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ABSTRACT:

A number theoretic approach to string compactification is developed for Calabi-

Yau hypersurfaces in arbitrary dimensions. The motivic strategy involved is il-

lustrated by showing that the Hecke eigenforms derived from Galois group orbits

of the holomorphic two-form of a particular type of K3 surfaces can be expressed

in terms of modular forms constructed from the worldsheet theory. The process

of deriving string physics from spacetime geometry can be reversed, allowing the

construction of K3 surface geometry from the string characters of the partition

function. A general argument for K3 modularity follows from mirror symmetry,

in combination with the proof of the Shimura-Taniyama conjecture.
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1 Introduction

One of the intriguing aspects of string theory is the possibility of understanding the structure

of spacetime from first principles in terms of the physics of the worldsheet. In the past a

number of different techniques have been used to address this question, e.g. Landau-Ginzburg

theories and non-linear sigma models. The aim of the present paper is to continue a different

program that uses methods from arithmetic geometry to understand this problem in the con-

text of exactly solvable Calabi-Yau varieties. The structure of higher dimensional Calabi-Yau

varieties is quite intricate and there are several aspects of these theories that lend themselves

to an arithmetic analysis. The focus here will be on formulating a framework that combines

methods from algebraic number theory and arithmetic geometry in the context of Calabi-Yau

hypersurfaces of arbitrary dimensions. This general approach is then applied to a special

class of K3 surfaces by showing that basic building blocks of the underlying string partition

functions can be derived from the geometry of these K3s.

The simplest case in which the idea of using arithmetic geometry to derive worldsheet informa-

tion from geometry can be tested is provided by the framework of toroidal compactifications.

Elliptic curves provide useful examples because of the proof of the Shimura-Taniyama conjec-

ture. This modularity theorem states that all elliptic curves defined over the rational number

field are modular in the sense that the Mellin transform of their Hasse-Weil L-series defines a

modular form of weight two with respect to some congruence subgroup of SL(2,Z) [1, 2, 3, 4].

In the context of exactly solvable elliptic curves the issue then becomes whether the modular

forms derived from these curves can be expressed in terms of modular forms derived from the

underlying superconformal field theory. It was shown in refs. [5, 6, 7] that this is possible in

terms of cusp forms constructed from the string functions associated to the affine Lie algebra

A
(1)
1 of the N = 2 superconformal minimal models.

The generalization of this result to higher genus curves and higher dimensional varieties is

made difficult by the fact that no analog of the elliptic modularity theorem is known, even

conjecturally. There is a general expectation, often summarized as part of the Langlands

program [8], that many varieties will lead to modular forms, but there is no known systematic

procedure which provides guidance how this should be accomplished. There is in particular

no known higher dimensional analog of Weil’s experimental observation [9] concerning the

geometric interpretation of the level of a modular form in the context of elliptic curves, an

ingredient that galvanized interest in the Shimura-Taniyama conjecture, culminating in Wiles’

breakthrough. For higher genus curves of Brieskorn-Pham type the situation is a little better
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because one can use a known factorization procedure to decompose the associated Jacobian

variety into simple abelian factors, which then can be tested for modularity [6].

In general the L-function of a variety will not be an interesting object in the context of

recovering string theoretic modular forms. Except for particularly simple varieties, such as

rigid Calabi-Yau threefolds, for which many modular forms have been identified (ref. [10]

contains articles with many further references), the L-function itself does not lead to a modular

form. It is known, from Grothendieck’s proof [11] of part of the Weil conjectures [12], that

Artin’s congruent zeta function factorizes in a way that is determined by the cohomology

groups of the variety. The zeta function at a prime p decomposes into the quotient

Z(X/Fp, t) =
P1
p (t)P3

p (t) · · ·P2n−1
p (t)

P0
p (t)P2

p (t) · · ·P2n
p (t)

, (1)

where dimCX = n, and P i
p(t) is a polynomial

P i
p(t) =

bi
∑

j=0

βij(p)t
j (2)

associated to the ith cohomology group, with a degree bi = dim Hi(X) given by the ith Betti

number. This result motivates the introduction of L−functions associated to the individual

cohomology groups, thereby reducing the complexity of the zeta function. Even though this

factorization provides an important simplification, it is not enough for string theory. The

individual cohomology groups can be quite complicated because the Betti numbers of Calabi-

Yau varieties tend to be large. The idea in this paper is to factorize these polynomials further,

and to consider L−functions associated to the resulting factors. The problem that arises is that

it is unclear a priori which type of factorization leads to a physically meaningful L-function.

In the absence of a clear understanding of what the conditions are in higher dimensions that

can lead to string theoretic modular forms on the worldsheet, it is useful to identify selection

rules that guide the factorization of the L-functions. There are several ways to think about

this problem, and in the present paper the following point of view will be adopted. The first

idea is utilitarian in nature, guided by the expectation that the results of [5, 6, 7], or some not

too radical modification thereof, will generalize to higher dimensions. It follows from those

results that the string theoretic modular forms relevant for the arithmetic approach are forms

with coefficients that are rational integers. The primitive factors of the polynomials P i
p(t)

that arise from the complete factorization

P i
p(t) =

bi
∏

j=1

(1− γij(p)t), (3)
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lead to L-function factors with coefficients γij(p) that are algebraic integers in number fields,

defined by extensions of the rational number field Q. This shows that a complete factorization

is not useful in the present context, and that from a practical point of view one should be

guided by the idea of identifying pieces of the cohomology that lead to forms with coefficients

in Z.

A more conceptual way of thinking about this problem is representation theoretic. Associ-

ated to a Calabi-Yau hypersurface in a toric variety is a cyclotomic number field, which for

Brieskorn-Pham spaces admits an interpretation as the fusion field of the underlying confor-

mal field theory [13]. The Galois group of this field is a finite cyclic group which acts on the

cohomology of the variety. The action of this group is reducible in general, and therefore one

can use it to decompose the cohomology group into pieces defined by the irreducible represen-

tations of the group. A possible strategy therefore is to focus on the L-functions associated

to these irreducible representations of the Galois group. A distinguished element in the co-

homology ring of any n−dimensional Calabi-Yau variety is the holomorphic n−form, leading

to the concept of an Ω−motive of a Calabi-Yau variety. The notion of such a motive is gen-

eral, and the question addressed here is whether this motive is string modular in some sense.

The approach formulated therefore provides a general method to gain a better understanding

of the relation between the geometry of spacetime in string theory and the physics on the

worldsheet.

In the present paper the strategy just described is illustrated by considering the class of

extremal K3 surfaces of Brieskorn-Pham type, i.e. surfaces S which over the complex field C

have maximal Picard number ρ(S) = 20. These surfaces are of the form

S4 =
{

(z0 : · · · : z3) ∈ P3

∣

∣

∣
z40 + z41 + z42 + z43 = 0

}

,

S6A =
{

(z0 : · · · : z3) ∈ P(1,1,1,3)

∣

∣

∣
z60 + z61 + z62 + z23 = 0

}

,

S6B =
{

(z0 : · · · : z3) ∈ P(1,1,2,2)

∣

∣

∣
z60 + z61 + z32 + z33 = 0

}

. (4)

In order to state the results of this analysis some notation is needed. With q = e2πiτ , let

f(q) =
∑

n anq
n be a cusp form, and ∨2f(q) =

∑

n bnq
n be the product given by bp = a2p− 2p.

The motivation for this definition will become clear below. Define the Hecke congruence

subgroup Γ0(N) as

Γ0(N) =

{(

a b
c d

)

∈ SL(2,Z)
∣

∣

∣

(

a b
c d

)

∼
(

∗ ∗
0 ∗

)

(mod N)

}

, (5)

and denote the Galois group of the cyclotomic number field Q(µd) by Gal(Q(µd)/Q), were
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µd is the cyclic group generated by a primitive dth root of unity. The Dedekind eta function

is given by η(q) = q1/24
∏∞

n=1(1 − qn), while the theta functions Θk
ℓ,m(τ) = η3(τ)ckℓ,m(τ) are

Hecke indefinite modular forms associated to the Kac-Peterson string functions ckℓ,m(τ) of the

affine algebra A
(1)
1 at level k. Finally, the quadratic characters determined by the Legendre

symbol are written as χn(p) = (n
p
). ϑ(q) is a modular form of weight one described further

below. The following results will be shown.

Theorem 1. Let MΩ ⊂ H2(Sd) be the irreducible representation of Gal(Q(µd)/Q) associated

to the holomorphic 2−form Ω ∈ H2,0(Sd) of the K3 surface Sd, where d = 4, 6A, 6B. Then

the Mellin transforms fΩ(S
d, q) of the L-functions LΩ(S

d, s) associated to MΩ are given by

fΩ(S
4, q) = η6(q4)

fΩ(S
6A, q) = ϑ(q3)η2(q3)η2(q9)

fΩ(S
6B, q) = η3(q2)η3(q6)⊗ χ3. (6)

These functions are cusp forms of weight three with respect to Γ0(N) with levels 16, 27 and 48,

respectively. For S4 and S6A the L-functions can be written as LΩ(S
d, s) = L(∨2fd, s), where

fd(q) are cusp forms of weight two and levels 64 and 27, respectively, given by

f4(τ) = Θ2
1,1(4τ)

2 ⊗ χ2

f6A(τ) = Θ1
1,1(3τ)Θ

1
1,1(9τ). (7)

For S6B the L-series is given by LΩ(S
6B, s) = L(∨2f6B ⊗ χ3, s) in terms of the cusp form of

level 144

f6B(τ) = Θ1
1,1(6τ)

2 ⊗ χ3. (8)

Physically, this result proves a string theoretic interpretation of the motivic L-function associ-

ated to the holomorphic Ω−form of K3 surfaces in terms of the affine Lie algebra A
(1)
1 on the

worldsheet. It generalizes results in lower dimensions for the Hasse-Weil L-function of elliptic

Brieskorn-Pham curves obtained in [5, 6, 7]. Mathematically, it can be viewed as providing a

motivic interpretation of modular forms derived from Kac-Moody algebras, i.e. it provides a

string theoretic origin of modular motives for a class of K3s.

Corollary. The Ω−motivic modular forms of extremal K3 surfaces of Brieskorn-Pham type

are twisted products of Hecke indefinite modular forms that arise from Kac-Peterson string

functions.

The modular forms of weight two that appear in the theorem as building blocks of the arith-

metic structure of extremal Brieskorn-Pham K3 surfaces are all elliptic, i.e. the Mellin trans-
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forms of Hasse-Weil L-series of elliptic curves. Consider the class of elliptic Brieskorn-Pham

curves given by

E3 =
{

(z0 : z1 : z2) ∈ IP2 | z30 + z31 + z32 = 0
}

E4 =
{

(z0 : z1 : z2) ∈ IP(1,1,2) | z40 + z41 + z22 = 0
}

E6 =
{

(z0 : z1 : z2) ∈ IP(1,2,3) | z60 + z31 + z22 = 0
}

, (9)

All three curves are string modular in the following sense [7].

Theorem 2. The Mellin transforms fHW(Ed, q) of the Hasse-Weil L-functions LHW(Ed, s) of

the curves Ed, d = 3, 4, 6 are modular forms fHW(Ed, q) ∈ S2(Γ0(N)), with N ∈ {27, 64, 144},
respectively. These forms factor into products of Hecke indefinite modular forms as follows

fHW(E3, q) = Θ1
1,1(q

3)Θ1
1,1(q

9)

fHW(E4, q) = Θ2
1,1(q

4)2 ⊗ χ2

fHW(E6, q) = Θ1
1,1(q

6)2 ⊗ χ3. (10)

This shows that the string theoretic nature of the modular forms of extremal Brieskorn-Pham

K3 surfaces is induced by the string theoretic modularity of elliptic Brieskorn-Pham curves.

Given the central nature of modularity in string theory, it is natural to ask how general

modularity is for K3 surfaces. An argument that points to modularity as a common property

can be made by combining mirror symmetry with the elliptic modularity theorem of [4]. The

original explicit observation of mirror symmetry [14, 15] has been interpreted in a number

of different ways, e.g. in terms of toric geometry by Batyrev [16], in a homological context

by Kontsevich [17], and in terms of fibrations by Strominger, Yau and Zaslow [18]. It is the

latter framework that is most useful for K3 modularity. The idea of the SYZ conjecture is

based on a toroidal fibration structure of general Calabi-Yau varieties that is suggested by

D-branes. For complex dimension two this conjecture implies that mirror pairs of K3 surfaces

are characterized by fibrations in terms of elliptic curves. For elliptic curves defined over Q the

modularity theorem proven by Breuil, Conrad, Diamond and Taylor shows that every elliptic

curve is modular in the sense that the Mellin transform of its associated Hasse-Weil L-function

is a modular form of weight 2 with respect to a congruence group that is determined by the

conductor of the curve. The SYZ conjecture and the modularity theorem therefore imply that

mirror pairs of K3 surfaces defined over Q are modular.

The outline of the paper is as follows. Section 2 contains the arguments for considering

irreducible Galois representations as the modular building blocks of Calabi-Yau varieties.
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These arguments are general, not restricted to K3 surfaces. Section 3 computes the L-series

of the extremal K3 surfaces of Brieskorn-Pham type. Section 4 leads to the identification of

the modular forms derived from these K3 surfaces with modular forms derived from the string

worldsheet, completing the identifications of the theorem. Section 5 complements the previous

computations by constructing the K3 surfaces via the twist map [19]. The philosophy adopted

here is similar to the one used in [6] in the context of higher genus curves. Section 6 describes

the identification of a singular K3 surface in terms of string theoretic modular forms. Section

7 generalizes to K3 surfaces aspects of complex multiplication and arithmetic moonshine,

discussed in [7] in the context of elliptic curves. The appendix proves the identification of

the geometric and the modular L-series to all orders. The proof is based on the method of

Faltings-Serre-Livné, and uses results from the representation theory of the absolute Galois

group Gal(Q/Q) of the rational numbers.

2 Ω−Motivic L-functions of Calabi-Yau varieties

2.1 Counting and Jacobi sums

L-functions of projective varieties can be computed in several ways. The most direct procedure

starts from the rational form (1) of Artin’s congruent zeta function

Z(X/Fp, t) = exp

(

∑

r≥1

#(X/Fpr)
tr

r

)

, (11)

defined in terms of the degree r extensions Fpr of the finite field Fp for any prime p. This

factorization of the zeta function leads to the definition of cohomological L-functions

L(i)(X, s) =
∏

p prime

1

P i
p(p

−s)
(12)

associated to the ith cohomology group H i(X).

The simplest way of computing this function is via a direct count of the number of solutions

Nr,p = #(X/Fpr). For the case of K3 surfaces the cohomological form of the zeta function

simplifies to

Z(X/Fq, t) =
1

(1− t)P2
p (t)(1− p2t)

. (13)
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Expanding this quotient as

Z(X/Fp, t) = 1 + (p2 + 1− β1)t+
[

p4 + p2(1− β1) + β2
1 − β1 − β2 + 1

]

t2 + · · · , (14)

and comparing it to the expansion of the exponential, leads to

β2
1(p) = 1 + p2 −N1,p

β2
2(p) = 1 + p2 + p4 − 3(1 + p2)N1,p +

1

2

(

N2
1,p −N2,p

)

... (15)

for the polynomial P2
p (t) =

∑

i β
2
i (p)t

i.

For weighted Fermat varieties a second method for obtaining both the cardinalities and the

L-function was introduced by Weil [12]. This formulation is particularly useful because it

allows to disentangle the complicated cohomological structure of higher dimensional varieties

in a systematic way, at least for this special type [20].

Theorem 3. For a smooth weighted projective surface with degree vector n = (n0, ..., ns)

Xn = {zn0
0 + zn1

1 + · · ·+ zns

s = 0} ⊂ P(k0,k1,...,ks) (16)

defined over the finite field Fq define the set Aq,n
s of rational vectors α = (α0, α1, . . . , αs) as

Aq,n
s =

{

α ∈ Qs+1 | 0 < αi < 1, di = (ni, q − 1), diαi = 0 mod 1,

s
∑

i=0

αi = 0 (mod 1)

}

.

(17)

For each (s+ 1)−tuple α define the Jacobi sum

jq(α0, α1, . . . , αs) =
1

q − 1

∑

ui∈Fq

u0+u1+···+us=0

χα0(u0)χα1(u1) · · ·χαs
(us), (18)

where χαi
(ui) = e2πiαimi with integers mi determined via ui = gmi, where g ∈ Fq is a generator.

Then the cardinality of Xn/Fq is given by

#(Xn/Fq) = N1,q(X
n) = 1 + q + · · ·+ qs−1 +

∑

α∈Aq,n
s

jq(α). (19)

With these ingredients the L-function associated to Hs−1(Xn) takes the form (12) with poly-

nomials Ps−1
p (t) expressed in terms of the Jacobi-sums variables by

Ps−1
p (t) =

∏

α∈An
s

(

1− (−1)s−1jpf (α)t
f
)1/f

(20)
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where

An
s =

{

α ∈ Qs+1
∣

∣

∣
0 < αi < 1, niαi = 0 (mod 1),

s
∑

i=0

αi = 0 (mod 1)

}

(21)

and f is determined via

(pf − 1)αi = 0 (mod 1), ∀i. (22)

The main point now is to identify an appropriate factor of the L-function of Hs−1(Xn).

2.2 Galois representations and Ω−motives of Calabi-Yau varieties

This section defines the notion of Ω−motives for the general class of Calabi-Yau hypersurfaces.

The Jacobi sums jpf (α) are algebraic numbers in the cyclotomic field Q(µd), generated by

primitive dth roots of unity. The factors (1 − jpf (α)t
f)1/f therefore do not themselves define

string theoretic L-series of the type considered in [5, 6, 7] because the latter have integral

coefficients. The simplest way to produce real coefficients in the L−function is to combine

’dual’ pairs of Jacobi sums, i.e. sums parametrized by (α, α′) such that α + α′ = 1. This

sometimes leads to success, but in general the L-function of such pairs has coefficients that

are elements of the maximal real subfield of the cyclotomic field. The idea in this paper is to

achieve the necessary integrality of the coefficients by considering orbits of Jacobi sums defined

by the action of the multiplicative group (Z/dZ)×, where d = kini, ∀i, is the degree of the

hypersurface. The fact that these orbits lead to integral coefficients in the L−function can be

derived from a number theoretic result about finite extensions of number fields by noting that

the multiplicative groups (Z/dZ)× can be interpreted as Galois groups of cyclotomic fields

Q(µd). This can be seen as follows (the relevant number theoretic concepts can be found in

[21] and [22]).

Jacobi sum orbits for the Galois group Gal(Q(µd)/Q) = (Z/dZ)× are obtained by defining an

action

(Z/dZ)× ×An
s −→ An

s (23)

as

(t, α) = t · α(mod 1), (24)

where t · α = (tα0, ..., tαs). For any α ∈ An
s one can therefore consider its orbit

Oα =
{

β ∈ An
s | β = t · α, t ∈ (Z/dZ)×

}

, (25)

9



and decompose the set An
s into a set of orbits

An
s =

⋃

α

Oα, (26)

where α is a representative in each orbit.

To see that Galois orbits lead to L−series with rationally integral coefficients one observes

that the Jacobi sums jp(α) transform under the action of t ∈ (Z/dZ)× as

jp(t · α) = σt(jp(α)), (27)

where σt ∈ Gal(Q(µd)/Q) is defined as σt(ξd) = ξtd. Hence the Galois orbit leads to coefficients

ap of the terms with prime exponents that are of the form

ap(α) =
∑

σ∈Gal(Q(µd)/Q)

σ(jp(α)). (28)

The argument can now be completed by noting that the sum ap(α) is the trace of an algebraic

integer and by using a result from the theory of finite extensions. For any element x ∈ L in a

finite extension L/K over a number field K Dedekind defined the map

Tx : L −→ L

y 7→ xy, (29)

which can be used to define a trace map

TrL/K(x) := tr Tx. (30)

It turns out that this map takes values in the base field K, and that when restricted to the

ring OL of algebraic integers of L it maps integers to integers

TrL/K : OL −→ OK . (31)

The link to the above considerations of Jacobi sums is made by noting that for separable

extensions L/K one can show that

TrL/K(x) =
∑

σ:L→K

σ(x) (32)

where K denotes the closure of K. The cyclotomic fields of interest here are finite extensions

of the rational field Q, which is a perfect field, hence all its finite extensions are separable. This
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means that the trace maps the ring of algebraic integers of any cyclotomic field into the rational

integers. It follows that the coefficients ap in the L−series are elements in Z. Cyclotomic fields

are normal, therefore the embeddings define the Galois group of automorphisms which leave

Q invariant.

The action defined above induces an action on the middle cohomology of any diagonal hy-

persurface Xd of degree d embedded in a weighted projective space P(k0,...,ks) with weights

ki because the set An
s parametrizes the (untwisted) cohomology classes in Hs−1(Xd). The

strategy to compute the L−function of the orbits Oα determined by the factorization

Ps−1
p (t) =

∏

Oα

Ps−1
p (Oα, t), (33)

where

Ps−1
p (Oα, t) =

∏

β∈Oα

(

1− jpf (β)t
f
)1/f

, (34)

therefore implies the computation of the L-function of the irreducible representations of the

Galois group of the cyclotomic field associated to the variety on the intermediate cohomology.

From now on the superscript of the polynomial Ps−1
p (t), indicating the cohomology group,

will be dropped.

Of particular importance for Calabi-Yau spaces is the orbitOΩ of the element αΩ :=
(

k0
d
, ..., ks

d

)

associated to the holomorphic (s− 1)−form. This motivates the introduction of the following

two definitions.

Definition. The Galois orbit OΩ of the element αΩ ∈ An
s with respect to the action of the

Galois group Gal(Q(µd)/Q) is called the Ω−representation of the Galois group Gal(Q(µd)/Q).

It is possible to associate to an Ω−representation defined by OΩ a projection operator which

can be used to define a motive in the sense of Shioda.

Definition. The motive associated to the Ω−representation defined by the orbit OΩ will be

called the Ω−motive MΩ of the variety.

In this paper the focus will be on the computation of the L-function LΩ(X, s) := L(MΩ, s) of

the Ω−motive of hypersurfaces Xd

LΩ(X
d, s) =

∏

p

∏

α∈OΩ

1
(

1− (−1)s−1jpf (α)p−fs
)1/f

, (35)
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where OΩ ⊂ An
s denotes the orbit of the element α that corresponds to the Ω−form. More

precisely, the aim is to check whether the Ω−motives of extremal Brieskorn-Pham K3 surfaces

admit a modular interpretation and if so, whether the resulting forms admit an affine Lie

algebraic construction. Higher-dimensional varieties are considered in [23].

3 Examples

The general framework formulated above is applied in this paper to extremal K3 surfaces of

Brieskorn-Pham type. A K3 surface S defined over C is called extremal if its Picard number

ρ(S) = rk NS(S), defined as the rank of the Néron-Severi group NS(S), is maximal, i.e.

ρ(S) = 20. Such surfaces were originally called singular [24], and more recently have been

called attractive [25]. The set of extremal Brieskorn-Pham K3 surfaces is given in eq. (4).

3.1 The quartic Fermat K3 surface S4

A summary of cardinality results Nr,p(S
4) for small primes p for the Fermat K3 surface of

degree four is contained in Table 1.

Prime p 3 5 7 11 13 17 19 23 29 31 37

N1,p(S
4) 16 0 64 144 128 600 400 576 768 1024 1152

β1(p) −6 0 −14 −22 42 −310 −38 −46 74 −62 218

Table 1. The coefficients β1(p) = 1 + p2 − N1,p(S
4) of the Hasse-Weil modular form of the

quartic Fermat surface S4 in terms of the cardinalities N1,p for small primes.

The results in Table 1 lead to the L-series of S4

L(S4, s)
.
= 1 +

6

3s
− 26

5s
+

14

7s
+

117

9s
+

22

11s
− 42

13s
− 156

15s
+

310

17s
+

38

19s
+

84

21s
+

46

23s
+, · · · (36)

where the symbol
.
= means that a finite number of Euler factors have been omitted, here the

bad prime p = 2. Associated to this L-series is the q−expansion

f(S4, q)
.
= q+6q3−26q5+14q7+117q9+22q11−42q13−156q15+310q17+38q19+84q21+46q23+· · ·

(37)
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The product structure of L(S4, s) can be obtained from the Jacobi-sum formulation by enu-

merating the set An
3 of the surface S4. Replacing the degree vector n by the degree itself leads

to

A4
3 =

{(

1

4
,
1

4
,
1

4
,
1

4

)

,

(

1

2
,
1

2
,
1

2
,
1

2

)

,

(

3

4
,
3

4
,
3

4
,
3

4

)

,

(

1

4
,
1

2
,
1

2
,
3

4

)

,

(

1

4
,
1

4
,
3

4
,
3

4

)}

+ permutations. (38)

The Jacobi sums of the K3 surface S4 at low primes are collected in Table 2. In this table the

permutations and the complex conjugates of the sums listed are suppressed.

Type q 5 9 13 17 29 37

I jq
(

1
4 ,

1
4 ,

1
4 ,

1
4

)

−3 + 4i 9 5− 12i −15− 8i 21 + 20i −35− 12i

II jq
(

1
2 ,

1
2 ,

1
2 ,

1
2

)

5 9 13 17 29 37

III jq
(

1
4 ,

1
4 ,

3
4 ,

3
4

)

5 9 13 17 29 37

IV jq
(

3
4 ,

1
4 ,

1
2 ,

1
2

)

−5 9 −13 17 −29 −37

Table 2. Jacobi-sums of the quartic K3 surface S4 ⊂ IP3.

The L-function of S4 therefore factorizes as

L(S4, s) = LI(S
4, s) · LII(S

4, s) · LIII(S
4, s) · LIV(S

4, s), (39)

where the individual factors correspond to the orbits of the different Jacobi sums of Table

2. The first factor describes the L-function of the Gal(Q(i)/Q)−orbit of jp
(

1
4
, 1
4
, 1
4
, 1
4

)

, which

corresponds to the holomorphic 2-form of S4, and hence is the Ω−motivic L-function of S4,

LΩ(S
4, s) = LI(S

4, s) of S4,

LΩ(S
4, s) =

∏

p 6=2

1
(

1− jpf
(

1
4
, 1
4
, 1
4
, 1
4

)

· p−fs
)1/f (

1− jpf
(

3
4
, 3
4
, 3
4
, 3
4

)

· p−fs
)1/f

·

.
= 1− 6

5s
+

9

9s
+

10

13s
− 30

17s
+

11

25s
+

42

29s
− 70

37s
+ · · · (40)

The factor LΩ(S
4, s) of the complete L-function of S4 is the only one with Jacobi sum char-

acters in an algebraic number field.
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3.2 The degree six weighted K3 surface S6A

The L-series of the Ω−motive MΩ of the double cover S6A of the projective plane branched

over a degree six plane curve is determined by the Jacobi sums

jp

(

1

6
,
1

6
,
1

6
,
1

2

)

, jp

(

5

6
,
5

6
,
5

6
,
1

2

)

, (41)

which are complex conjugates. The values for these sums for low primes are collected in Table

3.

Prime p 7 13 19 31 37

jp
(

1
6
, 1
6
, 1
6
, 1
2

)

−13
2
− 3

2

√
3i −1

2
+ 15

2

√
3i 11

2
− 21

2

√
3i −23 + 12

√
3i 47

2
− 33

2

√
3i

Table 3. Jacobi sums for the K3 surface S6A ⊂ P(1,1,1,3) for small primes.

The resulting L-series of the Ω−orbit is given by

LΩ(S
6A, s)

.
= 1− 13

7s
− 1

13s
+

11

19s
− 46

31s
+

47

37s
+ · · · (42)

up to a finite number of Euler factors.

3.3 The degree six weighted K3 surface S6B

The Ω−motivic L-series of the degree six Brieskorn-Pham type surface embedded in P(1,1,2,2)

can be computed via the Jacobi sums

jp

(

1

6
,
1

6
,
1

3
,
1

3

)

, jp

(

5

6
,
5

6
,
2

3
,
2

3

)

(43)

whose values at low primes are collected in Table 4.

p 7 13 19 31 37

jp
(

1
6 ,

1
6 ,

1
3 ,

1
3

)

−1− 4
√
−3 −11− 4

√
−3 −13− 8

√
−3 23− 12

√
−3 13 + 20

√
−3

Table 4. Jacobi-sums for the K3 surface S6B ⊂ P(1,1,2,2).
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The orbit of the Ω−form with respect to the Galois group Q(µ6)/Q leads to the L-series

LΩ(S
6B, s)

.
= 1− 2

7s
− 22

13s
− 26

19s
+

46

31s
+

26

37s
+

22

43s
+ · · · (44)

The question that arises now is whether these expansions can be given a string theoretic

meaning, similar to the case of elliptic Brieskorn-Pham curves.

4 CFT Modularity of Ω−motives

4.1 Modular forms

One of the important ingredients in the analysis of modular L-functions is their product

structure, hence it is of interest to consider forms which admit Euler products, i.e. Hecke

eigenforms.

Definition. A modular form of weight w, level N , and character χ with respect to Γ0(N) is a

map f : H −→ C on the upper half−plane such that for any τ ∈ H and γ =
(

a b
c d

)

∈ Γ0(N)

f(γτ) = χ(d)(cτ + d)wf(τ). (45)

A cusp form can be characterized by the condition that the general q−expansion f(τ) =
∑∞

n=0 anq
n starts with a1. It is normalized if a1 = 1.

Hecke defined on the space of cusp forms Sw(Γ0(N), χ) operators which for prime p take the

form

Twp f(q) =
∞
∑

n=1

anpq
n + χ(p)pw−1

∞
∑

n=1

anq
np. (46)

Eigenforms of these operators are particularly important in a geometric context.

Theorem 4.(Hecke)

The space Sw(Γ0(N), χ) of cusp forms of weight w, level N , and character χ is the orthogonal

sum of the spaces of equivalent eigenforms. Each space of such forms has a member that is

an eigenvector of all Hecke operators Tw(n). A form f ∈ Sw(Γ0(N), χ) that is an eigenvector

for all Tw(n) can be normalized and its coefficients satisfy

apn+1 = apnap − χ(p)pw−1apn−1 , p |/ N,
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apn = (ap)
n, p|N,

amn = aman, (m,n) = 1. (47)

Moreover, the L-function L(f, s) has an Euler product of the form

L(f, s) =
∏

p prime

p|N

1

1− app−s

∏

p prime

p |/ N

1

1− app−s + pw−1−2s
(48)

which is convergent for Re s > w
2
+ 1.

4.2 CFT ingredients

Quantities that have proven useful in the string modularity analysis of elliptic Brieskorn-Pham

curves [5, 6, 7] are the theta functions

Θk
ℓ,m(τ) =

∑

−|x|<y≤|x|

(x,y) or ( 12−x,12+y)

∈Z2+( ℓ+1
2(k+2)

,m
2k)

sign(x)e2πiτ((k+2)x2−ky2), (49)

defined by Kac and Peterson. These are related to the string functions of the affine algebra

A
(1)
1 at level k as

ckℓ,m(τ) =
Θk
ℓ,m(τ)

η3(τ)
. (50)

The string functions, together with the classical theta functions

θn,m(τ, z, u) = e−2πimu
∑

ℓ∈Z+ n
2m

e2πimℓ
2τ+2πiℓz, (51)

are the building blocks of the N=2 supersymmetric characters χkℓ,q,s(τ) of the partition func-

tions of the N = 2 minimal theories

χkℓ,q,s(τ, z, u) = e2πiutrHk
ℓ,q,s

q(L0− c
24)e2πizJ0

= e2πiu
∑

Qk
ℓ,q,s

,∆k
ℓ,q,s

mult
(

∆k
ℓ,q,s, Q

k
ℓ,q,s

)

e2πiτ(∆
k
ℓ,q,s

− c
24)+2πizQk

ℓ,q,s, (52)

in terms of the conformal dimensions ∆k
ℓ,q,s and the charges Qk

ℓ,q,s, leading to [26]

χkℓ,q,s(τ, z, u) =
∑

ckℓ,q+4j−s(τ)θ2q+(4j−s)(k+2),2k(k+2)(τ, z, u). (53)
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It will become clear below that the modular forms that explain the modularity of extremal

K3 surfaces of Brieskorn-Pham type in a string theoretic way are given by

Θ1
1,1(q) = q1/12(1− 2q − q2 + 2q3 + q4 + 2q5 − 2q6 − 2q8 − 2q9 + q10 + · · ·)

Θ2
1,1(q) = q1/8(1− q − 2q2 + q3 + 2q5 + q6 − 2q9 + q10 + · · ·). (54)

4.3 Modularity of Ω−motives

If an Ω−motive of K3 type is modular the associated modular form is expected to be of weight

three. A useful guide in the search for such forms is provided by the speculation that exactly

solvable models lead to motives which admit complex multiplication (CM) in the classical

sense [27] (see [28] for an alternate discussion of CM). The quartic Fermat surface admits

CM with respect to Q(
√
−1), while the degree six surfaces have CM with respect to the field

Q(
√
−3). The goal therefore is to find modular forms of weight three which admit complex

multiplication with respect to these fields.

A further guide is provided by the bad primes of these surfaces. It is expected that the level of

a geometrically derived modular form is divisible by the bad primes of the underlying variety.

The only bad prime for the quartic Fermat K3 surface is p = 2, hence the level should be

some power of two. For the degree six surfaces the bad primes are p = 2, 3, hence the level

should be of the form 2a3b for some non-negative integers a, b.

Combining these considerations leads to the candidate cusp forms

S3(Γ0(16), χ−1) ∋ η6(4τ) = q − 6q5 + 9q9 + 10q13 − 30q17 + 11q25 + · · ·
S3(Γ0(12), χ−3) ∋ η3(2τ)η3(6τ) = q − 3q3 + 2q7 + 9q9 − 22q13 + 26q19 + · · · (55)

for the K3 surfaces considered above. Comparing the q−expansions of these two forms with

those of the Ω−motivic L-series of the K3 surfaces shows that while the first form describes

the L−function of the quartic K3 surface, the latter describes the corresponding L−function

of S6B only up to sign changes. This indicates that a twist is involved, and it turns out that

this twist can be provided by the Legendre character χ3. This leaves the surface S6A. A

candidate modular form can be obtained by lifting a complex multiplication modular form of

weight two to weight three via an Eisenstein series associated to the CM field Q(
√
−3). In the

present case a useful modular form turns out to come from a class of theta series considered

in [29]. Hecke associates to each element α of an integral ideal a in an imaginary quadratic

17



field K = Q(
√
−D) the theta series defined as

ϑ(τ ;α, a, Q
√
−D) =

∑

z≡α(mod aQ
√
−D)

qNz/Q|D|Na, (56)

where Nz and Na denote the norms of z ∈ OK and a respectively, and OK is the ring of

integers of K. Relevant for the L-series LΩ(S
6A, s) is the special case given by α = 0, Q = 1,

and a = OK for the Eisenstein field K = Q(
√
−3), renamed here as

ϑ(q) =
∑

z∈OK

qNz. (57)

In summary, the results above lead to the identification of the respective Mellin transforms

fΩ(S
d, q) of the motivic L−functions LΩ(S

d, s) for d = 4, 6A, 6B as noted in eq. (6) of Theorem

1. The proof of these relations to all orders is postponed to the appendix.

The modularity of the Ω−motives of extremal Brieskorn-Pham K3s leaves the question whether

the resulting modular forms admit a string theoretic interpretation in terms of forms derived

from the associated conformal field theory. The basic idea in the following is to consider

the arithmetic building blocks of the K3 surfaces considered here. One way to identify these

structures is via the twist map. In this section the focus will remain on the arithmetic aspects,

postponing the identification of the basic irreducible geometric structure to section 5.

4.4 Elliptic curves from K3 surfaces

The structure of the quartic K3 surface S4 is very simple. It is shown below that it can

be constructed directly in terms of E4 via the twist map [19]. Alternatively, one can use

the Shioda-Katsura decomposition [30, 31] to reconstruct the cohomology of S4 from the

cohomology of the quartic plane curve

C4 = {(z0 : z1 : z2) ∈ P2 | z40 + z41 + z42 = 0}. (58)

This is a genus three curve whose L-function factors into the triple product of the L-function

of the weighted elliptic curve E4. The L-function of this curve was computed in [6], where it

was shown that its Mellin transform is determined by a twist of the Hecke indefinite modular

form Θ2
1,1(q), as described in Theorem 2. Therefore the geometry and arithmetic structure

of the quartic Fermat K3 suggests a relation between the modular forms η6(q) and Θ2
1,1(q) of

weight three and two, respectively.
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The structure of the degree six K3 surface S6B can be recovered from the twist map in a

way similar to the quartic surface by constructing it from two copies of the elliptic curve

E6, as described below. Alternatively, for both degree six surfaces one can again consider

the reduction of the cohomology via Shioda-Katsura. There are two curves to consider, the

weighted plane curve

C6 = {(z0 : z1 : z2) ∈ P(1,1,2) | z60 + z61 + z32 = 0} (59)

and the elliptic curve E3. The latter was analyzed in detail in [5], with the result that its

associated modular form is determined by the theta series Θ1
1,1(q) at conformal level k = 1.

The Jacobian of C6 factors into three different types of elliptic curves, E3 just discussed, the

degree six elliptic curve E6, and a third curve of conductor 432. The curve E6 has been

shown to lead to the string theoretic modular form given in terms of Θ1
1,1(q). These results

then suggest a relation between the modular form η3(2τ)η3(6τ) and Θk
1,1(q) for levels k = 1

or k = 2, or both.

4.5 From K3 to CFT forms

For the degree six surface S6A the relation between the weight three form and the string

theoretic form is immediate because this form is the lift of a product of Hecke indefinite

modular forms. In general, the expected relation between forms of different weight cannot be

established for the forms themselves, but should proceed in terms of their associated L-series.

Guidance for such constructions is provided by the theory of convolutions of L-functions. It

turns out that for all three modular forms of weight three determined above the relation is of

similar type. Denote by

fw(q) =
∞
∑

n=1

a(w)n qn (60)

the q−expansion of the weight w form. Then the relation between the pairs of weight three

and weight two forms for the surfaces

S4 : (f3, f2) = (η6(q4),Θ2
1,1(q

4)2 ⊗ χ2),

S6A : (f3, f2) = (ϑ(q3)η2(q3)η2(q9),Θ1
1,1(q

3)Θ1
1,1(q

9)) (61)

is of the form

a(3)p = (a(2)p )2 − 2p (62)

for rational primes p, while for third surface

S6B : (f3, f2) = (η3(q2)η3(q6),Θ1
1,1(q

6)2 ⊗ χ3), (63)
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a twist is necessary

a(3)p =
(

(a(2)p )2 − 2p
)

χ3(p). (64)

The origin of these relations, and the motivation for the various twists, will become clear in

the next two sections.

This result shows that the string theoretic modular forms Θk
ℓ,m(τ) introduced above suffice

to explain the arithmetic structure of spacetime, represented here by the Ω−motive carrying

an irreducible representation of the Galois group of the cyclotomic field, determined by the

symmetry group of the K3 surfaces. Reading these relations in reverse explains string theoretic

modular forms in terms of the arithmetic geometry of the topologically nontrivial part of

spacetime.

5 K3 surfaces from elliptic curves

This section describes the elliptic building blocks used in the previous section to identify the

string theoretic structure of extremal Brieskorn-Pham K3s. A direct construction of the two

surfaces S4 and S6B in terms of elliptic curves can be obtained via the twist map [19]. This

construction was originally considered in the context of string dualities [32] (see also the later

ref. [33]), and will also be useful below for the proof of modularity to all orders for the

Ω−motivic L-series of these K3 surfaces.

5.1 The twist map construction

In the notation of [19] consider the map

Φ : P(w0,...,wm) × P(v0,...,vn) −→ P(v0w1,...,v0wm,w0v1,...,w0vn) (65)

defined as

((x0, ..., xm), (y0, ..., yn)) 7→ (y
w1/w0

0 x1, ..., y
wm/w0

0 xm, x
v1/v0
0 y1, ..., x

vn/v0
0 yn)

=: (z1, ..., zm, t1, ..., tn). (66)

This map restricts on the subvarieties

X1 = {xℓ0 + p(xi) = 0} ⊂ P(w0,...,wm)

X2 = {yℓ0 + q(yj) = 0} ⊂ P(v0,...,vn), (67)
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defined by transverse polynomials p(xi) and q(yj), to the hypersurface

X = {p(zi)− q(tj) = 0} ⊂ P(v0w1,...,v0wm,w0v1,...,w0vn) (68)

as a finite map. The degrees of the hypersurfaces Xi are given by

deg X1 = w0ℓ, deg X2 = v0ℓ, (69)

leading to the degree deg X = v0w0ℓ.

5.2 Examples

Applying the twist construction to the quartic elliptic curve E4 ⊂ P(1,1,2) leads first to the

map of ambient spaces

Φ : P(2,1,1) × P(2,1,1) −→ P3 (70)

defined as

((x0, x1, x2), (y0, y1, y2)) 7→ (y
1/2
0 x1, y

1/2
0 x2, x

1/2
0 y1, x

1/2
0 y2). (71)

Restricting the map Φ to the product E4
+ ×E4

− of the elliptic curves

E4
± = {x20 ± (x41 + x42) = 0} ⊂ P(2,1,1), (72)

leads to the quartic K3 surface S4 ⊂ P3.

The degree six surface S6B can be constructed similarly by considering the elliptic curve

E6 ⊂ P(1,2,3). The ambient space map

Φ : P(3,2,1) × P(3,2,1) −→ P(1,1,2,2) (73)

is now defined by

((x0, x1, x2), (y0, y1, y2)) 7→ (y
2/3
0 x1, y

1/3
0 x2, x

2/3
0 y1, x

1/3
0 y2), (74)

and restricts on the product E6
+ × E6

−, where

E6
± = {x20 ± (x31 + x62) = 0} ⊂ P(3,2,1), (75)

to the surface S6B ⊂ P(1,1,2,2),

It will become clear below that the surface S6A is determined by the elliptic curve E3. There-

fore all surfaces considered here can be understood in terms of the arithmetic structure of the

three Brieskorn-Pham type elliptic curves described in [7].
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5.3 K3 geometry from string theory

One of the fundamental problems in string theory is to derive the structure of spacetime

solely from the field theory on the worldsheet. In refs. [5, 7] it was shown that it is possible

to construct the elliptic geometry of Gepner models at c = 3 directly from the conformal field

theory, providing a string theoretic derivation of the extra dimensional geometry for a simple

class of exact models. The question arises whether such a derivation can be generalized to

the K3 surfaces analyzed here. In contrast to elliptic curves, the cohomology of K3 surfaces is

more complicated, and it is not obvious how a direct construction should proceed. The twist

map described above does, however, lead directly from the modular forms on the worldsheet

to the geometry of spacetime in this higher dimensional case as well. This can be seen as

follows.

The first step is the construction, described above, of these K3 surfaces in terms of the elliptic

curves of Brieskorn-Pham type via the twist map. This reduces the modular construction

from two dimensions to one. The second step is to use the criteria formulated in [7], which

uniquely identify the modular forms for these elliptic curves. This leads to the modular forms

of weight 2 described in the previous section. This two-step procedure can be reversed by

using the Eichler-Shimura construction, which allows to construct elliptic curves from their

modular forms. Combining these modularity arguments with the twist map therefore leads to

the construction of the K3 surfaces S4 and S6B directly from the conformal field theories on

the worldsheet. An alternative reduction strategy proceeds via complex multiplication. This

approach is less direct, but allows to discuss all three surfaces in a unified manner, as shown

below.

6 Modularity of a phase transition

The arithmetic structure of a projective variety is sensitive to deformations, changing as the

coefficients of its defining polynomials are varied. It is therefore of interest to consider the

behavior of families of varieties and analyze their arithmetic structure as their moduli change.

This line of thought has already been followed in recent work [34, 35, 36]. These interesting

papers address, among other issues, the question of what happens to the reduced variety at

the conifold locus. Reference [36] in particular considers the lower dimensional analog of the
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conifold transition in the context of the following family of quartic K3 surfaces

S4(ψ) =

{

(z0 : · · · : z3) ∈ P3

∣

∣

∣

3
∑

i=0

z4i − 4ψ
∏

i

zi = 0

}

. (76)

The result is that at the singular locus ψ = 1 the congruent zeta functions Z(S4(ψ)/Fp, t)

degenerate, as expected. It turns out that they become singular in a way that preserves

modularity. The question therefore arises whether there is a cohomological L-function whose

Mellin transform admits a conformal field theoretic interpretation.

The zeta function computations of ref. [36] indicate that at the singular point a modular form

emerges which can be given a string theoretic interpretation as

(Θ2
1,1(τ)Θ

2
1,1(4τ))

2

Θ2
1,1(2τ)

⊗ χ2. (77)

What is interesting about this form is that it is written in terms of cusp forms determined

by precisely the same conformal field theory that leads to the L-function at the Fermat locus

in the moduli space. Furthermore, the twist character χ2 which appears in this expression, is

the Legendre character of the field of quantum dimensions Q(
√
2) of that same theory.

This suggests that at the analog of the conifold point the arithmetic structure points to a

conformal field theory at level k = 2, precisely the same structure that describes the situation

for the Fermat surface.

7 Symmetries

7.1 Complex multiplication

It was conjectured in [27] that exactly solvable Calabi-Yau varieties can be characterized by

a complex multiplication symmetry in the sense of [37]. In the context of elliptic curves this

coincides with the classical notion of CM, and it was shown in [7] that all elliptic Brieskorn-

Pham curves and their associated modular forms admit CM by either the Eisenstein field

Q(
√
−3) or the Gauss field Q(

√
−1). For higher dimensional Calabi-Yau varieties the concept

of complex multiplication must be modified. The idea of ref. [37] is to define the CM property

of a general Calabi-Yau variety in terms of the complex multiplication properties of the asso-

ciated Jacobians of the curves embedded in the variety. This notion can be formulated more
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generally in terms of the CM properties of motives defined by the Galois representations, as

described above.

A natural problem therefore is to determine the CM nature of the forms derived above from

the Ω−motives of extremal Brieskorn-Pham K3 surfaces. In terms of the coefficients of the

q−expansion, f(q) =
∑

n anq
n, CM implies the existence of quadratic extension fields K/Q

such that the coefficients ap vanish at all primes p that are inert in K. In [7] this condition

was checked for the modular forms associated to elliptic Brieskorn-Pham curves. Similarly

one can show that the forms of weight 3 of Theorem 1 admit CM. Table 5 summarizes the

results for the CM fields of all the forms encountered so far. The results indicate that the

relevance of complex multiplication generalizes from exactly solvable elliptic curves to higher

dimensions.

Form Weight Level CM Field Geometry

Θ1
1,1(q

3)Θ1
1,1(q

9) 2 27 Q(
√
−3) Elliptic curve

(Θ1
1,1(q

6))2 2 36 Q(
√
−3) Elliptic curve

(Θ2
1,1(q

4))2 ⊗ χ2 2 64 Q(
√
−1) Elliptic curve

η6(q4) 3 16 Q(
√
−1) K3 Ω−motive

ϑ(q3)η2(q3)η2(q9) 3 27 Q(
√
−3) K3 Ω−motive

η3(q2)η3(q6)⊗ χ3 3 48 Q(
√
−3) K3 Ω−motive

(Θ2
1,1(q)Θ

2
1,1(q

4))
2

Θ2
1,1(q

2)
3 8 Q(

√
−2) Singular quartic K3

Table 5. CM modular forms with geometric interpretation.

The complex multiplication property of the K3 motivic modular forms provides an alternative

approach to the notion of ”dimensional reduction” of K3 surfaces to elliptic curves discussed

in §4 and §5. CM modular forms can be obtained from L-series

L(ψ, s) =
∏

p∈Spec OK

1

1− ψ(p)
Nps

=
∑

a⊂I(OK)

ψ(a)

Nas
(78)

associated to Hecke characters ψ of number fields K, where I(OK) (Spec OK) describes the set

of (prime) ideals in the ring of algebraic integers OK , and Na is the norm of the ideal a [38]. In
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the present case a Hecke characters ψ4 of Q(
√
−1), and two characters ψ6A and ψ6B associated

to Q(
√
−3), all of weight two, determine the L-series of S4, S6A and S6B by considering the

square of the basic characters. More precisely, the arithmetic of the Ω−motive of elliptic

Brieskorn-Pham K3s can be obtained as follows. Define the character ψ4 at the prime ideals

p of Q(
√
−1) dividing the rational prime p as

ψ4(p) = αp, with αp ≡
(

2

p

)

(mod (2 + 2i)), (79)

where p = (αp). Define further the characters ψ6A and ψ6B on the prime ideals p|p of Q(
√
−3)

dividing the rational primes p as

ψ6A(p) = αp, with αp ≡ 1(mod 3),

ψ6B(p) = αp, with αp ≡
(

3

p

)

(mod (2 + 4ξ3)). (80)

These characters provide the Hecke theoretic interpretation of the Mellin transforms of the

Hasse-Weil L-functions of the elliptic curves E4, E3 and E6 respectively. Renaming E3 and

E6 as E6A := E3 and E6B := E6, one can check that

LHW(Ed, s) = L(ψd, s), d = 4, 6A, 6B. (81)

The motivic L-series of S4, S6A and S6B can then be described as

LΩ(S
d, s) = L(ψ2

d, s), d = 4, 6A (82)

for the first two surfaces, and as

LΩ(S
6B, s) = L(ψ2

6B ⊗ χ3, s) (83)

for the third example. These results provide an alternative demonstration that the elliptic

curves E4, E3 and E6 can be viewed as the modular building blocks of the K3 surfaces

considered here. They also explain the relations (62) and (64) by rewriting the coefficients of

the Hecke L-series of the weight three forms in terms of the real coefficients of the weight two

forms.

The Hecke interpretation of the Ω−motivic L-series of elliptic curves and K3-surfaces provides

a way to explicitly prove the modularity of these series to all order of their q−expansions by

using some results from Hecke and Shimura. Alternatively, it is possible to point to general

modularity result for extremal K3 surfaces defined over number fields [24, 39]. It is useful,

however, to see modularity explicitly, and a proof is contained in the appendix.
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7.2 K3 Arithmetic moonshine

It was pointed out in [7] that the modular forms given by the Mellin transform of the Hasse-

Weil L-functions of elliptic Brieskorn-Pham curves can be interpreted as generalized McKay-

Thompson series associated to the largest Mathieu group M24, leading to the notion of what

might be called arithmetic moonshine. It is therefore natural, as an aside, to ask whether the

modular forms that appear in the context of extremal Brieskorn-Pham K3 surfaces can also

be interpreted as such series. This is the case if the group considered is enlarged from the

Mathieu group to the Conway group, defined as the automorphism group of the Leech lattice.

The specific group elements associated to the forms encountered in the present paper are listed

in Table 6, where the notation of ref. [40] is adopted, which in turn follows the atlas [41]. The

numerical part of the group element denotes its order while the letter part separates different

elements of the same order.

Form Θ1
1,1(q

3)Θ1
1,1(q

9) Θ1
1,1(q

6)2 Θ1
1,1(q

6)2 ⊗ χ η6(q4) η3(q2)η3(q6)⊗ χ3
(Θ2

1,1(q)Θ
2
1,1(q

4))
2

Θ2
1,1(q

2)

Conway (3D, 3B) 6I 8F |T 4F 6G|T 8E
class

Table 6. Conway classes for the forms of Table 5.

It is intriguing to see that all geometrically induced conformal field theoretic modular forms

obtained so far admit a sporadic group theoretic interpretation. It is an open question whether

this relation can help to provide a conceptual foundation of the relations established so far.

8 Appendix: modularity proof

8.1 Faltings-Serre-Livné strategy

Modularity of the L-series considered here can be shown in several ways, e.g. by using their

complex multiplication origin and results of Hecke and Shimura. It is also possible to refer to

some general results of Livné. Calabi-Yau modularity is not restricted to manifolds with CM,

as illustrated by many examples reviewed in [10]. For completeness, this appendix contains a

brief modularity proof of the Ω−motives of extremal K3 surfaces of Brieskorn-Pham type by
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using techniques essentially developed by Faltings and Serre. It was first observed by Faltings

[42] that different Galois representations can be shown to be identical if they agree at a finite

number of primes. This observation has been developed by Serre [43] and Livné [44], and Livné

in particular made it into a practical tool by specifying precisely the set of primes that has

to be tested in order to guarantee agreement of two representations. The varieties discussed

here are defined over Q, hence Livné’s more general theorem can be reduced to the following

form, previously considered by Verrill [45] (see [10] for more references in this direction). Let

Qℓ be the ℓ−adic field and denote by Fp the Frobenius element at the prime p.

Theorem 5. Let S be a finite set of rational primes, and denote by QS the compositum of all

quadratic extensions of Q unramified outside of S. Suppose

ρ1, ρ2 : Gal(Q/Q) −→ GL(2,Q2) (84)

are 2−adic continuous representations, unramified outside of S, which further satisfy the

following conditions:

1) tr ρ1 ≡ tr ρ2 ≡ 0 mod 2.

2) There exists a finite set T 6= ∅ of rational primes, disjoint from S, for which

a) the image of the set {Fp}p∈T in Gal(QS/Q) is surjective,

b) tr ρ1(Fp) = tr ρ2(Fp) for all p ∈ T ,

c) det ρ1(Fp) = det ρ2(Fp) for all p ∈ T .

Then ρ1 and ρ2 have isomorphic semi-simplification.

The idea therefore is to translate the geometric and modular computations into two Galois

representations, and to show agreement by satisfying the requirements of Livné’s result. The

geometric part is given by the representations of the absolute Galois group Gal(Q/Q) on the

ℓ−adic cohomology group

ρ1 = ρiℓ : Gal(Q/Q) −→ Aut(Hi
ét(X̄,Qℓ)), (85)

where ℓ is a prime different from the prime of reduction, X/Q is assumed to be smooth

projective variety, X̄ = X ⊗Q Q, and Hi
ét indicates the i

th étale cohomology group.

In the absolute Galois group there exists a distinguished element, the geometric Frobenius

endomorphism Fp ∈ Gal(Q/Q). Given the representation ρiℓ these Frobenius elements act on

the étale cohomology, and it turns out that the polynomials P i
p(t) that define the geometric L-

function associated to these cohomology groups can be determined in terms of these Frobenii

as

P i
p(t) = det

(

1− ρiℓ(Fp)|Hi
ét
(X̄,Qℓ)

t
)

. (86)
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The second representation is the 2−dimensional Galois representation ρ2 = ρf associated by

Deligne [46] to Hecke eigenforms of arbitrary weight, where

ρf : Gal(Q/Q) −→ GL(2,Qℓ) (87)

is a representation that is unramified outside of ℓ and the prime divisors of the level N of the

modular form. This ℓ−adic representation can be realized in the cohomology of certain ℓ−adic

sheaves over a modular curve. These can be defined over Q and therefore Gal(Q/Q) acts on

the ℓ−adic cohomology. Deligne has shown that these representations have the properties

tr ρf(Fp) = ap

det ρf(Fp) = pw−1ǫ(p) (88)

for all primes p different from ℓ. In the present discussion of K3 surfaces the focus is on

modular forms of weight three and the goal is to use Theorem 5 to prove the identity of the

geometric representation and the modular representation.

8.2 Examples

The application the strategy outlined above to the K3 surface S4 ⊂ P3 starts with the deter-

mination of the set T of primes considered in Livné’s theorem. This is obtained by considering

a representation of the Galois group of the composite field QS. For S
4 the bad prime is p = 2,

which is also the only divisor of the level of modular form η(4τ)6 ∈ S3(Γ0(16), χ−1). Hence

S = {2}, and the composite field is Q{2} = Q(i,
√
2) = Q(ξ8). Therefore the set T of primes

can be chosen as

T = {3, 5, 7, 17}. (89)

This set of primes is a subset of the primes for which agreement of the modular and the

geometric L-series is shown by the computations in the previous subsections. It remains to

establish the conditions formulated in the theorem.

The fact that tr ρ1 = 0 mod 2 follows by noting that the quartic surface can be constructed

via the twist map, as explained above. The elliptic curve E4 involved in the construction of S4

admits complex multiplication, and it can be shown that its coefficients ap satisfy ap = 0 mod 2

(see e.g. [47], or [7]). Hence the same follows for ρ1. Alternatively, this follows from the Jacobi-

sum formulation of the L-function of the Ω−motive. The same congruence holds for η6(4τ),

which can be seen e.g. via Jacobi’s expansion for η3(τ) [48]. The determinant condition,
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finally, follows from Weil’s result for Jacobi sums in the geometric case, and Deligne’s result

in the case of the modular form.

The case of the degree six surface S6B ⊂ P(1,1,2,2) is similar to the discussion of the quartic.

The set of bad primes is S = {2, 3}, which gives the set of divisors of the level of the modular

form. This leads to the composite field Q{2,3} = Q(ξ24). The set of primes representing the

Galois group of this field is given by

T = {5, 7, 11, 13, 17, 19, 23, 73}. (90)

This set of primes is again a subset of the primes considered above for the surface S6. Com-

parison between the geometric and modular L-series shows agreement on the set of primes

given by T .

The fact that tr ρ1 = 0 mod 2 can again be seen via the twist construction. The curve E6, the

building block of S6, has complex multiplication, and the coefficients of its Hasse-Weil L-series

are zero mod 2. Hence it follows that this holds also for ρ1. The remaining assumptions of

the theorem follow in the same way as in the case of the quartic surface in combination with

results proven in [45].

The surface S6A does not satisfy the conditions of Livné’s theorem since the coefficients can

be odd. The following result, proven in [49], can be used to complete the proof.

Proposition. Let ρ1, ρ2 be two 2-adic Galois representations with the same determinant and

even trace at Fr11 or Fr13, which are unramified outside {2, 3}. Then they have isomorphic

semi-simplifications if and only if for any p ∈ {5, 7, 11, 13, 17, 19, 23, 31, 37} the traces of the

Frobenii are identical, tr ρ1(Frp) = tr ρ2(Frp).

A discussion of the notion of semi-simplification can be found in [50]. Important here is the

implication that the two L-functions associated to the Galois representations are identical.

It follows from the Jacobi sum representation of the L-series and Deligne’s result that the

determinants of the geometric representation and the modular representations are identical.

The computations collected in Table 1 furthermore show agreement for the traces at the primes

determined by the proposition. Hence the proof follows.
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