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Robust output feedback MPC for LPV systems using interval observers
Alex Reis de Souza, Denis Efimov, and Tarek Raı̈ssi

Abstract— This work addresses the problem of robust output
feedback model predictive control for discrete-time, constrained,
linear parameter-varying systems subject to (bounded) state and
measurement disturbances. The vector of scheduling parameters
is assumed to be an unmeasurable signal taking values in a given
compact set. The proposed controller incorporates an interval
observer, that uses the available measurement to update the set-
membership estimation of the states, and an interval predictor,
used in the prediction step of the MPC algorithm. The resulting
MPC scheme offers guarantees on recursive feasibility, constraint
satisfaction, and input-to-state stability in the terminal set. Further-
more, this novel algorithm shows low computation complexity and
ease of implementation (similar to conventional MPC schemes).

Index Terms— Predictive control, robust control, output
feedback

I. INTRODUCTION

The problem of control and observation of nonlinear systems has
been extensively studied over the last decades, becoming an important
branch of research on automatic control [1]. Among the numerous
existing techniques to solve such problems, the ones involving linear
parameter-varying (LPV) models have received special attention [2].
An LPV representation of a nonlinear system consists in a family
of linear time-invariant (LTI) systems, which are interpolated by a
scheduling parameter that can indicate, for instance, some operating
points of the nonlinear dynamics. In this framework, design methods
developed for LTI systems can be applied.

However, even considering a linear-like system, the problem of
controlling dynamical plants under constraints is very difficult – or
even impossible – to be tackled using classical state feedback tools
[3]. This is one of the reasons why Model Predictive Control (MPC)
became popular in the last decades: by solving an (online) optimal
control problem, it handles constraints on states, inputs and outputs.
This control problem consists of minimizing an optimal criterion that
incorporates a finite window of predictions of the future behaviour
of the system, computed by a (possibly multivariate) discrete-time
model [4].

Robustness has also been an important topic when dealing with
MPC [5]. In practice, the plants are often plagued by uncertainties
(such as bounded disturbances, noise and parametric variations),
causing discrepancies between the model and the real system. These
errors might lead the behaviour of the latter to be very different
from the predictions, possibly causing deterioration of performance,
constraint transgression or even instability. In this sense, an MPC
scheme is said to be robust if it achieves the control task while

This work was partially supported by the IPL COSY, and by the Min-
istry of Science and Higher Education of Russian Federation, passport
of goszadanie no. 2019-0898.

Alex Reis de Souza is with Inria – Lille Nord Europe, Université de Lille
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satisfying the constraints for all possible realizations of perturbations
in a certain range [6].

Furthermore, since MPC requires full-state measurement (which
is not always available), the case where only output feedback is
available makes it necessary to rely on state estimation tools [6]. The
inherent estimation error adds even more uncertainty to the problem
[5]. For linear systems, the literature on robust output feedback MPC
is mature, and the LPV case has been an active field of research over
the last decade. The main difficulty in this scenario comes from the
fact that, even if the scheduling parameter is measured online, it is
hard to predict its evolution in future steps – and consequently, to
obtain a reliable prediction of the real system [7].

Nevertheless, several dynamic output feedback controllers have
been proposed over the last years, e.g., Ding et al. [8] [9]. In
a different approach, [10] proposes an observer-based technique
relying on input-to-state stability and robust positively invariant sets
of the estimation error. In [11], the authors develop an approach
that optimizes, simultaneously, both controller and observer. A tube-
based method is presented by [12]. Min-max optimization has been
utilized in [13] and [14], although no state constraints are imposed.
Most of these works recursively update the estimation error sets and
thus require the common assumption that the scheduling parameter
is measured, (there are exceptions, e.g., [15], [16], but with a
constrained prediction horizon).

In the present paper, following an idea recently proposed for LTI
systems [17], we present an alternative for robust output feedback
MPC for LPV systems using interval observers (IO) [18]. These
observers – while being a special class of set-membership estimators
– provide a guaranteed estimation of the admissible values (i.e.,
intervals) of the states, by using input-output information at each
instant of time. The design of IOs, while based on the concept of
positive systems, is a mature topic and covers many kinds of systems
and applications (see, for instance, survey [19]).

This paper proposes an output feedback MPC scheme for LPV
systems, without measurement of the scheduling parameters, with
guarantees on stability and constraint satisfaction. By incorporating
an interval predictor (IP), the MPC evaluates an interval in which
the system’s trajectories evolve, using only information on the dis-
turbance bounds and the set of admissible values for the scheduling
parameters. The gains of the IO and IP, as well as for the terminal
controller (which is designed concerning the interval predictor), are
obtained by solving (offline) LMIs, while the terminal set is readily
evaluated as an ellipsoid. Finally, the optimization problem to be
solved online is convex.

The paper is organized as follows: Section II gives the problem
statement, the design and the features of the interval estimators are
presented in Section III, Section IV introduces the MPC algorithm
and its properties on stability and guarantees on constraint satisfac-
tion, as well as a discussion on complexity and its contrast with the
existing literature. Section V illustrates the proposed approach with
a numerical example. Finally, Section VI concludes this study, also
giving future directions of research.
Notation:
• The sets of real and integer numbers are defined by R and Z,

respectively, then |·| represents the absolute value for an element
of these sets; R+ = {s ∈ R : s ≥ 0} and Z+ = Z ∩ R+. The
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Euclidean norm of a vector x ∈ Rn is denoted by ‖x‖.
• A matrix M is said to be non-negative if all of its elements are

non-negative. A matrix M is said to be Schur stable if all of its
eigenvalues have magnitude less than one. The identity matrix
of dimension n is defined by In. For a symmetric matrix A, the
symmetric entry (i.e., Ai,j = Aj,i) is denoted by ?. We denote
A = diag(a1, . . . , an) and V = vec(v1, . . . , vn) ∈ Rñ as the
diagonal matrix with block entries Aii = ai, and the vector
composed by the concatenation of each vector vi ∈ Rni , ñ =∑n
i=1 ni, respectively.

• For a function x : Z+ → Rn, we use the convention xk = x(k)
and denote |x|∞ = supk∈Z+

‖xk‖. Furthermore, we define `n∞
as a sequence space such that, for any of its elements, we have
|x|∞ <∞;

• Let x1, x2 ∈ Rn be two vectors and A1, A2 ∈ Rn×n be two
matrices, then the relations x1 ≤ x2 and A1 ≤ A2 are to
be understood component-wise. For a matrix A (and similarly
for vectors), we define A+ = max{0, A}, A− = A+ − A
(also understood component-wise), and also denote the matrix of
absolute values of all elements by |A| = A++A−. Furthermore,
for a symmetric matrix A ∈ Rn×n the relation A ≺ 0 (resp.
A � 0) means that A ∈ Rn×n is negative (resp. positive semi-)
definite.

II. PROBLEM STATEMENT

Consider the following discrete-time LPV system:

xk+1 = A(θk)xk +B(θk)uk + wk

yk = Cxk + vk, k ∈ Z+
(1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control input,
yk ∈ Rp is the (measured) output, wk and vk are, respectively,
state disturbance and measurement noise. The time-varying signal
θk ∈ Θ ⊂ Rr is the scheduling parameter for the LPV system. It
is assumed that θk is not measured, but its set of admissible values
Θ is known. Furthermore, the matrix functions A : Θ→ Rn×n and
B : Θ→ Rn×m are locally bounded and known. The measurement
matrix C ∈ Rp×n is assumed to be known.

Assumption 1: There exist matrices A0 ∈ Rn×n, B0 ∈ Rn×m
and ∆Ai ∈ Rn×n,∆Bi ∈ Rn×m, i = 1, . . . , ν for some ν ∈ Z+,
such that the following relations are satisfied for all θ ∈ Θ:

A(θ) = A0 +

ν∑
i=1

λi(θ)∆Ai, B(θ) = B0 +

ν∑
i=1

λi(θ)∆Bi,

ν∑
i=1

λi(θ) = 1, λi(θ) ∈ [0, 1].

Assumption 2: It is assumed that ∆Bi ≥ 0 for all i = 1, . . . , ν.
Assumption 1 (which is technical and it is introduced to simplify
the writing) states that system (1) admits a convex embedding in a
polytope defined by ν known vertices ∆Ai and ∆Bi with known
centers A0, B0. Note that, since functions A,B and the set Θ are
known, then there exists matrices A,A,B,B such that

A ≤ A(θ) ≤ A, B ≤ B(θ) ≤ B, ∀θ ∈ Θ.

Assumption 3: Initial conditions of (1) are bounded such as x0 ≤
x0 ≤ x0, for some known x0, x0 ∈ Rn. Furthermore, the additive
perturbations wk ∈ [wk, wk] and vk ∈ [vk, vk] for all k ∈ Z+,
where w,w ∈ `n∞ and v, v ∈ `p∞.

Assumption 3 is usual in the design of IOs and means that the
sources of uncertainty in (1), i.e., x0, wk and vk, are enclosed
in bounded intervals. Furthermore, we impose the following mild
hypothesis concerning C (which can be always achieved by a proper
change of coordinates):

Assumption 4: Let C ≥ 0.
Denote X ⊂ Rn and U ⊂ Rm as the convex sets of admissible

values for the state and control, respectively.
Problem 1: Let [x0, x0] ∈ X and assumptions 1–3 be satisfied. The
objective is to design an output feedback controller stabilizing the
LPV system (1) in a vicinity of the origin while satisfying state and
control constraints, namely,

xk ∈ X, uk ∈ U, ∀k ∈ Z+

for any admissible realization of disturbances wk and vk, and for all
θk ∈ Θ.

To address this control problem, we propose an MPC algorithm
that incorporates interval observers/predictors in the design. The
main interest of such a choice resides on the fact that, thanks to
cooperativity features and under Assumption 3, the IO/IP generates
estimates xk, xk ∈ Rn such that the relation

xk ≤ xk ≤ xk ∀k ∈ Z+ (2)

is satisfied. Hence, this information can be easily used to check
fulfillment of state constraints, since [xk, xk] ⊂ X⇒ xk ⊂ X.

Preliminaries

For our developments, we will need the following lemmas:
Lemma 1: [20] Let x ∈ Rn be a vector variable, x ≤ x ≤ x for

some x, x ∈ Rn. Then,
(1) if A ∈ Rm×n is a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x (3)

(2) if A ∈ Rm×n is a matrix variable and A ≤ A ≤ A for some
A,A ∈ Rm×n, then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax

≤ A+
x+ −A+x− −A−x+ +A−x−

(4)

Lemma 2: [21] For A ∈ Rn×n+ , the system

xk+1 = Axk + ωk, ω : Z+ → Rn+, ω ∈ Ln∞, k ∈ Z+

has a non-negative solution xk ∈ Rn+ for all k ∈ Z+ provided that
x0 ≥ 0.

Lemma 3: [22] A matrix A ∈ Rn×n+ is Schur stable iff there
exists a diagonal matrix P ∈ Rn×n, P > 0, such that A>PA−P ≺
0.

III. DESIGN OF INTERVAL OBSERVER AND PREDICTOR

In this section, we present new interval estimators (an IO and an
IP) for system (1). Conditions of existence (given in the form of
LMIs), for both IO and IP, are presented in Section III-A and III-B,
respectively. The design of a static feedback controller for the IP is
addressed in Section III-C. For clarity of exposition, the proofs of
all results of this and the forthcoming sections will be presented in
appendixes.

A. Interval observer
In this section, we investigate the design of an IO for (1) by

exploiting the available measurement. To this end, let us evoke
Assumption 1 and rewrite (1) as

xk+1 = (A0 − LC)xk +

ν∑
i=1

λi(θ)∆Aixk + Lyk

+ (B0 +

ν∑
i=1

λi(θ)∆Bi)uk − Lvk + wk

(5)
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for any L ∈ Rn×p. First, let us denote

∆A+ =

ν∑
i=1

∆A+
i , ∆A− =

ν∑
i=1

∆A−i

and, similarly, ∆B =
∑ν
i=1 ∆B+

i .
Then, under assumptions 1–2 and Lemma 1, we replace the

uncertain terms in (5) by their interval bounds, which leads to the
following IO:

xk+1 = (A0 − LoC)xk + ∆A+x
+
k + ∆A−x

−
k +B0uk

+ ∆Bu+k + Loyk − L+
o vk + L−o vk + wk

xk+1 = (A0 − LoC)xk −∆A+x
−
k −∆A−x

+
k +B0uk

−∆Bu−k + Loyk − L+
o vk + L−o vk + wk

(6)

where Lo ∈ Rn×p is the observer gain to be determined. The
fulfillment of relation (2) follows the non-negativity of the estimation
errors ek = xk − xk and ek = xk − xk, the respective conditions
are given in the following lemma:

Lemma 4: Let assumptions 1–2 be satisfied. Then, provided that
A0 − LoC is non-negative, the estimation errors are non-negative,
i.e., ek, ek ≥ 0 for all k > 0.

Now, it is needed to derive stability conditions for IO (6). First,
let us denote χk = vec(xk, xk) and rewrite (6) as

χk+1 =
(
A0 − L̃oC1

)
χk +A+χ

+
k +A−χ−k + δk (7)

where A0 = diag (A0, A0) ∈ R2n×2n, L̃o = diag(Lo, Lo) ∈
R2n×2p C1 = diag (C,C) ∈ R2p×2n, δk = vec(δk, δk), and

A+ =

[
∆A+ 0
−∆A− 0

]
, A− =

[
0 ∆A−
0 −∆A+

]
,

δk = B0uk + ∆Bu+
k + Loyk − L+

o vk + L−o vk + wk,

δk = B0uk −∆Bu−k + Loyk − L+
o vk + L−o vk + wk.

For ease of notation in the sequel, let us denote Ũ = diag (U,U)
and P̃ = diag (P, P ) for some decision variables P ∈ Rn×n and
U ∈ Rn×p. A gain Lo that stabilizes (6) and satisfies the restrictions
of Lemma 4 can be computed by verifying the following conditions:

Theorem 1: Let assumptions 1–3 be satisfied. If there exist di-
agonal matrices P̃ , Q1, Q2, Q3,Ω+,Ω−,Ψ ∈ R2n×2n, matrices
Γ ∈ R2n×2n and Ũ ∈ R2n×p, such that the following LMIs are
verified:

P̃A0 − ŨC1 ≥ 0
P̃ −Q1 −Ω+ −Ω− 0 A>0 P̃ − C>1 Ũ>

? −Q2 −Ψ 0 A>+P̃
? ? −Q3 0 A>−P̃
? ? ? Γ P̃

? ? ? ? P̃

 � 0

P̃ > 0, Γ � 0, Q1, Q2, Q3,Ω+,Ω− ≥ 0,

Q1 + min{Q2, Q3}+ 2 min{Ω+,Ω−} > 0

(8)

then system (6) with a gain Lo = P−1U is an IO for system (1),
i.e., relation (2) is satisfied and, in addition, χ ∈ `2n∞ provided that
δ ∈ `2n∞ .

Remark 1: Depending on the pair (A0, C), there might be no Lo
that satisfies the conditions of Theorem 1, where the first one ensures
non-negativity of Do = A0−LoC, and the rest provide boundedness
of χk. Nevertheless, the first requirement may be alleviated by
introducing a cooperative change of coordinates:

Theorem 3: [20] Let assumptions 1–3 be satisfied, and there exist
a matrix R ∈ Rn×n+ having the same eigenvalues as Do, and the pairs
(Do, e1) and (R, e2), which are observable for some e1 ∈ R1×n,

e2 ∈ R1×n. Then, the relation (2) is satisfied for

xk = S+ξ
k
− S−ξk, xk = S+ξk − S−ξk

ξk+1 = Rξk + Fyk − F+vk + F−vk + (S−1)+wk − (S−1)−wk

ξ
k+1

= Rξ
k

+ Fyk − F+vk + F−vk + (S−1)+wk − (S−1)−wk

ξ
0

= (S−1)x0 − (S−1)−x0, ξ0 = (S−1)x0 − (S−1)−x0

where S = ORO
−1
Do

(ODo and OR are the observability matrices of
the pairs (Do, e1) and (R, e2), respectively), and F = S−1Lo.

B. Interval predictor

As discussed in the previous subsection, IO (6) computes an inter-
val [xk, xk] in which the admissible values of xk are guaranteedly
confined for all k ∈ Z+ and all θ ∈ Θ. However, since it requires
knowledge of yk (which is obviously unknown in future steps), this
IO is unsuitable for prediction of the system behaviour.

Following an idea conceived for linear systems [17], this section
addresses the design of an interval predictor: an estimator that
satisfies relation (2), but that requires only information on the system
dynamics, the bounds on the matrices A and B and the bounds on
the disturbances.

To avoid confusion with the states of the IO, we denote zk, zk
as, respectively, the upper and lower predictive bounds of xk, and
Lp as the predictor gain (which replaces L in (5)). By definition,
Lp = L+

p − L−p ∈ Rn×p, for L−p , L+
p ∈ Rn×p+ . Then, let us evoke

Lemma 1 and Assumption 4 to write

L+
p Czk − L

−
p Czk ≤ LpCzk ≤ L+

p Czk − L−p Czk. (9)

Hence, the relation above allows us to rewrite (6) by replacing the
terms unavailable for prediction (i.e., Lyk−Lvk+wk = LCxk+wk)
with their respective bounds:

zk+1 = (A0 − LpC)zk + ∆A+z
+
k + ∆A−z

−
k + L+

p Czk

− L−p Czk +B0uk + ∆Bu+k + wk

zk+1 = (A0 − LpC)zk −∆A+z
+
k −∆A−z

−
k + L+

p Czk

− L−p Czk +B0uk −∆Bu−k + wk

(10)

Note that under assumptions 1–4, the IP (10) is composed solely
of known terms. The following lemma gives the condition for non-
negativity of the prediction errors εk = zk − xk and εk = xk − zk:

Lemma 5: Let assumptions 1–4 be satisfied. Then, provided that
A0 − LpC is non-negative, the prediction errors are non-negative,
i.e., εk, εk ≥ 0 for all k ∈ Z+.

Now, let us address the conditions for the stability of system (10).
Since this system is nonlinear, we will derive these conditions by
denoting Zk = vec(zk, zk), which allows us to rewrite (10) as:

Zk+1 =
(
A0 + L̃pC2

)
Zk +A+Z+

k +A−Z−k + %k, (11)

where A0, A+ and A− are the same as in (7), L̃p =
diag(L−p , L

−
p ) ∈ R2n×2p, %k = vec(%k, %k) and

C2 =

[
C −C
−C C

]
,

%k = B0uk + ∆Bu+
k + wk, %

k
= B0uk −∆Bu−k + wk.

The next theorem presents conditions that any gain Lp has to fulfill
in order to render IP (11) stable:

Theorem 2: Let assumptions 1–4 be satisfied and let Lp be a
given gain. If there exist a matrix P̃1 ∈ R2n×2n, diagonal matrices
Q1, Q2, Q3,Ω+,Ω−,Ψ,Γ ∈ R2n×2n, such that the following linear
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matrix inequalities are verified:
P̃1 −Q1 −Ω+ −Ω− 0 (P̃1A0 + P̃1L̃pC2)>

? −Q2 −Ψ 0 (P̃1A+)>

? ? −Q3 0 (P̃1A−)>

? ? ? Γ P̃1

? ? ? ? P̃1

 � 0

P̃1 � 0, Γ � 0, Q1, Q2, Q3,Ω+,Ω− ≥ 0,

Q = Q1 + min{Q2, Q3}+ 2 min{Ω+,Ω−} > 0,

then system (11) is ISS with respect to the input % ∈ `2n∞ .
Finally, sufficient conditions for the existence of a gain Lp pro-

viding non-negativity of the matrix A0 − LpC and stability of (11)
simultaneously are obtained by the following corollary:

Corollary 1: Let assumptions 1–4 be satisfied. If there exist di-
agonal matrices P̃2, Q1, Q2, Q3, Ω+,Ω−,Ψ, Γ ∈ R2n×2n and
U+, U− ∈ Rn×p such that the following linear matrix inequalities
are verified:

P̃2A0 − Ũ+C1 + Ũ−C1 ≥ 0
P̃2 −Q1 −Ω+ −Ω− 0 (P̃2A0 + Ũ−C2)>

? −Q2 −Ψ 0 (P̃2A+)>

? ? −Q3 0 (P̃2A−)>

? ? ? Γ P̃2

? ? ? ? P̃2

 � 0

Q1, Q2, Q3,Ω+,Ω−, U
+, U− ≥ 0, Γ � 0, P2 > 0

P̃2 = diag(P2, P2), Ũ+ = diag(U+, U+), Ũ− = diag(U−, U−),

Q = Q1 + min{Q2, Q3}+ 2 min{Ω+,Ω−} > 0
(12)

then system (10) with gains L−p = P−1
2 U− and L+

p = P−1
2 U+ is

an IP for system (1), i.e., the relation zk ≤ xk ≤ zk is satisfied
for all k ∈ Z+ and the system (11) is ISS with respect to the input
% ∈ `2n∞ .

C. Control design
In this section, we will address a feedback control design for the

IP (10). To this end, the following simplifying assumption is needed:
Assumption 5: Let ∆B = 0.
Remark 2: Assumption 5 is imposed to streamline the presen-

tation. Indeed, if system (1) is polytopic with ∆B 6= 0, the
design conditions given in the following are affine and have to be
checked over all of its vertices. This scenario requires an intricated
presentation, which we would like to avoid.

Then, if the control uk in (11) is selected such as

uk = KZk +K+Z+
k +K−Z−k +RWk (13)

where Wk = vec(wk, wk) and for some K,K−,K+, R ∈ Rm×2n,
the resulting dynamics is given by

Zk+1 = KZk +K+Z+
k +K−Z−k + D̃Wk (14)

where D̃ = I2n+B0R, K = A0+L̃pC2+B0K, K+ = A++B0K+

and K− = A− + B0K−, in which, for ease of notation, we denote
B0 = [B>0 , B

>
0 ]>. This brings us to the following result:

Theorem 4: Let assumptions 1–5 be satisfied. If there ex-
ist matrices P,Q1, Q2, Q3,Γ,Ω+,Ω−,Ψ ∈ R2n×2n and
W1,W2,W3,W4 ∈ Rm×2n such that the following inequalities are
verified

P −Q1 −Ω+ −Ω− 0 W>1 B>0 + PD>z
? −Q2 −Ψ 0 W>2 B>0 + PA>+
? ? −Q3 0 W>3 B>0 + PA>−
? ? ? Γ W>4 B>0 + P
? ? ? ? P

 � 0

P > 0, Γ > 0, Q1, Q2, Q3,Ω+,Ω− ≥ 0,

Q = Q1 + min{Q2, Q3}+ 2 min{Ω+,Ω−} > 0,

(15)

then IP (11) under control (13) with gains K = W1P
−1,K+ =

W2P
−1,K− = W3P

−1, R = W4P
−1 is ISS with respect to the

inputs W ∈ `2n∞ .

IV. IO-MPC DESIGN

In this section, we present the robust output feedback MPC
scheme with guaranteed constraint satisfaction, based on the interval
estimators introduced previously. Following the classic axioms of
Mayne et al. [3], Section IV-A presents the stabilizing ingredients,
while Section IV-B formulates the proposed algorithm and the main
result concerning its properties.

A. Stabilizing ingredients
As a consequence of the ISS property depicted in Theorem 4 we

have that, for Γ̃ = P−1ΓP−1, the ellipsoid

X̃ =
{
x ∈ R2n : x>P−1x ≤ α−1 sup

k≥0
W>k Γ̃Wk

}
for α > 0 given in the proof of Theorem 4 (see the Appendix) is
an invariant set for (14) and thus can be used as the terminal set.
Consequently, the terminal cost weighting can be readily selected as
P−1 (i.e., the Lyapunov matrix used in Theorem 4). However, for
well-posedness of the MPC scheme, the following assumption (which
is conventional in MPC) is imposed:

Assumption 6: Let Xf ×Xf ⊆ X̃ ⊆ X×X and, the control input
computed by (13) satisfy uk ∈ U provided that Zk ∈ Xf × Xf .

If the set U is ellipsoidal, one may relax Assumption 6 by
introducing additional LMIs to Theorem 4:

Corollary 2: Let there exist symmetric and positive definite ma-
trices S ∈ Rm×m and Z ∈ R2n×2n such that U = {u ∈ Rm :
u>Su ≤ 1} and Wk ∈ {W ∈ R2n : W>ZW ≤ 1}, and the
conditions of Theorem 4 be satisfied with additional inequalities:

η

ακ
Γ ≤ min{κ−1Z,P}, P ≥ κZ−1,

η
3
P 0 0 W>1 +W>2
0 η

3
P 0 W>3 −W>1

0 0 κ
3
P W>4

W1 +W2 W3 −W1 W4 S−1

 ≥ 0
(16)

for some constants η > 0 and κ > 0, then control (13) satisfies the
constraint uk ∈ U for all Zk ∈ Xf × Xf .

Therefore, since a relation between uk and the set X̃ (and,
consequently, also Xf ) is established, the stage costs weighting the
control input can also be selected as a function of P−1. This fact
will be used to show ISS in Xf of (1) with MPC in the next section.

In the following, we denote by zk,i, zk,i the predictions obtained
on the i-th step at the decision instant k, since we will reinitialize
the predictor regularly. Previously we used the notation zk, zk, and
the predictor in Section III was initialized just once at k = 0.

B. Design of the predictive controller
The main idea of the proposed MPC scheme is as follows. Since

the IP (10) depends solely on known variables, we can use it to
predict an envelope of all trajectories of system (1) for any θk ∈ Θ,
and use this prediction to verify constraint satisfaction. By running
the IO (6), the information on the set-membership of the states of
system (1) is updated with every new measurement yk.

Let us define

x̂k = min{xk, zk−1,1}, x̂k = max{xk, zk−1,1}

and, at each decision instant k ∈ Z+, we will initialize the IP (10)
with zk,0 = x̂k, and zk,0 = x̂k. Thus, having an input sequence
SN = {s0, . . . , sN−1} with si ∈ U, we calculate the values of
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zk,i+1, zk,i+1 for i = 0, . . . , N−1 (under substitution of uk+i = si
and using the fact that wk, wk are given for all k ∈ Z+ according
to Assumption 3). Then, the Optimal Control Problem (OCP) solved
by the MPC is stated as follows:

SkN := arg min
SN

VN (Zk,0, . . . ,Zk,N ,SN ) (17)

subject to the following constraints:

zk,0 = x̂k, zk,0 = x̂k (18a)

Zk,i+1 computed by (11) (18b)

Zk,i+1 ⊂ X× X, si ⊂ U, (18c)

Zk,N ∈ Xf × Xf (18d)

with a (quadratic) cost function VN defined by

VN (Zk,0, . . . ,Zk,N ,SN ) = Vf (Zk,N ) +

N−1∑
i=0

`(Zk,i, si)

where Vf (Z) = Z>Ψ1Z, `(Z, s) = Z>Ψ2Z + s>Ψ3s with
Ψ1,Ψ2,Ψ3 being positive-definite symmetric weighting matrices.
The algorithm below summarizes the MPC routine. The next theorem
states the main result of this section.

Algorithm 1 IO-MPC
Offline: Solve LMIs (8), (12), (15)–(16), estimate Xf and select
Ψ1 = P−1, Ψ2 ≤ α

2 P
−1, and Ψ3 ≤ α

8 P
−1.

Input: Initial conditions x0, x0, prediction horizon N .
Online:

1: for each decision instant k ∈ Z+ do
2: Measure yk and update IO (6).
3: Initialize IP such as Zk = [x̂k, x̂k].
4: Solve OCP (17) under constraints (18a)–(18d).
5: Assign uk = sk0 and apply it to system (1).
6: end for

Theorem 5: Let [x0, x0] ⊂ X and assumptions 1–6 be satisfied
with [wk+1, wk+1] ⊆ [wk, wk] for all k ∈ Z+. Then, following
Algorithm 1, the closed-loop system composed by (1), (6) and (10)
has the following features:

1) Recursive feasibility of reaching the terminal set in N steps;
2) ISS of dynamics (11) in Xf and practical ISS for (1);
3) Constraint satisfaction.

C. Complexity and contrast with the existing literature
The complexity of solving Algorithm 1 scales linearly with

O(Nn). Indeed, assuming that the number of hyperplanes needed
to define sets X,U and Xf depends linearly on n and m = n, the
(worst-case) number of variables describing constraints (18a)–(18d)
is 10Nn.

Note that this complexity is fixed, which is an interesting feature of
the proposed method. Approaches using zonotopic estimation often
require extra procedures to limit their increasing complexity, as well
as real-time knowledge on the scheduling parameter [23].

Techniques such as presented in [15] [16], that also assume no
measurement of θk fix a prediction horizon N = 1 and impose a min-
max optimization problem accounting for all vertices of the polytopic
system, aiming to obtain a robust prediction. This implementation
requires several relaxations for numerical tractability and the price is
an increased number of variables and conservativeness.

Remark 3: Due to the terms Z+,Z− in (11), the OCP (17) is
not a quadratic optimization problem by definition. However, since
the epigraph of function max(·) is convex over the Euclidean space,

(17) can be easily rewritten as a convex problem that can be solved
efficiently (see Chapter 4.2 in [24]).

Remark 4: Note that Z−k and Z+
k in (11) are piece-wise linear.

Therefore, the set X× X can be decomposed on hypercubes, where
(11) has an LTI representation. Hence, ideas concerning switched
MPC (such as presented in [25]) could be implemented. This exten-
sion is skipped for brevity.

V. NUMERICAL EXAMPLE

In this section, we present a numerical example to illustrate the
usefulness of the proposed MPC scheme. Consider the following LPV
system:

xk+1 =

[
0.5 0.6 + θk
θk 0.3

]
xk +

[
0
1

]
uk + wk

yk =
[
0 1

]
xk + vk

(19)

where xk = vec(x1, x2) ∈ R2, θk ∈ Θ = [−0.1, 0.1], wk ∈
[−0.1, 0.1] × [−0.1, 0.1], and vk ∈ [−0.1, 0.1]. The constraint sets
are defined as X = [3,−12] × [3,−12] and U = [−2, 2]. Clearly,
this system can be rewritten as (1) with the matrices

A0 =

[
0.5 0.6
0 0.3

]
, A(θ) =

[
0 θ
θ 0

]
.

and interpolating functions λ1 =
θ−θ
θ−θ

and λ2 = θ−θ
θ−θ

. We considered
initial conditions for the IP/IO as x0 = vec(−7,−12) and x0 =
vec(−6,−10) and several initial conditions for (19) satisfying x0 ∈
[x0, x0]. We ran 100 simulations of this scenario, each with a time
span of T = 20 steps, considering several realizations of θk, wk,
and vk.

The gains for the IP and the IO, obtained by solving the offline
LMIs of Section III, are Lo = [0.489, 0.1945] and Lp =
[0.232, 0.122]. For the MPC algorithm, we solve the conditions of
Theorem 4 to obtain α = 1.107 and

P =

[
1.79 ?
−0.285 1.150

]
, Γ =

[
11.57 ?
−1.358 3.63

]
,

and thus we can estimate Xf and select Ψ1,Ψ2 and Ψ3 accordingly.
Finally, we select the prediction horizon as N = 10.

Fig. 1 illustrates the trajectories of system (19) and the IP (10), in
contrast to the constraint set. It is worth noticing that all constraints
were respected, including those on the unmeasured state. The IP even
reaches the boundary of constraint, indicating low conservativeness.

The control input computed by solving OCP (17) also fulfilled the
constraints, as shown in Fig. 2. Finally, Fig. 3 shows the estimated
feasible regions for the initial conditions of IP (10). We did not
observe any improvement after N = 10. The mean computation
time for solving OCP (17) was 0.22 ± 0.0313 second/step, with a
maximum of 0.7725 second.

All simulations were performed using MATLAB 2017a, with an
Intel i7-8565U processor (1.8GHz) and 16GB RAM. Also, we used
YALMIP [26] to solve the offline LMIs and to solve the optimization
problem (using an interior-point method provided by the fmincon
solver).

VI. CONCLUSIONS

In this paper, we have presented a novel robust, output feedback
MPC for LPV systems, guaranteeing recursive stability and constraint
satisfaction. By adding an interval observer and a predictor on the
algorithm, the obtained MPC is similar to a conventional MPC in the
sense that it requires the same stabilizing ingredients. The interval
estimators, as well as the stabilizing features for the MPC, are
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Fig. 1. Trajectories of (19) and (11) in contrast to the constraint set.

Fig. 2. Evolution of the control inputs

Fig. 3. Comparison of the feasible regions for prediction horizon with
different lengths (N ∈ {4, 6, 8, 10}). These regions were computed
using YALMIP [26] and MPT [27].

obtained through the offline solution of LMIs. A numerical example
was proposed to illustrate the usefulness of the methodology.

Future research includes the case of time-delayed systems and
using real-time measurement of the scheduling parameter to enhance
the proposed algorithm.

APPENDIX

PROOF OF LEMMA 4
First, by applying (4) in λixk, we obtain

λ+
i x

+
k − λ

+
i x
−
k − λ

−
i x

+
k + λ

−
i x
−
k ≤ λixk ≤

λ
+
i x

+
k − λ

+
i x
−
k − λ

−
i x

+
k + λ−i x

−
k .

Since λi ∈ [0, 1], λ
+
i = 1 and λ+

i = λ
−
i = λ−i = 0, by definition.

Under this, we have that the relation −x−k ≤ λi(θk)xk ≤ x+
k holds.

Then, since the vertices of the polytopic system are known, we apply
(3) to obtain the following relation

−∆A+x
−
k −∆A−x

+
k ≤

N∑
i=1

λi(θk)∆Aixk ≤ ∆A+x
+
k + ∆A−x

−
k

(20)

Finally, the same idea applies to the term proportional to uk, leading
to the following relation:

−∆Biu
−
k ≤ −(∆Biuk)

− ≤ λi∆Biuk ≤ (∆Biuk)
+ ≤ ∆Biu

+
k . (21)

Now, computing the increments of the estimation errors ek, ek and
taking (20)–(21) into account, we have

ek+1 = Doek + r1,1 + r1,2, ek+1 = Doek + r2,1 + r2,2

where Do = A0 − LoC,

r1,1 = ∆A+x
+
k + ∆A−x

−
k −

N∑
i=1

λi(θk)∆Aixk + ∆Bu
+
k

−
N∑
i=1

λi(θk)∆Biuk

r1,2 = Lovk − L
+
o vk + L

−
o vk + wk − wk

r2,1 =

N∑
i=1

λi(θk)∆Aixk − (−∆A+x
−
k −∆A−x

+
k )

+

N∑
i=1

λ(θk)∆Biuk + ∆Bu
−
k

r2,2 = L
+
o vk − L

−
o vk − Lovk + wk − wk.

(22)

From assumptions 1–3 and relations (20)–(21), we have that quan-
tities (22) are positive. Hence, if Do is non-negative, we have that
ek, ek > 0 for all k > 0 by Lemma 2, and thus satisfying relation
(2).

PROOF OF THEOREM 1
Let us consider a Lyapunov function candidate Vk = χ>k P̃χk,

whose increments are given by

Vk+1 − Vk = ζ>k Σζk − χk>Q1χk − χ+
k
>Q2χ

+
k − χ

−
k
>Q3χ

−
k

− 2χ>k Ω+χ
+
k − 2χ>k Ω−χ

−
k − 2χ+>

k Ψχ−k + δ>k Γδk,

where ζk = vec(χk, χ
+
k , χ

−
k , δk) and

Σ =


D>o P̃Do − P̃ +Q1 D>o P̃A+ + Ω+ D>o P̃A− + Ω− D>o P̃

? A>+P̃A+ +Q2 A>+P̃A− + Ψ A>+P̃
? ? A>−P̃A− +Q3 A>−P̃
? ? ? P̃ − Γ


and, for brevity, Do = A0 − L̃oC1.

If Q = Q1 + min{Q2, Q3} + 2 min{Ω+,Ω−} � 0,Γ � 0 and
Σ 4 0 and provided that δ ∈ L2n

∞ , then the stated stability conditions
are fulfilled and system (6) is ISS with respect to the input δk (the
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diagonal matrix Ψ can be sign indefinite since χ+>
k Ψχ−k = 0 by

definition):

Vk+1 − Vk = −χ>k Qχk + δ>k Γδk

Hence, it is needed to show that the above stability conditions can
be formulated as LMIs. First, since P̃ > 0, we can decompose Σ as

Σ =


D>o P̃
A>+P̃
A>−P̃
P̃

 P̃−1


P̃Do
P̃A+
P̃A−
P̃


>

−


P̃ −Q1 −Ω+ −Ω− 0
−Ω+ −Q2 −Ψ 0
−Ω− −Ψ −Q3 0

0 0 0 Γ


then, by applying the Schur complement, the condition Σ � 0 can

be equivalently written as
P̃ −Q1 −Ω+ −Ω− 0 D>o P̃

? −Q2 −Ψ 0 A>+P̃
? ? −Q3 0 A>−P̃
? ? ? Γ P̃

? ? ? ? P̃

 � 0 (23)

Let us denote U = PLo ∈ Rn×p+ . Recalling that
PDo = PA0 − PLoC, then inequality (23) becomes linear in
P,Q1, Q2, Q3,Γ,Ω+,Ω−,Ψ and U :

P̃ −Q1 −Ω+ −Ω− 0 A>0 P̃ − C
>
1 Ũ
>

? −Q2 −Ψ 0 A>+P̃
? ? −Q3 0 A>−P̃
? ? ? Γ P̃

? ? ? ? P̃

 � 0

Finally, since P̃ > 0 and diagonal, the constraint A0 − LoC ≥ 0
follows from P̃A0 − ŨC1 ≥ 0, which is also linear in P̃ and Ũ ,
finalizing the proof.

PROOF OF LEMMA 5
Analogously to Lemma 4, let us compute increments of the

estimation errors εk, εk :

εk+1 = (A0 − LpC)εk + r1,1 + r̃1,2,

εk+1 = (A0 − LpC)εk + r2,1 + r̃2,2
(24)

where r1,1 and r2,1 are as in (22) and

r̃1,2 = L+
p Czk − L−p Czk − LpCzk + wk − wk

r̃2,2 = LpCzk − L+
p Czk + L−p Czk + wk − wk.

Then, according to relations (20), (21) and (9), all inputs (the terms
independent on ε and ε) in (24) are non-negative. Thus, if A0−LpC
is also non-negative, we have that εk, εk ≥ 0 for all k ∈ Z+ by
Lemma 2.

PROOF OF THEOREM 2
The proof follows the same rationale as in Theorem 1 and is only

sketched. By considering a Lyapunov function candidate given by
Vk = Z>k P̃1Zk, one can show input-to-state stability, i.e.,

Vk+1 − Vk = −Z>k QZk + %>k Γ%k

and the LMI conditions are stated by applying the Schur complement
in the resulting stability conditions.

PROOF OF COROLLARY 1
This proof follows directly from the implications of Lemma 5 and

Theorem 2. Indeed, evoking [20], the first constraint makes A0−LpC
non-negative, thus satisfying the conditions on cooperativity imposed
on Lemma 5. Then, by introducing a new variable U = P2Lp and
recalling that U = U+ − U− by definition, this search for Lp is
additionally constrained by the conditions stated in Theorem 2. This
guarantees stability of (10), concluding the proof.

PROOF OF THEOREM 4
Let us consider a Lyapunov function candidate given by Vk =
Z>k P

−1Zk, whose increments can be written as

Vk+1 − Vk = ζ̃
>
k Π̃ζ̃k − Z

>
k Q̃1Zk − Z

+
k
>
Q̃2Z

+
k − Z

−
k
>
Q̃3Z

−
k

+W>k Γ̃Wk − 2Z>k Ω̃+Z
+
k − 2Z>k Ω̃−Z

−
k − 2Z+

k Ψ̃Z−k

where ζ̃k = vec(Zk,Z+
k ,Z

−
k ,Wk) and Π̃ is a symmetrix matrix

with entries given by

Π̃1,1=K>P−1K−P−1+Q̃1, Π̃1,2=K>P−1K++Ω̃+

Π̃1,3=K>P−1K−+Ω̃−, Π̃1,4=K>P−1D̃

Π̃2,2=K>+P
−1K++Q̃2, Π̃2,3=K>+P

−1K−+Ψ̃

Π̃2,4=K>+P
−1D̃, Π̃3,3=K>−P

−1K−+Q̃3

Π̃3,4=K>−P
−1D̃, Π̃4,4=D̃>P−1D̃−Γ̃

for any Ψ̃ ∈ R2n×2n, non-negative definite Q̃i, Ω̃+, Ω̃− ∈ R2n×2n,
i = 1, 3, and positive definite Γ̃. Then, if Π̃ � 0, we have that

Vk+1 − Vk = −αVk +W>k Γ̃Wk (25)

meaning that Vk is an ISS Lyapunov function, provided that Q̃ =
Q̃1 + min{Q̃2, Q̃3}+ 2 min{Ω̃+, Ω̃−} � αP−1 (such an α always
exists if Q̃ � 0).

Decomposing Π̃ and applying the Schur complement (similarly as
done for matrix Σ in the proof of Theorem 1), the LMIs presented in
this theorem are obtained by multiplying the resulting inequality by
diag{P, P, P, P, P} from the left and right, and by introducing slack
variables Γ = P Γ̃P , Ω+ = P Ω̃+P , Ω− = P Ω̃−P , Ψ = P Ψ̃P ,
Q̃i = PQiP , for i = 1, 3, and by introducing new decision variables
W1 = KP , W2 = K+P,W3 = K−P and W4 = RP .

PROOF OF COROLLARY 2
First of all, the imposed inequalities on Z and Γ imply:

Z ≥ κP−1
,
η

α
Γ ≤ Z,

η

α
Γ ≤ κP ≤ PZP ⇒

η

α
Γ̃ =

η

α
P
−1

ΓP
−1 ≤ Z,

consequently, ηZ>k P
−1Zk ≤

η
αW
>
k Γ̃Wk ≤ W>k ZWk ≤ 1 for Zk ∈ X̃.

Next, note that Zk = Z+
k −Z

−
k , then the control (16) can be rewritten

as follows:

uk = (K +K+)Z+
k + (K− −K)Z−k + RWk,

and the condition uk ∈ U takes the form: Z+
k
Z−
k
Wk


>  K +K+

K− −K
R

S
 K +K+
K− −K

R

>
 Z+

k
Z−
k
Wk

 ≤ 1.

If Zk ∈ X̃, then obviously Z+
k ,Z

−
k ∈ X̃, hence, the previous

inequality is satisfied if K +K+
K− −K

R

S
 K +K+
K− −K

R

> ≤ 1

3

 ηP−1 0 0

0 ηP−1 0
0 0 Z

 .
Then, (16) is obtained by applying the Schur complement in the

relation above and then multiplying the resulting inequality from both
sides by diag{P, P, P, Im} and taking into account that PZP ≥ κP .

PROOF OF THEOREM 5
First, note that the proposed MPC algorithm is based on conven-

tional stabilizing ingredients, therefore this proof benefits of classic
results [3]. Suppose that for any [x0, x0] ⊂ X a solution of OCP (17)
exists, i.e., there is a sequence of inputs S0

N that leads the trajectories
of (10) to Xf×Xf . This means that for k = 0, by applying uk = sk0 ,
we ensure that [zk+1,i, zk+1,i] ⊂

[
zk,i+1, zk,i+1

]
⊂ X at least for

i = 0 and also
[
zk,N , zk,N

]
⊂ Xf .
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Then, following Algorithm 1, the procedure can be iteratively re-
peated for k ∈ Z+ since [wk+1, wk+1] ⊆ [wk, wk]. Moreover, the

control sequence SN that steers
[
zk,0, zk,0

]
to Xf also steers xk

(as a consequence of (2)). This implies point (1).
For point (2), since the dynamics of Zk is nominal (i.e., completely
known) under Assumption 3, we have that ISS in Xf follows directly
from the selection of the terminal ingredients (i.e., the choice of Ψj ,
j = {1, 2, 3}, in Algorithm 1), which guarantees that

V (Zk+1,N )− V (Zk,N ) ≤ W>k Γ̃Wk − `(Zk,N , sN )

due to (25) (see Section 3.3 in [3]). The practical ISS property for
(1) follows the observations that

|xk| ≤ |Zk|, |Z0| ≤ |x0|+ |x0| ≤ |x(0)|+ c

where c = |x0|+ |x0| and Zk = vec(zk,0, zk,0).
Finally, for point (3), we have that the solution of OCP (17) implies
that xk ∈

[
zk,0, zk,0

]
⊂ X due to relation (2) and uk = sk0 ∈ U,

under Assumption 6 and the discussed features of Xf .
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[2] R. Tóth, Modeling and Identification of Linear Parameter-Varying Sys-
tems, ser. Lecture Notes in Control and Information Sciences. Springer,
2010.

[3] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: stability and optimality,” Automatica,
vol. 36, pp. 789–814, 2000.
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