
HAL Id: hal-03223429
https://hal.archives-ouvertes.fr/hal-03223429

Submitted on 10 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EdgeNet: A Multi-Tenant and Multi-Provider Edge
Cloud

Berat Şenel, Maxime Mouchet, Justin Cappos, Olivier Fourmaux, Timur
Friedman, Rick Mcgeer

To cite this version:
Berat Şenel, Maxime Mouchet, Justin Cappos, Olivier Fourmaux, Timur Friedman, et al.. Ed-
geNet: A Multi-Tenant and Multi-Provider Edge Cloud. EdgeSys’21 - 4th International Work-
shop on Edge Systems, Analytics and Networking, Apr 2021, Online, United Kingdom. pp.49-54,
�10.1145/3434770.3459737�. �hal-03223429�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/427702637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-03223429
https://hal.archives-ouvertes.fr

EdgeNet: A Multi-Tenant and Multi-Provider Edge Cloud
Berat Can Şenel

Sorbonne Université

Paris, France

Maxime Mouchet

Sorbonne Université

Paris, France

Justin Cappos

NYU Tandon School of Engineering

New York, United States

Olivier Fourmaux

Sorbonne Université

Paris, France

Timur Friedman

Sorbonne Université

Paris, France

Rick McGeer

US Ignite

Washington, DC, United States

ABSTRACT
EdgeNet is a public Kubernetes cluster dedicated to network and

distributed systems research, supporting experiments that are de-

ployed concurrently by independent groups. Its nodes are hosted

by multiple institutions around the world. It represents a depar-

ture from the classic Kubernetes model, where the nodes that

are available to a single tenant reside in a small number of well-

interconnected data centers. The free open-source EdgeNet code

extends Kubernetes to the edge, making three key contributions:

multi-tenancy, geographical deployments, and single-command

node installation. We show that establishing a public Kubernetes

cluster over the internet, with multiple tenants and multiple host-

ing providers is viable. Preliminary results also indicate that the

EdgeNet testbed that we run provides a satisfactory environment

to run a variety of experiments with minimal network overhead.

CCS CONCEPTS
•Computer systems organization→Distributed architectures.

KEYWORDS
Edge Computing, Edge Cloud, Distributed Systems, Kubernetes

ACM Reference Format:
Berat Can Şenel, Maxime Mouchet, Justin Cappos, Olivier Fourmaux, Timur

Friedman, and Rick McGeer. 2021. EdgeNet: A Multi-Tenant and Multi-

Provider Edge Cloud. In 4th International Workshop on Edge Systems, Ana-
lytics and Networking (EdgeSys’21), April 26, 2021, Online, United Kingdom.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3434770.3459737

1 INTRODUCTION
Traditional cloud architectures are concerned with providing on-

demand access for external users to compute and storage resources

located in centralized data centers. This model is challenged with

the emergence of new applications, such as content delivery, peer-

to-peer multicast, distributed messaging, and the Internet of Things

(IoT). These applications are sensitive to latency and they benefit

from compute resources that are geographically close to the user.

Edge clouds complement centralized clouds by placing com-

putation and storage resources close to users or data sources, to

offer high bandwidth and low latency between cloud computing

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

EdgeSys’21, April 26, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8291-5/21/04. . . $15.00

https://doi.org/10.1145/3434770.3459737

resources, data producers, and data consumers. For well over a

decade, the networking and distributed systems research communi-

ties have deployed a series of wide-area edge cloud testbeds, such as

PlanetLab Central [21], PlanetLab Europe [6], Geni [16], G-Lab [17],

V-Node [18] and Savi [14]. These testbeds degraded over time for

two reasons: they relied on dedicated hardware, which required

on-site support, and they used custom control frameworks.

The requirement for dedicated hardware has led to maintenance

and scalability issues. On one hand, the cost of purchase and re-

placement of servers discouraged people from contributing to the

testbeds. On the other hand, the human resources required to main-

tain servers over the long term were costly. In the long term, the

testbeds were not able to scale.

The testbeds also relied on custom software for managing the

nodes and the experiments. These control frameworks were typi-

cally written and maintained by a small team of researchers, and

used by a relatively small community of distributed-systems experi-

menters. Such software gets quickly outdated, and is only improved

by the small communities of the original developers and dedicated

experimenters. This lack of standardization resulted in a waste of

resources, as each testbed has to be documented individually, and

experimenters had to learn testbed-specific knowledge.

We argue that the solution to make the next generation of dis-

tributed testbeds viable is to rely onwidely used control frameworks

and on inexpensive virtual machines. This approach reduces the

cost per site, as the virtual machines can be created for free on an

existing infrastructure, and requires almost no maintenance. This

solves the scalability problem by lowering the entry barrier for

contributing new nodes. In addition, there is no need to main-

tain extensive testbed-specific documentation and software, as

most of it is reused from external projects. This also benefits the

users of a testbed, as by learning how to use it, they gain industry-

valuable knowledge. However, today’s common cloud frameworks

treat nodes as homogeneous entities in a centralized data center,

whereas a key feature of edge testbeds is their heterogeneity and

geo-diversity. Up until now been no production-ready framework

for edge cloud testbeds.

In this article, we introduce the EdgeNet free open-source soft-

ware that allows an edge cloud to be deployed onto virtual ma-

chines as worker nodes, with Kubernetes as the control framework.

EdgeNet offers a novel architecture for edge computing, which

directly addresses the sustainability and maintenance issues de-

scribed above. Since an EdgeNet worker node is a VM running at

a site’s local cloud, the expense of maintaining a dedicated hard-

ware resource disappears; in fact, an EdgeNet VM is just another

VM among many running at that cloud, requiring no marginal

https://doi.org/10.1145/3434770.3459737
https://doi.org/10.1145/3434770.3459737

EdgeSys’21, April 26, 2021, Online, United Kingdom Berat Can Şenel, Maxime Mouchet, Justin Cappos, Olivier Fourmaux, Timur Friedman, and Rick McGeer

maintenance commitment. Using Kubernetes directly addresses the

maintenance, upgrade, and training issues of control frameworks

mentioned above. A worldwide community of developers maintains

and extends Kubernetes, and extensive documentation and training

resources are available on the internet.

The challenge that EdgeNet overcomes is that the use of Ku-

bernetes as an edge cloud control framework breaks Kubernetes’

central design assumptions in three important areas:

• Kubernetes was designed for homogeneous nodes, where

computation could be rapidly moved from one node to an-

other in the cluster. For EdgeNet, a node’s physical location

is a first-class design parameter, and so nodes are heteroge-

neous in physical location. Further, experimenters must be

able to choose where their worker nodes are placed.

• Kubernetes was designed so that head nodes and all worker

nodes were within the same cluster, so communication was

on layer 2 and latencies were on the order of microseconds.

In our deployment, layer-2 connectivity is not available, and

inter-node latencies are on the order of 10s of milliseconds.

• Kubernetes was designed for a single-tenant deployment. In

our cluster, there are mutually-untrusting multiple tenants.

Kubernetes is widely used in central data centers for container

organization. EdgeNet brings it to the edge with three key contribu-

tions: (1) A node selection feature that makes it possible to deploy

containers on nodes based on their locations. It is easy to configure

deployments to schedule pods to cities, countries, continents, or

latitude-longitude polygons. (2) A single-command node installa-

tion procedure lowers the entry barrier for the institutions wishing

to contribute nodes to the cluster, thus simplifying the establish-

ment of an edge cloud. (3) Multi-tenancy at the edge, providing

isolation between tenants and sharing limited resources fairly, so

that multiple organizations can concurrently benefit from the edge

cloud.

EdgeNet’s open-source software is freely available on GitHub
1
,

and the testbed that it supports
2
is open to researchers worldwide.

In Sec. 2 we review similar efforts for bringing Kubernetes to the

edge. In Sec. 3 we present how EdgeNet is implemented in terms

of Kubernetes custom resources. In Sec. 4 we describe the current

status of the platform, and in Sec. 5 we evaluate the performance

of EdgeNet.

2 RELATEDWORK
Much work has been done to adapt container technology to edge

clouds [2, 19, 20]. A growing number of publications address var-

ious aspects, such as IoT task offloading, enabling long-running

functions in containerization for IoT devices, and designing a sched-

uler for Kubernetes in Industrial IoT, which allows edge cloud nodes

to consume less energy and to deploy applications in less time than

usual. [4, 11, 12].

In Cloud4IoT [22], the authors discuss a platform using con-

tainers to deploy, orchestrate, and dynamically configure software

components related to IoT and data-intensive applications while

providing scalability in the cloud layer. The main difference with

EdgeNet is that it concentrates on IoT solutions, meaning the device

1
https://github.com/EdgeNet-project

2
https://edge-net.org/

edge, whereas EdgeNet’s core use case is for more somewhat more

powerful nodes positioned at the network edge.

Kristiani et al. [13] provide an implementation of an edge comput-

ing architecture by taking advantage of OpenStack and Kubernetes

to cover the cloud, the edge cloud, and the device edge cloud. This

implementation reduces the workload on the cloud side by assign-

ing data processing tasks to the edge front to be performed at the

edge of the network. The focus is different from EdgeNet’s, looking

at communication between three layers (Cloud, Edge, and Device

Edge) and on task offloading.

KubeEdge [26], a project that is incubating within the Cloud

Native Computing Foundation, offers a Kubernetes-based infras-

tructure that brings specific cloud capabilities to the edge. It aims

to overcome edge computing challenges such as limited resources

and non-connectivity. KubeEdge uses Docker as its containeriza-

tion technology, Kubernetes as the orchestrator, and Mosquitto

for IoT devices talking to edge nodes. Again, the focus is different

from EdgeNet’s selective deployment, easy node installation, and

multi-tenancy contributions.

Another project that brings Kubernetes to the edge is Rancher’s

Lightweight Kubernetes [10], which focuses on lightweight Kuber-

netes for resource-constrained nodes, which is a feature that we

would like to provide through EdgeNet, but which is not the subject

of the present study.

3 KUBERNETES EXTENSIONS
Kubernetes is an orchestrator: its main goal is to deploy containers

on nodes, and to ensure that the desired number of containers is

running at any given time. It is based on the concept of resources
and controllers. A resource defines the state of the system, and a

controller ensures that the system stays in the desired state. By

default, Kubernetes provides a number of resources, such as de-
ployments which define a desired quantity of containers. When a

deployment object is created, the associated controller will select

available nodes, and create the pod objects that represent a group

of containers running on a single node. The pod will then run the

actual containers on the node. If a node were to fail, the deployment

controller would create new pod objects on suitable nodes.

Kubernetes can be extended in many ways. The original EdgeNet

prototype [3, 9] was built as an overlay on top of Kubernetes. A

custom web server would handle EdgeNet-specific features such

as user registration, and create the appropriate Kubernetes object

using the Kubernetes kubectl command-line tool. The current

EdgeNet version extends Kubernetes in a more idiomatic way, by

defined its own custom resources and controllers (Fig. 1). This

makes it possible to interact with EdgeNet by using nothing beyond

standard Kubernetes tools.

The EdgeNet philosophy is to stick as close to possible to vanilla

Kubernetes. This allows its users to benefit from the wealth of

Kubernetes documentation available online, and to leverage their

existing knowledge. Users such as students also gain skills that will

be transferable to industry. EdgeNet’s developers have a smaller

base of custom code to maintain over time. All EdgeNet develop-

ment is done in the Go language, used by Kubernetes and many

other projects in the community, so as to make it easy to understand

and to contribute to.

https://github.com/EdgeNet-project
https://edge-net.org/

EdgeNet: A Multi-Tenant and Multi-Provider Edge Cloud EdgeSys’21, April 26, 2021, Online, United Kingdom

Figure 1: EdgeNet extends Kubernetes by using custom re-
sources and custom controllers. The user interacts with Ed-
geNet through the standard Kubernetes API.

In using the EdgeNet software to power a testbed, we aim to

provide:

• a service that makes it easy for users to take advantage of

geographic node diversity for node selection (Sec. 3.1);

• an easy node deployment procedure, to lower the entry bar-

rier for new contributors and increase the diversity and the

geographic coverage of the cluster’s nodes (Sec. 3.2);

• a multi-tenant structure that allows different groups to reg-

ister to use the cluster and obtain a share of its resources for

their applications (Sec. 3.3).

3.1 Location-based node selection
EdgeNet’s main value as compared to pure Kubernetes is its ability

to deploy containerized software to a widely distributed set of

nodes rather than to nodes that are all grouped in a centralized

datacenter. To do so, the users must be able deploy containers based

upon a node’s location. Note that Kubernetes offers the ability to

choose specific nodes based on labels, but it is up to the cluster

administrators to attach the relevant labels to the nodes. EdgeNet

achieves location-based deployments with two components: (1) a

service that geolocates nodes and attaches the appropriate labels

to them; (2) a selective deployment resource, which allows the users

to select amongst nodes based on geographic criteria.

3.1.1 Node labeler. In order to be able to select nodes by their

location, EdgeNet attaches multiple labels to the nodes according

to their city, state/region, country, continent, and coordinates. This

is done by the node labeler, a controller that watches the cluster for
new nodes, or for node IP updates, and geolocates the nodes. By

default, the nodes are located by IP address, using the MaxMind

GeoLite2 database.If the node is running at a known cloud provider,

we use the location of the data center in which the node is running,

obtained from the instance metadata. For example, we assign the

following labels to a node located at Stanford:

• edge-net.io/city=Stanford

• edge-net.io/state-iso=CA

• edge-net.io/country-iso=US

• edge-net.io/continent=North_America

• edge-net.io/lat=n37.423000

• edge-net.io/lon=w-122.163900

3.1.2 Selective deployment. Once the labels are attached to the

nodes, they can be used to select specific nodes when creating

resource objects such as deployments. However Kubernetes’ built-

in selectors are limited, consisting only of equality comparison (city
= Stanford), and set inclusion (city in (Paris, Stanford)). In order

to enable additional selection criteria, we introduce the selective
deployment resource.

A selective deployment is comprised of a resource type (a de-

ployment, for example), and of geographic queries associated with

a number of nodes. It can target nodes by continent, country, re-

gion, and city, as well as polygons that are described using latitudes

and longitudes. In order to efficiently determine which nodes lie

with a polygon, we use the Point-in-Polygon algorithm [8]. When

a selective deployment is created, the controller finds the relevant

nodes and creates the appropriate resource objects. If a node goes

down, the controller re-configures its resource objects in order to

start a new pod on a new node in the same geographic area.

3.2 Node contribution
AnEdgeNet node is amachine, physical or virtual, that runs kubelet,
the Kubernetes agent, and a container runtime. EdgeNet currently

uses Docker as the container runtime, although this configuration

will be deprecated in future Kubernetes versions. EdgeNet will be

updated to use containerd instead.

While installing Docker and kubelet is relatively easy for a user

comfortable with the command line, we seek to make the process as

easy and error-proof as possible in order to encourage contributions.

To do so we describe an EdgeNet configuration through a set of

Ansible playbooks. Ansible is a popular configuration management

tool, and is commonly used to deploy Kubernetes clusters (see,

for example, the Kubespray project [23]). By using Ansible, we

can reuse community-maintained playbooks for deploying Docker

and kubelet, and we can benefit from the ecosystem of tools that

integrate with Ansible. Most notably, we make use of the Packer

tool to build ready-to-use virtual machines from the playbooks.

An EdgeNet node can be deployed in under 5 minutes, as detailed

in Sec. 5.2. We currently support the deployment of nodes on the

major Linux distributions (CentOS, Fedora, and Ubuntu) on x86

machines with a public IPv4 address. We will extend support to

ARM hosts and machines with non-public IP addresses in the future.

3.2.1 Pre-built cloud images. We provide prebuilt cloud images for

the major cloud providers (Amazon Web Services, Google Cloud

Platform and Microsoft Azure). These images allow any user of

these clouds to deploy an EdgeNet node with no configuration

required. On first boot, a NodeContribution object is created and

the node is allowed to join the cluster.

EdgeSys’21, April 26, 2021, Online, United Kingdom Berat Can Şenel, Maxime Mouchet, Justin Cappos, Olivier Fourmaux, Timur Friedman, and Rick McGeer

3.2.2 Bootstrap script. For users who want to deploy nodes on

their own machines, we provide a bootstrap script that installs

Ansible, downloads the playbooks, and runs them. Note that users

comfortable with Ansible can directly use the EdgeNet playbooks

to deploy a node.

3.3 Multi-tenancy
Edge clouds aim to provide nodes that are geographically close to

the end users. However, achieving good geographic coverage as a

single tenant can be complicated, as it requires obtaining access to

nodes across theworld. A contribution in exchange for consumption

model, whereby multiple tenants contribute nodes, is a solution to

this problem. In this section we describe the current multi-tenancy

model of EdgeNet and we discuss an improved model.

3.3.1 Current multi-tenancy model. EdgeNet offers multi-tenancy

at the edge, in which authorizations to use the platform are handed

out hierarchically. EdgeNet administrators approve the establish-

ment of authorities, which represent an institution or a research

team. The administrator of the authority, in turn, approves the

creation of individual user accounts for the local users who they

know. For structuring an authority, EdgeNet borrows two concepts

from the PlanetLab Europe [5] and Fed4FIRE [7] platforms: teams
and slices. A team under an authority allows its members to in-

dependently create slices even if they are not authorized to do so

at authority scope. A slice allows its participants to create their

workload resource objects to deploy the pods to the cluster. Team

members and slice participants may belong to different authorities,

thus allowing the collaboration across authorities. Each authority is

assigned a total resource quota, and slices can only be createdwithin

the available quota, ensuring that resources are shared amongst

authorities.

3.3.2 Future multi-tenancy model. We plan to update the current

multi-tenancy model, inherited from the realm of networking and

distributed systems testbeds, to bring it closer to the to the work

of Kubernetes multi-tenancy working group. First, we will align

the naming, for instance replacing “authority” with “tenant”. Next,

we would create a core namespace for each tenant and merge slices

and teams into subnamespaces. The core namespace would allow

each tenant to create workloads directly, as opposed to the current

design, which obliges a tenant to create a slice first. The subnames-

paces could be arbitrarily nested, starting from the core namespace,

and each would inherit the RBAC (Role-Based Access Control) and

network policy settings from its parent. This would allow a more

fine-grained and hierarchical control over the resources, in compar-

ison to the slices and teams model. We hope to achieve three main

objectives: (1) position EdgeNet closer to the Kubernetes multi-

tenancy working group in better contribute our work back to the

community; (2) simplify the EdgeNet code base; (3) simplify the

onboarding of new users by reducing the number of steps required

to run experiments on the platform.

4 PLATFORM STATUS
EdgeNet is up and running at over 40 nodes worldwide including 5

in Europe, 1 in Brasil, 1 in Australia, and the others in the United

States. The current nodes are hosted by universities and the Geni

[16] testbed in the USA. In addition, several experiments have been

conducted on EdgeNet over the past year:

CacheCash (NYU Tandon School)
CacheCash [1] is a blockchain-based CDN that involves the end

users themselves into the network to serve content through their

ownmachines. 30 EdgeNet nodes have been used to deploy CacheCash

and perform extensive latency, throughput, and resource usage mea-

surements.

Internet scale topology discovery (Sorbonne Université)
The Multilevel MDA-Lite Paris Traceroute [25] tool, an evolved ver-

sion of the well known traceroute tool, was used for continuous

surveys the internet from EdgeNet nodes. Also, Diamond-Miner

[24], which conducts high speed internet-scale route traces, has

been deployed on 7 EdgeNet nodes as part of a production internet

topology measurement system.

Cyberlab Honeypot Experiment (University of Ljubljana)
The honeypot experiment uses EdgeNet to expose fake SSH servers

on the internet and detect malicious activities.

Reveal topologies of remote networks
(Université de Liège - Institut Montefiore)
This experiment sends ICMP probes from EdgeNet nodes to perform

internet topology discovery.

Darknet Watch (University College Dublin)
This bandwidth-intensive experiment conducts measurement on

the I2P anonymous network.

NDT Client (M-Lab)
EdgeNet supports continuous measurements by the M-Lab NDT

(Network Diagnostic Tool) [15] client that measures download and

upload speeds.

The EdgeNet cluster currently consists of 72 vCPUs and 96 GB

of memory. A typical EdgeNet node has 2 GB of memory, 2 vCPUs,

and 15 GB of storage. Since its start, EdgeNet has supported up to 7

parallel experiments. Scaling the system is ongoing work: currently,

if a new experiment requires a node that does not have enough

available resources to handle a new experiment, the system does

not deploy the experiment on that node. In future work, we plan

to fix this limitation by automatically instantiating a new EdgeNet

node on the overloaded site (if resources are available). The node

contribution process (Sec. 3.2) that automates the deployment of a

new node goes in that direction.

5 BENCHMARKS
EdgeNet is a global Kubernetes cluster with nodes all over the

world communicating over the internet. This differs from the classic

Kubernetes use case with nodes located in well-interconnected data

centers. In this section we study how the cluster performs in terms

of deploying containers, adding new nodes, and networking.

5.1 Time to deploy an experiment
We measured the time necessary to schedule and run pods using se-

lective deployments in 5 use cases: 1 pod anywhere in the European

Union, 5 pods anywhere in the United States, 20 pods anywhere in

the United States, and 1 and 20 pods in a polygon with 18 vertices

provided in the GeoJSON format. We also simulated node failures

EdgeNet: A Multi-Tenant and Multi-Provider Edge Cloud EdgeSys’21, April 26, 2021, Online, United Kingdom

by stopping the Kubernetes agent, kubelet, on them. The results are

presented in Tab. 1.

We first see that creating a selective deployment, including the

node selection, is done in a very short time, always under half

a second. Thus, selecting nodes geographically incurs almost no

overhead over the classical Kubernetes selector.

Next, when the number of pods is small, the time to create the

daemon set and to get all the pods up and running is under 10

seconds. However, when 20 pods are requested, this time jumps

up to 80 seconds. This is explained by the lack of resources on

some nodes of the cluster. Pods typically are scheduled in under 10

seconds, but if the node where a pod is scheduled has a bottleneck

of the resources in terms of CPU and memory, it spikes the time

for the pod to be up and running.

The cluster can detect a node failure in under 45 seconds, and

in all cases but one that we have tested, restart the pods on a new

node in under 10 seconds. In the case of 5 pods in the US, it took

80 seconds to recover the pods. In that instance, the Kubernetes

scheduler removed all pods from nodes and redeployed them even

though only one node was changed and others remained the same

in the selector. We assume that changing the selector, the node

affinity, in the workload spec caused this unexpected behavior.

Further investigation is needed to understand the underlying cause.

These findings raise questions about the ability of the default

Kubernetes scheduler to meet edge cloud requirements and indi-

cates the need for an edge scheduler for edge-specific applications.

A health-check mechanism between the master and worker nodes

could also be put in place to reduce the time needed to detect a

node failure.

5.2 Time to deploy a node
An EdgeNet node can be deployed in two ways: from a pre-built

cloud image, or from a bootstrap shell script in a dedicated virtual

machine. We perform our measurements for both methods on an

AWS (Amazon Web Services) t2.small instance with 1 vCPU and 2

GB of memory, in the eu-west-1 (Ireland) region.
With the bootstrap script, counting from the launch of the script,

it takes 2 minutes and 50 seconds to install Docker and Kubernetes,

3 minutes and 5 seconds for the node to be detected by the cluster,

and 3 minutes and 50 seconds to be ready to deploy containers.

With the prebuilt AMI (Amazon Machine Image), counting from

the instance creation, it takes 40 seconds for the node to be detected

by the cluster, and 1 minute 20 seconds for the node to be ready to

deploy containers.

5.3 Cluster network performance
EdgeNet relies on the Calico network plugin to enable intra-cluster

communications, that is, communications between the pods of the

cluster. Calico establishes a private pod network on each node, and

exchanges routes through full-mesh BGP peerings. Packets between

the pod networks are sent over the internet using an IP-in-IP en-

capsulation. In this section we investigate the performance impact

of this encapsulation in terms of throughput and RTT. Due to space

constraints, we only present a relevant subset of our measurement

results. The full dataset is available online
3
.

3
https://github.com/EdgeNet-project/benchmarks

Throughput. We used the standard iPerf3 tool to measure the

throughput between nodes of the cluster and a node in Paris, and

between nodes and a public server hosted by an ISP in France. This

allows us to assess the impact of the IP-in-IP encapsulation on the

network throughput. The results are presented in Fig. 2.

Figure 2: Average throughput between intra and extra-
cluster targets. The throughput was measured over 10 sec-
onds with iPerf 3. Bougyues is a 10Gbit/s iPerf server hosted
by an ISP, and LIP6 is an EdgeNet node, both located in Paris,
France. Measurement towards the EdgeNet node are routed
through the Calico IP-in-IP tunnel.

In almost every case, the intra and extra cluster throughput is sim-

ilar. However, for the uvm, uky, and utdallas nodes the extra-cluster
throughput is much higher than the intra-cluster one. Similarly, the

gcp node located in the Google Cloud Platform, has significantly

worse intra-cluster performance. Further investigations are needed

to determine if this is due to congestion in the network, different

IP routes for the two destinations, or to the IP-in-IP encapsulation.

Round-trip time. Similarly to the throughput measurements, we

measure the round-trip time between the nodes of the cluster and

a node in Paris, France. The measurements are done towards the

external IP of the node, in which case the packets are directly sent

over the internet, and towards the internal IP of the node, in which

case the packets are encapsulated before being sent. The results are

presented in Fig. 3.

In all cases the minimum RTT is identical between the external

and internal IP, indicating that the IP-in-IP encapsulation has no

effect on the RTT. This makes EdgeNet suitable for research on

computer networks, as the platform overhead is minimal. We have

also done this measurement towards 3 nodes in the USA, and 1 node

in Brazil. We observe no overhead for the nodes in the USA, but

for the node in Brazil the intra-cluster delay is consistently longer

by 4 milliseconds. Further investigation is needed to understand

why this is the case for this node.

6 CONCLUSION
In this paper we introduced EdgeNet, a multi-tenant and multi-

provider edge cloud based on Kubernetes. EdgeNet extends Kuber-

netes through custom resources and controllers, making it usable

https://github.com/EdgeNet-project/benchmarks

EdgeSys’21, April 26, 2021, Online, United Kingdom Berat Can Şenel, Maxime Mouchet, Justin Cappos, Olivier Fourmaux, Timur Friedman, and Rick McGeer

Table 1: Time in seconds to schedule and run pods on EdgeNet using selective deployments.

Selection Selective Deployment Daemon Set Pod Node Failure Detection Daemon Set Recovery Pod Recovery

1 pod in the EU 0.42 3.9 3.4 36.7 4.6 3.5

5 pods in the US 0.19 10.1 10.5 45.5 79.9 79.2

20 pods in the US 0.47 60.6 79.6 39.8 8.2 8.3

1 pod in a polygon 0.18 6.7 6.2 41.1 8.3 8.3

20 pods in a polygon 0.33 57.2 56.8 37.4 9.8 9.8

Selective Deployment is the time to create a selective deployment object and select the nodes. Daemon Set is the time for the selective deployment to create

the daemon set and its pods. Pod is the time between the creation of the first pod and having the last pod in the running state. Node Failure Detection is

the time to detect a node failure. The last two columns are the time to reconfigure the daemon sets and to recreate the pods after the node failure.

Figure 3: MinimumRTT between EdgeNet nodes and a node
in Paris, France. TheRTTwas computed over 100 ICMPping
measurements. Pings towards the external IP are directly
sent over the internet, while pings towards the internal IP
are routed through the Calico IP-in-IP tunnel.

with nothing else than the standard Kubernetes tools. In its cur-

rent state, the EdgeNet cluster offers reasonable performance with

minimal overhead, and is suited to all kinds of experiments on net-

worked systems. EdgeNet shows that a public Kubernetes cluster

with nodes distributed over the world works.

Several steps can be taken to improve EdgeNet, and more gen-

erally Kubernetes at the edge. First, an edge-specific scheduler for

Kubernetes could be designed so as to minimize the deployment

times and to better take into account the limitations of each edge

node. Second, EdgeNet does not currently support nodes with a

private IP address and located behind a NAT. This scenario is com-

mon for edge nodes and should be addressed in a future EdgeNet

update.

ACKNOWLEDGMENTS
EdgeNet got its start thanks to an NSF Eager grant, and now bene-

fits from a VMware Academic Program grant and a French Ministry

of Armed Forces cybersecurity grant. The authors also wish to

thank Kevin Vermeulen for his review of the paper draft and his

valuable comments.

REFERENCES
[1] G. Almashaqbeh. 2019. CacheCash: A Cryptocurrency-based Decentralized Content

Delivery Network. Ph.D. Dissertation. Columbia University.

[2] A. Bavier, R. McGeer, and G. Ricart. 2016. PlanetIgnite: A Self-Assembling,

Lightweight, Infrastructure-as-a-Service Edge Cloud. In Proc. ITC ’16. 130–138.
[3] J. Cappos, M. Hemmings, R. McGeer, A. Rafetseder, and G. Ricart. 2018. EdgeNet:

A global cloud that spreads by local action. In Proc. SEC 2018. IEEE, 359–360.
[4] C. Dupont, R. Giaffreda, and L. Capra. 2017. Edge computing in IoT context:

Horizontal and vertical Linux container migration. In Proc. GIoTS 2017. 1–4.
[5] PlanetLab Europe. 2021. PLE. https://www.planet-lab.eu/

[6] S. Fdida, T. Friedman, and T. Parmentelat. 2010. OneLab: An Open Federated

Facility for Experimentally Driven Future Internet Research. In New Network
Architectures: The Path to the Future Internet, Tania Tronco (Ed.). Studies in

Computational Intelligence, Vol. 297. Springer-Verlag, 141–152.

[7] Fed4FIRE. 2021. Fed4FIRE. https://www.fed4fire.eu/

[8] D. Rex Finley. 2021. Point-in-Polygon Algorithm—Determining Whether a Point

Is Inside a Complex Polygon. http://alienryderflex.com/polygon/

[9] T. Friedman, R. McGeer, B. C. Senel, M. Hemmings, and G. Ricart. 2019. The

EdgeNet System. Proc. ICNP ’19 (2019), 1–2.
[10] K3s. 2021. K3s: Lightweight Kubernetes. https://k3s.io/

[11] P. Karhula, J. Janak, and H. Schulzrinne. 2019. Checkpointing and Migration of

IoT Edge Functions. In Proc. EdgeSys ’19 (Dresden, Germany). Association for

Computing Machinery, New York, NY, USA, 60–65.

[12] K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman. 2020. KEIDS:

Kubernetes-Based Energy and Interference Driven Scheduler for Industrial IoT

in Edge-Cloud Ecosystem. IEEE Internet of Things Journal 7, 5 (2020), 4228–4237.
[13] E. Kristiani, C.-T. Yang, Y. Wang, and C.-Y. Huang. 2019. Implementation of

an Edge Computing Architecture Using OpenStack and Kubernetes: ICISA 2018.
675–685.

[14] A. Leon-Garcia and H. Bannazadeh. 2016. SAVI Testbed for Applications on

Software-Defined Infrastructure. In The GENI Book. Springer-Verlag, New York,

Chapter 22.

[15] M-Lab. 2021. Network Diagnostic Tool. www.measurementlab.net/tests/ndt/

[16] R. McGeer, M. Berman, C. Elliott, and R. Ricci (Eds.). 2016. The GENI Book.
Springer International Publishing.

[17] P. Mueller and S. Fischer. 2016. Europe’s Mission in Next-Generation Networking

With special emphasis on the German-Lab Project. In The GENI Book. Springer-
Verlag, New York, Chapter 21.

[18] A. Nakao and K. Yamada. 2016. Research and Development on Network Virtualiza-
tion Technologies in Japan: VNode and FLARE Projects. 563–588.

[19] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee. 2016. A Container-Based Edge

Cloud PaaS Architecture Based on Raspberry Pi Clusters. In Proc. FiCloud ’16.
117–124.

[20] C. Pahl and B. Lee. 2015. Containers and Clusters for Edge Cloud Architectures –

A Technology Review. In Proc. FiCloud ’15. 379–386.
[21] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. 2006. Experiences building

PlanetLab. In Proc. OSDI ’06. USENIX Association.

[22] D. Pizzolli, G. Cossu, D. Santoro, L. Capra, C. Dupont, D. Charalampos, F. De Pel-

legrini, F. Antonelli, and S. Cretti. 2016. Cloud4IoT: A Heterogeneous, Distributed

and Autonomic Cloud Platform for the IoT. In Proc. CloudCom ’16. 476–479.
[23] Kubernetes SIGs. 2021. kubespray. github.com/kubernetes-sigs/kubespray

[24] K. Vermeulen, J. P. Rohrer, R. Beverly, O. Fourmaux, and T. Friedman. 2020.

Diamond-Miner: Comprehensive Discovery of the Internet’s Topology Diamonds.

In Proc. NSDI ’20. USENIX Association, Santa Clara, CA, United States, 479–493.

[25] K. Vermeulen, S. D. Strowes, O. Fourmaux, and T. Friedman. 2018. Multilevel

MDA-lite Paris traceroute. In Proc. IMC ’18. 29–42.
[26] Y. Xiong, Y. Sun, L. Xing, and Y. Huang. 2018. Extend Cloud to Edge with

KubeEdge. In Proc. SEC 2018. 373–377.

https://www.planet-lab.eu/
https://www.fed4fire.eu/
http://alienryderflex.com/polygon/
https://k3s.io/
www.measurementlab.net/tests/ndt/
github.com/kubernetes-sigs/kubespray

	Abstract
	1 Introduction
	2 Related Work
	3 Kubernetes Extensions
	3.1 Location-based node selection
	3.2 Node contribution
	3.3 Multi-tenancy

	4 Platform Status
	5 Benchmarks
	5.1 Time to deploy an experiment
	5.2 Time to deploy a node
	5.3 Cluster network performance

	6 Conclusion
	Acknowledgments
	References

