig. 35. Total Area Comparison (TSMC 180nm)

1. Dynamic Power Consumption

Design Compiler reports dynamic power consumption in each module. Cell internal

power consumption is corresponding to dynamic power in the cell when switching

activity happens. Net switching power is the power consumed when switching a net

from one state to another one. From Table IV and Figure 36, we can conclude that dy-

namic power consumption in buffers is dominant in the total power consumption since

D-latch consumes many dynamic power and has many switching activities. In addi-

tion, a virtual channel allocator also consumes similar dynamic power consumption

compared to buffers. This dynamic power consumption depends on Design Compiler

algorithm. Therefore, in order to improve correctness, we dumped switching activ-

ity through dynamic simulation and then import these switching activity into power

calculation.

2. Cell Leakage Power Consumption

From Table V and Figure 37, cell leakage power consumption is proportional to

total area which we look into in the previous section. Therefore, leakage power

56

Table IV. Dynamic Power Consumption (TSMC 180nm), G:Generic, V:ViChaR

Dynamic Power VA G VA V SA G SA V Buffer G Buffer V Total G Total V

Cell Internal(mW) 80.46 85.95 13.93 28.72 87.29 155.07 181.68 269.74

Net Switching (mW) 70.53 93.84 12.23 32.21 35.26 68.38 118.03 195.432

Total Dynamic (mW) 151.0 180.8 26.16 60.93 122.55 223.46 299.7 465.17

Table V. Leakage Power Consumption (TSMC 180nm), G:Generic, V:ViChaR

Leakage Power VA G VA V SA G SA V Buffer G Buffer V Total G Total V

Cell Internal(nW) 381.3 328.57 43.67 103.8 1991.2 1980.8 2416.19 2413.21

consumption in buffer module is dominant in the total leakage power consumption.

Future technology will suffer from increased cell-leakage. Therefore, the leakage power

also will become an important part of the a NoC router.

C. Latency Estimation

The latency can be described as the time passing from a source node to a destination

node through intermediate nodes. In this thesis, we measure critical path delay inside

a router. The critical path delay is important factor to decide performance such as

throughput. Critical path delay can be determined by the delay of virtual channel

allocator (VA) and switch allocator (SA). Figure 38 shows the pipeline stages of both

a generic router and the ViChaR router. [16] presents that the critical path is not

changed and the performance is not affected by modifying VA and SA. Through our

implementation, the critical path is not changed, but critical path delay is significantly

affected by modified VA and SA. In order to compute critical path delay, we do Static

Timing Analysis (STA) using Design Compiler. Figure 39 shows the VA delay in a

generic router. The delay of from a vc0 p1 request input signal to 2nd stage VA

57

0

50

100

150

200

250

Generic ViChaR Generic ViChaR Generic ViChaR

VA SA Buffer

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

(m
W

)

Dynamic Power Consumption

Cell Internal(mW)

Net Switching(mW)

Total Dynamic(mW)

Fig. 36. Dynamic Power Consumption Comparison (TSMC 180nm)

0
200
400
600
800

1000

1200

1400

1600

1800

2000

Generic ViChaR Generic ViChaR Generic ViChaR

VA SA Buffer

n
W

Cell Leakage(nW)

Cell Leakage(nW)

Fig. 37. Leakage Power Consumption Comparison (TSMC 180nm)

58

Fig. 38. Generic and ViChaR NoC Router Pipeline

output signal is 4.28ns. Figure 40 shows the VA delay in a ViChaR router. The delay

of from p1 request to outp1 en is 4.14ns. The delay(3.06ns) of 1st stage VA arbiter

in a ViChaR is larger than that of 1st stage VA arbiter in a generic router (0.92ns)

because the number of input in a ViChaR router increases. On the other hand, the

delay(1.08ns) of 2nd stage VA arbiter in a ViChaR is smaller than that (3.36ns) of a

2nd stage VA arbiter in a generic router because the number of input in a ViChaR

router increases.

Figure 41 shows the delay of a switch allocator in a generic router, and Figure

42 shows the delay of switch allocator in a ViChaR router. In the SA module timing

analysis, the delay of 2nd stage arbiter between a generic router and a ViChaR router

is almost the same, but the delay of 1st stage arbiter is quite different. The 1st stage

arbiter in a ViChaR router has more inputs than the 1st stage arbiter in a generic

router. Therefore, the delay (0.96ns) of a 1st stage arbiter in a generic router is

shorter than the delay (3.02ns) of a 1st stage arbiter in a ViChaR router. In other

words, this delay will decrease performance of the ViChaR. The delay of 2nd stage

59

 Startpoint: vc0_p1_request(input port)

 Endpoint: arbiter_top/VA_top/VA_2nd_v1_p1/gnt0

 (rising edge-triggered flip-flop clocked by clock')

 Point Incr Path

 --

 clock (input port clock) (rise edge) 0.00 0.00

 input external delay 0.00 0.00 f

 vc0_p1_request (in) 0.00 0.00 f

 arbiter_top/vc0_p1_request (arbiter_top) 0.00 0.00 f

 arbiter_top/VA_top/vc0_p1_request (VA_top) 0.00 0.00 f

 arbiter_top/VA_top/U589/Y (OAI21X1) 0.05 0.05 r

 arbiter_top/VA_top/U127/Y (INVX2) 0.06 0.11 f

 arbiter_top/VA_top/VA_1st_p1_1/req0 (arbiter_21) 0.00 0.11 f

 arbiter_top/VA_top/VA_1st_p1_1/U31/Y (INVX2) 0.08 0.19 r

 arbiter_top/VA_top/VA_1st_p1_1/U30/Y (OAI22X1) 0.12 0.31 f

 arbiter_top/VA_top/VA_1st_p1_1/U25/Y (NOR2X1) 0.20 0.52 r

 arbiter_top/VA_top/VA_1st_p1_1/U24/Y (OAI21X1) 0.11 0.62 f

 arbiter_top/VA_top/VA_1st_p1_1/U23/Y (INVX2) 0.06 0.68 r

 arbiter_top/VA_top/VA_1st_p1_1/gnt0 (arbiter_21) 0.00 0.68 r

 arbiter_top/VA_top/U266/Y (INVX2) 0.09 0.77 f

 arbiter_top/VA_top/U1063/Y (NOR2X1) 0.16 0.92 r

 arbiter_top/VA_top/VA_2nd_v1_p1/req0 (arbiter_20_19) 0.00 0.92 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U175/Y (AOI22X1) 0.12 1.05 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U174/Y (OAI21X1) 0.12 1.17 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U173/Y (INVX2) 0.06 1.23 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U172/Y (OAI21X1) 0.12 1.35 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U168/Y (NOR2X1) 0.14 1.49 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U167/Y (OAI21X1) 0.18 1.67 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U162/Y (NOR2X1) 0.15 1.82 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U161/Y (OAI21X1) 0.12 1.94 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U160/Y (INVX2) 0.06 2.00 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U159/Y (OAI21X1) 0.15 2.15 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U154/Y (NOR2X1) 0.15 2.30 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U153/Y (OAI21X1) 0.09 2.39 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U152/Y (INVX2) 0.07 2.46 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U151/Y (OAI21X1) 0.13 2.59 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U150/Y (INVX2) 0.04 2.63 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U148/Y (NAND2X1) 0.13 2.76 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U147/Y (AOI21X1) 0.13 2.89 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U146/Y (OAI21X1) 0.12 3.01 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U145/Y (AOI21X1) 0.11 3.11 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U144/Y (INVX2) 0.10 3.22 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U139/Y (NOR2X1) 0.77 3.99 f

 arbiter_top/VA_top/VA_2nd_v1_p1/U138/Y (OAI21X1) 0.24 4.22 r

 arbiter_top/VA_top/VA_2nd_v1_p1/U137/Y (INVX2) 0.05 4.28 f

 arbiter_top/VA_top/VA_2nd_v1_p1/gnt0 (arbiter_20_19)

Fig. 39. VA Critical Path Delay in a Generic Router

60

 Startpoint: p1_request (input port)

 Endpoint: output_p1_en (output port)

 Path Group: (none)

 Path Type: max

 Point Incr Path

 input external delay 0.00 0.00 r

 p1_request (in) 0.00 0.00 r

 arbiter_top/p1_request (arbiter_top) 0.00 0.00 r

 arbiter_top/VA_top/p1_request (VA_top) 0.00 0.00 r

 arbiter_top/VA_top/U81/Y (INVX2) 0.07 0.07 f

 arbiter_top/VA_top/U686/Y (BUFX2) 0.19 0.25 f

 arbiter_top/VA_top/U352/Y (NOR2X1) 0.17 0.43 r

 arbiter_top/VA_top/VA_1st_p1_1/req0 (arbiter_16_1_24) 0.00 0.43 r

 arbiter_top/VA_top/VA_1st_p1_1/U139/Y (AOI22X1) 0.12 0.55 f

 arbiter_top/VA_top/VA_1st_p1_1/U138/Y (OAI21X1) 0.12 0.67 r

 arbiter_top/VA_top/VA_1st_p1_1/U137/Y (INVX2) 0.06 0.73 f

 arbiter_top/VA_top/VA_1st_p1_1/U136/Y (OAI21X1) 0.15 0.88 r

 arbiter_top/VA_top/VA_1st_p1_1/U131/Y (NOR2X1) 0.15 1.03 f

 arbiter_top/VA_top/VA_1st_p1_1/U130/Y (INVX2) 0.10 1.13 r

 arbiter_top/VA_top/VA_1st_p1_1/U125/Y (NOR2X1) 0.12 1.25 f

 arbiter_top/VA_top/VA_1st_p1_1/U124/Y (OAI21X1) 0.14 1.39 r

 arbiter_top/VA_top/VA_1st_p1_1/U123/Y (AOI21X1) 0.11 1.49 f

 arbiter_top/VA_top/VA_1st_p1_1/U121/Y (NAND2X1) 0.14 1.64 r

 arbiter_top/VA_top/VA_1st_p1_1/U120/Y (AOI21X1) 0.13 1.76 f

 arbiter_top/VA_top/VA_1st_p1_1/U119/Y (OAI21X1) 0.12 1.89 r

 arbiter_top/VA_top/VA_1st_p1_1/U118/Y (AOI21X1) 0.11 1.99 f

 arbiter_top/VA_top/VA_1st_p1_1/U117/Y (INVX2) 0.10 2.09 r

 arbiter_top/VA_top/VA_1st_p1_1/U167/Y (OR2X2) 0.19 2.28 r

 arbiter_top/VA_top/VA_1st_p1_1/U166/Y (INVX2) 0.37 2.65 f

 arbiter_top/VA_top/VA_1st_p1_1/U62/Y (NAND3X1) 0.21 2.86 r

 arbiter_top/VA_top/VA_1st_p1_1/U58/Y (INVX2) 0.05 2.91 f

 arbiter_top/VA_top/VA_1st_p1_1/U57/Y (AOI22X1) 0.08 2.99 r

 arbiter_top/VA_top/VA_1st_p1_1/U56/Y (NOR2X1) 0.07 3.06 f

 arbiter_top/VA_top/VA_1st_p1_1/gnt5 (arbiter_16_1_24) 0.00 3.06 f

 arbiter_top/VA_top/U666/Y (NOR2X1) 0.07 3.13 r

 arbiter_top/VA_top/U662/Y (NAND3X1) 0.05 3.18 f

 arbiter_top/VA_top/U112/Y (OR2X2) 0.14 3.33 f

 arbiter_top/VA_top/VA_2nd_p1/req0 (arbiter_5_9) 0.00 3.33 f

 arbiter_top/VA_top/VA_2nd_p1/U36/Y (AOI22X1) 0.12 3.45 r

 arbiter_top/VA_top/VA_2nd_p1/U35/Y (OAI21X1) 0.11 3.56 f

 arbiter_top/VA_top/VA_2nd_p1/U34/Y (INVX2) 0.09 3.65 r

 arbiter_top/VA_top/VA_2nd_p1/U33/Y (NAND3X1) 0.05 3.70 f

 arbiter_top/VA_top/VA_2nd_p1/U32/Y (INVX2) 0.11 3.81 r

 arbiter_top/VA_top/VA_2nd_p1/U27/Y (OAI21X1) 0.07 3.88 f

 arbiter_top/VA_top/VA_2nd_p1/U26/Y (OAI21X1) 0.06 3.94 r

 arbiter_top/VA_top/VA_2nd_p1/U25/Y (AND2X1) 0.08 4.03 r

 arbiter_top/VA_top/VA_2nd_p1/gnt1 (arbiter_5_9) 0.00 4.03 r

 arbiter_top/VA_top/U366/Y (NOR2X1) 0.07 4.09 f

 arbiter_top/VA_top/U365/Y (NAND3X1) 0.04 4.14 r

 arbiter_top/VA_top/output_p1_en (VA_top) 0.00 4.14 r

Fig. 40. VA Critical Path Delay in a ViChaR Router

61

arbiter in a ViChaR router determines the minimum clock period and affect pipeline

depth or the clock frequency.

62

 Startpoint: output1_v1_en[0]

 Endpoint: dpsram_top/reg_dpsram_port1/RE_edge_reg[0]

 Path Group: clock

 Path Type: max

 Point Incr Path

-

 arbiter_top/VA_top/output1_v1_en[0] (VA_top) 0.00 0.00 f

 arbiter_top/U237/Y (INVX2) 0.06 0.06 r

 arbiter_top/U503/Y (NAND2X1) 0.05 0.11 f

 arbiter_top/U502/Y (NOR2X1) 0.06 0.17 r

 arbiter_top/U491/Y (NAND3X1) 0.09 0.26 f

 arbiter_top/SA_top/sa_input1_v1 (SA_top) 0.00 0.26 f

 arbiter_top/SA_top/SA_1st_stage_p1/req0 (arbiter_4_5_4) 0.00 0.26 f

 arbiter_top/SA_top/SA_1st_stage_p1/U31/Y (INVX2) 0.09 0.35 r

 arbiter_top/SA_top/SA_1st_stage_p1/U30/Y (OAI22X1) 0.13 0.48 f

 arbiter_top/SA_top/SA_1st_stage_p1/U25/Y (NOR2X1) 0.20 0.68 r

 arbiter_top/SA_top/SA_1st_stage_p1/U22/Y (OAI21X1) 0.07 0.75 f

 arbiter_top/SA_top/SA_1st_stage_p1/U21/Y (OAI21X1) 0.07 0.82 r

 arbiter_top/SA_top/SA_1st_stage_p1/U20/Y (AND2X1) 0.14 0.96 r

 arbiter_top/SA_top/SA_1st_stage_p1/gnt1 (arbiter_4_5_4) 0.00 0.96 r

 arbiter_top/SA_top/U260/Y (NOR2X1) 0.07 1.03 f

 arbiter_top/SA_top/U259/Y (NAND3X1) 0.11 1.14 r

 arbiter_top/SA_top/U258/Y (NOR2X1) 0.12 1.26 f

 arbiter_top/SA_top/U71/Y (INVX2) 0.07 1.33 r

 arbiter_top/SA_top/U246/Y (NOR2X1) 0.06 1.39 f

 arbiter_top/SA_top/U244/Y (AOI22X1) 0.11 1.50 r

 arbiter_top/SA_top/U243/Y (NAND3X1) 0.12 1.62 f

 arbiter_top/SA_top/SA_2nd_stage_S/req0 (arbiter_5_3) 0.00 1.62 f

 arbiter_top/SA_top/SA_2nd_stage_S/U36/Y (AOI22X1) 0.14 1.76 r

 arbiter_top/SA_top/SA_2nd_stage_S/U35/Y (OAI21X1) 0.11 1.87 f

 arbiter_top/SA_top/SA_2nd_stage_S/U34/Y (INVX2) 0.09 1.96 r

 arbiter_top/SA_top/SA_2nd_stage_S/U33/Y (NAND3X1) 0.05 2.01 f

 arbiter_top/SA_top/SA_2nd_stage_S/U32/Y (INVX2) 0.11 2.12 r

 arbiter_top/SA_top/SA_2nd_stage_S/U31/Y (OAI21X1) 0.09 2.21 f

 arbiter_top/SA_top/SA_2nd_stage_S/U30/Y (INVX2) 0.09 2.30 r

 arbiter_top/SA_top/SA_2nd_stage_S/gnt0 (arbiter_5_3) 0.00 2.30 r

 arbiter_top/SA_top/U296/Y (NOR2X1) 0.07 2.37 f

 arbiter_top/SA_top/U295/Y (NAND3X1) 0.13 2.50 r

 arbiter_top/SA_top/U294/Y (AND2X1) 0.08 2.58 r

 arbiter_top/SA_top/RE_p1[0] (SA_top) 0.00 2.58 r

Fig. 41. SA Critical Path Delay in a Generic Router

63

 Startpoint: p1_request (input port)

 Endpoint: dpsram_top/reg_dpsram_port1/RE_edge_reg[0]

 Path Group: clock

 Path Type: max

 Point Incr Path

 --

 clock (input port clock) (rise edge) 0.00 0.00

 input external delay 0.00 0.00 r

 p1_request (in) 0.00 0.00 r

 arbiter_top/p1_request (arbiter_top) 0.00 0.00 r

 arbiter_top/SA_top/p1_request (SA_top) 0.00 0.00 r

 arbiter_top/SA_top/U682/Y (INVX2) 0.19 0.19 f

 arbiter_top/SA_top/U280/Y (NOR2X1) 0.18 0.38 r

 arbiter_top/SA_top/SA_1st_stage_p1/req0 (arbiter_16_5_4)

 arbiter_top/SA_top/SA_1st_stage_p1/U139/Y (AOI22X1) 0.12 0.50 f

 arbiter_top/SA_top/SA_1st_stage_p1/U138/Y (OAI21X1) 0.12 0.62 r

 arbiter_top/SA_top/SA_1st_stage_p1/U137/Y (INVX2) 0.06 0.69 f

 arbiter_top/SA_top/SA_1st_stage_p1/U136/Y (OAI21X1) 0.15 0.83 r

 arbiter_top/SA_top/SA_1st_stage_p1/U131/Y (NOR2X1) 0.15 0.99 f

 arbiter_top/SA_top/SA_1st_stage_p1/U130/Y (INVX2) 0.10 1.08 r

 arbiter_top/SA_top/SA_1st_stage_p1/U125/Y (NOR2X1) 0.12 1.20 f

 arbiter_top/SA_top/SA_1st_stage_p1/U124/Y (OAI21X1) 0.14 1.34 r

 arbiter_top/SA_top/SA_1st_stage_p1/U123/Y (AOI21X1) 0.11 1.45 f

 arbiter_top/SA_top/SA_1st_stage_p1/U121/Y (NAND2X1) 0.14 1.59 r

 arbiter_top/SA_top/SA_1st_stage_p1/U120/Y (AOI21X1) 0.13 1.72 f

 arbiter_top/SA_top/SA_1st_stage_p1/U119/Y (OAI21X1) 0.12 1.84 r

 arbiter_top/SA_top/SA_1st_stage_p1/U118/Y (AOI21X1) 0.11 1.95 f

 arbiter_top/SA_top/SA_1st_stage_p1/U117/Y (INVX2) 0.10 2.05 r

 arbiter_top/SA_top/SA_1st_stage_p1/U167/Y (OR2X2) 0.19 2.24 r

 arbiter_top/SA_top/SA_1st_stage_p1/U166/Y (INVX2) 0.37 2.60 f

 arbiter_top/SA_top/SA_1st_stage_p1/U62/Y (NAND3X1) 0.21 2.82 r

 arbiter_top/SA_top/SA_1st_stage_p1/U58/Y (INVX2) 0.05 2.87 f

 arbiter_top/SA_top/SA_1st_stage_p1/U57/Y (AOI22X1) 0.08 2.95 r

 arbiter_top/SA_top/SA_1st_stage_p1/U56/Y (NOR2X1) 0.08 3.02 f

 arbiter_top/SA_top/SA_1st_stage_p1/gnt5 (arbiter_16_5_4)

 arbiter_top/SA_top/U98/Y (INVX2) 0.11 3.14 r

 arbiter_top/SA_top/U391/Y (OAI22X1) 0.08 3.22 f

 arbiter_top/SA_top/U390/Y (NOR2X1) 0.07 3.28 r

 arbiter_top/SA_top/U389/Y (NAND3X1) 0.05 3.33 f

 arbiter_top/SA_top/U23/Y (OR2X2) 0.15 3.48 f

 arbiter_top/SA_top/SA_2nd_stage_E/req0 (arbiter_5_1)

 arbiter_top/SA_top/SA_2nd_stage_E/U36/Y (AOI22X1) 0.12 3.61 r

 arbiter_top/SA_top/SA_2nd_stage_E/U35/Y (OAI21X1) 0.11 3.72 f

 arbiter_top/SA_top/SA_2nd_stage_E/U34/Y (INVX2) 0.09 3.80 r

 arbiter_top/SA_top/SA_2nd_stage_E/U33/Y (NAND3X1) 0.05 3.86 f

 arbiter_top/SA_top/SA_2nd_stage_E/U32/Y (INVX2) 0.11 3.97 r

 arbiter_top/SA_top/SA_2nd_stage_E/U31/Y (OAI21X1) 0.09 4.06 f

 arbiter_top/SA_top/SA_2nd_stage_E/U30/Y (INVX2) 0.05 4.11 r

 arbiter_top/SA_top/SA_2nd_stage_E/gnt0 (arbiter_5_1)

 arbiter_top/SA_top/U675/Y (NOR2X1) 0.06 4.17 f

 arbiter_top/SA_top/U673/Y (NAND3X1) 0.10 4.27 r

 arbiter_top/SA_top/U677/Y (INVX2) 0.22 4.49 f

 arbiter_top/SA_top/U672/Y (NOR2X1) 0.08 4.57 r

 arbiter_top/SA_top/RE_p1[0] (SA_top) 0.00 4.57 r

 arbiter_top/RE_p1[0] (arbiter_top) 0.00 4.57 r

 dpsram_top/RE_p1[0] (dpsram_top) 0.00 4.57 r

 dpsram_top/reg_dpsram_port1/RE[0] (dpsram_4) 0.00 4.57 r

Fig. 42. SA Critical Path Delay in a ViChaR Router

64

CHAPTER VII

CONCLUSION AND FUTURE WORK

A. Conclusion

In this thesis, a generic router and a ViChaR router are reexamined through imple-

mentation using a hardware description language called Verilog. A Design Compiler

is used to synthesize RTL (Register Transfer Level) code and then area, power con-

sumption, and logic delay is extracted from generated code. With the simulation

results the following question which ViChaR claimed is answered:

1) In a ViChaR router, does the critical path delay of a switch allocator affect

pipeline depth or clock frequency? Yes, the delay of a switch allocator in a ViChaR

router increases clock frequency. (77% increase)

2) Compared to a generic router, does a ViChaR router increase power consump-

tion? Yes, hardware such as VC Control Table and VC/Slot Availability Tracker

increase dynamic and leakage power consumption.(35% increase)

3) Does a ViChaR router have higher design complexity? Yes, many control

signal for VC Control Table should be managed in time.

We implement buffer module to store data packets, a virtual channel allocator

(VA) and a switch allocator (SA), a crossbar switch in a generic router. In addition, we

implement VC Control Table and VC/Slot Availability Tracket for a ViChaR router.

With the implementation, we find that the increased number of input in a ViChaR

switch allocator influence clock frequency and affect pipeline depth. Therefore, the

performance in a ViChaR router should be decreased.

65

B. Future Work

Our future plan for this thesis project is to find the best solution for dynamic buffer

architecture. This buffer structure should avoid HoL blocking problem, increase buffer

utilization compared to previous design, decrease arbitration time, and also decrease

control table size compare to ViChaR. Finally, these implementation can be verified

by further process such as gate level design, pre or post simulation, layout and man-

ufacturing steps. This work will require many constraints to get post layout design

library.

66

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: A new SoC paradigm,”

Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inteconnection

networks,” in DAC ’01: Proceedings of the 38th Conference on Design Automa-

tion, Jun. 2001, pp. 684–689.

[3] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched

interconnections,” in DATE ’00: Proceedings of the Conference on Design, Au-

tomation and Test in Europe, Mar. 2000, pp. 250–256.

[4] X. Chen and L. Peh, “Leakage power modeling and optimization in interconnec-

tion networks,” in ISLPED ’03: Proceedings of the 2003 International Sympo-

sium on Low Power Electronics and Design, Aug. 2003, pp. 90–95.

[5] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J. Soininen, M. Forsell, K. Tien-

syria, and A. Hemani, “A network on chip architecture and design methodology,”

in ISVLSI ’02: Proceedings of the IEEE Computer Society Annual Symposium

on VLSI, Apr. 2002, pp. 117–122.

[6] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram, “An empirical in-

vestigation of mesh and torus NoC topologies under different routing algorithms

and traffic models,” in DSD ’07: Proceedings of the 10th Euromicro Confer-

ence on Digital System Design Architectures, Methods and Tools, Aug. 2007,

pp. 19–26.

[7] F. Karim, A. Nguyen, S. Dey, and R. Rao, “On-chip communication architecture

67

for OC-768 network processors,” in DAC ’01: Proceedings of the 38th Conference

on Design Automation, Jun. 2001, pp. 678–683.

[8] J. Hu, Ü. Y. Ogras, and R. Marculescu, “System-level buffer allocation for

application-specific networks-on-chip router design,” IEEE Trans. on CAD of

Integrated Circuits and Systems, vol. 25, no. 12, pp. 2919–2933, Jan. 2006.

[9] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and C. R. Das,

“ViChaR: A dynamic virtual channel regulator for network-on-chip routers,” in

MICRO ’39: Proceedings of the 39th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, Dec. 2006, pp. 333–346.

[10] Y. Tamir and G. L. Frazier, “High-performance multi-queue buffers for VLSI

communications switches,” SIGARCH Comput. Archit. News, vol. 16, no. 2, pp.

343–354, 1988.

[11] N. Ni, M. Pirvu, and L. Bhuyan, “Circular buffered switch design with wormhole

routing and virtual channels,” in ICCD ’98: Proceedings of the International

Conference on Computer Design, Oct. 1998, pp. 466–473.

[12] J. Ding and L. N. Bhuyan, “Evaluation of multi-queue buffered multistage in-

terconnection networks under uniform and non-uniform traffic patterns,” Inter-

national Journal of System Science, vol. 28, no. 11, pp. 1115–1128, 1997.

[13] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques in

direct networks,” Computer, vol. 26, no. 2, pp. 62–76, 1993.

[14] P. Kernani and L. Kleinrock, “Virtual cut-through: A new computer commu-

nication switching technique,” Computer Network, vol. 3, no. 2, pp. 267–286,

1979.

68

[15] Z. Lu and A. Jantsch, “Flit ejection in on-chip wormhole-switched networks

with virtual channels,” in NORCHIP ’04: Proceedings of the 2004 IEEE/ACM

International Conference on Norchip, Nov. 2004, pp. 273–276.

[16] W. J. Dally and H. Aoki, “Deadlock-free adaptive routing in multicomputer

networks using virtual channels,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no.

4, pp. 466–475, Jun. 1993.

[17] S. Ramany and D. Eager, “The interaction between virtual channel flow control

and adaptive routing in wormhole networks,” in ICS ’94: Proceedings of the 8th

International Conference on Supercomputing, Jul. 1994, pp. 136–145.

[18] Y. Tamir and G. L. Frazier, “Dynamically-allocated multi-queue buffers for VLSI

communication switches,” IEEE Trans. Comput., vol. 41, no. 6, pp. 725–737,

1992.

[19] Synopsys Design Compiler, “Design and testing of VLSI circuits,” http://www.

seas.gwu.edu/∼vlsi/ece128/refs.html; accessed June 8, 2008.

[20] R. U. R. Mocho, G. H. Sartori, R. P. Ribas, and A. I. Reis, “Asynchronous

circuit design on reconfigurable devices,” in SBCCI ’06: Proceedings of the 19th

Annual Symposium on Integrated Circuits and Systems Design, Aug. 2006, pp.

20–25.

[21] M. Weber, “Arbiters: Design ideas and coding styles,” http://www.siliconlogic.

com/sle asic fpga engineering papers.asp; accessed June 8, 2008.

[22] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel routers for

on-chip networks,” in ISCA ’04: Proceedings of the 31st Annual International

Symposium on Computer Architecture, Jun. 2004, pp. 188–197.

69

APPENDIX A

VERILOG CODES IN A GENERIC ROUTER

70

`timescale 1ns/1ps

module Router (

clock, rst,
Data_p1, Data_p2, Data_p3, Data_p4, Data_p5, Data_p1_v1_enable,Data_p1_v2_enable,
Data_p1_v3_enable, Data_p1_v4_enable, Data_p2_v1_enable, Data_p2_v2_enable,

:
Data_p4_v3_enable,
Data_p4_v4_enable, Data_p5_v1_enable, Data_p5_v2_enable, Data_p5_v3_enable,
Data_p5_v4_enable, VC_status_p1, VC_status_p2, VC_status_p3, VC_status_p4, VC_status_p5,
vc0_p1_request, vc1_p1_request, vc2_p1_request, vc3_p1_request,

:
vc0_p5_request, vc1_p5_request, vc2_p5_request, vc3_p5_request,
out1_v1_enable_out, out1_v2_enable_out, out1_v3_enable_out, out1_v4_enable_out,

:
out5_v1_enable_out, out5_v2_enable_out, out5_v3_enable_out, out5_v4_enable_out,
Q_out1, Q_out2, Q_out3, Q_out4, Q_out5

);//Main parts in the top module

crossbar crossbar(
.clock(clock), .rst(rst),
.Q_p1(Q_p1), .Q_p2(Q_p2), .Q_p3(Q_p3), .Q_p4(Q_p4), .Q_p5(Q_p5),
.Q_out1(Q_out1), .Q_out2(Q_out2), .Q_out3(Q_out3), .Q_out4(Q_out4), .Q_out5(Q_out5),
.direction_p1(direction_p1), .direction_p2(direction_p2), .direction_p3(direction_p3),
.direction_p4(direction_p4), .direction_p5(direction_p5));

dpsram_top dpsram_top(
.clock(clock), .rst(rst),
.WE_p1(WE_p1), .WE_p2(WE_p2), .WE_p3(WE_p3), .WE_p4(WE_p4), .WE_p5(WE_p5),
.RE_p1(RE_p1), .RE_p2(RE_p2), .RE_p3(RE_p3), .RE_p4(RE_p4), .RE_p5(RE_p5),
.Data_p1(Data_p1), .Data_p2(Data_p2), .Data_p3(Data_p3), .Data_p4(Data_p4), .Data_p5(Data_p5),
.Q_p1(Q_p1), .Q_p2(Q_p2), .Q_p3(Q_p3), .Q_p4(Q_p4), .Q_p5(Q_p5),.Q_p1(Q_p1), .Q_p2(Q_p2), .Q_p3(Q_p3), .Q_p4(Q_p4), .Q_p5(Q_p5),
.direction_vc0_p1(direction_vc0_p1), .direction_vc1_p1(direction_vc1_p1),
.direction_vc2_p1(direction_vc2_p1), .direction_vc3_p1(direction_vc3_p1),

:
.direction_vc2_p5(direction_vc2_p5), .direction_vc3_p5(direction_vc3_p5));

arbiter_top arbiter_top(
.clock(clock), .rst(rst),
.Data_p1_v1_enable(Data_p1_v1_enable), .Data_p1_v2_enable(Data_p1_v2_enable),
.Data_p1_v3_enable(Data_p1_v3_enable), .Data_p1_v4_enable(Data_p1_v4_enable),

:
.Data_p5_v1_enable(Data_p5_v1_enable), .Data_p5_v2_enable(Data_p5_v2_enable),
.Data_p5_v3_enable(Data_p5_v3_enable), .Data_p5_v4_enable(Data_p5_v4_enable),

.direction_vc0_p1(direction_vc0_p1), .direction_vc0_p2(direction_vc0_p2),

.direction_vc0_p3(direction_vc0_p3), .direction_vc0_p4(direction_vc0_p4),

.direction_vc0_p5(direction_vc0_p5),
:

.direction_vc3_p5(direction_vc3_p5),

.VC_status_p1(VC_status_p1), .VC_status_p2(VC_status_p2), .VC_status_p3(VC_status_p3),

.VC_status_p4(VC_status_p4), .VC_status_p5(VC_status_p5),

.vc0_p1_request(vc0_p1_request), .vc1_p1_request(vc1_p1_request),
:

.vc2_p5_request(vc2_p5_request), .vc3_p5_request(vc3_p5_request),

.out1_v1_enable(out1_v1_enable_out), .out1_v2_enable(out1_v2_enable_out),
:

.out5_v3_enable(out5_v3_enable_out), .out5_v4_enable(out5_v4_enable_out),

.direction_p1(direction_p1), .direction_p2(direction_p2), .direction_p3(direction_p3),

.direction_p4(direction_p4), .direction_p5(direction_p5),

.RE_p1(RE_p1), .RE_p2(RE_p2), .RE_p3(RE_p3), .RE_p4(RE_p4), .RE_p5(RE_p5));

endmodule

Fig. 43. Verilog code of Top module in a generic router

71

//This is the part of Buffer module
always @(WE or rst) begin
if(!rst) write_pointer_v1 = 4'd0;
else if(WE == 4'h1) write_pointer_v1 = #1 write_pointer_v1 + 1'b1;
else;

end
always @(WE or rst) begin
if(!rst) write_pointer_v2 = 4'd0;
else if(WE == 4'h2) write_pointer_v2 = #1 write_pointer_v2 + 1'b1;
else;

end
always @(WE or rst) begin
if(!rst) write_pointer_v3 = 4'd0;
else if(WE == 4'h4) write_pointer_v3 = #1 write_pointer_v3 + 1'b1;
else;

end
always @(WE or rst) begin
if(!rst) write_pointer_v4 = 4'd0;
else if(WE == 4'h8) write_pointer_v4 = #1 write_pointer_v4 + 1'b1;
else;

end

always @(negedge rst or posedge clock) begin
if(!rst) read_pointer_v1 = 5'h0;
else if(RE_edge == 4'h1) read_pointer_v1 = read_pointer_v1 + 1'b1;
else;

end
always @(negedge rst or posedge clock) begin
if(!rst) read_pointer_v2 = 5'h0;
else if(RE_edge == 4'h2) read_pointer_v2 = read_pointer_v2 + 1'b1;
else;

end
always @(negedge rst or posedge clock) begin
if(!rst) read_pointer_v3 = 5'h0;
else if(RE_edge == 4'h4) read_pointer_v3 = read_pointer_v3 + 1'b1;
else;

end
always @(negedge rst or posedge clock) begin
if(!rst) read_pointer_v4 = 5'h0;
else if(RE_edge == 4'h8) read_pointer_v4 = read_pointer_v4 + 1'b1;
else;

end

Fig. 44. Partial verilog code of Buffer module in a generic router

72

//This is parts of VA in generic router
wire [3:0] select_vc0_p1;
assign select_vc0_p1 = (direction_vc0_p1 == 3'd1) ? VC_status_p1 :

(direction_vc0_p1 == 3'd2) ? VC_status_p2 :
(direction_vc0_p1 == 4'd3) ? VC_status_p3 :
(direction_vc0_p1 == 4'd4) ? VC_status_p4 :
(direction_vc0_p1 == 4'd5) ? VC_status_p5 :

4'h0;

wire [3:0] request_vc0_p1;
assign request_vc0_p1[3] = vc0_p1_request & select_vc0_p1[3];
assign request_vc0_p1[2] = vc0_p1_request & select_vc0_p1[2];
assign request_vc0_p1[1] = vc0_p1_request & select_vc0_p1[1];
assign request_vc0_p1[0] = vc0_p1_request & select_vc0_p1[0];

//input port1
arbiter VA_1st_p1_1(

.clock(clock),

.rst(rst),

.req3(request_vc0_p1[3]),

.req2(request_vc0_p1[2]),

.req1(request_vc0_p1[1]),

.req0(request_vc0_p1[0]),

.gnt3(gnt3_p1_1),

.gnt2(gnt2_p1_1),

.gnt1(gnt1_p1_1),

.gnt0(gnt0_p1_1)
););

assign gnt3_p1_1_north = (direction_vc0_p1 == 3'h1) ? gnt3_p1_1 : 1'b0;
assign gnt2_p1_1_north = (direction_vc0_p1 == 3'h1) ? gnt2_p1_1 : 1'b0;
assign gnt1_p1_1_north = (direction_vc0_p1 == 3'h1) ? gnt1_p1_1 : 1'b0;
assign gnt0_p1_1_north = (direction_vc0_p1 == 3'h1) ? gnt0_p1_1 : 1'b0;

assign gnt3_p1_1_south = (direction_vc0_p1 == 3'h2) ? gnt3_p1_1 : 1'b0;
assign gnt2_p1_1_south = (direction_vc0_p1 == 3'h2) ? gnt2_p1_1 : 1'b0;
assign gnt1_p1_1_south = (direction_vc0_p1 == 3'h2) ? gnt1_p1_1 : 1'b0;
assign gnt0_p1_1_south = (direction_vc0_p1 == 3'h2) ? gnt0_p1_1 : 1'b0;

assign gnt3_p1_1_west = (direction_vc0_p1 == 3'h3) ? gnt3_p1_1 : 1'b0;
assign gnt2_p1_1_west = (direction_vc0_p1 == 3'h3) ? gnt2_p1_1 : 1'b0;
assign gnt1_p1_1_west = (direction_vc0_p1 == 3'h3) ? gnt1_p1_1 : 1'b0;
assign gnt0_p1_1_west = (direction_vc0_p1 == 3'h3) ? gnt0_p1_1 : 1'b0;

assign gnt3_p1_1_east = (direction_vc0_p1 == 3'h4) ? gnt3_p1_1 : 1'b0;
assign gnt2_p1_1_east = (direction_vc0_p1 == 3'h4) ? gnt2_p1_1 : 1'b0;
assign gnt1_p1_1_east = (direction_vc0_p1 == 3'h4) ? gnt1_p1_1 : 1'b0;
assign gnt0_p1_1_east = (direction_vc0_p1 == 3'h4) ? gnt0_p1_1 : 1'b0;

assign gnt3_p1_1_local = (direction_vc0_p1 == 3'h5) ? gnt3_p1_1 : 1'b0;
assign gnt2_p1_1_local = (direction_vc0_p1 == 3'h5) ? gnt2_p1_1 : 1'b0;
assign gnt1_p1_1_local = (direction_vc0_p1 == 3'h5) ? gnt1_p1_1 : 1'b0;
assign gnt0_p1_1_local = (direction_vc0_p1 == 3'h5) ? gnt0_p1_1 : 1'b0;

Fig. 45. Partial verilog code of a Virtual Channel Allocator in a generic router

73

//This is parts of VA in generic router

//1st stage
arbiter_4_5 SA_1st_stage_p1(

.clock(clock),

.rst(rst),

.enable(enable_p1),

.req3(sa_input1_v4),

.req2(sa_input1_v3),

.req1(sa_input1_v2),

.req0(sa_input1_v1),

.gnt3(mux4_p1),

.gnt2(mux3_p1),

.gnt1(mux2_p1),

.gnt0(mux1_p1)
);

wire [4:0] p1_vc0_en;
assign p1_vc0_en = (direction_vc0_p1 == 3'h1) ? 5'd1 :

(direction_vc0_p1 == 3'h2) ? 5'd2 :
(direction_vc0_p1 == 3'h3) ? 5'd4 :
(direction_vc0_p1 == 3'h4) ? 5'd8 :
(direction_vc0_p1 == 3'h5) ? 5'd16 : 5'd0;

assign RE_p1 = {sa_input1_v4 & enable_p1, sa_input1_v3 & enable_p1,
sa_input1_v2 & enable_p1, sa_input1_v1 & enable_p1};
assign RE_p2 = {sa_input2_v4 & enable_p2, sa_input2_v3 & enable_p2,
sa_input2_v2 & enable_p2, sa_input2_v1 & enable_p2};
assign RE_p3 = {sa_input3_v4 & enable_p3, sa_input3_v3 & enable_p3,
sa_input3_v2 & enable_p3, sa_input3_v1 & enable_p3};
assign RE_p4 = {sa_input4_v4 & enable_p4, sa_input4_v3 & enable_p4,
sa_input4_v2 & enable_p4, sa_input4_v1 & enable_p4};
assign RE_p5 = {sa_input5_v4 & enable_p5, sa_input5_v3 & enable_p5,
sa_input5_v2 & enable_p5, sa_input5_v1 & enable_p5};

Fig. 46. Partial verilog code of a Switch Allocator in a generic router

74

APPENDIX B

VERILOG CODES FOR A VICHAR ROUTER

75

`timescale 1ns/1ps

module Router (
clock, rst,
Data_p1, Data_p2, Data_p3, Data_p4, Data_p5, Data_p1_en, Data_p2_en, Data_p3_en, Data_p4_en,
Data_p5_en, slot_status_p1, slot_status_p2, slot_status_p3, slot_status_p4, slot_status_p5,
p1_request,p2_request, p3_request, p4_request, p5_request, output_p1_en, output_p2_en,
output_p3_en, output_p4_en, output_p5_en, Q_p1, Q_p2, Q_p3, Q_p4, Q_p5);

//This is main part of top module in a ViChaR
crossbar crossbar(
.clock(clock), .rst(rst),
.Q_p1(Q_p1), .Q_p2(Q_p2), .Q_p3(Q_p3), .Q_p4(Q_p4), .Q_p5(Q_p5),
.Q_out1(Q_out1), .Q_out2(Q_out2), .Q_out3(Q_out3), .Q_out4(Q_out4),
.Q_out5(Q_out5), .crossbar_p1(crossbar_p1), .crossbar_p2(crossbar_p2),
.crossbar_p3(crossbar_p3), .crossbar_p4(crossbar_p4), .crossbar_p5(crossbar_p5));

dpsram_top dpsram_top(
.clock(clock), .rst(rst),

.WE_p1(p1_request), .WE_p2(p2_request), .WE_p3(p3_request), .WE_p4(p4_request),
.WE_p5(p5_request), .slot_availability_p1(slot_availability_p1),
.slot_availability_p2(slot_availability_p2), .slot_availability_p3(slot_availability_p3),
.slot_availability_p4(slot_availability_p4), .slot_availability_p5(slot_availability_p5),.slot_availability_p4(slot_availability_p4), .slot_availability_p5(slot_availability_p5),
.direction_p1(direction_p1), .direction_p2(direction_p2), .direction_p3(direction_p3),
.direction_p4(direction_p4), .direction_p5(direction_p5),
.RE_p1(RE_p1), .RE_p2(RE_p2), .RE_p3(RE_p3), .RE_p4(RE_p4), .RE_p5(RE_p5),
.Data_p1(Data_p1), .Data_p2(Data_p2), .Data_p3(Data_p3), .Data_p4(Data_p4),
.Data_p5(Data_p5), .Q_p1(Q_p1), .Q_p2(Q_p2), .Q_p3(Q_p3), .Q_p4(Q_p4), .Q_p5(Q_p5));

arbiter_top arbiter_top(
.clock(clock), .rst(rst),
.slot_status_p1(slot_status_p1), .slot_status_p2(slot_status_p2), .slot_status_p3(slot_status_p3),
.slot_status_p4(slot_status_p4), .slot_status_p5(slot_status_p5),
.slot_availability_p1(slot_availability_p1), .slot_availability_p2(slot_availability_p2),
.slot_availability_p3(slot_availability_p3), .slot_availability_p4(slot_availability_p4),
.slot_availability_p5(slot_availability_p5), .direction_p1(direction_p1), .direction_p2(direction_p2),
.direction_p3(direction_p3), .direction_p4(direction_p4), .direction_p5(direction_p5),
.p1_request(p1_request), .p2_request(p2_request), .p3_request(p3_request),
.p4_request(p4_request), .p5_request(p5_request), .Data_p1_en(Data_p1_en),
.Data_p2_en(Data_p2_en), .Data_p3_en(Data_p3_en), .Data_p4_en(Data_p4_en),
.Data_p5_en(Data_p5_en), .output_p1_en(output_p1_en), .output_p2_en(output_p2_en),
.output_p3_en(output_p3_en), .output_p4_en(output_p4_en), .output_p5_en(output_p5_en),
.crossbar_p1(crossbar_p1), .crossbar_p2(crossbar_p2), .crossbar_p3(crossbar_p3),
.crossbar_p4(crossbar_p4), .crossbar_p5(crossbar_p5),
.RE_p1(RE_p1), .RE_p2(RE_p2), .RE_p3(RE_p3), .RE_p4(RE_p4), .RE_p5(RE_p5));

endmodule

Fig. 47. Partial verilog code of Top module in a ViChaR router

76

assign slot_availability = {~slot_15_available, ~slot_14_available, ~slot_13_available,
~slot_12_available, ~slot_11_available, ~slot_10_available, ~slot_9_available,
~slot_8_available, ~slot_7_available, ~slot_6_available, ~slot_5_available,
~slot_4_available, ~slot_3_available, ~slot_2_available, ~slot_1_available,
~slot_0_available};

always @(rst or WE or write_pointer or RE_edge) begin
if(!rst) begin

slot_0_available = 1'b1;
slot_1_available = 1'b1;
slot_2_available = 1'b1;
slot_3_available = 1'b1;
slot_4_available = 1'b1;
slot_5_available = 1'b1;
slot_6_available = 1'b1;
slot_7_available = 1'b1;
slot_8_available = 1'b1;
slot_9_available = 1'b1;
slot_10_available = 1'b1;
slot_11_available = 1'b1;
slot_12_available = 1'b1;
slot_13_available = 1'b1;
slot_14_available = 1'b1;
slot_15_available = 1'b1;

end else begin
if(RE_edge[0] == 1'b1 && WE != 1'b1) slot_0_available = 1'b1;
else if(RE_edge[1] == 1'b1 && WE != 1'b1) slot_1_available = 1'b1;
else if(RE_edge[2] == 1'b1 && WE != 1'b1) slot_2_available = 1'b1;
else if(RE_edge[3] == 1'b1 && WE != 1'b1) slot_3_available = 1'b1;
else if(RE_edge[4] == 1'b1 && WE != 1'b1) slot_4_available = 1'b1;else if(RE_edge[4] == 1'b1 && WE != 1'b1) slot_4_available = 1'b1;
else if(RE_edge[5] == 1'b1 && WE != 1'b1) slot_5_available = 1'b1;
else if(RE_edge[6] == 1'b1 && WE != 1'b1) slot_6_available = 1'b1;
else if(RE_edge[7] == 1'b1 && WE != 1'b1) slot_7_available = 1'b1;
else if(RE_edge[8] == 1'b1 && WE != 1'b1) slot_8_available = 1'b1;
else if(RE_edge[9] == 1'b1 && WE != 1'b1) slot_9_available = 1'b1;
else if(RE_edge[10] == 1'b1 && WE != 1'b1) slot_10_available = 1'b1;
else if(RE_edge[11] == 1'b1 && WE != 1'b1) slot_11_available = 1'b1;
else if(RE_edge[12] == 1'b1 && WE != 1'b1) slot_12_available = 1'b1;
else if(RE_edge[13] == 1'b1 && WE != 1'b1) slot_13_available = 1'b1;
else if(RE_edge[14] == 1'b1 && WE != 1'b1) slot_14_available = 1'b1;
else if(RE_edge[15] == 1'b1 && WE != 1'b1) slot_15_available = 1'b1;
else if(WE && write_pointer[3:0] == 4'd1) slot_0_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd2) slot_1_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd3) slot_2_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd4) slot_3_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd5) slot_4_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd6) slot_5_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd7) slot_6_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd8) slot_7_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd9) slot_8_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd10) slot_9_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd11) slot_10_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd12) slot_11_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd13) slot_12_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd14) slot_13_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd15) slot_14_available = 1'b0;
else if(WE && write_pointer[3:0] == 4'd0) slot_15_available = 1'b0;
else;
end

end

Fig. 48. Partial verilog code of Buffer module in a ViChaR router

77

wire [15:0] request_in1_out1;
assign request_in1_out1[15] = p1_request & status_p1[15];
assign request_in1_out1[14] = p1_request & status_p1[14];
assign request_in1_out1[13] = p1_request & status_p1[13];
assign request_in1_out1[12] = p1_request & status_p1[12];
assign request_in1_out1[11] = p1_request & status_p1[11];
assign request_in1_out1[10] = p1_request & status_p1[10];
assign request_in1_out1[9] = p1_request & status_p1[9];
assign request_in1_out1[8] = p1_request & status_p1[8];
assign request_in1_out1[7] = p1_request & status_p1[7];
assign request_in1_out1[6] = p1_request & status_p1[6];
assign request_in1_out1[5] = p1_request & status_p1[5];
assign request_in1_out1[4] = p1_request & status_p1[4];
assign request_in1_out1[3] = p1_request & status_p1[3];
assign request_in1_out1[2] = p1_request & status_p1[2];
assign request_in1_out1[1] = p1_request & status_p1[1];
assign request_in1_out1[0] = p1_request & status_p1[0];

//input port1
arbiter_16_1 VA_1st_p1_1(

.clock(clock),

.rst(rst),

.req15(request_in1_out1[15]),

.req14(request_in1_out1[14]),

.req13(request_in1_out1[13]),

.req12(request_in1_out1[12]),

.req11(request_in1_out1[11]),

.req10(request_in1_out1[10]),

.req9(request_in1_out1[9]),.req9(request_in1_out1[9]),

.req8(request_in1_out1[8]),

.req7(request_in1_out1[7]),

.req6(request_in1_out1[6]),

.req5(request_in1_out1[5]),

.req4(request_in1_out1[4]),

.req3(request_in1_out1[3]),

.req2(request_in1_out1[2]),

.req1(request_in1_out1[1]),

.req0(request_in1_out1[0]),

.gnt15(p1_1_15),
.gnt14(p1_1_14),

.gnt13(p1_1_13),

.gnt12(p1_1_12),

.gnt11(p1_1_11),

.gnt10(p1_1_10),

.gnt9(p1_1_9),

.gnt8(p1_1_8),

.gnt7(p1_1_7),

.gnt6(p1_1_6),

.gnt5(p1_1_5),

.gnt4(p1_1_4),

.gnt3(p1_1_3),

.gnt2(p1_1_2),

.gnt1(p1_1_1),

.gnt0(p1_1_0)
);

assign gnt_p1_1 = p1_1_15 | p1_1_14 | p1_1_13 | p1_1_12 | p1_1_11 | p1_1_10 | p1_1_9 |
p1_1_8 | p1_1_7 | p1_1_6 | p1_1_5 | p1_1_4 | p1_1_3 | p1_1_2 | p1_1_1 | p1_1_0 ;

Fig. 49. Partial verilog code of a Virtual Channel Allocator in a ViChaR router

78

assign p1_en[15] = slot_availability_p1[15] & Data_p1_en;
assign p1_en[14] = slot_availability_p1[14] & Data_p1_en;
assign p1_en[13] = slot_availability_p1[13] & Data_p1_en;
assign p1_en[12] = slot_availability_p1[12] & Data_p1_en;
assign p1_en[11] = slot_availability_p1[11] & Data_p1_en;
assign p1_en[10] = slot_availability_p1[10] & Data_p1_en;
assign p1_en[9] = slot_availability_p1[9] & Data_p1_en;
assign p1_en[8] = slot_availability_p1[8] & Data_p1_en;
assign p1_en[7] = slot_availability_p1[7] & Data_p1_en;
assign p1_en[6] = slot_availability_p1[6] & Data_p1_en;
assign p1_en[5] = slot_availability_p1[5] & Data_p1_en;
assign p1_en[4] = slot_availability_p1[4] & Data_p1_en;
assign p1_en[3] = slot_availability_p1[3] & Data_p1_en;
assign p1_en[2] = slot_availability_p1[2] & Data_p1_en;
assign p1_en[1] = slot_availability_p1[1] & Data_p1_en;
assign p1_en[0] = slot_availability_p1[0] & Data_p1_en;

//1st stage
arbiter_16_5 SA_1st_stage_p1(

.clock(clock), .rst(rst), .enable(enable_p1),

.req15(p1_en[15]), .req14(p1_en[14]),.req15(p1_en[15]), .req14(p1_en[14]),

.req13(p1_en[13]), .req12(p1_en[12]),

.req11(p1_en[11]), .req10(p1_en[10]),

.req9(p1_en[9]), .req8(p1_en[8]),

.req7(p1_en[7]), .req6(p1_en[6]),

.req5(p1_en[5]), .req4(p1_en[4]),

.req3(p1_en[3]), .req2(p1_en[2]),

.req1(p1_en[1]), .req0(p1_en[0]),

.gnt15(p1_1st[15]), .gnt14(p1_1st[14]),

.gnt13(p1_1st[13]), .gnt12(p1_1st[12]),

.gnt11(p1_1st[11]), .gnt10(p1_1st[10]),

.gnt9(p1_1st[9]), .gnt8(p1_1st[8]),

.gnt7(p1_1st[7]), .gnt6(p1_1st[6]),

.gnt5(p1_1st[5]), .gnt4(p1_1st[4]),

.gnt3(p1_1st[3]), .gnt2(p1_1st[2]),

.gnt1(p1_1st[1]), .gnt0(p1_1st[0]));

assign gnt0_p1 = |(direction_p1 & p1_1st);
assign gnt1_p1 = |(direction_p2 & p1_1st);
assign gnt2_p1 = |(direction_p3 & p1_1st);
assign gnt3_p1 = |(direction_p4 & p1_1st);
assign gnt4_p1 = |(direction_p5 & p1_1st);

Fig. 50. Partial verilog code of a Switch Allocator in a ViChaR router

79

APPENDIX C

OTHER VERILOG CODES FOR A GENERIC AND VICHAR ROUTER

80

`timescale 1ns/1ps

/************************
Crossbar

***********************/

module crossbar (

clock,, rst,
Q_p1, Q_p2, Q_p3, Q_p4, Q_p5, //input
crossbar_p1, crossbar_p2, crossbar_p3, crossbar_p4, crossbar_p5, //input
Q_out1, Q_out2, Q_out3, Q_out4, Q_out5 //output

);

parameter width = 128;
parameter addr = 5;

input clock;
input rst;

input [width-1:0] Q_p1, Q_p2, Q_p3, Q_p4, Q_p5;
input [4:0] crossbar_p1, crossbar_p2, crossbar_p3, crossbar_p4, crossbar_p5;
output [width-1:0] Q_out1, Q_out2, Q_out3, Q_out4, Q_out5;

wire [width-1:0] Q_out1, Q_out2, Q_out3, Q_out4, Q_out5;

//North
assign Q_out1 = (crossbar_p1[0])? Q_p1 :

(crossbar_p2[0])? Q_p2 :
(crossbar_p3[0])? Q_p3 :(crossbar_p3[0])? Q_p3 :

(crossbar_p4[0])? Q_p4:
(crossbar_p5[0])? Q_p5 : 128'h0;

//South
assign Q_out2 = (crossbar_p1[1])? Q_p1 :

(crossbar_p2[1])? Q_p2 :
(crossbar_p3[1])? Q_p3 :

(crossbar_p4[1])? Q_p4 :
(crossbar_p5[1])? Q_p5 : 128'h0;

//West
assign Q_out3 = (crossbar_p1[2])? Q_p1 :

(crossbar_p2[2])? Q_p2 :
(crossbar_p3[2])? Q_p3 :

(crossbar_p4[2])? Q_p4 :
(crossbar_p5[2])? Q_p5 : 128'h0;

//East
assign Q_out4 = (crossbar_p1[3])? Q_p1 :

(crossbar_p2[3])? Q_p2 :
(crossbar_p3[3])? Q_p3 :

(crossbar_p4[3])? Q_p4 :
(crossbar_p5[3])? Q_p5 : 128'h0;

//Local
assign Q_out5 = (crossbar_p1[4])? Q_p1 :

(crossbar_p2[4])? Q_p2 :
(crossbar_p3[4])? Q_p3 :

(crossbar_p4[4])? Q_p4 :
(crossbar_p5[4])? Q_p5 : 128'h0;

endmodule

Fig. 51. Verilog code of a crossbar in a generic and ViChaR router

81

module arbiter(
clock,
rst,
req3,
req2,
req1,
req0,
gnt3,
gnt2,
gnt1,
gnt0
);

parameter [4:0] N = 5'd4;

input clock;
input rst;

input req3;
input req2;
input req1;
input req0;

output gnt3;
output gnt2;
output gnt1;
output gnt0;

reg [N-1:0] pointer_reg;

wire [N-1:0] req;
assign req = {req3, req2, req1, req0};

wire [N-1:0] gnt;
assign gnt3 = gnt[3];assign gnt3 = gnt[3];
assign gnt2 = gnt[2];
assign gnt1 = gnt[1];
assign gnt0 = gnt[0];

wire [N-1:0] req_masked;
wire [N-1:0] mask_higher_pri_regs;
wire [N-1:0] gnt_masked;
assign req_masked = req & pointer_reg;
assign mask_higher_pri_regs[N-1:1] = mask_higher_pri_regs[N-2:0] | req_masked[N-2:0];
assign mask_higher_pri_regs[0] = 1'b0;
assign gnt_masked[N-1:0] = req_masked[N-1:0] & ~mask_higher_pri_regs[N-1:0];

wire [N-1:0] unmask_higher_pri_regs;
wire [N-1:0] gnt_unmasked;
assign unmask_higher_pri_regs[N-1:1] = unmask_higher_pri_regs[N-2:0] | req[N-2:0];
assign unmask_higher_pri_regs[0] = 1'b0;
assign gnt_unmasked[N-1:0] = req[N-1:0] & ~unmask_higher_pri_regs[N-1:0];

wire no_req_masked;
assign no_req_masked = ~(|req_masked);
assign gnt = ({N{no_req_masked}} & gnt_unmasked) | gnt_masked;

always @(negedge rst or posedge clock) begin
if(!rst) begin

pointer_reg <= {N{1'b1}};
end else begin

if(|req_masked) pointer_reg <= mask_higher_pri_regs;
else if(|req) pointer_reg <= unmask_higher_pri_regs;
else pointer_reg <= pointer_reg;

end
end

endmodule

Fig. 52. Verilog code of a round-robin arbiter in a generic and ViChaR router

82

VITA

Sungho Park

Education

• Master of Science, Computer Engineering,

Texas A&M University, 2008

• Bachelor of Engineering, Electronic Engineering, Inha University,

South Korea, 2001

Professional Work Experience

• Full-time Design Engineer, System-LSI Division,

Samsung Electronics, 2001-2006

Contact Address

• Permanent mailing address: 336 Harvey R. Bright Building College Station,

TX 77843-3112

• E-mail : sunghopa@tamu.edu, sunghopark@hotmail.com

