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ABSTRACT

Every year the most effective Deep learning models, CNN architectures are showcased

based on their compatibility and performance on the embedded edge hardware, especially

for applications like image classification. These deep learning models necessitate a signifi-

cant amount of computation and memory, so they can only be used on high-performance

computing systems like CPUs or GPUs. However, they often struggle to fulfill portable

specifications due to resource, energy, and real-time constraints. Hardware accelerators have

recently been designed to provide the computational resources that AI and machine learning

tools need. These edge accelerators have high-performance hardware which helps maintain

the precision needed to accomplish this mission.

Furthermore, this classification dilemma that investigates channel interdependencies us-

ing either depth-wise or group-wise convolutional features, has benefited from the inclusion

of Bottleneck modules. Because of its increasing use in portable applications, the classic

inverted residual block, a well-known architecture technique, has gotten more recognition.

This work takes it a step forward by introducing a design method for porting CNNs to low-

resource embedded systems, essentially bridging the difference between deep learning models

and embedded edge systems. To achieve these goals, we use closer computing strategies to

reduce the computer’s computational load and memory usage while retaining excellent de-

ployment efficiency. This thesis work introduces HBONext, a mutated version of Harmonious

Bottlenecks (DHbneck) combined with a Flipped version of Inverted Residual (FIR), which

outperforms the current HBONet architecture in terms of accuracy and model size miniatur-

ization. Unlike the current definition of inverted residual, this FIR block performs identity

mapping and spatial transformation at its higher dimensions. The HBO solution, on the

other hand, focuses on two orthogonal dimensions: spatial (H/W) contraction-expansion and

later channel (C) expansion-contraction, which are both organized in a bilaterally symmetric

manner. HBONext is one of those versions that was designed specifically for embedded and

mobile applications. In this research work, we also show how to use NXP Bluebox 2.0 to

build a real-time HBONext image classifier. The integration of the model into this hardware

has been a big hit owing to the limited model size of 3 MB. The model was trained and vali-
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dated using CIFAR10 dataset, which performed exceptionally well due to its smaller size and

higher accuracy. The validation accuracy of the baseline HBONet architecture is 80.97%,

and the model is 22 MB in size. The proposed architecture HBONext variants, on the other

hand, gave a higher validation accuracy of 89.70% and a model size of 3.00 MB measured

using the number of parameters. The performance metrics of HBONext architecture and its

various variants are compared in the following chapters.
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1. INTRODUCTION

The origins of Convolutional neural networks (CNNs) can be traced back to both neuro-

science and artificial intelligence. They were influenced by early discoveries in the field of

vision-based biological research. Artificial neural networks are based on the neurons discov-

ered inside the human brain, and linked together using computer science, mathematics, and

engineering fundamentals. CNNs have been used for visual purposes since the early 1980s,

but their development slackened in the mid-2000s. However, in 2012, the popularity of larger

labeled datasets, improved algorithmic techniques, and the need for more computing power

propelled it to the forefront of a neural network renaissance, which has accelerated since

then [1 ]. Deep Learning models, on the other hand, have transformed artificial intelligence

prospects by solving a variety of key problems such as identification, regression, and many

others. DL models are more complex versions of ANNs, consisting of a larger number of

layers connected by various weights to learn data features with multiple level of abstraction.

They have assisted in the construction of automated machines that can perform activities

in a variety of fields, including medicine, self-driving vehicles, image processing, and data

science, that are comparable to or even better than humans [2 ].

ANNs with many hidden layers have been widely investigated for their robust learning

ability, which can be improved by increasing the number of hidden layers in a short period

of time by adding depth. As a result, “deep” learning refers to a type of machine learning

improvement that can handle complicated shapes and artifacts in huge datasets. The ba-

sics, pros, and cons of Machine Learning for deep architectures are thoroughly discussed by

Goodfellow [3 ]. The development of various datasets and virtual simulators, as well as recent

developments in deep learning architectures and computer vision [4 ], [5 ], have made it clear

that widespread efforts are being made in the autonomous driving research field, which is

blooming with every passing day[6 ]. Since most car accidents today are caused by human

negligence, the introduction of self-driving cars can minimize traffic congestion, fuel usage

and accidents, and save human lives.

The collaborative European project known as ‘PROMETHEUS’ [7 ], [8 ] took the first

steps in the autonomous driving realm, decomposing the task of driving into smaller chunks
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from perception to strategy, which helped in processing. ImageNet classification challenge

that started in 2012 has been a driving force to develop today’s best performing CNN

architectures, which are growing deeper and becoming more efficient with every passing year

[9 ]. With the increasing quest of improving these architectures for higher accuracy yield,

many sophisticated mathematical approaches are under development but at the cost of higher

computational and storage requirements.

Many novel studies have emerged to build further light-weight CNN models that are

compatible and feasible for actual real-time implementation and to investigate this critical

problem. With all the research in mind, the goal of this thesis is to learn about the evolution

of deep CNN (DCNN) technology and its modular architectures, particularly for image

classification and its validation on light embedded edge devices. It employs methods from

its forerunners all the way up to the most cutting-edge mathematical methods in the deep

learning realm. It also provides some interesting directions in a short manner. It also briefly

discusses some promising techniques for further architectural modifications to achieve better

performance.

1.1 Challenges

Despite deep CNN’s (DCNN) good image classification efforts over the years, there are

still barriers that need to be discussed. Implementation on the embedded edge platforms for

mobile development, upgrading contemporary datasets, understanding deep and multilabel

imagery, and model training methods are just a few of the obstacles. The most recent

DCNNs rely on supervised training strategies and make probabilistic projections based on

a specific dataset for the sole purpose of experimentation. As a result, they are unable to

take advantage of the vast amounts of unlabeled data that are publicly accessible. These

deep networks often rely heavily on hyperparameters such as the number of training epochs,

learning rate, optimizer, activation function, learning rate schedulers, and so on. However,

calculating these values for an algorithm depend on expertise in the field, some thumb

rules, or any established parameter search techniques that has previously researched and

helped. Another strategy for mobile development of these deep models is to factorize the
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convolutional filters from N x N to 1 x N, followed by N x 1 convolutions, which has resulted

in a significant reduction in model size. This benefit is being utilized in this work, which

makes widespread use of depth-wise convolution followed by point-wise convolutions. The

most important thing is that every effort is made to close the theoretical gap between deep

CNNs and biological neural networks as much as possible. This article [10 ], focuses on how

the brain performs priority assignments in a manner analogous to what a back propagation

does in our machine algorithms, and it is viewed as the most crucial step in linking our deep

neural approaches to human brain neuron operations.

1.2 Motivation

The abrupt increase in the number of cars on the road has made us realize the importance

of safety, connectivity, attentive contributions to prevent collisions, and a well-managed

transportation system. The Intelligent Transportation has now recognized as one of the most

effective ways to navigate us through increasing traffic flow, with safety, and end-user control.

Collision avoidance, lane keeping, emergency braking, and other intelligent techniques have

already been adopted by the automobile industry [11 ]. All the auto firms are now operating

fleets to collect as much data as possible from the environment to better train these imagery

algorithms, which are expected to revolutionize the transportation industry. Investing in

new road infrastructure is not a viable solution but using transportation data gathered from

various sensors such as the Global Positioning System (GPS), ultrasonic sensors, LiDAR, and

on-board cameras is the only way to improve transportation efficiency, safety, and security.

Deep CNNs (DCNNs) have received a lot of attention in the research community as a credible

option for this computer vision task of making judgments about the surrounding objects for

a vehicle in motion. Today’s smart autonomous cars include these models in their advanced

driver assistance toolkit, which assist users with traffic sign recognition, collision warnings,

lane keeping, and pedestrian detection, among other things.

Our focus has switched to a machine making decisions for our safety and smooth travel

because of this new field of artificial intelligence. This is akin to a newborn infant attempting

to comprehend and learn about the world around them solely using a projected image in front

16



of them. This research work seeks to make a small contribution to the field of deep CNN

by using various mathematical modification methods, or in other words, to investigate the

design space. Even though we intend to use strong GPU resources to train the architecture

using a supervised procedure using available labeled data, the performance of these models

on the embedded edge is of paramount importance in terms of maintaining precision while

also maintaining the achieved speed and model size.

1.3 Research Objective

The aim of this research is to delve into the field of deep CNNs and learn about the

different techniques that can be used to help the architecture outperform its baseline features.

Here are few points that have been thoroughly explored to better understand this design

modification space.

• Understanding the baseline HBONet model architecture under consideration.

• Obtaining the HBONet baseline architecture results using CIFAR-10 dataset.

• Modifying the baseline HBONet architecture.

• Obtaining the modified HBONext v1.1 result using CIFAR-10 dataset.

• Comparison of the achieved results and visualization in real-time.

• The impact of Parameter Tunning.

• Use of different optimizer and learning rate scheduling techniques.

• Use of data augmentation technique.

• Proposing HBONext v1.2 (a), (b) and its validation.

• Hardware deployment of this modified DCNN architecture and Validation.
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2. LITERATURE REVIEW

In neuroscience, computational models are used for a variety of purposes. They can verify

intuitions about how a system works by allowing those intuitions to be directly tested. They

also provide a way to test new theories in an optimal laboratory setting, where every detail

can be monitored and controlled. Models also open a new realm of understanding for the

system in question. Models often use parametric model to open a new realm of interpretation

for the system in question. Convolutional neural networks (CNNs) have lately been used as

a model of the visual field to perform all these operations. This segment covers the original

growth and progress in CNNs from its predecessors to the successful deep CNN revival.

Figure 2.1. Timeline: AI Advancement

The advancement in artificial intelligence and the development of this technology with

each passing year has resulted in the discovery of smart intelligent machines with human-like

decision-making abilities, or perhaps greater than humans.

2.1 Early Development

The term “artificial neurons” was coined in 1943 by neuro physicist Warren McColloch

and mathematician Walter Pitts, who presented their findings on neurons in the human

brain. They build on their study by incorporating a basic Neural Net (NN) from an electrical

circuit perspective[12 ]. The history started to build in early 1959, with Wiesal and Hubel

supervising neurobiological research [13 ], [14 ]. They found that neurons at various levels

of the visual system behaved differently with different stimuli patterns and replied strongly

to specifically directed light patterns, like bars, but overlooked more complicated patterns

of the input signal, which resulted into intense responses from neurons later. With the
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multilayered architecture ‘neocognitron’ implemented in 1979, the network was effective in

recognizing different input patterns regardless of any change or distortion in form [15 ]. This

laid the foundation for today’s CNN family. Werbos [16 ] and Rumelhart [17 ] introduced

backpropagation for the first time in 1981 and 1986, respectively.

Figure 2.2. Venn Diagram Representation

This shows how this algorithm can be used to train an ANN’s internal hidden neuron

to represent important features. In 1989, LeCun introduced the first multilayered CNNs,

which were used to classify real-world images such as handwritten digits and codes [18 ].

These models were trained using backpropagation in a supervised manner, allowing a more

automated learning process rather than hard coding for feature extraction unlike the prede-

cessor techniques. Later, LeCun developed the original CNN (LeNet-5) [19 ] with the goal of

using it in a general textual recognition application for individual character identification.

This led to the publication of the MNIST dataset, which contains approximately 70,000

handwritten digits, as a useful dataset for any computer vision task involving image clas-

sification. As a result, deep CNNs (DCNN) began to emerge and conquer. Between 1990

and early 2000, NN research came to a halt due to common conviction that gradient descent

would never recover from the low local minima problem. Other statistical techniques, such

as the Scalar Vector Machine (SVM) [20 ], began to appear during this era, and some CNNs
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based on these principles were proposed. This research was used by Microsoft Office Toolkit

for handwritten digit/character recognition in English, Arabic, and East Asian languages,

which are known to be early image classification applications of the time.

In 1965, Ivakhnenko and Lapa were the first to use feedforward multilayered NN, and

their methods were the first ever deep CNN (DCNN) systems. This work fueled the unsu-

pervised training method, in which sparse features that were locally invariant and warped

were used to train DCNN-like architectures in an unsupervised fashion. This work also ad-

vocated the use of max pooling, which yielded excellent findings that were closer to available

metrics such as MNIST and CALTECH-101. Weston [21 ], inspired a semi-supervised deep

learning technique, but it received little recognition because it predicted errors with the

MNIST dataset at the time. Unsupervised DCNN pretraining and semi-supervised embed-

ding methods, on the other hand, regained interest. It began by performing unsupervised

pseudo tasks on data and then transferring learnings to DCNNs. Backpropagation was used

to train all DCNN layers, including classification layers. The final findings showed that in-

formation transfer accompanied by a controlled teaching phase aided in producing improved

results and enhancing DCNN performance. The deep belief network pioneered unsupervised

along with semi-supervised, and pretraining followed by supervised refining techniques. Deep

Learning techniques are the subset of Machine learning, which turn is a subject of Artificial

Intelligence.

2.2 Deep Architectures: Evolution

Over the span of a year, ANN has developed into more successful mathematical methods,

allowing computers to imitate human behavior. The first generation of ANNs was a basic

neural layer for Perceptron, and as we develop, so do these algorithms. Second generation

used backpropagation to change neuron weights based on the error rate since they were con-

strained in simple computations. Then came Support Vector Machine algorithms, and then

came Restricted Boltzmann Machine algorithms to solve the limitations of backpropagation,

which made learning easier. To summarize Deep learning models have had a big impact in

Supervised Learning, Unsupervised Learning, Reinforcement Learning, and Hybrid Learning
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so far. When data is labelled, a classifier produces a probabilistic value for each class, which

is referred to as supervised learning.

Figure 2.3. Evolution of ANNs

Unsupervised learning is applied on the known data and it later classifies it. Reinforce-

ment Learning, on the other hand, is based on a reward and punishment system generated

by a learning model and is widely used in games or for robots [22 ]. The research outbreaks as

we transition from one generation to the next is seen in Figure 2.3 , where deep CNNs seem

to be crushing the classification problem. The field of deep learning has achieved following

successes so far:

• Close to human level image classification.

• Close to human level speech recognition.

• Close to human level autonomous driving experience.

• Close to human level handwriting transcription.

• Capability to answer natural language answers.
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• Google assistance, Alexa, Siri like technology

• Text to speech conversions

• Improved Wed-based search

• ad-targeting used by Google, Bing, and Baidu

2.3 Convolutional Neural Network: An Overview

CNN is one of the most used deep learning networks[11 ]. The feature extraction phase and

the classifier phase are the two most critical phases in these CNNs. The feature extraction

process varies by model type, but it generally consists of a convolutional layer with finite

filters that help convolve the input image and collect important features. Following it is

the pooling layer, which supports flattened vector components and performs classification

by reducing dimensionality or downsampling the input image to minimize processing and

operations, and finally the fully connected layer, which helps flattened vector components and

performs classification. Repeating the convolution-pool sequencing to retain further detail

from the provided input data will further deepen the method. Convolutional layers take

an input image, convolve it using various size filters, and perform matrix multiplications

to reduce the number of weights and alter the model’s variance. These filters can help

detect edge information at a bottom level, and at a good extent, they can detect more

objects and complex forms, which is a critical task for further image detection. Thanks to

today’s developments in GPUs or parallel computing type of training, CNNs have developed

themselves as a key research area for growth in self-driving or any vision recognition industry.

Pooling layers, on the other hand, limit the number of neurons in a network, resulting in

a smaller layer that captures more important features over sliding windows of input image

data using a fixed length. To carry out this procedure, the most popular strategies are max

pooling, average pooling, and adaptive pooling, which slide a set window over the layer and

pick one raw value based on the type of pooling used. Max pooling chooses the largest of

all and down samples weights to minimize computations and overfitting risks, while average

pooling chooses the average of all the units.
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The different layer learning parameters are bias, weight, kernel, stride, padding, and

output dimension. Bias and Weight value are randomly allocated at first and modified

as fed with data to lower the loss function. The difference between expected and predicted

outcomes is represented by bias, while weight is the strength of the relation and determines

its influence on the output. We incorporate a 2D area called receptive field (3×3) on this

three-channel image dimension, which is nothing more than a kernel for extracting smaller,

highly localized, and complex features.

Figure 2.4. General Architecture of CNNs

The network gets stronger, weight sharing improves, and a greater volume of data is

extracted as these filter sizes are used.

Figure 2.5. Example of Convolution Operation k = 3×3, s = 1
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Further research focuses on depth-wise separable convolution, which has proven to be

one of the most effective strategies for making this feature extraction process more com-

putationally powerful. Stride is the hyperparameter that governs the activity of the kernel

around the input image. It is the distance between two consecutive kernel locations. As seen

in Figure 2.5 , it is an example of kernel 3x3 with a stride value of 1, in which we shift the

filter one pixel at a time to create a convolved feature map. Zero padding is applied to

address the issue of the size diminishing as the number of convolution layers grows.

Figure 2.6. Example of Convolution Operation with Zero Padding

To suit the kernel size, it adds zeros to the rows and columns on either side of the tensor

matrix. In Figure 2.6 , for example, the input tensor 5×5×1 and kernel 3×3×1 provide an

output of 3×3×1, reducing the spatial dimension. However, using the zero padding strategy

of inserting zeros, we get a 5×5×1 output feature value, preserving the dimensionality.

The following formula is used to approximate the output dimension value to understand

the relationship between the input and output image dimensions.

O = (i − F + 2P )
s

+ 1 (2.1)

Here, i stands for input size, F is the filter size, P is the padding, and S is the stride

value used. So, if the input image dimension is 32×32×3, the filter size is 3×3×3, and the

stride is 1, we add 10 of these filters, and the final output dimension is ((32-3+0)/1) + 1 =

30. As a result, the output image size is 30×30×10. One of the biggest advantages of CNNs
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vs NNs is that you would not have to flatten the input images to 1D as CNNs are capable

of handling 2D image data. The next section discusses different elements of Convolutional

Neural Network.

2.3.1 Input Image

An input image is a representation of pixels with differing pixel strengths, which are

calculated in pixel intensity. Any dimension values given as Height (H) × Width (W) ×

Channel (C) can be used as the input image size. Since the CIFAR-10 dataset will be used

for training and validation, the input image will be 32×32×3. Working with images has a

range of disadvantages, including the inaccuracy of features that a human eye may detect and

the necessity for thorough research to extract patterns through these images as converted to

data for machines. Greyscale, RGB, CMYK, and other input channel matrices may be used

in some situations.

Figure 2.7. Network Input: RGB Image

However, there are three input channels in this case: red, green, and blue (RGB). The

reason we choose RGB is that it has been shown that combining these three colors will

yield any color palette. And, in most cases, we are concerned with colored images made up

of several pixels, each of which is made up of different RGB channel values. Three RGB

channels with height units of 3 and width units of 3 are shown in Figure 2.7 .
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2.3.2 Convolutional Layers

The key block of every CNN model is the convolution layer, which consists of various

combinations of linear and non-linear operations and performs the task of feature extraction.

Any neuron in this convolution layer has a receptive field that communicates with adjacent

neurons in the previous layer through a series of trainable weight values. Every time a new

feature map is computed, the input is convolved with the learned weight value and sent by

non-linear activation.

2.3.3 Pooling Layers

The pooling layer sits between various convolution layers, and its main objective is to

minimize the input’s spatial dimensions while maintaining the channel/depth dimension

unchanged. It is also known as down-sampling because it decreases the image size while

preserving the most relevant details. Max pooling, average pooling, and adaptive pooling

are the most common techniques, which slide a fixed window over the layer and select one

raw value depending on the type of pooling used. To reduce computations and overfitting

risks, max pooling selects the largest of all units and down samples weights, while average

pooling selects the average of all units.

Figure 2.8. Pooling Methods
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2.3.4 Activation Layers

Activation functions add a non-linear transformation to the given input, allowing it to

learn and do better on more complex tasks, and thereby aiding NN in learning more complex

non-linear datasets. If these functions are not used, the machine produces linear functions

of degree one, which are simple to solve but have a lower non-linearity for learning complex

objects like speech, video, or an image. The final layer activation function differs from the

others in that it assists in the normalization of the output true values to the intended class

probabilities.

2.3.5 Fully Connected Layers

The fully connected layer, which executes sorting, is the final layer of CNN architecture.

All the features from the previous convolution and pooling layers are converted into a 1D list

of integers and transferred into these fully connected layers with an activation mechanism.

They are also known as dense layers because they use learnable weights to map any input to

an output. Many comparisons have been made using various classifiers, and this field also

needs further study, and it remains a research focus.

2.4 Gradient Descent

Figure 2.9. Theory Behind a Local Minimum
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The task of minimizing the cost of the object function J(θ) by the model parameters,

where θ belongs to Rd is known as the method of optimization, or ‘Gradient Descent’ in the

field of ML/DL. It basically determines the change in weight value because of the change

in error. It can be visualized graphically as seen below, with the aim of achieving a steeper

slope such that our model can learn faster and reach its global minima value [23 ].

With respect to its input, it is nothing but the partial derivative of that input. Consider

a basic linear model in which the error (E) is given as:

E = Yp − Ya (2.2)

Here Yp is the predicted value and Ya is the actual value. The key goal of these machine

learning models is to help minimize errors and provide optimum accuracy. The model’s

efficiency is also influenced by the learning rate value (Lr); if the Lr value is low, the model

takes longer to learn; if the Lr value is high, the model takes less time to learn.

2.5 Parameter Calculations

Figure 2.10. Illustration: Calculations of the Number of Parameters
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Table 2.1. CNN Parameter Calculations

Operator Layer Tensor Size No. of learnable parameters
Input 2272 × 3 0
Conv1 552 × 96 34944

MaxPool1 272 × 96 0
Conv2 272 × 256 614656

MaxPool2 132 × 256 0
Conv3 132 × 84 193620
Conv4 132 × 384 1327488
Conv5 132 × 256 884992

MaxPool3 62 × 256 0
FC1 12 × 4096 37752832
FC2 12 × 4096 16781312
FC3 12 × 1000 4097000

Output 12 × 1000 0
Total - 61, 68, 6844

Our optimal target with CNN is to learn the values of the filter using the back propagation

mechanism. The count of learnable elements within a layer is represented by the number of

parameters. There are a few main mathematical expressions that are needed to comprehend

the final parameter calculations. The output shape is given as listed by the equation 2.1 .

For example, as in Figure 2.10 , we have input as 227×227×3, where i=227, k=11, s=4, p=0,

therefore the output shape will be 55×55×96, where 96 is the number of channels.

O = (227 − 11 + 2(0)
4 + 1 = 55

In CNN, there is little to learn in the input and pooling layers, so there are no learn-

able parameters after these layers. The parameters learned after each convolution layer are

[((m*n*d) +1) *k] for width m, height n, d for the number of filters in the previous layer,

and the number of filters k. In addition to that the parameters after each FC Layer are

calculated as [(nc * np) + nc], where nc stands for current layer and np stands for previous

layer and c is the current layer channels. A sample CNN architecture for the calculation of

the number of parameters is covered as in Figure 2.10 , Here this consideration was done for

ImageNet dataset, so the output layer gives probability for 1000 classes.
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2.6 Training Process of CNNs

The training was done on the CIFAR-10 labelled dataset, which was partitioned for

training and testing. This method moves forward or backward to find the right values for

weights and kernels at each point, assisting in the cost function minimization. The model

detects the error in forward propagation and uses gradient descent to give modified weights

back to the user. The performance layer error is estimated to help CNN learn more effectively

and produce correct class probabilities.

error =
∑ (Ptargetclass − Poutput)2

2 (2.3)

Larger data is supposed to be fed to these CNN models for improved performance, but

application limits and size management for edge embedded applications must be considered.

Backpropagation is the most common algorithm used in the training phase of a CNN model,

and it proceeds until a global minima value is reached.
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2.7 Visualization

The key concept behind visualization is to find out which characteristics of the input

are retained in the feature maps. A very detailed or Fine-grained information should be

obtained from the data, while feature maps should capture more generalized features. The

following Figure 2.11 gives a general illustration of how the input is preserved after every

layer in a CNN model and how it generalizes features to fit in any of the output classes [24 ].

Figure 2.11. CNN Visualization (Input: School bus)

For each layer, new features are learned; for example, some layers will focus on pixel

borders, while others will focus on intensity, while others will focus on various shapes, and

so on. The final layer is a completely linked layer that contains a category of various groups

that are used in this model for classification purpose. In this case, we have fed a school bus

as an input, which passes through all these layers and yields a probability of 0.9947 for the

school bus class.

2.8 Measure of Performance

The measure of performance of a CNN model is its ability to give close to better pre-

dictions, referred to as model accuracy, its success using transfer learning techniques, the

time it takes to train on various machines such as TPUs, GPUs, or CPUs, and how fast the

training process is in general (model speed).
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2.9 Related Architectures

2.9.1 HBONet: Harmonious Bottleneck Network (Baseline)

Several neural network architecture variants have appeared in recent years, with an em-

phasis on mobile edge applications. This section summarizes the previously discovered light

models and focuses solely on transformational approaches of spatial measurements, as well

as including a description of the inverted residual technique. Depth-wise separable convo-

lutions are used in the Harmonious Bottleneck approach to concentrate on both the spatial

and channel measurements. This method is divided into two sections: first, down-sampling

the spatial dimension while maintaining the channels steady (H/s x W/s x C1), and then

extending the channels (H/s x W/s x t x C1), and second, up-sampling the spatial dimen-

sions while halving the channel reduction (H x W x C2/2), and finally, concatenating with

the partial channels of the input tensor (H x W x C2/2) or its pooled version. The final

calculated value of this module is:

Cost = B

s2 + [(H

s
× W

s
× C1) + (H × W × C2)] × K × K (2.4)

Here the kernel size is denoted by K, and the measured value of the embedded blocks

between the two operating parts is denoted by B.

Figure 2.12. Operational Bottleneck Block of HBONet

If used in some CNN architecture, this implementation produces lighter models with

impressive precision [25 ]. The Harmonious Bottleneck extended to two Orthogonal Dimen-

sions (HBO) is made up of two parts: spatial (H/W) contraction-expansion and channel (C)

expansion-contraction, all of which are arranged in a bilaterally symmetric form as seen in
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Figure 2.12 , and work in harmony. The following are the strategic measures that were taken

to form the HBONet bottleneck module:

• The depth-wise convolution (DWConv) approach is used to downsample the in-

put.

• Using the point-wise convolution (PWConv) operation, the number of channels

is compounded by an expansion factor of ‘t’ while the spatial components are

preserved.

• A later stage uses DWConv and PWConv to upsample and execute element-by-

element addition (EltAdd).

• Finally, the partial channels of the input are concatenated.

Figure 2.13. Inverted Residual with Linear Bottleneck and Harmonious Bot-
tleneck, with strides

This work is heavily inspired by the bottleneck module of MobileNetV2, where orthog-

onal space appears to be unexplored. A residual path is used in addition to the tech-

niques described above to help with gradient propagation and to implement this modern age
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Table 2.2. HBONet Architecture

Operator Layer Input Size t c n s
conv2d 3 × 3 2242 × 3 - 32 1 2

Harmonious Bottleneck 1122 × 32 1 20 1 1
Harmonious Bottleneck 1122 × 20 2 36 1 1
Harmonious Bottleneck 1122 × 36 2 72 3 2
Harmonious Bottleneck 562 × 72 2 96 4 2
Harmonious Bottleneck 282 × 96 2 192 4 2
Harmonious Bottleneck 142 × 192 2 288 1 1

conv2d 1 × 1 142 × 288 - 144 1 1
Inverted Residual 142 × 144 6 200 2 2
Inverted Residual 72 × 200 6 400 1 1
conv2d 1 × 1 72 × 400 - 1600 1 1
avgpool 7 × 7 72 × 1600 - - 1 -
conv2d 1 × 1 12 × 1600 - k - -

lightweight model. The concatenation operation is crucial because it decreases the number

of output channels that must be computed and encourages the reuse of feature information.

The original baseline architecture of Harmonious Bottleneck (HBONet) can be seen in Table

2.2 .

2.9.2 Flipped Inverted Residual (FIR): Sandglass Structure

As part of this analysis, the principles of residual skip connection are clarified. There

have been a few basic questions asked about the placement of this structure in a network,

such as, (i) the impact of placing them at higher dimensions, (ii) could knowledge be lost if

linear activations are added to bottlenecks, and (iii) cost savings by replacing dense spatial

convolutions with depth-wise ones to further minimize computational complexity; however,

the issue of whether this depth-wise convolution can be applied to the lower dimension re-

mains unanswered. The study discussed in [26 ], was so inspired by these questions that it

invented a modern bottleneck design called the sandglass block. Due to the constraints of

lower dimensionality at the start of inverted residual blocks, which is expected to impede the

efficient capturing of useful information due to channel compression, we use the sandglass

block technique, which has a wider architecture and is expected to minimize gradient uncer-

34



tainty, as stated in a recent study. We effectively combine these two concepts and discuss

user space modifications in this work.

Figure 2.14. Residual blocks (a) Traditional Bottleneck Arrangement, (b)
Block Sandglass Bottleneck Arrangement

The sandglass block was designed to shield more component details when it transitions

from lower to upper layers, allowing residual connections to bind higher dimension features.

To extract rich spatial information, it uses lightweight 3 x 3 depth-wise convolutions applied

to the higher dimensions. In conclusion, this article made the following contributions:

• For mobile edge development, rethinking the bottleneck structure modifications.

• According to the report, if this technique is used and they are put in high-

dimensional fields using depth-wise convolutions, it encourages improved learning

and model efficiency.

• A new research is proposed that significantly expands the traditional bottleneck

structure and is better suited for mobile launch.
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3. HARDWARE AND SOFTWARE

The key concept is that the use of CIFAR-10 dataset to train our HBONext model for image

classification. CIFAR-10 is a collection of 60,000 images (32 x 32) separated into ten groups

that is widely used in deep learning and computer vision applications. This dataset is further

divided into two sections for training and validation to better understand the model’s results.

• Nvidia GTX 1080Ti GPU

• Google Colab environment

• BlueBox 2.0 hardware by NXP

• PyTorch 1.0+ Framework

• Python 3.6.7 version

• Spyder 3.6 version

• RTMaps Intempora

• RTMaps 4.0.

• RTMaps Intempora

• Livelossplot (Loss and accuracy visualization)

• Teraterm/putty to visualizing the output

3.1 Hardware Used

The whole model training was completed in the Google Colab environment, an easy-to-use

platform that allows Google servers free access to any available GPUs. The NVIDIA GeForce

GTX 1080Ti GPU is also used to produce the initial results. For graphical representation

and calculations of the number of parameters, PyTorch-based packages such as Livelossplot

and torchsummaryX were used.
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3.1.1 NXP Bluebox 2.0 (BLBX2)

NXP’s BlueBox2.0 [27 ], [28 ] is a real-time development platform that allows self-driving

cars to follow accuracy, technical safety, and automotive durability standards. It is a one-

stop shop for creating self-driving apps, such as ADAS and driver assistance systems. The

perception S32V234, sensor microchip, the LS2084A added to the PC CPU, and a radar

microcontroller S32R27 are the three devices on chip. It runs on a different Linux OS

embedded on both the LS2 and S32V processors using RTMaps. That is the system’s central

processing unit. Power, S32V RST, S32R RST, and LS2 RST buttons are located on the

front side, along with 10GEP1 Ethernet, 10GEP3 Ethernet, USB, SD card slots for LS2 and

S32V, UART, and HDMI link slots.

Figure 3.1. BlueBox 2.0 by NXP

As a result, CNN/DNN models would be more robust and efficient in the ADAS context.

This BlueBox 2.0 by NXP is a software framework with practical protection, vision accel-

eration, and vehicle interfaces for Autonomous Drive and Sensor Fusion applications. The

Society of Automotive Engineers (SAE) has suggested criteria for the degree of autonomy,

and while there are many determining factors, here are a few that will drive the future of

autonomy.
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0th Level: The driver must keep a close eye on the car and perform all the required duties

such as accelerating, steering, and braking. With today’s speed, these cars are expected to

have blind spot detection, crash warning signs, and an auto-emergency braking system.

1st Level: At this level, the automation system progressively takes over control of the

car, incorporating functions such as adaptive cruise control, which manages braking and

acceleration.

Figure 3.2. Levels of Autonomy

2nd Level: At this level, the autonomous system can perform more complex tasks such as

lateral and longitudinal controls while retaining a high level of perception of its surroundings.

This level includes features such as traffic assistance and the option to take your hands off

the wheel and breathe for a moment.

3rd Level: For specific vehicle speeds, routes, and conditions, drivers can fully disconnect

from driving. In a traffic-like scenario, the user can do other things as the system warns

them to retake control. It also means that if the driver is not paying attention, the vehicle

can continue to a safer location.
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4th Level: The system is entirely capable of tracking the ambient atmosphere and regu-

lating all driving functions under various situations. If those requirements are not met, the

machine will notify the customer.

5th Level: A car at this level is capable of maximum autonomy. There is no need for a

driver behind the wheel, and often there is no need for a steering wheel, brakes, or pedals.

It is expected that a cabin would be available for travelers who want to fly from one place

to another. It is supposed to understand voice commands and monitor various features by

voice, like today’s Siri, Alexa, and Google Assistant.

3.1.2 Features and Specifications of BLBX2

• It has various interfaces for vehicle I/O

• Automotive interfaces with perception acceleration using ASIL-B compute

• Dedicated interfaces for the ASIL-D subsystem.

• 12 V/24 V power units

• 8x cameras, Ethernet 100M/ 1G/ 10Gbps, SFP+, 8x 100BASE-T1, CAN-FD

• 16 GB DDR4 and 256 GB SSD for high performance computing

• Vehicle vision and sensor fusion processor, S32V234

• Integrated compute machine LS2084A

• Radar microcontroller S32R27

• Technologies like CSE and ARM by TrustZone

• ROS Space, a Linux-based architecture based on ROS

• Programmable in linear C and conveniently customizable

• Radar, perception, LiDAR, and V2X data streams
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Figure 3.3 displays the architectural representation of BlueBox 2.0, which consists of LS2

and S32V independent processors. BlueBox serves as the system’s central computing unit,

allowing for quick DNN model deployment and support for a variety of ADAS applications.

The architecture of this combined board shows that it supports various communication

protocols such as UART, CANFD, FlexRay, JTAG for interfacing, and on-board memory

interface.

Figure 3.3. General Architecture of BLBX2
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3.1.3 Vision Processor – S32V234

An efficient 3D GPU, ISP, vision accelerators, safety modules, dual APEX2, camera,

highly capable ADAS, object detection and classification competency, image processing plat-

form, Machine Learning, and Sensor Fusion implementations are all part of the S32V234

unit’s device architecture. This system processor has MIPI-CSI camera inputs, which aids

in the integration of several cameras for image conditioning. It is a second-generation vision

processor with 32-bit ARM Cortex A56 S32V, Cortex A53 cores, and an ARM M4 core on

chip, and has development studio for user-modified applications [29 ]. It runs on the Ubuntu

16.04 operating system and is driven by an SD card with interfacing for users in front of the

BLBX2.

Figure 3.4. S32V234 Block Diagram
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3.1.4 Processor - LS2084A

The LS2084A contains two 64-bit ARM Cortex A72 CPUs, two 64-bit DDR4 SDRAM

memories, ethernet interfaces that support up to eight 10 Gbps, or sixteen 1/2.5 Gbps MACs,

hardware virtualization, and other connectivity peripherals for possible expansion. As a re-

sult, it is well-suited to high-performance applications. It also includes an SD card that

enables this processor to run Ubuntu 16.04 on BlueBox as an OS4.3 platform [30 ]. This

processor chip can be used for a variety of tasks, including integrated control, router appli-

cation layer processing, switches, gateways, general purpose embedded computing systems,

and ADAS.

Figure 3.5. LS-2084A Block Diagram
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3.2 Software Used

3.2.1 Real-Time Multi Sensor Application (RTMaps)

RTMaps is an asynchronously more efficient tool that comes with a powerful and simple-

to-use framework for fast and stable development. It enables the creation, assessment, val-

idation, benchmarking, and execution of multimodal dependent applications, as well as the

integration of multiple sensors such as camera, lidar, and radar. The RTMaps Embedded

version contains a ‘Remote Studio’ feature that runs on the targeted edge hardware and

manages execution from a desktop machine running Linux or Windows connected over the

network. The RTMaps embedded platform contains the runtime engine and component

libraries needed to run any ARM or x86 platform, such as the Rasberry Pi, BLBX2, Mi-

croAutobox by DSpace, and others.

Figure 3.6. RTMaps Remote Studio connected to BLBX2

TCP/IP networking is used to create a connection between RTMaps studio on a desktop

computer and BLBX2. Its component library includes software modules that support pack-

ages like C++, Python, Simulink, and 3-D vision, among others, making deployment and

interfacing easier.
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3.2.2 Various Deep Learning Frameworks

This area of AI is encouraging businesses to create sophisticated and devoted software

that is customized according to the user/customer to provide smart solutions. This is one of

the reasons for the development of various deep learning frameworks, which are open-source

libraries or tools.

TensorFlow [31 ] is a popular and commonly used deep learning platform developed by

the Google Brain team, initially released in 2015, and it is available as a DLL for mobile

and desktop applications. For the implementation of deep neural network models, it has a

support group designed for C++, Python, and R.

Tensorboard is a visualization toolkit of TensorFlow that converts data for visualization

purposes to see model performance or perform network modeling. TensorFlow Serving is a

service that helps you to easily install architectures and connect with other models. There are

several advantages of using Tensorflow, including outstanding documentation and community

support since it is Python-based, solid GPU support, a stronger visualization toolkit, and

so on.

Figure 3.7. DLL Frameworks
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Keras [32 ] was created in 2015 by Francois Chollet of the Massachusetts Institute of

Technology (MIT), and it has a long list of contributors. Keras libraries provide support

for higher-level neural networks with a Python API, and it is worth noting that keras runs

on top of TensorFlow, CNTK, and Theono as base frameworks. It is a lightweight, simple

to use tool that is widely used for classification, speech recognition and translation, text

generation, and other applications. It also has built-in support for multi-GPU parallelism

and training.

PyToch [33 ], [34 ], [35 ], was created by Facebook’s AI Research Lab’s Adam Paszke,

Soumitha Chintala, Sam, and Gregory. Python, C/C++ libraries for some processing, and

CUDA were all included. It is also known as ‘Torch’, and it is widely used in the deep

learning community. It strongly encourages fast prototyping and parallelism using multiple

GPUs. Google, Twitter, and Facebook are among the organizations that have made heavy

use of PyTorch. This thesis study was entirely implemented using PyTorch as a basis for

implementing our updated deep CNN models (DCNNs).
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4. DESIGN EXPLORATION AND MODIFICATIONS

This chapter discusses numerous design space adjustment strategies that have assisted in

achieving the goal of better model performance and its handling on the resource limited

hardware. The proposed architecture HBONext: an HBONet variant with Flipped Inverted

Residual block is introduced near the end of this segment.

4.1 Techniques to Improve Performance

To continue, a detailed review of the strategies that have benefited deep CNNs (DCNNs)

in improving their performance has been conducted. Here are a few pointers that have

assisted this thesis work in achieving the model accomplishments mentioned above in contrast

to its baseline architecture:

• Data augmentation [35 ], a superior feature collection method for preprocessing

data.

• Model hyperparameter tuning and tweaking, such as using different learning rate

values, different activation functions, an optimizer, and scheduling strategies to

improve model predictive performance.

• With the help of previous architectures and techniques, we were able to modify

the current structure by including newer bottleneck designs and convolution layer

with resampling and restacking that suited our needs.

4.2 Use of Optimizer

To minimize network errors and make as reliable predictions as possible, optimization

algorithms are used to adjust simple attributes including learning rate and weight of our

neural network models. It is governed by the following updating equation, which reduces

the cost or losses:

Wnew = Wold − Lr × (∇wl) × Wold (4.1)
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As seen in Figure 4.1 , SGD, RMSPROP, ADAM, ADAGRAD, and ADADELTA are

compared, with this graph illustrating how these various approaches converge. A graph of

the number of iterations to the losses.

Figure 4.1. Comparison Between Different Optimizers

The PyTorch package torch.optim is used to name the optimizer in our training phase.

With its periodic updating existence, the issue with SGD is that it generates high variance

values, which has an indirect effect for convergence to a minima value. However, this “ravines

problem” can be overcome with a benefit of momentum. We also comprehend the use of

nestrov since it helps in the acceleration of SGD feature in the most effective way. We use

stochastic gradient descent (SGD), which converges quicker on large datasets than gradient

descent due to its frequent updates. Out of many optimizers, SGD is expected to use least
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memory, so this work implements SGD with momentum value and nesterov in the proposed

model.

Syntax example: optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momen-

tum=0.9, nesterov = True )

4.3 Learning Rate Scheduling Methods

The previous section of this chapter was focused on minimizing losses by optimizing

algorithms based on the weight vector updating theorem but changing the learning rate is

just as essential as the optimizing algorithm. There are several factors to consider, such as

the degree of the learning rate, the rate of decay, proper initialization, and so on.

Figure 4.2. Performance of different Lr Schedules

With pre-defined schedules such as step decay, time dependent decay, cosine anneal-

ing, reduce plateau, and exponential decay, these learning schedules often change the value

of Learning rate (Lr) while the training is in progress. So many options are proposed in

torch.optim.lr scheduler to change the learning rate depending on the number of epochs. It

is worth noting that Learning rate scheduling can only be used after the optimizer syntax has

been declared in the train code. To compare, we use CosineAnnealingLR and ReduceLROn-
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Plateau on the learning rate scheduling implementation. Out of which, ReduceLROnPlateau

allows reduced Lr if no improvement is seen after a certain number of epochs, which even-

tually reduces the value of Lr. Our work mainly uses CosineAnnealingLR which has helped

in the implementation of the proposed model architecture.

4.4 Use of Activation Function

Activation Functions are often used in models to add non-linearity and assess the relation-

ship between the input and output signals. There are two kinds of activation mechanisms.

Activation functions that are linear and non-linear. However, it can be mathematically

shown that only a non-linear function can enable the network to learn in response to the

random encountered errors. The use of ELU activation is considered for the HBONext v 1.1

since it can focus on the positive values only, to conserve the negative values with reduced

computing expense. This is expressed as:

f(x) = x, forx > 0

= α(ex − 1), forx ≤ 0
(4.2)

Figure 4.3. ELU non-linear Activation Function
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It has alpha, which is a positive constant value typically used between 0.1 and 0.3.

ELU helps generate more accurate results by converging to zero faster but cannot overcome

exploding gradient problems [36 ]. This work also summarizes use of Mish activation, which

is a new kind of activation function that is a gated softplus function. We also use Swish

to later see the effect of this activation on the network, See the graphical representation of

these activation functions in Figure 4.4 . Besides, Mish function has helped avoid saturation

because of near-zero gradient, the smallest negative gradients, good regularization, efficient

optimizing, and generalization [37 ].

Figure 4.4. Activation Functions for Mish, ReLU, SoftPlus, and Swish

4.5 Checkpoint Save/Load Method

The aim of saving the checkpoint file is to test the proposed architecture’s later imple-

mentation capability on the BLBX2 embedded hardware platform. The torch.save() and

torch.load() syntax are used in PyTorch to save and load checkpoint files which are mostly

of the format.ckpt,.pkl, or.pth.
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5. PROPOSED HBONEXT ARCHITECTURE

The derived harmonious bottleneck structure is discussed in this chapter (DHbneck). As

seen in Table 2.2 , it replaces the baseline’s original inverted residual block with a flipped

inverted residual (FIR), resulting in a new light-weight architecture known as HBONext. In

the Table 5.1 below for HBONext v1.1, the expansion factor is t, the channel output is c,

the number of times the block repeats are n, and the stride value is s. Here are a few simple

methods that were used in its implementation.

• With ELU in place, the non-Linear activation mechanism from Relu6 is carefully

substituted.

• The addition of an element-by-element skip relation assists in the resolution of

vanishing gradient issues. In addition, unlike the baseline architecture, the FIR

block is modified as Dwise-Pwise-Pwise-Dwise to obtain a sandglass-like structure.

• Reconsidering the bottleneck module in terms of its spatial and channel measure-

ments to help reduce the model size much further.

Table 5.1. HBONext v1.1 Architecture

Operator Layer Input Size t c n s
conv2d 3 × 3 322 × 3 - 64 1 1
FIR block 162 × 64 2 32 1 1
DHbneck 162 × 32 2 16 2 1
DHbneck 162 × 16 2 32 4 2
DHbneck 82 × 32 2 64 4 2
DHbneck 42 × 64 2 96 4 2
DHbneck 22 × 96 2 128 2 1
DHbneck 22 × 128 1 256 2 1

conv2d 1 × 1 22 × 256 1 512 1 2
FIR block 22 × 512 2 256 1 2
FIR block 12 × 256 2 128 1 1
FIR block 12 × 128 1 10 1 1

conv2d 1 × 1 12 × 10 - 1024 1 1
avgpool 7 × 7 12 × 1024 - - 1 -

FC Layer 12 × 1024 - k - -
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5.1 Design Considerations

Design consideration 1: Derived Harmonious Bottleneck (DHBneck)

• By selecting the 3 x 3 kernel and the ELU activation function, a simple ad-

justment can be made. The block in Figure 5.1 , demonstrates the HBONext

bottleneck structure in depth, as well as the FIR skip relation with the required

stride value range.

Figure 5.1. Harmonious Bottleneck Design with Different Strides

Design consideration 2: Flipped Inverted Residual Block (FIR)

• The sandglass block in Figure 2.14 (b), was designed to cover more component

details when it transitions from the lower layer to the top layer, allowing residual

connections to link higher dimension features.

• To extract rich spatial details, it uses lightweight 3 x 3 depth-wise convolutions

applied to the higher dimensions.

52



Table 5.2. HBONext v1.2 Architecture

Operator Layer Input Size t c n s
conv2d 3 × 3 322 × 3 - 32 1 2
SepConv 3 × 3 162 × 32 1 16 1 2

FIR block 162 × 16 2 16 1 1
DHbneck 162 × 16 2 24 1 1
DHbneck 162 × 24 2 32 1 2
FIR block 82 × 32 6 64 1 2
DHbneck 42 × 64 2 64 1 1
DHbneck 42 × 64 1 96 1 1
FIR block 42 × 96 6 128 1 2
DHbneck 22 × 128 2 192 1 1
FIR block 22 × 192 6 288 1 1

conv2d 1 × 1 22 × 288 - 1024 1 1
avgpool 7 × 7 22 × 1024 - - 1 -
FC Layer × 1 12 × 1024 - k - -

This work also highlights the HBONext v1.2 that has helped greatly for our hardware

deployment purpose with a slight change to the way layers are arranged and has helped in

reducing the number of parameters, which in turn has helped for lower model size. Here we

also use a technique of cosine annealing to achieve the model performance results and thus,

the HBONext v1.2 can be seen in Table 5.2 . The following modifications contributed to a

further decrease in model size and improved performance with HBONext v1.2:

• Using extra Separable convolution at the input layer

• Identifying and resolving organizational bottlenecks

• Cutting down on the number of times, they repeat themselves

• Data augmentation for preparation using the mish activation mechanism, with

Learning rate scheduling method Cosine Annealing
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5.2 Width Multiplier Consideration

The goal of using different widths is to consistently thin the network at each layer. It

is used to produce models that are smaller and less computationally costly. We can reduce

the number of parameters and layer operations by using lower width values and propose

reasonable solutions. In this work standard width multiplier values of 1, 0.75, 0.5, and 0.25

were used to implement the proposed model variants. Lower width values allowed us to

reduce the number of parameters and layer operations, resulting in a reasonable smaller

model with nearly identical output performance metrics and a smaller model size [38 ].
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6. RESULTS AND DISCUSSIONS

The key concept was to use the CIFAR-10 dataset to train our HBONext model for image

classification. CIFAR-10 is a collection of 60,000 images (32 × 32) separated into ten groups

that is widely used in deep learning and computer vision applications. To understand the

model success based on its accuracy parameter, this dataset is further divided into two

sections for training and validation.

6.1 Model Accuracy

The whole model training was conducted in the Google Colab environment, an easy-to-

use platform that allows Google servers free access to any available GPUs. The NVIDIA

GeForce GTX 1080Ti GPU is also used to produce the later performance as in HBONext

v1.2 (a), and HBONext v1.2 (b). For graphical representation and calculations of the number

to parameters, PyTorch-based packages such as Livelossplot and torchsummaryX were used.

Figure 6.1. Accuracy vs the Number of Epochs: (a) HBONet (Baseline), (b)
HBONext v1.1 (Proposed Architecture)
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Table 6.1. Comparison: Total Number of Parameters

Model Variants Number of parameters
HBONet (Baseline) 2.9586 M

Proposed HBONext v1.1 0.9458 M
Proposed HBONext v1.2 (a) 0.5255 M

Proposed HBONext v1.2 (b) 0.4733 M

We used standard width multiplier values of 1, 0.75, 0.5, and 0.25 to enforce our proposed

model. The aim of using different widths is to uniformly thin the network at each layer. The

entire model is trained using the Stochastic Gradient Descent (SGD) optimizer, with the

momentum set to 0.9, the weight decay set to 4e-5, and nesterov included. A batch size of

128 is used in the model, with a learning rate of 0.01. We were also able to obtain competitive

outcomes by using a cosine annealing scheduler to set the learning rate. When compared

to the baseline model, HBONet, the proposed model, HBONext v1.1, trained from scratch

using CIFAR-10, improved precision by 12.13% percent while reducing model size by 65.18%.

The use of harmonious bottlenecks in conjunction with the FIR technique has aided in the

achievement of the following results.

6.2 Reducing Overfitting

There are 525.514k (HBONext v1.2) parameters in our theoretical neural network archi-

tecture version 2. The dataset classifies our model to predict 10 classes, and the mapping

from the input image to the output class label shows that learning these many parameters

may invite overfitting problems. Therefore, the following section addresses our approach to

these issues [4 ].

6.2.1 Data Augmentation

This technique is commonly used to reduce the issue of image data overfitting. This data

augmentation technique uses a proven label-preserving transformation to artificially expand

the dataset [35 ]. In this implementation, we first generate these transformed images locally
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on a CPU using a simple python script, then train our model on the GPU, making these

approaches computationally free.

Figure 6.2. CIFAR-10 Dataset (a) without Augmentation, (b) with Augmentation

The generation of image input translations and horizontal reflections is the first approach

to data augmentation, while altering the intensities of the RGB training images is the second

method. In Figure 6.2 , augmentation results on CIFAR-10 dataset can be seen.

6.2.2 Dropout

The output of each neuron with probability p=0.5 is set to zero in a dropout technique.

To avoid overfitting, it is a regularization mechanism that deactivates a few neurons in

the neural network forward pass at random and does not backpropagate it. Dropout has

been suggested for use at the Fully connected layer in some research, and few studies have

addressed its use on pooling layers. When it comes to our network, however, we use it at

the end, at the FC Layer.
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Table 6.2. Performance Comparison for HBONext for w=1.0

Model Variants Accuracy Model Size
HBONet (Baseline) 80.97% 12.00 MB

Proposed HBONext v1.1 88.30% 7.66 MB
Proposed HBONext v1.2 (a) 89.70% 3.00 MB

Proposed HBONext v1.2 (b) 89.88% 1.90 MB

After applying both the above-mentioned techniques from the section 6.2.1 and 6.2.2,

during the training process of our HBONext v1.2 (a), we get improved performance metric

accuracy of 89.70% and best model size of 3.0 MB for deployment purpose with augmen-

tation, as seen in Figure 6.3 . However, we get HBONext v1.2 (b), applying Learning rate

scheduling technique called ‘Cosine Annealing’ with augmentation we get profiles as seen in

Figure 6.4 . The performance comparison for the baseline model HBONet and all the variants

of HBONext done using our GPU resource can be seen in the Table 6.2 .

Figure 6.3. HBONext v1.2 (a) Accuracy and Losses vs Epochs (Augmentation)
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Figure 6.4. HBONext v1.2 (b) Accuracy and Losses vs Epochs (Augmenta-
tion + Lr Scheduling)

6.3 Model Size Variants

The training graphs on CIFAR-10 are visualized using the Pytorch platform and the

Livelossplot software, as seen in Figure 6.1 , which is a plot of Accuracy Performance to

the number of epochs obtained for a width value of 1.0. The proposed model HBONext

v1.1 has an accuracy of 88.30% with a model size of 7.66 MB, which is better compared

to the baseline model’s accuracy of 80.97% and initial model size of 22 M. The model

versions are summarized in Table 6.3 based on their width multiplier values. This model

was successfully trained on CIFAR-10 with a particular width multiplier value using the

Google Colab environment. To spot the variations, the corresponding precision and model

size values are carefully recorded.
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Table 6.3. Width Multiplier Variants of HBONext v1.1

Width Multiplier Accuracy Model size
HBONext(1.5) 89.60% 16.08 MB
HBONet (1.5) 82.75% 48.34 MB

HBONext(1.0) 88.30% 7.66 MB
HBONet (1.0) 80.97% 22.00 MB

HBONext(0.75) 87.70% 4.67 MB
HBONet (0.75) 79.93% 13.80 MB
HBONext(0.50) 85.30% 2.48 MB
HBONet (0.50) 76.25% 7.04 MB
HBONext(0.25) 79.80% 1.07 MB
HBONet (0.25) 71.22% 2.65 MB

6.4 Hardware Validation

6.4.1 NXPs BLBX2 Implementation Steps

We would be able to build and implement image classifier algorithms for autonomous

applications such as image recognition, object detection, and more using the Python portion

of RTMaps linked to the desktop.

Figure 6.5. Interfacing Overview with NXP BLBX2

The python section includes an editor that assists users in writing, compiling, and de-

ploying python scripts. To execute users’ python scripts within embedded hardware, this
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editor has three main functions that must be understood. The three functions available in

the editor are:

• Birth() to start the method.

• Core() to run it.

• Death() to stop it.

In order to initiate and set the python code, Birth() is named at the beginning of the

program. Core() is an algorithm that runs forever. As a result, the user’s code can be placed

in this part of the code and run forever. When a program is ended, the operation Death()

is called, and it is declared at the end of the program [39 ].

We can use RTMaps to run the program on the hardware Bluebox 2.0 through NXP after

the python script is written and finished, which helps with execution. Figure 6.5 , illustrates

how RTMaps are configured with Bluebox 2.0. The host machine and the Bluebox, which

serves as the target hardware, communicate using the TCP/IP protocol. After connecting

to the host computer, the user can search the right communication ports in the device

manager. The user can then configure Tera term/Putty for the LS2 and S32V interfaces.

We use GPU to train the model and save learned checkpoints, which we then merge with our

running Python script on RTMaps and validate on Bluebox 2.0. The proposed HBONext

architecture classifier’s deployment procedure on the Bluebox2.0 application platform as

seen above in our publication on HBONext deployment. The execution engine executes the

software on the Linux Operating System of our Bluebox2.0, and RTMaps studio creates

a TCP/IP connection with it. It includes a Python block for successfully building and

deploying PyTorch framework-based code on the machine.

6.4.2 NXPs BLBX2 Implementation Results

Table 6.4 , describes the key parameters taken into consideration when implementing

HBONext architecture on NXP’s Bluebox 2.0 edge hardware. After initial testing locally,

the suggested HBONext classification technique is tested on the RTMaps Studio platform and

then introduced on the NXP Bluebox 2.0. Figure 6.6, shows the RTMaps version connected
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to the RTMaps Studio on the computer, which uses remote engine networking controlled by

TCP/IP to provide debug functionality and a graphical interface.

Table 6.4. Key Implementation Parameters of HBONext v1.2

Width Multiplier Accuracy Model size

Proposed HBONext v1.2 (a) (1.5) 89.70% 3.00 MB

This Figure 6.6 , shows a general description of the RTMaps Console. Before sending the

script to the Bluebox SD card, it is checked on RTMaps attached to a local device. We

also use RTMaps to construct an image classifier instance that chooses between the baseline

HBONet model and our proposed HBONext model before making predictions based on the

class label. In Figure 6.7 , we fed this classifier an image of an aircraft, and it correctly

predicted the class.

Figure 6.6. HBONext Architecture Testing on RTMaps
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Figure 6.7. Image Classifier using HBONext v1.2 on RTMaps

Also, the Figure 6.8 , shows the image classification for CIFAR-10 using HBONext v1.2

(using Table 6.4 ) on embedded hardware BlueBox 2.0 by NXP.

Figure 6.8. Image Classification for CIFAR-10 using HBONext v1.2
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Testing Results on RTMaps Console:

The RTMaps, as seen in the same diagram, is made up of the python module, which

enables python-based code to be integrated with RTMaps. Figure 6.9 , shows the output of

the testing results in a console view. In the classification approach, the model learns the

mapping between the input and the output attribute, which is a label.

Figure 6.9. RTMaps Console Output

Validation on TeraTerm Window:

The proposed architecture was trained with the CIFAR-10 dataset, and the checkpoints

files were stored during the training phase so that they could be loaded later with the RTMaps

Python package. The Core() part is written with the model checkpoint files and later a few

random pictures are transferred from the test dataset folder with the right ground truth

picture labels, and the model is asked to predict these random picture labels for validation
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with a few lines of enabling code. The Teraterm terminal is used to further interpret the

results on Bluebox 2.0 and check them with the RTMaps console, as seen in

Figure 6.10. TeraTerm Console Validation Results
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7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

The work highlights, HBONext block a mixture of derived HBO and a Flipped variant of

the Inverted Residual (FIR) block. HBO makes use of interdependencies across the spatial

and channel parameters of depth-wise convolution in a bilateral symmetric manner, first with

spatial contraction-expansion and then with a channel expansion-contraction component. In

comparison to traditional inverted residual blocks, FIR relies on higher-dimensional aspect

details and stresses the use of an extra spatial convolution. Thus, this work takes advantage

of the benefits of these two approaches to build a lightweight CNN based on the principle

of depth-wise separable convolution with incredibly restricted computing memory resources,

as well as an easy to deploy version of this model for any embedded edge hardware. Using

the CIFAR-10 dataset and the proposed HBONext architecture, this study illustrates image

classification competency. The research compares our model to various width multiplier

values trained with optimization techniques and cosine annealing scheduling methods for

learning. Lighter versions are accomplished by adjusting the width multipliers’ values, which

can be effectively applied on any embedded vision program. The proposed model will be

deployed on embedded edge hardware in the future to validate its real-time application

for image classification. The CIFAR-10 dataset is successfully used for a real-time image

classification purpose on a very powerful and scalable embedded hardware NXP Blubox 2.0.

The model is just 3 MB in size and has an accuracy of 89.70%, making it a perfect choice for

any vision-based embedded platform. There are also ways to shrink the model even further,

as well as several techniques for increasing model accuracy, which will be addressed further.

This model can also be used to better understand object detection and tracking capability.
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7.2 Future Work

1. It can also be used to create a model that can detect and localize objects in an

image for object detection. We also plan to focus on demonstrating these two

versions of the model using the SSD (Single Shot Multi-Box Detector).

Figure 7.1. Example for Object Detection

2. Deep CNN (DCNN) approaches are very non-linear, and they often provide im-

proved versatility based on various enhancement strategies or scaling the volume

of training data to these methods. The only drawback of these models is that

they are highly sensitive to the specific details of train data, and they may learn

new weights each time, resulting in different predictions. An ensemble learning

technique can be used to solve the high variance of these networks. This tech-

nique involves training initial weights on the same data using various networks of

identical configurations. Each model makes a prediction, and the final prediction

is the sum of all the predictions produced by the various models.

3. Deep CNN (DCNN) methods are often challenged by concerns such as computa-

tion complexity, memory constraints, and the number of parameters used in each

learning process. Our work has resulted in a smaller model size for embedded
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edge applications, but ‘model pruning’ is a well-known technique for developing

smaller, simpler, and more effective models.

4. Further, larger datasets such as CIFAR-100, ImageNet, SVHN, and others can

be used to train the proposed HBONext architecture.
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