
RCNX: RESIDUAL CAPSULE NEXT
by

Arjun Narukkanchira Anilkumar

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Indianapolis, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Mohamed El-Sharkawy, Chair

Department of Electrical and Computer Engineering

Dr. Brian King

Department of Electrical and Computer Engineering

Dr. Maher Rizkalla

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

2

Dedicated to

My Parents: Anilkumar N C and Swapna K A,

My grandparents, teachers, friends, family, colleagues and all well wishers.

3

ACKNOWLEDGMENTS

I would like to begin by thanking my parents and my teachers for everything. My

thesis advisor, Dr. Mohamed El-Sharkawy, whose guidance and wisdom has been crucial

throughout my thesis. I am grateful to have had Dr. Brian King and Dr. Maher Rizkalla for

serving on my graduate committee and lending their expertise to my research. Additionally,

I would like to thank Ms. Sherrie Tucker, who patiently assisted me throughout my graduate

studies.

I am grateful to Purdue School of Engineering & Technology for help fund my Thesis

development. I am grateful to the IoT Collaboratory at IUPUI for accepting me as a member.

The lab provided me with most of the hardware and software support for this research. I

would like to thank my colleagues for their insights. I would like to acknowledge Lilly

Endowment Inc. for their support to Indiana University Pervasive Technology Institute.

4

TABLE OF CONTENTS

 LIST OF TABLES . 7

 LIST OF FIGURES . 8

 ABBREVIATIONS . 9

 ABSTRACT . 10

 1 INTRODUCTION . 11

 1.1 Context . 11

 1.2 Motivation . 11

 1.3 Challenges . 12

 1.4 Methodology . 13

 1.5 Contributions . 13

 2 LITERATURE REVIEW . 14

 2.1 Neural Networks . 14

 2.2 Convolutional Neural Networks . 15

 2.3 Capsule Neural Network . 16

 2.3.1 Capsule vector input and output computation 18

 2.3.2 Routing-by-agreement algorithm . 19

 2.3.3 CapsNet Architecture . 19

 2.3.4 Performance of CapsNet . 21

 2.4 Residual Network . 21

 2.5 Baseline: Residual Capsule Network (RCN) 22

 2.6 YOLO-v3 . 25

 2.7 3-level Residual Capsule Network . 27

 2.8 ResNeXt and Cardinality . 29

 2.9 DeepCaps . 31

 3 PROPOSED ARCHITECTURES . 33

 3.1 RCN2: Residual Capsule Network V2 . 33

 3.1.1 Improving Residual Convolution layers with Bottleneck 35

 3.1.2 3D convolution-based dynamic routing 36

5

 3.1.3 Mish activation . 37

 3.1.4 3D reconstruction by decoder network 38

 3.1.5 Summary of the proposed architecture RCN2 39

 3.2 RCNX: Residual Capsule NeXt . 40

 3.2.1 ResNeXt Convolution Layers . 40

 3.2.2 3-Level ResNeXt structures in RCNX 42

 3.2.3 Effective Capsules with 3D convolution-based dynamic routing. . . . 43

 3.2.4 3D reconstruction by decoder network 44

 3.2.5 ELU activation function . 44

 3.2.6 Summary of the proposed architecture RCNX 45

 4 TRAINING SETUP . 46

 4.1 Hardware Setup . 46

 4.2 Dataset: CIFAR-10 . 46

 4.3 Hyper-parameter Tuning: Neural Network Intelligence 46

 5 RESULTS . 47

 5.1 RCN2 Results . 49

 5.2 RCNX Results . 49

 5.3 Performance Comparison . 51

 6 IMPLEMENTATION ON I.MX RT1060 . 52

 6.1 Hardware Setup . 52

 6.2 Softare Setup . 53

 6.3 Model Preparation . 53

 6.4 Implementation Results . 54

 7 CONCLUSION . 58

 REFERENCES . 59

6

LIST OF TABLES

 4.1 Hardware specifications. 46

 5.1 Model performance on CIFAR-10[9], [32] . 47

7

LIST OF FIGURES

 2.1 Comparison of Biological Neural Network to Artificial Neural Network[13] . 14

 2.2 A typical CNN[15] . 15

 2.3 Max pooling[17] . 16

 2.4 CapsNet[4] . 17

 2.5 CapsNet loss function . 18

 2.6 CapsNet Reconstruction Network[4] . 20

 2.7 Residual Network[20] . 21

 2.8 Residual Capsule Network(RCN)[7] . 24

 2.9 YOLO-v3 Structure[23] . 26

 2.10 3-Level Residual Capsule Network . 28

 2.11 Left: ResNet; Right: ResNeXt with cardinality 32[24] 30

 3.1 Architecture of proposed RCN2: Residual Capsule Network V2 34

 3.2 Left: ResNet, Right: ResNet with Bottleneck[20] 35

 3.3 Mish activation function[28] . 38

 3.4 Architecture of proposed RCNX: Residual Capsule NeXt 41

 3.5 Left: ResNet; Right: ResNeXt with cardinality 32 42

 3.6 ELU Activation function[30] . 44

 5.1 Hyperparameter Tuning achieved using NNI 48

 5.2 Accuracy plot while training the proposed RCNX 49

 5.3 Accuracy plot while training the proposed RCN2 50

 5.4 Loss plot while training the proposed RCN2 50

 5.5 Performance Comparison Chart . 51

 6.1 i.MX RT1060[33] . 52

 6.2 Camera module attached on IMX RT1060[33] 53

 6.3 Course of action for deploying RCNX on IMX RT1060 54

 6.4 Execution after download . 55

 6.5 UART output of above image . 56

 6.6 Software size after build . 57

8

ABBREVIATIONS

CNN Convolutional Neural Networks

RCN Residual Capsule Network

RCN2 Residual Capsule Network V2

RCNX Residual Capsule NeXt

NN Neural Networks

ANN Artificial Neural Networks

M million

NNI Neural Network Intelligence

ELU Exponential Linear Unit

ReLU Rectified Linear Unit

MNIST Modified National Institute of Standards and Technology database

9

ABSTRACT

Machine learning models are rising every day. Most of the Computer Vision oriented

machine learning models arise from Convolutional Neural Network’s(CNN) basic structure.

Machine learning developers use CNNs extensively in Image classification, Object Recog-

nition, and Image segmentation. Although CNN produces highly compatible models with

superior accuracy, they have their disadvantages. Estimating pose and transformation for

computer vision applications is a difficult task for CNN. The CNN’s functions are capable of

learning only shift-invariant features of an image. These limitations give machine learning

developers motivation towards generating more complex algorithms.

Search for new machine learning models led to Capsule Networks. This Capsule Net-

work was able to estimate objects’ pose in an image and recognize transformations to these

objects. Handwritten digit classification is the task for which capsule networks are to solve

at the initial stages. Capsule Networks outperforms all models for the MNIST dataset for

handwritten digits, but to use Capsule networks for image classification is not a straight-

forward multiplication of parameters. By replacing the Capsule Network’s initial layer, a

simple Convolutional Layer, with complex architectures in CNNs, authors of Residual Cap-

sule Network achieved a tremendous change in capsule network applications without a high

number of parameters.

This thesis focuses on improving this recent Residual Capsule Network (RCN) to an

extent where accuracy and model size is optimal for the Image classification task with a

benchmark of the CIFAR-10 dataset. Our search for an exemplary capsule network led to

the invention of RCN2: Residual Capsule Network 2 and RCNX: Residual Capsule NeXt.

RCNX, as the next generation of RCN. They outperform existing architectures in the domain

of Capsule networks, focusing on image classification such as 3-level RCN, DCNet, DC

Net++, Capsule Network, and even outperforms compact CNNs like MobileNet V3.

RCN2 achieved an accuracy of 85.12% with 1.95 Million parameters, and RCNX achieved

89.31% accuracy with 1.58 Million parameters on the CIFAR-10 benchmark.

10

1. INTRODUCTION

1.1 Context

Machine learning took various structures in the previous decade. CNN achieved what

once humans thought impossible for machines to do. The rise in computational efficiency and

changes in the back propagation algorithms created the platform for CNNs to grow[1]. Re-

quiring various levels of depth and numerous convolutions, CNN outperformed expectations

of the human mind. From the beginning of neural networks, machine learning developers

take inspiration from the millions of years worth of the human visual system’s evolution[2].

Machine learning is an integral part of modern society. From security to games to complex

machine drawings, it is now unstoppable. Although the use of CNN exceeds human limita-

tions, it is not ideally similar to the human brain[3]. To merge this gap and produce more

similarity to a neural network Capsule Network(CapsNet) is introduced[4]. Capsule Net-

works focus on neural connections developed with routing by agreement algorithm[4]. This

thesis focuses on improving one such network, Residual Capsule Network, where capsule

network is merged with ResNet architecture to produce an image classification model.

1.2 Motivation

Copious amounts of neural network architectures helped us understand various levels of

the model’s complexity[5]. In part, replicating the brain cells, neural networks came into

existence. Although many unknown factors remain, we build superficially similar neurons

matched with activation functions similar to what can be expected in the brain cell. With

growing, neural network architectures came to show limitations of CNN[6]. CNN, also knows

as shift-invariant artificial neural networks are, as the name suggests, a convolution function

that learns concerning the invariance to a special-shift of the window in an input[4]. These

CNNs are helpful in the context of Image recognition, object recognition, image classification,

and image segmentation.

This thesis focuses on the Image classification task with exemplary new models RCN2:

Residual Capsule Network v2 and RCNX: Residual Capsule Next, outperforming CNN es-

11

tablishing their dominance. Although good at image classification tasks, CNN’s is weak,

which is easily visible since they are insensitive towards pose and image transformations[7].

This insensitivity also extends to a stage where the spatial correlation between sub-features

is discarded. Capsule Networks are developed to target these flaws on CNN and a closer

look at the human visual system. In human vision, we observe a robust spatial correlation

and strong pose effect where we characterize an object by the pose of its sub-sections.

Capsule Networks work on the principle of routing by agreement. Capsules Neural Net-

works is a system of artificial neural networks capable of handling better model hierarchical

relationships[4]. They are much closer to the biological neural organization compared to

CNNs. Having various advantages over CNNs, Capsule Networks outperforms CNNs in un-

derstanding the object and its characteristics in an image. Since the routing by agreement

creates connections with neurons that agree, parameter number is lesser in caparison to

CNNs.

The model Residual Capsule Network is a combination of ResNet CNN architecture and

Capsule Network architecture[7]. The residual convolutional blocks are used for the initial

layers of the Capsule Network. Using such blocks helped the model to avoid vanishing

gradient and improve the application of the Capsule Network.

1.3 Challenges

This thesis aims to modify the Residual Capsule Network to a model comparable to the

CNN model with high accuracy and fewer parameters. Challenges in achieving this include

the following.

• Creating a new neural network structure from RCN (baseline architecture)[7].

• Reducing model size.

• Training using CIFAR-10 dataset[8].

• Testing the model.

• Tuning hyper-parameters.

• Increasing accuracy of the model.

12

• Deploying model into an Embedded System.

1.4 Methodology

In this thesis, the following procedures are followed:

• Analyzing the architecture of RCN.

• Finding weaknesses of the structure.

• Finding improvement to the weaknesses of RCN.

• Estimating increase or decrease in the number of parameters.

• Implementing established ideas of improving accuracy

• Confirming architecture’s learning capability.

• Check for over-fitting or under-fitting.

• Optimizing parameters with hyper-parameter tuning using NNI.

• Reducing the size of the model with affecting accuracy.

• Optimizing training environment.

• Deploying on embedded hardware.

1.5 Contributions

Contribution towards the completion of the thesis is listed as follows.

• Design space exploration of RCN Architecture.

• Proposed RCN2: Residual Capsule Network V2

• Proposed RCNX: Residual Capsule NeXt.

• Image classification capability of the proposed models are verified.

• Deploying the efficient compressed RCNX into i.MX RT1060.

• Two papers Accepted for IEEE conferences.

13

2. LITERATURE REVIEW

This section is a synopsis for theoretical details of Neural Networks, Convolutional Neural

Networks(CNN), Capsule Neural Networks(CapsNet), Residual Network(ResNets), Resid-

ual Capsule Networks(RCN), 3-Level Residual Capsule Networks, and other Capsule Net-

works[9]. It will discern differences between CNNs and CapsNets. Deep Learning architec-

tures that lead to computer vision. These sections also speak about the missing elements of

RCN and 3-level RCN, and these disadvantages are removed with design space exploration

further in the thesis.

2.1 Neural Networks

Neural networks (NNs) consist of rules and algorithms that try to imitate the human

brain in learning relationships between massive data[10]. NNs are a collection of neurons,

simulate a network comparable to a human brain[11]. The NNs can adjust to changing input,

so the model creates the leading conceivable result without overhauling the yield criteria[12].

A ”neuron” in an NN is mapping a mathematical function that collects and classifies data

concurring to relation. The NNs bear strategies such as regression analysis and curve fitting.

Applications of NN are extensive and include Natural language processing, Computer Vision,

Stock Market predictions, Astronomical data analysis, etc. We focus on the Computer vision

section of Neural Networks[5].

Figure 2.1. Comparison of Biological Neural Network to Artificial Neural Network[13]

14

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN), also called shift-invariant artificial neural net-

works, are, as the name suggests, a convolution function that learns concerning the invari-

ance to a special-shift of the window in an input[14], [9]. These help CNN understand image

recognition, object recognition, image classification, and image segmentation. The applica-

tion of CNN extends to videos and lidar point clouds[5]. A typical CNN as depicted in Figure

 2.2 contains Convolution Layers, Pool Layer, Activation Layer, and a Fully connected layer.

The initial Convolutional layers are intended for extracting features, and further pooling

Figure 2.2. A typical CNN[15]

layers reduce the number of connections to improve computation with a lesser number of pa-

rameters as visualised in Figure 2.3 . Pooling is mainly done in two formats, maximum value

pooling, and average value pooling[12]. The pooling layers discount the information to only

the average of a kernel square or maximum of a kernel square. These pooling layers cause

loss of information, as mentioned by Capsule Network authors. Capsule Network creators

see the first and foremost disadvantage in CNN as the pooling layer’s loss of information[16].

Pooling layers are embedded extensively in CNN to reduce the size of models. Thereby

achieving accuracy with less model size. As the main aim of Neural Networks is to create

models comparable to a human brain, these pooling layers lead CNN to be less related to

human vision[18].

15

Figure 2.3. Max pooling[17]

Convolutional layers help the network extract features and help in learning features.

Convolutional layers irrespective of the method of implementation approximates in feature

learning. These features extracted by the CNN pass through the network as scalar features.

These scalar features are the second limitation of CNN. As we proceed to the following

section about capsule networks, we can see the methods deployed to overcome these flaws.

2.3 Capsule Neural Network

In this section, extensive insight into CapsNet is described. Human vision disregards

unimportant subtle elements by employing a carefully decided arrangement of fixation points

to guarantee that as it were, a modest division of the optic cluster is ever handled at the most

noteworthy determination[4]. Contemplation may be a destitute direct to understanding how

much of our information of a scene comes from the arrangement of obsessions and how much

we gather from a single obsession. In CapsNet, the idea extends to assume a single focus in

the image produces more than a simple recognition and a list of its properties[7]. CapsNet

16

is developed on the idea that the human visual system produces a tree with various analyses

of each fixation. Thus, the multilayer model for CapsNet includes the tree-like structures

with each layer containing groups of neurons, and these groups are called capsules. A typical

CapsNet is depicted in the Figure 2.4 .

Figure 2.4. CapsNet[4]

CapsNet, being different from CNN, is still a field yet of unfolding its true potential.

A typical CapsNet includes a convolution layer, primary capsules, digit capsules, and a

dynamic routing algorithm. The salient feature of CapsNet being that features are extracted

and represented with vectors of N-dimension based on capsules[4]. Capsules are groups of

neurons that produce an N-dimensional vector consist the actualization details of an entity

like an object or sub-part of an object. This vector’s length denotes the object or sub-part

of objects existence with a probability, and the direction of the same represents the entity’s

pose.

Dynamic capsules make expectations utilizing the change in the lattices, which changes

upper hierarchical capsules instantiation parameters[4]. When numerous expectations con-

cur, the next level capsules get activated. With expectations produced by low-level capsules,

a route to the high-level capsule is so that low-level capsules’ expectation provides an agree-

ment to the high-level capsule. This agreement-based routing is called routing by agreement

algorithm, and it is the dynamic routing algorithm used by CapsNet. To obtain the routing-

by-agreement scalar product of probability vectors of the low-level capsule and high-level

17

capsules is calculated, and the product with a more significant value is preferred to be the

route[19].

2.3.1 Capsule vector input and output computation

There are numerous ways to actualize the common idea of capsules. CapsNet capsules

aim to produce a likelihood vector that an entity is present in the input. To accomplish this,

CapsNet use the squashing function as described below[4].

vj = ‖sj‖2

1 + ‖sj‖2
sj

‖sj‖
(2.1)

While training the model, it will use the non-linearity in the squashing, and the above

function also provides normalization to the vector outputs. From layer two, all layers consider

input sj with a weighted sum operation with a weighted matrix Wij over all the inputs with

the following equation[4].

sj =
∑

i
cijûj|i, where ûj|i = Wijui (2.2)

In the above equation cij is the coupling coefficient learned from training via dynamic

routing algorithm. The loss function of CapsNet is give in Figure 2.5 .

Figure 2.5. CapsNet loss function

18

2.3.2 Routing-by-agreement algorithm

In general, routing algorithms are of two types adaptive routing algorithms and non-

adaptive routing algorithms. Capsule networks take an adaptive routing algorithm, which

is established with routing by agreement mechanism. Routing by agreement is a dynamic

routing algorithm[4], [10]. To obtain the routing-by-agreement scalar product of probability

vectors of the low-level capsule and high-level capsules is calculated, and the product with

a more significant value is preferred to be the route. The dynamic routing algorithm used

by the CapsNet is given in Algorithm 1 [4].

Algorithm 1 Dynamic Routing Algorithm
procedure: Routing(ûj|i, r, l)

Initialisation :
for all capsule i in layer l and capsule j in layer (l + 1) : bij ← 0
for r iterations do

for all capsule i in layer l : ci ← softmax(bi)
for all capsule j in layer (l + 1) : sj ←

∑
i cijûj|i

for all capsule j in layer (l + 1) : vj ← squash(sj)
for all capsule i in layer l and capsule j in layer (l + 1) : bij ← bij + ûj|i.vj

end for
return vj

2.3.3 CapsNet Architecture

The architecture of CapsNet, given in Figure 2.4 , is not deep since only two convolution

layers, and a fully connected layer are present. In detail, the first convolutional layer with

256 channels, 9×9 kernel, the stride of one, and ReLU activation effectively transforms pixel

information into functions producing local feature detectors. These detector features are then

fed forward to primary capsules. The lowest possible degree of the capsule layers starts at the

primary capsule[7]. As discussed above, CapsNet focuses on two processes, the rendering,

and inverse rendering, out of which the primary capsules, when triggered, resembles inverse

rendering. This distinctive sort of computation, then patching instantiated parts collectively

to create commonplace wholes, is what capsules are planned to be great at.

19

The primary capsules used by CapsNet are with 32 channels of eight-dimensional cap-

sules. This means that there will be eight convolution units with the kernel of size 9 × 9

and two as stride. Since the layer before primary capsules generates 256× 81 convolutional

units with overlapping fields in the center of the input, each capsule in the primary capsule

layer has all that it needs to see from the outputs of the Convolution layer. With block non-

linearity of equation 2.1 , across the CapsNet primary layers with a grid size of [32×6×6][4].

Each of them has 8D vector output, and primary capsules can be seen as a Convolutional

layer. DigitCaps is the final layer of the CapsNet, and it contains 16-dimensional vectors

per class. Since it is used for handwritten digit classification, it is digit classes and hence

the name DigitCaps[4]. Routing is only necessary between 2 consecutive capsules.

Reconstruction network, given in Figure 2.6 , is a crucial part of the CapsNet. A prediction

of estimated vectors in DigitCaps is assumed to be a collection of the image features and then

reconstructed. This reconstruction loss amounts to the support of DigitCaps to get better

instantiation of the input image. The reconstruction network used by CapsNet is three fully

connected layers that finally give the reconstruction to an output same as the input image.

Reconstruction loss is scaled to a minimal value to avoid the dominance of this loss alone.

Figure 2.6. CapsNet Reconstruction Network[4]

20

2.3.4 Performance of CapsNet

CapsNet is trained to a dataset MNIST, which contains images of handwritten digits

with a size of 28 × 28. The CapsNet performed very well and produced an error of only

0.25% for the test. This accuracy is achieved with only a three-level depth model[4].

CapsNet is not intended for complex image datasets like the CIFAR-10. Thus a version

that fits the CIFAR-10 like dataset is the seven ensemble model of the CapsNet. This seven

ensemble model’s accuracy is 89.40% on tests with a size of 101.5 Million parameters[7].

2.4 Residual Network

Deeper neural networks are better for accuracy. Increasing the number of parameters

and depth of the network is considered the easy, straightforward way to improve the model’s

accuracy. From the quotes, it can be noted such an improvement in the model size has a

limit[20]. In machine learning, this limit is produced due to vanishing gradient and problems

regarding dimensionality[6]. Deep networks often face these problems. Vanishing gradients

have been existent from the initial days of Deep Neural networks. To overcome this ham-

per in convergence first method to existing was a normalized initialization with embedded

normalizing layers. These techniques allowed proper back-propagation with reducing the

vanishing gradient problem[20]. Improving from these basic techniques, which take time

and effort, newer solutions started to surface. Deep residual learning framework addressed

Figure 2.7. Residual Network[20]

these issues in a different architecture. This solution is elegant and faster convergence is

21

achieved. Rather than trusting every few stacked layers fit a desired elemental mapping,

deep residual learning unequivocally lets these layers fit a leftover mapping. Let an under-

lying architecture be F (x), and residual learning provides an additional overlap of the input

to the model’s subsection by making the mapping function F (x)+x[20]. These feed-forward

networks are called skip connections or shortcut connections. These networks were named

Residual Networks (Figure 2.7).

Residual Networks are conceivably the foremost imaginative work within the Computer

Vision community within the past decade. The additional is an identity function of the input

to the model’s subsection, and this can also be called identity shortcut connections. ResNets

were capable of training numerous layers without affecting the accuracy or saturating of

the model’s accuracy[20]. With this technique alone, many image classification and object

detection techniques have improved tremendously. By experiments, it was established that

models without shortcuts tend to learn slower and reach saturation sooner than the models

with the same architecture but with the above-mentioned ’identity shortcut connections.’

Simplicity in concept, Residual Networks truly makes implementations easy. In a regular

CNN, each layer’s output is considered as the only input to the following layer. In ResNets,

a layer’s input in a high-level feature extractor is the prior layer’s output and a feed-forward

skip connection from 2 to 3 layers before it. ResNets contains skip-connections to layers

where a vanishing gradient problem might occur. Even with hundreds of layers, Residual

connections achieved complete removal of vanishing gradient. Pre-activation residual con-

nections are found to be better to help in the passage of information. Residual Networks

have accomplished a striking execution on Image classification errands by presenting skip

associations utilized as bypassing ways[21]. It can be found that skipping has viably rear-

ranged the network and expanded the learning speed by diminishing the effect of vanishing

gradients as there are fewer layers to proliferate through.

2.5 Baseline: Residual Capsule Network (RCN)

A deeper network is effective than shallow systems but, consequently, more cumbersome

in the training process. ResNets ease the preparation and have appeared to prove that they

22

can give great precision with significant profundity. By utilizing Residual Network with the

Capsule Network, the RCN model came into existence[7]. RCN Architecture is as shown

in Figure 2.8 . Skip routes improve the customary Convolution layer in the initial layer of

CapsNet, just like the ResNets, to diminish the network’s complexity and seven-ensemble

CapsNet. This model was trained and tested on MNIST and CIFAR-10 datasets and has

seen a significant decrease in the number of parameters compared to the seven-ensemble

residual models[7].

The first convolutional layer in CapsNet identifies the natural highlights within the input

2D image. However, this might not be enough for complex datasets to prepare for advanced

features in the capsules. Thus, RCN extends the profundity by including more convolutional

layers. Basically, stacking the layers may not lead to any change. This issue can be where

ResNet comes to protect. Within the RCN, the authors modified the convolutional layer

with the shortcut connections mentioned in ResNet architecture[7]. These skip connections

thus provide the necessary paths for avoiding vanishing gradient.

The initial ResNet convolutional layers brought depth to the network. In RCN, they

utilized eight consecutive ResNet convolution layers stacked back to back. All residual

connections were combined in the feedforward layers. ResNet convolution layers take the

input image and transform the three channeled image into a 32 channel with eight layered

feature detectors. These feature extractors generated layers of 256 feature maps.

Furthermore, the extracted 256 channeled features are fed into the CapsNet capsules. As

discussed, the CapsNet capsules use 9 × 9 convolutional layers with Rectified Linear Unit

activation. On the existing model of CapsNet, variations in the primary capsules were also

created for RCN. The CapsNet, being an equivariant model, is necessary to maintain the

feature extractors to follow the same model nevertheless of any modifications. This was

sustained in RCN as there are no pooling layers embedded in it. Adding pooling layers with

the convolution layers will lead to a functionality change. For this reason, RCN excluded

any embedded pooling layers.

As discussed in the CapsNet section, the primary capsules produce the extracted features

into output vectors of eight dimensions. These are then fed into the DigitCaps layer. The

DigitCaps layer can extract other complex functions from the eight-dimensional feature

23

Figure 2.8. Residual Capsule Network(RCN)[7]

24

vectors by mapping these into a 16-dimensional space with weighted coefficients[7]. As

with every classification tasked Neural networks, the RCN converges to a final layer of the

number of classes, i.e., ten classes for the CIFAR-10 dataset. Thus the DigitCaps output

of 16-dimensional vectors is then mapped to ten neurons to handle the training output as a

one-hot encoding method.

We can note RCN has a vast amount of parameters generated solely from the thick

redundant layers of ResNet convolution. Like any CapsNet based architecture, the RCN had

a reconstruction network. The reconstruction networks are generally connected with the

network’s output as input and the network’s input as output. On a detailed study, we find

the RCN lacking the required complexity in the reconstruction network. We assume that

this is due to the network’s size, and adding a whole complex reconstruction network will

add many more parameters to the existing RCN. With this in mind, we fixed our aim to not

focus on the reconstruction network as it is easily removed after the training. It is crucial to

understand the use of a reconstruction network is to provide an extra gradient flow during

training and hence o not pose any actual use while deploying or testing the model.

RCN model produced an accuracy of 84.16% with 11.86 M(million) parameters for the

CIFAR-10 dataset compared to the accuracy of 89.40% with seven ensemble Capsule Network

model with 101.5 million parameters[7]. This model was a good achievement, but we believed

focusing on the flaws mentioned above can bring the best out of RCN.

2.6 YOLO-v3

You Only Look Once(YOLO) is an extensive model for object recognition in an image[22].

YOLO-v3 became one of the popular models used by developers to deploy and execute at

a fast pace quickly. Currently, YOLO-v4 has come to light and is the fastest algorithm

for object recognition. The YOLO model recognizes the object and draws a bounding box

within which the object is more likely to be present. YOLO employments a preparing set that

consists of pictures and their comparing bounding boxes of the target pictures[22]. Thus,

an exemplary model, YOLOv3, was chosen to inspire the RCN authors to bring another

network 3-level Residual Capsule Network model.

25

The idea that was inspiring in YOLOv3 is a three-staged network where the network

views different input picture scales through each stage. These stages are mainly due to

the necessity of YOLO as they were focusing on different scaled images. The structure of

YOLO-v3 is shown in Figure 2.9 [23].

Figure 2.9. YOLO-v3 Structure[23]

The YOLO implements a feature-dependent trainable model consisting of 75 convolution

layers. YOLO altogether avoided fully connected layers by deploying the convolutions of

specific sizes, which produced a fully connected layer-like structure and at the same time

avoided pooling layers as this also can be replaced with convolutions which can be seen as a

26

weight-based pooling layer[22]. They also avoided using SoftMax activation. This activation

in itself limits the network, although it is necessary to get convergence.

2.7 3-level Residual Capsule Network

The authors of RCN brought the salient features of YOLO v3 and combined them with

RCN[9]. These features brought tremendous change into the field of RCN. The authors

implemented a three-staged network of 8 layered ResNets, finally connections that interface

from every eight layers of ResNets to Primary capsules. A straightforward layer of Residual

Network did not unravel the issue for complex datasets like CIFAR-10[9]. This lack of

performance is possible since the straightforward essential capsules may not be sufficient to

compute all the picture highlights.

In the 3-Level RCN network, the primary capsules were modified to retrieve images at

three stages of the ResNet layers. The seven-ensemble CapsNet produced a test result of

89.4%. With this high accuracy, it could have been just enough if the size of the model

of seven-ensemble CapsNet was not 100 Million parameters[9]. This number of parameters

is very high compared to any machine learning model. Although a 3-level residual capsule

network aimed at reducing these parameters, which they were able to achieve, we believe

there is room for more improvements.

The structure of the 3-level residual capsule network, as shown in Figure 2.10 , was in-

spiring that we brought these with the new architectures. A hierarchical structure like a

pyramid was the core of YOLOv3 and is as well the structure of 3-level RCN. Each level

in this pyramid-like layer contained a layer of repetitive eight cumbersome RCN layers. In

3-level RCN, the primary capsules were fed in with squashed 12 capsule inputs, and then

these capsules output were provided to the digit caps. The DigitCaps used a dynamic rout-

ing algorithm like the CapsNet. They then were fed into the reconstruction layers of Fully

Connected neurons and with ReLU activation for two layers and the final layer with 10 unit

output with a sigmoid activation function[9]. In 3 level RCN, the authors added one extra

layer of DigitCap, leading to 4 DigitCaps in the DigitCap layer. This final addition of the

27

Figure 2.10. 3-Level Residual Capsule Network

28

DigitCaps led to a merger of all primary capsules fed into it. This new merger DigitCaps

was another exciting and innovative structure brought forth by the 3-level architecture.

The 3-Level RCN performed better than RCN when tested on the CIFAR-10 dataset.

Although initial RCN produced an accuracy of only 84.16% with 11.86 M parameters, the

later 3-level RCN achieved 86.42% accuracy with 10.8 M parameters[9]. However, an impres-

sive reduction in size accuracy came with a drop of 4% accuracy from the baseline CapsNet.

We believe the full potential of RCN is yet to be realized.

2.8 ResNeXt and Cardinality

ResNext NN is the model that brings improvements to the structure and performance of

ResNet[24]. These changes are mainly revolving around the convolutions. The convolutional

layers of ResNet are changed with an additional dimension. ResNeXt is a neural network that

brought advancements to ResNet. The ability to squeeze the conventional convolutions in

the ResNet with the addition of Cardinality leads to higher performance with a reduction in

ResNet size[24]. The Cardinality is an additional dimension after the number of filters helped

improve the network to a large extend. Since the Cardinality brings a certain complexity to

the model’s convolutions, it can be easily assumed any replacement of ResNet convolutions

with the ResNeXt convolutions will bring improvements, as demonstrated by the authors of

ResNeXt. This network is shown in Figure 2.11 .

Cardinality portrays the degree of changes. The usage of Cardinality in ResNet design

leads to ResNeXt. ResNeXt was a leading classification machine learning model for the

COCO dataset. Although the dataset variation is to be accounted for, it can be noted that

even YOLOv3 was trained with the COCO dataset. Since the YOLO architecture inspires

the existing 3-level residual capsule network model, it can be assumed that ResNeXt and the

3-layered structure will have no reason to be not compatible with each other[22]. The idea of

Cardinality arises from the insights provided by various models of convolutions, i.e., Multi-

branch convolution network, Grouped convolutions, Compressing convolution networks, and

Ensembling[25].

29

Figure 2.11. Left: ResNet; Right: ResNeXt with cardinality 32[24]

30

ResNeXt proved its dominance over many modern machine learning algorithms, like

ResNet, Inception, Inception-ResNet, etc. ResNeXts followed the idea of Network in Neuron

that a Network in Network model. This idea expanded to the creation of a new dimension.

This new method was stated as aggregated transformation by the ResNeXt authors[24]. With

experiments, the paper of ResNeXt shows in detail how the extra dimension is essential to

the model’s capabilities and that it is more convenient and successful than the depth and

width dimensions.

It is crucial to note that the ResNeXt capability comes with no extra parameters and is

just an architectural strengthening tool. We discuss more on how we utilized this capability

to improve RCN in the later sections.

2.9 DeepCaps

We discussed various changes in the convolutions leading to improvement in the CapsNet

as it is clear that CapsNet size highly depends on the dynamic routing algorithm as well.

Therefore, various dynamic routing algorithms were considered, and then on analysis of

each, we found that the DeepCaps brought better routing algorithm. DeepCaps aimed at

the Capsule Network’s depth. DeepCaps focused on intuition as we go deeper in a layer

like a CNN, the performance improves. This ’going deeper’ was achieved by improving the

rouging algorithms[26].

The DeepCaps is designed and developed with estimations of applying to the similar

classification tasks on CIFAR 10. The highlight of DeepCaps is the new routing algorithm, a

3D-convolution based dynamic-routing algorithm[26]. Along with the improvements in the

dynamic routing algorithm, the DeepCaps also focuses on other factors such as the decoder

network. The decoder network was improved to incorporate the class independent decoder.

The 3D-convolution based dynamic routing algorithm is given in Algorithm 2 [26].

In detail, the new dynamic routing algorithm is giving vast importance in avoiding un-

necessary routes. This change is achieved by considering the neighboring neurons activate

similarly and provides similar instantiation parameters in higher-level capsules. DeepCaps

removes this redundancy by involving a convolution in the dynamic algorithm. Typically

31

a 3 × 3 filter with one channel is used inside the older dynamic routing, thus the name

3D convolution-based dynamic routing algorithm. DeepCaps understands that the depth

of CapsNet matters for complex networks, and thus by removing these redundant routings

enables the CapsNet to handle better depths.

Consider an N channel input to the new dynamic routing, and it can be seen that Deep-

Caps achieved to create a 3D voting-like system, where the winning mode is detected with

a weighted summation. Using this technique number of parameters involved in CapsNet

were reduced by a factor of c ∗ (wLwL+1)2 parameters in each capsule, where c represents

channels, and wL represents the width of layer L[26].

32

3. PROPOSED ARCHITECTURES

This section details on the two architectures proposed and implemented toward the comple-

tion of this thesis.

3.1 RCN2: Residual Capsule Network V2

As we discussed, CNNs can only work with the shift-invariance in an image, due to the

parameter sharing of convolutional layers and a partial effect from pooling layers. This is the

limitation that we try to overcome with CapsNet. CapsNet, being different from CNN, is

still a field yet of unfolding its true potential. A typical CapsNet includes a convolution layer,

primary capsules, digit capsules, and a dynamic routing algorithm[26]. The salient feature

of CapsNet is that features are extracted and represented with vectors of N-dimension based

on capsules[4]. CapsNet focuses on two processes, the rendering and inverse rendering, out

of which the primary capsules, when triggered, resembles inverse rendering. CapsNet are

great at this distinctive sort of computation to achieve inverse rendering.

The inspiration for the proposed RCN2 architecture is from RCN (Figure 2.8). From

RCN, Residual Networks are being used along with the CapsNet[7]. A deeper network

is effective than shallow ones but, consequently, more cumbersome in the training process.

ResNets ease the preparation and have proven that they can give great precision. By utilizing

Residual Network with the Capsule Network, the RCN model came into existence. The

combination of two has proven extensively helpful[7].

RCN2 is a compressed and improved version of RCN. We implement many functionalities

which helped improve the RCN to become a better Network, and we named it RCN2. RCN2

architecture is depicted in Figure 3.1 . The improvements that were included are Bottleneck

architecture, 3D convolution based dynamic routing, Mish activation function, and changes

in the reconstruction network. These are detailed in the following subsections.

33

Figure 3.1. Architecture of proposed RCN2: Residual Capsule Network V2

34

3.1.1 Improving Residual Convolution layers with Bottleneck

As we understand from the literature review, the initial layer of the CapsNet is a convo-

lutional layer. It is also important to note that this convolution layer is solely responsible

for extracting the images’ features. Multiple layers of the convolution will provide the model

with the suitable complexity to learn features better. RCN authors improved this with the

inclusion of 8 repetitive ResNet layers. These layers are lacking the ability to learn better

as there is no bottleneck structure embedded in them.

Figure 3.2. Left: ResNet, Right: ResNet with Bottleneck[20]

We included Bottleneck to the ResNet blocks, like in Figure 3.2 . Bottleneck design

is supposed to reduce the number of parameters and matrix multiplications[20]. Here we

expanded the channel size to include more complexity by the supplement bottleneck layers.

Thus reaching a balance of complexity with slightly reduced size. Furthermore, we removed

redundant layers of RCN. In RCN, there are eight levels of redundant ResNet layers. This

redundancy is removed by adding the new ResNet layers with Bottleneck, removing six

layers, and keeping two ResNet levels. Additionally, only one of the two layers is provided

with the bottleneck architecture.

We understand that supplementing a bottleneck design to the given layer will diminish the

preparation time. Allowing training to run smoother than the baseline RCN. In each ResNet

layer where the RCN authors utilized 2-layers, we changed to a 4-layer structure containing

35

1× 1, 3× 3, 1× 1, and 3× 3 convolutions. Inserted with bottleneck strategy, which, together

with Identity routes, gives less time complexity and less neural network model size. We

configured this network to a 3-level structure to improve the performance. Thus at each

stage, instead of 8 redundant layers, we reduced them to 2 ResNet with bottleneck layer.

3.1.2 3D convolution-based dynamic routing

As examined earlier in the literature review, the initial layers of the CapsNet are convolu-

tional. In CapsNet the output of these convolution-based layers is fed into primary capsules.

The primary capsules transform the input vectors from the local feature detectors to eight-

dimensional capsules as output. These are then fed into Digit capsules. Going deeper with

a model is always what is done to increase performance in many CNN models. CapsNet’s

dynamic routing is such that they flatten the primary capsules’ output vectors, and then

they are routed with the dynamic routing algorithm as given in Algorithm 1 [4], [26]. This

structure gives rise to a structure similar to a multi-layer perceptron model. This structure is

a highly time-consuming one[26]. Stacking these to reach better performance will drastically

pull the network’s speed and efficiency, may even limit improvements after certain depth.

To accumulate multiple layers of CapsNet, it is needed to establish a dynamic routing

with some effect of a convolution-like process. This effect in process is achieved by the 3D-

convolution based dynamic routing algorithm proposed by the DeepCaps. This algorithm is

given in Algorithm 2 [26]. Within the Digit capsule layer, vector feature maps are squashed

and steered through an dynamic routing calculation. The new dynamic routing algorithm

from DeepCaps massively dropped the redundancy by directing squares of capsule s, from

layer L to layer L+1, rather than directing all capsules in layer L separately[26]. This change

was brought with the idea that the neighboring capsules generate similar predictions.

As we know, the primary capsules create an abstract estimation of parts of an object.

Further, they create a prediction of the presence of these parts and even with the transfor-

mation parameters of it. This inverse rendering effect is crucial in the CapsNets. The next

most important step is to create a routing by agreement from the primary capsules to the

next level capsules, which is usually termed as DigitCaps. The DigitCaps as one can imagine

36

Algorithm 2 3D convolution based Dynamic Routing Algorithm[26]
procedure: Routing(ûj|i, r, l)

Require: Φl ∈ R(wl,wl,cl,nl), r and cl+1, nl+1

Φ̃l ← Reshape(Φl) ∈ R(wl,wl,cl×nl,1)

V ← Conv3D(Φ̃l) ∈ R(wl+1,wl+1,cl,cl+1×nl+1)

Ṽ ← Reshape(V) ∈ R(wl+1,wl+1,nl+1,cl+1,cl)

B ← 0 ∈ R(wl+1,wl+1,cl+1,cl)

Let p ∈ wl+1, q ∈ wl+1, r ∈ cl+1 ans s ∈ cl

for i iterations do
for all p, q, r, kpqrs ← softmax_3D(bpqrs)
for all s, Spqr ←

∑
s kpqrs · Ṽpqrs

for all s, Ŝpqr ← squash3D(Spqr)
for all s, bpqrs ← bpqrs + Ŝpqr · Ṽpqrs

end for
return Φl+1 = Ŝ

is similar to the primary capsule with the fact that these take more complex object detection

in the image[4]. DigitCaps also generate the prediction of presence of the capsules objects

and also the instantiation parameters of the particular object in each location.

3.1.3 Mish activation

The activation function gives the NN flexibility to incorporate the required nonlinearity to

learn mapped functions. This flexibility provides a fundamental part of the implementation

and gaining accuracy. The baseline model, RCN, uses the ReLU (Rectified Linear Unit)

activation function after every ResNet layer. The function of ReLU is as follows:[27]

f(x) = x+ = max(0, x) (3.1)

In RCN2, we utilized the very flexible Mish Activation. Via experiments, we tested and

trained various activation functions, and the Mish activation function provided a boost to

the network’s accuracy. Mish activation function is as follows (Figure 3.3)[28].

f(x) = x tanh(softplus(x)) (3.2)

37

Figure 3.3. Mish activation function[28]

Mish function has certain properties, which led to our conclusion that Mish activation was

the right choice for RCN2. Mish activation prevents over-fitting and provides the necessary

intricacy for self-regularization. Unlike ReLU, Mish activation does not get overwhelmed by

a near-zero gradient. These properties allow the Mish activation to achieve better general-

ization[28].

3.1.4 3D reconstruction by decoder network

The Reconstruction networks are a crucial part of the CapsNet. In RCN, the authors

tried to reduce the computation cost by deducting complexity from the reconstruction net-

work. We believe that a proper reconstruction network is always suitable for a CapsNet

based machine learning model. It is understood from the literature review that the re-

38

construction network is only used for training and is discarded or unnecessary during the

process of testing or inference. Thereby allowing a fair comparison to the existing CNNs to

the CapsNets. Here we employ the 3-dimensional reconstructions, and the reconstruction

is based on the class independent decoder network for the RCN2. The DeepCaps inspired

us to implement the decoder network with the instantiation parameters extracted from the

model with deconvolutional layers to reproduce the input[26], [29].

3.1.5 Summary of the proposed architecture RCN2

In summary, as the image moves across the initial ResNet units, the primary capsules

obtain the output from them at three different stages permitting the network to evaluate the

input at different layers of feature mining. These primary capsules produce 8D vectors, for

each being a highlight of the object. These 8D vectors go across a DigitCaps layer with three

reiterations of routing to deliver 16-dimensional vectors, following which it is combined to

deliver a classification. Moreover, the decoder network decodes each output of the network

and tries to match it with the input received.

39

3.2 RCNX: Residual Capsule NeXt

Unlike the familiar Convolutional Neural Network (CNN) that depends on the shift-

invariance in the image, Capsule Networks utilizes hierarchical model relations in depth.

This uniqueness keeps them in the realm even with their vast volume with only equivalent

precision to the CNNs. Capsules develop a sophisticated system to produce a routing by

agreement, prominent to their volume and makes them exceptional. Previous improvements

in RCN to RCN2 have aided in alleviating the complexity of size of the RCN.

We focus on revising RCN, to improve the accuracy while still reducing the size of the

model and thus reiterating Capsule Network’s prominence. In this section, the proposed

Residual Capsule NeXt (RCNX) is projected as an active and improved architecture of RCN

with a scale of 1.5 M parameters. By including modification in the initial layers of the RCN,

with tremendous ResNeXt layers and modifying altogether structure. The final structure on

the whole can be seen as an bottleneck version of RCN. The model produced an extraordinary

progress in the system’s accuracy on the CIFAR-10 dataset. This accuracy and size exceed

the prominent embedded CNN model MobileNetV3. The architecture of RCNX is depicted

in Figure 3.4 .

3.2.1 ResNeXt Convolution Layers

To achieve excellent accuracy, convolutional layers of RCNX should become efficient

in composite feature abstraction. Although Capsule Network functions are established on

routed capsules, the primary levels are convolution reliant[26]. Repetitive convolutional

layers in the opening stages of Capsule Network provide us superior feature mining, and this

offers the neural network an excellent opening advantage.

The RCN ponders on eight repetitive ResNet layers with no presence of bottleneck layout

or any cardinality to enhance the intricacy and lessen parameters. We bring substantial

compression and development to the RCN architecture. As cited heretofore, this thesis

intends revisions in such elements, which are deficient in the RCN system. RCNX is unique

with the insertion of the latest dimension cardinality to RCN. As clarified in the literature

40

Figure 3.4. Architecture of proposed RCNX: Residual Capsule NeXt

41

review, the ResNeXt design (Figure 3.5) maintain the number of parameters but enhanced

the accuracy of the RCNX’s image classification capabilities.

With the absent structural improvements, RCN requires the intricacy to find a richer

grasp of the inputs, which can be the justification for not attaining above average accuracy

even with eight monotonous ResNets layers. From the time when we involve the requisite

convolution applying ResNeXt, we excluded the unnecessary layers. ResNeXt structure

inserted in the RCNX is with varying Cardinality prior to applying to the capsules. We also

propose the three-staged architecture and find the system expands learning of the input for

various capsules to understand from different image viewpoints.

Figure 3.5. Left: ResNet; Right: ResNeXt with cardinality 32

3.2.2 3-Level ResNeXt structures in RCNX

The proposed RCNX can understand sophisticated elements and know to do it rapidly

with the integration of different viewpoints. Letting the model go across each stage repeat-

edly because of the elaborate composition makes the best of RCNX with minimal effort.

In the 3-staged structure, the ResNeXt network with four and two cardinalities is in-

corporated, with identical size filters, i.e., 32. This differing Cardinality gives variable total

filter sizes for individual capsules. Initial capsules getting three separate viewpoints to the

42

input were configured to deliver likelihood vectors of variable dimensions, with plasticity in

creating different features with various dimensions. We configured this network to a 3-level

structure to improve the performance. We use the dimensions of 8, 24, 32, and 8 across four

primary capsules.

3.2.3 Effective Capsules with 3D convolution-based dynamic routing.

As examined earlier, the initial layers of the CapsNet are convolutional. The output of

these convolution-based layers is fed into primary capsules. Allowing the training network to

go through each level repetitively due to the intricate structure brings the best of RCNX with

minimal effort. Utilizing 3D convolution-based dynamic routing, DeepCaps creators altered

and made strides in routing by agreement calculation by changing including convolution for

each capsule in the capsule networks[26].

The primary capsules transform the input vectors from the local feature detectors to

eight-dimensional capsules as output. These are then fed into Digit capsules. Going deeper

with a model is always what is done to increase performance in many CNN models. CapsNet’s

dynamic routing is such that they flatten the primary capsules’ output vectors, and then

they are routed with the dynamic routing algorithm. This structure gives rise to a structure

similar to MLP models, which is a highly time-consuming structure. Stacking these to reach

better performance will drastically pull the network’s speed and efficiency[26].

This 3D convolution makes a difference in trimming the network in size. The inclusion

of convolution is considering that neighboring neurons create a comparable instantiation

output, and this can be clustered[26]. To accumulate multiple layers of CapsNet, it is

necessary to establish a dynamic routing with some effect of a convolution-like process. This

convolution-like process is achieved by the 3D-convolution based dynamic routing algorithm

proposed by the DeepCaps. Within the Digit capsule layer, vector feature maps are squashed

and steered through an energetic routing calculation. The new dynamic routing algorithm

from DeepCaps massively dropped the redundancy by directing squares of capsule s from

layer L to layer L + 1, rather than directing individual capsules in layer L separately[29].

43

3.2.4 3D reconstruction by decoder network

At the end of RCN, the decoder network does not include full inverse rendering but is

reduced to a 2-dimensional restoration. The Reconstruction networks are a critical part of

the CapsNet. In RCN, the authors tried to cut the computation cost by deducting com-

plexity from the reconstruction network. We believe that a proper reconstruction network

is always suitable for a CapsNet based machine learning model. It is understood from the

literature review that the reconstruction network is only used for training and is discarded or

unnecessary during the process of testing/inference. Thereby allowing a fair comparison to

the existing CNNs to the CapsNets. Here we employ the 3-dimensional reconstructions, and

the reconstruction is based on the class independent decoder network for the RCNX. The

DeepCaps inspired us to implement the decoder network with the instantiation parameters

extracted from the model with deconvolutional layers to reproduce the input[29].

3.2.5 ELU activation function

Figure 3.6. ELU Activation function[30]

Non-linearity is a significant part of the neural network, and without it, the NN will fail

to achieve anything significant. The activation functions mainly contribute to this nonlin-

44

earity for the NN involved in the neurons. Over the past several years, activation functions

alone have become a scope for further research. After each convolutional layer, speaking in

a layer-like manner, we add the activation layer on it, which is usually followed by a batch

normalization. In the baseline RCN, they use the ReLU activation function. In the RCN2,

we used the Mish activation function, but for the proposed RCNX, we utilize the ELU (Ex-

ponential Linear Unit) activation function (Figure 3.6)[30]. ELU activation function avoids

the dead ReLU problem. It also brings the better optimization of biases and weights and

provides a negative output to prevent saturation near-zero gradient. Function representation

of ELU is as follows[30].

f(x) =

 x x > 0

α.(ex − 1) x <= 0

 (3.3)

where α is also a trainable parameter.

3.2.6 Summary of the proposed architecture RCNX

In conclusion, when a 32 × 32 × 3 input image is fed through the proposed RCNX:

Residual Capsule NeXt the RGB channels of the images move through the convolutional

layers and bring the channels of various output width and height sizes, giving the primary

capsules a chance to see different sizes of the input image. The obtained in-depth features

with channels of volume c× f , where c is the Cardinality and f being the filter width, pass

through a separable convolution before proceeding to primary capsules. These networks

generate channels of 256 and 128. The separable convolution adjustments the image height

and filter sizes to 3 different sizes, they are 15× 15× 12, 5× 5× 48, and 1× 1× 16.

The digit capsules are of variable sizes yet lengthier dimensions than Primary Capsules

with enhanced routing numbers and finally combine to form an output. Further, we de-

code output to form an inverse rendering effect by the decoder network to the equivalent

input. This decoder network only activates during training and is removed while testing the

proposed RCNX.

45

4. TRAINING SETUP

4.1 Hardware Setup

For the training and inference of the algorithms I utilized Lenovo think system compute

node provided by the IU compute cluster[11]. These systems have the following hardware

configurations.

Table 4.1. Hardware specifications.

CPU Intel Xenon Gold
RAM 128 GB
GPU NVIDIA Tesla V100

4.2 Dataset: CIFAR-10

CIFAR-10(Canadian Institute for Advanced Research) dataset is used to gain inference

of the model[8]. The CIFAR-10 is a benchmark dataset comprised of 60,000 RGB images of

10 classes with 6000 pictures per class. Ten thousand images in these are for testing and the

remainder for training the neural network models[8].

4.3 Hyper-parameter Tuning: Neural Network Intelligence

When challenged with the design parameters for a neural network, it is optimal to utilize

a hyper parameter tuner. Earlier on the common tool used for hyper parameter optimization

was TensorFlow hyper-parameter library, along with visualization tool TensorBoard[31]. We

utilized TensorBoard and TensorFlow hyper-parameter tuners for the RCN2 development.

Recent developments in the field of machine learning brought forth the amazing tool Neural

Network Intelligence (NNI)[21]. Many parameters like optimizer, number of filters in the

layers, activation functions, kernel sizes and routing numbers are experimentally optimized

with the help of NNI.

46

5. RESULTS

Utilizing above mentioned training setup, RCN2 and RCNX were trained and tested. Using

NNI, hyperparameter tuning was conducted, and a sample graph output of the hyperparam-

eter tuning for RCNX is given in Figure 5.1 .

We evaluated the proposed models RCN2 and RCNX with the CIFAR-10 dataset and

compared the observed performance to the baseline RCN. We also brought in the accuracy

comparisons of DCNet++, DCNet, 3-level RCN, seven ensemble CapsNet since these are

leading Capsule Networks[9]. Furthermore, we compare our proposed RCN2 and RCNX to

the embedded model MobileNetV3 to prove that the aim of creating an embedded machine

learning model by compressing RCN without losing performance is achieved. The comparison

is listed in Table 5.1 .

Table 5.1. Model performance on CIFAR-10[9], [32]

Model No. of Parameters Test Accuracy
Proposed RCNX 1.58 M 89.31%
Proposed RCN2 1.95 M 85.12%

Baseline RCN 11.86 M 84.16%
3-Level RCN 10.8 M 86.42%

Seven-ensemble CapsNet 101.5M 89.4%
DCNet 11.8 M 82.63%

DCNet++ 13.4 M 89.71%
MobileNetV3 1.8 M 88.93%

47

F
ig

ur
e

5.
1.

H
yp

er
pa

ra
m

et
er

Tu
ni

ng
ac

hi
ev

ed
us

in
g

N
N

I

48

5.1 RCN2 Results

With compression in the RCN, we achieved a balance between reductions in parameters

while maintaining accuracy. The Figure 5.2 shows the train and test accuracy for each epoch

for 30 epochs.

Figure 5.2. Accuracy plot while training the proposed RCNX

5.2 RCNX Results

With further improvements to the RCN2, we achieve the RCNX architecture, which is

efficient and compressed. This RCNX outperformed the baseline model by 5.15% while

reducing parameters by 86.67%. The train and test accuracy, while the model is trained for

30 epochs, is shown in Figure 5.3 . The test loss curve is also depicted in Figure 5.4 .

49

Figure 5.3. Accuracy plot while training the proposed RCN2

Figure 5.4. Loss plot while training the proposed RCN2

50

5.3 Performance Comparison

From the above results and comparisons, a performance comparison chart is generated

for visualizing the impact of our proposed RCN2 and RCNX in Figure 5.5 .

Figure 5.5. Performance Comparison Chart

It is clear from the above Figure 5.5 that RCN2 and RCNX have achieved performance

better than the existing MobileNetV3, which is a comparison to CNN and outperforms all

other CapsNets given above. Hence, we clearly reinstate the importance of the Capsule

Networks in the field of Machine Learning.

51

6. IMPLEMENTATION ON I.MX RT1060

This section we discuss the implementation of RCNX architecture on the NXP i.MX RT1060

for image classification

6.1 Hardware Setup

The RCNX model achieved good accuracy of 89.31% with a model size of 1.58 Million

parameters. This model has a deploy-able size for embedded hardware. We used i.MX RT

1060 Evaluation board which is developed by NXP semiconductors for image classification

application (Figure 6.1)[33].

Figure 6.1. i.MX RT1060[33]

Additional hardware required for this process include a Camera Module MT9M114 (Fig-

ure 6.2) and an LCD screen[33]. Finally, the camera’s input is processed frame by frame,

and the detection result is sent via UART communication.

52

Figure 6.2. Camera module attached on IMX RT1060[33]

6.2 Softare Setup

MCUExpresso is used as the IDE for the deployment. NXP provides an eIQ software

library intended for the software development for neural network-based applications and

contains various optimized libraries for the compilation, back propagation, and inference

generation. This library utilizes the Tensorflow-lite model of the intended architecture[34].

The eIQ software is given as middleware in the MCUXpresso SDK for the NXPi.MX RT1060

board[33]. It contains the latest eIQ SDK and demos. The tflite has to be converted into a

C array structure to be downloaded to the board.

6.3 Model Preparation

After successfully training the RCNX with the CIFAR-10 dataset, we saved this model

into PB format, the protocol buffer(protobuf) format. This PB format is commonly used

in TensorFlow models. Since the development of RCNX is based on Keras, TensorFlow,

and custom functions, it was easily convertible to the PB model[35], [36]. This PB model

is further converted into a tflite(TensorFlow lite) model, a common standard used from

converting models cross-platform[34]. The steps followed are as per the following Figure 6.3 .

53

Figure 6.3. Course of action for deploying RCNX on IMX RT1060

6.4 Implementation Results

The RCNX was successfully deployed into the i.MX RT1060, proving that the CapsNet

for image classification can be downloaded into embedded systems. A demonstration of

the model running on i.MX RT1060 is provided in Figure 6.4 . Although the model ran

successfully and the accuracy of prediction was good, the time taken for inference is 3.8

seconds, which is a long time. This delay in processing could be due to the complex routing

algorithms and current libraries’ inefficiency to help optimize CapsNet based networks. We

believe this prototype presented in the thesis is only an initial step for the CapsNet to be

considered for embedded application.

54

Figure 6.4. Execution after download

55

Figure 6.5. UART output of above image

56

Figure 6.6. Software size after build

57

7. CONCLUSION

Convolutional Neural Networks is one of the causes why Deep Learning is so prevalent.

Constructing a deeper network always improves performance, but the vanishing gradient

problem does not allow us to stack layers. This problem has been mitigated with the entrance

Residual Network. Although CNN’s are impressive and have provided many advancements

towards machine learning, they are not impeccable. Problems such as the requirement of

large datasets, pooling layers that cause loss of valuable information, and lack of hierarchical

perception of objects contribute to the creation of CapsNet. CapsNet utilizes vector output

capsules to enhance the primitive scalar feature detectors.

Residual Capsule Networks brought the best features from both worlds together. Though

inspiring, this initial attempt is ineffective. This thesis uses the RCN baseline framework and

improves the parts where we found lacking structural accuracies. Starting with the redundant

layers, which do not get the required nonlinearity, to the inaccuracy in the implementation of

reconstruction network is attended. We replace many crucial elements like Capsules Routing-

by-Agreement algorithms, Redundant ResNet layers, and lack of complexity in the initial

convolutions.

This thesis proposes RCN2: Residual Capsule Network V2 and RCNX: Residual Capsule

NeXt to achieve superior accuracy with fewer parameters. This attempt was to lead to an

architecture similar to the CNNs and thus improve Capsule Networks’ field. The proposed

models compressed and combined features from the RCN and the 3-Level RCN.

The proposed architectures were trained and tested with CIFAR-10 dataset. RCN2

achieved an accuracy of 85.12 % with only parameters of 1.95 M. Furthermore, the RCNX

demonstrated superior accuracy of 89.31% with only parameters of 1.58 M. Compared to

the previous models RCN and 3 Level RCN, the proposed models have achieved higher level

of compression. We conclude that the RCN2 and RCNX are the models that shows the

capability of Capsule Networks to be implemented to a size, which makes it easier to deploy

in embedded systems.

In the near future, we believe these models will inspire more effective neural networks

and also deliver accuracy superior to CNN models.

58

REFERENCES

[1] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, L. Wang,
G. Wang, J. Cai, and T. Chen, “Recent advances in convolutional neural networks,”
arXiv:1512.07108 [cs], Apr. 5, 2021. arXiv: 1512.07108 . [Online]. Available: http://
arxiv.org/abs/1512.07108 .

[2] V. Dragoi. (Oct. 7, 2020). “Visual processing: Cortical pathways (Section 2, Chapter
15) Neuroscience Online: An electronic textbook for the neurosciences | Department
of Neurobiology and Anatomy - The University of Texas Medical School at Houston,”
[Online]. Available: https://nba.uth.tmc.edu/neuroscience/m/s2/chapter15.html .
(accessed: 04.05.2021).

[3] P. F. Sharp and R. Philips, “Physiological optics,” in The Perception of Visual Infor-
mation, W. R. Hendee and P. N. T. Wells, Eds., New York, NY: Springer, Jan. 11,
2021, pp. 1–32, isbn: 978-1-4612-1836-4. doi: 10.1007/978-1-4612-1836-4_1 . [Online].
Available: https://doi.org/10.1007/978-1-4612-1836-4_1 .

[4] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in
Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach,
CA, USA., p. 11. [Online]. Available: https : / / papers . nips . cc / paper / 2017 / file /
2cad8fa47bbef282badbb8de5374b894-Paper.pdf .

[5] K. Bai. (Feb. 11, 2019). “A comprehensive introduction to different types of convolu-
tions in deep learning,” Medium, [Online]. Available: https://towardsdatascience.com/
a-comprehensive- introduction-to-different-types-of-convolutions- in-deep-learning-
669281e58215 . (accessed: 04.05.2021).

[6] H. H. Tan and K. H. Lim, “Vanishing gradient mitigation with deep learning neural
network optimization,” in 2019 7th International Conference on Smart Computing
& Communications (ICSCC), Sarawak, Malaysia, Malaysia: IEEE, Jun. 2019, pp. 1–
4, isbn: 978-1-72811-557-3. doi: 10.1109/ICSCC.2019.8843652 . [Online]. Available:

 https://ieeexplore.ieee.org/document/8843652/ .

[7] S. B. S. Bhamidi and M. El-Sharkawy, “Residual capsule network,” in 2019 IEEE 10th
Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEM-
CON), Apr. 22, 2021, pp. 0557–0560. doi: 10.1109/UEMCON47517.2019.8993019 .

[8] R. C. Calik and M. F. Demirci, “Cifar-10 image classification with convolutional neural
networks for embedded systems,” in 2018 IEEE/ACS 15th International Conference
on Computer Systems and Applications (AICCSA), Aqaba: IEEE, Oct. 2018, pp. 1–
2, isbn: 978-1-5386-9120-5. doi: 10.1109/AICCSA.2018.8612873 . [Online]. Available:

 https://ieeexplore.ieee.org/document/8612873/ .

59

https://arxiv.org/abs/1512.07108
http://arxiv.org/abs/1512.07108
http://arxiv.org/abs/1512.07108
https://nba.uth.tmc.edu/neuroscience/m/s2/chapter15.html
https://doi.org/10.1007/978-1-4612-1836-4_1
https://doi.org/10.1007/978-1-4612-1836-4_1
https://papers.nips.cc/paper/2017/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf
https://papers.nips.cc/paper/2017/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://doi.org/10.1109/ICSCC.2019.8843652
https://ieeexplore.ieee.org/document/8843652/
https://doi.org/10.1109/UEMCON47517.2019.8993019
https://doi.org/10.1109/AICCSA.2018.8612873
https://ieeexplore.ieee.org/document/8612873/

[9] S. B. S. Bhamidi and M. El-Sharkawy, “3-level residual capsule network for complex
datasets,” in 2020 IEEE 11th Latin American Symposium on Circuits Systems (LAS-
CAS), ISSN: 2473-4667, Apr. 22, 2021, pp. 1–4. doi: 10.1109/LASCAS45839.2020.
9068990 .

[10] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM routing,” presented
at the International Conference on Learning Representations, Feb. 15, 2018. [Online].
Available: https://openreview.net/forum?id=HJWLfGWRb .

[11] C. A. Stewart, V. Welch, B. Plale, G. Fox, M. Pierce, and T. Sterling, “Indiana univer-
sity pervasive technology institute,” Sep. 1, 2017. doi: 10.5967/K8G44NGB . [Online].
Available: https://scholarworks.iu.edu/dspace/handle/2022/21675 .

[12] J. Talukdar, A. Biswas, and S. Gupta, “Data augmentation on synthetic images for
transfer learning using deep CNNs,” in 2018 5th International Conference on Signal
Processing and Integrated Networks (SPIN), Noida: IEEE, Jan. 27, 2021, pp. 215–
219, isbn: 978-1-5386-3045-7. doi: 10.1109/SPIN.2018.8474209 . [Online]. Available:

 https://ieeexplore.ieee.org/document/8474209/ .

[13] J. Q. Fan, English: Biological neural networks. Dec. 24, 2015. [Online]. Available: https:
/ / commons . wikimedia . org / wiki / File : Biological - neural - networks . jpg , (accessed:
04.05.2021).

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), ISSN:
1063-6919, Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90 .

[15] Aphex34, English: Typical CNN architecture, Dec. 16, 2015. [Online]. Available: https:
//commons.wikimedia.org/wiki/File:Typical_cnn.png , (accessed: 04.05.2021).

[16] J. Chao, T. Kishigami, K. Minowa, and S. Tsujii, “Artificial neural networks which
can see geometric illusions in human vision,” in Proceedings of 1993 International
Conference on Neural Networks (IJCNN-93-Nagoya, Japan), vol. 3, Nagoya, Japan:
IEEE, Apr. 5, 2021, pp. 2209–2212, isbn: 978-0-7803-1421-4. doi: 10.1109/IJCNN.
1993.714165 . [Online]. Available: http://ieeexplore.ieee.org/document/714165/ .

[17] Aphex34, English: Max_pooling with 2x2 filter and stride = 2, Dec. 16, 2015. [Online].
Available: https://commons.wikimedia.org/wiki/File:Max_pooling.png , (accessed:
04.05.2021).

[18] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu, V. Va-
sudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le, “Searching for MobileNetV3,” in
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea
(South): IEEE, Apr. 5, 2021, pp. 1314–1324, isbn: 978-1-72814-803-8. doi: 10.1109/
ICCV.2019.00140 . [Online]. Available: https://ieeexplore.ieee.org/document/9008835/ .

60

https://doi.org/10.1109/LASCAS45839.2020.9068990
https://doi.org/10.1109/LASCAS45839.2020.9068990
https://openreview.net/forum?id=HJWLfGWRb
https://doi.org/10.5967/K8G44NGB
https://scholarworks.iu.edu/dspace/handle/2022/21675
https://doi.org/10.1109/SPIN.2018.8474209
https://ieeexplore.ieee.org/document/8474209/
https://commons.wikimedia.org/wiki/File:Biological-neural-networks.jpg
https://commons.wikimedia.org/wiki/File:Biological-neural-networks.jpg
https://doi.org/10.1109/CVPR.2016.90
https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://doi.org/10.1109/IJCNN.1993.714165
https://doi.org/10.1109/IJCNN.1993.714165
http://ieeexplore.ieee.org/document/714165/
https://commons.wikimedia.org/wiki/File:Max_pooling.png
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/ICCV.2019.00140
https://ieeexplore.ieee.org/document/9008835/

[19] M. Pechyonkin. (Dec. 18, 2018). “Understanding hinton’s capsule networks. part i: Intu-
ition.,” Medium, [Online]. Available: https://medium.com/ai%C2%B3-theory-practice-
business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b . (ac-
cessed: 04.05.2021).

[20] M. Hassan. (Apr. 5, 2021). “ResNet (34, 50, 101): Residual CNNs for image classifi-
cation tasks,” [Online]. Available: https://neurohive.io/en/popular-networks/resnet/ .
(accessed: 04.05.2021).

[21] Neural network intelligence (NNI), Apr. 22, 2021. [Online]. Available: https://github.
com/microsoft/nni , (accessed: 04.22.2021).

[22] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv:1804.02767
[cs], Apr. 8, 2018. arXiv: 1804.02767 . [Online]. Available: http://arxiv.org/abs/1804.
02767 .

[23] M. Ju, H. Luo, Z. Wang, B. Hui, and Z. Chang, “The application of improved YOLO
v3 in multi-scale target detection,” Applied Sciences, vol. 9, no. 18, p. 3775, Apr. 5,
2021. doi: 10.3390/app9183775 . [Online]. Available: https://www.mdpi.com/2076-
3417/9/18/3775 .

[24] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual transformations
for deep neural networks,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 5987–5995, isbn: 978-1-5386-
0457-1. doi: 10.1109/CVPR.2017.634 . [Online]. Available: http://ieeexplore.ieee.org/
document/8100117/ .

[25] R. C. Calik and M. F. Demirci, “In embedded systems image classification with con-
volutional neural network,” in 2018 26th Signal Processing and Communications Ap-
plications Conference (SIU), Izmir, Turkey: IEEE, Apr. 5, 2021, pp. 1–4, isbn: 978-1-
5386-1501-0. doi: 10.1109/SIU.2018.8404296 . [Online]. Available: https://ieeexplore.
ieee.org/document/8404296/ .

[26] J. Rajasegaran, V. Jayasundara, S. Jayasekara, H. Jayasekara, S. Seneviratne, and
R. Rodrigo, “DeepCaps: Going deeper with capsule networks,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), ISSN: 2575-7075,
Apr. 22, 2021, pp. 10 717–10 725. doi: 10.1109/CVPR.2019.01098 .

[27] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th International Conference on International Confer-
ence on Machine Learning, ser. ICML’10, Haifa, Israel: Omnipress, Apr. 5, 2021, isbn:
978-1-60558-907-7.

61

https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
https://neurohive.io/en/popular-networks/resnet/
https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://doi.org/10.3390/app9183775
https://www.mdpi.com/2076-3417/9/18/3775
https://www.mdpi.com/2076-3417/9/18/3775
https://doi.org/10.1109/CVPR.2017.634
http://ieeexplore.ieee.org/document/8100117/
http://ieeexplore.ieee.org/document/8100117/
https://doi.org/10.1109/SIU.2018.8404296
https://ieeexplore.ieee.org/document/8404296/
https://ieeexplore.ieee.org/document/8404296/
https://doi.org/10.1109/CVPR.2019.01098

[28] D. Misra, “Mish: A self regularized non-monotonic activation function,” arXiv:1908.08681
[cs, stat], Aug. 13, 2020. arXiv: 1908.08681 . [Online]. Available: http://arxiv.org/abs/
1908.08681 .

[29] J. Rajasegaran, Brjathu/deepcaps, original-date: 2019-03-15T07:42:55Z. [Online]. Avail-
able: https://github.com/brjathu/deepcaps , (accessed: 04.05.2021).

[30] Z. Qiumei, T. Dan, and W. Fenghua, “Improved convolutional neural network based
on fast exponentially linear unit activation function,” IEEE Access, vol. 7, pp. 151 359–
151 367, 2019, issn: 2169-3536. doi: 10.1109/ACCESS.2019.2948112 . [Online]. Avail-
able: https://ieeexplore.ieee.org/document/8873678/ .

[31] TensorBoard. [Online]. Available: https://www.tensorflow.org/tensorboard , (accessed:
04.05.2021).

[32] P. S. P. Kavyashree and M. El-Sharkawy, “Compressed MobileNet v3:a light weight
variant for resource-constrained platforms,” in 2021 IEEE 11th Annual Computing
and Communication Workshop and Conference (CCWC), NV: IEEE, Jan. 27, 2021,
pp. 0104–0107, isbn: 978-1-66541-490-6. doi: 10 .1109/CCWC51732 .2021 .9376113 .
[Online]. Available: https://ieeexplore.ieee.org/document/9376113/ .

[33] S. R. Desai, D. Sinha, and M. El-Sharkawy, “Image classification on NXP i.MX RT1060
using ultra-thin MobileNet DNN,” in 2020 10th Annual Computing and Communica-
tion Workshop and Conference (CCWC), Las Vegas, NV, USA: IEEE, Jan. 27, 2021,
pp. 0474–0480, isbn: 978-1-72813-783-4. doi: 10 .1109/CCWC47524 .2020 .9031165 .
[Online]. Available: https://ieeexplore.ieee.org/document/9031165/ .

[34] Tensorflow/tflite-support, original-date: 2020-06-01T03:15:31Z. [Online]. Available: https:
//github.com/tensorflow/tflite-support , (accessed: 04.05.2021).

[35] Keras-team/keras, original-date: 2015-03-28T00:35:42Z. [Online]. Available: https ://
github.com/keras-team/keras , (accessed: 04.05.2021).

[36] TensorFlow, Jan. 27, 2021. [Online]. Available: https://www.tensorflow.org/ , (accessed:
04.22.2021).

62

https://arxiv.org/abs/1908.08681
http://arxiv.org/abs/1908.08681
http://arxiv.org/abs/1908.08681
https://github.com/brjathu/deepcaps
https://doi.org/10.1109/ACCESS.2019.2948112
https://ieeexplore.ieee.org/document/8873678/
https://www.tensorflow.org/tensorboard
https://doi.org/10.1109/CCWC51732.2021.9376113
https://ieeexplore.ieee.org/document/9376113/
https://doi.org/10.1109/CCWC47524.2020.9031165
https://ieeexplore.ieee.org/document/9031165/
https://github.com/tensorflow/tflite-support
https://github.com/tensorflow/tflite-support
https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://www.tensorflow.org/

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Context
	Motivation
	Challenges
	Methodology
	Contributions

	LITERATURE REVIEW
	Neural Networks
	Convolutional Neural Networks
	Capsule Neural Network
	Capsule vector input and output computation
	Routing-by-agreement algorithm
	CapsNet Architecture
	Performance of CapsNet

	Residual Network
	Baseline: Residual Capsule Network (RCN)
	YOLO-v3
	3-level Residual Capsule Network
	ResNeXt and Cardinality
	DeepCaps

	PROPOSED ARCHITECTURES
	RCN2: Residual Capsule Network V2
	Improving Residual Convolution layers with Bottleneck
	3D convolution-based dynamic routing
	Mish activation
	3D reconstruction by decoder network
	 Summary of the proposed architecture RCN2

	RCNX: Residual Capsule NeXt
	ResNeXt Convolution Layers
	3-Level ResNeXt structures in RCNX
	Effective Capsules with 3D convolution-based dynamic routing.
	3D reconstruction by decoder network
	ELU activation function
	Summary of the proposed architecture RCNX

	TRAINING SETUP
	Hardware Setup
	Dataset: CIFAR-10
	Hyper-parameter Tuning: Neural Network Intelligence

	RESULTS
	RCN2 Results
	RCNX Results
	Performance Comparison

	IMPLEMENTATION ON I.MX RT1060
	Hardware Setup
	Softare Setup
	Model Preparation
	Implementation Results

	CONCLUSION
	REFERENCES

