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Non overlapping Domain Decomposition
Methods for Time Harmonic Wave Problems

Xavier Claeys, Francis Collino, Patrick Joly and Emile Parolin

Abstract . The domain decomposition method (DDM) initially designed, with the
celebrated paper of Schwarz in 1870 [22] as a theoretical tool for partial differential
equations (PDEs) has become, since the advent of the computer and parallel com-
puting techniques, a major tool for the numerical solution of such PDEs, especially
for large scale problems. Time harmonic wave problems offer a large spectrum of
applications in various domains (acoustics, electromagnetics, geophysics, ...) and
occupy a place of their own, that shines for instance through the existence of a natu-
ral (possibly small) length scale for the solutions: the wavelength. Numerical DDMs
were first invented for elliptic type equations (e.g. the Laplace equation), and even
though the governing equations of wave problems (e.g. the Helmholtz equation) look
similar, standard approaches do not work in general.

The objective of this work is to make a rapid, but hopefully pedagogical, survey of
the research ledmainly at INRIA (in the teamsONDES then POEMS andALPINES)
since 1990, on non overlapping domain decomposition methods for time harmonic
wave propagation problems, based on the notion of impedance transmission con-
ditions. Our point of view, and we consider that this sets us apart from the rest of
the wave DDM community, is theory driven: we proposed and progressively devel-
oped a unified framework that guarantees the well-posedness and convergence of
the related iterative algorithms in themost general cases (geometry, variable coef-
ficients, boundary conditions. . . ). This researchwas punctuated by four Phd theses.

• The PhD thesis of B. Després [10] (1991) is definitely a pioneering work which
constitutes a decisive step. It is worthwhile mentioning that P. L. Lions [17], [18]
wrote his papers on the theory of DDMs for elliptic problems at the same period.

• With the PhD thesis of S. Ghanemi [15], at CERFACS in 1996, we began to de-
velop our general theoretical framework, proposed the use of second order local
transmission conditions and initiated non-local transmission conditions [3].

Then there was a big pause (about 15 years) in our activity, during which a huge
literature was devoted to Optimized Schwarz Methods (OSMs) associated to lo-
cal impedance operators (see also section 2), up to the opportunity of a contract
withCEA (FrenchNuclearAgency)which started the second phase of our activity.
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Francis Collino, Patrick Joly, Emile Parolin
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• The PhD thesis ofM. Lecouvez [16] (2015), in collaboration with CEA, permitted
us to develop the notion of non-local transmission operators.

• The PhD thesis of E. Parolin [20] (2020) supported by the ANR Project Nonlo-
calDDwhich closes a chapter of the storywith the notion of elliptic DtN operators,
the treatment of Maxwell’s equations and a solution to the cross points issue [6].

1 Elliptic equations versus Helmholtz equation
In this section, we expose the general ideas, more formalism will be introduced in
Section 2. To emphasize the difference of status between the two types of equations
w.r.t. DDM, let us simply consider the equation with constant coefficients

−∆u + k2u = f , in Rd, k ∈ C, where (1)

- if k ∈ R+: in this case (1) is of (strongly) elliptic nature
- if k = iω, ω ∈ R+ (Helmholtz) : one models waves with frequency ω.

The distinction is important for DDMs : for instance, the classical overlapping
Schwarz method converges (linearly in most case) in the elliptic case but does not
converge for the Helmholtz equation. In fact, in the elliptic case, the boundary value
problems (BVPs) associated with (1) enjoy many nice properties including the H1-
coercivity of a(u, v) =

∫
(∇u · ∇v + k2 u v), the associated bilinear form, and their

solutions are often interpreted as the solutions of convex minimization problems.
With this point of view, P.L. Lions gave a general proof of convergence of the
Schwarz method by interpreting the error at each step of the algorithm as the result
of successive orthogonal projections on two (with two subdomains) supplementary
subspaces of H1 [17]. These problems also benefit from the maximum principle,
which also provides another way for proving the convergence of the Schwarzmethod.

On the contrary, if k = iω, a(u, v) =
∫
(∇u · ∇v − ω2 u v), the natural bilinear form

for Helmholtz, is no longer coercive and there is no underlying variational principle
for the corresponding BVPs. Also, there is no maximum principle: the (complex
valued) solutions naturally oscillate with the wavelength λ = 2π/ω.

Fortunately, good news comes from the boundary: if u satisfies −∆u − ω2 u = 0 in
a bounded domain Ω with boundary Γ and outgoing normal ν then (multiply the
equation by u, integrate over Ω, apply Green’s formula and take the imaginary part)

Im
∫
Γ

∂νu u = 0, i. e. Im
〈
∂νu,u

〉
Γ
= 0, (2)

with 〈· , ·〉Γ the inner product in L2(Γ) ≡ L2(Γ;C). This leads to the following
isometry result, where ‖ · ‖Γ denotes the L2(Γ)-norm

‖ ∂νu + iω u ‖2Γ = ‖ ∂νu − iω u ‖2Γ, (3)

(simply note that the difference of the two sides of (3) is proportional to Im 〈∂νu,u〉Γ
which is 0 by (2)). One obtains many other isometry results by playing with identity
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(2): introducing a "boundary operator" Λ (understand that it tranforms a function
defined on Γ into another function defined on Γ), supposed to be bijective (between
appropriate spaces) with (formal) adjoint Λ∗, we remark that

Im
〈
∂νu,u

〉
Γ
= 0 ⇔ Im

〈
∂νu,Λ−1

Λu
〉
Γ
= 0 ⇔ Im

〈
(Λ∗)−1∂νu,Λu

〉
Γ
= 0,

from which we deduce the other isometry result

‖ (Λ∗)−1∂νu + iωΛu ‖2Γ = ‖ (Λ
∗)−1∂νu − iωΛu ‖2Γ . (4)

Introducing the positive definite selfadjoint boundary operator T = Λ∗Λ (called
impedance operator in the sequel) and the associated norm

(ϕ,ψ) :=
〈
ψ,T−1ϕ

〉
Γ
,

ϕ2 :=
〈
ϕ,T−1ϕ

〉
Γ
, (5)

so that (4) rewrites ‖ ∂νu + iωTu ‖ = ‖ ∂νu − iωTu ‖2. (6)

This is one of the reasons which led us, in the context of iterative overlapping DDMs,
denoting {Ωj} the subdomains (with outgoing normals νj), to propose

∂νj u
n
j + iωTun

j = (rhs)n−1, un
j = un |Ω j , (7)

as a boundary condition inΩj , where (rhs)n−1 is a quantity, depending on the previous
iteration and the adjacent subdomain, providing the good continuity conditions at
convergence (section 2). An important consequence of the properties ofT (symmetric
positive definite) is that (7) is of absorbing nature so that the local problem in Ωj

is automatically well posed. Moreover, as we shall see in section 2, the isometry
result (6) can be exploited to prove the convergence of the iterative algorithm.

2 Impedance based transmission conditions and related DDM
Presentation of the method on a simple model. Let (BVP) consist in solving the
Hemholtz equation in a Ω⊂Rd , bounded, with a perfectly reflecting inner boundary
Γ1 and absorbing outer boundary Γ2.

(BVP) − ∆u − ω2 u = f , in Ω, u = 0, on Γ1, ∂νu + iω u = 0, on Γ2,

Introducing an interface Σ that splits Ω into two subdomains Ω1 (interior) and Ω2
(exterior), see Figure 2 (left picture), (BVP) is equivalent to a transmission problem
(LP)+ (TC) (local problem + transmission conditions) where, with obvious notation
(in particular, νj is the unit normal vector to Σ, outgoing w. r. t. Ωj)

(LP)


−∆u j − ω

2 u j = f , in Ωj, j =1,2
u1 = 0, on Γ1,

∂νu2 + iω u2 = 0, on Γ2,

(TC)

{
(n) u1 = u2, on Σ,
(d) ∂ν1u1 + ∂ν2u2 = 0, on Σ.

Given s ∈ [0,1/2], we introduce an impedance operator T with the property that
T ∈ L

(
Hs(Σ),H−s(Σ)

)
is a positive and selfadjoint isomorphism. (8)
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Fig. 1 The subdomains Ω1 and Ω2 (left). The scattering operators S1 ans S2 (center). The layers
C1 andC2, cf section 5 (right)

With this choice, the norm defined by (5) (with Γ replaced by Σ, and 〈·, ·〉Σ understood
as a duality bracket) is a Hilbert space norm in H−s(Σ).

Next, we rewrite (TC) in an equivalent way (thanks to the injectivity of T) by
considering the two independent linear combinations (TC)(n) ± iω (TC)(d), i. e.{

∂ν1u1 + iωTu1 = −∂ν2u2 + iωTu2, (1)
∂ν2u2 + iωTu2 = −∂ν1u1 + iωTu1, (2)

(9)

where (9)-(j) is seen here as a boundary condition for u j . The iterative DDM algo-
rithm consists in applying a fixed point procedure (with relaxation) to (9). Precisely,
we construct inductively two sequences un

j ∈ H1(Ωj), j = 1,2, by imposing, at each
step n, the local equations (LP) completed by the following boundary conditions on
Σ (where r ∈ ]0,1[ is the relaxation parameter){
∂ν1un

1 + iωTun
1 = r

(
− ∂ν2un−1

2 + iωTun−1
2 ) + (1 − r)

(
∂ν1un−1

1 + iωTun−1
1

)
,

∂ν2un
2 + iωTun

2 = r
(
− ∂ν1un−1

1 + iωTun−1
1 ) + (1 − r)

(
∂ν2un−1

2 + iωTun−1
2

)
.

(10)

The reader will notice that, by construction, the local problems in (un
1 ,u

n
2 ) are well

posed, and can be solved in parallel.

A functional analytic observation. It is insightful to look at the quantities in (9) for
the two extreme values for s ∈ [0,1/2]. Given u j ∈ H1(Ωj) with ∆u ∈ L2(Ωj) :

• if s = 0, for instanceT = I, the identity : the combination ∂νu j±iω u j are not well
balanced since u naturally belongs to H1/2(Σ)while ∂νu only belongs to H−1/2(Σ),

• if s = 1/2 : the presence of T ∈L
(
H1/2(Σ),H−1/2(Σ)

)
re-equilibrates the combi-

nation as a sum of two terms in H−1/2(Σ).

In fact, a misfit is present as soon as s , 1/2 and one can thus anticipate that the
best option should be s = 1/2. This will be confirmed by the analysis (section 3).

A rapid guided tour into the bibliography. A lot of litterature has been devoted to
DDMs based on transmission written in impedance form.

• In the original work of B. Desprès [10] (or [11] for Maxwell), T = α I where α
is a bounded strictly positive function, which fits (8) with s = 0.

• Since the mid 90’s a huge literature has been devoted to "local" operators T as
rational functions of the Laplace-Beltrami operator ∆Σ, e. g. [13, 2], with a great
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filiation with local absorbing conditions (Remark 1). These often do not satisfy
(8) and a general theory (existence for local problems and convergence) ismissing.

• In [4], we promote the use of non-local impedance operators T fitting (8) with
s = 1

2 in particular boundary integral operators issued from potential theory.

Some optimized Schwarz methods, for instance Boubendir-Antoine-Geuzaine’s one,
perform very well in practice (despite examples of failure, see [4], section 8.2.3).
However, they cannot lead to linear convergence (see [4], Thm 4.6).

Remark 1 : There is an ideal choice of transmission conditions with two (not one)
operators, ∂ν1u1+iωT1u1=−∂ν2u2+iωT1u2 and ∂ν2u2+iωT2u2=−∂ν1u1+iωT2u1:
take T1 (resp. T2) as the DtN operator, when it exists, associated to Ω2 (resp. Ω1)
(see [4] section 1.3.2 and [14]). Then Algorithm (10) with r = 1 converges in
two iterations. In general, finding T1 or T2 is almost as difficult as the original
problem. For two homogeneous half-spaces (plane interface), T1 = T2 with symbol
iω

√
1 − |ξ |2/ω2, (ξ is the space Fourier variable) whose rational approximations

(Taylor, Padé, continued fraction expansions) give local operators, as for ABCs.

3 Convergence analysis
Interface formulation. For both the implementation and the analysis of our method,
it is useful to reinterpret the problem and the algorithm on the interface Σ. To do
so we introduce the interface auxiliary unknowns (where traces on Σ are implicitly
considered), i. e. the outgoing traces xj and incoming traces yj :

xj := ∂νj u j + iωT u j, yj := −∂νj u j + iωT u j, in H−s(Σ) (11)

Given x1 and x2, u1 and u2 can be seen as the solutions of the local problems
−∆u1 − ω

2 u1 = f , in Ω1,

u1 = 0, on Γ1,

∂ν1u1 + iωT u1 = x1, on Σ,


−∆u2 − ω

2 u2 = f , in Ω2,

∂νu2 + iωu2 = 0, on Γ2,

∂ν2u2 + iωT u2 = x2, on Σ,
(12)

and, exploiting the linearity of (12), the incoming traces yj can be rewritten as

y1 = S1 x1 + g̃1, y2 = S2 x2 + g̃2, (13)

where, in an obvious manner, the source terms g̃j are due to f (they are issued from
(12) with xj = 0) and the scattering operators Sj are constructed from the local
problems (12) with f = 0. Next, the transmission conditions simply rewrite

y2 = x1, y1 = x2, (14)

and the transmission problem (LP,TC) is equivalent to the system (13, 14) in
x = (x1, x2) and y = (y1, y2): (13) takes account of local problems and (14) of
transmission conditions. Eliminating y then leads to a problem in x:

Find x ∈ V := H−s(Σ) × H−s(Σ) / (I − A) x = g, g = Π g̃, (15)
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with the (T-dependent ) scattering operator S and the exchange operators Π:

S :=
(
S1 0
0 S2

)
, Π :=

(
0 I
I 0

)
, thus I − A :=

(
I −S2
−S1 I

)
. (16)

Mathematical properties. In the following, we equip the Hilbert space V with the
(T-dependent) norm naturally inherited from the H−s-norm defined by (5), that we
still denote ‖ · ‖ for simplicity. From (8), it is clear that the operators Π and S are
continuous in V. Obviously, Π is an isometry while, from the identity (6) (applied
in Ω1 and Ω2), we immediately infer that, for any (x1, x2) ∈ V,

(a) ‖S1 x1‖ = ‖x1‖, (b) ‖S2 x2‖ ≤ ‖x2‖. (17)

where the inequality in (17)-(b) is due to the absorbing condition on Γ2 for u2 in
(12). As a consequence, the operator S, thus the operator A, is contractant in V.
Concerning the invertibility of I − A, algebraic manipulations show that

z = (I − A) x ⇔ xj = ∂νjwj + iωTwj on Σ, j = 1,2, (18)

where, denoting ν the normal to Σ pointing towards Ω2 and [·]Σ the jump across Σ,
w ∈ H1(Ω1 ∪Ω2) satisfies (H) −∆w −ω2 w = f in Ω1 ∪Ω2, (BC) : w = 0 on Γ1 and
∂νw+ iωw = 0 on Γ2 and the "jump conditions", with [z] = z1− z2, {z} = 1

2 (z1+ z2):

[v]Σ =
1

2iω T−1 [z], [∂nv]Σ = {z} (19)

The injectivity of I − A is due to the uniqueness of a solution v of (H, BC, 19):
this results from the uniqueness for the original problem. The surjectivity is related
to the existence of v. Trace theorems require {z} ∈ H−1/2(Σ), which holds since
s ≤ 1/2, and T−1[z] ∈ H1/2(Σ). However, (8) only ensures T−1[z] ∈ Hs(Σ) : we
recover the misfit mentioned in section 1 unless s = 1/2:
Theorem 1 The operator I − A is injective in V and it is surjective if and only if
s = 1/2. In this case, by Banach theorem, there exists δ > 0 such that
∀ x ∈ V, ‖(I − A) x‖ ≥ δ ‖x‖, (with δ ≤ 2 because A is contractant) (20)

Theorem 1 implies that, when s = 1/2, the interface problem (15) is a nice coercive
problem in V (the lack of H1-coercivity - emphasized in section 1 - is hidden in the
definition of A). Indeed, from Ax = x − (I − A) x, we get (take the square norms)
‖Ax‖2 = ‖x‖2 + ‖(I −A) x‖2 − 2Re ((I −A) x,x). Since ‖Ax‖2 ≤ ‖x‖2, we deduce

∀ x ∈ V, Re ((I − A) x,x) ≥ (1/2) ‖(I − A) x‖2 ≥ (δ2/2) ‖x‖2. (21)

Convergence.We go back to the iterative method (LP) + (10). If xn := (xn1 , x
n
2 )with

xnj := ∂νj u
n
j + iωT un

j , one easily sees that xn satisfies the following Richardson
algorithm (or relaxed Jacobi in reference with the block form (16) of I − A):

xn = (1 − r) xn−1 + r A xn−1 + g (22)
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The error en = xn − x satisfies en = (1 − r) en−1 + r A en−1 (∗). From the identity
‖(1 − r) x + r y‖2 = (1 − r) ‖x‖2 + r ‖y‖2 − r(1 − r) ‖x − y‖2, we thus get����� ‖en‖2 = (1 − r) ‖en−1‖2 + r ‖Aen−1‖2 − r(1 − r) ‖(I − A) en−1‖2

≤ ‖en−1‖2 − r(1 − r) ‖(I − A) en−1‖2, (contractivity of A).
(23)

Thus ‖en‖ decreases and ‖(I − A) en‖ → 0. By weak compactness in V, at least for
a subsequence, en ⇀ e (weakly) in V. So (I − A) e = 0 thus (injectivity of I − A)
e = 0. This being true for any such subsequence, the whole sequence en converges
and it is easy to infer that (un

1 ,u
n
2 ) → (u1,u2) in L2(Ω1) × L2(Ω2).

However, in the case s = 1/2, we have better since, using (21) again in (23)

‖en‖ ≤ τn ‖e0‖, τ :=
√

1 − r(1 − r) δ2 < 1, (24)

i. e. the iterative algorithm converges linearly provided s = 1/2 and 0 < r < 1.

GMRES algorithm.One can of course use more sophisticated algorithms than (22)
to update the interface unknowns xn (from which (un

1 ,u
n
2 ) are still reconstructed via

the local problems (12)). This includes nonlinear algorithms such as GMRES [21], in
which xn is computed by minimizing y 7→ ‖(I − A) y − g‖2, the square V-norm of
the residue, over the Krylov subspace generated by the n first iterates xk, k ≤ n − 1
[9] . As a consequence, the corresponding error en is such that(I − A) en

 = min
p∈Pn

(I − A) p(A) e0, Pn = { polynomials of degree ≤ n}

Considering the polynomial P(a) = (1− r + r a)n, which corresponds to the Jacobi’s
algorithm (22), we deduce from Theorem 1, (24) and ‖I − A‖ ≤ 2 that, if s = 1/2,

‖en‖ ≤ (2/δ)
(I − A) en

 ≤ (2/δ) τn with τ as in (24),

which means that the convergence rate of the GMRES algorithm if necessarily better
than with (22). Numerical evidence show that it is strictly better and that it is
worthwhile using GMRES despite the larger computational cost for each iteration.

4 Construction of appropriate impedance operators
According to what preceeds, the question is to construct an impedance operator T
satisfying (8) with s = 1/2, i. e. a positive selfadjoint pseudo-differential operator of
order 1. A first mathematical fact is that such an operator cannot be a local operator
in the sense of section 2: this is clearly demonstrated in 2D circular geometries [4]
with a Fourier modal expansion in the azimuthal variable θ . On the other hand, there
exist many ways to construct good nonlocal operators. Let us describe some of them
(see also [16], [4], [20]).

From Sobolev norms (A). The operator T is entirely defined by the scalar product
(5), which is used for finite elements. A first choice is the following (if Ω ⊂ R3):
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α

∫
Σ

ϕ ψ dσ +
β

ω

∫∫
Σ

χ
(
|x − y |

L

) (
ϕ(x) − ϕ(y)

) (
ψ(x) − ψ(y)

)
|x − y |3

dσxdσy (25)

with α, β > 0, χ(r) ≥ 0 a C1 cut off function with support in [0,1] and χ(r) = 1 for
r < 1/2, and and L > 0. If L = +∞, T is fully nonlocal and one recovers the usual
Gagliardo-Niremberg norm in H1/2(Σ) if α = β = 1. If not, T only couples points at
a distance less than L and the (discretized) impedance condition is less costly.

From potential theory (B). An automatic way to build a good impedance operator
is to take T = Λ∗Λ, with Λ an isomorphism from H1/2(Σ) in L2(Σ) provided by a
Riesz-type potential : given a, b > 0, the associated bilinear form is given by

a
∫
Σ

ϕ ψ dσ +
b
√
ω

∫∫
Σ

χ
(
|x − y |

L

) rotΣϕ(x) · rotΣψ(y)
|x − y |1/2

dσxdσy (26)

where rotΣ denotes the usual tangential curl operator onΣ. Such operators are familiar
to specialists of boundary integral equations, except the non standard exponent 1/2
which ensures thatΛ is of order 1/2. Contrary to (A), Alternative (B) can be extended
to Maxwell’s equations [20]. In separable geometries, the convergence of (22) for
(A) or (B) can be precisely quantified via a modal decomposition. This analysis also
permits us to show that a good choice for L is L ∼ λ/2 [4].

From local elliptic DtN operators (C).Amore recently investigated option consists
in building Tϕ from the solution vϕ of an auxiliary elliptic problem posed in a a
layer C1 ∪ C2 surrounding the interface Σ (Figure 2): given B = I, ∂ν or I + ω−1 ∂ν
(it can be shown [20] that the Robin operator I + ω−1 ∂ν is the best choice)

Tϕ := 1
2
(
∂ν1v

ϕ
1 + ∂ν2v

ϕ
2
)

v
ϕ
1 = vϕ |Ω1, v

ϕ
2 = vϕ |Ω2

where


−∆v + ω2 vϕ = 0, in C1 ∪ C2,

vϕ = ϕ, on Σ,
B vϕ = 0 on Σj, j=1,2

(27)

One advantage of such a DtN operator is that it is perfectly adapted to variable
coefficients and other types of equations. Moreover it gives very good performances
in practice. Let us consider the experiment of the scattering of a plane wave by a
circular disk (see Figure 4) : the interface is a circle of radius R and ω R = 9. We use
P1 finite elements on a meshstep h = 2π/(40ω) and 0 as the initial guess. In Figure
4, we show the evolution of the relative H1(Ω1 ∪ Ω2) norm of the error un

h
− uh ,

uh being the solution of the undecomposed discrete problem, as a function of n for
T = I and T given by (B) or (C) with C1 = Ω1 (red domain) C2 = Ω2 (blue domain).
This clearly shows the interest non local versus local and the one of the strategy (C)
with respect to (B). The picture on the right shows that, with nonlocal operators,
the number of iterations needed for reaching a given tolerance is independent of h
(this can be proven, see [8] and reflects the linear convergence for the continuous
problem) while, if T = I (or more generally any local operator) it increases when
one refines the mesh. In figure 4, we show the spatial structure of the error after
80 iterations (be careful the scales are different in the two pictures). With T = I,
the error concentrates near the interface and highly oscillates (from one mesh point



Non overlapping Domain Decomposition Methods for Time Harmonic Wave Problems 9

to the other) along the interface. This is representative of the incapacity of local
operators to produce linear convergence at the continuous level and explained in
circular geometry by the Fourier azimuthal analysis : the modal convergence rate
τm for the mth mode in θ tends to 1 for large m. With the DtN operator, the error
does not concentrate and oscillates, as explained again by the modal analysis, at the
(quasi)-resonant mode : observe the m = 9 lobes⇔ ωR = 9.

Fig. 2 Convergence histories (left and center). Iteration count versus mesh size (right)

Fig. 3 Left : the experiment. Center, right : the errors after 80 iterations (the color bars differ !)

5 The problem of cross points
Consider now a partition ofΩ into N ≥ 2 subdomainsΩj , where, for simplicity,ΩN

is an exterior layer, with the possibility that more than 2 boundaries ∂Ωj meet at a so
called cross point. Such points raise theoretical and practical questions for DDMs,
that deserve a special treatment [2, 19, 12]. Denoting Σi j the interface ∂Ωi ∪ ∂Ωj

(possibly empty), the most naïve generalization of the transmission condition (9)
consists in writing a transmission problem for {u j} with the transmission conditions{

∂νi ui + iωTi j ui = −∂νj u j + iωTi j u j, νi outgoing w.r.t. Ωi,

∂νj u j + iωTi j u j = −∂νi ui + iωTi j ui, νj outgoing w.r.t. Ωj,
(28)

where, aiming at achieving linear convergence, Ti j would be a positive definite
self-adjoint operator from H1/2(Σi j) in H−1/2(Σi j). In this way, defining xi j on Σi j
similarly as (x1, x2) in (11) and x the collection of the {xi j}, the transmission problem
can be rewritten in an abstract form (15) with a natural generalization of the operator
A. The convergence of the DDM algorithm (22) is still guaranteed but the linear
convergence faces the problem of the surjectivity of I−A that relies on the existence
of a solution to a generalized jump problem in Ω coupling the Helmholtz equation
in each Ωj with the inhomogeneous jump conditions :[
w
]
Σi j
= 1

2iω T−1(zi j − zji),
[
∂nw

]
Σi j
= zi j − zji, given (zi j, zji) ∈ H−1/2(Σi j). (29)
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Unfortunately, the inclusion of T := { γJv := [v]Σi j /vi ∈ H1(Ωi)} in Π H1/2(Σi j) is
strict, with infinite codimension, if cross points exist [23]. This defect of surjec-
tivity of the jump operator γJ is an obstacle to the first condition in (29): we meet
again a functional misfit as for the two domains case when s < 1/2 in (8).

In [6], a new paradigm was proposed, abandoning the interfaces Σi j to the profit of
the boundaries Σi = ∂Ωi (i < N) and ΣN == ∂ΩN \ ∂Ω and the skeleton Σ =∪ Σi .
This uses the concept ofmulti-traces developed for multi-domain boundary integral
equations[5]: letΩΣ := Ω\Σ and (γD, γN ) the two surjective (multi)-trace operators{

u ∈ H1(ΩΣ) 7→ γDu = {ui |Σi } ∈ MD(Σ) := Π H
1
2 (Σi),

v ∈ H(div,ΩΣ) 7→ γNv = {vi · νi |Γi } ∈ MN (Σ) := Π H−
1
2 (Σi).

(30)

Note thatMN (Σ) is the dual space ofMD(Σ) and we shall denote 〈·, ·〉Σ the natural
duality bracket that extends the L2(Σ) inner product. As H1(Ω) ⊂ H1(ΩΣ) and
H(divΩ) ⊂ H(divΩΣ), we can define

SD(Σ) := γD
[
H1(Ω)

]
⊂MD(Σ), SN (Σ) := γN

[
H(div,Ω)

]
⊂MN (Σ).

The idea is to reformulate the classical Dirichlet and Neumann transmission condi-
tions for u = {ui} ∈ H1(ΩΣ), namely [u]Σi j = 0 and [∂νu]Σi j = 0, in a non standard
form expressed in terms of the traces γDu and γN (∇u) that writes

−∆ui − ω2 ui = f , (D) γDu ∈ SD(Σ), (N) γN (∇u) ∈ SN (Σ).

To recover the framework of section 3, we first express (D) and (N) in an impedance
form. To do so, we introduce positive selfadjoint impedance operators associated
to the Σi’s (and no longer the Σi j’s), Ti ∈ L(H1/2(Σi),H−1/2(Σi)), where each Ti is
an isomorphism, so that, if T = diag Ti ∈ L(MD(Σ),MN (Σ)),

(ϕ,ψ) := 〈ϕ,T−1 ψ〉Σ is an Hilbert inner product in V :=MN (Σ). (31)

Mimicking (11), we set (S) : x := γN∇u + iωTγDu and y := −γN∇u + iωTγDu,
the skeleton unknowns in V. Let S = diag Si ∈ L(MN (Σ)) where each Si is defined
as in (12) (in Ωi and Ti instead of T). Each Si is isometric for the Ti-norm - (5) for
T = Ti - except SN which is contractant. The Helmholtz equations in Ωi rewrites as
(13), namely y = Sx + g̃. It then remains to account for (D) and (N). This relies on a
key result of [5] characterizing SD(Σ) and SN (Σ) as "orthogonal" to each other:

Lemma 1 [5] Let ϕ ∈ MD(Σ) and ψ ∈ MN (Σ)). Then

(i) ϕ ∈ SD(Σ) ⇐⇒ 〈ψN ,ϕ〉Σ = 0, ∀ ψN ∈ SN (Σ),

(ii) ψ ∈ SN (Σ) ⇐⇒ 〈ψ,ϕN 〉Σ = 0, ∀ ϕD ∈ SD(Σ).

This lemma is a direct consequence of Green’s identity, in which the left hand side
vanishes if u ∈ H1(Rd) or v ∈ H(div,Rd) (below Rd

Σ
= Rd \ Σ):

∀ (u,v) ∈ H1(RdΣ) × H(div,RdΣ),
∑
i

∫
Ωi

(∇ui · vi + ui div vi) = 〈γNv, γDu〉Σ .
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Theorem 2 [6] Let PN the orthogonal projector (in MN (Σ) equipped with (31))
on SN (Σ). The transmission conditions (D) and (N) are satisfied if and only if the
unknowns x and y are related by y = Π x where Π = I − 2 PN .
Proof Let ϕ := γDu and ψ := γNu. By (S), (N) is equivalent to y − x ∈ SN (Σ)
while (D) is equivalent to T−1(x + y) ∈ SD(Σ) that is to say, by Lemma 1 and (31),
to (y + x,ψN ) = 0, ∀ ψN ∈ SN (Σ). Thus, writing y + x = (y − x) + 2x, this gives(

(y − x) + 2x,ψN

)
= 0, ∀ ψN ∈ SN (Σ). (32)

Since y − x ∈ SN (Σ), this is nothing but y − x = PN (−2x). �

Proceeding as in section 3 to eliminate y, the problem in x rewrites as in (15),
with V := MN (Σ) and A = Π S, the exchange operator (16) being replaced by
Π = I − 2 PN . The reader will notice that, as the exchange operator, Π is isometric
and involutive. As a consequence, A is contractant. The invertibility of I − A is
linked to a generalized jump problem across the skeleton (instead of (29)) whose
existence of a solution is ensured by the surjectivity of γD and γN (30): the misfit
due to the defect of surjectivity of the operator γJ in the interface approach, has been
eliminated. The conditions for linear convergence of (22) are thus satisfied.

It isworthwhilementioning that the evaluation ofΠx amounts to solving the (coercive
and T dependent) variational problem (32) on Σ for y − x. Even though each Ti is
local to Σi , being posed inSN (Σ), the problem is non local over Σ. Thus, Πx couples
all Σi’s : rather than an exchange across interfaces, it is a communication operator
(but without cross point a "natural" choice for Ti gives back the exchange). Working
in V =MN (Σ) means that the Neumann condition (N) is handled in a strong sense
while the Dirichlet one (D) is handled weakly via (32). The (dual) opposite choice
is possible, see [7]. In our case, the space discretization of the problem uses a finite
element space Vh(Ω) for H(div,Ω) and a natural candidate for an approximation
space of SN (Σ) is Sh

N (Σ) := γN [Vh(Ω)]. In figure 5, we demonstrate that the
developments of this section are not only a question of mathematical beauty. On the
model problem of section 4 and a partition of Ω into 10 subdomains with one cross
point, we compare Després’s condition (a), non local interface operators Ti j (b) and
finally the multi-trace method (c) showing the error after 10 iterations. In case (b),
we see that the non local interface operators solve most of the problems with T = I
but produce an important error (the big peak) concentrated around the cross point,
error which is eliminated with the multi-trace strategy !

Fig. 4 Left : the 10 subdomains with one cross point (the arrow). Right : the errors after 10 iterations
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